smp.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/ftrace.h>
  20. #include <linux/mm.h>
  21. #include <linux/err.h>
  22. #include <linux/cpu.h>
  23. #include <linux/smp.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/irq.h>
  26. #include <linux/percpu.h>
  27. #include <linux/clockchips.h>
  28. #include <linux/completion.h>
  29. #include <linux/atomic.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu.h>
  32. #include <asm/cputype.h>
  33. #include <asm/topology.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/pgalloc.h>
  37. #include <asm/processor.h>
  38. #include <asm/sections.h>
  39. #include <asm/tlbflush.h>
  40. #include <asm/ptrace.h>
  41. #include <asm/localtimer.h>
  42. #include <asm/smp_plat.h>
  43. /*
  44. * as from 2.5, kernels no longer have an init_tasks structure
  45. * so we need some other way of telling a new secondary core
  46. * where to place its SVC stack
  47. */
  48. struct secondary_data secondary_data;
  49. enum ipi_msg_type {
  50. IPI_TIMER = 2,
  51. IPI_RESCHEDULE,
  52. IPI_CALL_FUNC,
  53. IPI_CALL_FUNC_SINGLE,
  54. IPI_CPU_STOP,
  55. };
  56. int __cpuinit __cpu_up(unsigned int cpu)
  57. {
  58. struct cpuinfo_arm *ci = &per_cpu(cpu_data, cpu);
  59. struct task_struct *idle = ci->idle;
  60. pgd_t *pgd;
  61. int ret;
  62. /*
  63. * Spawn a new process manually, if not already done.
  64. * Grab a pointer to its task struct so we can mess with it
  65. */
  66. if (!idle) {
  67. idle = fork_idle(cpu);
  68. if (IS_ERR(idle)) {
  69. printk(KERN_ERR "CPU%u: fork() failed\n", cpu);
  70. return PTR_ERR(idle);
  71. }
  72. ci->idle = idle;
  73. } else {
  74. /*
  75. * Since this idle thread is being re-used, call
  76. * init_idle() to reinitialize the thread structure.
  77. */
  78. init_idle(idle, cpu);
  79. }
  80. /*
  81. * Allocate initial page tables to allow the new CPU to
  82. * enable the MMU safely. This essentially means a set
  83. * of our "standard" page tables, with the addition of
  84. * a 1:1 mapping for the physical address of the kernel.
  85. */
  86. pgd = pgd_alloc(&init_mm);
  87. if (!pgd)
  88. return -ENOMEM;
  89. if (PHYS_OFFSET != PAGE_OFFSET) {
  90. #ifndef CONFIG_HOTPLUG_CPU
  91. identity_mapping_add(pgd, __pa(__init_begin), __pa(__init_end));
  92. #endif
  93. identity_mapping_add(pgd, __pa(_stext), __pa(_etext));
  94. identity_mapping_add(pgd, __pa(_sdata), __pa(_edata));
  95. }
  96. /*
  97. * We need to tell the secondary core where to find
  98. * its stack and the page tables.
  99. */
  100. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  101. secondary_data.pgdir = virt_to_phys(pgd);
  102. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  103. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  104. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  105. /*
  106. * Now bring the CPU into our world.
  107. */
  108. ret = boot_secondary(cpu, idle);
  109. if (ret == 0) {
  110. unsigned long timeout;
  111. /*
  112. * CPU was successfully started, wait for it
  113. * to come online or time out.
  114. */
  115. timeout = jiffies + HZ;
  116. while (time_before(jiffies, timeout)) {
  117. if (cpu_online(cpu))
  118. break;
  119. udelay(10);
  120. barrier();
  121. }
  122. if (!cpu_online(cpu)) {
  123. pr_crit("CPU%u: failed to come online\n", cpu);
  124. ret = -EIO;
  125. }
  126. } else {
  127. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  128. }
  129. secondary_data.stack = NULL;
  130. secondary_data.pgdir = 0;
  131. if (PHYS_OFFSET != PAGE_OFFSET) {
  132. #ifndef CONFIG_HOTPLUG_CPU
  133. identity_mapping_del(pgd, __pa(__init_begin), __pa(__init_end));
  134. #endif
  135. identity_mapping_del(pgd, __pa(_stext), __pa(_etext));
  136. identity_mapping_del(pgd, __pa(_sdata), __pa(_edata));
  137. }
  138. pgd_free(&init_mm, pgd);
  139. return ret;
  140. }
  141. #ifdef CONFIG_HOTPLUG_CPU
  142. static void percpu_timer_stop(void);
  143. /*
  144. * __cpu_disable runs on the processor to be shutdown.
