slub.c 129 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/kmemcheck.h>
  21. #include <linux/cpu.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/mempolicy.h>
  24. #include <linux/ctype.h>
  25. #include <linux/debugobjects.h>
  26. #include <linux/kallsyms.h>
  27. #include <linux/memory.h>
  28. #include <linux/math64.h>
  29. #include <linux/fault-inject.h>
  30. #include <linux/stacktrace.h>
  31. #include <trace/events/kmem.h>
  32. /*
  33. * Lock order:
  34. * 1. slub_lock (Global Semaphore)
  35. * 2. node->list_lock
  36. * 3. slab_lock(page) (Only on some arches and for debugging)
  37. *
  38. * slub_lock
  39. *
  40. * The role of the slub_lock is to protect the list of all the slabs
  41. * and to synchronize major metadata changes to slab cache structures.
  42. *
  43. * The slab_lock is only used for debugging and on arches that do not
  44. * have the ability to do a cmpxchg_double. It only protects the second
  45. * double word in the page struct. Meaning
  46. * A. page->freelist -> List of object free in a page
  47. * B. page->counters -> Counters of objects
  48. * C. page->frozen -> frozen state
  49. *
  50. * If a slab is frozen then it is exempt from list management. It is not
  51. * on any list. The processor that froze the slab is the one who can
  52. * perform list operations on the page. Other processors may put objects
  53. * onto the freelist but the processor that froze the slab is the only
  54. * one that can retrieve the objects from the page's freelist.
  55. *
  56. * The list_lock protects the partial and full list on each node and
  57. * the partial slab counter. If taken then no new slabs may be added or
  58. * removed from the lists nor make the number of partial slabs be modified.
  59. * (Note that the total number of slabs is an atomic value that may be
  60. * modified without taking the list lock).
  61. *
  62. * The list_lock is a centralized lock and thus we avoid taking it as
  63. * much as possible. As long as SLUB does not have to handle partial
  64. * slabs, operations can continue without any centralized lock. F.e.
  65. * allocating a long series of objects that fill up slabs does not require
  66. * the list lock.
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /* Enable to log cmpxchg failures */
  127. #undef SLUB_DEBUG_CMPXCHG
  128. /*
  129. * Mininum number of partial slabs. These will be left on the partial
  130. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  131. */
  132. #define MIN_PARTIAL 5
  133. /*
  134. * Maximum number of desirable partial slabs.
  135. * The existence of more partial slabs makes kmem_cache_shrink
  136. * sort the partial list by the number of objects in the.
  137. */
  138. #define MAX_PARTIAL 10
  139. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  140. SLAB_POISON | SLAB_STORE_USER)
  141. /*
  142. * Debugging flags that require metadata to be stored in the slab. These get
  143. * disabled when slub_debug=O is used and a cache's min order increases with
  144. * metadata.
  145. */
  146. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  147. /*
  148. * Set of flags that will prevent slab merging
  149. */
  150. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  151. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  152. SLAB_FAILSLAB)
  153. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  154. SLAB_CACHE_DMA | SLAB_NOTRACK)
  155. #define OO_SHIFT 16
  156. #define OO_MASK ((1 << OO_SHIFT) - 1)
  157. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  158. /* Internal SLUB flags */
  159. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  160. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  161. static int kmem_size = sizeof(struct kmem_cache);
  162. #ifdef CONFIG_SMP
  163. static struct notifier_block slab_notifier;
  164. #endif
  165. static enum {
  166. DOWN, /* No slab functionality available */
  167. PARTIAL, /* Kmem_cache_node works */
  168. UP, /* Everything works but does not show up in sysfs */
  169. SYSFS /* Sysfs up */
  170. } slab_state = DOWN;
  171. /* A list of all slab caches on the system */
  172. static DECLARE_RWSEM(slub_lock);
  173. static LIST_HEAD(slab_caches);
  174. /*
  175. * Tracking user of a slab.
