intel_pm.c 163 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #include <drm/i915_powerwell.h>
  33. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  34. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  35. * during in-memory transfers and, therefore, reduce the power packet.
  36. *
  37. * The benefits of FBC are mostly visible with solid backgrounds and
  38. * variation-less patterns.
  39. *
  40. * FBC-related functionality can be enabled by the means of the
  41. * i915.i915_enable_fbc parameter
  42. */
  43. static void i8xx_disable_fbc(struct drm_device *dev)
  44. {
  45. struct drm_i915_private *dev_priv = dev->dev_private;
  46. u32 fbc_ctl;
  47. /* Disable compression */
  48. fbc_ctl = I915_READ(FBC_CONTROL);
  49. if ((fbc_ctl & FBC_CTL_EN) == 0)
  50. return;
  51. fbc_ctl &= ~FBC_CTL_EN;
  52. I915_WRITE(FBC_CONTROL, fbc_ctl);
  53. /* Wait for compressing bit to clear */
  54. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  55. DRM_DEBUG_KMS("FBC idle timed out\n");
  56. return;
  57. }
  58. DRM_DEBUG_KMS("disabled FBC\n");
  59. }
  60. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  61. {
  62. struct drm_device *dev = crtc->dev;
  63. struct drm_i915_private *dev_priv = dev->dev_private;
  64. struct drm_framebuffer *fb = crtc->fb;
  65. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  66. struct drm_i915_gem_object *obj = intel_fb->obj;
  67. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  68. int cfb_pitch;
  69. int plane, i;
  70. u32 fbc_ctl, fbc_ctl2;
  71. cfb_pitch = dev_priv->fbc.size / FBC_LL_SIZE;
  72. if (fb->pitches[0] < cfb_pitch)
  73. cfb_pitch = fb->pitches[0];
  74. /* FBC_CTL wants 64B units */
  75. cfb_pitch = (cfb_pitch / 64) - 1;
  76. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  77. /* Clear old tags */
  78. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  79. I915_WRITE(FBC_TAG + (i * 4), 0);
  80. /* Set it up... */
  81. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  82. fbc_ctl2 |= plane;
  83. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  84. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  85. /* enable it... */
  86. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  87. if (IS_I945GM(dev))
  88. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  89. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  90. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  91. fbc_ctl |= obj->fence_reg;
  92. I915_WRITE(FBC_CONTROL, fbc_ctl);
  93. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %c, ",
  94. cfb_pitch, crtc->y, plane_name(intel_crtc->plane));
  95. }
  96. static bool i8xx_fbc_enabled(struct drm_device *dev)
  97. {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  100. }
  101. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  102. {
  103. struct drm_device *dev = crtc->dev;
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct drm_framebuffer *fb = crtc->fb;
  106. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  107. struct drm_i915_gem_object *obj = intel_fb->obj;
  108. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  109. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  110. unsigned long stall_watermark = 200;
  111. u32 dpfc_ctl;
  112. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  113. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  114. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  115. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  116. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  117. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  118. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  119. /* enable it... */
  120. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  121. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  122. }
  123. static void g4x_disable_fbc(struct drm_device *dev)
  124. {
  125. struct drm_i915_private *dev_priv = dev->dev_private;
  126. u32 dpfc_ctl;
  127. /* Disable compression */
  128. dpfc_ctl = I915_READ(DPFC_CONTROL);
  129. if (dpfc_ctl & DPFC_CTL_EN) {
  130. dpfc_ctl &= ~DPFC_CTL_EN;
  131. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  132. DRM_DEBUG_KMS("disabled FBC\n");
  133. }
  134. }
  135. static bool g4x_fbc_enabled(struct drm_device *dev)
  136. {
  137. struct drm_i915_private *dev_priv = dev->dev_private;
  138. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  139. }
  140. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  141. {
  142. struct drm_i915_private *dev_priv = dev->dev_private;
  143. u32 blt_ecoskpd;
  144. /* Make sure blitter notifies FBC of writes */
  145. gen6_gt_force_wake_get(dev_priv);
  146. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  147. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  148. GEN6_BLITTER_LOCK_SHIFT;
  149. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  150. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  151. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  152. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  153. GEN6_BLITTER_LOCK_SHIFT);
  154. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  155. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  156. gen6_gt_force_wake_put(dev_priv);
  157. }
  158. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  159. {
  160. struct drm_device *dev = crtc->dev;
  161. struct drm_i915_private *dev_priv = dev->dev_private;
  162. struct drm_framebuffer *fb = crtc->fb;
  163. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  164. struct drm_i915_gem_object *obj = intel_fb->obj;
  165. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  166. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  167. unsigned long stall_watermark = 200;
  168. u32 dpfc_ctl;
  169. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  170. dpfc_ctl &= DPFC_RESERVED;
  171. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  172. /* Set persistent mode for front-buffer rendering, ala X. */
  173. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  174. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  175. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  176. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  177. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  178. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  179. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  180. I915_WRITE(ILK_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj) | ILK_FBC_RT_VALID);
  181. /* enable it... */
  182. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  183. if (IS_GEN6(dev)) {
  184. I915_WRITE(SNB_DPFC_CTL_SA,
  185. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  186. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  187. sandybridge_blit_fbc_update(dev);
  188. }
  189. DRM_DEBUG_KMS("enabled fbc on plane %c\n", plane_name(intel_crtc->plane));
  190. }
  191. static void ironlake_disable_fbc(struct drm_device *dev)
  192. {
  193. struct drm_i915_private *dev_priv = dev->dev_private;
  194. u32 dpfc_ctl;
  195. /* Disable compression */
  196. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  197. if (dpfc_ctl & DPFC_CTL_EN) {
  198. dpfc_ctl &= ~DPFC_CTL_EN;
  199. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  200. if (IS_IVYBRIDGE(dev))
  201. /* WaFbcDisableDpfcClockGating:ivb */
  202. I915_WRITE(ILK_DSPCLK_GATE_D,
  203. I915_READ(ILK_DSPCLK_GATE_D) &
  204. ~ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  205. if (IS_HASWELL(dev))
  206. /* WaFbcDisableDpfcClockGating:hsw */
  207. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  208. I915_READ(HSW_CLKGATE_DISABLE_PART_1) &
  209. ~HSW_DPFC_GATING_DISABLE);
  210. DRM_DEBUG_KMS("disabled FBC\n");
  211. }
  212. }
  213. static bool ironlake_fbc_enabled(struct drm_device *dev)
  214. {
  215. struct drm_i915_private *dev_priv = dev->dev_private;
  216. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  217. }
  218. static void gen7_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  219. {
  220. struct drm_device *dev = crtc->dev;
  221. struct drm_i915_private *dev_priv = dev->dev_private;
  222. struct drm_framebuffer *fb = crtc->fb;
  223. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  224. struct drm_i915_gem_object *obj = intel_fb->obj;
  225. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  226. I915_WRITE(IVB_FBC_RT_BASE, i915_gem_obj_ggtt_offset(obj));
  227. I915_WRITE(ILK_DPFC_CONTROL, DPFC_CTL_EN | DPFC_CTL_LIMIT_1X |
  228. IVB_DPFC_CTL_FENCE_EN |
  229. intel_crtc->plane << IVB_DPFC_CTL_PLANE_SHIFT);
  230. if (IS_IVYBRIDGE(dev)) {
  231. /* WaFbcAsynchFlipDisableFbcQueue:ivb */
  232. I915_WRITE(ILK_DISPLAY_CHICKEN1, ILK_FBCQ_DIS);
  233. /* WaFbcDisableDpfcClockGating:ivb */
  234. I915_WRITE(ILK_DSPCLK_GATE_D,
  235. I915_READ(ILK_DSPCLK_GATE_D) |
  236. ILK_DPFCUNIT_CLOCK_GATE_DISABLE);
  237. } else {
  238. /* WaFbcAsynchFlipDisableFbcQueue:hsw */
  239. I915_WRITE(HSW_PIPE_SLICE_CHICKEN_1(intel_crtc->pipe),
  240. HSW_BYPASS_FBC_QUEUE);
  241. /* WaFbcDisableDpfcClockGating:hsw */
  242. I915_WRITE(HSW_CLKGATE_DISABLE_PART_1,
  243. I915_READ(HSW_CLKGATE_DISABLE_PART_1) |
  244. HSW_DPFC_GATING_DISABLE);
  245. }
  246. I915_WRITE(SNB_DPFC_CTL_SA,
  247. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  248. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  249. sandybridge_blit_fbc_update(dev);
  250. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  251. }
  252. bool intel_fbc_enabled(struct drm_device *dev)
  253. {
  254. struct drm_i915_private *dev_priv = dev->dev_private;
  255. if (!dev_priv->display.fbc_enabled)
  256. return false;
  257. return dev_priv->display.fbc_enabled(dev);
  258. }
  259. static void intel_fbc_work_fn(struct work_struct *__work)
  260. {
  261. struct intel_fbc_work *work =
  262. container_of(to_delayed_work(__work),
  263. struct intel_fbc_work, work);
  264. struct drm_device *dev = work->crtc->dev;
  265. struct drm_i915_private *dev_priv = dev->dev_private;
  266. mutex_lock(&dev->struct_mutex);
  267. if (work == dev_priv->fbc.fbc_work) {
  268. /* Double check that we haven't switched fb without cancelling
  269. * the prior work.
  270. */
  271. if (work->crtc->fb == work->fb) {
  272. dev_priv->display.enable_fbc(work->crtc,
  273. work->interval);
  274. dev_priv->fbc.plane = to_intel_crtc(work->crtc)->plane;
  275. dev_priv->fbc.fb_id = work->crtc->fb->base.id;
  276. dev_priv->fbc.y = work->crtc->y;
  277. }
  278. dev_priv->fbc.fbc_work = NULL;
  279. }
  280. mutex_unlock(&dev->struct_mutex);
  281. kfree(work);
  282. }
  283. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  284. {
  285. if (dev_priv->fbc.fbc_work == NULL)
  286. return;
  287. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  288. /* Synchronisation is provided by struct_mutex and checking of
  289. * dev_priv->fbc.fbc_work, so we can perform the cancellation
  290. * entirely asynchronously.
  291. */
  292. if (cancel_delayed_work(&dev_priv->fbc.fbc_work->work))
  293. /* tasklet was killed before being run, clean up */
  294. kfree(dev_priv->fbc.fbc_work);
  295. /* Mark the work as no longer wanted so that if it does
  296. * wake-up (because the work was already running and waiting
  297. * for our mutex), it will discover that is no longer
  298. * necessary to run.
  299. */
  300. dev_priv->fbc.fbc_work = NULL;
  301. }
  302. static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  303. {
  304. struct intel_fbc_work *work;
  305. struct drm_device *dev = crtc->dev;
  306. struct drm_i915_private *dev_priv = dev->dev_private;
  307. if (!dev_priv->display.enable_fbc)
  308. return;
  309. intel_cancel_fbc_work(dev_priv);
  310. work = kzalloc(sizeof(*work), GFP_KERNEL);
  311. if (work == NULL) {
  312. DRM_ERROR("Failed to allocate FBC work structure\n");
  313. dev_priv->display.enable_fbc(crtc, interval);
  314. return;
  315. }
  316. work->crtc = crtc;
  317. work->fb = crtc->fb;
  318. work->interval = interval;
  319. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  320. dev_priv->fbc.fbc_work = work;
  321. /* Delay the actual enabling to let pageflipping cease and the
  322. * display to settle before starting the compression. Note that
  323. * this delay also serves a second purpose: it allows for a
  324. * vblank to pass after disabling the FBC before we attempt
  325. * to modify the control registers.
  326. *
  327. * A more complicated solution would involve tracking vblanks
  328. * following the termination of the page-flipping sequence
  329. * and indeed performing the enable as a co-routine and not
  330. * waiting synchronously upon the vblank.
  331. *
  332. * WaFbcWaitForVBlankBeforeEnable:ilk,snb
  333. */
  334. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  335. }
  336. void intel_disable_fbc(struct drm_device *dev)
  337. {
  338. struct drm_i915_private *dev_priv = dev->dev_private;
  339. intel_cancel_fbc_work(dev_priv);
  340. if (!dev_priv->display.disable_fbc)
  341. return;
  342. dev_priv->display.disable_fbc(dev);
  343. dev_priv->fbc.plane = -1;
  344. }
  345. static bool set_no_fbc_reason(struct drm_i915_private *dev_priv,
  346. enum no_fbc_reason reason)
  347. {
  348. if (dev_priv->fbc.no_fbc_reason == reason)
  349. return false;
  350. dev_priv->fbc.no_fbc_reason = reason;
  351. return true;
  352. }
  353. /**
  354. * intel_update_fbc - enable/disable FBC as needed
  355. * @dev: the drm_device
  356. *
  357. * Set up the framebuffer compression hardware at mode set time. We
  358. * enable it if possible:
  359. * - plane A only (on pre-965)
  360. * - no pixel mulitply/line duplication
  361. * - no alpha buffer discard
  362. * - no dual wide
  363. * - framebuffer <= max_hdisplay in width, max_vdisplay in height
  364. *
  365. * We can't assume that any compression will take place (worst case),
  366. * so the compressed buffer has to be the same size as the uncompressed
  367. * one. It also must reside (along with the line length buffer) in
  368. * stolen memory.
  369. *
  370. * We need to enable/disable FBC on a global basis.
  371. */
  372. void intel_update_fbc(struct drm_device *dev)
  373. {
  374. struct drm_i915_private *dev_priv = dev->dev_private;
  375. struct drm_crtc *crtc = NULL, *tmp_crtc;
  376. struct intel_crtc *intel_crtc;
  377. struct drm_framebuffer *fb;
  378. struct intel_framebuffer *intel_fb;
  379. struct drm_i915_gem_object *obj;
  380. const struct drm_display_mode *adjusted_mode;
  381. unsigned int max_width, max_height;
  382. if (!I915_HAS_FBC(dev)) {
  383. set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED);
  384. return;
  385. }
  386. if (!i915_powersave) {
  387. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  388. DRM_DEBUG_KMS("fbc disabled per module param\n");
  389. return;
  390. }
  391. /*
  392. * If FBC is already on, we just have to verify that we can
  393. * keep it that way...
  394. * Need to disable if:
  395. * - more than one pipe is active
  396. * - changing FBC params (stride, fence, mode)
  397. * - new fb is too large to fit in compressed buffer
  398. * - going to an unsupported config (interlace, pixel multiply, etc.)
  399. */
  400. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  401. if (intel_crtc_active(tmp_crtc) &&
  402. to_intel_crtc(tmp_crtc)->primary_enabled) {
  403. if (crtc) {
  404. if (set_no_fbc_reason(dev_priv, FBC_MULTIPLE_PIPES))
  405. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  406. goto out_disable;
  407. }
  408. crtc = tmp_crtc;
  409. }
  410. }
  411. if (!crtc || crtc->fb == NULL) {
  412. if (set_no_fbc_reason(dev_priv, FBC_NO_OUTPUT))
  413. DRM_DEBUG_KMS("no output, disabling\n");
  414. goto out_disable;
  415. }
  416. intel_crtc = to_intel_crtc(crtc);
  417. fb = crtc->fb;
  418. intel_fb = to_intel_framebuffer(fb);
  419. obj = intel_fb->obj;
  420. adjusted_mode = &intel_crtc->config.adjusted_mode;
  421. if (i915_enable_fbc < 0 &&
  422. INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev)) {
  423. if (set_no_fbc_reason(dev_priv, FBC_CHIP_DEFAULT))
  424. DRM_DEBUG_KMS("disabled per chip default\n");
  425. goto out_disable;
  426. }
  427. if (!i915_enable_fbc) {
  428. if (set_no_fbc_reason(dev_priv, FBC_MODULE_PARAM))
  429. DRM_DEBUG_KMS("fbc disabled per module param\n");
  430. goto out_disable;
  431. }
  432. if ((adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  433. (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  434. if (set_no_fbc_reason(dev_priv, FBC_UNSUPPORTED_MODE))
  435. DRM_DEBUG_KMS("mode incompatible with compression, "
  436. "disabling\n");
  437. goto out_disable;
  438. }
  439. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
  440. max_width = 4096;
  441. max_height = 2048;
  442. } else {
  443. max_width = 2048;
  444. max_height = 1536;
  445. }
  446. if (intel_crtc->config.pipe_src_w > max_width ||
  447. intel_crtc->config.pipe_src_h > max_height) {
  448. if (set_no_fbc_reason(dev_priv, FBC_MODE_TOO_LARGE))
  449. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  450. goto out_disable;
  451. }
  452. if ((IS_I915GM(dev) || IS_I945GM(dev) || IS_HASWELL(dev)) &&
  453. intel_crtc->plane != 0) {
  454. if (set_no_fbc_reason(dev_priv, FBC_BAD_PLANE))
  455. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  456. goto out_disable;
  457. }
  458. /* The use of a CPU fence is mandatory in order to detect writes
  459. * by the CPU to the scanout and trigger updates to the FBC.
  460. */
  461. if (obj->tiling_mode != I915_TILING_X ||
  462. obj->fence_reg == I915_FENCE_REG_NONE) {
  463. if (set_no_fbc_reason(dev_priv, FBC_NOT_TILED))
  464. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  465. goto out_disable;
  466. }
  467. /* If the kernel debugger is active, always disable compression */
  468. if (in_dbg_master())
  469. goto out_disable;
  470. if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
  471. if (set_no_fbc_reason(dev_priv, FBC_STOLEN_TOO_SMALL))
  472. DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
  473. goto out_disable;
  474. }
  475. /* If the scanout has not changed, don't modify the FBC settings.
  476. * Note that we make the fundamental assumption that the fb->obj
  477. * cannot be unpinned (and have its GTT offset and fence revoked)
  478. * without first being decoupled from the scanout and FBC disabled.
  479. */
  480. if (dev_priv->fbc.plane == intel_crtc->plane &&
  481. dev_priv->fbc.fb_id == fb->base.id &&
  482. dev_priv->fbc.y == crtc->y)
  483. return;
  484. if (intel_fbc_enabled(dev)) {
  485. /* We update FBC along two paths, after changing fb/crtc
  486. * configuration (modeswitching) and after page-flipping
  487. * finishes. For the latter, we know that not only did
  488. * we disable the FBC at the start of the page-flip
  489. * sequence, but also more than one vblank has passed.
  490. *
  491. * For the former case of modeswitching, it is possible
  492. * to switch between two FBC valid configurations
  493. * instantaneously so we do need to disable the FBC
  494. * before we can modify its control registers. We also
  495. * have to wait for the next vblank for that to take
  496. * effect. However, since we delay enabling FBC we can
  497. * assume that a vblank has passed since disabling and
  498. * that we can safely alter the registers in the deferred
  499. * callback.
  500. *
  501. * In the scenario that we go from a valid to invalid
  502. * and then back to valid FBC configuration we have
  503. * no strict enforcement that a vblank occurred since
  504. * disabling the FBC. However, along all current pipe
  505. * disabling paths we do need to wait for a vblank at
  506. * some point. And we wait before enabling FBC anyway.
  507. */
  508. DRM_DEBUG_KMS("disabling active FBC for update\n");
  509. intel_disable_fbc(dev);
  510. }
  511. intel_enable_fbc(crtc, 500);
  512. dev_priv->fbc.no_fbc_reason = FBC_OK;
  513. return;
  514. out_disable:
  515. /* Multiple disables should be harmless */
  516. if (intel_fbc_enabled(dev)) {
  517. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  518. intel_disable_fbc(dev);
  519. }
  520. i915_gem_stolen_cleanup_compression(dev);
  521. }
  522. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  523. {
  524. drm_i915_private_t *dev_priv = dev->dev_private;
  525. u32 tmp;
  526. tmp = I915_READ(CLKCFG);
  527. switch (tmp & CLKCFG_FSB_MASK) {
  528. case CLKCFG_FSB_533:
  529. dev_priv->fsb_freq = 533; /* 133*4 */
  530. break;
  531. case CLKCFG_FSB_800:
  532. dev_priv->fsb_freq = 800; /* 200*4 */
  533. break;
  534. case CLKCFG_FSB_667:
  535. dev_priv->fsb_freq = 667; /* 167*4 */
  536. break;
  537. case CLKCFG_FSB_400:
  538. dev_priv->fsb_freq = 400; /* 100*4 */
  539. break;
  540. }
  541. switch (tmp & CLKCFG_MEM_MASK) {
  542. case CLKCFG_MEM_533:
  543. dev_priv->mem_freq = 533;
  544. break;
  545. case CLKCFG_MEM_667:
  546. dev_priv->mem_freq = 667;
  547. break;
  548. case CLKCFG_MEM_800:
  549. dev_priv->mem_freq = 800;
  550. break;
  551. }
  552. /* detect pineview DDR3 setting */
  553. tmp = I915_READ(CSHRDDR3CTL);
  554. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  555. }
  556. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  557. {
  558. drm_i915_private_t *dev_priv = dev->dev_private;
  559. u16 ddrpll, csipll;
  560. ddrpll = I915_READ16(DDRMPLL1);
  561. csipll = I915_READ16(CSIPLL0);
  562. switch (ddrpll & 0xff) {
  563. case 0xc:
  564. dev_priv->mem_freq = 800;
  565. break;
  566. case 0x10:
  567. dev_priv->mem_freq = 1066;
  568. break;
  569. case 0x14:
  570. dev_priv->mem_freq = 1333;
  571. break;
  572. case 0x18:
  573. dev_priv->mem_freq = 1600;
  574. break;
  575. default:
  576. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  577. ddrpll & 0xff);
  578. dev_priv->mem_freq = 0;
  579. break;
  580. }
  581. dev_priv->ips.r_t = dev_priv->mem_freq;
  582. switch (csipll & 0x3ff) {
  583. case 0x00c:
  584. dev_priv->fsb_freq = 3200;
  585. break;
  586. case 0x00e:
  587. dev_priv->fsb_freq = 3733;
  588. break;
  589. case 0x010:
  590. dev_priv->fsb_freq = 4266;
  591. break;
  592. case 0x012:
  593. dev_priv->fsb_freq = 4800;
  594. break;
  595. case 0x014:
  596. dev_priv->fsb_freq = 5333;
  597. break;
  598. case 0x016:
  599. dev_priv->fsb_freq = 5866;
  600. break;
  601. case 0x018:
  602. dev_priv->fsb_freq = 6400;
  603. break;
  604. default:
  605. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  606. csipll & 0x3ff);
  607. dev_priv->fsb_freq = 0;
  608. break;
  609. }
  610. if (dev_priv->fsb_freq == 3200) {
  611. dev_priv->ips.c_m = 0;
  612. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  613. dev_priv->ips.c_m = 1;
  614. } else {
  615. dev_priv->ips.c_m = 2;
  616. }
  617. }
  618. static const struct cxsr_latency cxsr_latency_table[] = {
  619. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  620. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  621. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  622. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  623. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  624. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  625. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  626. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  627. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  628. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  629. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  630. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  631. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  632. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  633. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  634. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  635. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  636. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  637. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  638. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  639. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  640. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  641. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  642. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  643. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  644. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  645. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  646. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  647. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  648. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  649. };
  650. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  651. int is_ddr3,
  652. int fsb,
  653. int mem)
  654. {
  655. const struct cxsr_latency *latency;
  656. int i;
  657. if (fsb == 0 || mem == 0)
  658. return NULL;
  659. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  660. latency = &cxsr_latency_table[i];
  661. if (is_desktop == latency->is_desktop &&
  662. is_ddr3 == latency->is_ddr3 &&
  663. fsb == latency->fsb_freq && mem == latency->mem_freq)
  664. return latency;
  665. }
  666. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  667. return NULL;
  668. }
  669. static void pineview_disable_cxsr(struct drm_device *dev)
  670. {
  671. struct drm_i915_private *dev_priv = dev->dev_private;
  672. /* deactivate cxsr */
  673. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  674. }
  675. /*
  676. * Latency for FIFO fetches is dependent on several factors:
  677. * - memory configuration (speed, channels)
  678. * - chipset
  679. * - current MCH state
  680. * It can be fairly high in some situations, so here we assume a fairly
  681. * pessimal value. It's a tradeoff between extra memory fetches (if we
  682. * set this value too high, the FIFO will fetch frequently to stay full)
  683. * and power consumption (set it too low to save power and we might see
  684. * FIFO underruns and display "flicker").
