ib_recv.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-mapping.h>
  37. #include <rdma/rdma_cm.h>
  38. #include "rds.h"
  39. #include "ib.h"
  40. static struct kmem_cache *rds_ib_incoming_slab;
  41. static struct kmem_cache *rds_ib_frag_slab;
  42. static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  43. /* Free frag and attached recv buffer f_sg */
  44. static void rds_ib_frag_free(struct rds_page_frag *frag)
  45. {
  46. rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
  47. __free_page(sg_page(&frag->f_sg));
  48. kmem_cache_free(rds_ib_frag_slab, frag);
  49. }
  50. /*
  51. * We map a page at a time. Its fragments are posted in order. This
  52. * is called in fragment order as the fragments get send completion events.
  53. * Only the last frag in the page performs the unmapping.
  54. *
  55. * It's OK for ring cleanup to call this in whatever order it likes because
  56. * DMA is not in flight and so we can unmap while other ring entries still
  57. * hold page references in their frags.
  58. */
  59. static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
  60. struct rds_ib_recv_work *recv)
  61. {
  62. struct rds_page_frag *frag = recv->r_frag;
  63. rdsdebug("recv %p frag %p page %p\n", recv, frag, sg_page(&frag->f_sg));
  64. ib_dma_unmap_sg(ic->i_cm_id->device, &frag->f_sg, 1, DMA_FROM_DEVICE);
  65. }
  66. void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  67. {
  68. struct rds_ib_recv_work *recv;
  69. u32 i;
  70. for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  71. struct ib_sge *sge;
  72. recv->r_ibinc = NULL;
  73. recv->r_frag = NULL;
  74. recv->r_wr.next = NULL;
  75. recv->r_wr.wr_id = i;
  76. recv->r_wr.sg_list = recv->r_sge;
  77. recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  78. sge = &recv->r_sge[0];
  79. sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  80. sge->length = sizeof(struct rds_header);
  81. sge->lkey = ic->i_mr->lkey;
  82. sge = &recv->r_sge[1];
  83. sge->addr = 0;
  84. sge->length = RDS_FRAG_SIZE;
  85. sge->lkey = ic->i_mr->lkey;
  86. }
  87. }
  88. static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
  89. struct rds_ib_recv_work *recv)
  90. {
  91. if (recv->r_ibinc) {
  92. rds_inc_put(&recv->r_ibinc->ii_inc);
  93. recv->r_ibinc = NULL;
  94. }
  95. if (recv->r_frag) {
  96. rds_ib_recv_unmap_page(ic, recv);
  97. rds_ib_frag_free(recv->r_frag);
  98. recv->r_frag = NULL;
  99. }
  100. }
  101. void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
  102. {
  103. u32 i;
  104. for (i = 0; i < ic->i_recv_ring.w_nr; i++)
  105. rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
  106. }
  107. static int rds_ib_recv_refill_one(struct rds_connection *conn,
  108. struct rds_ib_recv_work *recv)
  109. {
  110. struct rds_ib_connection *ic = conn->c_transport_data;
  111. struct ib_sge *sge;
  112. int ret = -ENOMEM;
  113. if (!recv->r_ibinc) {
  114. if (!atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation)) {
  115. rds_ib_stats_inc(s_ib_rx_alloc_limit);
  116. goto out;
  117. }
  118. recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab, GFP_NOWAIT);
  119. if (!recv->r_ibinc) {
  120. atomic_dec(&rds_ib_allocation);
  121. goto out;
  122. }
  123. INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
  124. rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
  125. }
  126. if (!recv->r_frag) {
  127. recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, GFP_NOWAIT);
  128. if (!recv->r_frag)
  129. goto out;
  130. INIT_LIST_HEAD(&recv->r_frag->f_item);
  131. sg_init_table(&recv->r_frag->f_sg, 1);
  132. ret = rds_page_remainder_alloc(&recv->r_frag->f_sg,
  133. RDS_FRAG_SIZE, GFP_NOWAIT);
  134. if (ret) {
  135. kmem_cache_free(rds_ib_frag_slab, recv->r_frag);
  136. recv->r_frag = NULL;
  137. goto out;
  138. }
  139. }
  140. ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
  141. 1, DMA_FROM_DEVICE);
  142. WARN_ON(ret != 1);
  143. sge = &recv->r_sge[0];
  144. sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
  145. sge->length = sizeof(struct rds_header);
  146. sge = &recv->r_sge[1];
  147. sge->addr = sg_dma_address(&recv->r_frag->f_sg);
  148. sge->length = sg_dma_len(&recv->r_frag->f_sg);
  149. ret = 0;
  150. out:
  151. return ret;
  152. }
  153. /*
  154. * This tries to allocate and post unused work requests after making sure that
  155. * they have all the allocations they need to queue received fragments into
  156. * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
  157. * pairs don't go unmatched.
