skge.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "0.6"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define MAX_RX_RING_SIZE 4096
  48. #define PHY_RETRIES 1000
  49. #define ETH_JUMBO_MTU 9000
  50. #define TX_WATCHDOG (5 * HZ)
  51. #define NAPI_WEIGHT 64
  52. #define BLINK_HZ (HZ/4)
  53. #define LINK_POLL_HZ (HZ/10)
  54. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  55. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  56. MODULE_LICENSE("GPL");
  57. MODULE_VERSION(DRV_VERSION);
  58. static const u32 default_msg
  59. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  60. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  61. static int debug = -1; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. static const struct pci_device_id skge_id_table[] = {
  65. { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940,
  66. PCI_ANY_ID, PCI_ANY_ID },
  67. { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B,
  68. PCI_ANY_ID, PCI_ANY_ID },
  69. { PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE,
  70. PCI_ANY_ID, PCI_ANY_ID },
  71. { PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU,
  72. PCI_ANY_ID, PCI_ANY_ID },
  73. { PCI_VENDOR_ID_SYSKONNECT, 0x9E00, /* SK-9Exx */
  74. PCI_ANY_ID, PCI_ANY_ID },
  75. { PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T,
  76. PCI_ANY_ID, PCI_ANY_ID },
  77. { PCI_VENDOR_ID_MARVELL, 0x4320, /* Gigabit Ethernet Controller */
  78. PCI_ANY_ID, PCI_ANY_ID },
  79. { PCI_VENDOR_ID_MARVELL, 0x5005, /* Marvell (11ab), Belkin */
  80. PCI_ANY_ID, PCI_ANY_ID },
  81. { PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD,
  82. PCI_ANY_ID, PCI_ANY_ID },
  83. { PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032,
  84. PCI_ANY_ID, PCI_ANY_ID },
  85. { PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064,
  86. PCI_ANY_ID, PCI_ANY_ID },
  87. { 0 }
  88. };
  89. MODULE_DEVICE_TABLE(pci, skge_id_table);
  90. static int skge_up(struct net_device *dev);
  91. static int skge_down(struct net_device *dev);
  92. static void skge_tx_clean(struct skge_port *skge);
  93. static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  94. static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  95. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  96. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  97. static void yukon_init(struct skge_hw *hw, int port);
  98. static void yukon_reset(struct skge_hw *hw, int port);
  99. static void genesis_mac_init(struct skge_hw *hw, int port);
  100. static void genesis_reset(struct skge_hw *hw, int port);
  101. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  102. static const int rxqaddr[] = { Q_R1, Q_R2 };
  103. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  104. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  105. /* Don't need to look at whole 16K.
  106. * last interesting register is descriptor poll timer.
  107. */
  108. #define SKGE_REGS_LEN (29*128)
  109. static int skge_get_regs_len(struct net_device *dev)
  110. {
  111. return SKGE_REGS_LEN;
  112. }
  113. /*
  114. * Returns copy of control register region
  115. * I/O region is divided into banks and certain regions are unreadable
  116. */
  117. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  118. void *p)
  119. {
  120. const struct skge_port *skge = netdev_priv(dev);
  121. unsigned long offs;
  122. const void __iomem *io = skge->hw->regs;
  123. static const unsigned long bankmap
  124. = (1<<0) | (1<<2) | (1<<8) | (1<<9)
  125. | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
  126. | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
  127. | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
  128. regs->version = 1;
  129. for (offs = 0; offs < regs->len; offs += 128) {
  130. u32 len = min_t(u32, 128, regs->len - offs);
  131. if (bankmap & (1<<(offs/128)))
  132. memcpy_fromio(p + offs, io + offs, len);
  133. else
  134. memset(p + offs, 0, len);
  135. }
  136. }
  137. /* Wake on Lan only supported on Yukon chps with rev 1 or above */
  138. static int wol_supported(const struct skge_hw *hw)
  139. {
  140. return !((hw->chip_id == CHIP_ID_GENESIS ||
  141. (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)));
  142. }
  143. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  144. {
  145. struct skge_port *skge = netdev_priv(dev);
  146. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  147. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  148. }
  149. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  150. {
  151. struct skge_port *skge = netdev_priv(dev);
  152. struct skge_hw *hw = skge->hw;
  153. if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  154. return -EOPNOTSUPP;
  155. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  156. return -EOPNOTSUPP;
  157. skge->wol = wol->wolopts == WAKE_MAGIC;
  158. if (skge->wol) {
  159. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  160. skge_write16(hw, WOL_CTRL_STAT,
  161. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  162. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  163. } else
  164. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  165. return 0;
  166. }
  167. static int skge_get_settings(struct net_device *dev,
  168. struct ethtool_cmd *ecmd)
  169. {
  170. struct skge_port *skge = netdev_priv(dev);
  171. struct skge_hw *hw = skge->hw;
  172. ecmd->transceiver = XCVR_INTERNAL;
  173. if (iscopper(hw)) {
  174. if (hw->chip_id == CHIP_ID_GENESIS)
  175. ecmd->supported = SUPPORTED_1000baseT_Full
  176. | SUPPORTED_1000baseT_Half
  177. | SUPPORTED_Autoneg | SUPPORTED_TP;
  178. else {
  179. ecmd->supported = SUPPORTED_10baseT_Half
  180. | SUPPORTED_10baseT_Full
  181. | SUPPORTED_100baseT_Half
  182. | SUPPORTED_100baseT_Full
  183. | SUPPORTED_1000baseT_Half
  184. | SUPPORTED_1000baseT_Full
  185. | SUPPORTED_Autoneg| SUPPORTED_TP;
  186. if (hw->chip_id == CHIP_ID_YUKON)
  187. ecmd->supported &= ~SUPPORTED_1000baseT_Half;
  188. else if (hw->chip_id == CHIP_ID_YUKON_FE)
  189. ecmd->supported &= ~(SUPPORTED_1000baseT_Half
  190. | SUPPORTED_1000baseT_Full);
  191. }
  192. ecmd->port = PORT_TP;
  193. ecmd->phy_address = hw->phy_addr;
  194. } else {
  195. ecmd->supported = SUPPORTED_1000baseT_Full
  196. | SUPPORTED_FIBRE
  197. | SUPPORTED_Autoneg;
  198. ecmd->port = PORT_FIBRE;
  199. }
  200. ecmd->advertising = skge->advertising;
  201. ecmd->autoneg = skge->autoneg;
  202. ecmd->speed = skge->speed;
  203. ecmd->duplex = skge->duplex;
  204. return 0;
  205. }
  206. static u32 skge_modes(const struct skge_hw *hw)
  207. {
  208. u32 modes = ADVERTISED_Autoneg
  209. | ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half
  210. | ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half
  211. | ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half;
  212. if (iscopper(hw)) {
  213. modes |= ADVERTISED_TP;
  214. switch(hw->chip_id) {
  215. case CHIP_ID_GENESIS:
  216. modes &= ~(ADVERTISED_100baseT_Full
  217. | ADVERTISED_100baseT_Half
  218. | ADVERTISED_10baseT_Full
  219. | ADVERTISED_10baseT_Half);
  220. break;
  221. case CHIP_ID_YUKON:
  222. modes &= ~ADVERTISED_1000baseT_Half;
  223. break;
  224. case CHIP_ID_YUKON_FE:
  225. modes &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
  226. break;
  227. }
  228. } else {
  229. modes |= ADVERTISED_FIBRE;
  230. modes &= ~ADVERTISED_1000baseT_Half;
  231. }
  232. return modes;
  233. }
  234. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  235. {
  236. struct skge_port *skge = netdev_priv(dev);
  237. const struct skge_hw *hw = skge->hw;
  238. if (ecmd->autoneg == AUTONEG_ENABLE) {
  239. if (ecmd->advertising & skge_modes(hw))
  240. return -EINVAL;
  241. } else {
  242. switch(ecmd->speed) {
  243. case SPEED_1000:
  244. if (hw->chip_id == CHIP_ID_YUKON_FE)
  245. return -EINVAL;
  246. break;
  247. case SPEED_100:
  248. case SPEED_10:
  249. if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS)
  250. return -EINVAL;
  251. break;
  252. default:
  253. return -EINVAL;
  254. }
  255. }
  256. skge->autoneg = ecmd->autoneg;
  257. skge->speed = ecmd->speed;
  258. skge->duplex = ecmd->duplex;
  259. skge->advertising = ecmd->advertising;
  260. if (netif_running(dev)) {
  261. skge_down(dev);
  262. skge_up(dev);
  263. }
  264. return (0);
  265. }
  266. static void skge_get_drvinfo(struct net_device *dev,
  267. struct ethtool_drvinfo *info)
  268. {
  269. struct skge_port *skge = netdev_priv(dev);
  270. strcpy(info->driver, DRV_NAME);
  271. strcpy(info->version, DRV_VERSION);
  272. strcpy(info->fw_version, "N/A");
  273. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  274. }
  275. static const struct skge_stat {
  276. char name[ETH_GSTRING_LEN];
  277. u16 xmac_offset;
  278. u16 gma_offset;
  279. } skge_stats[] = {
  280. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  281. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  282. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  283. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  284. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  285. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  286. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  287. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  288. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  289. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  290. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  291. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  292. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  293. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  294. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  295. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  296. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  297. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  298. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  299. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  300. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  301. };
  302. static int skge_get_stats_count(struct net_device *dev)
  303. {
  304. return ARRAY_SIZE(skge_stats);
  305. }
  306. static void skge_get_ethtool_stats(struct net_device *dev,
  307. struct ethtool_stats *stats, u64 *data)
  308. {
  309. struct skge_port *skge = netdev_priv(dev);
  310. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  311. genesis_get_stats(skge, data);
  312. else
  313. yukon_get_stats(skge, data);
  314. }
  315. /* Use hardware MIB variables for critical path statistics and
  316. * transmit feedback not reported at interrupt.
  317. * Other errors are accounted for in interrupt handler.