  176. */
  177. #define TRACK_ADDRS_COUNT 16
  178. struct track {
  179. unsigned long addr; /* Called from address */
  180. #ifdef CONFIG_STACKTRACE
  181. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  182. #endif
  183. int cpu; /* Was running on cpu */
  184. int pid; /* Pid context */
  185. unsigned long when; /* When did the operation occur */
  186. };
  187. enum track_item { TRACK_ALLOC, TRACK_FREE };
  188. #ifdef CONFIG_SYSFS
  189. static int sysfs_slab_add(struct kmem_cache *);
  190. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  191. static void sysfs_slab_remove(struct kmem_cache *);
  192. #else
  193. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  194. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  195. { return 0; }
  196. static inline void sysfs_slab_remove(struct kmem_cache *s)
  197. {
  198. kfree(s->name);
  199. kfree(s);
  200. }
  201. #endif
  202. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  203. {
  204. #ifdef CONFIG_SLUB_STATS
  205. __this_cpu_inc(s->cpu_slab->stat[si]);
  206. #endif
  207. }
  208. /********************************************************************
  209. * Core slab cache functions
  210. *******************************************************************/
  211. int slab_is_available(void)
  212. {
  213. return slab_state >= UP;
  214. }
  215. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  216. {
  217. return s->node[node];
  218. }
  219. /* Verify that a pointer has an address that is valid within a slab page */
  220. static inline int check_valid_pointer(struct kmem_cache *s,
  221. struct page *page, const void *object)
  222. {
  223. void *base;
  224. if (!object)
  225. return 1;
  226. base = page_address(page);
  227. if (object < base || object >= base + page->objects * s->size ||
  228. (object - base) % s->size) {
  229. return 0;
  230. }
  231. return 1;
  232. }
  233. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  234. {
  235. return *(void **)(object + s->offset);
  236. }
  237. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  238. {
  239. prefetch(object + s->offset);
  240. }
  241. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  242. {
  243. void *p;
  244. #ifdef CONFIG_DEBUG_PAGEALLOC
  245. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  246. #else
  247. p = get_freepointer(s, object);
  248. #endif
  249. return p;
  250. }
  251. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  252. {
  253. *(void **)(object + s->offset) = fp;
  254. }
  255. /* Loop over all objects in a slab */
  256. #define for_each_object(__p, __s, __addr, __objects) \
  257. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  258. __p += (__s)->size)
  259. /* Determine object index from a given position */
  260. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  261. {
  262. return (p - addr) / s->size;
  263. }
  264. static inline size_t slab_ksize(const struct kmem_cache *s)
  265. {
  266. #ifdef CONFIG_SLUB_DEBUG
  267. /*
  268. * Debugging requires use of the padding between object
  269. * and whatever may come after it.
  270. */
  271. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  272. return s->objsize;
  273. #endif
  274. /*
  275. * If we have the need to store the freelist pointer
  276. * back there or track user information then we can
  277. * only use the space before that information.
  278. */
  279. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  280. return s->inuse;
  281. /*
  282. * Else we can use all the padding etc for the allocation
  283. */
  284. return s->size;
  285. }
  286. static inline int order_objects(int order, unsigned long size, int reserved)
  287. {
  288. return ((PAGE_SIZE << order) - reserved) / size;
  289. }
  290. static inline struct kmem_cache_order_objects oo_make(int order,
  291. unsigned long size, int reserved)
  292. {
  293. struct kmem_cache_order_objects x = {
  294. (order << OO_SHIFT) + order_objects(order, size, reserved)
  295. };
  296. return x;
  297. }
  298. static inline int oo_order(struct kmem_cache_order_objects x)
  299. {
  300. return x.x >> OO_SHIFT;
  301. }
  302. static inline int oo_objects(struct kmem_cache_order_objects x)
  303. {
  304. return x.x & OO_MASK;
  305. }
  306. /*
  307. * Per slab locking using the pagelock
  308. */
  309. static __always_inline void slab_lock(struct page *page)
  310. {
  311. bit_spin_lock(PG_locked, &page->flags);
  312. }
  313. static __always_inline void slab_unlock(struct page *page)
  314. {
  315. __bit_spin_unlock(PG_locked, &page->flags);
  316. }
  317. /* Interrupts must be disabled (for the fallback code to work right) */
  318. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  319. void *freelist_old, unsigned long counters_old,
  320. void *freelist_new, unsigned long counters_new,
  321. const char *n)
  322. {
  323. VM_BUG_ON(!irqs_disabled());
  324. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  325. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  326. if (s->flags & __CMPXCHG_DOUBLE) {
  327. if (cmpxchg_double(&page->freelist, &page->counters,
  328. freelist_old, counters_old,
  329. freelist_new, counters_new))
  330. return 1;
  331. } else
  332. #endif
  333. {
  334. slab_lock(page);
  335. if (page->freelist == freelist_old && page->counters == counters_old) {
  336. page->freelist = freelist_new;
  337. page->counters = counters_new;
  338. slab_unlock(page);
  339. return 1;
  340. }
  341. slab_unlock(page);
  342. }
  343. cpu_relax();
  344. stat(s, CMPXCHG_DOUBLE_FAIL);
  345. #ifdef SLUB_DEBUG_CMPXCHG
  346. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  347. #endif
  348. return 0;
  349. }
  350. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  351. void *freelist_old, unsigned long counters_old,
  352. void *freelist_new, unsigned long counters_new,
  353. const char *n)
  354. {
  355. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  356. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  357. if (s->flags & __CMPXCHG_DOUBLE) {
  358. if (cmpxchg_double(&page->freelist, &page->counters,
  359. freelist_old, counters_old,
  360. freelist_new, counters_new))
  361. return 1;
  362. } else
  363. #endif
  364. {
  365. unsigned long flags;
  366. local_irq_save(flags);
  367. slab_lock(page);
  368. if (page->freelist == freelist_old && page->counters == counters_old) {
  369. page->freelist = freelist_new;
  370. page->counters = counters_new;
  371. slab_unlock(page);
  372. local_irq_restore(flags);
  373. return 1;
  374. }
  375. slab_unlock(page);
  376. local_irq_restore(flags);
  377. }
  378. cpu_relax();
  379. stat(s, CMPXCHG_DOUBLE_FAIL);
  380. #ifdef SLUB_DEBUG_CMPXCHG
  381. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  382. #endif
  383. return 0;
  384. }
  385. #ifdef CONFIG_SLUB_DEBUG
  386. /*
  387. * Determine a map of object in use on a page.