  158. *
  159. * -1 is returned if posting fails due to temporary resource exhaustion.
  160. */
  161. int rds_ib_recv_refill(struct rds_connection *conn, int prefill)
  162. {
  163. struct rds_ib_connection *ic = conn->c_transport_data;
  164. struct rds_ib_recv_work *recv;
  165. struct ib_recv_wr *failed_wr;
  166. unsigned int posted = 0;
  167. int ret = 0;
  168. u32 pos;
  169. while ((prefill || rds_conn_up(conn)) &&
  170. rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
  171. if (pos >= ic->i_recv_ring.w_nr) {
  172. printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
  173. pos);
  174. ret = -EINVAL;
  175. break;
  176. }
  177. recv = &ic->i_recvs[pos];
  178. ret = rds_ib_recv_refill_one(conn, recv);
  179. if (ret) {
  180. ret = -1;
  181. break;
  182. }
  183. /* XXX when can this fail? */
  184. ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
  185. rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
  186. recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
  187. (long) sg_dma_address(&recv->r_frag->f_sg), ret);
  188. if (ret) {
  189. rds_ib_conn_error(conn, "recv post on "
  190. "%pI4 returned %d, disconnecting and "
  191. "reconnecting\n", &conn->c_faddr,
  192. ret);
  193. ret = -1;
  194. break;
  195. }
  196. posted++;
  197. }
  198. /* We're doing flow control - update the window. */
  199. if (ic->i_flowctl && posted)
  200. rds_ib_advertise_credits(conn, posted);
  201. if (ret)
  202. rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
  203. return ret;
  204. }
  205. static void rds_ib_inc_purge(struct rds_incoming *inc)
  206. {
  207. struct rds_ib_incoming *ibinc;
  208. struct rds_page_frag *frag;
  209. struct rds_page_frag *pos;
  210. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  211. rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
  212. list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
  213. list_del_init(&frag->f_item);
  214. rds_ib_frag_free(frag);
  215. }
  216. }
  217. void rds_ib_inc_free(struct rds_incoming *inc)
  218. {
  219. struct rds_ib_incoming *ibinc;
  220. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  221. rds_ib_inc_purge(inc);
  222. rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
  223. BUG_ON(!list_empty(&ibinc->ii_frags));
  224. kmem_cache_free(rds_ib_incoming_slab, ibinc);
  225. atomic_dec(&rds_ib_allocation);
  226. BUG_ON(atomic_read(&rds_ib_allocation) < 0);
  227. }
  228. int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
  229. size_t size)
  230. {
  231. struct rds_ib_incoming *ibinc;
  232. struct rds_page_frag *frag;
  233. struct iovec *iov = first_iov;
  234. unsigned long to_copy;
  235. unsigned long frag_off = 0;
  236. unsigned long iov_off = 0;
  237. int copied = 0;
  238. int ret;
  239. u32 len;
  240. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  241. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  242. len = be32_to_cpu(inc->i_hdr.h_len);
  243. while (copied < size && copied < len) {
  244. if (frag_off == RDS_FRAG_SIZE) {
  245. frag = list_entry(frag->f_item.next,
  246. struct rds_page_frag, f_item);
  247. frag_off = 0;
  248. }
  249. while (iov_off == iov->iov_len) {
  250. iov_off = 0;
  251. iov++;
  252. }
  253. to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
  254. to_copy = min_t(size_t, to_copy, size - copied);
  255. to_copy = min_t(unsigned long, to_copy, len - copied);
  256. rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
  257. "[%p, %u] + %lu\n",
  258. to_copy, iov->iov_base, iov->iov_len, iov_off,
  259. sg_page(&frag->f_sg), frag->f_sg.offset, frag_off);
  260. /* XXX needs + offset for multiple recvs per page */
  261. ret = rds_page_copy_to_user(sg_page(&frag->f_sg),
  262. frag->f_sg.offset + frag_off,
  263. iov->iov_base + iov_off,
  264. to_copy);
  265. if (ret) {
  266. copied = ret;
  267. break;