  685. *
  686. * A value of 5us seems to be a good balance; safe for very low end
  687. * platforms but not overly aggressive on lower latency configs.
  688. */
  689. static const int latency_ns = 5000;
  690. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  691. {
  692. struct drm_i915_private *dev_priv = dev->dev_private;
  693. uint32_t dsparb = I915_READ(DSPARB);
  694. int size;
  695. size = dsparb & 0x7f;
  696. if (plane)
  697. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  698. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  699. plane ? "B" : "A", size);
  700. return size;
  701. }
  702. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  703. {
  704. struct drm_i915_private *dev_priv = dev->dev_private;
  705. uint32_t dsparb = I915_READ(DSPARB);
  706. int size;
  707. size = dsparb & 0x1ff;
  708. if (plane)
  709. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  710. size >>= 1; /* Convert to cachelines */
  711. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  712. plane ? "B" : "A", size);
  713. return size;
  714. }
  715. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  716. {
  717. struct drm_i915_private *dev_priv = dev->dev_private;
  718. uint32_t dsparb = I915_READ(DSPARB);
  719. int size;
  720. size = dsparb & 0x7f;
  721. size >>= 2; /* Convert to cachelines */
  722. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  723. plane ? "B" : "A",
  724. size);
  725. return size;
  726. }
  727. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  728. {
  729. struct drm_i915_private *dev_priv = dev->dev_private;
  730. uint32_t dsparb = I915_READ(DSPARB);
  731. int size;
  732. size = dsparb & 0x7f;
  733. size >>= 1; /* Convert to cachelines */
  734. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  735. plane ? "B" : "A", size);
  736. return size;
  737. }
  738. /* Pineview has different values for various configs */
  739. static const struct intel_watermark_params pineview_display_wm = {
  740. PINEVIEW_DISPLAY_FIFO,
  741. PINEVIEW_MAX_WM,
  742. PINEVIEW_DFT_WM,
  743. PINEVIEW_GUARD_WM,
  744. PINEVIEW_FIFO_LINE_SIZE
  745. };
  746. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  747. PINEVIEW_DISPLAY_FIFO,
  748. PINEVIEW_MAX_WM,
  749. PINEVIEW_DFT_HPLLOFF_WM,
  750. PINEVIEW_GUARD_WM,
  751. PINEVIEW_FIFO_LINE_SIZE
  752. };
  753. static const struct intel_watermark_params pineview_cursor_wm = {
  754. PINEVIEW_CURSOR_FIFO,
  755. PINEVIEW_CURSOR_MAX_WM,
  756. PINEVIEW_CURSOR_DFT_WM,
  757. PINEVIEW_CURSOR_GUARD_WM,
  758. PINEVIEW_FIFO_LINE_SIZE,
  759. };
  760. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  761. PINEVIEW_CURSOR_FIFO,
  762. PINEVIEW_CURSOR_MAX_WM,
  763. PINEVIEW_CURSOR_DFT_WM,
  764. PINEVIEW_CURSOR_GUARD_WM,
  765. PINEVIEW_FIFO_LINE_SIZE
  766. };
  767. static const struct intel_watermark_params g4x_wm_info = {
  768. G4X_FIFO_SIZE,
  769. G4X_MAX_WM,
  770. G4X_MAX_WM,
  771. 2,
  772. G4X_FIFO_LINE_SIZE,
  773. };
  774. static const struct intel_watermark_params g4x_cursor_wm_info = {
  775. I965_CURSOR_FIFO,
  776. I965_CURSOR_MAX_WM,
  777. I965_CURSOR_DFT_WM,
  778. 2,
  779. G4X_FIFO_LINE_SIZE,
  780. };
  781. static const struct intel_watermark_params valleyview_wm_info = {
  782. VALLEYVIEW_FIFO_SIZE,
  783. VALLEYVIEW_MAX_WM,
  784. VALLEYVIEW_MAX_WM,
  785. 2,
  786. G4X_FIFO_LINE_SIZE,
  787. };
  788. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  789. I965_CURSOR_FIFO,
  790. VALLEYVIEW_CURSOR_MAX_WM,
  791. I965_CURSOR_DFT_WM,
  792. 2,
  793. G4X_FIFO_LINE_SIZE,
  794. };
  795. static const struct intel_watermark_params i965_cursor_wm_info = {
  796. I965_CURSOR_FIFO,
  797. I965_CURSOR_MAX_WM,
  798. I965_CURSOR_DFT_WM,
  799. 2,
  800. I915_FIFO_LINE_SIZE,
  801. };
  802. static const struct intel_watermark_params i945_wm_info = {
  803. I945_FIFO_SIZE,
  804. I915_MAX_WM,
  805. 1,
  806. 2,
  807. I915_FIFO_LINE_SIZE
  808. };
  809. static const struct intel_watermark_params i915_wm_info = {
  810. I915_FIFO_SIZE,
  811. I915_MAX_WM,
  812. 1,
  813. 2,
  814. I915_FIFO_LINE_SIZE
  815. };
  816. static const struct intel_watermark_params i855_wm_info = {
  817. I855GM_FIFO_SIZE,
  818. I915_MAX_WM,
  819. 1,
  820. 2,
  821. I830_FIFO_LINE_SIZE
  822. };
  823. static const struct intel_watermark_params i830_wm_info = {
  824. I830_FIFO_SIZE,
  825. I915_MAX_WM,
  826. 1,
  827. 2,
  828. I830_FIFO_LINE_SIZE
  829. };
  830. static const struct intel_watermark_params ironlake_display_wm_info = {
  831. ILK_DISPLAY_FIFO,
  832. ILK_DISPLAY_MAXWM,
  833. ILK_DISPLAY_DFTWM,
  834. 2,
  835. ILK_FIFO_LINE_SIZE
  836. };
  837. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  838. ILK_CURSOR_FIFO,
  839. ILK_CURSOR_MAXWM,
  840. ILK_CURSOR_DFTWM,
  841. 2,
  842. ILK_FIFO_LINE_SIZE
  843. };
  844. static const struct intel_watermark_params ironlake_display_srwm_info = {
  845. ILK_DISPLAY_SR_FIFO,
  846. ILK_DISPLAY_MAX_SRWM,
  847. ILK_DISPLAY_DFT_SRWM,
  848. 2,
  849. ILK_FIFO_LINE_SIZE
  850. };
  851. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  852. ILK_CURSOR_SR_FIFO,
  853. ILK_CURSOR_MAX_SRWM,
  854. ILK_CURSOR_DFT_SRWM,
  855. 2,
  856. ILK_FIFO_LINE_SIZE
  857. };
  858. static const struct intel_watermark_params sandybridge_display_wm_info = {
  859. SNB_DISPLAY_FIFO,
  860. SNB_DISPLAY_MAXWM,
  861. SNB_DISPLAY_DFTWM,
  862. 2,
  863. SNB_FIFO_LINE_SIZE
  864. };
  865. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  866. SNB_CURSOR_FIFO,
  867. SNB_CURSOR_MAXWM,
  868. SNB_CURSOR_DFTWM,
  869. 2,
  870. SNB_FIFO_LINE_SIZE
  871. };
  872. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  873. SNB_DISPLAY_SR_FIFO,
  874. SNB_DISPLAY_MAX_SRWM,
  875. SNB_DISPLAY_DFT_SRWM,
  876. 2,
  877. SNB_FIFO_LINE_SIZE
  878. };
  879. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  880. SNB_CURSOR_SR_FIFO,
  881. SNB_CURSOR_MAX_SRWM,
  882. SNB_CURSOR_DFT_SRWM,
  883. 2,
  884. SNB_FIFO_LINE_SIZE
  885. };
  886. /**
  887. * intel_calculate_wm - calculate watermark level
  888. * @clock_in_khz: pixel clock
  889. * @wm: chip FIFO params
  890. * @pixel_size: display pixel size
  891. * @latency_ns: memory latency for the platform
  892. *
  893. * Calculate the watermark level (the level at which the display plane will
  894. * start fetching from memory again). Each chip has a different display
  895. * FIFO size and allocation, so the caller needs to figure that out and pass
  896. * in the correct intel_watermark_params structure.
  897. *
  898. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  899. * on the pixel size. When it reaches the watermark level, it'll start
  900. * fetching FIFO line sized based chunks from memory until the FIFO fills
  901. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  902. * will occur, and a display engine hang could result.
  903. */
  904. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  905. const struct intel_watermark_params *wm,
  906. int fifo_size,
  907. int pixel_size,
  908. unsigned long latency_ns)
  909. {
  910. long entries_required, wm_size;
  911. /*
  912. * Note: we need to make sure we don't overflow for various clock &
  913. * latency values.
  914. * clocks go from a few thousand to several hundred thousand.
  915. * latency is usually a few thousand
  916. */
  917. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  918. 1000;
  919. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  920. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  921. wm_size = fifo_size - (entries_required + wm->guard_size);
  922. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  923. /* Don't promote wm_size to unsigned... */
  924. if (wm_size > (long)wm->max_wm)
  925. wm_size = wm->max_wm;
  926. if (wm_size <= 0)
  927. wm_size = wm->default_wm;
  928. return wm_size;
  929. }
  930. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  931. {
  932. struct drm_crtc *crtc, *enabled = NULL;
  933. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  934. if (intel_crtc_active(crtc)) {
  935. if (enabled)
  936. return NULL;
  937. enabled = crtc;
  938. }
  939. }
  940. return enabled;
  941. }
  942. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  943. {
  944. struct drm_device *dev = unused_crtc->dev;
  945. struct drm_i915_private *dev_priv = dev->dev_private;
  946. struct drm_crtc *crtc;
  947. const struct cxsr_latency *latency;
  948. u32 reg;
  949. unsigned long wm;
  950. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  951. dev_priv->fsb_freq, dev_priv->mem_freq);
  952. if (!latency) {
  953. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  954. pineview_disable_cxsr(dev);
  955. return;
  956. }
  957. crtc = single_enabled_crtc(dev);
  958. if (crtc) {
  959. const struct drm_display_mode *adjusted_mode;
  960. int pixel_size = crtc->fb->bits_per_pixel / 8;
  961. int clock;
  962. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  963. clock = adjusted_mode->crtc_clock;
  964. /* Display SR */
  965. wm = intel_calculate_wm(clock, &pineview_display_wm,
  966. pineview_display_wm.fifo_size,
  967. pixel_size, latency->display_sr);
  968. reg = I915_READ(DSPFW1);
  969. reg &= ~DSPFW_SR_MASK;
  970. reg |= wm << DSPFW_SR_SHIFT;
  971. I915_WRITE(DSPFW1, reg);
  972. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  973. /* cursor SR */
  974. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  975. pineview_display_wm.fifo_size,
  976. pixel_size, latency->cursor_sr);
  977. reg = I915_READ(DSPFW3);
  978. reg &= ~DSPFW_CURSOR_SR_MASK;
  979. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  980. I915_WRITE(DSPFW3, reg);
  981. /* Display HPLL off SR */
  982. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  983. pineview_display_hplloff_wm.fifo_size,
  984. pixel_size, latency->display_hpll_disable);
  985. reg = I915_READ(DSPFW3);
  986. reg &= ~DSPFW_HPLL_SR_MASK;
  987. reg |= wm & DSPFW_HPLL_SR_MASK;
  988. I915_WRITE(DSPFW3, reg);
  989. /* cursor HPLL off SR */
  990. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  991. pineview_display_hplloff_wm.fifo_size,
  992. pixel_size, latency->cursor_hpll_disable);
  993. reg = I915_READ(DSPFW3);
  994. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  995. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  996. I915_WRITE(DSPFW3, reg);
  997. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  998. /* activate cxsr */
  999. I915_WRITE(DSPFW3,
  1000. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  1001. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  1002. } else {
  1003. pineview_disable_cxsr(dev);
  1004. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  1005. }
  1006. }
  1007. static bool g4x_compute_wm0(struct drm_device *dev,
  1008. int plane,
  1009. const struct intel_watermark_params *display,
  1010. int display_latency_ns,
  1011. const struct intel_watermark_params *cursor,
  1012. int cursor_latency_ns,
  1013. int *plane_wm,
  1014. int *cursor_wm)
  1015. {
  1016. struct drm_crtc *crtc;
  1017. const struct drm_display_mode *adjusted_mode;
  1018. int htotal, hdisplay, clock, pixel_size;
  1019. int line_time_us, line_count;
  1020. int entries, tlb_miss;
  1021. crtc = intel_get_crtc_for_plane(dev, plane);
  1022. if (!intel_crtc_active(crtc)) {
  1023. *cursor_wm = cursor->guard_size;
  1024. *plane_wm = display->guard_size;
  1025. return false;
  1026. }
  1027. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1028. clock = adjusted_mode->crtc_clock;
  1029. htotal = adjusted_mode->htotal;
  1030. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1031. pixel_size = crtc->fb->bits_per_pixel / 8;
  1032. /* Use the small buffer method to calculate plane watermark */
  1033. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1034. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  1035. if (tlb_miss > 0)
  1036. entries += tlb_miss;
  1037. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1038. *plane_wm = entries + display->guard_size;
  1039. if (*plane_wm > (int)display->max_wm)
  1040. *plane_wm = display->max_wm;
  1041. /* Use the large buffer method to calculate cursor watermark */
  1042. line_time_us = ((htotal * 1000) / clock);
  1043. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  1044. entries = line_count * 64 * pixel_size;
  1045. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  1046. if (tlb_miss > 0)
  1047. entries += tlb_miss;
  1048. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1049. *cursor_wm = entries + cursor->guard_size;
  1050. if (*cursor_wm > (int)cursor->max_wm)
  1051. *cursor_wm = (int)cursor->max_wm;
  1052. return true;
  1053. }
  1054. /*
  1055. * Check the wm result.
  1056. *
  1057. * If any calculated watermark values is larger than the maximum value that
  1058. * can be programmed into the associated watermark register, that watermark
  1059. * must be disabled.
  1060. */
  1061. static bool g4x_check_srwm(struct drm_device *dev,
  1062. int display_wm, int cursor_wm,
  1063. const struct intel_watermark_params *display,
  1064. const struct intel_watermark_params *cursor)
  1065. {
  1066. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  1067. display_wm, cursor_wm);
  1068. if (display_wm > display->max_wm) {
  1069. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1070. display_wm, display->max_wm);
  1071. return false;
  1072. }
  1073. if (cursor_wm > cursor->max_wm) {
  1074. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1075. cursor_wm, cursor->max_wm);
  1076. return false;
  1077. }
  1078. if (!(display_wm || cursor_wm)) {
  1079. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1080. return false;
  1081. }
  1082. return true;
  1083. }
  1084. static bool g4x_compute_srwm(struct drm_device *dev,
  1085. int plane,
  1086. int latency_ns,
  1087. const struct intel_watermark_params *display,
  1088. const struct intel_watermark_params *cursor,
  1089. int *display_wm, int *cursor_wm)
  1090. {
  1091. struct drm_crtc *crtc;
  1092. const struct drm_display_mode *adjusted_mode;
  1093. int hdisplay, htotal, pixel_size, clock;
  1094. unsigned long line_time_us;
  1095. int line_count, line_size;
  1096. int small, large;
  1097. int entries;
  1098. if (!latency_ns) {
  1099. *display_wm = *cursor_wm = 0;
  1100. return false;
  1101. }
  1102. crtc = intel_get_crtc_for_plane(dev, plane);
  1103. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1104. clock = adjusted_mode->crtc_clock;
  1105. htotal = adjusted_mode->htotal;
  1106. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1107. pixel_size = crtc->fb->bits_per_pixel / 8;
  1108. line_time_us = (htotal * 1000) / clock;
  1109. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1110. line_size = hdisplay * pixel_size;
  1111. /* Use the minimum of the small and large buffer method for primary */
  1112. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1113. large = line_count * line_size;
  1114. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1115. *display_wm = entries + display->guard_size;
  1116. /* calculate the self-refresh watermark for display cursor */
  1117. entries = line_count * pixel_size * 64;
  1118. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1119. *cursor_wm = entries + cursor->guard_size;
  1120. return g4x_check_srwm(dev,
  1121. *display_wm, *cursor_wm,
  1122. display, cursor);
  1123. }
  1124. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1125. int plane,
  1126. int *plane_prec_mult,
  1127. int *plane_dl,
  1128. int *cursor_prec_mult,
  1129. int *cursor_dl)
  1130. {
  1131. struct drm_crtc *crtc;
  1132. int clock, pixel_size;
  1133. int entries;
  1134. crtc = intel_get_crtc_for_plane(dev, plane);
  1135. if (!intel_crtc_active(crtc))
  1136. return false;
  1137. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  1138. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1139. entries = (clock / 1000) * pixel_size;
  1140. *plane_prec_mult = (entries > 256) ?
  1141. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1142. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1143. pixel_size);
  1144. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1145. *cursor_prec_mult = (entries > 256) ?
  1146. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1147. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1148. return true;
  1149. }
  1150. /*
  1151. * Update drain latency registers of memory arbiter
  1152. *
  1153. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1154. * to be programmed. Each plane has a drain latency multiplier and a drain
  1155. * latency value.
  1156. */
  1157. static void vlv_update_drain_latency(struct drm_device *dev)
  1158. {
  1159. struct drm_i915_private *dev_priv = dev->dev_private;
  1160. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1161. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1162. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1163. either 16 or 32 */
  1164. /* For plane A, Cursor A */
  1165. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1166. &cursor_prec_mult, &cursora_dl)) {
  1167. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1168. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1169. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1170. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1171. I915_WRITE(VLV_DDL1, cursora_prec |
  1172. (cursora_dl << DDL_CURSORA_SHIFT) |
  1173. planea_prec | planea_dl);
  1174. }
  1175. /* For plane B, Cursor B */
  1176. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1177. &cursor_prec_mult, &cursorb_dl)) {
  1178. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1179. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1180. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1181. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1182. I915_WRITE(VLV_DDL2, cursorb_prec |
  1183. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1184. planeb_prec | planeb_dl);
  1185. }
  1186. }
  1187. #define single_plane_enabled(mask) is_power_of_2(mask)
  1188. static void valleyview_update_wm(struct drm_crtc *crtc)
  1189. {
  1190. struct drm_device *dev = crtc->dev;
  1191. static const int sr_latency_ns = 12000;
  1192. struct drm_i915_private *dev_priv = dev->dev_private;
  1193. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1194. int plane_sr, cursor_sr;
  1195. int ignore_plane_sr, ignore_cursor_sr;
  1196. unsigned int enabled = 0;
  1197. vlv_update_drain_latency(dev);
  1198. if (g4x_compute_wm0(dev, PIPE_A,
  1199. &valleyview_wm_info, latency_ns,
  1200. &valleyview_cursor_wm_info, latency_ns,
  1201. &planea_wm, &cursora_wm))
  1202. enabled |= 1 << PIPE_A;
  1203. if (g4x_compute_wm0(dev, PIPE_B,
  1204. &valleyview_wm_info, latency_ns,
  1205. &valleyview_cursor_wm_info, latency_ns,
  1206. &planeb_wm, &cursorb_wm))
  1207. enabled |= 1 << PIPE_B;
  1208. if (single_plane_enabled(enabled) &&
  1209. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1210. sr_latency_ns,
  1211. &valleyview_wm_info,
  1212. &valleyview_cursor_wm_info,
  1213. &plane_sr, &ignore_cursor_sr) &&
  1214. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1215. 2*sr_latency_ns,
  1216. &valleyview_wm_info,
  1217. &valleyview_cursor_wm_info,
  1218. &ignore_plane_sr, &cursor_sr)) {
  1219. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1220. } else {
  1221. I915_WRITE(FW_BLC_SELF_VLV,
  1222. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1223. plane_sr = cursor_sr = 0;
  1224. }
  1225. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1226. planea_wm, cursora_wm,
  1227. planeb_wm, cursorb_wm,
  1228. plane_sr, cursor_sr);
  1229. I915_WRITE(DSPFW1,
  1230. (plane_sr << DSPFW_SR_SHIFT) |
  1231. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1232. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1233. planea_wm);
  1234. I915_WRITE(DSPFW2,
  1235. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1236. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1237. I915_WRITE(DSPFW3,
  1238. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1239. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1240. }
  1241. static void g4x_update_wm(struct drm_crtc *crtc)
  1242. {
  1243. struct drm_device *dev = crtc->dev;
  1244. static const int sr_latency_ns = 12000;
  1245. struct drm_i915_private *dev_priv = dev->dev_private;
  1246. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1247. int plane_sr, cursor_sr;
  1248. unsigned int enabled = 0;
  1249. if (g4x_compute_wm0(dev, PIPE_A,
  1250. &g4x_wm_info, latency_ns,
  1251. &g4x_cursor_wm_info, latency_ns,
  1252. &planea_wm, &cursora_wm))
  1253. enabled |= 1 << PIPE_A;
  1254. if (g4x_compute_wm0(dev, PIPE_B,
  1255. &g4x_wm_info, latency_ns,
  1256. &g4x_cursor_wm_info, latency_ns,
  1257. &planeb_wm, &cursorb_wm))
  1258. enabled |= 1 << PIPE_B;
  1259. if (single_plane_enabled(enabled) &&
  1260. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1261. sr_latency_ns,
  1262. &g4x_wm_info,
  1263. &g4x_cursor_wm_info,
  1264. &plane_sr, &cursor_sr)) {
  1265. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1266. } else {
  1267. I915_WRITE(FW_BLC_SELF,
  1268. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1269. plane_sr = cursor_sr = 0;
  1270. }
  1271. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1272. planea_wm, cursora_wm,
  1273. planeb_wm, cursorb_wm,
  1274. plane_sr, cursor_sr);
  1275. I915_WRITE(DSPFW1,
  1276. (plane_sr << DSPFW_SR_SHIFT) |
  1277. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1278. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1279. planea_wm);
  1280. I915_WRITE(DSPFW2,
  1281. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1282. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1283. /* HPLL off in SR has some issues on G4x... disable it */
  1284. I915_WRITE(DSPFW3,
  1285. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1286. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1287. }
  1288. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1289. {
  1290. struct drm_device *dev = unused_crtc->dev;
  1291. struct drm_i915_private *dev_priv = dev->dev_private;
  1292. struct drm_crtc *crtc;
  1293. int srwm = 1;
  1294. int cursor_sr = 16;
  1295. /* Calc sr entries for one plane configs */
  1296. crtc = single_enabled_crtc(dev);
  1297. if (crtc) {
  1298. /* self-refresh has much higher latency */
  1299. static const int sr_latency_ns = 12000;
  1300. const struct drm_display_mode *adjusted_mode =
  1301. &to_intel_crtc(crtc)->config.adjusted_mode;
  1302. int clock = adjusted_mode->crtc_clock;
  1303. int htotal = adjusted_mode->htotal;
  1304. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1305. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1306. unsigned long line_time_us;
  1307. int entries;
  1308. line_time_us = ((htotal * 1000) / clock);
  1309. /* Use ns/us then divide to preserve precision */
  1310. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1311. pixel_size * hdisplay;
  1312. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1313. srwm = I965_FIFO_SIZE - entries;
  1314. if (srwm < 0)
  1315. srwm = 1;
  1316. srwm &= 0x1ff;
  1317. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1318. entries, srwm);
  1319. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1320. pixel_size * 64;
  1321. entries = DIV_ROUND_UP(entries,
  1322. i965_cursor_wm_info.cacheline_size);
  1323. cursor_sr = i965_cursor_wm_info.fifo_size -
  1324. (entries + i965_cursor_wm_info.guard_size);
  1325. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1326. cursor_sr = i965_cursor_wm_info.max_wm;
  1327. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1328. "cursor %d\n", srwm, cursor_sr);
  1329. if (IS_CRESTLINE(dev))
  1330. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1331. } else {
  1332. /* Turn off self refresh if both pipes are enabled */
  1333. if (IS_CRESTLINE(dev))
  1334. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1335. & ~FW_BLC_SELF_EN);
  1336. }
  1337. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1338. srwm);
  1339. /* 965 has limitations... */
  1340. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1341. (8 << 16) | (8 << 8) | (8 << 0));
  1342. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1343. /* update cursor SR watermark */
  1344. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1345. }
  1346. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1347. {
  1348. struct drm_device *dev = unused_crtc->dev;
  1349. struct drm_i915_private *dev_priv = dev->dev_private;
  1350. const struct intel_watermark_params *wm_info;
  1351. uint32_t fwater_lo;
  1352. uint32_t fwater_hi;
  1353. int cwm, srwm = 1;
  1354. int fifo_size;
  1355. int planea_wm, planeb_wm;
  1356. struct drm_crtc *crtc, *enabled = NULL;
  1357. if (IS_I945GM(dev))
  1358. wm_info = &i945_wm_info;
  1359. else if (!IS_GEN2(dev))
  1360. wm_info = &i915_wm_info;
  1361. else
  1362. wm_info = &i855_wm_info;
  1363. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1364. crtc = intel_get_crtc_for_plane(dev, 0);
  1365. if (intel_crtc_active(crtc)) {
  1366. const struct drm_display_mode *adjusted_mode;
  1367. int cpp = crtc->fb->bits_per_pixel / 8;
  1368. if (IS_GEN2(dev))
  1369. cpp = 4;
  1370. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1371. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1372. wm_info, fifo_size, cpp,
  1373. latency_ns);
  1374. enabled = crtc;
  1375. } else
  1376. planea_wm = fifo_size - wm_info->guard_size;
  1377. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1378. crtc = intel_get_crtc_for_plane(dev, 1);
  1379. if (intel_crtc_active(crtc)) {
  1380. const struct drm_display_mode *adjusted_mode;
  1381. int cpp = crtc->fb->bits_per_pixel / 8;
  1382. if (IS_GEN2(dev))
  1383. cpp = 4;
  1384. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1385. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1386. wm_info, fifo_size, cpp,
  1387. latency_ns);
  1388. if (enabled == NULL)
  1389. enabled = crtc;
  1390. else
  1391. enabled = NULL;
  1392. } else
  1393. planeb_wm = fifo_size - wm_info->guard_size;
  1394. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1395. /*
  1396. * Overlay gets an aggressive default since video jitter is bad.