  318. */
  319. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  320. {
  321. struct skge_port *skge = netdev_priv(dev);
  322. u64 data[ARRAY_SIZE(skge_stats)];
  323. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  324. genesis_get_stats(skge, data);
  325. else
  326. yukon_get_stats(skge, data);
  327. skge->net_stats.tx_bytes = data[0];
  328. skge->net_stats.rx_bytes = data[1];
  329. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  330. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  331. skge->net_stats.multicast = data[5] + data[7];
  332. skge->net_stats.collisions = data[10];
  333. skge->net_stats.tx_aborted_errors = data[12];
  334. return &skge->net_stats;
  335. }
  336. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  337. {
  338. int i;
  339. switch(stringset) {
  340. case ETH_SS_STATS:
  341. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  342. memcpy(data + i * ETH_GSTRING_LEN,
  343. skge_stats[i].name, ETH_GSTRING_LEN);
  344. break;
  345. }
  346. }
  347. static void skge_get_ring_param(struct net_device *dev,
  348. struct ethtool_ringparam *p)
  349. {
  350. struct skge_port *skge = netdev_priv(dev);
  351. p->rx_max_pending = MAX_RX_RING_SIZE;
  352. p->tx_max_pending = MAX_TX_RING_SIZE;
  353. p->rx_mini_max_pending = 0;
  354. p->rx_jumbo_max_pending = 0;
  355. p->rx_pending = skge->rx_ring.count;
  356. p->tx_pending = skge->tx_ring.count;
  357. p->rx_mini_pending = 0;
  358. p->rx_jumbo_pending = 0;
  359. }
  360. static int skge_set_ring_param(struct net_device *dev,
  361. struct ethtool_ringparam *p)
  362. {
  363. struct skge_port *skge = netdev_priv(dev);
  364. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  365. p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
  366. return -EINVAL;
  367. skge->rx_ring.count = p->rx_pending;
  368. skge->tx_ring.count = p->tx_pending;
  369. if (netif_running(dev)) {
  370. skge_down(dev);
  371. skge_up(dev);
  372. }
  373. return 0;
  374. }
  375. static u32 skge_get_msglevel(struct net_device *netdev)
  376. {
  377. struct skge_port *skge = netdev_priv(netdev);
  378. return skge->msg_enable;
  379. }
  380. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  381. {
  382. struct skge_port *skge = netdev_priv(netdev);
  383. skge->msg_enable = value;
  384. }
  385. static int skge_nway_reset(struct net_device *dev)
  386. {
  387. struct skge_port *skge = netdev_priv(dev);
  388. struct skge_hw *hw = skge->hw;
  389. int port = skge->port;
  390. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  391. return -EINVAL;
  392. spin_lock_bh(&hw->phy_lock);
  393. if (hw->chip_id == CHIP_ID_GENESIS) {
  394. genesis_reset(hw, port);
  395. genesis_mac_init(hw, port);
  396. } else {
  397. yukon_reset(hw, port);
  398. yukon_init(hw, port);
  399. }
  400. spin_unlock_bh(&hw->phy_lock);
  401. return 0;
  402. }
  403. static int skge_set_sg(struct net_device *dev, u32 data)
  404. {
  405. struct skge_port *skge = netdev_priv(dev);
  406. struct skge_hw *hw = skge->hw;
  407. if (hw->chip_id == CHIP_ID_GENESIS && data)
  408. return -EOPNOTSUPP;
  409. return ethtool_op_set_sg(dev, data);
  410. }
  411. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  412. {
  413. struct skge_port *skge = netdev_priv(dev);
  414. struct skge_hw *hw = skge->hw;
  415. if (hw->chip_id == CHIP_ID_GENESIS && data)
  416. return -EOPNOTSUPP;
  417. return ethtool_op_set_tx_csum(dev, data);
  418. }
  419. static u32 skge_get_rx_csum(struct net_device *dev)
  420. {
  421. struct skge_port *skge = netdev_priv(dev);
  422. return skge->rx_csum;
  423. }
  424. /* Only Yukon supports checksum offload. */
  425. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  426. {
  427. struct skge_port *skge = netdev_priv(dev);
  428. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  429. return -EOPNOTSUPP;
  430. skge->rx_csum = data;
  431. return 0;
  432. }
  433. /* Only Yukon II supports TSO (not implemented yet) */
  434. static int skge_set_tso(struct net_device *dev, u32 data)
  435. {
  436. if (data)
  437. return -EOPNOTSUPP;
  438. return 0;
  439. }
  440. static void skge_get_pauseparam(struct net_device *dev,
  441. struct ethtool_pauseparam *ecmd)
  442. {
  443. struct skge_port *skge = netdev_priv(dev);
  444. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  445. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  446. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  447. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  448. ecmd->autoneg = skge->autoneg;
  449. }
  450. static int skge_set_pauseparam(struct net_device *dev,
  451. struct ethtool_pauseparam *ecmd)
  452. {
  453. struct skge_port *skge = netdev_priv(dev);
  454. skge->autoneg = ecmd->autoneg;
  455. if (ecmd->rx_pause && ecmd->tx_pause)
  456. skge->flow_control = FLOW_MODE_SYMMETRIC;
  457. else if(ecmd->rx_pause && !ecmd->tx_pause)
  458. skge->flow_control = FLOW_MODE_REM_SEND;
  459. else if(!ecmd->rx_pause && ecmd->tx_pause)
  460. skge->flow_control = FLOW_MODE_LOC_SEND;
  461. else
  462. skge->flow_control = FLOW_MODE_NONE;
  463. if (netif_running(dev)) {
  464. skge_down(dev);
  465. skge_up(dev);
  466. }
  467. return 0;
  468. }
  469. /* Chip internal frequency for clock calculations */
  470. static inline u32 hwkhz(const struct skge_hw *hw)
  471. {
  472. if (hw->chip_id == CHIP_ID_GENESIS)
  473. return 53215; /* or: 53.125 MHz */
  474. else if (hw->chip_id == CHIP_ID_YUKON_EC)
  475. return 125000; /* or: 125.000 MHz */
  476. else
  477. return 78215; /* or: 78.125 MHz */
  478. }
  479. /* Chip hz to microseconds */
  480. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  481. {
  482. return (ticks * 1000) / hwkhz(hw);
  483. }
  484. /* Microseconds to chip hz */
  485. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  486. {
  487. return hwkhz(hw) * usec / 1000;
  488. }
  489. static int skge_get_coalesce(struct net_device *dev,
  490. struct ethtool_coalesce *ecmd)
  491. {
  492. struct skge_port *skge = netdev_priv(dev);
  493. struct skge_hw *hw = skge->hw;
  494. int port = skge->port;
  495. ecmd->rx_coalesce_usecs = 0;
  496. ecmd->tx_coalesce_usecs = 0;
  497. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  498. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  499. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  500. if (msk & rxirqmask[port])
  501. ecmd->rx_coalesce_usecs = delay;
  502. if (msk & txirqmask[port])
  503. ecmd->tx_coalesce_usecs = delay;
  504. }
  505. return 0;
  506. }
  507. /* Note: interrupt timer is per board, but can turn on/off per port */
  508. static int skge_set_coalesce(struct net_device *dev,
  509. struct ethtool_coalesce *ecmd)
  510. {
  511. struct skge_port *skge = netdev_priv(dev);
  512. struct skge_hw *hw = skge->hw;
  513. int port = skge->port;
  514. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  515. u32 delay = 25;
  516. if (ecmd->rx_coalesce_usecs == 0)
  517. msk &= ~rxirqmask[port];
  518. else if (ecmd->rx_coalesce_usecs < 25 ||
  519. ecmd->rx_coalesce_usecs > 33333)
  520. return -EINVAL;
  521. else {
  522. msk |= rxirqmask[port];
  523. delay = ecmd->rx_coalesce_usecs;
  524. }
  525. if (ecmd->tx_coalesce_usecs == 0)
  526. msk &= ~txirqmask[port];
  527. else if (ecmd->tx_coalesce_usecs < 25 ||
  528. ecmd->tx_coalesce_usecs > 33333)
  529. return -EINVAL;
  530. else {
  531. msk |= txirqmask[port];
  532. delay = min(delay, ecmd->rx_coalesce_usecs);
  533. }
  534. skge_write32(hw, B2_IRQM_MSK, msk);
  535. if (msk == 0)
  536. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  537. else {
  538. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  539. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  540. }
  541. return 0;
  542. }
  543. static void skge_led_on(struct skge_hw *hw, int port)
  544. {
  545. if (hw->chip_id == CHIP_ID_GENESIS) {
  546. skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON);
  547. skge_write8(hw, B0_LED, LED_STAT_ON);
  548. skge_write8(hw, SKGEMAC_REG(port, RX_LED_TST), LED_T_ON);
  549. skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 100);
  550. skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START);
  551. switch (hw->phy_type) {
  552. case SK_PHY_BCOM:
  553. skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
  554. PHY_B_PEC_LED_ON);
  555. break;
  556. case SK_PHY_LONE:
  557. skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
  558. 0x0800);
  559. break;
  560. default:
  561. skge_write8(hw, SKGEMAC_REG(port, TX_LED_TST), LED_T_ON);
  562. skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 100);
  563. skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
  564. }
  565. } else {
  566. skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  567. skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  568. PHY_M_LED_MO_DUP(MO_LED_ON) |
  569. PHY_M_LED_MO_10(MO_LED_ON) |
  570. PHY_M_LED_MO_100(MO_LED_ON) |
  571. PHY_M_LED_MO_1000(MO_LED_ON) |
  572. PHY_M_LED_MO_RX(MO_LED_ON));
  573. }
  574. }
  575. static void skge_led_off(struct skge_hw *hw, int port)
  576. {
  577. if (hw->chip_id == CHIP_ID_GENESIS) {
  578. skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_OFF);
  579. skge_write8(hw, B0_LED, LED_STAT_OFF);
  580. skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 0);
  581. skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_T_OFF);
  582. switch (hw->phy_type) {
  583. case SK_PHY_BCOM:
  584. skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
  585. PHY_B_PEC_LED_OFF);
  586. break;
  587. case SK_PHY_LONE:
  588. skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
  589. PHY_L_LC_LEDT);
  590. break;
  591. default:
  592. skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 0);
  593. skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_T_OFF);
  594. }
  595. } else {
  596. skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  597. skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  598. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  599. PHY_M_LED_MO_10(MO_LED_OFF) |
  600. PHY_M_LED_MO_100(MO_LED_OFF) |
  601. PHY_M_LED_MO_1000(MO_LED_OFF) |
  602. PHY_M_LED_MO_RX(MO_LED_OFF));
  603. }
  604. }
  605. static void skge_blink_timer(unsigned long data)
  606. {
  607. struct skge_port *skge = (struct skge_port *) data;
  608. struct skge_hw *hw = skge->hw;
  609. unsigned long flags;
  610. spin_lock_irqsave(&hw->phy_lock, flags);
  611. if (skge->blink_on)
  612. skge_led_on(hw, skge->port);
  613. else
  614. skge_led_off(hw, skge->port);
  615. spin_unlock_irqrestore(&hw->phy_lock, flags);
  616. skge->blink_on = !skge->blink_on;
  617. mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
  618. }
  619. /* blink LED's for finding board */
  620. static int skge_phys_id(struct net_device *dev, u32 data)
  621. {
  622. struct skge_port *skge = netdev_priv(dev);
  623. if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  624. data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
  625. /* start blinking */
  626. skge->blink_on = 1;
  627. mod_timer(&skge->led_blink, jiffies+1);
  628. msleep_interruptible(data * 1000);
  629. del_timer_sync(&skge->led_blink);
  630. skge_led_off(skge->hw, skge->port);
  631. return 0;
  632. }
  633. static struct ethtool_ops skge_ethtool_ops = {
  634. .get_settings = skge_get_settings,
  635. .set_settings = skge_set_settings,
  636. .get_drvinfo = skge_get_drvinfo,
  637. .get_regs_len = skge_get_regs_len,
  638. .get_regs = skge_get_regs,
  639. .get_wol = skge_get_wol,
  640. .set_wol = skge_set_wol,
  641. .get_msglevel = skge_get_msglevel,
  642. .set_msglevel = skge_set_msglevel,
  643. .nway_reset = skge_nway_reset,
  644. .get_link = ethtool_op_get_link,
  645. .get_ringparam = skge_get_ring_param,
  646. .set_ringparam = skge_set_ring_param,
  647. .get_pauseparam = skge_get_pauseparam,
  648. .set_pauseparam = skge_set_pauseparam,
  649. .get_coalesce = skge_get_coalesce,
  650. .set_coalesce = skge_set_coalesce,
  651. .get_tso = ethtool_op_get_tso,
  652. .set_tso = skge_set_tso,
  653. .get_sg = ethtool_op_get_sg,
  654. .set_sg = skge_set_sg,
  655. .get_tx_csum = ethtool_op_get_tx_csum,
  656. .set_tx_csum = skge_set_tx_csum,
  657. .get_rx_csum = skge_get_rx_csum,
  658. .set_rx_csum = skge_set_rx_csum,
  659. .get_strings = skge_get_strings,
  660. .phys_id = skge_phys_id,
  661. .get_stats_count = skge_get_stats_count,
  662. .get_ethtool_stats = skge_get_ethtool_stats,
  663. };
  664. /*
  665. * Allocate ring elements and chain them together
  666. * One-to-one association of board descriptors with ring elements
  667. */
  668. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
  669. {
  670. struct skge_tx_desc *d;
  671. struct skge_element *e;
  672. int i;
  673. ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
  674. if (!ring->start)
  675. return -ENOMEM;
  676. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  677. e->desc = d;
  678. if (i == ring->count - 1) {
  679. e->next = ring->start;
  680. d->next_offset = base;
  681. } else {
  682. e->next = e + 1;
  683. d->next_offset = base + (i+1) * sizeof(*d);
  684. }
  685. }
  686. ring->to_use = ring->to_clean = ring->start;
  687. return 0;
  688. }
  689. /* Setup buffer for receiving */
  690. static inline int skge_rx_alloc(struct skge_port *skge,
  691. struct skge_element *e)
  692. {
  693. unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */
  694. struct skge_rx_desc *rd = e->desc;
  695. struct sk_buff *skb;
  696. u64 map;
  697. skb = dev_alloc_skb(bufsize + NET_IP_ALIGN);
  698. if (unlikely(!skb)) {
  699. printk(KERN_DEBUG PFX "%s: out of memory for receive\n",
  700. skge->netdev->name);
  701. return -ENOMEM;
  702. }
  703. skb->dev = skge->netdev;
  704. skb_reserve(skb, NET_IP_ALIGN);
  705. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  706. PCI_DMA_FROMDEVICE);
  707. rd->dma_lo = map;
  708. rd->dma_hi = map >> 32;
  709. e->skb = skb;
  710. rd->csum1_start = ETH_HLEN;
  711. rd->csum2_start = ETH_HLEN;
  712. rd->csum1 = 0;
  713. rd->csum2 = 0;
  714. wmb();
  715. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  716. pci_unmap_addr_set(e, mapaddr, map);
  717. pci_unmap_len_set(e, maplen, bufsize);
  718. return 0;
  719. }
  720. /* Free all unused buffers in receive ring, assumes receiver stopped */
  721. static void skge_rx_clean(struct skge_port *skge)
  722. {
  723. struct skge_hw *hw = skge->hw;
  724. struct skge_ring *ring = &skge->rx_ring;
  725. struct skge_element *e;
  726. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  727. struct skge_rx_desc *rd = e->desc;
  728. rd->control = 0;
  729. pci_unmap_single(hw->pdev,
  730. pci_unmap_addr(e, mapaddr),
  731. pci_unmap_len(e, maplen),
  732. PCI_DMA_FROMDEVICE);
  733. dev_kfree_skb(e->skb);
  734. e->skb = NULL;
  735. }
  736. ring->to_clean = e;
  737. }
  738. /* Allocate buffers for receive ring
  739. * For receive: to_use is refill location
  740. * to_clean is next received frame.