  268. }
  269. iov_off += to_copy;
  270. frag_off += to_copy;
  271. copied += to_copy;
  272. }
  273. return copied;
  274. }
  275. /* ic starts out kzalloc()ed */
  276. void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
  277. {
  278. struct ib_send_wr *wr = &ic->i_ack_wr;
  279. struct ib_sge *sge = &ic->i_ack_sge;
  280. sge->addr = ic->i_ack_dma;
  281. sge->length = sizeof(struct rds_header);
  282. sge->lkey = ic->i_mr->lkey;
  283. wr->sg_list = sge;
  284. wr->num_sge = 1;
  285. wr->opcode = IB_WR_SEND;
  286. wr->wr_id = RDS_IB_ACK_WR_ID;
  287. wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
  288. }
  289. /*
  290. * You'd think that with reliable IB connections you wouldn't need to ack
  291. * messages that have been received. The problem is that IB hardware generates
  292. * an ack message before it has DMAed the message into memory. This creates a
  293. * potential message loss if the HCA is disabled for any reason between when it
  294. * sends the ack and before the message is DMAed and processed. This is only a
  295. * potential issue if another HCA is available for fail-over.
  296. *
  297. * When the remote host receives our ack they'll free the sent message from
  298. * their send queue. To decrease the latency of this we always send an ack
  299. * immediately after we've received messages.
  300. *
  301. * For simplicity, we only have one ack in flight at a time. This puts
  302. * pressure on senders to have deep enough send queues to absorb the latency of
  303. * a single ack frame being in flight. This might not be good enough.
  304. *
  305. * This is implemented by have a long-lived send_wr and sge which point to a
  306. * statically allocated ack frame. This ack wr does not fall under the ring
  307. * accounting that the tx and rx wrs do. The QP attribute specifically makes
  308. * room for it beyond the ring size. Send completion notices its special
  309. * wr_id and avoids working with the ring in that case.
  310. */
  311. #ifndef KERNEL_HAS_ATOMIC64
  312. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  313. int ack_required)
  314. {
  315. unsigned long flags;
  316. spin_lock_irqsave(&ic->i_ack_lock, flags);
  317. ic->i_ack_next = seq;
  318. if (ack_required)
  319. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  320. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  321. }
  322. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  323. {
  324. unsigned long flags;
  325. u64 seq;
  326. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  327. spin_lock_irqsave(&ic->i_ack_lock, flags);
  328. seq = ic->i_ack_next;
  329. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  330. return seq;
  331. }
  332. #else
  333. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  334. int ack_required)
  335. {
  336. atomic64_set(&ic->i_ack_next, seq);
  337. if (ack_required) {
  338. smp_mb__before_clear_bit();
  339. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  340. }
  341. }
  342. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  343. {
  344. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  345. smp_mb__after_clear_bit();
  346. return atomic64_read(&ic->i_ack_next);
  347. }
  348. #endif
  349. static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
  350. {
  351. struct rds_header *hdr = ic->i_ack;
  352. struct ib_send_wr *failed_wr;
  353. u64 seq;
  354. int ret;
  355. seq = rds_ib_get_ack(ic);
  356. rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
  357. rds_message_populate_header(hdr, 0, 0, 0);
  358. hdr->h_ack = cpu_to_be64(seq);
  359. hdr->h_credit = adv_credits;
  360. rds_message_make_checksum(hdr);
  361. ic->i_ack_queued = jiffies;
  362. ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
  363. if (unlikely(ret)) {
  364. /* Failed to send. Release the WR, and
  365. * force another ACK.