  388. *
  389. * Node listlock must be held to guarantee that the page does
  390. * not vanish from under us.
  391. */
  392. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  393. {
  394. void *p;
  395. void *addr = page_address(page);
  396. for (p = page->freelist; p; p = get_freepointer(s, p))
  397. set_bit(slab_index(p, s, addr), map);
  398. }
  399. /*
  400. * Debug settings:
  401. */
  402. #ifdef CONFIG_SLUB_DEBUG_ON
  403. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  404. #else
  405. static int slub_debug;
  406. #endif
  407. static char *slub_debug_slabs;
  408. static int disable_higher_order_debug;
  409. /*
  410. * Object debugging
  411. */
  412. static void print_section(char *text, u8 *addr, unsigned int length)
  413. {
  414. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  415. length, 1);
  416. }
  417. static struct track *get_track(struct kmem_cache *s, void *object,
  418. enum track_item alloc)
  419. {
  420. struct track *p;
  421. if (s->offset)
  422. p = object + s->offset + sizeof(void *);
  423. else
  424. p = object + s->inuse;
  425. return p + alloc;
  426. }
  427. static void set_track(struct kmem_cache *s, void *object,
  428. enum track_item alloc, unsigned long addr)
  429. {
  430. struct track *p = get_track(s, object, alloc);
  431. if (addr) {
  432. #ifdef CONFIG_STACKTRACE
  433. struct stack_trace trace;
  434. int i;
  435. trace.nr_entries = 0;
  436. trace.max_entries = TRACK_ADDRS_COUNT;
  437. trace.entries = p->addrs;
  438. trace.skip = 3;
  439. save_stack_trace(&trace);
  440. /* See rant in lockdep.c */
  441. if (trace.nr_entries != 0 &&
  442. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  443. trace.nr_entries--;
  444. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  445. p->addrs[i] = 0;
  446. #endif
  447. p->addr = addr;
  448. p->cpu = smp_processor_id();
  449. p->pid = current->pid;
  450. p->when = jiffies;
  451. } else
  452. memset(p, 0, sizeof(struct track));
  453. }
  454. static void init_tracking(struct kmem_cache *s, void *object)
  455. {
  456. if (!(s->flags & SLAB_STORE_USER))
  457. return;
  458. set_track(s, object, TRACK_FREE, 0UL);
  459. set_track(s, object, TRACK_ALLOC, 0UL);
  460. }
  461. static void print_track(const char *s, struct track *t)
  462. {
  463. if (!t->addr)
  464. return;
  465. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  466. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  467. #ifdef CONFIG_STACKTRACE
  468. {
  469. int i;
  470. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  471. if (t->addrs[i])
  472. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  473. else
  474. break;
  475. }
  476. #endif
  477. }
  478. static void print_tracking(struct kmem_cache *s, void *object)
  479. {
  480. if (!(s->flags & SLAB_STORE_USER))
  481. return;
  482. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  483. print_track("Freed", get_track(s, object, TRACK_FREE));
  484. }
  485. static void print_page_info(struct page *page)
  486. {
  487. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  488. page, page->objects, page->inuse, page->freelist, page->flags);
  489. }
  490. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  491. {
  492. va_list args;
  493. char buf[100];
  494. va_start(args, fmt);
  495. vsnprintf(buf, sizeof(buf), fmt, args);
  496. va_end(args);
  497. printk(KERN_ERR "========================================"
  498. "=====================================\n");
  499. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  500. printk(KERN_ERR "----------------------------------------"
  501. "-------------------------------------\n\n");
  502. }
  503. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  504. {
  505. va_list args;
  506. char buf[100];
  507. va_start(args, fmt);
  508. vsnprintf(buf, sizeof(buf), fmt, args);
  509. va_end(args);
  510. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  511. }
  512. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  513. {
  514. unsigned int off; /* Offset of last byte */
  515. u8 *addr = page_address(page);
  516. print_tracking(s, p);
  517. print_page_info(page);
  518. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  519. p, p - addr, get_freepointer(s, p));
  520. if (p > addr + 16)
  521. print_section("Bytes b4 ", p - 16, 16);
  522. print_section("Object ", p, min_t(unsigned long, s->objsize,
  523. PAGE_SIZE));
  524. if (s->flags & SLAB_RED_ZONE)
  525. print_section("Redzone ", p + s->objsize,
  526. s->inuse - s->objsize);
  527. if (s->offset)
  528. off = s->offset + sizeof(void *);
  529. else
  530. off = s->inuse;
  531. if (s->flags & SLAB_STORE_USER)
  532. off += 2 * sizeof(struct track);
  533. if (off != s->size)
  534. /* Beginning of the filler is the free pointer */
  535. print_section("Padding ", p + off, s->size - off);
  536. dump_stack();
  537. }
  538. static void object_err(struct kmem_cache *s, struct page *page,
  539. u8 *object, char *reason)
  540. {
  541. slab_bug(s, "%s", reason);
  542. print_trailer(s, page, object);
  543. }
  544. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  545. {
  546. va_list args;