  741. *
  742. * if (to_use == to_clean)
  743. * then ring all frames in ring need buffers
  744. * if (to_use->next == to_clean)
  745. * then ring all frames in ring have buffers
  746. */
  747. static int skge_rx_fill(struct skge_port *skge)
  748. {
  749. struct skge_ring *ring = &skge->rx_ring;
  750. struct skge_element *e;
  751. int ret = 0;
  752. for (e = ring->to_use; e->next != ring->to_clean; e = e->next) {
  753. if (skge_rx_alloc(skge, e)) {
  754. ret = 1;
  755. break;
  756. }
  757. }
  758. ring->to_use = e;
  759. return ret;
  760. }
  761. static void skge_link_up(struct skge_port *skge)
  762. {
  763. netif_carrier_on(skge->netdev);
  764. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  765. netif_wake_queue(skge->netdev);
  766. if (netif_msg_link(skge))
  767. printk(KERN_INFO PFX
  768. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  769. skge->netdev->name, skge->speed,
  770. skge->duplex == DUPLEX_FULL ? "full" : "half",
  771. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  772. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  773. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  774. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  775. "unknown");
  776. }
  777. static void skge_link_down(struct skge_port *skge)
  778. {
  779. netif_carrier_off(skge->netdev);
  780. netif_stop_queue(skge->netdev);
  781. if (netif_msg_link(skge))
  782. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  783. }
  784. static u16 skge_xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  785. {
  786. int i;
  787. u16 v;
  788. skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  789. v = skge_xm_read16(hw, port, XM_PHY_DATA);
  790. if (hw->phy_type != SK_PHY_XMAC) {
  791. for (i = 0; i < PHY_RETRIES; i++) {
  792. udelay(1);
  793. if (skge_xm_read16(hw, port, XM_MMU_CMD)
  794. & XM_MMU_PHY_RDY)
  795. goto ready;
  796. }
  797. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  798. hw->dev[port]->name);
  799. return 0;
  800. ready:
  801. v = skge_xm_read16(hw, port, XM_PHY_DATA);
  802. }
  803. return v;
  804. }
  805. static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  806. {
  807. int i;
  808. skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  809. for (i = 0; i < PHY_RETRIES; i++) {
  810. if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  811. goto ready;
  812. cpu_relax();
  813. }
  814. printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
  815. hw->dev[port]->name);
  816. ready:
  817. skge_xm_write16(hw, port, XM_PHY_DATA, val);
  818. for (i = 0; i < PHY_RETRIES; i++) {
  819. udelay(1);
  820. if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  821. return;
  822. }
  823. printk(KERN_WARNING PFX "%s: phy write timed out\n",
  824. hw->dev[port]->name);
  825. }
  826. static void genesis_init(struct skge_hw *hw)
  827. {
  828. /* set blink source counter */
  829. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  830. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  831. /* configure mac arbiter */
  832. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  833. /* configure mac arbiter timeout values */
  834. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  835. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  836. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  837. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  838. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  839. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  840. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  841. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  842. /* configure packet arbiter timeout */
  843. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  844. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  845. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  846. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  847. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  848. }
  849. static void genesis_reset(struct skge_hw *hw, int port)
  850. {
  851. int i;
  852. u64 zero = 0;
  853. /* reset the statistics module */
  854. skge_xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  855. skge_xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  856. skge_xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  857. skge_xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  858. skge_xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  859. /* disable all PHY IRQs */
  860. if (hw->phy_type == SK_PHY_BCOM)
  861. skge_xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  862. skge_xm_outhash(hw, port, XM_HSM, (u8 *) &zero);
  863. for (i = 0; i < 15; i++)
  864. skge_xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
  865. skge_xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
  866. }
  867. static void genesis_mac_init(struct skge_hw *hw, int port)
  868. {
  869. struct skge_port *skge = netdev_priv(hw->dev[port]);
  870. int i;
  871. u32 r;
  872. u16 id1;
  873. u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5;
  874. /* magic workaround patterns for Broadcom */
  875. static const struct {
  876. u16 reg;
  877. u16 val;
  878. } A1hack[] = {
  879. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  880. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  881. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  882. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  883. }, C0hack[] = {
  884. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  885. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  886. };
  887. /* initialize Rx, Tx and Link LED */
  888. skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON);
  889. skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  890. skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START);
  891. skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
  892. /* Unreset the XMAC. */
  893. skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  894. /*
  895. * Perform additional initialization for external PHYs,
  896. * namely for the 1000baseTX cards that use the XMAC's
  897. * GMII mode.
  898. */
  899. spin_lock_bh(&hw->phy_lock);
  900. if (hw->phy_type != SK_PHY_XMAC) {
  901. /* Take PHY out of reset. */
  902. r = skge_read32(hw, B2_GP_IO);
  903. if (port == 0)
  904. r |= GP_DIR_0|GP_IO_0;
  905. else
  906. r |= GP_DIR_2|GP_IO_2;
  907. skge_write32(hw, B2_GP_IO, r);
  908. skge_read32(hw, B2_GP_IO);
  909. /* Enable GMII mode on the XMAC. */
  910. skge_xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  911. id1 = skge_xm_phy_read(hw, port, PHY_XMAC_ID1);
  912. /* Optimize MDIO transfer by suppressing preamble. */
  913. skge_xm_write16(hw, port, XM_MMU_CMD,
  914. skge_xm_read16(hw, port, XM_MMU_CMD)
  915. | XM_MMU_NO_PRE);
  916. if (id1 == PHY_BCOM_ID1_C0) {
  917. /*
  918. * Workaround BCOM Errata for the C0 type.
  919. * Write magic patterns to reserved registers.
  920. */
  921. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  922. skge_xm_phy_write(hw, port,
  923. C0hack[i].reg, C0hack[i].val);
  924. } else if (id1 == PHY_BCOM_ID1_A1) {
  925. /*
  926. * Workaround BCOM Errata for the A1 type.
  927. * Write magic patterns to reserved registers.
  928. */
  929. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  930. skge_xm_phy_write(hw, port,
  931. A1hack[i].reg, A1hack[i].val);
  932. }
  933. /*
  934. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  935. * Disable Power Management after reset.
  936. */
  937. r = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  938. skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
  939. }
  940. /* Dummy read */
  941. skge_xm_read16(hw, port, XM_ISRC);
  942. r = skge_xm_read32(hw, port, XM_MODE);
  943. skge_xm_write32(hw, port, XM_MODE, r|XM_MD_CSA);
  944. /* We don't need the FCS appended to the packet. */
  945. r = skge_xm_read16(hw, port, XM_RX_CMD);
  946. skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS);
  947. /* We want short frames padded to 60 bytes. */
  948. r = skge_xm_read16(hw, port, XM_TX_CMD);
  949. skge_xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
  950. /*
  951. * Enable the reception of all error frames. This is is
  952. * a necessary evil due to the design of the XMAC. The
  953. * XMAC's receive FIFO is only 8K in size, however jumbo
  954. * frames can be up to 9000 bytes in length. When bad
  955. * frame filtering is enabled, the XMAC's RX FIFO operates
  956. * in 'store and forward' mode. For this to work, the
  957. * entire frame has to fit into the FIFO, but that means
  958. * that jumbo frames larger than 8192 bytes will be
  959. * truncated. Disabling all bad frame filtering causes
  960. * the RX FIFO to operate in streaming mode, in which
  961. * case the XMAC will start transfering frames out of the
  962. * RX FIFO as soon as the FIFO threshold is reached.
  963. */
  964. r = skge_xm_read32(hw, port, XM_MODE);
  965. skge_xm_write32(hw, port, XM_MODE,
  966. XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
  967. XM_MD_RX_ERR|XM_MD_RX_IRLE);
  968. skge_xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
  969. skge_xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
  970. /*
  971. * Bump up the transmit threshold. This helps hold off transmit
  972. * underruns when we're blasting traffic from both ports at once.
  973. */
  974. skge_xm_write16(hw, port, XM_TX_THR, 512);
  975. /* Configure MAC arbiter */
  976. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  977. /* configure timeout values */
  978. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  979. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  980. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  981. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  982. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  983. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  984. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  985. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  986. /* Configure Rx MAC FIFO */
  987. skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  988. skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  989. skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  990. /* Configure Tx MAC FIFO */
  991. skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  992. skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  993. skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  994. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  995. /* Enable frame flushing if jumbo frames used */
  996. skge_write16(hw, SKGEMAC_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  997. } else {
  998. /* enable timeout timers if normal frames */
  999. skge_write16(hw, B3_PA_CTRL,
  1000. port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1001. }
  1002. r = skge_xm_read16(hw, port, XM_RX_CMD);
  1003. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1004. skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
  1005. else
  1006. skge_xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
  1007. switch (hw->phy_type) {
  1008. case SK_PHY_XMAC:
  1009. if (skge->autoneg == AUTONEG_ENABLE) {
  1010. ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD;
  1011. switch (skge->flow_control) {
  1012. case FLOW_MODE_NONE:
  1013. ctrl1 |= PHY_X_P_NO_PAUSE;
  1014. break;
  1015. case FLOW_MODE_LOC_SEND:
  1016. ctrl1 |= PHY_X_P_ASYM_MD;
  1017. break;
  1018. case FLOW_MODE_SYMMETRIC:
  1019. ctrl1 |= PHY_X_P_SYM_MD;
  1020. break;
  1021. case FLOW_MODE_REM_SEND:
  1022. ctrl1 |= PHY_X_P_BOTH_MD;
  1023. break;
  1024. }
  1025. skge_xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
  1026. ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
  1027. } else {
  1028. ctrl2 = 0;
  1029. if (skge->duplex == DUPLEX_FULL)
  1030. ctrl2 |= PHY_CT_DUP_MD;
  1031. }
  1032. skge_xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
  1033. break;
  1034. case SK_PHY_BCOM:
  1035. ctrl1 = PHY_CT_SP1000;
  1036. ctrl2 = 0;
  1037. ctrl3 = PHY_SEL_TYPE;
  1038. ctrl4 = PHY_B_PEC_EN_LTR;
  1039. ctrl5 = PHY_B_AC_TX_TST;
  1040. if (skge->autoneg == AUTONEG_ENABLE) {
  1041. /*
  1042. * Workaround BCOM Errata #1 for the C5 type.
  1043. * 1000Base-T Link Acquisition Failure in Slave Mode
  1044. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1045. */
  1046. ctrl2 |= PHY_B_1000C_RD;
  1047. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1048. ctrl2 |= PHY_B_1000C_AHD;
  1049. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1050. ctrl2 |= PHY_B_1000C_AFD;
  1051. /* Set Flow-control capabilities */
  1052. switch (skge->flow_control) {
  1053. case FLOW_MODE_NONE:
  1054. ctrl3 |= PHY_B_P_NO_PAUSE;
  1055. break;
  1056. case FLOW_MODE_LOC_SEND:
  1057. ctrl3 |= PHY_B_P_ASYM_MD;
  1058. break;
  1059. case FLOW_MODE_SYMMETRIC:
  1060. ctrl3 |= PHY_B_P_SYM_MD;
  1061. break;
  1062. case FLOW_MODE_REM_SEND:
  1063. ctrl3 |= PHY_B_P_BOTH_MD;
  1064. break;
  1065. }
  1066. /* Restart Auto-negotiation */
  1067. ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1068. } else {
  1069. if (skge->duplex == DUPLEX_FULL)
  1070. ctrl1 |= PHY_CT_DUP_MD;
  1071. ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
  1072. }
  1073. skge_xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
  1074. skge_xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
  1075. if (skge->netdev->mtu > ETH_DATA_LEN) {
  1076. ctrl4 |= PHY_B_PEC_HIGH_LA;
  1077. ctrl5 |= PHY_B_AC_LONG_PACK;
  1078. skge_xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
  1079. }
  1080. skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
  1081. skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
  1082. break;
  1083. }
  1084. spin_unlock_bh(&hw->phy_lock);
  1085. /* Clear MIB counters */
  1086. skge_xm_write16(hw, port, XM_STAT_CMD,
  1087. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1088. /* Clear two times according to Errata #3 */
  1089. skge_xm_write16(hw, port, XM_STAT_CMD,
  1090. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1091. /* Start polling for link status */
  1092. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1093. }
  1094. static void genesis_stop(struct skge_port *skge)
  1095. {
  1096. struct skge_hw *hw = skge->hw;
  1097. int port = skge->port;
  1098. /* Clear Tx packet arbiter timeout IRQ */
  1099. skge_write16(hw, B3_PA_CTRL,
  1100. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1101. /*
  1102. * If the transfer stucks at the MAC the STOP command will not
  1103. * terminate if we don't flush the XMAC's transmit FIFO !