  145. */
  146. int __cpu_disable(void)
  147. {
  148. unsigned int cpu = smp_processor_id();
  149. struct task_struct *p;
  150. int ret;
  151. ret = platform_cpu_disable(cpu);
  152. if (ret)
  153. return ret;
  154. /*
  155. * Take this CPU offline. Once we clear this, we can't return,
  156. * and we must not schedule until we're ready to give up the cpu.
  157. */
  158. set_cpu_online(cpu, false);
  159. /*
  160. * OK - migrate IRQs away from this CPU
  161. */
  162. migrate_irqs();
  163. /*
  164. * Stop the local timer for this CPU.
  165. */
  166. percpu_timer_stop();
  167. /*
  168. * Flush user cache and TLB mappings, and then remove this CPU
  169. * from the vm mask set of all processes.
  170. */
  171. flush_cache_all();
  172. local_flush_tlb_all();
  173. read_lock(&tasklist_lock);
  174. for_each_process(p) {
  175. if (p->mm)
  176. cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
  177. }
  178. read_unlock(&tasklist_lock);
  179. return 0;
  180. }
  181. static DECLARE_COMPLETION(cpu_died);
  182. /*
  183. * called on the thread which is asking for a CPU to be shutdown -
  184. * waits until shutdown has completed, or it is timed out.
  185. */
  186. void __cpu_die(unsigned int cpu)
  187. {
  188. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  189. pr_err("CPU%u: cpu didn't die\n", cpu);
  190. return;
  191. }
  192. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  193. if (!platform_cpu_kill(cpu))
  194. printk("CPU%u: unable to kill\n", cpu);
  195. }
  196. /*
  197. * Called from the idle thread for the CPU which has been shutdown.
  198. *
  199. * Note that we disable IRQs here, but do not re-enable them
  200. * before returning to the caller. This is also the behaviour
  201. * of the other hotplug-cpu capable cores, so presumably coming
  202. * out of idle fixes this.
  203. */
  204. void __ref cpu_die(void)
  205. {
  206. unsigned int cpu = smp_processor_id();
  207. idle_task_exit();
  208. local_irq_disable();
  209. mb();
  210. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  211. complete(&cpu_died);
  212. /*
  213. * actual CPU shutdown procedure is at least platform (if not
  214. * CPU) specific.
  215. */
  216. platform_cpu_die(cpu);
  217. /*
  218. * Do not return to the idle loop - jump back to the secondary
  219. * cpu initialisation. There's some initialisation which needs
  220. * to be repeated to undo the effects of taking the CPU offline.
  221. */
  222. __asm__("mov sp, %0\n"
  223. " mov fp, #0\n"
  224. " b secondary_start_kernel"
  225. :
  226. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  227. }
  228. #endif /* CONFIG_HOTPLUG_CPU */
  229. int __cpu_logical_map[NR_CPUS];
  230. void __init smp_setup_processor_id(void)
  231. {
  232. int i;
  233. u32 cpu = is_smp() ? read_cpuid_mpidr() & 0xff : 0;
  234. cpu_logical_map(0) = cpu;
  235. for (i = 1; i < NR_CPUS; ++i)
  236. cpu_logical_map(i) = i == cpu ? 0 : i;
  237. printk(KERN_INFO "Booting Linux on physical CPU %d\n", cpu);
  238. }
  239. /*
  240. * Called by both boot and secondaries to move global data into
  241. * per-processor storage.
  242. */
  243. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  244. {
  245. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  246. cpu_info->loops_per_jiffy = loops_per_jiffy;
  247. store_cpu_topology(cpuid);
  248. }
  249. /*
  250. * This is the secondary CPU boot entry. We're using this CPUs
  251. * idle thread stack, but a set of temporary page tables.
  252. */
  253. asmlinkage void __cpuinit secondary_start_kernel(void)
  254. {
  255. struct mm_struct *mm = &init_mm;
  256. unsigned int cpu = smp_processor_id();
  257. printk("CPU%u: Booted secondary processor\n", cpu);
  258. /*
  259. * All kernel threads share the same mm context; grab a
  260. * reference and switch to it.
  261. */
  262. atomic_inc(&mm->mm_count);
  263. current->active_mm = mm;
  264. cpumask_set_cpu(cpu, mm_cpumask(mm));
  265. cpu_switch_mm(mm->pgd, mm);
  266. enter_lazy_tlb(mm, current);
  267. local_flush_tlb_all();
  268. cpu_init();
  269. preempt_disable();
  270. trace_hardirqs_off();
  271. /*
  272. * Give the platform a chance to do its own initialisation.
  273. */
  274. platform_secondary_init(cpu);
  275. /*
  276. * Enable local interrupts.