  547. char buf[100];
  548. va_start(args, fmt);
  549. vsnprintf(buf, sizeof(buf), fmt, args);
  550. va_end(args);
  551. slab_bug(s, "%s", buf);
  552. print_page_info(page);
  553. dump_stack();
  554. }
  555. static void init_object(struct kmem_cache *s, void *object, u8 val)
  556. {
  557. u8 *p = object;
  558. if (s->flags & __OBJECT_POISON) {
  559. memset(p, POISON_FREE, s->objsize - 1);
  560. p[s->objsize - 1] = POISON_END;
  561. }
  562. if (s->flags & SLAB_RED_ZONE)
  563. memset(p + s->objsize, val, s->inuse - s->objsize);
  564. }
  565. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  566. void *from, void *to)
  567. {
  568. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  569. memset(from, data, to - from);
  570. }
  571. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  572. u8 *object, char *what,
  573. u8 *start, unsigned int value, unsigned int bytes)
  574. {
  575. u8 *fault;
  576. u8 *end;
  577. fault = memchr_inv(start, value, bytes);
  578. if (!fault)
  579. return 1;
  580. end = start + bytes;
  581. while (end > fault && end[-1] == value)
  582. end--;
  583. slab_bug(s, "%s overwritten", what);
  584. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  585. fault, end - 1, fault[0], value);
  586. print_trailer(s, page, object);
  587. restore_bytes(s, what, value, fault, end);
  588. return 0;
  589. }
  590. /*
  591. * Object layout:
  592. *
  593. * object address
  594. * Bytes of the object to be managed.
  595. * If the freepointer may overlay the object then the free
  596. * pointer is the first word of the object.
  597. *
  598. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  599. * 0xa5 (POISON_END)
  600. *
  601. * object + s->objsize
  602. * Padding to reach word boundary. This is also used for Redzoning.
  603. * Padding is extended by another word if Redzoning is enabled and
  604. * objsize == inuse.
  605. *
  606. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  607. * 0xcc (RED_ACTIVE) for objects in use.
  608. *
  609. * object + s->inuse
  610. * Meta data starts here.
  611. *
  612. * A. Free pointer (if we cannot overwrite object on free)
  613. * B. Tracking data for SLAB_STORE_USER
  614. * C. Padding to reach required alignment boundary or at mininum
  615. * one word if debugging is on to be able to detect writes
  616. * before the word boundary.
  617. *
  618. * Padding is done using 0x5a (POISON_INUSE)
  619. *
  620. * object + s->size
  621. * Nothing is used beyond s->size.
  622. *
  623. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  624. * ignored. And therefore no slab options that rely on these boundaries
  625. * may be used with merged slabcaches.
  626. */
  627. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  628. {
  629. unsigned long off = s->inuse; /* The end of info */
  630. if (s->offset)
  631. /* Freepointer is placed after the object. */
  632. off += sizeof(void *);
  633. if (s->flags & SLAB_STORE_USER)
  634. /* We also have user information there */
  635. off += 2 * sizeof(struct track);
  636. if (s->size == off)
  637. return 1;
  638. return check_bytes_and_report(s, page, p, "Object padding",
  639. p + off, POISON_INUSE, s->size - off);
  640. }
  641. /* Check the pad bytes at the end of a slab page */
  642. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  643. {
  644. u8 *start;
  645. u8 *fault;
  646. u8 *end;
  647. int length;
  648. int remainder;
  649. if (!(s->flags & SLAB_POISON))
  650. return 1;
  651. start = page_address(page);
  652. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  653. end = start + length;
  654. remainder = length % s->size;
  655. if (!remainder)
  656. return 1;
  657. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  658. if (!fault)
  659. return 1;
  660. while (end > fault && end[-1] == POISON_INUSE)
  661. end--;
  662. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  663. print_section("Padding ", end - remainder, remainder);
  664. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  665. return 0;
  666. }
  667. static int check_object(struct kmem_cache *s, struct page *page,
  668. void *object, u8 val)
  669. {
  670. u8 *p = object;
  671. u8 *endobject = object + s->objsize;
  672. if (s->flags & SLAB_RED_ZONE) {
  673. if (!check_bytes_and_report(s, page, object, "Redzone",
  674. endobject, val, s->inuse - s->objsize))
  675. return 0;
  676. } else {
  677. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  678. check_bytes_and_report(s, page, p, "Alignment padding",
  679. endobject, POISON_INUSE, s->inuse - s->objsize);
  680. }
  681. }
  682. if (s->flags & SLAB_POISON) {
  683. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  684. (!check_bytes_and_report(s, page, p, "Poison", p,
  685. POISON_FREE, s->objsize - 1) ||
  686. !check_bytes_and_report(s, page, p, "Poison",
  687. p + s->objsize - 1, POISON_END, 1)))
  688. return 0;
  689. /*
  690. * check_pad_bytes cleans up on its own.
  691. */
  692. check_pad_bytes(s, page, p);
  693. }
  694. if (!s->offset && val == SLUB_RED_ACTIVE)
  695. /*
  696. * Object and freepointer overlap. Cannot check
  697. * freepointer while object is allocated.