  1104. */
  1105. skge_xm_write32(hw, port, XM_MODE,
  1106. skge_xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1107. /* Reset the MAC */
  1108. skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1109. /* For external PHYs there must be special handling */
  1110. if (hw->phy_type != SK_PHY_XMAC) {
  1111. u32 reg = skge_read32(hw, B2_GP_IO);
  1112. if (port == 0) {
  1113. reg |= GP_DIR_0;
  1114. reg &= ~GP_IO_0;
  1115. } else {
  1116. reg |= GP_DIR_2;
  1117. reg &= ~GP_IO_2;
  1118. }
  1119. skge_write32(hw, B2_GP_IO, reg);
  1120. skge_read32(hw, B2_GP_IO);
  1121. }
  1122. skge_xm_write16(hw, port, XM_MMU_CMD,
  1123. skge_xm_read16(hw, port, XM_MMU_CMD)
  1124. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1125. skge_xm_read16(hw, port, XM_MMU_CMD);
  1126. }
  1127. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1128. {
  1129. struct skge_hw *hw = skge->hw;
  1130. int port = skge->port;
  1131. int i;
  1132. unsigned long timeout = jiffies + HZ;
  1133. skge_xm_write16(hw, port,
  1134. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1135. /* wait for update to complete */
  1136. while (skge_xm_read16(hw, port, XM_STAT_CMD)
  1137. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1138. if (time_after(jiffies, timeout))
  1139. break;
  1140. udelay(10);
  1141. }
  1142. /* special case for 64 bit octet counter */
  1143. data[0] = (u64) skge_xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1144. | skge_xm_read32(hw, port, XM_TXO_OK_LO);
  1145. data[1] = (u64) skge_xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1146. | skge_xm_read32(hw, port, XM_RXO_OK_LO);
  1147. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1148. data[i] = skge_xm_read32(hw, port, skge_stats[i].xmac_offset);
  1149. }
  1150. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1151. {
  1152. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1153. u16 status = skge_xm_read16(hw, port, XM_ISRC);
  1154. pr_debug("genesis_intr status %x\n", status);
  1155. if (hw->phy_type == SK_PHY_XMAC) {
  1156. /* LInk down, start polling for state change */
  1157. if (status & XM_IS_INP_ASS) {
  1158. skge_xm_write16(hw, port, XM_IMSK,
  1159. skge_xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
  1160. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1161. }
  1162. else if (status & XM_IS_AND)
  1163. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1164. }
  1165. if (status & XM_IS_TXF_UR) {
  1166. skge_xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1167. ++skge->net_stats.tx_fifo_errors;
  1168. }
  1169. if (status & XM_IS_RXF_OV) {
  1170. skge_xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1171. ++skge->net_stats.rx_fifo_errors;
  1172. }
  1173. }
  1174. static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1175. {
  1176. int i;
  1177. skge_gma_write16(hw, port, GM_SMI_DATA, val);
  1178. skge_gma_write16(hw, port, GM_SMI_CTRL,
  1179. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1180. for (i = 0; i < PHY_RETRIES; i++) {
  1181. udelay(1);
  1182. if (!(skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1183. break;
  1184. }
  1185. }
  1186. static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1187. {
  1188. int i;
  1189. skge_gma_write16(hw, port, GM_SMI_CTRL,
  1190. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1191. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1192. for (i = 0; i < PHY_RETRIES; i++) {
  1193. udelay(1);
  1194. if (skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1195. goto ready;
  1196. }
  1197. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1198. hw->dev[port]->name);
  1199. return 0;
  1200. ready:
  1201. return skge_gma_read16(hw, port, GM_SMI_DATA);
  1202. }
  1203. static void genesis_link_down(struct skge_port *skge)
  1204. {
  1205. struct skge_hw *hw = skge->hw;
  1206. int port = skge->port;
  1207. pr_debug("genesis_link_down\n");
  1208. skge_xm_write16(hw, port, XM_MMU_CMD,
  1209. skge_xm_read16(hw, port, XM_MMU_CMD)
  1210. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1211. /* dummy read to ensure writing */
  1212. (void) skge_xm_read16(hw, port, XM_MMU_CMD);
  1213. skge_link_down(skge);
  1214. }
  1215. static void genesis_link_up(struct skge_port *skge)
  1216. {
  1217. struct skge_hw *hw = skge->hw;
  1218. int port = skge->port;
  1219. u16 cmd;
  1220. u32 mode, msk;
  1221. pr_debug("genesis_link_up\n");
  1222. cmd = skge_xm_read16(hw, port, XM_MMU_CMD);
  1223. /*
  1224. * enabling pause frame reception is required for 1000BT
  1225. * because the XMAC is not reset if the link is going down
  1226. */
  1227. if (skge->flow_control == FLOW_MODE_NONE ||
  1228. skge->flow_control == FLOW_MODE_LOC_SEND)
  1229. cmd |= XM_MMU_IGN_PF;
  1230. else
  1231. /* Enable Pause Frame Reception */
  1232. cmd &= ~XM_MMU_IGN_PF;
  1233. skge_xm_write16(hw, port, XM_MMU_CMD, cmd);
  1234. mode = skge_xm_read32(hw, port, XM_MODE);
  1235. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1236. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1237. /*
  1238. * Configure Pause Frame Generation
  1239. * Use internal and external Pause Frame Generation.
  1240. * Sending pause frames is edge triggered.
  1241. * Send a Pause frame with the maximum pause time if
  1242. * internal oder external FIFO full condition occurs.
  1243. * Send a zero pause time frame to re-start transmission.
  1244. */
  1245. /* XM_PAUSE_DA = '010000C28001' (default) */
  1246. /* XM_MAC_PTIME = 0xffff (maximum) */
  1247. /* remember this value is defined in big endian (!) */
  1248. skge_xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1249. mode |= XM_PAUSE_MODE;
  1250. skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1251. } else {
  1252. /*
  1253. * disable pause frame generation is required for 1000BT
  1254. * because the XMAC is not reset if the link is going down
  1255. */
  1256. /* Disable Pause Mode in Mode Register */
  1257. mode &= ~XM_PAUSE_MODE;
  1258. skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1259. }
  1260. skge_xm_write32(hw, port, XM_MODE, mode);
  1261. msk = XM_DEF_MSK;
  1262. if (hw->phy_type != SK_PHY_XMAC)
  1263. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1264. skge_xm_write16(hw, port, XM_IMSK, msk);
  1265. skge_xm_read16(hw, port, XM_ISRC);
  1266. /* get MMU Command Reg. */
  1267. cmd = skge_xm_read16(hw, port, XM_MMU_CMD);
  1268. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1269. cmd |= XM_MMU_GMII_FD;
  1270. if (hw->phy_type == SK_PHY_BCOM) {
  1271. /*
  1272. * Workaround BCOM Errata (#10523) for all BCom Phys
  1273. * Enable Power Management after link up
  1274. */
  1275. skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1276. skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1277. & ~PHY_B_AC_DIS_PM);
  1278. skge_xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
  1279. PHY_B_DEF_MSK);
  1280. }
  1281. /* enable Rx/Tx */
  1282. skge_xm_write16(hw, port, XM_MMU_CMD,
  1283. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1284. skge_link_up(skge);
  1285. }
  1286. static void genesis_bcom_intr(struct skge_port *skge)
  1287. {
  1288. struct skge_hw *hw = skge->hw;
  1289. int port = skge->port;
  1290. u16 stat = skge_xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1291. pr_debug("genesis_bcom intr stat=%x\n", stat);
  1292. /* Workaround BCom Errata:
  1293. * enable and disable loopback mode if "NO HCD" occurs.
  1294. */
  1295. if (stat & PHY_B_IS_NO_HDCL) {
  1296. u16 ctrl = skge_xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1297. skge_xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1298. ctrl | PHY_CT_LOOP);
  1299. skge_xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1300. ctrl & ~PHY_CT_LOOP);
  1301. }
  1302. stat = skge_xm_phy_read(hw, port, PHY_BCOM_STAT);
  1303. if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) {
  1304. u16 aux = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1305. if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
  1306. genesis_link_down(skge);
  1307. else if (stat & PHY_B_IS_LST_CHANGE) {
  1308. if (aux & PHY_B_AS_AN_C) {
  1309. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1310. case PHY_B_RES_1000FD:
  1311. skge->duplex = DUPLEX_FULL;
  1312. break;
  1313. case PHY_B_RES_1000HD:
  1314. skge->duplex = DUPLEX_HALF;
  1315. break;
  1316. }
  1317. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1318. case PHY_B_AS_PAUSE_MSK:
  1319. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1320. break;
  1321. case PHY_B_AS_PRR:
  1322. skge->flow_control = FLOW_MODE_REM_SEND;
  1323. break;
  1324. case PHY_B_AS_PRT:
  1325. skge->flow_control = FLOW_MODE_LOC_SEND;
  1326. break;
  1327. default:
  1328. skge->flow_control = FLOW_MODE_NONE;
  1329. }
  1330. skge->speed = SPEED_1000;
  1331. }
  1332. genesis_link_up(skge);
  1333. }
  1334. else
  1335. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1336. }
  1337. }
  1338. /* Perodic poll of phy status to check for link transistion */
  1339. static void skge_link_timer(unsigned long __arg)
  1340. {
  1341. struct skge_port *skge = (struct skge_port *) __arg;
  1342. struct skge_hw *hw = skge->hw;
  1343. int port = skge->port;
  1344. if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev))
  1345. return;
  1346. spin_lock_bh(&hw->phy_lock);
  1347. if (hw->phy_type == SK_PHY_BCOM)
  1348. genesis_bcom_intr(skge);
  1349. else {
  1350. int i;
  1351. for (i = 0; i < 3; i++)
  1352. if (skge_xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1353. break;
  1354. if (i == 3)
  1355. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1356. else
  1357. genesis_link_up(skge);
  1358. }
  1359. spin_unlock_bh(&hw->phy_lock);
  1360. }
  1361. /* Marvell Phy Initailization */
  1362. static void yukon_init(struct skge_hw *hw, int port)
  1363. {
  1364. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1365. u16 ctrl, ct1000, adv;
  1366. u16 ledctrl, ledover;
  1367. pr_debug("yukon_init\n");
  1368. if (skge->autoneg == AUTONEG_ENABLE) {
  1369. u16 ectrl = skge_gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1370. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1371. PHY_M_EC_MAC_S_MSK);
  1372. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1373. /* on PHY 88E1111 there is a change for downshift control */
  1374. if (hw->chip_id == CHIP_ID_YUKON_EC)
  1375. ectrl |= PHY_M_EC_M_DSC_2(0) | PHY_M_EC_DOWN_S_ENA;
  1376. else
  1377. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1378. skge_gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1379. }
  1380. ctrl = skge_gm_phy_read(hw, port, PHY_MARV_CTRL);
  1381. if (skge->autoneg == AUTONEG_DISABLE)
  1382. ctrl &= ~PHY_CT_ANE;
  1383. ctrl |= PHY_CT_RESET;
  1384. skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1385. ctrl = 0;
  1386. ct1000 = 0;
  1387. adv = PHY_SEL_TYPE;
  1388. if (skge->autoneg == AUTONEG_ENABLE) {
  1389. if (iscopper(hw)) {
  1390. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1391. ct1000 |= PHY_M_1000C_AFD;
  1392. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1393. ct1000 |= PHY_M_1000C_AHD;
  1394. if (skge->advertising & ADVERTISED_100baseT_Full)
  1395. adv |= PHY_M_AN_100_FD;
  1396. if (skge->advertising & ADVERTISED_100baseT_Half)
  1397. adv |= PHY_M_AN_100_HD;
  1398. if (skge->advertising & ADVERTISED_10baseT_Full)
  1399. adv |= PHY_M_AN_10_FD;
  1400. if (skge->advertising & ADVERTISED_10baseT_Half)
  1401. adv |= PHY_M_AN_10_HD;
  1402. /* Set Flow-control capabilities */
  1403. switch (skge->flow_control) {
  1404. case FLOW_MODE_NONE:
  1405. adv |= PHY_B_P_NO_PAUSE;
  1406. break;
  1407. case FLOW_MODE_LOC_SEND:
  1408. adv |= PHY_B_P_ASYM_MD;
  1409. break;
  1410. case FLOW_MODE_SYMMETRIC:
  1411. adv |= PHY_B_P_SYM_MD;
  1412. break;
  1413. case FLOW_MODE_REM_SEND:
  1414. adv |= PHY_B_P_BOTH_MD;
  1415. break;
  1416. }
  1417. } else { /* special defines for FIBER (88E1011S only) */
  1418. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1419. /* Set Flow-control capabilities */
  1420. switch (skge->flow_control) {
  1421. case FLOW_MODE_NONE:
  1422. adv |= PHY_M_P_NO_PAUSE_X;
  1423. break;
  1424. case FLOW_MODE_LOC_SEND:
  1425. adv |= PHY_M_P_ASYM_MD_X;
  1426. break;
  1427. case FLOW_MODE_SYMMETRIC:
  1428. adv |= PHY_M_P_SYM_MD_X;
  1429. break;
  1430. case FLOW_MODE_REM_SEND:
  1431. adv |= PHY_M_P_BOTH_MD_X;
  1432. break;
  1433. }
  1434. }
  1435. /* Restart Auto-negotiation */
  1436. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1437. } else {
  1438. /* forced speed/duplex settings */
  1439. ct1000 = PHY_M_1000C_MSE;
  1440. if (skge->duplex == DUPLEX_FULL)
  1441. ctrl |= PHY_CT_DUP_MD;
  1442. switch (skge->speed) {
  1443. case SPEED_1000:
  1444. ctrl |= PHY_CT_SP1000;
  1445. break;
  1446. case SPEED_100:
  1447. ctrl |= PHY_CT_SP100;
  1448. break;
  1449. }