  1397. */
  1398. cwm = 2;
  1399. /* Play safe and disable self-refresh before adjusting watermarks. */
  1400. if (IS_I945G(dev) || IS_I945GM(dev))
  1401. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1402. else if (IS_I915GM(dev))
  1403. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1404. /* Calc sr entries for one plane configs */
  1405. if (HAS_FW_BLC(dev) && enabled) {
  1406. /* self-refresh has much higher latency */
  1407. static const int sr_latency_ns = 6000;
  1408. const struct drm_display_mode *adjusted_mode =
  1409. &to_intel_crtc(enabled)->config.adjusted_mode;
  1410. int clock = adjusted_mode->crtc_clock;
  1411. int htotal = adjusted_mode->htotal;
  1412. int hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1413. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1414. unsigned long line_time_us;
  1415. int entries;
  1416. line_time_us = (htotal * 1000) / clock;
  1417. /* Use ns/us then divide to preserve precision */
  1418. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1419. pixel_size * hdisplay;
  1420. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1421. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1422. srwm = wm_info->fifo_size - entries;
  1423. if (srwm < 0)
  1424. srwm = 1;
  1425. if (IS_I945G(dev) || IS_I945GM(dev))
  1426. I915_WRITE(FW_BLC_SELF,
  1427. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1428. else if (IS_I915GM(dev))
  1429. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1430. }
  1431. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1432. planea_wm, planeb_wm, cwm, srwm);
  1433. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1434. fwater_hi = (cwm & 0x1f);
  1435. /* Set request length to 8 cachelines per fetch */
  1436. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1437. fwater_hi = fwater_hi | (1 << 8);
  1438. I915_WRITE(FW_BLC, fwater_lo);
  1439. I915_WRITE(FW_BLC2, fwater_hi);
  1440. if (HAS_FW_BLC(dev)) {
  1441. if (enabled) {
  1442. if (IS_I945G(dev) || IS_I945GM(dev))
  1443. I915_WRITE(FW_BLC_SELF,
  1444. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1445. else if (IS_I915GM(dev))
  1446. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1447. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1448. } else
  1449. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1450. }
  1451. }
  1452. static void i830_update_wm(struct drm_crtc *unused_crtc)
  1453. {
  1454. struct drm_device *dev = unused_crtc->dev;
  1455. struct drm_i915_private *dev_priv = dev->dev_private;
  1456. struct drm_crtc *crtc;
  1457. const struct drm_display_mode *adjusted_mode;
  1458. uint32_t fwater_lo;
  1459. int planea_wm;
  1460. crtc = single_enabled_crtc(dev);
  1461. if (crtc == NULL)
  1462. return;
  1463. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1464. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1465. &i830_wm_info,
  1466. dev_priv->display.get_fifo_size(dev, 0),
  1467. 4, latency_ns);
  1468. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1469. fwater_lo |= (3<<8) | planea_wm;
  1470. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1471. I915_WRITE(FW_BLC, fwater_lo);
  1472. }
  1473. /*
  1474. * Check the wm result.
  1475. *
  1476. * If any calculated watermark values is larger than the maximum value that
  1477. * can be programmed into the associated watermark register, that watermark
  1478. * must be disabled.
  1479. */
  1480. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1481. int fbc_wm, int display_wm, int cursor_wm,
  1482. const struct intel_watermark_params *display,
  1483. const struct intel_watermark_params *cursor)
  1484. {
  1485. struct drm_i915_private *dev_priv = dev->dev_private;
  1486. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1487. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1488. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1489. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1490. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1491. /* fbc has it's own way to disable FBC WM */
  1492. I915_WRITE(DISP_ARB_CTL,
  1493. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1494. return false;
  1495. } else if (INTEL_INFO(dev)->gen >= 6) {
  1496. /* enable FBC WM (except on ILK, where it must remain off) */
  1497. I915_WRITE(DISP_ARB_CTL,
  1498. I915_READ(DISP_ARB_CTL) & ~DISP_FBC_WM_DIS);
  1499. }
  1500. if (display_wm > display->max_wm) {
  1501. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1502. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1503. return false;
  1504. }
  1505. if (cursor_wm > cursor->max_wm) {
  1506. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1507. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1508. return false;
  1509. }
  1510. if (!(fbc_wm || display_wm || cursor_wm)) {
  1511. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1512. return false;
  1513. }
  1514. return true;
  1515. }
  1516. /*
  1517. * Compute watermark values of WM[1-3],
  1518. */
  1519. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1520. int latency_ns,
  1521. const struct intel_watermark_params *display,
  1522. const struct intel_watermark_params *cursor,
  1523. int *fbc_wm, int *display_wm, int *cursor_wm)
  1524. {
  1525. struct drm_crtc *crtc;
  1526. const struct drm_display_mode *adjusted_mode;
  1527. unsigned long line_time_us;
  1528. int hdisplay, htotal, pixel_size, clock;
  1529. int line_count, line_size;
  1530. int small, large;
  1531. int entries;
  1532. if (!latency_ns) {
  1533. *fbc_wm = *display_wm = *cursor_wm = 0;
  1534. return false;
  1535. }
  1536. crtc = intel_get_crtc_for_plane(dev, plane);
  1537. adjusted_mode = &to_intel_crtc(crtc)->config.adjusted_mode;
  1538. clock = adjusted_mode->crtc_clock;
  1539. htotal = adjusted_mode->htotal;
  1540. hdisplay = to_intel_crtc(crtc)->config.pipe_src_w;
  1541. pixel_size = crtc->fb->bits_per_pixel / 8;
  1542. line_time_us = (htotal * 1000) / clock;
  1543. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1544. line_size = hdisplay * pixel_size;
  1545. /* Use the minimum of the small and large buffer method for primary */
  1546. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1547. large = line_count * line_size;
  1548. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1549. *display_wm = entries + display->guard_size;
  1550. /*
  1551. * Spec says:
  1552. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1553. */
  1554. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1555. /* calculate the self-refresh watermark for display cursor */
  1556. entries = line_count * pixel_size * 64;
  1557. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1558. *cursor_wm = entries + cursor->guard_size;
  1559. return ironlake_check_srwm(dev, level,
  1560. *fbc_wm, *display_wm, *cursor_wm,
  1561. display, cursor);
  1562. }
  1563. static void ironlake_update_wm(struct drm_crtc *crtc)
  1564. {
  1565. struct drm_device *dev = crtc->dev;
  1566. struct drm_i915_private *dev_priv = dev->dev_private;
  1567. int fbc_wm, plane_wm, cursor_wm;
  1568. unsigned int enabled;
  1569. enabled = 0;
  1570. if (g4x_compute_wm0(dev, PIPE_A,
  1571. &ironlake_display_wm_info,
  1572. dev_priv->wm.pri_latency[0] * 100,
  1573. &ironlake_cursor_wm_info,
  1574. dev_priv->wm.cur_latency[0] * 100,
  1575. &plane_wm, &cursor_wm)) {
  1576. I915_WRITE(WM0_PIPEA_ILK,
  1577. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1578. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1579. " plane %d, " "cursor: %d\n",
  1580. plane_wm, cursor_wm);
  1581. enabled |= 1 << PIPE_A;
  1582. }
  1583. if (g4x_compute_wm0(dev, PIPE_B,
  1584. &ironlake_display_wm_info,
  1585. dev_priv->wm.pri_latency[0] * 100,
  1586. &ironlake_cursor_wm_info,
  1587. dev_priv->wm.cur_latency[0] * 100,
  1588. &plane_wm, &cursor_wm)) {
  1589. I915_WRITE(WM0_PIPEB_ILK,
  1590. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1591. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1592. " plane %d, cursor: %d\n",
  1593. plane_wm, cursor_wm);
  1594. enabled |= 1 << PIPE_B;
  1595. }
  1596. /*
  1597. * Calculate and update the self-refresh watermark only when one
  1598. * display plane is used.
  1599. */
  1600. I915_WRITE(WM3_LP_ILK, 0);
  1601. I915_WRITE(WM2_LP_ILK, 0);
  1602. I915_WRITE(WM1_LP_ILK, 0);
  1603. if (!single_plane_enabled(enabled))
  1604. return;
  1605. enabled = ffs(enabled) - 1;
  1606. /* WM1 */
  1607. if (!ironlake_compute_srwm(dev, 1, enabled,
  1608. dev_priv->wm.pri_latency[1] * 500,
  1609. &ironlake_display_srwm_info,
  1610. &ironlake_cursor_srwm_info,
  1611. &fbc_wm, &plane_wm, &cursor_wm))
  1612. return;
  1613. I915_WRITE(WM1_LP_ILK,
  1614. WM1_LP_SR_EN |
  1615. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1616. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1617. (plane_wm << WM1_LP_SR_SHIFT) |
  1618. cursor_wm);
  1619. /* WM2 */
  1620. if (!ironlake_compute_srwm(dev, 2, enabled,
  1621. dev_priv->wm.pri_latency[2] * 500,
  1622. &ironlake_display_srwm_info,
  1623. &ironlake_cursor_srwm_info,
  1624. &fbc_wm, &plane_wm, &cursor_wm))
  1625. return;
  1626. I915_WRITE(WM2_LP_ILK,
  1627. WM2_LP_EN |
  1628. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1629. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1630. (plane_wm << WM1_LP_SR_SHIFT) |
  1631. cursor_wm);
  1632. /*
  1633. * WM3 is unsupported on ILK, probably because we don't have latency
  1634. * data for that power state
  1635. */
  1636. }
  1637. static void sandybridge_update_wm(struct drm_crtc *crtc)
  1638. {
  1639. struct drm_device *dev = crtc->dev;
  1640. struct drm_i915_private *dev_priv = dev->dev_private;
  1641. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1642. u32 val;
  1643. int fbc_wm, plane_wm, cursor_wm;
  1644. unsigned int enabled;
  1645. enabled = 0;
  1646. if (g4x_compute_wm0(dev, PIPE_A,
  1647. &sandybridge_display_wm_info, latency,
  1648. &sandybridge_cursor_wm_info, latency,
  1649. &plane_wm, &cursor_wm)) {
  1650. val = I915_READ(WM0_PIPEA_ILK);
  1651. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1652. I915_WRITE(WM0_PIPEA_ILK, val |
  1653. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1654. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1655. " plane %d, " "cursor: %d\n",
  1656. plane_wm, cursor_wm);
  1657. enabled |= 1 << PIPE_A;
  1658. }
  1659. if (g4x_compute_wm0(dev, PIPE_B,
  1660. &sandybridge_display_wm_info, latency,
  1661. &sandybridge_cursor_wm_info, latency,
  1662. &plane_wm, &cursor_wm)) {
  1663. val = I915_READ(WM0_PIPEB_ILK);
  1664. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1665. I915_WRITE(WM0_PIPEB_ILK, val |
  1666. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1667. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1668. " plane %d, cursor: %d\n",
  1669. plane_wm, cursor_wm);
  1670. enabled |= 1 << PIPE_B;
  1671. }
  1672. /*
  1673. * Calculate and update the self-refresh watermark only when one
  1674. * display plane is used.
  1675. *
  1676. * SNB support 3 levels of watermark.
  1677. *
  1678. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1679. * and disabled in the descending order
  1680. *
  1681. */
  1682. I915_WRITE(WM3_LP_ILK, 0);
  1683. I915_WRITE(WM2_LP_ILK, 0);
  1684. I915_WRITE(WM1_LP_ILK, 0);
  1685. if (!single_plane_enabled(enabled) ||
  1686. dev_priv->sprite_scaling_enabled)
  1687. return;
  1688. enabled = ffs(enabled) - 1;
  1689. /* WM1 */
  1690. if (!ironlake_compute_srwm(dev, 1, enabled,
  1691. dev_priv->wm.pri_latency[1] * 500,
  1692. &sandybridge_display_srwm_info,
  1693. &sandybridge_cursor_srwm_info,
  1694. &fbc_wm, &plane_wm, &cursor_wm))
  1695. return;
  1696. I915_WRITE(WM1_LP_ILK,
  1697. WM1_LP_SR_EN |
  1698. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1699. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1700. (plane_wm << WM1_LP_SR_SHIFT) |
  1701. cursor_wm);
  1702. /* WM2 */
  1703. if (!ironlake_compute_srwm(dev, 2, enabled,
  1704. dev_priv->wm.pri_latency[2] * 500,
  1705. &sandybridge_display_srwm_info,
  1706. &sandybridge_cursor_srwm_info,
  1707. &fbc_wm, &plane_wm, &cursor_wm))
  1708. return;
  1709. I915_WRITE(WM2_LP_ILK,
  1710. WM2_LP_EN |
  1711. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1712. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1713. (plane_wm << WM1_LP_SR_SHIFT) |
  1714. cursor_wm);
  1715. /* WM3 */
  1716. if (!ironlake_compute_srwm(dev, 3, enabled,
  1717. dev_priv->wm.pri_latency[3] * 500,
  1718. &sandybridge_display_srwm_info,
  1719. &sandybridge_cursor_srwm_info,
  1720. &fbc_wm, &plane_wm, &cursor_wm))
  1721. return;
  1722. I915_WRITE(WM3_LP_ILK,
  1723. WM3_LP_EN |
  1724. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1725. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1726. (plane_wm << WM1_LP_SR_SHIFT) |
  1727. cursor_wm);
  1728. }
  1729. static void ivybridge_update_wm(struct drm_crtc *crtc)
  1730. {
  1731. struct drm_device *dev = crtc->dev;
  1732. struct drm_i915_private *dev_priv = dev->dev_private;
  1733. int latency = dev_priv->wm.pri_latency[0] * 100; /* In unit 0.1us */
  1734. u32 val;
  1735. int fbc_wm, plane_wm, cursor_wm;
  1736. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1737. unsigned int enabled;
  1738. enabled = 0;
  1739. if (g4x_compute_wm0(dev, PIPE_A,
  1740. &sandybridge_display_wm_info, latency,
  1741. &sandybridge_cursor_wm_info, latency,
  1742. &plane_wm, &cursor_wm)) {
  1743. val = I915_READ(WM0_PIPEA_ILK);
  1744. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1745. I915_WRITE(WM0_PIPEA_ILK, val |
  1746. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1747. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1748. " plane %d, " "cursor: %d\n",
  1749. plane_wm, cursor_wm);
  1750. enabled |= 1 << PIPE_A;
  1751. }
  1752. if (g4x_compute_wm0(dev, PIPE_B,
  1753. &sandybridge_display_wm_info, latency,
  1754. &sandybridge_cursor_wm_info, latency,
  1755. &plane_wm, &cursor_wm)) {
  1756. val = I915_READ(WM0_PIPEB_ILK);
  1757. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1758. I915_WRITE(WM0_PIPEB_ILK, val |
  1759. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1760. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1761. " plane %d, cursor: %d\n",
  1762. plane_wm, cursor_wm);
  1763. enabled |= 1 << PIPE_B;
  1764. }
  1765. if (g4x_compute_wm0(dev, PIPE_C,
  1766. &sandybridge_display_wm_info, latency,
  1767. &sandybridge_cursor_wm_info, latency,
  1768. &plane_wm, &cursor_wm)) {
  1769. val = I915_READ(WM0_PIPEC_IVB);
  1770. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1771. I915_WRITE(WM0_PIPEC_IVB, val |
  1772. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1773. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1774. " plane %d, cursor: %d\n",
  1775. plane_wm, cursor_wm);
  1776. enabled |= 1 << PIPE_C;
  1777. }
  1778. /*
  1779. * Calculate and update the self-refresh watermark only when one
  1780. * display plane is used.
  1781. *
  1782. * SNB support 3 levels of watermark.
  1783. *
  1784. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1785. * and disabled in the descending order
  1786. *
  1787. */
  1788. I915_WRITE(WM3_LP_ILK, 0);
  1789. I915_WRITE(WM2_LP_ILK, 0);
  1790. I915_WRITE(WM1_LP_ILK, 0);
  1791. if (!single_plane_enabled(enabled) ||
  1792. dev_priv->sprite_scaling_enabled)
  1793. return;
  1794. enabled = ffs(enabled) - 1;
  1795. /* WM1 */
  1796. if (!ironlake_compute_srwm(dev, 1, enabled,
  1797. dev_priv->wm.pri_latency[1] * 500,
  1798. &sandybridge_display_srwm_info,
  1799. &sandybridge_cursor_srwm_info,
  1800. &fbc_wm, &plane_wm, &cursor_wm))
  1801. return;
  1802. I915_WRITE(WM1_LP_ILK,
  1803. WM1_LP_SR_EN |
  1804. (dev_priv->wm.pri_latency[1] << WM1_LP_LATENCY_SHIFT) |
  1805. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1806. (plane_wm << WM1_LP_SR_SHIFT) |
  1807. cursor_wm);
  1808. /* WM2 */
  1809. if (!ironlake_compute_srwm(dev, 2, enabled,
  1810. dev_priv->wm.pri_latency[2] * 500,
  1811. &sandybridge_display_srwm_info,
  1812. &sandybridge_cursor_srwm_info,
  1813. &fbc_wm, &plane_wm, &cursor_wm))
  1814. return;
  1815. I915_WRITE(WM2_LP_ILK,
  1816. WM2_LP_EN |
  1817. (dev_priv->wm.pri_latency[2] << WM1_LP_LATENCY_SHIFT) |
  1818. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1819. (plane_wm << WM1_LP_SR_SHIFT) |
  1820. cursor_wm);
  1821. /* WM3, note we have to correct the cursor latency */
  1822. if (!ironlake_compute_srwm(dev, 3, enabled,
  1823. dev_priv->wm.pri_latency[3] * 500,
  1824. &sandybridge_display_srwm_info,
  1825. &sandybridge_cursor_srwm_info,
  1826. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1827. !ironlake_compute_srwm(dev, 3, enabled,
  1828. dev_priv->wm.cur_latency[3] * 500,
  1829. &sandybridge_display_srwm_info,
  1830. &sandybridge_cursor_srwm_info,
  1831. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1832. return;
  1833. I915_WRITE(WM3_LP_ILK,
  1834. WM3_LP_EN |
  1835. (dev_priv->wm.pri_latency[3] << WM1_LP_LATENCY_SHIFT) |
  1836. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1837. (plane_wm << WM1_LP_SR_SHIFT) |
  1838. cursor_wm);
  1839. }
  1840. static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
  1841. struct drm_crtc *crtc)
  1842. {
  1843. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1844. uint32_t pixel_rate;
  1845. pixel_rate = intel_crtc->config.adjusted_mode.crtc_clock;
  1846. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1847. * adjust the pixel_rate here. */
  1848. if (intel_crtc->config.pch_pfit.enabled) {
  1849. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1850. uint32_t pfit_size = intel_crtc->config.pch_pfit.size;
  1851. pipe_w = intel_crtc->config.pipe_src_w;
  1852. pipe_h = intel_crtc->config.pipe_src_h;
  1853. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1854. pfit_h = pfit_size & 0xFFFF;
  1855. if (pipe_w < pfit_w)
  1856. pipe_w = pfit_w;
  1857. if (pipe_h < pfit_h)
  1858. pipe_h = pfit_h;
  1859. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1860. pfit_w * pfit_h);
  1861. }
  1862. return pixel_rate;
  1863. }
  1864. /* latency must be in 0.1us units. */
  1865. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1866. uint32_t latency)
  1867. {
  1868. uint64_t ret;
  1869. if (WARN(latency == 0, "Latency value missing\n"))
  1870. return UINT_MAX;
  1871. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1872. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1873. return ret;
  1874. }
  1875. /* latency must be in 0.1us units. */
  1876. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1877. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1878. uint32_t latency)
  1879. {
  1880. uint32_t ret;
  1881. if (WARN(latency == 0, "Latency value missing\n"))
  1882. return UINT_MAX;
  1883. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1884. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1885. ret = DIV_ROUND_UP(ret, 64) + 2;
  1886. return ret;
  1887. }
  1888. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1889. uint8_t bytes_per_pixel)
  1890. {
  1891. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1892. }
  1893. struct hsw_pipe_wm_parameters {
  1894. bool active;
  1895. uint32_t pipe_htotal;
  1896. uint32_t pixel_rate;
  1897. struct intel_plane_wm_parameters pri;
  1898. struct intel_plane_wm_parameters spr;
  1899. struct intel_plane_wm_parameters cur;
  1900. };
  1901. struct hsw_wm_maximums {
  1902. uint16_t pri;
  1903. uint16_t spr;
  1904. uint16_t cur;
  1905. uint16_t fbc;
  1906. };
  1907. struct hsw_wm_values {
  1908. uint32_t wm_pipe[3];
  1909. uint32_t wm_lp[3];
  1910. uint32_t wm_lp_spr[3];
  1911. uint32_t wm_linetime[3];
  1912. bool enable_fbc_wm;
  1913. };
  1914. /* used in computing the new watermarks state */
  1915. struct intel_wm_config {
  1916. unsigned int num_pipes_active;
  1917. bool sprites_enabled;
  1918. bool sprites_scaled;
  1919. bool fbc_wm_enabled;
  1920. };
  1921. /*
  1922. * For both WM_PIPE and WM_LP.
  1923. * mem_value must be in 0.1us units.
  1924. */
  1925. static uint32_t ilk_compute_pri_wm(const struct hsw_pipe_wm_parameters *params,
  1926. uint32_t mem_value,
  1927. bool is_lp)
  1928. {
  1929. uint32_t method1, method2;
  1930. if (!params->active || !params->pri.enabled)
  1931. return 0;
  1932. method1 = ilk_wm_method1(params->pixel_rate,
  1933. params->pri.bytes_per_pixel,
  1934. mem_value);
  1935. if (!is_lp)
  1936. return method1;
  1937. method2 = ilk_wm_method2(params->pixel_rate,
  1938. params->pipe_htotal,
  1939. params->pri.horiz_pixels,
  1940. params->pri.bytes_per_pixel,
  1941. mem_value);
  1942. return min(method1, method2);
  1943. }
  1944. /*
  1945. * For both WM_PIPE and WM_LP.
  1946. * mem_value must be in 0.1us units.
  1947. */
  1948. static uint32_t ilk_compute_spr_wm(const struct hsw_pipe_wm_parameters *params,
  1949. uint32_t mem_value)
  1950. {
  1951. uint32_t method1, method2;
  1952. if (!params->active || !params->spr.enabled)
  1953. return 0;
  1954. method1 = ilk_wm_method1(params->pixel_rate,
  1955. params->spr.bytes_per_pixel,
  1956. mem_value);
  1957. method2 = ilk_wm_method2(params->pixel_rate,
  1958. params->pipe_htotal,
  1959. params->spr.horiz_pixels,
  1960. params->spr.bytes_per_pixel,
  1961. mem_value);
  1962. return min(method1, method2);
  1963. }
  1964. /*
  1965. * For both WM_PIPE and WM_LP.