  366. */
  367. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  368. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  369. rds_ib_stats_inc(s_ib_ack_send_failure);
  370. rds_ib_conn_error(ic->conn, "sending ack failed\n");
  371. } else
  372. rds_ib_stats_inc(s_ib_ack_sent);
  373. }
  374. /*
  375. * There are 3 ways of getting acknowledgements to the peer:
  376. * 1. We call rds_ib_attempt_ack from the recv completion handler
  377. * to send an ACK-only frame.
  378. * However, there can be only one such frame in the send queue
  379. * at any time, so we may have to postpone it.
  380. * 2. When another (data) packet is transmitted while there's
  381. * an ACK in the queue, we piggyback the ACK sequence number
  382. * on the data packet.
  383. * 3. If the ACK WR is done sending, we get called from the
  384. * send queue completion handler, and check whether there's
  385. * another ACK pending (postponed because the WR was on the
  386. * queue). If so, we transmit it.
  387. *
  388. * We maintain 2 variables:
  389. * - i_ack_flags, which keeps track of whether the ACK WR
  390. * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
  391. * - i_ack_next, which is the last sequence number we received
  392. *
  393. * Potentially, send queue and receive queue handlers can run concurrently.
  394. * It would be nice to not have to use a spinlock to synchronize things,
  395. * but the one problem that rules this out is that 64bit updates are
  396. * not atomic on all platforms. Things would be a lot simpler if
  397. * we had atomic64 or maybe cmpxchg64 everywhere.
  398. *
  399. * Reconnecting complicates this picture just slightly. When we
  400. * reconnect, we may be seeing duplicate packets. The peer
  401. * is retransmitting them, because it hasn't seen an ACK for
  402. * them. It is important that we ACK these.
  403. *
  404. * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
  405. * this flag set *MUST* be acknowledged immediately.
  406. */
  407. /*
  408. * When we get here, we're called from the recv queue handler.
  409. * Check whether we ought to transmit an ACK.
  410. */
  411. void rds_ib_attempt_ack(struct rds_ib_connection *ic)
  412. {
  413. unsigned int adv_credits;
  414. if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  415. return;
  416. if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
  417. rds_ib_stats_inc(s_ib_ack_send_delayed);
  418. return;
  419. }
  420. /* Can we get a send credit? */
  421. if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
  422. rds_ib_stats_inc(s_ib_tx_throttle);
  423. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  424. return;
  425. }
  426. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  427. rds_ib_send_ack(ic, adv_credits);
  428. }
  429. /*
  430. * We get here from the send completion handler, when the
  431. * adapter tells us the ACK frame was sent.
  432. */
  433. void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
  434. {
  435. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  436. rds_ib_attempt_ack(ic);
  437. }
  438. /*
  439. * This is called by the regular xmit code when it wants to piggyback
  440. * an ACK on an outgoing frame.
  441. */
  442. u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
  443. {
  444. if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  445. rds_ib_stats_inc(s_ib_ack_send_piggybacked);
  446. return rds_ib_get_ack(ic);
  447. }
  448. /*
  449. * It's kind of lame that we're copying from the posted receive pages into
  450. * long-lived bitmaps. We could have posted the bitmaps and rdma written into
  451. * them. But receiving new congestion bitmaps should be a *rare* event, so
  452. * hopefully we won't need to invest that complexity in making it more
  453. * efficient. By copying we can share a simpler core with TCP which has to
  454. * copy.