  1450. ctrl |= PHY_CT_RESET;
  1451. }
  1452. if (hw->chip_id != CHIP_ID_YUKON_FE)
  1453. skge_gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1454. skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1455. skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1456. /* Setup Phy LED's */
  1457. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  1458. ledover = 0;
  1459. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  1460. /* on 88E3082 these bits are at 11..9 (shifted left) */
  1461. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  1462. skge_gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR,
  1463. ((skge_gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR)
  1464. & ~PHY_M_FELP_LED1_MSK)
  1465. | PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL)));
  1466. } else {
  1467. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  1468. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  1469. /* turn off the Rx LED (LED_RX) */
  1470. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  1471. }
  1472. /* disable blink mode (LED_DUPLEX) on collisions */
  1473. ctrl |= PHY_M_LEDC_DP_CTRL;
  1474. skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  1475. if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
  1476. /* turn on 100 Mbps LED (LED_LINK100) */
  1477. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  1478. }
  1479. if (ledover)
  1480. skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  1481. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1482. if (skge->autoneg == AUTONEG_ENABLE)
  1483. skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  1484. else
  1485. skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1486. }
  1487. static void yukon_reset(struct skge_hw *hw, int port)
  1488. {
  1489. skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1490. skge_gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1491. skge_gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1492. skge_gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1493. skge_gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1494. skge_gma_write16(hw, port, GM_RX_CTRL,
  1495. skge_gma_read16(hw, port, GM_RX_CTRL)
  1496. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1497. }
  1498. static void yukon_mac_init(struct skge_hw *hw, int port)
  1499. {
  1500. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1501. int i;
  1502. u32 reg;
  1503. const u8 *addr = hw->dev[port]->dev_addr;
  1504. /* WA code for COMA mode -- set PHY reset */
  1505. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1506. chip_rev(hw) == CHIP_REV_YU_LITE_A3)
  1507. skge_write32(hw, B2_GP_IO,
  1508. (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
  1509. /* hard reset */
  1510. skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), GPC_RST_SET);
  1511. skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_RST_SET);
  1512. /* WA code for COMA mode -- clear PHY reset */
  1513. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1514. chip_rev(hw) == CHIP_REV_YU_LITE_A3)
  1515. skge_write32(hw, B2_GP_IO,
  1516. (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
  1517. & ~GP_IO_9);
  1518. /* Set hardware config mode */
  1519. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1520. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1521. reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1522. /* Clear GMC reset */
  1523. skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1524. skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1525. skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1526. if (skge->autoneg == AUTONEG_DISABLE) {
  1527. reg = GM_GPCR_AU_ALL_DIS;
  1528. skge_gma_write16(hw, port, GM_GP_CTRL,
  1529. skge_gma_read16(hw, port, GM_GP_CTRL) | reg);
  1530. switch (skge->speed) {
  1531. case SPEED_1000:
  1532. reg |= GM_GPCR_SPEED_1000;
  1533. /* fallthru */
  1534. case SPEED_100:
  1535. reg |= GM_GPCR_SPEED_100;
  1536. }
  1537. if (skge->duplex == DUPLEX_FULL)
  1538. reg |= GM_GPCR_DUP_FULL;
  1539. } else
  1540. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1541. switch (skge->flow_control) {
  1542. case FLOW_MODE_NONE:
  1543. skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1544. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1545. break;
  1546. case FLOW_MODE_LOC_SEND:
  1547. /* disable Rx flow-control */
  1548. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1549. }
  1550. skge_gma_write16(hw, port, GM_GP_CTRL, reg);
  1551. skge_read16(hw, GMAC_IRQ_SRC);
  1552. spin_lock_bh(&hw->phy_lock);
  1553. yukon_init(hw, port);
  1554. spin_unlock_bh(&hw->phy_lock);
  1555. /* MIB clear */
  1556. reg = skge_gma_read16(hw, port, GM_PHY_ADDR);
  1557. skge_gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1558. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1559. skge_gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1560. skge_gma_write16(hw, port, GM_PHY_ADDR, reg);
  1561. /* transmit control */
  1562. skge_gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1563. /* receive control reg: unicast + multicast + no FCS */
  1564. skge_gma_write16(hw, port, GM_RX_CTRL,
  1565. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1566. /* transmit flow control */
  1567. skge_gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1568. /* transmit parameter */
  1569. skge_gma_write16(hw, port, GM_TX_PARAM,
  1570. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1571. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1572. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1573. /* serial mode register */
  1574. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1575. if (hw->dev[port]->mtu > 1500)
  1576. reg |= GM_SMOD_JUMBO_ENA;
  1577. skge_gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1578. /* physical address: used for pause frames */
  1579. skge_gm_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1580. /* virtual address for data */
  1581. skge_gm_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1582. /* enable interrupt mask for counter overflows */
  1583. skge_gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1584. skge_gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1585. skge_gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1586. /* Initialize Mac Fifo */
  1587. /* Configure Rx MAC FIFO */
  1588. skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1589. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1590. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1591. chip_rev(hw) == CHIP_REV_YU_LITE_A3)
  1592. reg &= ~GMF_RX_F_FL_ON;
  1593. skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1594. skge_write16(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), reg);
  1595. skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  1596. /* Configure Tx MAC FIFO */
  1597. skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1598. skge_write16(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1599. }
  1600. static void yukon_stop(struct skge_port *skge)
  1601. {
  1602. struct skge_hw *hw = skge->hw;
  1603. int port = skge->port;
  1604. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1605. chip_rev(hw) == CHIP_REV_YU_LITE_A3) {
  1606. skge_write32(hw, B2_GP_IO,
  1607. skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
  1608. }
  1609. skge_gma_write16(hw, port, GM_GP_CTRL,
  1610. skge_gma_read16(hw, port, GM_GP_CTRL)
  1611. & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
  1612. skge_gma_read16(hw, port, GM_GP_CTRL);
  1613. /* set GPHY Control reset */
  1614. skge_gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
  1615. skge_gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
  1616. }
  1617. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1618. {
  1619. struct skge_hw *hw = skge->hw;
  1620. int port = skge->port;
  1621. int i;
  1622. data[0] = (u64) skge_gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1623. | skge_gma_read32(hw, port, GM_TXO_OK_LO);
  1624. data[1] = (u64) skge_gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1625. | skge_gma_read32(hw, port, GM_RXO_OK_LO);
  1626. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1627. data[i] = skge_gma_read32(hw, port,
  1628. skge_stats[i].gma_offset);
  1629. }
  1630. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1631. {
  1632. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1633. u8 status = skge_read8(hw, SKGEMAC_REG(port, GMAC_IRQ_SRC));
  1634. pr_debug("yukon_intr status %x\n", status);
  1635. if (status & GM_IS_RX_FF_OR) {
  1636. ++skge->net_stats.rx_fifo_errors;
  1637. skge_gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
  1638. }
  1639. if (status & GM_IS_TX_FF_UR) {
  1640. ++skge->net_stats.tx_fifo_errors;
  1641. skge_gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
  1642. }
  1643. }
  1644. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1645. {
  1646. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1647. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1648. switch(aux & PHY_M_PS_SPEED_MSK) {
  1649. case PHY_M_PS_SPEED_1000:
  1650. return SPEED_1000;
  1651. case PHY_M_PS_SPEED_100:
  1652. return SPEED_100;
  1653. default:
  1654. return SPEED_10;
  1655. }
  1656. }
  1657. static void yukon_link_up(struct skge_port *skge)
  1658. {
  1659. struct skge_hw *hw = skge->hw;
  1660. int port = skge->port;
  1661. u16 reg;
  1662. pr_debug("yukon_link_up\n");
  1663. /* Enable Transmit FIFO Underrun */
  1664. skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
  1665. reg = skge_gma_read16(hw, port, GM_GP_CTRL);
  1666. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1667. reg |= GM_GPCR_DUP_FULL;
  1668. /* enable Rx/Tx */
  1669. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1670. skge_gma_write16(hw, port, GM_GP_CTRL, reg);
  1671. skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1672. skge_link_up(skge);
  1673. }
  1674. static void yukon_link_down(struct skge_port *skge)
  1675. {
  1676. struct skge_hw *hw = skge->hw;
  1677. int port = skge->port;
  1678. pr_debug("yukon_link_down\n");
  1679. skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1680. skge_gm_phy_write(hw, port, GM_GP_CTRL,
  1681. skge_gm_phy_read(hw, port, GM_GP_CTRL)
  1682. & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
  1683. if (hw->chip_id != CHIP_ID_YUKON_FE &&
  1684. skge->flow_control == FLOW_MODE_REM_SEND) {
  1685. /* restore Asymmetric Pause bit */
  1686. skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1687. skge_gm_phy_read(hw, port,
  1688. PHY_MARV_AUNE_ADV)
  1689. | PHY_M_AN_ASP);
  1690. }
  1691. yukon_reset(hw, port);
  1692. skge_link_down(skge);
  1693. yukon_init(hw, port);
  1694. }
  1695. static void yukon_phy_intr(struct skge_port *skge)
  1696. {
  1697. struct skge_hw *hw = skge->hw;
  1698. int port = skge->port;
  1699. const char *reason = NULL;
  1700. u16 istatus, phystat;
  1701. istatus = skge_gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1702. phystat = skge_gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1703. pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);
  1704. if (istatus & PHY_M_IS_AN_COMPL) {
  1705. if (skge_gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1706. & PHY_M_AN_RF) {
  1707. reason = "remote fault";
  1708. goto failed;
  1709. }
  1710. if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC)
  1711. && (skge_gm_phy_read(hw, port, PHY_MARV_1000T_STAT)
  1712. & PHY_B_1000S_MSF)) {
  1713. reason = "master/slave fault";
  1714. goto failed;
  1715. }
  1716. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1717. reason = "speed/duplex";
  1718. goto failed;
  1719. }
  1720. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1721. ? DUPLEX_FULL : DUPLEX_HALF;
  1722. skge->speed = yukon_speed(hw, phystat);
  1723. /* Tx & Rx Pause Enabled bits are at 9..8 */
  1724. if (hw->chip_id == CHIP_ID_YUKON_XL)
  1725. phystat >>= 6;
  1726. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1727. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1728. case PHY_M_PS_PAUSE_MSK:
  1729. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1730. break;
  1731. case PHY_M_PS_RX_P_EN:
  1732. skge->flow_control = FLOW_MODE_REM_SEND;
  1733. break;
  1734. case PHY_M_PS_TX_P_EN:
  1735. skge->flow_control = FLOW_MODE_LOC_SEND;
  1736. break;
  1737. default:
  1738. skge->flow_control = FLOW_MODE_NONE;
  1739. }
  1740. if (skge->flow_control == FLOW_MODE_NONE ||
  1741. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1742. skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1743. else
  1744. skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1745. yukon_link_up(skge);
  1746. return;
  1747. }
  1748. if (istatus & PHY_M_IS_LSP_CHANGE)
  1749. skge->speed = yukon_speed(hw, phystat);
  1750. if (istatus & PHY_M_IS_DUP_CHANGE)