  1966. * mem_value must be in 0.1us units.
  1967. */
  1968. static uint32_t ilk_compute_cur_wm(const struct hsw_pipe_wm_parameters *params,
  1969. uint32_t mem_value)
  1970. {
  1971. if (!params->active || !params->cur.enabled)
  1972. return 0;
  1973. return ilk_wm_method2(params->pixel_rate,
  1974. params->pipe_htotal,
  1975. params->cur.horiz_pixels,
  1976. params->cur.bytes_per_pixel,
  1977. mem_value);
  1978. }
  1979. /* Only for WM_LP. */
  1980. static uint32_t ilk_compute_fbc_wm(const struct hsw_pipe_wm_parameters *params,
  1981. uint32_t pri_val)
  1982. {
  1983. if (!params->active || !params->pri.enabled)
  1984. return 0;
  1985. return ilk_wm_fbc(pri_val,
  1986. params->pri.horiz_pixels,
  1987. params->pri.bytes_per_pixel);
  1988. }
  1989. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1990. {
  1991. if (INTEL_INFO(dev)->gen >= 7)
  1992. return 768;
  1993. else
  1994. return 512;
  1995. }
  1996. /* Calculate the maximum primary/sprite plane watermark */
  1997. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1998. int level,
  1999. const struct intel_wm_config *config,
  2000. enum intel_ddb_partitioning ddb_partitioning,
  2001. bool is_sprite)
  2002. {
  2003. unsigned int fifo_size = ilk_display_fifo_size(dev);
  2004. unsigned int max;
  2005. /* if sprites aren't enabled, sprites get nothing */
  2006. if (is_sprite && !config->sprites_enabled)
  2007. return 0;
  2008. /* HSW allows LP1+ watermarks even with multiple pipes */
  2009. if (level == 0 || config->num_pipes_active > 1) {
  2010. fifo_size /= INTEL_INFO(dev)->num_pipes;
  2011. /*
  2012. * For some reason the non self refresh
  2013. * FIFO size is only half of the self
  2014. * refresh FIFO size on ILK/SNB.
  2015. */
  2016. if (INTEL_INFO(dev)->gen <= 6)
  2017. fifo_size /= 2;
  2018. }
  2019. if (config->sprites_enabled) {
  2020. /* level 0 is always calculated with 1:1 split */
  2021. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  2022. if (is_sprite)
  2023. fifo_size *= 5;
  2024. fifo_size /= 6;
  2025. } else {
  2026. fifo_size /= 2;
  2027. }
  2028. }
  2029. /* clamp to max that the registers can hold */
  2030. if (INTEL_INFO(dev)->gen >= 7)
  2031. /* IVB/HSW primary/sprite plane watermarks */
  2032. max = level == 0 ? 127 : 1023;
  2033. else if (!is_sprite)
  2034. /* ILK/SNB primary plane watermarks */
  2035. max = level == 0 ? 127 : 511;
  2036. else
  2037. /* ILK/SNB sprite plane watermarks */
  2038. max = level == 0 ? 63 : 255;
  2039. return min(fifo_size, max);
  2040. }
  2041. /* Calculate the maximum cursor plane watermark */
  2042. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  2043. int level,
  2044. const struct intel_wm_config *config)
  2045. {
  2046. /* HSW LP1+ watermarks w/ multiple pipes */
  2047. if (level > 0 && config->num_pipes_active > 1)
  2048. return 64;
  2049. /* otherwise just report max that registers can hold */
  2050. if (INTEL_INFO(dev)->gen >= 7)
  2051. return level == 0 ? 63 : 255;
  2052. else
  2053. return level == 0 ? 31 : 63;
  2054. }
  2055. /* Calculate the maximum FBC watermark */
  2056. static unsigned int ilk_fbc_wm_max(void)
  2057. {
  2058. /* max that registers can hold */
  2059. return 15;
  2060. }
  2061. static void ilk_wm_max(struct drm_device *dev,
  2062. int level,
  2063. const struct intel_wm_config *config,
  2064. enum intel_ddb_partitioning ddb_partitioning,
  2065. struct hsw_wm_maximums *max)
  2066. {
  2067. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  2068. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  2069. max->cur = ilk_cursor_wm_max(dev, level, config);
  2070. max->fbc = ilk_fbc_wm_max();
  2071. }
  2072. static bool ilk_check_wm(int level,
  2073. const struct hsw_wm_maximums *max,
  2074. struct intel_wm_level *result)
  2075. {
  2076. bool ret;
  2077. /* already determined to be invalid? */
  2078. if (!result->enable)
  2079. return false;
  2080. result->enable = result->pri_val <= max->pri &&
  2081. result->spr_val <= max->spr &&
  2082. result->cur_val <= max->cur;
  2083. ret = result->enable;
  2084. /*
  2085. * HACK until we can pre-compute everything,
  2086. * and thus fail gracefully if LP0 watermarks
  2087. * are exceeded...
  2088. */
  2089. if (level == 0 && !result->enable) {
  2090. if (result->pri_val > max->pri)
  2091. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  2092. level, result->pri_val, max->pri);
  2093. if (result->spr_val > max->spr)
  2094. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  2095. level, result->spr_val, max->spr);
  2096. if (result->cur_val > max->cur)
  2097. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  2098. level, result->cur_val, max->cur);
  2099. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  2100. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  2101. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  2102. result->enable = true;
  2103. }
  2104. DRM_DEBUG_KMS("WM%d: %sabled\n", level, result->enable ? "en" : "dis");
  2105. return ret;
  2106. }
  2107. static void ilk_compute_wm_level(struct drm_i915_private *dev_priv,
  2108. int level,
  2109. const struct hsw_pipe_wm_parameters *p,
  2110. struct intel_wm_level *result)
  2111. {
  2112. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  2113. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  2114. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  2115. /* WM1+ latency values stored in 0.5us units */
  2116. if (level > 0) {
  2117. pri_latency *= 5;
  2118. spr_latency *= 5;
  2119. cur_latency *= 5;
  2120. }
  2121. result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
  2122. result->spr_val = ilk_compute_spr_wm(p, spr_latency);
  2123. result->cur_val = ilk_compute_cur_wm(p, cur_latency);
  2124. result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
  2125. result->enable = true;
  2126. }
  2127. static uint32_t
  2128. hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
  2129. {
  2130. struct drm_i915_private *dev_priv = dev->dev_private;
  2131. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2132. struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
  2133. u32 linetime, ips_linetime;
  2134. if (!intel_crtc_active(crtc))
  2135. return 0;
  2136. /* The WM are computed with base on how long it takes to fill a single
  2137. * row at the given clock rate, multiplied by 8.
  2138. * */
  2139. linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8, mode->clock);
  2140. ips_linetime = DIV_ROUND_CLOSEST(mode->htotal * 1000 * 8,
  2141. intel_ddi_get_cdclk_freq(dev_priv));
  2142. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  2143. PIPE_WM_LINETIME_TIME(linetime);
  2144. }
  2145. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2146. {
  2147. struct drm_i915_private *dev_priv = dev->dev_private;
  2148. if (IS_HASWELL(dev)) {
  2149. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  2150. wm[0] = (sskpd >> 56) & 0xFF;
  2151. if (wm[0] == 0)
  2152. wm[0] = sskpd & 0xF;
  2153. wm[1] = (sskpd >> 4) & 0xFF;
  2154. wm[2] = (sskpd >> 12) & 0xFF;
  2155. wm[3] = (sskpd >> 20) & 0x1FF;
  2156. wm[4] = (sskpd >> 32) & 0x1FF;
  2157. } else if (INTEL_INFO(dev)->gen >= 6) {
  2158. uint32_t sskpd = I915_READ(MCH_SSKPD);
  2159. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  2160. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  2161. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  2162. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  2163. } else if (INTEL_INFO(dev)->gen >= 5) {
  2164. uint32_t mltr = I915_READ(MLTR_ILK);
  2165. /* ILK primary LP0 latency is 700 ns */
  2166. wm[0] = 7;
  2167. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  2168. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  2169. }
  2170. }
  2171. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2172. {
  2173. /* ILK sprite LP0 latency is 1300 ns */
  2174. if (INTEL_INFO(dev)->gen == 5)
  2175. wm[0] = 13;
  2176. }
  2177. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  2178. {
  2179. /* ILK cursor LP0 latency is 1300 ns */
  2180. if (INTEL_INFO(dev)->gen == 5)
  2181. wm[0] = 13;
  2182. /* WaDoubleCursorLP3Latency:ivb */
  2183. if (IS_IVYBRIDGE(dev))
  2184. wm[3] *= 2;
  2185. }
  2186. static int ilk_wm_max_level(const struct drm_device *dev)
  2187. {
  2188. /* how many WM levels are we expecting */
  2189. if (IS_HASWELL(dev))
  2190. return 4;
  2191. else if (INTEL_INFO(dev)->gen >= 6)
  2192. return 3;
  2193. else
  2194. return 2;
  2195. }
  2196. static void intel_print_wm_latency(struct drm_device *dev,
  2197. const char *name,
  2198. const uint16_t wm[5])
  2199. {
  2200. int level, max_level = ilk_wm_max_level(dev);
  2201. for (level = 0; level <= max_level; level++) {
  2202. unsigned int latency = wm[level];
  2203. if (latency == 0) {
  2204. DRM_ERROR("%s WM%d latency not provided\n",
  2205. name, level);
  2206. continue;
  2207. }
  2208. /* WM1+ latency values in 0.5us units */
  2209. if (level > 0)
  2210. latency *= 5;
  2211. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  2212. name, level, wm[level],
  2213. latency / 10, latency % 10);
  2214. }
  2215. }
  2216. static void intel_setup_wm_latency(struct drm_device *dev)
  2217. {
  2218. struct drm_i915_private *dev_priv = dev->dev_private;
  2219. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  2220. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  2221. sizeof(dev_priv->wm.pri_latency));
  2222. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  2223. sizeof(dev_priv->wm.pri_latency));
  2224. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  2225. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  2226. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  2227. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  2228. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  2229. }
  2230. static void hsw_compute_wm_parameters(struct drm_device *dev,
  2231. struct hsw_pipe_wm_parameters *params,
  2232. struct hsw_wm_maximums *lp_max_1_2,
  2233. struct hsw_wm_maximums *lp_max_5_6)
  2234. {
  2235. struct drm_crtc *crtc;
  2236. struct drm_plane *plane;
  2237. enum pipe pipe;
  2238. struct intel_wm_config config = {};
  2239. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2240. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2241. struct hsw_pipe_wm_parameters *p;
  2242. pipe = intel_crtc->pipe;
  2243. p = &params[pipe];
  2244. p->active = intel_crtc_active(crtc);
  2245. if (!p->active)
  2246. continue;
  2247. config.num_pipes_active++;
  2248. p->pipe_htotal = intel_crtc->config.adjusted_mode.htotal;
  2249. p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
  2250. p->pri.bytes_per_pixel = crtc->fb->bits_per_pixel / 8;
  2251. p->cur.bytes_per_pixel = 4;
  2252. p->pri.horiz_pixels = intel_crtc->config.pipe_src_w;
  2253. p->cur.horiz_pixels = 64;
  2254. /* TODO: for now, assume primary and cursor planes are always enabled. */
  2255. p->pri.enabled = true;
  2256. p->cur.enabled = true;
  2257. }
  2258. list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
  2259. struct intel_plane *intel_plane = to_intel_plane(plane);
  2260. struct hsw_pipe_wm_parameters *p;
  2261. pipe = intel_plane->pipe;
  2262. p = &params[pipe];
  2263. p->spr = intel_plane->wm;
  2264. config.sprites_enabled |= p->spr.enabled;
  2265. config.sprites_scaled |= p->spr.scaled;
  2266. }
  2267. ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_1_2, lp_max_1_2);
  2268. /* 5/6 split only in single pipe config on IVB+ */
  2269. if (INTEL_INFO(dev)->gen >= 7 && config.num_pipes_active <= 1)
  2270. ilk_wm_max(dev, 1, &config, INTEL_DDB_PART_5_6, lp_max_5_6);
  2271. else
  2272. *lp_max_5_6 = *lp_max_1_2;
  2273. }
  2274. /* Compute new watermarks for the pipe */
  2275. static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
  2276. const struct hsw_pipe_wm_parameters *params,
  2277. struct intel_pipe_wm *pipe_wm)
  2278. {
  2279. struct drm_device *dev = crtc->dev;
  2280. struct drm_i915_private *dev_priv = dev->dev_private;
  2281. int level, max_level = ilk_wm_max_level(dev);
  2282. /* LP0 watermark maximums depend on this pipe alone */
  2283. struct intel_wm_config config = {
  2284. .num_pipes_active = 1,
  2285. .sprites_enabled = params->spr.enabled,
  2286. .sprites_scaled = params->spr.scaled,
  2287. };
  2288. struct hsw_wm_maximums max;
  2289. memset(pipe_wm, 0, sizeof(*pipe_wm));
  2290. /* LP0 watermarks always use 1/2 DDB partitioning */
  2291. ilk_wm_max(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  2292. for (level = 0; level <= max_level; level++)
  2293. ilk_compute_wm_level(dev_priv, level, params,
  2294. &pipe_wm->wm[level]);
  2295. pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
  2296. /* At least LP0 must be valid */
  2297. return ilk_check_wm(0, &max, &pipe_wm->wm[0]);
  2298. }
  2299. /*
  2300. * Merge the watermarks from all active pipes for a specific level.
  2301. */
  2302. static void ilk_merge_wm_level(struct drm_device *dev,
  2303. int level,
  2304. struct intel_wm_level *ret_wm)
  2305. {
  2306. const struct intel_crtc *intel_crtc;
  2307. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2308. const struct intel_wm_level *wm =
  2309. &intel_crtc->wm.active.wm[level];
  2310. if (!wm->enable)
  2311. return;
  2312. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2313. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2314. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2315. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2316. }
  2317. ret_wm->enable = true;
  2318. }
  2319. /*
  2320. * Merge all low power watermarks for all active pipes.
  2321. */
  2322. static void ilk_wm_merge(struct drm_device *dev,
  2323. const struct hsw_wm_maximums *max,
  2324. struct intel_pipe_wm *merged)
  2325. {
  2326. int level, max_level = ilk_wm_max_level(dev);
  2327. merged->fbc_wm_enabled = true;
  2328. /* merge each WM1+ level */
  2329. for (level = 1; level <= max_level; level++) {
  2330. struct intel_wm_level *wm = &merged->wm[level];
  2331. ilk_merge_wm_level(dev, level, wm);
  2332. if (!ilk_check_wm(level, max, wm))
  2333. break;
  2334. /*
  2335. * The spec says it is preferred to disable
  2336. * FBC WMs instead of disabling a WM level.
  2337. */
  2338. if (wm->fbc_val > max->fbc) {
  2339. merged->fbc_wm_enabled = false;
  2340. wm->fbc_val = 0;
  2341. }
  2342. }
  2343. }
  2344. static void hsw_compute_wm_results(struct drm_device *dev,
  2345. const struct hsw_pipe_wm_parameters *params,
  2346. const struct hsw_wm_maximums *lp_maximums,
  2347. struct hsw_wm_values *results)
  2348. {
  2349. struct intel_crtc *intel_crtc;
  2350. int level, wm_lp;
  2351. struct intel_pipe_wm merged = {};
  2352. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head)
  2353. intel_compute_pipe_wm(&intel_crtc->base,
  2354. &params[intel_crtc->pipe],
  2355. &intel_crtc->wm.active);
  2356. ilk_wm_merge(dev, lp_maximums, &merged);
  2357. memset(results, 0, sizeof(*results));
  2358. results->enable_fbc_wm = merged.fbc_wm_enabled;
  2359. /* LP1+ register values */
  2360. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2361. const struct intel_wm_level *r;
  2362. level = wm_lp + (wm_lp >= 2 && merged.wm[4].enable);
  2363. r = &merged.wm[level];
  2364. if (!r->enable)
  2365. break;
  2366. results->wm_lp[wm_lp - 1] = HSW_WM_LP_VAL(level * 2,
  2367. r->fbc_val,
  2368. r->pri_val,
  2369. r->cur_val);
  2370. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2371. }
  2372. /* LP0 register values */
  2373. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list, base.head) {
  2374. enum pipe pipe = intel_crtc->pipe;
  2375. const struct intel_wm_level *r =
  2376. &intel_crtc->wm.active.wm[0];
  2377. if (WARN_ON(!r->enable))
  2378. continue;
  2379. results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
  2380. results->wm_pipe[pipe] =
  2381. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2382. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2383. r->cur_val;
  2384. }
  2385. }
  2386. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2387. * case both are at the same level. Prefer r1 in case they're the same. */
  2388. static struct hsw_wm_values *hsw_find_best_result(struct hsw_wm_values *r1,
  2389. struct hsw_wm_values *r2)
  2390. {
  2391. int i, val_r1 = 0, val_r2 = 0;
  2392. for (i = 0; i < 3; i++) {
  2393. if (r1->wm_lp[i] & WM3_LP_EN)
  2394. val_r1 = r1->wm_lp[i] & WM1_LP_LATENCY_MASK;
  2395. if (r2->wm_lp[i] & WM3_LP_EN)
  2396. val_r2 = r2->wm_lp[i] & WM1_LP_LATENCY_MASK;
  2397. }
  2398. if (val_r1 == val_r2) {
  2399. if (r2->enable_fbc_wm && !r1->enable_fbc_wm)
  2400. return r2;
  2401. else
  2402. return r1;
  2403. } else if (val_r1 > val_r2) {
  2404. return r1;
  2405. } else {
  2406. return r2;
  2407. }
  2408. }
  2409. /*
  2410. * The spec says we shouldn't write when we don't need, because every write
  2411. * causes WMs to be re-evaluated, expending some power.
  2412. */
  2413. static void hsw_write_wm_values(struct drm_i915_private *dev_priv,
  2414. struct hsw_wm_values *results,
  2415. enum intel_ddb_partitioning partitioning)
  2416. {
  2417. struct hsw_wm_values previous;
  2418. uint32_t val;
  2419. enum intel_ddb_partitioning prev_partitioning;
  2420. bool prev_enable_fbc_wm;
  2421. previous.wm_pipe[0] = I915_READ(WM0_PIPEA_ILK);
  2422. previous.wm_pipe[1] = I915_READ(WM0_PIPEB_ILK);
  2423. previous.wm_pipe[2] = I915_READ(WM0_PIPEC_IVB);
  2424. previous.wm_lp[0] = I915_READ(WM1_LP_ILK);
  2425. previous.wm_lp[1] = I915_READ(WM2_LP_ILK);
  2426. previous.wm_lp[2] = I915_READ(WM3_LP_ILK);
  2427. previous.wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  2428. previous.wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  2429. previous.wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  2430. previous.wm_linetime[0] = I915_READ(PIPE_WM_LINETIME(PIPE_A));
  2431. previous.wm_linetime[1] = I915_READ(PIPE_WM_LINETIME(PIPE_B));
  2432. previous.wm_linetime[2] = I915_READ(PIPE_WM_LINETIME(PIPE_C));
  2433. prev_partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  2434. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  2435. prev_enable_fbc_wm = !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  2436. if (memcmp(results->wm_pipe, previous.wm_pipe,
  2437. sizeof(results->wm_pipe)) == 0 &&
  2438. memcmp(results->wm_lp, previous.wm_lp,
  2439. sizeof(results->wm_lp)) == 0 &&
  2440. memcmp(results->wm_lp_spr, previous.wm_lp_spr,
  2441. sizeof(results->wm_lp_spr)) == 0 &&
  2442. memcmp(results->wm_linetime, previous.wm_linetime,
  2443. sizeof(results->wm_linetime)) == 0 &&
  2444. partitioning == prev_partitioning &&
  2445. results->enable_fbc_wm == prev_enable_fbc_wm)
  2446. return;
  2447. if (previous.wm_lp[2] != 0)
  2448. I915_WRITE(WM3_LP_ILK, 0);
  2449. if (previous.wm_lp[1] != 0)
  2450. I915_WRITE(WM2_LP_ILK, 0);
  2451. if (previous.wm_lp[0] != 0)
  2452. I915_WRITE(WM1_LP_ILK, 0);
  2453. if (previous.wm_pipe[0] != results->wm_pipe[0])
  2454. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2455. if (previous.wm_pipe[1] != results->wm_pipe[1])
  2456. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2457. if (previous.wm_pipe[2] != results->wm_pipe[2])
  2458. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2459. if (previous.wm_linetime[0] != results->wm_linetime[0])
  2460. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2461. if (previous.wm_linetime[1] != results->wm_linetime[1])
  2462. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2463. if (previous.wm_linetime[2] != results->wm_linetime[2])
  2464. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2465. if (prev_partitioning != partitioning) {
  2466. val = I915_READ(WM_MISC);
  2467. if (partitioning == INTEL_DDB_PART_1_2)
  2468. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2469. else
  2470. val |= WM_MISC_DATA_PARTITION_5_6;
  2471. I915_WRITE(WM_MISC, val);
  2472. }
  2473. if (prev_enable_fbc_wm != results->enable_fbc_wm) {
  2474. val = I915_READ(DISP_ARB_CTL);
  2475. if (results->enable_fbc_wm)
  2476. val &= ~DISP_FBC_WM_DIS;
  2477. else
  2478. val |= DISP_FBC_WM_DIS;
  2479. I915_WRITE(DISP_ARB_CTL, val);
  2480. }
  2481. if (previous.wm_lp_spr[0] != results->wm_lp_spr[0])
  2482. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2483. if (previous.wm_lp_spr[1] != results->wm_lp_spr[1])
  2484. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2485. if (previous.wm_lp_spr[2] != results->wm_lp_spr[2])
  2486. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2487. if (results->wm_lp[0] != 0)
  2488. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2489. if (results->wm_lp[1] != 0)
  2490. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2491. if (results->wm_lp[2] != 0)
  2492. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2493. }
  2494. static void haswell_update_wm(struct drm_crtc *crtc)
  2495. {
  2496. struct drm_device *dev = crtc->dev;
  2497. struct drm_i915_private *dev_priv = dev->dev_private;
  2498. struct hsw_wm_maximums lp_max_1_2, lp_max_5_6;
  2499. struct hsw_pipe_wm_parameters params[3];
  2500. struct hsw_wm_values results_1_2, results_5_6, *best_results;
  2501. enum intel_ddb_partitioning partitioning;
  2502. hsw_compute_wm_parameters(dev, params, &lp_max_1_2, &lp_max_5_6);
  2503. hsw_compute_wm_results(dev, params,
  2504. &lp_max_1_2, &results_1_2);
  2505. if (lp_max_1_2.pri != lp_max_5_6.pri) {
  2506. hsw_compute_wm_results(dev, params,
  2507. &lp_max_5_6, &results_5_6);
  2508. best_results = hsw_find_best_result(&results_1_2, &results_5_6);
  2509. } else {
  2510. best_results = &results_1_2;
  2511. }
  2512. partitioning = (best_results == &results_1_2) ?