  455. */
  456. static void rds_ib_cong_recv(struct rds_connection *conn,
  457. struct rds_ib_incoming *ibinc)
  458. {
  459. struct rds_cong_map *map;
  460. unsigned int map_off;
  461. unsigned int map_page;
  462. struct rds_page_frag *frag;
  463. unsigned long frag_off;
  464. unsigned long to_copy;
  465. unsigned long copied;
  466. uint64_t uncongested = 0;
  467. void *addr;
  468. /* catch completely corrupt packets */
  469. if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
  470. return;
  471. map = conn->c_fcong;
  472. map_page = 0;
  473. map_off = 0;
  474. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  475. frag_off = 0;
  476. copied = 0;
  477. while (copied < RDS_CONG_MAP_BYTES) {
  478. uint64_t *src, *dst;
  479. unsigned int k;
  480. to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
  481. BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
  482. addr = kmap_atomic(sg_page(&frag->f_sg), KM_SOFTIRQ0);
  483. src = addr + frag_off;
  484. dst = (void *)map->m_page_addrs[map_page] + map_off;
  485. for (k = 0; k < to_copy; k += 8) {
  486. /* Record ports that became uncongested, ie
  487. * bits that changed from 0 to 1. */
  488. uncongested |= ~(*src) & *dst;
  489. *dst++ = *src++;
  490. }
  491. kunmap_atomic(addr, KM_SOFTIRQ0);
  492. copied += to_copy;
  493. map_off += to_copy;
  494. if (map_off == PAGE_SIZE) {
  495. map_off = 0;
  496. map_page++;
  497. }
  498. frag_off += to_copy;
  499. if (frag_off == RDS_FRAG_SIZE) {
  500. frag = list_entry(frag->f_item.next,
  501. struct rds_page_frag, f_item);
  502. frag_off = 0;
  503. }
  504. }
  505. /* the congestion map is in little endian order */
  506. uncongested = le64_to_cpu(uncongested);
  507. rds_cong_map_updated(map, uncongested);
  508. }
  509. /*
  510. * Rings are posted with all the allocations they'll need to queue the
  511. * incoming message to the receiving socket so this can't fail.
  512. * All fragments start with a header, so we can make sure we're not receiving
  513. * garbage, and we can tell a small 8 byte fragment from an ACK frame.
  514. */
  515. struct rds_ib_ack_state {
  516. u64 ack_next;
  517. u64 ack_recv;
  518. unsigned int ack_required:1;
  519. unsigned int ack_next_valid:1;
  520. unsigned int ack_recv_valid:1;
  521. };
  522. static void rds_ib_process_recv(struct rds_connection *conn,
  523. struct rds_ib_recv_work *recv, u32 data_len,
  524. struct rds_ib_ack_state *state)
  525. {
  526. struct rds_ib_connection *ic = conn->c_transport_data;
  527. struct rds_ib_incoming *ibinc = ic->i_ibinc;
  528. struct rds_header *ihdr, *hdr;
  529. /* XXX shut down the connection if port 0,0 are seen? */
  530. rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
  531. data_len);
  532. if (data_len < sizeof(struct rds_header)) {
  533. rds_ib_conn_error(conn, "incoming message "
  534. "from %pI4 didn't inclue a "
  535. "header, disconnecting and "
  536. "reconnecting\n",
  537. &conn->c_faddr);
  538. return;
  539. }
  540. data_len -= sizeof(struct rds_header);
  541. ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
  542. /* Validate the checksum. */
  543. if (!rds_message_verify_checksum(ihdr)) {
  544. rds_ib_conn_error(conn, "incoming message "
  545. "from %pI4 has corrupted header - "
  546. "forcing a reconnect\n",
  547. &conn->c_faddr);
  548. rds_stats_inc(s_recv_drop_bad_checksum);
  549. return;
  550. }
  551. /* Process the ACK sequence which comes with every packet */
  552. state->ack_recv = be64_to_cpu(ihdr->h_ack);
  553. state->ack_recv_valid = 1;
  554. /* Process the credits update if there was one */
  555. if (ihdr->h_credit)
  556. rds_ib_send_add_credits(conn, ihdr->h_credit);
  557. if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
  558. /* This is an ACK-only packet. The fact that it gets
  559. * special treatment here is that historically, ACKs
  560. * were rather special beasts.