  698. */
  699. return 1;
  700. /* Check free pointer validity */
  701. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  702. object_err(s, page, p, "Freepointer corrupt");
  703. /*
  704. * No choice but to zap it and thus lose the remainder
  705. * of the free objects in this slab. May cause
  706. * another error because the object count is now wrong.
  707. */
  708. set_freepointer(s, p, NULL);
  709. return 0;
  710. }
  711. return 1;
  712. }
  713. static int check_slab(struct kmem_cache *s, struct page *page)
  714. {
  715. int maxobj;
  716. VM_BUG_ON(!irqs_disabled());
  717. if (!PageSlab(page)) {
  718. slab_err(s, page, "Not a valid slab page");
  719. return 0;
  720. }
  721. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  722. if (page->objects > maxobj) {
  723. slab_err(s, page, "objects %u > max %u",
  724. s->name, page->objects, maxobj);
  725. return 0;
  726. }
  727. if (page->inuse > page->objects) {
  728. slab_err(s, page, "inuse %u > max %u",
  729. s->name, page->inuse, page->objects);
  730. return 0;
  731. }
  732. /* Slab_pad_check fixes things up after itself */
  733. slab_pad_check(s, page);
  734. return 1;
  735. }
  736. /*
  737. * Determine if a certain object on a page is on the freelist. Must hold the
  738. * slab lock to guarantee that the chains are in a consistent state.
  739. */
  740. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  741. {
  742. int nr = 0;
  743. void *fp;
  744. void *object = NULL;
  745. unsigned long max_objects;
  746. fp = page->freelist;
  747. while (fp && nr <= page->objects) {
  748. if (fp == search)
  749. return 1;
  750. if (!check_valid_pointer(s, page, fp)) {
  751. if (object) {
  752. object_err(s, page, object,
  753. "Freechain corrupt");
  754. set_freepointer(s, object, NULL);
  755. break;
  756. } else {
  757. slab_err(s, page, "Freepointer corrupt");
  758. page->freelist = NULL;
  759. page->inuse = page->objects;
  760. slab_fix(s, "Freelist cleared");
  761. return 0;
  762. }
  763. break;
  764. }
  765. object = fp;
  766. fp = get_freepointer(s, object);
  767. nr++;
  768. }
  769. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  770. if (max_objects > MAX_OBJS_PER_PAGE)
  771. max_objects = MAX_OBJS_PER_PAGE;
  772. if (page->objects != max_objects) {
  773. slab_err(s, page, "Wrong number of objects. Found %d but "
  774. "should be %d", page->objects, max_objects);
  775. page->objects = max_objects;
  776. slab_fix(s, "Number of objects adjusted.");
  777. }
  778. if (page->inuse != page->objects - nr) {
  779. slab_err(s, page, "Wrong object count. Counter is %d but "
  780. "counted were %d", page->inuse, page->objects - nr);
  781. page->inuse = page->objects - nr;
  782. slab_fix(s, "Object count adjusted.");
  783. }
  784. return search == NULL;
  785. }
  786. static void trace(struct kmem_cache *s, struct page *page, void *object,
  787. int alloc)
  788. {
  789. if (s->flags & SLAB_TRACE) {
  790. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  791. s->name,
  792. alloc ? "alloc" : "free",
  793. object, page->inuse,
  794. page->freelist);
  795. if (!alloc)
  796. print_section("Object ", (void *)object, s->objsize);
  797. dump_stack();
  798. }
  799. }
  800. /*
  801. * Hooks for other subsystems that check memory allocations. In a typical
  802. * production configuration these hooks all should produce no code at all.
  803. */
  804. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  805. {
  806. flags &= gfp_allowed_mask;
  807. lockdep_trace_alloc(flags);
  808. might_sleep_if(flags & __GFP_WAIT);
  809. return should_failslab(s->objsize, flags, s->flags);
  810. }
  811. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  812. {
  813. flags &= gfp_allowed_mask;
  814. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  815. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  816. }
  817. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  818. {
  819. kmemleak_free_recursive(x, s->flags);
  820. /*
  821. * Trouble is that we may no longer disable interupts in the fast path
  822. * So in order to make the debug calls that expect irqs to be
  823. * disabled we need to disable interrupts temporarily.
  824. */
  825. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  826. {
  827. unsigned long flags;
  828. local_irq_save(flags);
  829. kmemcheck_slab_free(s, x, s->objsize);
  830. debug_check_no_locks_freed(x, s->objsize);
  831. local_irq_restore(flags);
  832. }
  833. #endif
  834. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  835. debug_check_no_obj_freed(x, s->objsize);
  836. }
  837. /*
  838. * Tracking of fully allocated slabs for debugging purposes.
  839. *
  840. * list_lock must be held.
  841. */
  842. static void add_full(struct kmem_cache *s,
  843. struct kmem_cache_node *n, struct page *page)
  844. {
  845. if (!(s->flags & SLAB_STORE_USER))
  846. return;
  847. list_add(&page->lru, &n->full);
  848. }
  849. /*
  850. * list_lock must be held.