  2513. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  2514. hsw_write_wm_values(dev_priv, best_results, partitioning);
  2515. }
  2516. static void haswell_update_sprite_wm(struct drm_plane *plane,
  2517. struct drm_crtc *crtc,
  2518. uint32_t sprite_width, int pixel_size,
  2519. bool enabled, bool scaled)
  2520. {
  2521. struct intel_plane *intel_plane = to_intel_plane(plane);
  2522. intel_plane->wm.enabled = enabled;
  2523. intel_plane->wm.scaled = scaled;
  2524. intel_plane->wm.horiz_pixels = sprite_width;
  2525. intel_plane->wm.bytes_per_pixel = pixel_size;
  2526. haswell_update_wm(crtc);
  2527. }
  2528. static bool
  2529. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  2530. uint32_t sprite_width, int pixel_size,
  2531. const struct intel_watermark_params *display,
  2532. int display_latency_ns, int *sprite_wm)
  2533. {
  2534. struct drm_crtc *crtc;
  2535. int clock;
  2536. int entries, tlb_miss;
  2537. crtc = intel_get_crtc_for_plane(dev, plane);
  2538. if (!intel_crtc_active(crtc)) {
  2539. *sprite_wm = display->guard_size;
  2540. return false;
  2541. }
  2542. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2543. /* Use the small buffer method to calculate the sprite watermark */
  2544. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  2545. tlb_miss = display->fifo_size*display->cacheline_size -
  2546. sprite_width * 8;
  2547. if (tlb_miss > 0)
  2548. entries += tlb_miss;
  2549. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  2550. *sprite_wm = entries + display->guard_size;
  2551. if (*sprite_wm > (int)display->max_wm)
  2552. *sprite_wm = display->max_wm;
  2553. return true;
  2554. }
  2555. static bool
  2556. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  2557. uint32_t sprite_width, int pixel_size,
  2558. const struct intel_watermark_params *display,
  2559. int latency_ns, int *sprite_wm)
  2560. {
  2561. struct drm_crtc *crtc;
  2562. unsigned long line_time_us;
  2563. int clock;
  2564. int line_count, line_size;
  2565. int small, large;
  2566. int entries;
  2567. if (!latency_ns) {
  2568. *sprite_wm = 0;
  2569. return false;
  2570. }
  2571. crtc = intel_get_crtc_for_plane(dev, plane);
  2572. clock = to_intel_crtc(crtc)->config.adjusted_mode.crtc_clock;
  2573. if (!clock) {
  2574. *sprite_wm = 0;
  2575. return false;
  2576. }
  2577. line_time_us = (sprite_width * 1000) / clock;
  2578. if (!line_time_us) {
  2579. *sprite_wm = 0;
  2580. return false;
  2581. }
  2582. line_count = (latency_ns / line_time_us + 1000) / 1000;
  2583. line_size = sprite_width * pixel_size;
  2584. /* Use the minimum of the small and large buffer method for primary */
  2585. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  2586. large = line_count * line_size;
  2587. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  2588. *sprite_wm = entries + display->guard_size;
  2589. return *sprite_wm > 0x3ff ? false : true;
  2590. }
  2591. static void sandybridge_update_sprite_wm(struct drm_plane *plane,
  2592. struct drm_crtc *crtc,
  2593. uint32_t sprite_width, int pixel_size,
  2594. bool enabled, bool scaled)
  2595. {
  2596. struct drm_device *dev = plane->dev;
  2597. struct drm_i915_private *dev_priv = dev->dev_private;
  2598. int pipe = to_intel_plane(plane)->pipe;
  2599. int latency = dev_priv->wm.spr_latency[0] * 100; /* In unit 0.1us */
  2600. u32 val;
  2601. int sprite_wm, reg;
  2602. int ret;
  2603. if (!enabled)
  2604. return;
  2605. switch (pipe) {
  2606. case 0:
  2607. reg = WM0_PIPEA_ILK;
  2608. break;
  2609. case 1:
  2610. reg = WM0_PIPEB_ILK;
  2611. break;
  2612. case 2:
  2613. reg = WM0_PIPEC_IVB;
  2614. break;
  2615. default:
  2616. return; /* bad pipe */
  2617. }
  2618. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  2619. &sandybridge_display_wm_info,
  2620. latency, &sprite_wm);
  2621. if (!ret) {
  2622. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %c\n",
  2623. pipe_name(pipe));
  2624. return;
  2625. }
  2626. val = I915_READ(reg);
  2627. val &= ~WM0_PIPE_SPRITE_MASK;
  2628. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  2629. DRM_DEBUG_KMS("sprite watermarks For pipe %c - %d\n", pipe_name(pipe), sprite_wm);
  2630. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2631. pixel_size,
  2632. &sandybridge_display_srwm_info,
  2633. dev_priv->wm.spr_latency[1] * 500,
  2634. &sprite_wm);
  2635. if (!ret) {
  2636. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %c\n",
  2637. pipe_name(pipe));
  2638. return;
  2639. }
  2640. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  2641. /* Only IVB has two more LP watermarks for sprite */
  2642. if (!IS_IVYBRIDGE(dev))
  2643. return;
  2644. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2645. pixel_size,
  2646. &sandybridge_display_srwm_info,
  2647. dev_priv->wm.spr_latency[2] * 500,
  2648. &sprite_wm);
  2649. if (!ret) {
  2650. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %c\n",
  2651. pipe_name(pipe));
  2652. return;
  2653. }
  2654. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  2655. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  2656. pixel_size,
  2657. &sandybridge_display_srwm_info,
  2658. dev_priv->wm.spr_latency[3] * 500,
  2659. &sprite_wm);
  2660. if (!ret) {
  2661. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %c\n",
  2662. pipe_name(pipe));
  2663. return;
  2664. }
  2665. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  2666. }
  2667. /**
  2668. * intel_update_watermarks - update FIFO watermark values based on current modes
  2669. *
  2670. * Calculate watermark values for the various WM regs based on current mode
  2671. * and plane configuration.
  2672. *
  2673. * There are several cases to deal with here:
  2674. * - normal (i.e. non-self-refresh)
  2675. * - self-refresh (SR) mode
  2676. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2677. * - lines are small relative to FIFO size (buffer can hold more than 2
  2678. * lines), so need to account for TLB latency
  2679. *
  2680. * The normal calculation is:
  2681. * watermark = dotclock * bytes per pixel * latency
  2682. * where latency is platform & configuration dependent (we assume pessimal
  2683. * values here).
  2684. *
  2685. * The SR calculation is:
  2686. * watermark = (trunc(latency/line time)+1) * surface width *
  2687. * bytes per pixel
  2688. * where
  2689. * line time = htotal / dotclock
  2690. * surface width = hdisplay for normal plane and 64 for cursor
  2691. * and latency is assumed to be high, as above.
  2692. *
  2693. * The final value programmed to the register should always be rounded up,
  2694. * and include an extra 2 entries to account for clock crossings.
  2695. *
  2696. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2697. * to set the non-SR watermarks to 8.
  2698. */
  2699. void intel_update_watermarks(struct drm_crtc *crtc)
  2700. {
  2701. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  2702. if (dev_priv->display.update_wm)
  2703. dev_priv->display.update_wm(crtc);
  2704. }
  2705. void intel_update_sprite_watermarks(struct drm_plane *plane,
  2706. struct drm_crtc *crtc,
  2707. uint32_t sprite_width, int pixel_size,
  2708. bool enabled, bool scaled)
  2709. {
  2710. struct drm_i915_private *dev_priv = plane->dev->dev_private;
  2711. if (dev_priv->display.update_sprite_wm)
  2712. dev_priv->display.update_sprite_wm(plane, crtc, sprite_width,
  2713. pixel_size, enabled, scaled);
  2714. }
  2715. static struct drm_i915_gem_object *
  2716. intel_alloc_context_page(struct drm_device *dev)
  2717. {
  2718. struct drm_i915_gem_object *ctx;
  2719. int ret;
  2720. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2721. ctx = i915_gem_alloc_object(dev, 4096);
  2722. if (!ctx) {
  2723. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  2724. return NULL;
  2725. }
  2726. ret = i915_gem_obj_ggtt_pin(ctx, 4096, true, false);
  2727. if (ret) {
  2728. DRM_ERROR("failed to pin power context: %d\n", ret);
  2729. goto err_unref;
  2730. }
  2731. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  2732. if (ret) {
  2733. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  2734. goto err_unpin;
  2735. }
  2736. return ctx;
  2737. err_unpin:
  2738. i915_gem_object_unpin(ctx);
  2739. err_unref:
  2740. drm_gem_object_unreference(&ctx->base);
  2741. return NULL;
  2742. }
  2743. /**
  2744. * Lock protecting IPS related data structures
  2745. */
  2746. DEFINE_SPINLOCK(mchdev_lock);
  2747. /* Global for IPS driver to get at the current i915 device. Protected by
  2748. * mchdev_lock. */
  2749. static struct drm_i915_private *i915_mch_dev;
  2750. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  2751. {
  2752. struct drm_i915_private *dev_priv = dev->dev_private;
  2753. u16 rgvswctl;
  2754. assert_spin_locked(&mchdev_lock);
  2755. rgvswctl = I915_READ16(MEMSWCTL);
  2756. if (rgvswctl & MEMCTL_CMD_STS) {
  2757. DRM_DEBUG("gpu busy, RCS change rejected\n");
  2758. return false; /* still busy with another command */
  2759. }
  2760. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2761. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2762. I915_WRITE16(MEMSWCTL, rgvswctl);
  2763. POSTING_READ16(MEMSWCTL);
  2764. rgvswctl |= MEMCTL_CMD_STS;
  2765. I915_WRITE16(MEMSWCTL, rgvswctl);
  2766. return true;
  2767. }
  2768. static void ironlake_enable_drps(struct drm_device *dev)
  2769. {
  2770. struct drm_i915_private *dev_priv = dev->dev_private;
  2771. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2772. u8 fmax, fmin, fstart, vstart;
  2773. spin_lock_irq(&mchdev_lock);
  2774. /* Enable temp reporting */
  2775. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2776. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2777. /* 100ms RC evaluation intervals */
  2778. I915_WRITE(RCUPEI, 100000);
  2779. I915_WRITE(RCDNEI, 100000);
  2780. /* Set max/min thresholds to 90ms and 80ms respectively */
  2781. I915_WRITE(RCBMAXAVG, 90000);
  2782. I915_WRITE(RCBMINAVG, 80000);
  2783. I915_WRITE(MEMIHYST, 1);
  2784. /* Set up min, max, and cur for interrupt handling */
  2785. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2786. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2787. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2788. MEMMODE_FSTART_SHIFT;
  2789. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2790. PXVFREQ_PX_SHIFT;
  2791. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2792. dev_priv->ips.fstart = fstart;
  2793. dev_priv->ips.max_delay = fstart;
  2794. dev_priv->ips.min_delay = fmin;
  2795. dev_priv->ips.cur_delay = fstart;
  2796. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2797. fmax, fmin, fstart);
  2798. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2799. /*
  2800. * Interrupts will be enabled in ironlake_irq_postinstall
  2801. */
  2802. I915_WRITE(VIDSTART, vstart);
  2803. POSTING_READ(VIDSTART);
  2804. rgvmodectl |= MEMMODE_SWMODE_EN;
  2805. I915_WRITE(MEMMODECTL, rgvmodectl);
  2806. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2807. DRM_ERROR("stuck trying to change perf mode\n");
  2808. mdelay(1);
  2809. ironlake_set_drps(dev, fstart);
  2810. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2811. I915_READ(0x112e0);
  2812. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2813. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2814. getrawmonotonic(&dev_priv->ips.last_time2);
  2815. spin_unlock_irq(&mchdev_lock);
  2816. }
  2817. static void ironlake_disable_drps(struct drm_device *dev)
  2818. {
  2819. struct drm_i915_private *dev_priv = dev->dev_private;
  2820. u16 rgvswctl;
  2821. spin_lock_irq(&mchdev_lock);
  2822. rgvswctl = I915_READ16(MEMSWCTL);
  2823. /* Ack interrupts, disable EFC interrupt */
  2824. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2825. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2826. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2827. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2828. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2829. /* Go back to the starting frequency */
  2830. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2831. mdelay(1);
  2832. rgvswctl |= MEMCTL_CMD_STS;
  2833. I915_WRITE(MEMSWCTL, rgvswctl);
  2834. mdelay(1);
  2835. spin_unlock_irq(&mchdev_lock);
  2836. }
  2837. /* There's a funny hw issue where the hw returns all 0 when reading from
  2838. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2839. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2840. * all limits and the gpu stuck at whatever frequency it is at atm).
  2841. */
  2842. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2843. {
  2844. u32 limits;
  2845. limits = 0;
  2846. if (*val >= dev_priv->rps.max_delay)
  2847. *val = dev_priv->rps.max_delay;
  2848. limits |= dev_priv->rps.max_delay << 24;
  2849. /* Only set the down limit when we've reached the lowest level to avoid
  2850. * getting more interrupts, otherwise leave this clear. This prevents a
  2851. * race in the hw when coming out of rc6: There's a tiny window where
  2852. * the hw runs at the minimal clock before selecting the desired
  2853. * frequency, if the down threshold expires in that window we will not
  2854. * receive a down interrupt. */
  2855. if (*val <= dev_priv->rps.min_delay) {
  2856. *val = dev_priv->rps.min_delay;
  2857. limits |= dev_priv->rps.min_delay << 16;
  2858. }
  2859. return limits;
  2860. }
  2861. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  2862. {
  2863. int new_power;
  2864. new_power = dev_priv->rps.power;
  2865. switch (dev_priv->rps.power) {
  2866. case LOW_POWER:
  2867. if (val > dev_priv->rps.rpe_delay + 1 && val > dev_priv->rps.cur_delay)
  2868. new_power = BETWEEN;
  2869. break;
  2870. case BETWEEN:
  2871. if (val <= dev_priv->rps.rpe_delay && val < dev_priv->rps.cur_delay)
  2872. new_power = LOW_POWER;
  2873. else if (val >= dev_priv->rps.rp0_delay && val > dev_priv->rps.cur_delay)
  2874. new_power = HIGH_POWER;
  2875. break;
  2876. case HIGH_POWER:
  2877. if (val < (dev_priv->rps.rp1_delay + dev_priv->rps.rp0_delay) >> 1 && val < dev_priv->rps.cur_delay)
  2878. new_power = BETWEEN;
  2879. break;
  2880. }
  2881. /* Max/min bins are special */
  2882. if (val == dev_priv->rps.min_delay)
  2883. new_power = LOW_POWER;
  2884. if (val == dev_priv->rps.max_delay)
  2885. new_power = HIGH_POWER;
  2886. if (new_power == dev_priv->rps.power)
  2887. return;
  2888. /* Note the units here are not exactly 1us, but 1280ns. */
  2889. switch (new_power) {
  2890. case LOW_POWER:
  2891. /* Upclock if more than 95% busy over 16ms */
  2892. I915_WRITE(GEN6_RP_UP_EI, 12500);
  2893. I915_WRITE(GEN6_RP_UP_THRESHOLD, 11800);
  2894. /* Downclock if less than 85% busy over 32ms */
  2895. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2896. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 21250);
  2897. I915_WRITE(GEN6_RP_CONTROL,
  2898. GEN6_RP_MEDIA_TURBO |
  2899. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2900. GEN6_RP_MEDIA_IS_GFX |
  2901. GEN6_RP_ENABLE |
  2902. GEN6_RP_UP_BUSY_AVG |
  2903. GEN6_RP_DOWN_IDLE_AVG);
  2904. break;
  2905. case BETWEEN:
  2906. /* Upclock if more than 90% busy over 13ms */
  2907. I915_WRITE(GEN6_RP_UP_EI, 10250);
  2908. I915_WRITE(GEN6_RP_UP_THRESHOLD, 9225);
  2909. /* Downclock if less than 75% busy over 32ms */
  2910. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2911. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 18750);
  2912. I915_WRITE(GEN6_RP_CONTROL,
  2913. GEN6_RP_MEDIA_TURBO |
  2914. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2915. GEN6_RP_MEDIA_IS_GFX |
  2916. GEN6_RP_ENABLE |
  2917. GEN6_RP_UP_BUSY_AVG |
  2918. GEN6_RP_DOWN_IDLE_AVG);
  2919. break;
  2920. case HIGH_POWER:
  2921. /* Upclock if more than 85% busy over 10ms */
  2922. I915_WRITE(GEN6_RP_UP_EI, 8000);
  2923. I915_WRITE(GEN6_RP_UP_THRESHOLD, 6800);
  2924. /* Downclock if less than 60% busy over 32ms */
  2925. I915_WRITE(GEN6_RP_DOWN_EI, 25000);
  2926. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 15000);
  2927. I915_WRITE(GEN6_RP_CONTROL,
  2928. GEN6_RP_MEDIA_TURBO |
  2929. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2930. GEN6_RP_MEDIA_IS_GFX |
  2931. GEN6_RP_ENABLE |
  2932. GEN6_RP_UP_BUSY_AVG |
  2933. GEN6_RP_DOWN_IDLE_AVG);
  2934. break;
  2935. }
  2936. dev_priv->rps.power = new_power;
  2937. dev_priv->rps.last_adj = 0;
  2938. }
  2939. void gen6_set_rps(struct drm_device *dev, u8 val)
  2940. {
  2941. struct drm_i915_private *dev_priv = dev->dev_private;
  2942. u32 limits = gen6_rps_limits(dev_priv, &val);
  2943. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2944. WARN_ON(val > dev_priv->rps.max_delay);
  2945. WARN_ON(val < dev_priv->rps.min_delay);
  2946. if (val == dev_priv->rps.cur_delay)
  2947. return;
  2948. gen6_set_rps_thresholds(dev_priv, val);
  2949. if (IS_HASWELL(dev))
  2950. I915_WRITE(GEN6_RPNSWREQ,
  2951. HSW_FREQUENCY(val));
  2952. else
  2953. I915_WRITE(GEN6_RPNSWREQ,
  2954. GEN6_FREQUENCY(val) |
  2955. GEN6_OFFSET(0) |
  2956. GEN6_AGGRESSIVE_TURBO);
  2957. /* Make sure we continue to get interrupts
  2958. * until we hit the minimum or maximum frequencies.
  2959. */
  2960. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2961. POSTING_READ(GEN6_RPNSWREQ);
  2962. dev_priv->rps.cur_delay = val;
  2963. trace_intel_gpu_freq_change(val * 50);
  2964. }
  2965. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  2966. {
  2967. mutex_lock(&dev_priv->rps.hw_lock);
  2968. if (dev_priv->rps.enabled) {
  2969. if (dev_priv->info->is_valleyview)
  2970. valleyview_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  2971. else
  2972. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  2973. dev_priv->rps.last_adj = 0;
  2974. }
  2975. mutex_unlock(&dev_priv->rps.hw_lock);
  2976. }
  2977. void gen6_rps_boost(struct drm_i915_private *dev_priv)
  2978. {
  2979. mutex_lock(&dev_priv->rps.hw_lock);
  2980. if (dev_priv->rps.enabled) {
  2981. if (dev_priv->info->is_valleyview)
  2982. valleyview_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  2983. else
  2984. gen6_set_rps(dev_priv->dev, dev_priv->rps.max_delay);
  2985. dev_priv->rps.last_adj = 0;
  2986. }
  2987. mutex_unlock(&dev_priv->rps.hw_lock);
  2988. }
  2989. /*
  2990. * Wait until the previous freq change has completed,
  2991. * or the timeout elapsed, and then update our notion
  2992. * of the current GPU frequency.
  2993. */
  2994. static void vlv_update_rps_cur_delay(struct drm_i915_private *dev_priv)
  2995. {
  2996. u32 pval;
  2997. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2998. if (wait_for(((pval = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS)) & GENFREQSTATUS) == 0, 10))
  2999. DRM_DEBUG_DRIVER("timed out waiting for Punit\n");
  3000. pval >>= 8;
  3001. if (pval != dev_priv->rps.cur_delay)
  3002. DRM_DEBUG_DRIVER("Punit overrode GPU freq: %d MHz (%u) requested, but got %d Mhz (%u)\n",
  3003. vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.cur_delay),
  3004. dev_priv->rps.cur_delay,
  3005. vlv_gpu_freq(dev_priv->mem_freq, pval), pval);
  3006. dev_priv->rps.cur_delay = pval;
  3007. }
  3008. void valleyview_set_rps(struct drm_device *dev, u8 val)
  3009. {
  3010. struct drm_i915_private *dev_priv = dev->dev_private;
  3011. gen6_rps_limits(dev_priv, &val);
  3012. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3013. WARN_ON(val > dev_priv->rps.max_delay);
  3014. WARN_ON(val < dev_priv->rps.min_delay);
  3015. vlv_update_rps_cur_delay(dev_priv);
  3016. DRM_DEBUG_DRIVER("GPU freq request from %d MHz (%u) to %d MHz (%u)\n",
  3017. vlv_gpu_freq(dev_priv->mem_freq,
  3018. dev_priv->rps.cur_delay),
  3019. dev_priv->rps.cur_delay,
  3020. vlv_gpu_freq(dev_priv->mem_freq, val), val);
  3021. if (val == dev_priv->rps.cur_delay)
  3022. return;
  3023. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3024. dev_priv->rps.cur_delay = val;
  3025. trace_intel_gpu_freq_change(vlv_gpu_freq(dev_priv->mem_freq, val));
  3026. }
  3027. static void gen6_disable_rps_interrupts(struct drm_device *dev)
  3028. {
  3029. struct drm_i915_private *dev_priv = dev->dev_private;
  3030. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3031. I915_WRITE(GEN6_PMIER, I915_READ(GEN6_PMIER) & ~GEN6_PM_RPS_EVENTS);
  3032. /* Complete PM interrupt masking here doesn't race with the rps work
  3033. * item again unmasking PM interrupts because that is using a different
  3034. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  3035. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  3036. spin_lock_irq(&dev_priv->irq_lock);
  3037. dev_priv->rps.pm_iir = 0;
  3038. spin_unlock_irq(&dev_priv->irq_lock);
  3039. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3040. }
  3041. static void gen6_disable_rps(struct drm_device *dev)
  3042. {
  3043. struct drm_i915_private *dev_priv = dev->dev_private;
  3044. I915_WRITE(GEN6_RC_CONTROL, 0);
  3045. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3046. gen6_disable_rps_interrupts(dev);
  3047. }
  3048. static void valleyview_disable_rps(struct drm_device *dev)
  3049. {
  3050. struct drm_i915_private *dev_priv = dev->dev_private;
  3051. I915_WRITE(GEN6_RC_CONTROL, 0);
  3052. gen6_disable_rps_interrupts(dev);
  3053. if (dev_priv->vlv_pctx) {
  3054. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  3055. dev_priv->vlv_pctx = NULL;
  3056. }
  3057. }
  3058. int intel_enable_rc6(const struct drm_device *dev)
  3059. {
  3060. /* No RC6 before Ironlake */
  3061. if (INTEL_INFO(dev)->gen < 5)
  3062. return 0;
  3063. /* Respect the kernel parameter if it is set */
  3064. if (i915_enable_rc6 >= 0)
  3065. return i915_enable_rc6;
  3066. /* Disable RC6 on Ironlake */
  3067. if (INTEL_INFO(dev)->gen == 5)
  3068. return 0;
  3069. if (IS_HASWELL(dev)) {
  3070. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  3071. return INTEL_RC6_ENABLE;
  3072. }
  3073. /* snb/ivb have more than one rc6 state. */
  3074. if (INTEL_INFO(dev)->gen == 6) {
  3075. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  3076. return INTEL_RC6_ENABLE;
  3077. }
  3078. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  3079. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3080. }
  3081. static void gen6_enable_rps_interrupts(struct drm_device *dev)
  3082. {
  3083. struct drm_i915_private *dev_priv = dev->dev_private;
  3084. u32 enabled_intrs;
  3085. spin_lock_irq(&dev_priv->irq_lock);
  3086. WARN_ON(dev_priv->rps.pm_iir);
  3087. snb_enable_pm_irq(dev_priv, GEN6_PM_RPS_EVENTS);
  3088. I915_WRITE(GEN6_PMIIR, GEN6_PM_RPS_EVENTS);
  3089. spin_unlock_irq(&dev_priv->irq_lock);
  3090. /* only unmask PM interrupts we need. Mask all others. */
  3091. enabled_intrs = GEN6_PM_RPS_EVENTS;
  3092. /* IVB and SNB hard hangs on looping batchbuffer
  3093. * if GEN6_PM_UP_EI_EXPIRED is masked.
  3094. */
  3095. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  3096. enabled_intrs |= GEN6_PM_RP_UP_EI_EXPIRED;
  3097. I915_WRITE(GEN6_PMINTRMSK, ~enabled_intrs);
  3098. }
  3099. static void gen6_enable_rps(struct drm_device *dev)
  3100. {
  3101. struct drm_i915_private *dev_priv = dev->dev_private;
  3102. struct intel_ring_buffer *ring;
  3103. u32 rp_state_cap;
  3104. u32 gt_perf_status;
  3105. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  3106. u32 gtfifodbg;
  3107. int rc6_mode;
  3108. int i, ret;
  3109. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3110. /* Here begins a magic sequence of register writes to enable
  3111. * auto-downclocking.
  3112. *
  3113. * Perhaps there might be some value in exposing these to
  3114. * userspace...