  561. */
  562. rds_ib_stats_inc(s_ib_ack_received);
  563. /*
  564. * Usually the frags make their way on to incs and are then freed as
  565. * the inc is freed. We don't go that route, so we have to drop the
  566. * page ref ourselves. We can't just leave the page on the recv
  567. * because that confuses the dma mapping of pages and each recv's use
  568. * of a partial page.
  569. *
  570. * FIXME: Fold this into the code path below.
  571. */
  572. rds_ib_frag_free(recv->r_frag);
  573. recv->r_frag = NULL;
  574. return;
  575. }
  576. /*
  577. * If we don't already have an inc on the connection then this
  578. * fragment has a header and starts a message.. copy its header
  579. * into the inc and save the inc so we can hang upcoming fragments
  580. * off its list.
  581. */
  582. if (!ibinc) {
  583. ibinc = recv->r_ibinc;
  584. recv->r_ibinc = NULL;
  585. ic->i_ibinc = ibinc;
  586. hdr = &ibinc->ii_inc.i_hdr;
  587. memcpy(hdr, ihdr, sizeof(*hdr));
  588. ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
  589. rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
  590. ic->i_recv_data_rem, hdr->h_flags);
  591. } else {
  592. hdr = &ibinc->ii_inc.i_hdr;
  593. /* We can't just use memcmp here; fragments of a
  594. * single message may carry different ACKs */
  595. if (hdr->h_sequence != ihdr->h_sequence ||
  596. hdr->h_len != ihdr->h_len ||
  597. hdr->h_sport != ihdr->h_sport ||
  598. hdr->h_dport != ihdr->h_dport) {
  599. rds_ib_conn_error(conn,
  600. "fragment header mismatch; forcing reconnect\n");
  601. return;
  602. }
  603. }
  604. list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
  605. recv->r_frag = NULL;
  606. if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
  607. ic->i_recv_data_rem -= RDS_FRAG_SIZE;
  608. else {
  609. ic->i_recv_data_rem = 0;
  610. ic->i_ibinc = NULL;
  611. if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
  612. rds_ib_cong_recv(conn, ibinc);
  613. else {
  614. rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
  615. &ibinc->ii_inc, GFP_ATOMIC,
  616. KM_SOFTIRQ0);
  617. state->ack_next = be64_to_cpu(hdr->h_sequence);
  618. state->ack_next_valid = 1;
  619. }
  620. /* Evaluate the ACK_REQUIRED flag *after* we received
  621. * the complete frame, and after bumping the next_rx
  622. * sequence. */
  623. if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
  624. rds_stats_inc(s_recv_ack_required);
  625. state->ack_required = 1;
  626. }
  627. rds_inc_put(&ibinc->ii_inc);
  628. }
  629. }
  630. /*
  631. * Plucking the oldest entry from the ring can be done concurrently with
  632. * the thread refilling the ring. Each ring operation is protected by
  633. * spinlocks and the transient state of refilling doesn't change the
  634. * recording of which entry is oldest.
  635. *
  636. * This relies on IB only calling one cq comp_handler for each cq so that
  637. * there will only be one caller of rds_recv_incoming() per RDS connection.