  277. */
  278. notify_cpu_starting(cpu);
  279. local_irq_enable();
  280. local_fiq_enable();
  281. /*
  282. * Setup the percpu timer for this CPU.
  283. */
  284. percpu_timer_setup();
  285. calibrate_delay();
  286. smp_store_cpu_info(cpu);
  287. /*
  288. * OK, now it's safe to let the boot CPU continue. Wait for
  289. * the CPU migration code to notice that the CPU is online
  290. * before we continue.
  291. */
  292. set_cpu_online(cpu, true);
  293. while (!cpu_active(cpu))
  294. cpu_relax();
  295. /*
  296. * OK, it's off to the idle thread for us
  297. */
  298. cpu_idle();
  299. }
  300. void __init smp_cpus_done(unsigned int max_cpus)
  301. {
  302. int cpu;
  303. unsigned long bogosum = 0;
  304. for_each_online_cpu(cpu)
  305. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  306. printk(KERN_INFO "SMP: Total of %d processors activated "
  307. "(%lu.%02lu BogoMIPS).\n",
  308. num_online_cpus(),
  309. bogosum / (500000/HZ),
  310. (bogosum / (5000/HZ)) % 100);
  311. }
  312. void __init smp_prepare_boot_cpu(void)
  313. {
  314. unsigned int cpu = smp_processor_id();
  315. per_cpu(cpu_data, cpu).idle = current;
  316. }
  317. void __init smp_prepare_cpus(unsigned int max_cpus)
  318. {
  319. unsigned int ncores = num_possible_cpus();
  320. init_cpu_topology();
  321. smp_store_cpu_info(smp_processor_id());
  322. /*
  323. * are we trying to boot more cores than exist?
  324. */
  325. if (max_cpus > ncores)
  326. max_cpus = ncores;
  327. if (ncores > 1 && max_cpus) {
  328. /*
  329. * Enable the local timer or broadcast device for the
  330. * boot CPU, but only if we have more than one CPU.
  331. */
  332. percpu_timer_setup();
  333. /*
  334. * Initialise the present map, which describes the set of CPUs
  335. * actually populated at the present time. A platform should
  336. * re-initialize the map in platform_smp_prepare_cpus() if
  337. * present != possible (e.g. physical hotplug).
  338. */
  339. init_cpu_present(&cpu_possible_map);
  340. /*
  341. * Initialise the SCU if there are more than one CPU
  342. * and let them know where to start.
  343. */
  344. platform_smp_prepare_cpus(max_cpus);
  345. }
  346. }
  347. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  348. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  349. {
  350. smp_cross_call = fn;
  351. }
  352. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  353. {
  354. smp_cross_call(mask, IPI_CALL_FUNC);
  355. }
  356. void arch_send_call_function_single_ipi(int cpu)
  357. {
  358. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  359. }
  360. static const char *ipi_types[NR_IPI] = {
  361. #define S(x,s) [x - IPI_TIMER] = s
  362. S(IPI_TIMER, "Timer broadcast interrupts"),
  363. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  364. S(IPI_CALL_FUNC, "Function call interrupts"),
  365. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  366. S(IPI_CPU_STOP, "CPU stop interrupts"),
  367. };
  368. void show_ipi_list(struct seq_file *p, int prec)
  369. {
  370. unsigned int cpu, i;
  371. for (i = 0; i < NR_IPI; i++) {
  372. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  373. for_each_present_cpu(cpu)
  374. seq_printf(p, "%10u ",
  375. __get_irq_stat(cpu, ipi_irqs[i]));
  376. seq_printf(p, " %s\n", ipi_types[i]);
  377. }
  378. }
  379. u64 smp_irq_stat_cpu(unsigned int cpu)
  380. {
  381. u64 sum = 0;
  382. int i;
  383. for (i = 0; i < NR_IPI; i++)
  384. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  385. #ifdef CONFIG_LOCAL_TIMERS
  386. sum += __get_irq_stat(cpu, local_timer_irqs);
  387. #endif
  388. return sum;
  389. }
  390. /*
  391. * Timer (local or broadcast) support
  392. */
  393. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  394. static void ipi_timer(void)
  395. {
  396. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  397. irq_enter();
  398. evt->event_handler(evt);
  399. irq_exit();
  400. }
  401. #ifdef CONFIG_LOCAL_TIMERS
  402. asmlinkage void __exception_irq_entry do_local_timer(struct pt_regs *regs)
  403. {
  404. handle_local_timer(regs);
  405. }
  406. void handle_local_timer(struct pt_regs *regs)
  407. {
  408. struct pt_regs *old_regs = set_irq_regs(regs);
  409. int cpu = smp_processor_id();