  3115. */
  3116. I915_WRITE(GEN6_RC_STATE, 0);
  3117. /* Clear the DBG now so we don't confuse earlier errors */
  3118. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3119. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  3120. I915_WRITE(GTFIFODBG, gtfifodbg);
  3121. }
  3122. gen6_gt_force_wake_get(dev_priv);
  3123. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3124. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  3125. /* In units of 50MHz */
  3126. dev_priv->rps.hw_max = dev_priv->rps.max_delay = rp_state_cap & 0xff;
  3127. dev_priv->rps.min_delay = (rp_state_cap >> 16) & 0xff;
  3128. dev_priv->rps.rp1_delay = (rp_state_cap >> 8) & 0xff;
  3129. dev_priv->rps.rp0_delay = (rp_state_cap >> 0) & 0xff;
  3130. dev_priv->rps.rpe_delay = dev_priv->rps.rp1_delay;
  3131. dev_priv->rps.cur_delay = 0;
  3132. /* disable the counters and set deterministic thresholds */
  3133. I915_WRITE(GEN6_RC_CONTROL, 0);
  3134. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  3135. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  3136. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  3137. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3138. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3139. for_each_ring(ring, dev_priv, i)
  3140. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3141. I915_WRITE(GEN6_RC_SLEEP, 0);
  3142. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  3143. if (INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev))
  3144. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  3145. else
  3146. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  3147. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  3148. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  3149. /* Check if we are enabling RC6 */
  3150. rc6_mode = intel_enable_rc6(dev_priv->dev);
  3151. if (rc6_mode & INTEL_RC6_ENABLE)
  3152. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  3153. /* We don't use those on Haswell */
  3154. if (!IS_HASWELL(dev)) {
  3155. if (rc6_mode & INTEL_RC6p_ENABLE)
  3156. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  3157. if (rc6_mode & INTEL_RC6pp_ENABLE)
  3158. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  3159. }
  3160. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  3161. (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  3162. (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  3163. (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  3164. I915_WRITE(GEN6_RC_CONTROL,
  3165. rc6_mask |
  3166. GEN6_RC_CTL_EI_MODE(1) |
  3167. GEN6_RC_CTL_HW_ENABLE);
  3168. /* Power down if completely idle for over 50ms */
  3169. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  3170. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3171. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  3172. if (!ret) {
  3173. pcu_mbox = 0;
  3174. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  3175. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  3176. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  3177. (dev_priv->rps.max_delay & 0xff) * 50,
  3178. (pcu_mbox & 0xff) * 50);
  3179. dev_priv->rps.hw_max = pcu_mbox & 0xff;
  3180. }
  3181. } else {
  3182. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  3183. }
  3184. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3185. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_delay);
  3186. gen6_enable_rps_interrupts(dev);
  3187. rc6vids = 0;
  3188. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  3189. if (IS_GEN6(dev) && ret) {
  3190. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  3191. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  3192. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  3193. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  3194. rc6vids &= 0xffff00;
  3195. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  3196. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  3197. if (ret)
  3198. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  3199. }
  3200. gen6_gt_force_wake_put(dev_priv);
  3201. }
  3202. void gen6_update_ring_freq(struct drm_device *dev)
  3203. {
  3204. struct drm_i915_private *dev_priv = dev->dev_private;
  3205. int min_freq = 15;
  3206. unsigned int gpu_freq;
  3207. unsigned int max_ia_freq, min_ring_freq;
  3208. int scaling_factor = 180;
  3209. struct cpufreq_policy *policy;
  3210. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3211. policy = cpufreq_cpu_get(0);
  3212. if (policy) {
  3213. max_ia_freq = policy->cpuinfo.max_freq;
  3214. cpufreq_cpu_put(policy);
  3215. } else {
  3216. /*
  3217. * Default to measured freq if none found, PCU will ensure we
  3218. * don't go over
  3219. */
  3220. max_ia_freq = tsc_khz;
  3221. }
  3222. /* Convert from kHz to MHz */
  3223. max_ia_freq /= 1000;
  3224. min_ring_freq = I915_READ(MCHBAR_MIRROR_BASE_SNB + DCLK) & 0xf;
  3225. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  3226. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  3227. /*
  3228. * For each potential GPU frequency, load a ring frequency we'd like
  3229. * to use for memory access. We do this by specifying the IA frequency
  3230. * the PCU should use as a reference to determine the ring frequency.
  3231. */
  3232. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  3233. gpu_freq--) {
  3234. int diff = dev_priv->rps.max_delay - gpu_freq;
  3235. unsigned int ia_freq = 0, ring_freq = 0;
  3236. if (IS_HASWELL(dev)) {
  3237. ring_freq = mult_frac(gpu_freq, 5, 4);
  3238. ring_freq = max(min_ring_freq, ring_freq);
  3239. /* leave ia_freq as the default, chosen by cpufreq */
  3240. } else {
  3241. /* On older processors, there is no separate ring
  3242. * clock domain, so in order to boost the bandwidth
  3243. * of the ring, we need to upclock the CPU (ia_freq).
  3244. *
  3245. * For GPU frequencies less than 750MHz,
  3246. * just use the lowest ring freq.
  3247. */
  3248. if (gpu_freq < min_freq)
  3249. ia_freq = 800;
  3250. else
  3251. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  3252. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  3253. }
  3254. sandybridge_pcode_write(dev_priv,
  3255. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  3256. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  3257. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  3258. gpu_freq);
  3259. }
  3260. }
  3261. int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  3262. {
  3263. u32 val, rp0;
  3264. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  3265. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  3266. /* Clamp to max */
  3267. rp0 = min_t(u32, rp0, 0xea);
  3268. return rp0;
  3269. }
  3270. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  3271. {
  3272. u32 val, rpe;
  3273. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  3274. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  3275. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  3276. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  3277. return rpe;
  3278. }
  3279. int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  3280. {
  3281. return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  3282. }
  3283. static void valleyview_setup_pctx(struct drm_device *dev)
  3284. {
  3285. struct drm_i915_private *dev_priv = dev->dev_private;
  3286. struct drm_i915_gem_object *pctx;
  3287. unsigned long pctx_paddr;
  3288. u32 pcbr;
  3289. int pctx_size = 24*1024;
  3290. pcbr = I915_READ(VLV_PCBR);
  3291. if (pcbr) {
  3292. /* BIOS set it up already, grab the pre-alloc'd space */
  3293. int pcbr_offset;
  3294. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  3295. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  3296. pcbr_offset,
  3297. I915_GTT_OFFSET_NONE,
  3298. pctx_size);
  3299. goto out;
  3300. }
  3301. /*
  3302. * From the Gunit register HAS:
  3303. * The Gfx driver is expected to program this register and ensure
  3304. * proper allocation within Gfx stolen memory. For example, this
  3305. * register should be programmed such than the PCBR range does not
  3306. * overlap with other ranges, such as the frame buffer, protected
  3307. * memory, or any other relevant ranges.
  3308. */
  3309. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  3310. if (!pctx) {
  3311. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  3312. return;
  3313. }
  3314. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  3315. I915_WRITE(VLV_PCBR, pctx_paddr);
  3316. out:
  3317. dev_priv->vlv_pctx = pctx;
  3318. }
  3319. static void valleyview_enable_rps(struct drm_device *dev)
  3320. {
  3321. struct drm_i915_private *dev_priv = dev->dev_private;
  3322. struct intel_ring_buffer *ring;
  3323. u32 gtfifodbg, val, rc6_mode = 0;
  3324. int i;
  3325. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3326. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  3327. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  3328. gtfifodbg);
  3329. I915_WRITE(GTFIFODBG, gtfifodbg);
  3330. }
  3331. valleyview_setup_pctx(dev);
  3332. gen6_gt_force_wake_get(dev_priv);
  3333. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  3334. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  3335. I915_WRITE(GEN6_RP_UP_EI, 66000);
  3336. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  3337. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  3338. I915_WRITE(GEN6_RP_CONTROL,
  3339. GEN6_RP_MEDIA_TURBO |
  3340. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3341. GEN6_RP_MEDIA_IS_GFX |
  3342. GEN6_RP_ENABLE |
  3343. GEN6_RP_UP_BUSY_AVG |
  3344. GEN6_RP_DOWN_IDLE_CONT);
  3345. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  3346. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  3347. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  3348. for_each_ring(ring, dev_priv, i)
  3349. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3350. I915_WRITE(GEN6_RC6_THRESHOLD, 0xc350);
  3351. /* allows RC6 residency counter to work */
  3352. I915_WRITE(VLV_COUNTER_CONTROL,
  3353. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  3354. VLV_MEDIA_RC6_COUNT_EN |
  3355. VLV_RENDER_RC6_COUNT_EN));
  3356. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3357. rc6_mode = GEN7_RC_CTL_TO_MODE;
  3358. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  3359. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  3360. switch ((val >> 6) & 3) {
  3361. case 0:
  3362. case 1:
  3363. dev_priv->mem_freq = 800;
  3364. break;
  3365. case 2:
  3366. dev_priv->mem_freq = 1066;
  3367. break;
  3368. case 3:
  3369. dev_priv->mem_freq = 1333;
  3370. break;
  3371. }
  3372. DRM_DEBUG_DRIVER("DDR speed: %d MHz", dev_priv->mem_freq);
  3373. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & 0x10 ? "yes" : "no");
  3374. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  3375. dev_priv->rps.cur_delay = (val >> 8) & 0xff;
  3376. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  3377. vlv_gpu_freq(dev_priv->mem_freq,
  3378. dev_priv->rps.cur_delay),
  3379. dev_priv->rps.cur_delay);
  3380. dev_priv->rps.max_delay = valleyview_rps_max_freq(dev_priv);
  3381. dev_priv->rps.hw_max = dev_priv->rps.max_delay;
  3382. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  3383. vlv_gpu_freq(dev_priv->mem_freq,
  3384. dev_priv->rps.max_delay),
  3385. dev_priv->rps.max_delay);
  3386. dev_priv->rps.rpe_delay = valleyview_rps_rpe_freq(dev_priv);
  3387. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  3388. vlv_gpu_freq(dev_priv->mem_freq,
  3389. dev_priv->rps.rpe_delay),
  3390. dev_priv->rps.rpe_delay);
  3391. dev_priv->rps.min_delay = valleyview_rps_min_freq(dev_priv);
  3392. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  3393. vlv_gpu_freq(dev_priv->mem_freq,
  3394. dev_priv->rps.min_delay),
  3395. dev_priv->rps.min_delay);
  3396. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  3397. vlv_gpu_freq(dev_priv->mem_freq,
  3398. dev_priv->rps.rpe_delay),
  3399. dev_priv->rps.rpe_delay);
  3400. valleyview_set_rps(dev_priv->dev, dev_priv->rps.rpe_delay);
  3401. gen6_enable_rps_interrupts(dev);
  3402. gen6_gt_force_wake_put(dev_priv);
  3403. }
  3404. void ironlake_teardown_rc6(struct drm_device *dev)
  3405. {
  3406. struct drm_i915_private *dev_priv = dev->dev_private;
  3407. if (dev_priv->ips.renderctx) {
  3408. i915_gem_object_unpin(dev_priv->ips.renderctx);
  3409. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  3410. dev_priv->ips.renderctx = NULL;
  3411. }
  3412. if (dev_priv->ips.pwrctx) {
  3413. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  3414. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  3415. dev_priv->ips.pwrctx = NULL;
  3416. }
  3417. }
  3418. static void ironlake_disable_rc6(struct drm_device *dev)
  3419. {
  3420. struct drm_i915_private *dev_priv = dev->dev_private;
  3421. if (I915_READ(PWRCTXA)) {
  3422. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  3423. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  3424. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  3425. 50);
  3426. I915_WRITE(PWRCTXA, 0);
  3427. POSTING_READ(PWRCTXA);
  3428. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3429. POSTING_READ(RSTDBYCTL);
  3430. }
  3431. }
  3432. static int ironlake_setup_rc6(struct drm_device *dev)
  3433. {
  3434. struct drm_i915_private *dev_priv = dev->dev_private;
  3435. if (dev_priv->ips.renderctx == NULL)
  3436. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  3437. if (!dev_priv->ips.renderctx)
  3438. return -ENOMEM;
  3439. if (dev_priv->ips.pwrctx == NULL)
  3440. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  3441. if (!dev_priv->ips.pwrctx) {
  3442. ironlake_teardown_rc6(dev);
  3443. return -ENOMEM;
  3444. }
  3445. return 0;
  3446. }
  3447. static void ironlake_enable_rc6(struct drm_device *dev)
  3448. {
  3449. struct drm_i915_private *dev_priv = dev->dev_private;
  3450. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  3451. bool was_interruptible;
  3452. int ret;
  3453. /* rc6 disabled by default due to repeated reports of hanging during
  3454. * boot and resume.
  3455. */
  3456. if (!intel_enable_rc6(dev))
  3457. return;
  3458. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  3459. ret = ironlake_setup_rc6(dev);
  3460. if (ret)
  3461. return;
  3462. was_interruptible = dev_priv->mm.interruptible;
  3463. dev_priv->mm.interruptible = false;
  3464. /*
  3465. * GPU can automatically power down the render unit if given a page
  3466. * to save state.
  3467. */
  3468. ret = intel_ring_begin(ring, 6);
  3469. if (ret) {
  3470. ironlake_teardown_rc6(dev);
  3471. dev_priv->mm.interruptible = was_interruptible;
  3472. return;
  3473. }
  3474. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  3475. intel_ring_emit(ring, MI_SET_CONTEXT);
  3476. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(dev_priv->ips.renderctx) |
  3477. MI_MM_SPACE_GTT |
  3478. MI_SAVE_EXT_STATE_EN |
  3479. MI_RESTORE_EXT_STATE_EN |
  3480. MI_RESTORE_INHIBIT);
  3481. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  3482. intel_ring_emit(ring, MI_NOOP);
  3483. intel_ring_emit(ring, MI_FLUSH);
  3484. intel_ring_advance(ring);
  3485. /*
  3486. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  3487. * does an implicit flush, combined with MI_FLUSH above, it should be
  3488. * safe to assume that renderctx is valid
  3489. */
  3490. ret = intel_ring_idle(ring);
  3491. dev_priv->mm.interruptible = was_interruptible;
  3492. if (ret) {
  3493. DRM_ERROR("failed to enable ironlake power savings\n");
  3494. ironlake_teardown_rc6(dev);
  3495. return;
  3496. }
  3497. I915_WRITE(PWRCTXA, i915_gem_obj_ggtt_offset(dev_priv->ips.pwrctx) | PWRCTX_EN);
  3498. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  3499. }
  3500. static unsigned long intel_pxfreq(u32 vidfreq)
  3501. {
  3502. unsigned long freq;
  3503. int div = (vidfreq & 0x3f0000) >> 16;
  3504. int post = (vidfreq & 0x3000) >> 12;
  3505. int pre = (vidfreq & 0x7);
  3506. if (!pre)
  3507. return 0;
  3508. freq = ((div * 133333) / ((1<<post) * pre));
  3509. return freq;
  3510. }
  3511. static const struct cparams {
  3512. u16 i;
  3513. u16 t;
  3514. u16 m;
  3515. u16 c;
  3516. } cparams[] = {
  3517. { 1, 1333, 301, 28664 },
  3518. { 1, 1066, 294, 24460 },
  3519. { 1, 800, 294, 25192 },
  3520. { 0, 1333, 276, 27605 },
  3521. { 0, 1066, 276, 27605 },
  3522. { 0, 800, 231, 23784 },
  3523. };
  3524. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  3525. {
  3526. u64 total_count, diff, ret;
  3527. u32 count1, count2, count3, m = 0, c = 0;
  3528. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  3529. int i;
  3530. assert_spin_locked(&mchdev_lock);
  3531. diff1 = now - dev_priv->ips.last_time1;
  3532. /* Prevent division-by-zero if we are asking too fast.
  3533. * Also, we don't get interesting results if we are polling
  3534. * faster than once in 10ms, so just return the saved value
  3535. * in such cases.
  3536. */
  3537. if (diff1 <= 10)
  3538. return dev_priv->ips.chipset_power;
  3539. count1 = I915_READ(DMIEC);
  3540. count2 = I915_READ(DDREC);
  3541. count3 = I915_READ(CSIEC);
  3542. total_count = count1 + count2 + count3;
  3543. /* FIXME: handle per-counter overflow */
  3544. if (total_count < dev_priv->ips.last_count1) {
  3545. diff = ~0UL - dev_priv->ips.last_count1;
  3546. diff += total_count;
  3547. } else {
  3548. diff = total_count - dev_priv->ips.last_count1;
  3549. }
  3550. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  3551. if (cparams[i].i == dev_priv->ips.c_m &&
  3552. cparams[i].t == dev_priv->ips.r_t) {
  3553. m = cparams[i].m;
  3554. c = cparams[i].c;
  3555. break;
  3556. }
  3557. }
  3558. diff = div_u64(diff, diff1);
  3559. ret = ((m * diff) + c);
  3560. ret = div_u64(ret, 10);
  3561. dev_priv->ips.last_count1 = total_count;
  3562. dev_priv->ips.last_time1 = now;
  3563. dev_priv->ips.chipset_power = ret;
  3564. return ret;
  3565. }
  3566. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  3567. {
  3568. unsigned long val;
  3569. if (dev_priv->info->gen != 5)
  3570. return 0;
  3571. spin_lock_irq(&mchdev_lock);
  3572. val = __i915_chipset_val(dev_priv);
  3573. spin_unlock_irq(&mchdev_lock);
  3574. return val;
  3575. }
  3576. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  3577. {
  3578. unsigned long m, x, b;
  3579. u32 tsfs;
  3580. tsfs = I915_READ(TSFS);
  3581. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  3582. x = I915_READ8(TR1);
  3583. b = tsfs & TSFS_INTR_MASK;
  3584. return ((m * x) / 127) - b;
  3585. }
  3586. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  3587. {
  3588. static const struct v_table {
  3589. u16 vd; /* in .1 mil */
  3590. u16 vm; /* in .1 mil */
  3591. } v_table[] = {
  3592. { 0, 0, },
  3593. { 375, 0, },
  3594. { 500, 0, },
  3595. { 625, 0, },
  3596. { 750, 0, },
  3597. { 875, 0, },
  3598. { 1000, 0, },
  3599. { 1125, 0, },
  3600. { 4125, 3000, },
  3601. { 4125, 3000, },
  3602. { 4125, 3000, },
  3603. { 4125, 3000, },
  3604. { 4125, 3000, },
  3605. { 4125, 3000, },
  3606. { 4125, 3000, },
  3607. { 4125, 3000, },
  3608. { 4125, 3000, },
  3609. { 4125, 3000, },
  3610. { 4125, 3000, },
  3611. { 4125, 3000, },
  3612. { 4125, 3000, },
  3613. { 4125, 3000, },
  3614. { 4125, 3000, },
  3615. { 4125, 3000, },
  3616. { 4125, 3000, },
  3617. { 4125, 3000, },
  3618. { 4125, 3000, },
  3619. { 4125, 3000, },
  3620. { 4125, 3000, },
  3621. { 4125, 3000, },
  3622. { 4125, 3000, },
  3623. { 4125, 3000, },
  3624. { 4250, 3125, },
  3625. { 4375, 3250, },
  3626. { 4500, 3375, },
  3627. { 4625, 3500, },
  3628. { 4750, 3625, },
  3629. { 4875, 3750, },
  3630. { 5000, 3875, },
  3631. { 5125, 4000, },
  3632. { 5250, 4125, },
  3633. { 5375, 4250, },
  3634. { 5500, 4375, },
  3635. { 5625, 4500, },
  3636. { 5750, 4625, },
  3637. { 5875, 4750, },
  3638. { 6000, 4875, },
  3639. { 6125, 5000, },
  3640. { 6250, 5125, },
  3641. { 6375, 5250, },
  3642. { 6500, 5375, },
  3643. { 6625, 5500, },
  3644. { 6750, 5625, },
  3645. { 6875, 5750, },
  3646. { 7000, 5875, },
  3647. { 7125, 6000, },
  3648. { 7250, 6125, },
  3649. { 7375, 6250, },
  3650. { 7500, 6375, },
  3651. { 7625, 6500, },
  3652. { 7750, 6625, },
  3653. { 7875, 6750, },
  3654. { 8000, 6875, },
  3655. { 8125, 7000, },
  3656. { 8250, 7125, },
  3657. { 8375, 7250, },
  3658. { 8500, 7375, },
  3659. { 8625, 7500, },
  3660. { 8750, 7625, },
  3661. { 8875, 7750, },
  3662. { 9000, 7875, },
  3663. { 9125, 8000, },
  3664. { 9250, 8125, },
  3665. { 9375, 8250, },
  3666. { 9500, 8375, },
  3667. { 9625, 8500, },
  3668. { 9750, 8625, },
  3669. { 9875, 8750, },
  3670. { 10000, 8875, },
  3671. { 10125, 9000, },
  3672. { 10250, 9125, },
  3673. { 10375, 9250, },
  3674. { 10500, 9375, },
  3675. { 10625, 9500, },
  3676. { 10750, 9625, },
  3677. { 10875, 9750, },
  3678. { 11000, 9875, },
  3679. { 11125, 10000, },
  3680. { 11250, 10125, },
  3681. { 11375, 10250, },
  3682. { 11500, 10375, },
  3683. { 11625, 10500, },
  3684. { 11750, 10625, },
  3685. { 11875, 10750, },
  3686. { 12000, 10875, },
  3687. { 12125, 11000, },
  3688. { 12250, 11125, },
  3689. { 12375, 11250, },
  3690. { 12500, 11375, },
  3691. { 12625, 11500, },
  3692. { 12750, 11625, },
  3693. { 12875, 11750, },
  3694. { 13000, 11875, },
  3695. { 13125, 12000, },
  3696. { 13250, 12125, },
  3697. { 13375, 12250, },
  3698. { 13500, 12375, },
  3699. { 13625, 12500, },
  3700. { 13750, 12625, },
  3701. { 13875, 12750, },
  3702. { 14000, 12875, },
  3703. { 14125, 13000, },
  3704. { 14250, 13125, },
  3705. { 14375, 13250, },
  3706. { 14500, 13375, },
  3707. { 14625, 13500, },
  3708. { 14750, 13625, },
  3709. { 14875, 13750, },
  3710. { 15000, 13875, },
  3711. { 15125, 14000, },
  3712. { 15250, 14125, },
  3713. { 15375, 14250, },
  3714. { 15500, 14375, },
  3715. { 15625, 14500, },
  3716. { 15750, 14625, },
  3717. { 15875, 14750, },
  3718. { 16000, 14875, },
  3719. { 16125, 15000, },
  3720. };
  3721. if (dev_priv->info->is_mobile)
  3722. return v_table[pxvid].vm;
  3723. else
  3724. return v_table[pxvid].vd;
  3725. }
  3726. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3727. {
  3728. struct timespec now, diff1;
  3729. u64 diff;
  3730. unsigned long diffms;
  3731. u32 count;
  3732. assert_spin_locked(&mchdev_lock);
  3733. getrawmonotonic(&now);
  3734. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  3735. /* Don't divide by 0 */
  3736. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  3737. if (!diffms)
  3738. return;
  3739. count = I915_READ(GFXEC);
  3740. if (count < dev_priv->ips.last_count2) {
  3741. diff = ~0UL - dev_priv->ips.last_count2;
  3742. diff += count;
  3743. } else {
  3744. diff = count - dev_priv->ips.last_count2;
  3745. }
  3746. dev_priv->ips.last_count2 = count;
  3747. dev_priv->ips.last_time2 = now;
  3748. /* More magic constants... */
  3749. diff = diff * 1181;
  3750. diff = div_u64(diff, diffms * 10);
  3751. dev_priv->ips.gfx_power = diff;
  3752. }
  3753. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  3754. {
  3755. if (dev_priv->info->gen != 5)
  3756. return;
  3757. spin_lock_irq(&mchdev_lock);
  3758. __i915_update_gfx_val(dev_priv);
  3759. spin_unlock_irq(&mchdev_lock);
  3760. }
  3761. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  3762. {
  3763. unsigned long t, corr, state1, corr2, state2;
  3764. u32 pxvid, ext_v;
  3765. assert_spin_locked(&mchdev_lock);
  3766. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  3767. pxvid = (pxvid >> 24) & 0x7f;
  3768. ext_v = pvid_to_extvid(dev_priv, pxvid);
  3769. state1 = ext_v;
  3770. t = i915_mch_val(dev_priv);
  3771. /* Revel in the empirically derived constants */
  3772. /* Correction factor in 1/100000 units */
  3773. if (t > 80)
  3774. corr = ((t * 2349) + 135940);
  3775. else if (t >= 50)
  3776. corr = ((t * 964) + 29317);
  3777. else /* < 50 */
  3778. corr = ((t * 301) + 1004);
  3779. corr = corr * ((150142 * state1) / 10000 - 78642);
  3780. corr /= 100000;
  3781. corr2 = (corr * dev_priv->ips.corr);
  3782. state2 = (corr2 * state1) / 10000;
  3783. state2 /= 100; /* convert to mW */
  3784. __i915_update_gfx_val(dev_priv);
  3785. return dev_priv->ips.gfx_power + state2;
  3786. }
  3787. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  3788. {
  3789. unsigned long val;
  3790. if (dev_priv->info->gen != 5)
  3791. return 0;
  3792. spin_lock_irq(&mchdev_lock);
  3793. val = __i915_gfx_val(dev_priv);
  3794. spin_unlock_irq(&mchdev_lock);
  3795. return val;
  3796. }
  3797. /**
  3798. * i915_read_mch_val - return value for IPS use
  3799. *
  3800. * Calculate and return a value for the IPS driver to use when deciding whether
  3801. * we have thermal and power headroom to increase CPU or GPU power budget.