  1751. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1752. if (istatus & PHY_M_IS_LST_CHANGE) {
  1753. if (phystat & PHY_M_PS_LINK_UP)
  1754. yukon_link_up(skge);
  1755. else
  1756. yukon_link_down(skge);
  1757. }
  1758. return;
  1759. failed:
  1760. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1761. skge->netdev->name, reason);
  1762. /* XXX restart autonegotiation? */
  1763. }
  1764. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1765. {
  1766. u32 end;
  1767. start /= 8;
  1768. len /= 8;
  1769. end = start + len - 1;
  1770. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1771. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1772. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1773. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1774. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1775. if (q == Q_R1 || q == Q_R2) {
  1776. /* Set thresholds on receive queue's */
  1777. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1778. start + (2*len)/3);
  1779. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1780. start + (len/3));
  1781. } else {
  1782. /* Enable store & forward on Tx queue's because
  1783. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1784. */
  1785. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1786. }
  1787. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1788. }
  1789. /* Setup Bus Memory Interface */
  1790. static void skge_qset(struct skge_port *skge, u16 q,
  1791. const struct skge_element *e)
  1792. {
  1793. struct skge_hw *hw = skge->hw;
  1794. u32 watermark = 0x600;
  1795. u64 base = skge->dma + (e->desc - skge->mem);
  1796. /* optimization to reduce window on 32bit/33mhz */
  1797. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1798. watermark /= 2;
  1799. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1800. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1801. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1802. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1803. }
  1804. static int skge_up(struct net_device *dev)
  1805. {
  1806. struct skge_port *skge = netdev_priv(dev);
  1807. struct skge_hw *hw = skge->hw;
  1808. int port = skge->port;
  1809. u32 chunk, ram_addr;
  1810. size_t rx_size, tx_size;
  1811. int err;
  1812. if (netif_msg_ifup(skge))
  1813. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1814. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1815. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1816. skge->mem_size = tx_size + rx_size;
  1817. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1818. if (!skge->mem)
  1819. return -ENOMEM;
  1820. memset(skge->mem, 0, skge->mem_size);
  1821. if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
  1822. goto free_pci_mem;
  1823. if (skge_rx_fill(skge))
  1824. goto free_rx_ring;
  1825. if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1826. skge->dma + rx_size)))
  1827. goto free_rx_ring;
  1828. skge->tx_avail = skge->tx_ring.count - 1;
  1829. /* Initialze MAC */
  1830. if (hw->chip_id == CHIP_ID_GENESIS)
  1831. genesis_mac_init(hw, port);
  1832. else
  1833. yukon_mac_init(hw, port);
  1834. /* Configure RAMbuffers */
  1835. chunk = hw->ram_size / (isdualport(hw) ? 4 : 2);
  1836. ram_addr = hw->ram_offset + 2 * chunk * port;
  1837. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1838. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1839. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1840. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1841. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1842. /* Start receiver BMU */
  1843. wmb();
  1844. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1845. pr_debug("skge_up completed\n");
  1846. return 0;
  1847. free_rx_ring:
  1848. skge_rx_clean(skge);
  1849. kfree(skge->rx_ring.start);
  1850. free_pci_mem:
  1851. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1852. return err;
  1853. }
  1854. static int skge_down(struct net_device *dev)
  1855. {
  1856. struct skge_port *skge = netdev_priv(dev);
  1857. struct skge_hw *hw = skge->hw;
  1858. int port = skge->port;
  1859. if (netif_msg_ifdown(skge))
  1860. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1861. netif_stop_queue(dev);
  1862. del_timer_sync(&skge->led_blink);
  1863. del_timer_sync(&skge->link_check);
  1864. /* Stop transmitter */
  1865. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1866. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1867. RB_RST_SET|RB_DIS_OP_MD);
  1868. if (hw->chip_id == CHIP_ID_GENESIS)
  1869. genesis_stop(skge);
  1870. else
  1871. yukon_stop(skge);
  1872. /* Disable Force Sync bit and Enable Alloc bit */
  1873. skge_write8(hw, SKGEMAC_REG(port, TXA_CTRL),
  1874. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1875. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1876. skge_write32(hw, SKGEMAC_REG(port, TXA_ITI_INI), 0L);
  1877. skge_write32(hw, SKGEMAC_REG(port, TXA_LIM_INI), 0L);
  1878. /* Reset PCI FIFO */
  1879. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1880. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1881. /* Reset the RAM Buffer async Tx queue */
  1882. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1883. /* stop receiver */
  1884. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1885. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1886. RB_RST_SET|RB_DIS_OP_MD);
  1887. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1888. if (hw->chip_id == CHIP_ID_GENESIS) {
  1889. skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1890. skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1891. skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_STOP);
  1892. skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_STOP);
  1893. } else {
  1894. skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1895. skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1896. }
  1897. /* turn off led's */
  1898. skge_write16(hw, B0_LED, LED_STAT_OFF);
  1899. skge_tx_clean(skge);
  1900. skge_rx_clean(skge);
  1901. kfree(skge->rx_ring.start);
  1902. kfree(skge->tx_ring.start);
  1903. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1904. return 0;
  1905. }
  1906. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1907. {
  1908. struct skge_port *skge = netdev_priv(dev);
  1909. struct skge_hw *hw = skge->hw;
  1910. struct skge_ring *ring = &skge->tx_ring;
  1911. struct skge_element *e;
  1912. struct skge_tx_desc *td;
  1913. int i;
  1914. u32 control, len;
  1915. u64 map;
  1916. unsigned long flags;
  1917. skb = skb_padto(skb, ETH_ZLEN);
  1918. if (!skb)
  1919. return NETDEV_TX_OK;
  1920. local_irq_save(flags);
  1921. if (!spin_trylock(&skge->tx_lock)) {
  1922. /* Collision - tell upper layer to requeue */
  1923. local_irq_restore(flags);
  1924. return NETDEV_TX_LOCKED;
  1925. }
  1926. if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
  1927. netif_stop_queue(dev);
  1928. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1929. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1930. dev->name);
  1931. return NETDEV_TX_BUSY;
  1932. }
  1933. e = ring->to_use;
  1934. td = e->desc;
  1935. e->skb = skb;
  1936. len = skb_headlen(skb);
  1937. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1938. pci_unmap_addr_set(e, mapaddr, map);
  1939. pci_unmap_len_set(e, maplen, len);
  1940. td->dma_lo = map;
  1941. td->dma_hi = map >> 32;
  1942. if (skb->ip_summed == CHECKSUM_HW) {
  1943. const struct iphdr *ip
  1944. = (const struct iphdr *) (skb->data + ETH_HLEN);
  1945. int offset = skb->h.raw - skb->data;
  1946. /* This seems backwards, but it is what the sk98lin
  1947. * does. Looks like hardware is wrong?
  1948. */
  1949. if (ip->protocol == IPPROTO_UDP
  1950. && chip_rev(hw) == 0 && hw->chip_id == CHIP_ID_YUKON)
  1951. control = BMU_TCP_CHECK;
  1952. else
  1953. control = BMU_UDP_CHECK;
  1954. td->csum_offs = 0;
  1955. td->csum_start = offset;
  1956. td->csum_write = offset + skb->csum;
  1957. } else
  1958. control = BMU_CHECK;
  1959. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1960. control |= BMU_EOF| BMU_IRQ_EOF;
  1961. else {
  1962. struct skge_tx_desc *tf = td;
  1963. control |= BMU_STFWD;
  1964. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1965. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1966. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1967. frag->size, PCI_DMA_TODEVICE);
  1968. e = e->next;
  1969. e->skb = NULL;
  1970. tf = e->desc;
  1971. tf->dma_lo = map;
  1972. tf->dma_hi = (u64) map >> 32;
  1973. pci_unmap_addr_set(e, mapaddr, map);
  1974. pci_unmap_len_set(e, maplen, frag->size);
  1975. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1976. }
  1977. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1978. }
  1979. /* Make sure all the descriptors written */
  1980. wmb();
  1981. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1982. wmb();
  1983. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1984. if (netif_msg_tx_queued(skge))
  1985. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1986. dev->name, e - ring->start, skb->len);
  1987. ring->to_use = e->next;
  1988. skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
  1989. if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
  1990. pr_debug("%s: transmit queue full\n", dev->name);
  1991. netif_stop_queue(dev);
  1992. }
  1993. dev->trans_start = jiffies;
  1994. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1995. return NETDEV_TX_OK;
  1996. }
  1997. static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
  1998. {
  1999. if (e->skb) {
  2000. pci_unmap_single(hw->pdev,
  2001. pci_unmap_addr(e, mapaddr),
  2002. pci_unmap_len(e, maplen),
  2003. PCI_DMA_TODEVICE);
  2004. dev_kfree_skb_any(e->skb);
  2005. e->skb = NULL;
  2006. } else {
  2007. pci_unmap_page(hw->pdev,
  2008. pci_unmap_addr(e, mapaddr),
  2009. pci_unmap_len(e, maplen),
  2010. PCI_DMA_TODEVICE);
  2011. }
  2012. }
  2013. static void skge_tx_clean(struct skge_port *skge)
  2014. {
  2015. struct skge_ring *ring = &skge->tx_ring;
  2016. struct skge_element *e;
  2017. unsigned long flags;
  2018. spin_lock_irqsave(&skge->tx_lock, flags);
  2019. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2020. ++skge->tx_avail;
  2021. skge_tx_free(skge->hw, e);
  2022. }
  2023. ring->to_clean = e;
  2024. spin_unlock_irqrestore(&skge->tx_lock, flags);
  2025. }
  2026. static void skge_tx_timeout(struct net_device *dev)
  2027. {
  2028. struct skge_port *skge = netdev_priv(dev);
  2029. if (netif_msg_timer(skge))
  2030. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2031. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2032. skge_tx_clean(skge);
  2033. }
  2034. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2035. {
  2036. int err = 0;
  2037. if(new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2038. return -EINVAL;
  2039. dev->mtu = new_mtu;
  2040. if (netif_running(dev)) {
  2041. skge_down(dev);
  2042. skge_up(dev);
  2043. }
  2044. return err;
  2045. }
  2046. static void genesis_set_multicast(struct net_device *dev)
  2047. {
  2048. struct skge_port *skge = netdev_priv(dev);
  2049. struct skge_hw *hw = skge->hw;
  2050. int port = skge->port;
  2051. int i, count = dev->mc_count;
  2052. struct dev_mc_list *list = dev->mc_list;
  2053. u32 mode;
  2054. u8 filter[8];
  2055. mode = skge_xm_read32(hw, port, XM_MODE);
  2056. mode |= XM_MD_ENA_HASH;
  2057. if (dev->flags & IFF_PROMISC)
  2058. mode |= XM_MD_ENA_PROM;
  2059. else
  2060. mode &= ~XM_MD_ENA_PROM;
  2061. if (dev->flags & IFF_ALLMULTI)
  2062. memset(filter, 0xff, sizeof(filter));
  2063. else {
  2064. memset(filter, 0, sizeof(filter));
  2065. for(i = 0; list && i < count; i++, list = list->next) {
  2066. u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN);
  2067. u8 bit = 63 - (crc & 63);
  2068. filter[bit/8] |= 1 << (bit%8);
  2069. }
  2070. }
  2071. skge_xm_outhash(hw, port, XM_HSM, filter);
  2072. skge_xm_write32(hw, port, XM_MODE, mode);
  2073. }
  2074. static void yukon_set_multicast(struct net_device *dev)
  2075. {
  2076. struct skge_port *skge = netdev_priv(dev);
  2077. struct skge_hw *hw = skge->hw;
  2078. int port = skge->port;
  2079. struct dev_mc_list *list = dev->mc_list;
  2080. u16 reg;
  2081. u8 filter[8];
  2082. memset(filter, 0, sizeof(filter));
  2083. reg = skge_gma_read16(hw, port, GM_RX_CTRL);
  2084. reg |= GM_RXCR_UCF_ENA;
  2085. if (dev->flags & IFF_PROMISC) /* promiscious */
  2086. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2087. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2088. memset(filter, 0xff, sizeof(filter));
  2089. else if (dev->mc_count == 0) /* no multicast */
  2090. reg &= ~GM_RXCR_MCF_ENA;
  2091. else {
  2092. int i;
  2093. reg |= GM_RXCR_MCF_ENA;
  2094. for(i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2095. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2096. filter[bit/8] |= 1 << (bit%8);