  638. */
  639. void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
  640. {
  641. struct rds_connection *conn = context;
  642. struct rds_ib_connection *ic = conn->c_transport_data;
  643. rdsdebug("conn %p cq %p\n", conn, cq);
  644. rds_ib_stats_inc(s_ib_rx_cq_call);
  645. tasklet_schedule(&ic->i_recv_tasklet);
  646. }
  647. static inline void rds_poll_cq(struct rds_ib_connection *ic,
  648. struct rds_ib_ack_state *state)
  649. {
  650. struct rds_connection *conn = ic->conn;
  651. struct ib_wc wc;
  652. struct rds_ib_recv_work *recv;
  653. while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
  654. rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
  655. (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
  656. be32_to_cpu(wc.ex.imm_data));
  657. rds_ib_stats_inc(s_ib_rx_cq_event);
  658. recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
  659. rds_ib_recv_unmap_page(ic, recv);
  660. /*
  661. * Also process recvs in connecting state because it is possible
  662. * to get a recv completion _before_ the rdmacm ESTABLISHED
  663. * event is processed.
  664. */
  665. if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
  666. /* We expect errors as the qp is drained during shutdown */
  667. if (wc.status == IB_WC_SUCCESS) {
  668. rds_ib_process_recv(conn, recv, wc.byte_len, state);
  669. } else {
  670. rds_ib_conn_error(conn, "recv completion on "
  671. "%pI4 had status %u, disconnecting and "
  672. "reconnecting\n", &conn->c_faddr,
  673. wc.status);
  674. }
  675. }
  676. rds_ib_ring_free(&ic->i_recv_ring, 1);
  677. }
  678. }
  679. void rds_ib_recv_tasklet_fn(unsigned long data)
  680. {
  681. struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
  682. struct rds_connection *conn = ic->conn;
  683. struct rds_ib_ack_state state = { 0, };
  684. rds_poll_cq(ic, &state);
  685. ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
  686. rds_poll_cq(ic, &state);
  687. if (state.ack_next_valid)
  688. rds_ib_set_ack(ic, state.ack_next, state.ack_required);
  689. if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
  690. rds_send_drop_acked(conn, state.ack_recv, NULL);
  691. ic->i_ack_recv = state.ack_recv;
  692. }
  693. if (rds_conn_up(conn))
  694. rds_ib_attempt_ack(ic);
  695. /* If we ever end up with a really empty receive ring, we're
  696. * in deep trouble, as the sender will definitely see RNR
  697. * timeouts. */
  698. if (rds_ib_ring_empty(&ic->i_recv_ring))
  699. rds_ib_stats_inc(s_ib_rx_ring_empty);
  700. if (rds_ib_ring_low(&ic->i_recv_ring))
  701. rds_ib_recv_refill(conn, 0);
  702. }
  703. int rds_ib_recv(struct rds_connection *conn)
  704. {
  705. struct rds_ib_connection *ic = conn->c_transport_data;
  706. int ret = 0;
  707. rdsdebug("conn %p\n", conn);
  708. if (rds_conn_up(conn))
  709. rds_ib_attempt_ack(ic);
  710. return ret;
  711. }
  712. int __init rds_ib_recv_init(void)
  713. {
  714. struct sysinfo si;
  715. int ret = -ENOMEM;
  716. /* Default to 30% of all available RAM for recv memory */
  717. si_meminfo(&si);
  718. rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
  719. rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
  720. sizeof(struct rds_ib_incoming),
  721. 0, 0, NULL);
  722. if (!rds_ib_incoming_slab)
  723. goto out;
  724. rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
  725. sizeof(struct rds_page_frag),
  726. 0, 0, NULL);
  727. if (!rds_ib_frag_slab)
  728. kmem_cache_destroy(rds_ib_incoming_slab);
  729. else
  730. ret = 0;
  731. out:
  732. return ret;
  733. }
  734. void rds_ib_recv_exit(void)
  735. {
  736. kmem_cache_destroy(rds_ib_incoming_slab);
  737. kmem_cache_destroy(rds_ib_frag_slab);
  738. }