  851. */
  852. static void remove_full(struct kmem_cache *s, struct page *page)
  853. {
  854. if (!(s->flags & SLAB_STORE_USER))
  855. return;
  856. list_del(&page->lru);
  857. }
  858. /* Tracking of the number of slabs for debugging purposes */
  859. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  860. {
  861. struct kmem_cache_node *n = get_node(s, node);
  862. return atomic_long_read(&n->nr_slabs);
  863. }
  864. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  865. {
  866. return atomic_long_read(&n->nr_slabs);
  867. }
  868. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  869. {
  870. struct kmem_cache_node *n = get_node(s, node);
  871. /*
  872. * May be called early in order to allocate a slab for the
  873. * kmem_cache_node structure. Solve the chicken-egg
  874. * dilemma by deferring the increment of the count during
  875. * bootstrap (see early_kmem_cache_node_alloc).
  876. */
  877. if (n) {
  878. atomic_long_inc(&n->nr_slabs);
  879. atomic_long_add(objects, &n->total_objects);
  880. }
  881. }
  882. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  883. {
  884. struct kmem_cache_node *n = get_node(s, node);
  885. atomic_long_dec(&n->nr_slabs);
  886. atomic_long_sub(objects, &n->total_objects);
  887. }
  888. /* Object debug checks for alloc/free paths */
  889. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  890. void *object)
  891. {
  892. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  893. return;
  894. init_object(s, object, SLUB_RED_INACTIVE);
  895. init_tracking(s, object);
  896. }
  897. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  898. void *object, unsigned long addr)
  899. {
  900. if (!check_slab(s, page))
  901. goto bad;
  902. if (!check_valid_pointer(s, page, object)) {
  903. object_err(s, page, object, "Freelist Pointer check fails");
  904. goto bad;
  905. }
  906. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  907. goto bad;
  908. /* Success perform special debug activities for allocs */
  909. if (s->flags & SLAB_STORE_USER)
  910. set_track(s, object, TRACK_ALLOC, addr);
  911. trace(s, page, object, 1);
  912. init_object(s, object, SLUB_RED_ACTIVE);
  913. return 1;
  914. bad:
  915. if (PageSlab(page)) {
  916. /*
  917. * If this is a slab page then lets do the best we can
  918. * to avoid issues in the future. Marking all objects
  919. * as used avoids touching the remaining objects.
  920. */
  921. slab_fix(s, "Marking all objects used");
  922. page->inuse = page->objects;
  923. page->freelist = NULL;
  924. }
  925. return 0;
  926. }
  927. static noinline int free_debug_processing(struct kmem_cache *s,
  928. struct page *page, void *object, unsigned long addr)
  929. {
  930. unsigned long flags;
  931. int rc = 0;
  932. local_irq_save(flags);
  933. slab_lock(page);
  934. if (!check_slab(s, page))
  935. goto fail;
  936. if (!check_valid_pointer(s, page, object)) {
  937. slab_err(s, page, "Invalid object pointer 0x%p", object);
  938. goto fail;
  939. }
  940. if (on_freelist(s, page, object)) {
  941. object_err(s, page, object, "Object already free");
  942. goto fail;
  943. }
  944. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  945. goto out;
  946. if (unlikely(s != page->slab)) {
  947. if (!PageSlab(page)) {
  948. slab_err(s, page, "Attempt to free object(0x%p) "
  949. "outside of slab", object);
  950. } else if (!page->slab) {
  951. printk(KERN_ERR
  952. "SLUB <none>: no slab for object 0x%p.\n",
  953. object);
  954. dump_stack();
  955. } else
  956. object_err(s, page, object,
  957. "page slab pointer corrupt.");
  958. goto fail;
  959. }
  960. if (s->flags & SLAB_STORE_USER)
  961. set_track(s, object, TRACK_FREE, addr);
  962. trace(s, page, object, 0);
  963. init_object(s, object, SLUB_RED_INACTIVE);
  964. rc = 1;
  965. out:
  966. slab_unlock(page);
  967. local_irq_restore(flags);
  968. return rc;
  969. fail:
  970. slab_fix(s, "Object at 0x%p not freed", object);
  971. goto out;
  972. }
  973. static int __init setup_slub_debug(char *str)
  974. {
  975. slub_debug = DEBUG_DEFAULT_FLAGS;
  976. if (*str++ != '=' || !*str)
  977. /*
  978. * No options specified. Switch on full debugging.
  979. */
  980. goto out;
  981. if (*str == ',')
  982. /*
  983. * No options but restriction on slabs. This means full
  984. * debugging for slabs matching a pattern.
  985. */
  986. goto check_slabs;
  987. if (tolower(*str) == 'o') {
  988. /*
  989. * Avoid enabling debugging on caches if its minimum order
  990. * would increase as a result.
  991. */
  992. disable_higher_order_debug = 1;
  993. goto out;
  994. }
  995. slub_debug = 0;
  996. if (*str == '-')
  997. /*
  998. * Switch off all debugging measures.