  410. if (local_timer_ack()) {
  411. __inc_irq_stat(cpu, local_timer_irqs);
  412. ipi_timer();
  413. }
  414. set_irq_regs(old_regs);
  415. }
  416. void show_local_irqs(struct seq_file *p, int prec)
  417. {
  418. unsigned int cpu;
  419. seq_printf(p, "%*s: ", prec, "LOC");
  420. for_each_present_cpu(cpu)
  421. seq_printf(p, "%10u ", __get_irq_stat(cpu, local_timer_irqs));
  422. seq_printf(p, " Local timer interrupts\n");
  423. }
  424. #endif
  425. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  426. static void smp_timer_broadcast(const struct cpumask *mask)
  427. {
  428. smp_cross_call(mask, IPI_TIMER);
  429. }
  430. #else
  431. #define smp_timer_broadcast NULL
  432. #endif
  433. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  434. struct clock_event_device *evt)
  435. {
  436. }
  437. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  438. {
  439. evt->name = "dummy_timer";
  440. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  441. CLOCK_EVT_FEAT_PERIODIC |
  442. CLOCK_EVT_FEAT_DUMMY;
  443. evt->rating = 400;
  444. evt->mult = 1;
  445. evt->set_mode = broadcast_timer_set_mode;
  446. clockevents_register_device(evt);
  447. }
  448. void __cpuinit percpu_timer_setup(void)
  449. {
  450. unsigned int cpu = smp_processor_id();
  451. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  452. evt->cpumask = cpumask_of(cpu);
  453. evt->broadcast = smp_timer_broadcast;
  454. if (local_timer_setup(evt))
  455. broadcast_timer_setup(evt);
  456. }
  457. #ifdef CONFIG_HOTPLUG_CPU
  458. /*
  459. * The generic clock events code purposely does not stop the local timer
  460. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  461. * manually here.
  462. */
  463. static void percpu_timer_stop(void)
  464. {
  465. unsigned int cpu = smp_processor_id();
  466. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  467. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  468. }
  469. #endif
  470. static DEFINE_SPINLOCK(stop_lock);
  471. /*
  472. * ipi_cpu_stop - handle IPI from smp_send_stop()
  473. */
  474. static void ipi_cpu_stop(unsigned int cpu)
  475. {
  476. if (system_state == SYSTEM_BOOTING ||
  477. system_state == SYSTEM_RUNNING) {
  478. spin_lock(&stop_lock);
  479. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  480. dump_stack();
  481. spin_unlock(&stop_lock);
  482. }
  483. set_cpu_online(cpu, false);
  484. local_fiq_disable();
  485. local_irq_disable();
  486. while (1)
  487. cpu_relax();
  488. }
  489. /*
  490. * Main handler for inter-processor interrupts
  491. */
  492. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  493. {
  494. handle_IPI(ipinr, regs);
  495. }
  496. void handle_IPI(int ipinr, struct pt_regs *regs)
  497. {
  498. unsigned int cpu = smp_processor_id();
  499. struct pt_regs *old_regs = set_irq_regs(regs);
  500. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  501. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  502. switch (ipinr) {
  503. case IPI_TIMER:
  504. ipi_timer();
  505. break;
  506. case IPI_RESCHEDULE:
  507. scheduler_ipi();
  508. break;
  509. case IPI_CALL_FUNC:
  510. generic_smp_call_function_interrupt();
  511. break;
  512. case IPI_CALL_FUNC_SINGLE:
  513. generic_smp_call_function_single_interrupt();
  514. break;
  515. case IPI_CPU_STOP:
  516. ipi_cpu_stop(cpu);
  517. break;
  518. default:
  519. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  520. cpu, ipinr);
  521. break;
  522. }
  523. set_irq_regs(old_regs);
  524. }
  525. void smp_send_reschedule(int cpu)
  526. {
  527. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  528. }
  529. void smp_send_stop(void)
  530. {
  531. unsigned long timeout;
  532. if (num_online_cpus() > 1) {
  533. cpumask_t mask = cpu_online_map;
  534. cpu_clear(smp_processor_id(), mask);
  535. smp_cross_call(&mask, IPI_CPU_STOP);
  536. }
  537. /* Wait up to one second for other CPUs to stop */
  538. timeout = USEC_PER_SEC;
  539. while (num_online_cpus() > 1 && timeout--)
  540. udelay(1);
  541. if (num_online_cpus() > 1)
  542. pr_warning("SMP: failed to stop secondary CPUs\n");
  543. }
  544. /*
  545. * not supported here
  546. */
  547. int setup_profiling_timer(unsigned int multiplier)
  548. {
  549. return -EINVAL;
  550. }