  3802. */
  3803. unsigned long i915_read_mch_val(void)
  3804. {
  3805. struct drm_i915_private *dev_priv;
  3806. unsigned long chipset_val, graphics_val, ret = 0;
  3807. spin_lock_irq(&mchdev_lock);
  3808. if (!i915_mch_dev)
  3809. goto out_unlock;
  3810. dev_priv = i915_mch_dev;
  3811. chipset_val = __i915_chipset_val(dev_priv);
  3812. graphics_val = __i915_gfx_val(dev_priv);
  3813. ret = chipset_val + graphics_val;
  3814. out_unlock:
  3815. spin_unlock_irq(&mchdev_lock);
  3816. return ret;
  3817. }
  3818. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  3819. /**
  3820. * i915_gpu_raise - raise GPU frequency limit
  3821. *
  3822. * Raise the limit; IPS indicates we have thermal headroom.
  3823. */
  3824. bool i915_gpu_raise(void)
  3825. {
  3826. struct drm_i915_private *dev_priv;
  3827. bool ret = true;
  3828. spin_lock_irq(&mchdev_lock);
  3829. if (!i915_mch_dev) {
  3830. ret = false;
  3831. goto out_unlock;
  3832. }
  3833. dev_priv = i915_mch_dev;
  3834. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  3835. dev_priv->ips.max_delay--;
  3836. out_unlock:
  3837. spin_unlock_irq(&mchdev_lock);
  3838. return ret;
  3839. }
  3840. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  3841. /**
  3842. * i915_gpu_lower - lower GPU frequency limit
  3843. *
  3844. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  3845. * frequency maximum.
  3846. */
  3847. bool i915_gpu_lower(void)
  3848. {
  3849. struct drm_i915_private *dev_priv;
  3850. bool ret = true;
  3851. spin_lock_irq(&mchdev_lock);
  3852. if (!i915_mch_dev) {
  3853. ret = false;
  3854. goto out_unlock;
  3855. }
  3856. dev_priv = i915_mch_dev;
  3857. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  3858. dev_priv->ips.max_delay++;
  3859. out_unlock:
  3860. spin_unlock_irq(&mchdev_lock);
  3861. return ret;
  3862. }
  3863. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  3864. /**
  3865. * i915_gpu_busy - indicate GPU business to IPS
  3866. *
  3867. * Tell the IPS driver whether or not the GPU is busy.
  3868. */
  3869. bool i915_gpu_busy(void)
  3870. {
  3871. struct drm_i915_private *dev_priv;
  3872. struct intel_ring_buffer *ring;
  3873. bool ret = false;
  3874. int i;
  3875. spin_lock_irq(&mchdev_lock);
  3876. if (!i915_mch_dev)
  3877. goto out_unlock;
  3878. dev_priv = i915_mch_dev;
  3879. for_each_ring(ring, dev_priv, i)
  3880. ret |= !list_empty(&ring->request_list);
  3881. out_unlock:
  3882. spin_unlock_irq(&mchdev_lock);
  3883. return ret;
  3884. }
  3885. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  3886. /**
  3887. * i915_gpu_turbo_disable - disable graphics turbo
  3888. *
  3889. * Disable graphics turbo by resetting the max frequency and setting the
  3890. * current frequency to the default.
  3891. */
  3892. bool i915_gpu_turbo_disable(void)
  3893. {
  3894. struct drm_i915_private *dev_priv;
  3895. bool ret = true;
  3896. spin_lock_irq(&mchdev_lock);
  3897. if (!i915_mch_dev) {
  3898. ret = false;
  3899. goto out_unlock;
  3900. }
  3901. dev_priv = i915_mch_dev;
  3902. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  3903. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  3904. ret = false;
  3905. out_unlock:
  3906. spin_unlock_irq(&mchdev_lock);
  3907. return ret;
  3908. }
  3909. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  3910. /**
  3911. * Tells the intel_ips driver that the i915 driver is now loaded, if
  3912. * IPS got loaded first.
  3913. *
  3914. * This awkward dance is so that neither module has to depend on the
  3915. * other in order for IPS to do the appropriate communication of
  3916. * GPU turbo limits to i915.
  3917. */
  3918. static void
  3919. ips_ping_for_i915_load(void)
  3920. {
  3921. void (*link)(void);
  3922. link = symbol_get(ips_link_to_i915_driver);
  3923. if (link) {
  3924. link();
  3925. symbol_put(ips_link_to_i915_driver);
  3926. }
  3927. }
  3928. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  3929. {
  3930. /* We only register the i915 ips part with intel-ips once everything is
  3931. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  3932. spin_lock_irq(&mchdev_lock);
  3933. i915_mch_dev = dev_priv;
  3934. spin_unlock_irq(&mchdev_lock);
  3935. ips_ping_for_i915_load();
  3936. }
  3937. void intel_gpu_ips_teardown(void)
  3938. {
  3939. spin_lock_irq(&mchdev_lock);
  3940. i915_mch_dev = NULL;
  3941. spin_unlock_irq(&mchdev_lock);
  3942. }
  3943. static void intel_init_emon(struct drm_device *dev)
  3944. {
  3945. struct drm_i915_private *dev_priv = dev->dev_private;
  3946. u32 lcfuse;
  3947. u8 pxw[16];
  3948. int i;
  3949. /* Disable to program */
  3950. I915_WRITE(ECR, 0);
  3951. POSTING_READ(ECR);
  3952. /* Program energy weights for various events */
  3953. I915_WRITE(SDEW, 0x15040d00);
  3954. I915_WRITE(CSIEW0, 0x007f0000);
  3955. I915_WRITE(CSIEW1, 0x1e220004);
  3956. I915_WRITE(CSIEW2, 0x04000004);
  3957. for (i = 0; i < 5; i++)
  3958. I915_WRITE(PEW + (i * 4), 0);
  3959. for (i = 0; i < 3; i++)
  3960. I915_WRITE(DEW + (i * 4), 0);
  3961. /* Program P-state weights to account for frequency power adjustment */
  3962. for (i = 0; i < 16; i++) {
  3963. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  3964. unsigned long freq = intel_pxfreq(pxvidfreq);
  3965. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  3966. PXVFREQ_PX_SHIFT;
  3967. unsigned long val;
  3968. val = vid * vid;
  3969. val *= (freq / 1000);
  3970. val *= 255;
  3971. val /= (127*127*900);
  3972. if (val > 0xff)
  3973. DRM_ERROR("bad pxval: %ld\n", val);
  3974. pxw[i] = val;
  3975. }
  3976. /* Render standby states get 0 weight */
  3977. pxw[14] = 0;
  3978. pxw[15] = 0;
  3979. for (i = 0; i < 4; i++) {
  3980. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  3981. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  3982. I915_WRITE(PXW + (i * 4), val);
  3983. }
  3984. /* Adjust magic regs to magic values (more experimental results) */
  3985. I915_WRITE(OGW0, 0);
  3986. I915_WRITE(OGW1, 0);
  3987. I915_WRITE(EG0, 0x00007f00);
  3988. I915_WRITE(EG1, 0x0000000e);
  3989. I915_WRITE(EG2, 0x000e0000);
  3990. I915_WRITE(EG3, 0x68000300);
  3991. I915_WRITE(EG4, 0x42000000);
  3992. I915_WRITE(EG5, 0x00140031);
  3993. I915_WRITE(EG6, 0);
  3994. I915_WRITE(EG7, 0);
  3995. for (i = 0; i < 8; i++)
  3996. I915_WRITE(PXWL + (i * 4), 0);
  3997. /* Enable PMON + select events */
  3998. I915_WRITE(ECR, 0x80000019);
  3999. lcfuse = I915_READ(LCFUSE02);
  4000. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4001. }
  4002. void intel_disable_gt_powersave(struct drm_device *dev)
  4003. {
  4004. struct drm_i915_private *dev_priv = dev->dev_private;
  4005. /* Interrupts should be disabled already to avoid re-arming. */
  4006. WARN_ON(dev->irq_enabled);
  4007. if (IS_IRONLAKE_M(dev)) {
  4008. ironlake_disable_drps(dev);
  4009. ironlake_disable_rc6(dev);
  4010. } else if (INTEL_INFO(dev)->gen >= 6) {
  4011. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  4012. cancel_work_sync(&dev_priv->rps.work);
  4013. mutex_lock(&dev_priv->rps.hw_lock);
  4014. if (IS_VALLEYVIEW(dev))
  4015. valleyview_disable_rps(dev);
  4016. else
  4017. gen6_disable_rps(dev);
  4018. dev_priv->rps.enabled = false;
  4019. mutex_unlock(&dev_priv->rps.hw_lock);
  4020. }
  4021. }
  4022. static void intel_gen6_powersave_work(struct work_struct *work)
  4023. {
  4024. struct drm_i915_private *dev_priv =
  4025. container_of(work, struct drm_i915_private,
  4026. rps.delayed_resume_work.work);
  4027. struct drm_device *dev = dev_priv->dev;
  4028. mutex_lock(&dev_priv->rps.hw_lock);
  4029. if (IS_VALLEYVIEW(dev)) {
  4030. valleyview_enable_rps(dev);
  4031. } else {
  4032. gen6_enable_rps(dev);
  4033. gen6_update_ring_freq(dev);
  4034. }
  4035. dev_priv->rps.enabled = true;
  4036. mutex_unlock(&dev_priv->rps.hw_lock);
  4037. }
  4038. void intel_enable_gt_powersave(struct drm_device *dev)
  4039. {
  4040. struct drm_i915_private *dev_priv = dev->dev_private;
  4041. if (IS_IRONLAKE_M(dev)) {
  4042. ironlake_enable_drps(dev);
  4043. ironlake_enable_rc6(dev);
  4044. intel_init_emon(dev);
  4045. } else if (IS_GEN6(dev) || IS_GEN7(dev)) {
  4046. /*
  4047. * PCU communication is slow and this doesn't need to be
  4048. * done at any specific time, so do this out of our fast path
  4049. * to make resume and init faster.
  4050. */
  4051. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  4052. round_jiffies_up_relative(HZ));
  4053. }
  4054. }
  4055. static void ibx_init_clock_gating(struct drm_device *dev)
  4056. {
  4057. struct drm_i915_private *dev_priv = dev->dev_private;
  4058. /*
  4059. * On Ibex Peak and Cougar Point, we need to disable clock
  4060. * gating for the panel power sequencer or it will fail to
  4061. * start up when no ports are active.
  4062. */
  4063. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4064. }
  4065. static void g4x_disable_trickle_feed(struct drm_device *dev)
  4066. {
  4067. struct drm_i915_private *dev_priv = dev->dev_private;
  4068. int pipe;
  4069. for_each_pipe(pipe) {
  4070. I915_WRITE(DSPCNTR(pipe),
  4071. I915_READ(DSPCNTR(pipe)) |
  4072. DISPPLANE_TRICKLE_FEED_DISABLE);
  4073. intel_flush_primary_plane(dev_priv, pipe);
  4074. }
  4075. }
  4076. static void ironlake_init_clock_gating(struct drm_device *dev)
  4077. {
  4078. struct drm_i915_private *dev_priv = dev->dev_private;
  4079. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4080. /*
  4081. * Required for FBC
  4082. * WaFbcDisableDpfcClockGating:ilk
  4083. */
  4084. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  4085. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  4086. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  4087. I915_WRITE(PCH_3DCGDIS0,
  4088. MARIUNIT_CLOCK_GATE_DISABLE |
  4089. SVSMUNIT_CLOCK_GATE_DISABLE);
  4090. I915_WRITE(PCH_3DCGDIS1,
  4091. VFMUNIT_CLOCK_GATE_DISABLE);
  4092. /*
  4093. * According to the spec the following bits should be set in
  4094. * order to enable memory self-refresh
  4095. * The bit 22/21 of 0x42004
  4096. * The bit 5 of 0x42020
  4097. * The bit 15 of 0x45000
  4098. */
  4099. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4100. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  4101. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  4102. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  4103. I915_WRITE(DISP_ARB_CTL,
  4104. (I915_READ(DISP_ARB_CTL) |
  4105. DISP_FBC_WM_DIS));
  4106. I915_WRITE(WM3_LP_ILK, 0);
  4107. I915_WRITE(WM2_LP_ILK, 0);
  4108. I915_WRITE(WM1_LP_ILK, 0);
  4109. /*
  4110. * Based on the document from hardware guys the following bits
  4111. * should be set unconditionally in order to enable FBC.
  4112. * The bit 22 of 0x42000
  4113. * The bit 22 of 0x42004
  4114. * The bit 7,8,9 of 0x42020.
  4115. */
  4116. if (IS_IRONLAKE_M(dev)) {
  4117. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  4118. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4119. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4120. ILK_FBCQ_DIS);
  4121. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4122. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4123. ILK_DPARB_GATE);
  4124. }
  4125. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4126. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4127. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4128. ILK_ELPIN_409_SELECT);
  4129. I915_WRITE(_3D_CHICKEN2,
  4130. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  4131. _3D_CHICKEN2_WM_READ_PIPELINED);
  4132. /* WaDisableRenderCachePipelinedFlush:ilk */
  4133. I915_WRITE(CACHE_MODE_0,
  4134. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4135. g4x_disable_trickle_feed(dev);
  4136. ibx_init_clock_gating(dev);
  4137. }
  4138. static void cpt_init_clock_gating(struct drm_device *dev)
  4139. {
  4140. struct drm_i915_private *dev_priv = dev->dev_private;
  4141. int pipe;
  4142. uint32_t val;
  4143. /*
  4144. * On Ibex Peak and Cougar Point, we need to disable clock
  4145. * gating for the panel power sequencer or it will fail to
  4146. * start up when no ports are active.
  4147. */
  4148. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  4149. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  4150. DPLS_EDP_PPS_FIX_DIS);
  4151. /* The below fixes the weird display corruption, a few pixels shifted
  4152. * downward, on (only) LVDS of some HP laptops with IVY.
  4153. */
  4154. for_each_pipe(pipe) {
  4155. val = I915_READ(TRANS_CHICKEN2(pipe));
  4156. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  4157. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4158. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  4159. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  4160. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  4161. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  4162. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  4163. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  4164. }
  4165. /* WADP0ClockGatingDisable */
  4166. for_each_pipe(pipe) {
  4167. I915_WRITE(TRANS_CHICKEN1(pipe),
  4168. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4169. }
  4170. }
  4171. static void gen6_check_mch_setup(struct drm_device *dev)
  4172. {
  4173. struct drm_i915_private *dev_priv = dev->dev_private;
  4174. uint32_t tmp;
  4175. tmp = I915_READ(MCH_SSKPD);
  4176. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL) {
  4177. DRM_INFO("Wrong MCH_SSKPD value: 0x%08x\n", tmp);
  4178. DRM_INFO("This can cause pipe underruns and display issues.\n");
  4179. DRM_INFO("Please upgrade your BIOS to fix this.\n");
  4180. }
  4181. }
  4182. static void gen6_init_clock_gating(struct drm_device *dev)
  4183. {
  4184. struct drm_i915_private *dev_priv = dev->dev_private;
  4185. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  4186. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  4187. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4188. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4189. ILK_ELPIN_409_SELECT);
  4190. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  4191. I915_WRITE(_3D_CHICKEN,
  4192. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  4193. /* WaSetupGtModeTdRowDispatch:snb */
  4194. if (IS_SNB_GT1(dev))
  4195. I915_WRITE(GEN6_GT_MODE,
  4196. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  4197. I915_WRITE(WM3_LP_ILK, 0);
  4198. I915_WRITE(WM2_LP_ILK, 0);
  4199. I915_WRITE(WM1_LP_ILK, 0);
  4200. I915_WRITE(CACHE_MODE_0,
  4201. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  4202. I915_WRITE(GEN6_UCGCTL1,
  4203. I915_READ(GEN6_UCGCTL1) |
  4204. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  4205. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  4206. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4207. * gating disable must be set. Failure to set it results in
  4208. * flickering pixels due to Z write ordering failures after
  4209. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4210. * Sanctuary and Tropics, and apparently anything else with
  4211. * alpha test or pixel discard.
  4212. *
  4213. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4214. * but we didn't debug actual testcases to find it out.
  4215. *
  4216. * Also apply WaDisableVDSUnitClockGating:snb and
  4217. * WaDisableRCPBUnitClockGating:snb.
  4218. */
  4219. I915_WRITE(GEN6_UCGCTL2,
  4220. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4221. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4222. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4223. /* Bspec says we need to always set all mask bits. */
  4224. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  4225. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  4226. /*
  4227. * According to the spec the following bits should be
  4228. * set in order to enable memory self-refresh and fbc:
  4229. * The bit21 and bit22 of 0x42000
  4230. * The bit21 and bit22 of 0x42004
  4231. * The bit5 and bit7 of 0x42020
  4232. * The bit14 of 0x70180
  4233. * The bit14 of 0x71180
  4234. *
  4235. * WaFbcAsynchFlipDisableFbcQueue:snb
  4236. */
  4237. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  4238. I915_READ(ILK_DISPLAY_CHICKEN1) |
  4239. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  4240. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  4241. I915_READ(ILK_DISPLAY_CHICKEN2) |
  4242. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  4243. I915_WRITE(ILK_DSPCLK_GATE_D,
  4244. I915_READ(ILK_DSPCLK_GATE_D) |
  4245. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  4246. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  4247. g4x_disable_trickle_feed(dev);
  4248. /* The default value should be 0x200 according to docs, but the two
  4249. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  4250. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  4251. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  4252. cpt_init_clock_gating(dev);
  4253. gen6_check_mch_setup(dev);
  4254. }
  4255. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  4256. {
  4257. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  4258. reg &= ~GEN7_FF_SCHED_MASK;
  4259. reg |= GEN7_FF_TS_SCHED_HW;
  4260. reg |= GEN7_FF_VS_SCHED_HW;
  4261. reg |= GEN7_FF_DS_SCHED_HW;
  4262. if (IS_HASWELL(dev_priv->dev))
  4263. reg &= ~GEN7_FF_VS_REF_CNT_FFME;
  4264. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  4265. }
  4266. static void lpt_init_clock_gating(struct drm_device *dev)
  4267. {
  4268. struct drm_i915_private *dev_priv = dev->dev_private;
  4269. /*
  4270. * TODO: this bit should only be enabled when really needed, then
  4271. * disabled when not needed anymore in order to save power.
  4272. */
  4273. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  4274. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  4275. I915_READ(SOUTH_DSPCLK_GATE_D) |
  4276. PCH_LP_PARTITION_LEVEL_DISABLE);
  4277. /* WADPOClockGatingDisable:hsw */
  4278. I915_WRITE(_TRANSA_CHICKEN1,
  4279. I915_READ(_TRANSA_CHICKEN1) |
  4280. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  4281. }
  4282. static void lpt_suspend_hw(struct drm_device *dev)
  4283. {
  4284. struct drm_i915_private *dev_priv = dev->dev_private;
  4285. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  4286. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  4287. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  4288. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  4289. }
  4290. }
  4291. static void haswell_init_clock_gating(struct drm_device *dev)
  4292. {
  4293. struct drm_i915_private *dev_priv = dev->dev_private;
  4294. I915_WRITE(WM3_LP_ILK, 0);
  4295. I915_WRITE(WM2_LP_ILK, 0);
  4296. I915_WRITE(WM1_LP_ILK, 0);
  4297. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4298. * This implements the WaDisableRCZUnitClockGating:hsw workaround.
  4299. */
  4300. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  4301. /* Apply the WaDisableRHWOOptimizationForRenderHang:hsw workaround. */
  4302. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4303. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4304. /* WaApplyL3ControlAndL3ChickenMode:hsw */
  4305. I915_WRITE(GEN7_L3CNTLREG1,
  4306. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4307. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4308. GEN7_WA_L3_CHICKEN_MODE);
  4309. /* This is required by WaCatErrorRejectionIssue:hsw */
  4310. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4311. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4312. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4313. /* WaVSRefCountFullforceMissDisable:hsw */
  4314. gen7_setup_fixed_func_scheduler(dev_priv);
  4315. /* WaDisable4x2SubspanOptimization:hsw */
  4316. I915_WRITE(CACHE_MODE_1,
  4317. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4318. /* WaSwitchSolVfFArbitrationPriority:hsw */
  4319. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  4320. /* WaRsPkgCStateDisplayPMReq:hsw */
  4321. I915_WRITE(CHICKEN_PAR1_1,
  4322. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  4323. lpt_init_clock_gating(dev);
  4324. }
  4325. static void ivybridge_init_clock_gating(struct drm_device *dev)
  4326. {
  4327. struct drm_i915_private *dev_priv = dev->dev_private;
  4328. uint32_t snpcr;
  4329. I915_WRITE(WM3_LP_ILK, 0);
  4330. I915_WRITE(WM2_LP_ILK, 0);
  4331. I915_WRITE(WM1_LP_ILK, 0);
  4332. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  4333. /* WaDisableEarlyCull:ivb */
  4334. I915_WRITE(_3D_CHICKEN3,
  4335. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4336. /* WaDisableBackToBackFlipFix:ivb */
  4337. I915_WRITE(IVB_CHICKEN3,
  4338. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4339. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4340. /* WaDisablePSDDualDispatchEnable:ivb */
  4341. if (IS_IVB_GT1(dev))
  4342. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4343. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4344. else
  4345. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  4346. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4347. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  4348. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4349. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4350. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  4351. I915_WRITE(GEN7_L3CNTLREG1,
  4352. GEN7_WA_FOR_GEN7_L3_CONTROL);
  4353. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  4354. GEN7_WA_L3_CHICKEN_MODE);
  4355. if (IS_IVB_GT1(dev))
  4356. I915_WRITE(GEN7_ROW_CHICKEN2,
  4357. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4358. else
  4359. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  4360. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4361. /* WaForceL3Serialization:ivb */
  4362. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4363. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4364. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4365. * gating disable must be set. Failure to set it results in
  4366. * flickering pixels due to Z write ordering failures after
  4367. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4368. * Sanctuary and Tropics, and apparently anything else with
  4369. * alpha test or pixel discard.
  4370. *
  4371. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4372. * but we didn't debug actual testcases to find it out.