  999. */
  1000. goto out;
  1001. /*
  1002. * Determine which debug features should be switched on
  1003. */
  1004. for (; *str && *str != ','; str++) {
  1005. switch (tolower(*str)) {
  1006. case 'f':
  1007. slub_debug |= SLAB_DEBUG_FREE;
  1008. break;
  1009. case 'z':
  1010. slub_debug |= SLAB_RED_ZONE;
  1011. break;
  1012. case 'p':
  1013. slub_debug |= SLAB_POISON;
  1014. break;
  1015. case 'u':
  1016. slub_debug |= SLAB_STORE_USER;
  1017. break;
  1018. case 't':
  1019. slub_debug |= SLAB_TRACE;
  1020. break;
  1021. case 'a':
  1022. slub_debug |= SLAB_FAILSLAB;
  1023. break;
  1024. default:
  1025. printk(KERN_ERR "slub_debug option '%c' "
  1026. "unknown. skipped\n", *str);
  1027. }
  1028. }
  1029. check_slabs:
  1030. if (*str == ',')
  1031. slub_debug_slabs = str + 1;
  1032. out:
  1033. return 1;
  1034. }
  1035. __setup("slub_debug", setup_slub_debug);
  1036. static unsigned long kmem_cache_flags(unsigned long objsize,
  1037. unsigned long flags, const char *name,
  1038. void (*ctor)(void *))
  1039. {
  1040. /*
  1041. * Enable debugging if selected on the kernel commandline.
  1042. */
  1043. if (slub_debug && (!slub_debug_slabs ||
  1044. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1045. flags |= slub_debug;
  1046. return flags;
  1047. }
  1048. #else
  1049. static inline void setup_object_debug(struct kmem_cache *s,
  1050. struct page *page, void *object) {}
  1051. static inline int alloc_debug_processing(struct kmem_cache *s,
  1052. struct page *page, void *object, unsigned long addr) { return 0; }
  1053. static inline int free_debug_processing(struct kmem_cache *s,
  1054. struct page *page, void *object, unsigned long addr) { return 0; }
  1055. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1056. { return 1; }
  1057. static inline int check_object(struct kmem_cache *s, struct page *page,
  1058. void *object, u8 val) { return 1; }
  1059. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1060. struct page *page) {}
  1061. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1062. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  1063. unsigned long flags, const char *name,
  1064. void (*ctor)(void *))
  1065. {
  1066. return flags;
  1067. }
  1068. #define slub_debug 0
  1069. #define disable_higher_order_debug 0
  1070. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1071. { return 0; }
  1072. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1073. { return 0; }
  1074. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1075. int objects) {}
  1076. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1077. int objects) {}
  1078. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1079. { return 0; }
  1080. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1081. void *object) {}
  1082. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1083. #endif /* CONFIG_SLUB_DEBUG */
  1084. /*
  1085. * Slab allocation and freeing
  1086. */
  1087. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1088. struct kmem_cache_order_objects oo)
  1089. {
  1090. int order = oo_order(oo);
  1091. flags |= __GFP_NOTRACK;
  1092. if (node == NUMA_NO_NODE)
  1093. return alloc_pages(flags, order);
  1094. else
  1095. return alloc_pages_exact_node(node, flags, order);
  1096. }
  1097. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1098. {
  1099. struct page *page;
  1100. struct kmem_cache_order_objects oo = s->oo;
  1101. gfp_t alloc_gfp;
  1102. flags &= gfp_allowed_mask;
  1103. if (flags & __GFP_WAIT)
  1104. local_irq_enable();
  1105. flags |= s->allocflags;
  1106. /*
  1107. * Let the initial higher-order allocation fail under memory pressure
  1108. * so we fall-back to the minimum order allocation.
  1109. */
  1110. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1111. page = alloc_slab_page(alloc_gfp, node, oo);
  1112. if (unlikely(!page)) {
  1113. oo = s->min;
  1114. /*
  1115. * Allocation may have failed due to fragmentation.
  1116. * Try a lower order alloc if possible
  1117. */
  1118. page = alloc_slab_page(flags, node, oo);
  1119. if (page)
  1120. stat(s, ORDER_FALLBACK);
  1121. }
  1122. if (flags & __GFP_WAIT)
  1123. local_irq_disable();
  1124. if (!page)
  1125. return NULL;
  1126. if (kmemcheck_enabled
  1127. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1128. int pages = 1 << oo_order(oo);
  1129. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1130. /*
  1131. * Objects from caches that have a constructor don't get
  1132. * cleared when they're allocated, so we need to do it here.