  2097. }
  2098. }
  2099. skge_gma_write16(hw, port, GM_MC_ADDR_H1,
  2100. (u16)filter[0] | ((u16)filter[1] << 8));
  2101. skge_gma_write16(hw, port, GM_MC_ADDR_H2,
  2102. (u16)filter[2] | ((u16)filter[3] << 8));
  2103. skge_gma_write16(hw, port, GM_MC_ADDR_H3,
  2104. (u16)filter[4] | ((u16)filter[5] << 8));
  2105. skge_gma_write16(hw, port, GM_MC_ADDR_H4,
  2106. (u16)filter[6] | ((u16)filter[7] << 8));
  2107. skge_gma_write16(hw, port, GM_RX_CTRL, reg);
  2108. }
  2109. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2110. {
  2111. if (hw->chip_id == CHIP_ID_GENESIS)
  2112. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2113. else
  2114. return (status & GMR_FS_ANY_ERR) ||
  2115. (status & GMR_FS_RX_OK) == 0;
  2116. }
  2117. static void skge_rx_error(struct skge_port *skge, int slot,
  2118. u32 control, u32 status)
  2119. {
  2120. if (netif_msg_rx_err(skge))
  2121. printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
  2122. skge->netdev->name, slot, control, status);
  2123. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2124. || (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN)
  2125. skge->net_stats.rx_length_errors++;
  2126. else {
  2127. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2128. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2129. skge->net_stats.rx_length_errors++;
  2130. if (status & XMR_FS_FRA_ERR)
  2131. skge->net_stats.rx_frame_errors++;
  2132. if (status & XMR_FS_FCS_ERR)
  2133. skge->net_stats.rx_crc_errors++;
  2134. } else {
  2135. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2136. skge->net_stats.rx_length_errors++;
  2137. if (status & GMR_FS_FRAGMENT)
  2138. skge->net_stats.rx_frame_errors++;
  2139. if (status & GMR_FS_CRC_ERR)
  2140. skge->net_stats.rx_crc_errors++;
  2141. }
  2142. }
  2143. }
  2144. static int skge_poll(struct net_device *dev, int *budget)
  2145. {
  2146. struct skge_port *skge = netdev_priv(dev);
  2147. struct skge_hw *hw = skge->hw;
  2148. struct skge_ring *ring = &skge->rx_ring;
  2149. struct skge_element *e;
  2150. unsigned int to_do = min(dev->quota, *budget);
  2151. unsigned int work_done = 0;
  2152. int done;
  2153. static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 };
  2154. for (e = ring->to_clean; e != ring->to_use && work_done < to_do;
  2155. e = e->next) {
  2156. struct skge_rx_desc *rd = e->desc;
  2157. struct sk_buff *skb = e->skb;
  2158. u32 control, len, status;
  2159. rmb();
  2160. control = rd->control;
  2161. if (control & BMU_OWN)
  2162. break;
  2163. len = control & BMU_BBC;
  2164. e->skb = NULL;
  2165. pci_unmap_single(hw->pdev,
  2166. pci_unmap_addr(e, mapaddr),
  2167. pci_unmap_len(e, maplen),
  2168. PCI_DMA_FROMDEVICE);
  2169. status = rd->status;
  2170. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2171. || len > dev->mtu + VLAN_ETH_HLEN
  2172. || bad_phy_status(hw, status)) {
  2173. skge_rx_error(skge, e - ring->start, control, status);
  2174. dev_kfree_skb(skb);
  2175. continue;
  2176. }
  2177. if (netif_msg_rx_status(skge))
  2178. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2179. dev->name, e - ring->start, rd->status, len);
  2180. skb_put(skb, len);
  2181. skb->protocol = eth_type_trans(skb, dev);
  2182. if (skge->rx_csum) {
  2183. skb->csum = le16_to_cpu(rd->csum2);
  2184. skb->ip_summed = CHECKSUM_HW;
  2185. }
  2186. dev->last_rx = jiffies;
  2187. netif_receive_skb(skb);
  2188. ++work_done;
  2189. }
  2190. ring->to_clean = e;
  2191. *budget -= work_done;
  2192. dev->quota -= work_done;
  2193. done = work_done < to_do;
  2194. if (skge_rx_fill(skge))
  2195. done = 0;
  2196. /* restart receiver */
  2197. wmb();
  2198. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
  2199. CSR_START | CSR_IRQ_CL_F);
  2200. if (done) {
  2201. local_irq_disable();
  2202. hw->intr_mask |= irqmask[skge->port];
  2203. /* Order is important since data can get interrupted */
  2204. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2205. __netif_rx_complete(dev);
  2206. local_irq_enable();
  2207. }
  2208. return !done;
  2209. }
  2210. static inline void skge_tx_intr(struct net_device *dev)
  2211. {
  2212. struct skge_port *skge = netdev_priv(dev);
  2213. struct skge_hw *hw = skge->hw;
  2214. struct skge_ring *ring = &skge->tx_ring;
  2215. struct skge_element *e;
  2216. spin_lock(&skge->tx_lock);
  2217. for(e = ring->to_clean; e != ring->to_use; e = e->next) {
  2218. struct skge_tx_desc *td = e->desc;
  2219. u32 control;
  2220. rmb();
  2221. control = td->control;
  2222. if (control & BMU_OWN)
  2223. break;
  2224. if (unlikely(netif_msg_tx_done(skge)))
  2225. printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
  2226. dev->name, e - ring->start, td->status);
  2227. skge_tx_free(hw, e);
  2228. e->skb = NULL;
  2229. ++skge->tx_avail;
  2230. }
  2231. ring->to_clean = e;
  2232. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2233. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  2234. netif_wake_queue(dev);
  2235. spin_unlock(&skge->tx_lock);
  2236. }
  2237. static void skge_mac_parity(struct skge_hw *hw, int port)
  2238. {
  2239. printk(KERN_ERR PFX "%s: mac data parity error\n",
  2240. hw->dev[port] ? hw->dev[port]->name
  2241. : (port == 0 ? "(port A)": "(port B"));
  2242. if (hw->chip_id == CHIP_ID_GENESIS)
  2243. skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1),
  2244. MFF_CLR_PERR);
  2245. else
  2246. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2247. skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T),
  2248. (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)
  2249. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2250. }
  2251. static void skge_pci_clear(struct skge_hw *hw)
  2252. {
  2253. u16 status;
  2254. status = skge_read16(hw, SKGEPCI_REG(PCI_STATUS));
  2255. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2256. skge_write16(hw, SKGEPCI_REG(PCI_STATUS),
  2257. status | PCI_STATUS_ERROR_BITS);
  2258. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2259. }
  2260. static void skge_mac_intr(struct skge_hw *hw, int port)
  2261. {
  2262. if (hw->chip_id == CHIP_ID_GENESIS)
  2263. genesis_mac_intr(hw, port);
  2264. else
  2265. yukon_mac_intr(hw, port);
  2266. }
  2267. /* Handle device specific framing and timeout interrupts */
  2268. static void skge_error_irq(struct skge_hw *hw)
  2269. {
  2270. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2271. if (hw->chip_id == CHIP_ID_GENESIS) {
  2272. /* clear xmac errors */
  2273. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2274. skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
  2275. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2276. skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
  2277. } else {
  2278. /* Timestamp (unused) overflow */
  2279. if (hwstatus & IS_IRQ_TIST_OV)
  2280. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2281. if (hwstatus & IS_IRQ_SENSOR) {
  2282. /* no sensors on 32-bit Yukon */
  2283. if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
  2284. printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
  2285. skge_write32(hw, B0_HWE_IMSK,
  2286. IS_ERR_MSK & ~IS_IRQ_SENSOR);
  2287. } else
  2288. printk(KERN_WARNING PFX "sensor interrupt\n");
  2289. }
  2290. }
  2291. if (hwstatus & IS_RAM_RD_PAR) {
  2292. printk(KERN_ERR PFX "Ram read data parity error\n");
  2293. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2294. }
  2295. if (hwstatus & IS_RAM_WR_PAR) {
  2296. printk(KERN_ERR PFX "Ram write data parity error\n");
  2297. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2298. }
  2299. if (hwstatus & IS_M1_PAR_ERR)
  2300. skge_mac_parity(hw, 0);
  2301. if (hwstatus & IS_M2_PAR_ERR)
  2302. skge_mac_parity(hw, 1);
  2303. if (hwstatus & IS_R1_PAR_ERR)
  2304. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2305. if (hwstatus & IS_R2_PAR_ERR)
  2306. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2307. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2308. printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
  2309. hwstatus);
  2310. skge_pci_clear(hw);
  2311. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2312. if (hwstatus & IS_IRQ_STAT) {
  2313. printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
  2314. hwstatus);
  2315. hw->intr_mask &= ~IS_HW_ERR;
  2316. }
  2317. }
  2318. }
  2319. /*
  2320. * Interrrupt from PHY are handled in tasklet (soft irq)
  2321. * because accessing phy registers requires spin wait which might
  2322. * cause excess interrupt latency.
  2323. */
  2324. static void skge_extirq(unsigned long data)
  2325. {
  2326. struct skge_hw *hw = (struct skge_hw *) data;
  2327. int port;
  2328. spin_lock(&hw->phy_lock);
  2329. for (port = 0; port < 2; port++) {
  2330. struct net_device *dev = hw->dev[port];
  2331. if (dev && netif_running(dev)) {
  2332. struct skge_port *skge = netdev_priv(dev);
  2333. if (hw->chip_id != CHIP_ID_GENESIS)
  2334. yukon_phy_intr(skge);
  2335. else if (hw->phy_type == SK_PHY_BCOM)
  2336. genesis_bcom_intr(skge);
  2337. }
  2338. }
  2339. spin_unlock(&hw->phy_lock);
  2340. local_irq_disable();
  2341. hw->intr_mask |= IS_EXT_REG;
  2342. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2343. local_irq_enable();
  2344. }
  2345. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2346. {
  2347. struct skge_hw *hw = dev_id;
  2348. u32 status = skge_read32(hw, B0_SP_ISRC);
  2349. if (status == 0 || status == ~0) /* hotplug or shared irq */
  2350. return IRQ_NONE;
  2351. status &= hw->intr_mask;
  2352. if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) {
  2353. status &= ~IS_R1_F;
  2354. hw->intr_mask &= ~IS_R1_F;
  2355. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2356. __netif_rx_schedule(hw->dev[0]);
  2357. }
  2358. if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) {
  2359. status &= ~IS_R2_F;
  2360. hw->intr_mask &= ~IS_R2_F;
  2361. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2362. __netif_rx_schedule(hw->dev[1]);
  2363. }
  2364. if (status & IS_XA1_F)
  2365. skge_tx_intr(hw->dev[0]);
  2366. if (status & IS_XA2_F)
  2367. skge_tx_intr(hw->dev[1]);
  2368. if (status & IS_MAC1)
  2369. skge_mac_intr(hw, 0);
  2370. if (status & IS_MAC2)
  2371. skge_mac_intr(hw, 1);
  2372. if (status & IS_HW_ERR)
  2373. skge_error_irq(hw);
  2374. if (status & IS_EXT_REG) {
  2375. hw->intr_mask &= ~IS_EXT_REG;
  2376. tasklet_schedule(&hw->ext_tasklet);
  2377. }
  2378. if (status)
  2379. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2380. return IRQ_HANDLED;
  2381. }
  2382. #ifdef CONFIG_NET_POLL_CONTROLLER
  2383. static void skge_netpoll(struct net_device *dev)
  2384. {
  2385. struct skge_port *skge = netdev_priv(dev);
  2386. disable_irq(dev->irq);
  2387. skge_intr(dev->irq, skge->hw, NULL);
  2388. enable_irq(dev->irq);
  2389. }
  2390. #endif
  2391. static int skge_set_mac_address(struct net_device *dev, void *p)
  2392. {
  2393. struct skge_port *skge = netdev_priv(dev);
  2394. struct sockaddr *addr = p;
  2395. int err = 0;
  2396. if (!is_valid_ether_addr(addr->sa_data))
  2397. return -EADDRNOTAVAIL;
  2398. skge_down(dev);
  2399. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2400. memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
  2401. dev->dev_addr, ETH_ALEN);
  2402. memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
  2403. dev->dev_addr, ETH_ALEN);
  2404. if (dev->flags & IFF_UP)
  2405. err = skge_up(dev);
  2406. return err;
  2407. }
  2408. static const struct {
  2409. u8 id;
  2410. const char *name;
  2411. } skge_chips[] = {
  2412. { CHIP_ID_GENESIS, "Genesis" },
  2413. { CHIP_ID_YUKON, "Yukon" },
  2414. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2415. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2416. { CHIP_ID_YUKON_XL, "Yukon-2 XL"},
  2417. { CHIP_ID_YUKON_EC, "YUKON-2 EC"},
  2418. { CHIP_ID_YUKON_FE, "YUKON-2 FE"},
  2419. };
  2420. static const char *skge_board_name(const struct skge_hw *hw)
  2421. {
  2422. int i;
  2423. static char buf[16];
  2424. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2425. if (skge_chips[i].id == hw->chip_id)
  2426. return skge_chips[i].name;
  2427. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2428. return buf;
  2429. }
  2430. /*
  2431. * Setup the board data structure, but don't bring up
  2432. * the port(s)
  2433. */
  2434. static int skge_reset(struct skge_hw *hw)
  2435. {
  2436. u16 ctst;
  2437. u8 t8;
  2438. int i, ports;
  2439. ctst = skge_read16(hw, B0_CTST);
  2440. /* do a SW reset */
  2441. skge_write8(hw, B0_CTST, CS_RST_SET);
  2442. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2443. /* clear PCI errors, if any */
  2444. skge_pci_clear(hw);
  2445. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2446. /* restore CLK_RUN bits (for Yukon-Lite) */