  4373. *
  4374. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4375. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  4376. */
  4377. I915_WRITE(GEN6_UCGCTL2,
  4378. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4379. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4380. /* This is required by WaCatErrorRejectionIssue:ivb */
  4381. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4382. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4383. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4384. g4x_disable_trickle_feed(dev);
  4385. /* WaVSRefCountFullforceMissDisable:ivb */
  4386. gen7_setup_fixed_func_scheduler(dev_priv);
  4387. /* WaDisable4x2SubspanOptimization:ivb */
  4388. I915_WRITE(CACHE_MODE_1,
  4389. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4390. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4391. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4392. snpcr |= GEN6_MBC_SNPCR_MED;
  4393. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4394. if (!HAS_PCH_NOP(dev))
  4395. cpt_init_clock_gating(dev);
  4396. gen6_check_mch_setup(dev);
  4397. }
  4398. static void valleyview_init_clock_gating(struct drm_device *dev)
  4399. {
  4400. struct drm_i915_private *dev_priv = dev->dev_private;
  4401. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  4402. /* WaDisableEarlyCull:vlv */
  4403. I915_WRITE(_3D_CHICKEN3,
  4404. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  4405. /* WaDisableBackToBackFlipFix:vlv */
  4406. I915_WRITE(IVB_CHICKEN3,
  4407. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  4408. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  4409. /* WaDisablePSDDualDispatchEnable:vlv */
  4410. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  4411. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  4412. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  4413. /* Apply the WaDisableRHWOOptimizationForRenderHang:vlv workaround. */
  4414. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  4415. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  4416. /* WaApplyL3ControlAndL3ChickenMode:vlv */
  4417. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  4418. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  4419. /* WaForceL3Serialization:vlv */
  4420. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  4421. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  4422. /* WaDisableDopClockGating:vlv */
  4423. I915_WRITE(GEN7_ROW_CHICKEN2,
  4424. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  4425. /* This is required by WaCatErrorRejectionIssue:vlv */
  4426. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  4427. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  4428. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  4429. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  4430. * gating disable must be set. Failure to set it results in
  4431. * flickering pixels due to Z write ordering failures after
  4432. * some amount of runtime in the Mesa "fire" demo, and Unigine
  4433. * Sanctuary and Tropics, and apparently anything else with
  4434. * alpha test or pixel discard.
  4435. *
  4436. * According to the spec, bit 11 (RCCUNIT) must also be set,
  4437. * but we didn't debug actual testcases to find it out.
  4438. *
  4439. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  4440. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  4441. *
  4442. * Also apply WaDisableVDSUnitClockGating:vlv and
  4443. * WaDisableRCPBUnitClockGating:vlv.
  4444. */
  4445. I915_WRITE(GEN6_UCGCTL2,
  4446. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  4447. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  4448. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  4449. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  4450. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  4451. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  4452. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  4453. I915_WRITE(CACHE_MODE_1,
  4454. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  4455. /*
  4456. * WaDisableVLVClockGating_VBIIssue:vlv
  4457. * Disable clock gating on th GCFG unit to prevent a delay
  4458. * in the reporting of vblank events.
  4459. */
  4460. I915_WRITE(VLV_GUNIT_CLOCK_GATE, 0xffffffff);
  4461. /* Conservative clock gating settings for now */
  4462. I915_WRITE(0x9400, 0xffffffff);
  4463. I915_WRITE(0x9404, 0xffffffff);
  4464. I915_WRITE(0x9408, 0xffffffff);
  4465. I915_WRITE(0x940c, 0xffffffff);
  4466. I915_WRITE(0x9410, 0xffffffff);
  4467. I915_WRITE(0x9414, 0xffffffff);
  4468. I915_WRITE(0x9418, 0xffffffff);
  4469. }
  4470. static void g4x_init_clock_gating(struct drm_device *dev)
  4471. {
  4472. struct drm_i915_private *dev_priv = dev->dev_private;
  4473. uint32_t dspclk_gate;
  4474. I915_WRITE(RENCLK_GATE_D1, 0);
  4475. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  4476. GS_UNIT_CLOCK_GATE_DISABLE |
  4477. CL_UNIT_CLOCK_GATE_DISABLE);
  4478. I915_WRITE(RAMCLK_GATE_D, 0);
  4479. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  4480. OVRUNIT_CLOCK_GATE_DISABLE |
  4481. OVCUNIT_CLOCK_GATE_DISABLE;
  4482. if (IS_GM45(dev))
  4483. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  4484. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  4485. /* WaDisableRenderCachePipelinedFlush */
  4486. I915_WRITE(CACHE_MODE_0,
  4487. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  4488. g4x_disable_trickle_feed(dev);
  4489. }
  4490. static void crestline_init_clock_gating(struct drm_device *dev)
  4491. {
  4492. struct drm_i915_private *dev_priv = dev->dev_private;
  4493. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  4494. I915_WRITE(RENCLK_GATE_D2, 0);
  4495. I915_WRITE(DSPCLK_GATE_D, 0);
  4496. I915_WRITE(RAMCLK_GATE_D, 0);
  4497. I915_WRITE16(DEUC, 0);
  4498. I915_WRITE(MI_ARB_STATE,
  4499. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4500. }
  4501. static void broadwater_init_clock_gating(struct drm_device *dev)
  4502. {
  4503. struct drm_i915_private *dev_priv = dev->dev_private;
  4504. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  4505. I965_RCC_CLOCK_GATE_DISABLE |
  4506. I965_RCPB_CLOCK_GATE_DISABLE |
  4507. I965_ISC_CLOCK_GATE_DISABLE |
  4508. I965_FBC_CLOCK_GATE_DISABLE);
  4509. I915_WRITE(RENCLK_GATE_D2, 0);
  4510. I915_WRITE(MI_ARB_STATE,
  4511. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  4512. }
  4513. static void gen3_init_clock_gating(struct drm_device *dev)
  4514. {
  4515. struct drm_i915_private *dev_priv = dev->dev_private;
  4516. u32 dstate = I915_READ(D_STATE);
  4517. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  4518. DSTATE_DOT_CLOCK_GATING;
  4519. I915_WRITE(D_STATE, dstate);
  4520. if (IS_PINEVIEW(dev))
  4521. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  4522. /* IIR "flip pending" means done if this bit is set */
  4523. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  4524. }
  4525. static void i85x_init_clock_gating(struct drm_device *dev)
  4526. {
  4527. struct drm_i915_private *dev_priv = dev->dev_private;
  4528. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  4529. }
  4530. static void i830_init_clock_gating(struct drm_device *dev)
  4531. {
  4532. struct drm_i915_private *dev_priv = dev->dev_private;
  4533. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  4534. }
  4535. void intel_init_clock_gating(struct drm_device *dev)
  4536. {
  4537. struct drm_i915_private *dev_priv = dev->dev_private;
  4538. dev_priv->display.init_clock_gating(dev);
  4539. }
  4540. void intel_suspend_hw(struct drm_device *dev)
  4541. {
  4542. if (HAS_PCH_LPT(dev))
  4543. lpt_suspend_hw(dev);
  4544. }
  4545. /**
  4546. * We should only use the power well if we explicitly asked the hardware to
  4547. * enable it, so check if it's enabled and also check if we've requested it to
  4548. * be enabled.
  4549. */
  4550. bool intel_display_power_enabled(struct drm_device *dev,
  4551. enum intel_display_power_domain domain)
  4552. {
  4553. struct drm_i915_private *dev_priv = dev->dev_private;
  4554. if (!HAS_POWER_WELL(dev))
  4555. return true;
  4556. switch (domain) {
  4557. case POWER_DOMAIN_PIPE_A:
  4558. case POWER_DOMAIN_TRANSCODER_EDP:
  4559. return true;
  4560. case POWER_DOMAIN_VGA:
  4561. case POWER_DOMAIN_PIPE_B:
  4562. case POWER_DOMAIN_PIPE_C:
  4563. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4564. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4565. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4566. case POWER_DOMAIN_TRANSCODER_A:
  4567. case POWER_DOMAIN_TRANSCODER_B:
  4568. case POWER_DOMAIN_TRANSCODER_C:
  4569. return I915_READ(HSW_PWR_WELL_DRIVER) ==
  4570. (HSW_PWR_WELL_ENABLE_REQUEST | HSW_PWR_WELL_STATE_ENABLED);
  4571. default:
  4572. BUG();
  4573. }
  4574. }
  4575. static void __intel_set_power_well(struct drm_device *dev, bool enable)
  4576. {
  4577. struct drm_i915_private *dev_priv = dev->dev_private;
  4578. bool is_enabled, enable_requested;
  4579. uint32_t tmp;
  4580. tmp = I915_READ(HSW_PWR_WELL_DRIVER);
  4581. is_enabled = tmp & HSW_PWR_WELL_STATE_ENABLED;
  4582. enable_requested = tmp & HSW_PWR_WELL_ENABLE_REQUEST;
  4583. if (enable) {
  4584. if (!enable_requested)
  4585. I915_WRITE(HSW_PWR_WELL_DRIVER,
  4586. HSW_PWR_WELL_ENABLE_REQUEST);
  4587. if (!is_enabled) {
  4588. DRM_DEBUG_KMS("Enabling power well\n");
  4589. if (wait_for((I915_READ(HSW_PWR_WELL_DRIVER) &
  4590. HSW_PWR_WELL_STATE_ENABLED), 20))
  4591. DRM_ERROR("Timeout enabling power well\n");
  4592. }
  4593. } else {
  4594. if (enable_requested) {
  4595. unsigned long irqflags;
  4596. enum pipe p;
  4597. I915_WRITE(HSW_PWR_WELL_DRIVER, 0);
  4598. POSTING_READ(HSW_PWR_WELL_DRIVER);
  4599. DRM_DEBUG_KMS("Requesting to disable the power well\n");
  4600. /*
  4601. * After this, the registers on the pipes that are part
  4602. * of the power well will become zero, so we have to
  4603. * adjust our counters according to that.
  4604. *
  4605. * FIXME: Should we do this in general in
  4606. * drm_vblank_post_modeset?
  4607. */
  4608. spin_lock_irqsave(&dev->vbl_lock, irqflags);
  4609. for_each_pipe(p)
  4610. if (p != PIPE_A)
  4611. dev->vblank[p].last = 0;
  4612. spin_unlock_irqrestore(&dev->vbl_lock, irqflags);
  4613. }
  4614. }
  4615. }
  4616. static void __intel_power_well_get(struct i915_power_well *power_well)
  4617. {
  4618. if (!power_well->count++)
  4619. __intel_set_power_well(power_well->device, true);
  4620. }
  4621. static void __intel_power_well_put(struct i915_power_well *power_well)
  4622. {
  4623. WARN_ON(!power_well->count);
  4624. if (!--power_well->count)
  4625. __intel_set_power_well(power_well->device, false);
  4626. }
  4627. void intel_display_power_get(struct drm_device *dev,
  4628. enum intel_display_power_domain domain)
  4629. {
  4630. struct drm_i915_private *dev_priv = dev->dev_private;
  4631. struct i915_power_well *power_well = &dev_priv->power_well;
  4632. if (!HAS_POWER_WELL(dev))
  4633. return;
  4634. switch (domain) {
  4635. case POWER_DOMAIN_PIPE_A:
  4636. case POWER_DOMAIN_TRANSCODER_EDP:
  4637. return;
  4638. case POWER_DOMAIN_VGA:
  4639. case POWER_DOMAIN_PIPE_B:
  4640. case POWER_DOMAIN_PIPE_C:
  4641. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4642. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4643. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4644. case POWER_DOMAIN_TRANSCODER_A:
  4645. case POWER_DOMAIN_TRANSCODER_B:
  4646. case POWER_DOMAIN_TRANSCODER_C:
  4647. spin_lock_irq(&power_well->lock);
  4648. __intel_power_well_get(power_well);
  4649. spin_unlock_irq(&power_well->lock);
  4650. return;
  4651. default:
  4652. BUG();
  4653. }
  4654. }
  4655. void intel_display_power_put(struct drm_device *dev,
  4656. enum intel_display_power_domain domain)
  4657. {
  4658. struct drm_i915_private *dev_priv = dev->dev_private;
  4659. struct i915_power_well *power_well = &dev_priv->power_well;
  4660. if (!HAS_POWER_WELL(dev))
  4661. return;
  4662. switch (domain) {
  4663. case POWER_DOMAIN_PIPE_A:
  4664. case POWER_DOMAIN_TRANSCODER_EDP:
  4665. return;
  4666. case POWER_DOMAIN_VGA:
  4667. case POWER_DOMAIN_PIPE_B:
  4668. case POWER_DOMAIN_PIPE_C:
  4669. case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
  4670. case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
  4671. case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
  4672. case POWER_DOMAIN_TRANSCODER_A:
  4673. case POWER_DOMAIN_TRANSCODER_B:
  4674. case POWER_DOMAIN_TRANSCODER_C:
  4675. spin_lock_irq(&power_well->lock);
  4676. __intel_power_well_put(power_well);
  4677. spin_unlock_irq(&power_well->lock);
  4678. return;
  4679. default:
  4680. BUG();
  4681. }
  4682. }
  4683. static struct i915_power_well *hsw_pwr;
  4684. /* Display audio driver power well request */
  4685. void i915_request_power_well(void)
  4686. {
  4687. if (WARN_ON(!hsw_pwr))
  4688. return;
  4689. spin_lock_irq(&hsw_pwr->lock);
  4690. __intel_power_well_get(hsw_pwr);
  4691. spin_unlock_irq(&hsw_pwr->lock);
  4692. }
  4693. EXPORT_SYMBOL_GPL(i915_request_power_well);
  4694. /* Display audio driver power well release */
  4695. void i915_release_power_well(void)
  4696. {
  4697. if (WARN_ON(!hsw_pwr))
  4698. return;
  4699. spin_lock_irq(&hsw_pwr->lock);
  4700. __intel_power_well_put(hsw_pwr);
  4701. spin_unlock_irq(&hsw_pwr->lock);
  4702. }
  4703. EXPORT_SYMBOL_GPL(i915_release_power_well);
  4704. int i915_init_power_well(struct drm_device *dev)
  4705. {
  4706. struct drm_i915_private *dev_priv = dev->dev_private;
  4707. hsw_pwr = &dev_priv->power_well;
  4708. hsw_pwr->device = dev;
  4709. spin_lock_init(&hsw_pwr->lock);
  4710. hsw_pwr->count = 0;
  4711. return 0;
  4712. }
  4713. void i915_remove_power_well(struct drm_device *dev)
  4714. {
  4715. hsw_pwr = NULL;
  4716. }
  4717. void intel_set_power_well(struct drm_device *dev, bool enable)
  4718. {
  4719. struct drm_i915_private *dev_priv = dev->dev_private;
  4720. struct i915_power_well *power_well = &dev_priv->power_well;
  4721. if (!HAS_POWER_WELL(dev))
  4722. return;
  4723. if (!i915_disable_power_well && !enable)
  4724. return;
  4725. spin_lock_irq(&power_well->lock);
  4726. /*
  4727. * This function will only ever contribute one
  4728. * to the power well reference count. i915_request
  4729. * is what tracks whether we have or have not
  4730. * added the one to the reference count.
  4731. */
  4732. if (power_well->i915_request == enable)
  4733. goto out;
  4734. power_well->i915_request = enable;
  4735. if (enable)
  4736. __intel_power_well_get(power_well);
  4737. else
  4738. __intel_power_well_put(power_well);
  4739. out:
  4740. spin_unlock_irq(&power_well->lock);
  4741. }
  4742. static void intel_resume_power_well(struct drm_device *dev)
  4743. {
  4744. struct drm_i915_private *dev_priv = dev->dev_private;
  4745. struct i915_power_well *power_well = &dev_priv->power_well;
  4746. if (!HAS_POWER_WELL(dev))
  4747. return;
  4748. spin_lock_irq(&power_well->lock);
  4749. __intel_set_power_well(dev, power_well->count > 0);
  4750. spin_unlock_irq(&power_well->lock);
  4751. }
  4752. /*
  4753. * Starting with Haswell, we have a "Power Down Well" that can be turned off
  4754. * when not needed anymore. We have 4 registers that can request the power well
  4755. * to be enabled, and it will only be disabled if none of the registers is
  4756. * requesting it to be enabled.
  4757. */
  4758. void intel_init_power_well(struct drm_device *dev)
  4759. {
  4760. struct drm_i915_private *dev_priv = dev->dev_private;
  4761. if (!HAS_POWER_WELL(dev))
  4762. return;
  4763. /* For now, we need the power well to be always enabled. */
  4764. intel_set_power_well(dev, true);
  4765. intel_resume_power_well(dev);
  4766. /* We're taking over the BIOS, so clear any requests made by it since
  4767. * the driver is in charge now. */
  4768. if (I915_READ(HSW_PWR_WELL_BIOS) & HSW_PWR_WELL_ENABLE_REQUEST)
  4769. I915_WRITE(HSW_PWR_WELL_BIOS, 0);
  4770. }
  4771. /* Disables PC8 so we can use the GMBUS and DP AUX interrupts. */
  4772. void intel_aux_display_runtime_get(struct drm_i915_private *dev_priv)
  4773. {
  4774. hsw_disable_package_c8(dev_priv);
  4775. }
  4776. void intel_aux_display_runtime_put(struct drm_i915_private *dev_priv)
  4777. {
  4778. hsw_enable_package_c8(dev_priv);
  4779. }
  4780. /* Set up chip specific power management-related functions */
  4781. void intel_init_pm(struct drm_device *dev)
  4782. {
  4783. struct drm_i915_private *dev_priv = dev->dev_private;
  4784. if (I915_HAS_FBC(dev)) {
  4785. if (HAS_PCH_SPLIT(dev)) {
  4786. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  4787. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  4788. dev_priv->display.enable_fbc =
  4789. gen7_enable_fbc;
  4790. else
  4791. dev_priv->display.enable_fbc =
  4792. ironlake_enable_fbc;
  4793. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  4794. } else if (IS_GM45(dev)) {
  4795. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  4796. dev_priv->display.enable_fbc = g4x_enable_fbc;
  4797. dev_priv->display.disable_fbc = g4x_disable_fbc;
  4798. } else if (IS_CRESTLINE(dev)) {
  4799. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  4800. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  4801. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  4802. }
  4803. /* 855GM needs testing */
  4804. }
  4805. /* For cxsr */
  4806. if (IS_PINEVIEW(dev))
  4807. i915_pineview_get_mem_freq(dev);
  4808. else if (IS_GEN5(dev))
  4809. i915_ironlake_get_mem_freq(dev);
  4810. /* For FIFO watermark updates */
  4811. if (HAS_PCH_SPLIT(dev)) {
  4812. intel_setup_wm_latency(dev);
  4813. if (IS_GEN5(dev)) {
  4814. if (dev_priv->wm.pri_latency[1] &&
  4815. dev_priv->wm.spr_latency[1] &&
  4816. dev_priv->wm.cur_latency[1])
  4817. dev_priv->display.update_wm = ironlake_update_wm;
  4818. else {
  4819. DRM_DEBUG_KMS("Failed to get proper latency. "
  4820. "Disable CxSR\n");
  4821. dev_priv->display.update_wm = NULL;
  4822. }
  4823. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  4824. } else if (IS_GEN6(dev)) {
  4825. if (dev_priv->wm.pri_latency[0] &&
  4826. dev_priv->wm.spr_latency[0] &&
  4827. dev_priv->wm.cur_latency[0]) {
  4828. dev_priv->display.update_wm = sandybridge_update_wm;
  4829. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4830. } else {
  4831. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4832. "Disable CxSR\n");
  4833. dev_priv->display.update_wm = NULL;
  4834. }
  4835. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  4836. } else if (IS_IVYBRIDGE(dev)) {
  4837. if (dev_priv->wm.pri_latency[0] &&
  4838. dev_priv->wm.spr_latency[0] &&
  4839. dev_priv->wm.cur_latency[0]) {
  4840. dev_priv->display.update_wm = ivybridge_update_wm;
  4841. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  4842. } else {
  4843. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4844. "Disable CxSR\n");
  4845. dev_priv->display.update_wm = NULL;
  4846. }
  4847. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  4848. } else if (IS_HASWELL(dev)) {
  4849. if (dev_priv->wm.pri_latency[0] &&
  4850. dev_priv->wm.spr_latency[0] &&
  4851. dev_priv->wm.cur_latency[0]) {
  4852. dev_priv->display.update_wm = haswell_update_wm;
  4853. dev_priv->display.update_sprite_wm =
  4854. haswell_update_sprite_wm;
  4855. } else {
  4856. DRM_DEBUG_KMS("Failed to read display plane latency. "
  4857. "Disable CxSR\n");
  4858. dev_priv->display.update_wm = NULL;
  4859. }
  4860. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  4861. } else
  4862. dev_priv->display.update_wm = NULL;
  4863. } else if (IS_VALLEYVIEW(dev)) {
  4864. dev_priv->display.update_wm = valleyview_update_wm;
  4865. dev_priv->display.init_clock_gating =
  4866. valleyview_init_clock_gating;
  4867. } else if (IS_PINEVIEW(dev)) {
  4868. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  4869. dev_priv->is_ddr3,
  4870. dev_priv->fsb_freq,
  4871. dev_priv->mem_freq)) {
  4872. DRM_INFO("failed to find known CxSR latency "
  4873. "(found ddr%s fsb freq %d, mem freq %d), "
  4874. "disabling CxSR\n",
  4875. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  4876. dev_priv->fsb_freq, dev_priv->mem_freq);
  4877. /* Disable CxSR and never update its watermark again */
  4878. pineview_disable_cxsr(dev);
  4879. dev_priv->display.update_wm = NULL;
  4880. } else
  4881. dev_priv->display.update_wm = pineview_update_wm;
  4882. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4883. } else if (IS_G4X(dev)) {
  4884. dev_priv->display.update_wm = g4x_update_wm;
  4885. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  4886. } else if (IS_GEN4(dev)) {
  4887. dev_priv->display.update_wm = i965_update_wm;
  4888. if (IS_CRESTLINE(dev))
  4889. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  4890. else if (IS_BROADWATER(dev))
  4891. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  4892. } else if (IS_GEN3(dev)) {
  4893. dev_priv->display.update_wm = i9xx_update_wm;
  4894. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  4895. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  4896. } else if (IS_I865G(dev)) {
  4897. dev_priv->display.update_wm = i830_update_wm;
  4898. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4899. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4900. } else if (IS_I85X(dev)) {
  4901. dev_priv->display.update_wm = i9xx_update_wm;
  4902. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  4903. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  4904. } else {
  4905. dev_priv->display.update_wm = i830_update_wm;
  4906. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  4907. if (IS_845G(dev))
  4908. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  4909. else
  4910. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  4911. }
  4912. }
  4913. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  4914. {
  4915. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4916. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4917. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  4918. return -EAGAIN;
  4919. }
  4920. I915_WRITE(GEN6_PCODE_DATA, *val);
  4921. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4922. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4923. 500)) {
  4924. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  4925. return -ETIMEDOUT;
  4926. }
  4927. *val = I915_READ(GEN6_PCODE_DATA);
  4928. I915_WRITE(GEN6_PCODE_DATA, 0);
  4929. return 0;
  4930. }
  4931. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  4932. {
  4933. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4934. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  4935. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  4936. return -EAGAIN;
  4937. }
  4938. I915_WRITE(GEN6_PCODE_DATA, val);
  4939. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  4940. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  4941. 500)) {
  4942. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  4943. return -ETIMEDOUT;
  4944. }
  4945. I915_WRITE(GEN6_PCODE_DATA, 0);
  4946. return 0;
  4947. }
  4948. int vlv_gpu_freq(int ddr_freq, int val)
  4949. {
  4950. int mult, base;
  4951. switch (ddr_freq) {
  4952. case 800:
  4953. mult = 20;
  4954. base = 120;
  4955. break;
  4956. case 1066:
  4957. mult = 22;
  4958. base = 133;
  4959. break;
  4960. case 1333:
  4961. mult = 21;
  4962. base = 125;
  4963. break;
  4964. default:
  4965. return -1;
  4966. }
  4967. return ((val - 0xbd) * mult) + base;
  4968. }
  4969. int vlv_freq_opcode(int ddr_freq, int val)
  4970. {
  4971. int mult, base;
  4972. switch (ddr_freq) {
  4973. case 800:
  4974. mult = 20;
  4975. base = 120;
  4976. break;
  4977. case 1066:
  4978. mult = 22;
  4979. base = 133;
  4980. break;
  4981. case 1333:
  4982. mult = 21;
  4983. base = 125;
  4984. break;
  4985. default:
  4986. return -1;
  4987. }
  4988. val /= mult;
  4989. val -= base / mult;
  4990. val += 0xbd;
  4991. if (val > 0xea)
  4992. val = 0xea;
  4993. return val;
  4994. }
  4995. void intel_pm_init(struct drm_device *dev)
  4996. {
  4997. struct drm_i915_private *dev_priv = dev->dev_private;
  4998. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  4999. intel_gen6_powersave_work);
  5000. }