  2447. skge_write16(hw, B0_CTST,
  2448. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2449. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2450. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2451. hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
  2452. switch(hw->chip_id) {
  2453. case CHIP_ID_GENESIS:
  2454. switch (hw->phy_type) {
  2455. case SK_PHY_XMAC:
  2456. hw->phy_addr = PHY_ADDR_XMAC;
  2457. break;
  2458. case SK_PHY_BCOM:
  2459. hw->phy_addr = PHY_ADDR_BCOM;
  2460. break;
  2461. default:
  2462. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2463. pci_name(hw->pdev), hw->phy_type);
  2464. return -EOPNOTSUPP;
  2465. }
  2466. break;
  2467. case CHIP_ID_YUKON:
  2468. case CHIP_ID_YUKON_LITE:
  2469. case CHIP_ID_YUKON_LP:
  2470. if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
  2471. hw->phy_type = SK_PHY_MARV_COPPER;
  2472. hw->phy_addr = PHY_ADDR_MARV;
  2473. if (!iscopper(hw))
  2474. hw->phy_type = SK_PHY_MARV_FIBER;
  2475. break;
  2476. default:
  2477. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2478. pci_name(hw->pdev), hw->chip_id);
  2479. return -EOPNOTSUPP;
  2480. }
  2481. hw->mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2482. ports = isdualport(hw) ? 2 : 1;
  2483. /* read the adapters RAM size */
  2484. t8 = skge_read8(hw, B2_E_0);
  2485. if (hw->chip_id == CHIP_ID_GENESIS) {
  2486. if (t8 == 3) {
  2487. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2488. hw->ram_size = 0x100000;
  2489. hw->ram_offset = 0x80000;
  2490. } else
  2491. hw->ram_size = t8 * 512;
  2492. }
  2493. else if (t8 == 0)
  2494. hw->ram_size = 0x20000;
  2495. else
  2496. hw->ram_size = t8 * 4096;
  2497. if (hw->chip_id == CHIP_ID_GENESIS)
  2498. genesis_init(hw);
  2499. else {
  2500. /* switch power to VCC (WA for VAUX problem) */
  2501. skge_write8(hw, B0_POWER_CTRL,
  2502. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2503. for (i = 0; i < ports; i++) {
  2504. skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2505. skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2506. }
  2507. }
  2508. /* turn off hardware timer (unused) */
  2509. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2510. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2511. skge_write8(hw, B0_LED, LED_STAT_ON);
  2512. /* enable the Tx Arbiters */
  2513. for (i = 0; i < ports; i++)
  2514. skge_write8(hw, SKGEMAC_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2515. /* Initialize ram interface */
  2516. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2517. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2518. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2519. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2520. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2521. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2522. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2523. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2524. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2525. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2526. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2527. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2528. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2529. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2530. /* Set interrupt moderation for Transmit only
  2531. * Receive interrupts avoided by NAPI
  2532. */
  2533. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2534. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2535. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2536. hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
  2537. if (isdualport(hw))
  2538. hw->intr_mask |= IS_PORT_2;
  2539. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2540. if (hw->chip_id != CHIP_ID_GENESIS)
  2541. skge_write8(hw, GMAC_IRQ_MSK, 0);
  2542. spin_lock_bh(&hw->phy_lock);
  2543. for (i = 0; i < ports; i++) {
  2544. if (hw->chip_id == CHIP_ID_GENESIS)
  2545. genesis_reset(hw, i);
  2546. else
  2547. yukon_reset(hw, i);
  2548. }
  2549. spin_unlock_bh(&hw->phy_lock);
  2550. return 0;
  2551. }
  2552. /* Initialize network device */
  2553. static struct net_device *skge_devinit(struct skge_hw *hw, int port)
  2554. {
  2555. struct skge_port *skge;
  2556. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2557. if (!dev) {
  2558. printk(KERN_ERR "skge etherdev alloc failed");
  2559. return NULL;
  2560. }
  2561. SET_MODULE_OWNER(dev);
  2562. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2563. dev->open = skge_up;
  2564. dev->stop = skge_down;
  2565. dev->hard_start_xmit = skge_xmit_frame;
  2566. dev->get_stats = skge_get_stats;
  2567. if (hw->chip_id == CHIP_ID_GENESIS)
  2568. dev->set_multicast_list = genesis_set_multicast;
  2569. else
  2570. dev->set_multicast_list = yukon_set_multicast;
  2571. dev->set_mac_address = skge_set_mac_address;
  2572. dev->change_mtu = skge_change_mtu;
  2573. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2574. dev->tx_timeout = skge_tx_timeout;
  2575. dev->watchdog_timeo = TX_WATCHDOG;
  2576. dev->poll = skge_poll;
  2577. dev->weight = NAPI_WEIGHT;
  2578. #ifdef CONFIG_NET_POLL_CONTROLLER
  2579. dev->poll_controller = skge_netpoll;
  2580. #endif
  2581. dev->irq = hw->pdev->irq;
  2582. dev->features = NETIF_F_LLTX;
  2583. skge = netdev_priv(dev);
  2584. skge->netdev = dev;
  2585. skge->hw = hw;
  2586. skge->msg_enable = netif_msg_init(debug, default_msg);
  2587. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2588. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2589. /* Auto speed and flow control */
  2590. skge->autoneg = AUTONEG_ENABLE;
  2591. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2592. skge->duplex = -1;
  2593. skge->speed = -1;
  2594. skge->advertising = skge_modes(hw);
  2595. hw->dev[port] = dev;
  2596. skge->port = port;
  2597. spin_lock_init(&skge->tx_lock);
  2598. init_timer(&skge->link_check);
  2599. skge->link_check.function = skge_link_timer;
  2600. skge->link_check.data = (unsigned long) skge;
  2601. init_timer(&skge->led_blink);
  2602. skge->led_blink.function = skge_blink_timer;
  2603. skge->led_blink.data = (unsigned long) skge;
  2604. if (hw->chip_id != CHIP_ID_GENESIS) {
  2605. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2606. skge->rx_csum = 1;
  2607. }
  2608. /* read the mac address */
  2609. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2610. /* device is off until link detection */
  2611. netif_carrier_off(dev);
  2612. netif_stop_queue(dev);
  2613. return dev;
  2614. }
  2615. static void __devinit skge_show_addr(struct net_device *dev)
  2616. {
  2617. const struct skge_port *skge = netdev_priv(dev);
  2618. if (netif_msg_probe(skge))
  2619. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2620. dev->name,
  2621. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2622. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2623. }
  2624. static int __devinit skge_probe(struct pci_dev *pdev,
  2625. const struct pci_device_id *ent)
  2626. {
  2627. struct net_device *dev, *dev1;
  2628. struct skge_hw *hw;
  2629. int err, using_dac = 0;
  2630. if ((err = pci_enable_device(pdev))) {
  2631. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2632. pci_name(pdev));
  2633. goto err_out;
  2634. }
  2635. if ((err = pci_request_regions(pdev, DRV_NAME))) {
  2636. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2637. pci_name(pdev));
  2638. goto err_out_disable_pdev;
  2639. }
  2640. pci_set_master(pdev);
  2641. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
  2642. using_dac = 1;
  2643. else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2644. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2645. pci_name(pdev));
  2646. goto err_out_free_regions;
  2647. }
  2648. #ifdef __BIG_ENDIAN
  2649. /* byte swap decriptors in hardware */
  2650. {
  2651. u32 reg;
  2652. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2653. reg |= PCI_REV_DESC;
  2654. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2655. }
  2656. #endif
  2657. err = -ENOMEM;
  2658. hw = kmalloc(sizeof(*hw), GFP_KERNEL);
  2659. if (!hw) {
  2660. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2661. pci_name(pdev));
  2662. goto err_out_free_regions;
  2663. }
  2664. memset(hw, 0, sizeof(*hw));
  2665. hw->pdev = pdev;
  2666. spin_lock_init(&hw->phy_lock);
  2667. tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
  2668. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2669. if (!hw->regs) {
  2670. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2671. pci_name(pdev));
  2672. goto err_out_free_hw;
  2673. }
  2674. if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
  2675. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2676. pci_name(pdev), pdev->irq);
  2677. goto err_out_iounmap;
  2678. }
  2679. pci_set_drvdata(pdev, hw);
  2680. err = skge_reset(hw);
  2681. if (err)
  2682. goto err_out_free_irq;
  2683. printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
  2684. pci_resource_start(pdev, 0), pdev->irq,
  2685. skge_board_name(hw), chip_rev(hw));
  2686. if ((dev = skge_devinit(hw, 0)) == NULL)
  2687. goto err_out_led_off;
  2688. if (using_dac)
  2689. dev->features |= NETIF_F_HIGHDMA;
  2690. if ((err = register_netdev(dev))) {
  2691. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2692. pci_name(pdev));
  2693. goto err_out_free_netdev;
  2694. }
  2695. skge_show_addr(dev);
  2696. if (isdualport(hw) && (dev1 = skge_devinit(hw, 1))) {
  2697. if (using_dac)
  2698. dev1->features |= NETIF_F_HIGHDMA;
  2699. if (register_netdev(dev1) == 0)
  2700. skge_show_addr(dev1);
  2701. else {
  2702. /* Failure to register second port need not be fatal */
  2703. printk(KERN_WARNING PFX "register of second port failed\n");
  2704. hw->dev[1] = NULL;
  2705. free_netdev(dev1);
  2706. }
  2707. }
  2708. return 0;
  2709. err_out_free_netdev:
  2710. free_netdev(dev);
  2711. err_out_led_off:
  2712. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2713. err_out_free_irq:
  2714. free_irq(pdev->irq, hw);
  2715. err_out_iounmap:
  2716. iounmap(hw->regs);
  2717. err_out_free_hw:
  2718. kfree(hw);
  2719. err_out_free_regions:
  2720. pci_release_regions(pdev);
  2721. err_out_disable_pdev:
  2722. pci_disable_device(pdev);
  2723. pci_set_drvdata(pdev, NULL);
  2724. err_out:
  2725. return err;
  2726. }
  2727. static void __devexit skge_remove(struct pci_dev *pdev)
  2728. {
  2729. struct skge_hw *hw = pci_get_drvdata(pdev);
  2730. struct net_device *dev0, *dev1;
  2731. if(!hw)
  2732. return;
  2733. if ((dev1 = hw->dev[1]))
  2734. unregister_netdev(dev1);
  2735. dev0 = hw->dev[0];
  2736. unregister_netdev(dev0);
  2737. tasklet_kill(&hw->ext_tasklet);
  2738. free_irq(pdev->irq, hw);
  2739. pci_release_regions(pdev);
  2740. pci_disable_device(pdev);
  2741. if (dev1)
  2742. free_netdev(dev1);
  2743. free_netdev(dev0);
  2744. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2745. iounmap(hw->regs);
  2746. kfree(hw);
  2747. pci_set_drvdata(pdev, NULL);
  2748. }
  2749. #ifdef CONFIG_PM
  2750. static int skge_suspend(struct pci_dev *pdev, u32 state)
  2751. {
  2752. struct skge_hw *hw = pci_get_drvdata(pdev);
  2753. int i, wol = 0;
  2754. for(i = 0; i < 2; i++) {
  2755. struct net_device *dev = hw->dev[i];
  2756. if (dev) {
  2757. struct skge_port *skge = netdev_priv(dev);
  2758. if (netif_running(dev)) {
  2759. netif_carrier_off(dev);
  2760. skge_down(dev);
  2761. }
  2762. netif_device_detach(dev);
  2763. wol |= skge->wol;
  2764. }
  2765. }
  2766. pci_save_state(pdev);
  2767. pci_enable_wake(pdev, state, wol);
  2768. pci_disable_device(pdev);
  2769. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2770. return 0;
  2771. }
  2772. static int skge_resume(struct pci_dev *pdev)
  2773. {
  2774. struct skge_hw *hw = pci_get_drvdata(pdev);
  2775. int i;
  2776. pci_set_power_state(pdev, PCI_D0);
  2777. pci_restore_state(pdev);
  2778. pci_enable_wake(pdev, PCI_D0, 0);
  2779. skge_reset(hw);
  2780. for(i = 0; i < 2; i++) {
  2781. struct net_device *dev = hw->dev[i];
  2782. if (dev) {
  2783. netif_device_attach(dev);
  2784. if(netif_running(dev))
  2785. skge_up(dev);
  2786. }
  2787. }
  2788. return 0;
  2789. }
  2790. #endif
  2791. static struct pci_driver skge_driver = {
  2792. .name = DRV_NAME,
  2793. .id_table = skge_id_table,
  2794. .probe = skge_probe,
  2795. .remove = __devexit_p(skge_remove),
  2796. #ifdef CONFIG_PM
  2797. .suspend = skge_suspend,
  2798. .resume = skge_resume,
  2799. #endif
  2800. };
  2801. static int __init skge_init_module(void)
  2802. {
  2803. return pci_module_init(&skge_driver);
  2804. }
  2805. static void __exit skge_cleanup_module(void)
  2806. {
  2807. pci_unregister_driver(&skge_driver);
  2808. }
  2809. module_init(skge_init_module);
  2810. module_exit(skge_cleanup_module);