  1133. */
  1134. if (s->ctor)
  1135. kmemcheck_mark_uninitialized_pages(page, pages);
  1136. else
  1137. kmemcheck_mark_unallocated_pages(page, pages);
  1138. }
  1139. page->objects = oo_objects(oo);
  1140. mod_zone_page_state(page_zone(page),
  1141. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1142. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1143. 1 << oo_order(oo));
  1144. return page;
  1145. }
  1146. static void setup_object(struct kmem_cache *s, struct page *page,
  1147. void *object)
  1148. {
  1149. setup_object_debug(s, page, object);
  1150. if (unlikely(s->ctor))
  1151. s->ctor(object);
  1152. }
  1153. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1154. {
  1155. struct page *page;
  1156. void *start;
  1157. void *last;
  1158. void *p;
  1159. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1160. page = allocate_slab(s,
  1161. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1162. if (!page)
  1163. goto out;
  1164. inc_slabs_node(s, page_to_nid(page), page->objects);
  1165. page->slab = s;
  1166. page->flags |= 1 << PG_slab;
  1167. start = page_address(page);
  1168. if (unlikely(s->flags & SLAB_POISON))
  1169. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1170. last = start;
  1171. for_each_object(p, s, start, page->objects) {
  1172. setup_object(s, page, last);
  1173. set_freepointer(s, last, p);
  1174. last = p;
  1175. }
  1176. setup_object(s, page, last);
  1177. set_freepointer(s, last, NULL);
  1178. page->freelist = start;
  1179. page->inuse = page->objects;
  1180. page->frozen = 1;
  1181. out:
  1182. return page;
  1183. }
  1184. static void __free_slab(struct kmem_cache *s, struct page *page)
  1185. {
  1186. int order = compound_order(page);
  1187. int pages = 1 << order;
  1188. if (kmem_cache_debug(s)) {
  1189. void *p;
  1190. slab_pad_check(s, page);
  1191. for_each_object(p, s, page_address(page),
  1192. page->objects)
  1193. check_object(s, page, p, SLUB_RED_INACTIVE);
  1194. }
  1195. kmemcheck_free_shadow(page, compound_order(page));
  1196. mod_zone_page_state(page_zone(page),
  1197. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1198. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1199. -pages);
  1200. __ClearPageSlab(page);
  1201. reset_page_mapcount(page);
  1202. if (current->reclaim_state)
  1203. current->reclaim_state->reclaimed_slab += pages;
  1204. __free_pages(page, order);
  1205. }
  1206. #define need_reserve_slab_rcu \
  1207. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1208. static void rcu_free_slab(struct rcu_head *h)
  1209. {
  1210. struct page *page;
  1211. if (need_reserve_slab_rcu)
  1212. page = virt_to_head_page(h);
  1213. else
  1214. page = container_of((struct list_head *)h, struct page, lru);
  1215. __free_slab(page->slab, page);
  1216. }
  1217. static void free_slab(struct kmem_cache *s, struct page *page)
  1218. {
  1219. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1220. struct rcu_head *head;
  1221. if (need_reserve_slab_rcu) {
  1222. int order = compound_order(page);
  1223. int offset = (PAGE_SIZE << order) - s->reserved;
  1224. VM_BUG_ON(s->reserved != sizeof(*head));
  1225. head = page_address(page) + offset;
  1226. } else {
  1227. /*
  1228. * RCU free overloads the RCU head over the LRU
  1229. */
  1230. head = (void *)&page->lru;
  1231. }
  1232. call_rcu(head, rcu_free_slab);
  1233. } else
  1234. __free_slab(s, page);
  1235. }
  1236. static void discard_slab(struct kmem_cache *s, struct page *page)
  1237. {
  1238. dec_slabs_node(s, page_to_nid(page), page->objects);
  1239. free_slab(s, page);
  1240. }
  1241. /*
  1242. * Management of partially allocated slabs.
  1243. *
  1244. * list_lock must be held.
  1245. */
  1246. static inline void add_partial(struct kmem_cache_node *n,
  1247. struct page *page, int tail)
  1248. {
  1249. n->nr_partial++;
  1250. if (tail == DEACTIVATE_TO_TAIL)
  1251. list_add_tail(&page->lru, &n->partial);
  1252. else
  1253. list_add(&page->lru, &n->partial);
  1254. }
  1255. /*
  1256. * list_lock must be held.
  1257. */
  1258. static inline void remove_partial(struct kmem_cache_node *n,
  1259. struct page *page)
  1260. {
  1261. list_del(&page->lru);
  1262. n->nr_partial--;
  1263. }
  1264. /*
  1265. * Lock slab, remove from the partial list and put the object into the
  1266. * per cpu freelist.
  1267. *
  1268. * Returns a list of objects or NULL if it fails.
  1269. *
  1270. * Must hold list_lock.
  1271. */
  1272. static inline void *acquire_slab(struct kmem_cache *s,
  1273. struct kmem_cache_node *n, struct page *page,
  1274. int mode)
  1275. {
  1276. void *freelist;
  1277. unsigned long counters;
  1278. struct page new;
  1279. /*
  1280. * Zap the freelist and set the frozen bit.
  1281. * The old freelist is the list of objects for the
  1282. * per cpu allocation list.
  1283. */
  1284. do {
  1285. freelist = page->freelist;
  1286. counters = page->counters;
  1287. new.counters = counters;
  1288. if (mode)
  1289. new.inuse = page->objects;
  1290. VM_BUG_ON(new.frozen);
  1291. new.frozen = 1;
  1292. } while (!__cmpxchg_double_slab(s, page,
  1293. freelist, counters,
  1294. NULL, new.counters,
  1295. "lock and freeze"));
  1296. remove_partial(n, page);
  1297. return freelist;
  1298. }
  1299. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1300. /*
  1301. * Try to allocate a partial slab from a specific node.
  1302. */
  1303. static void *get_partial_node(struct kmem_cache *s,
  1304. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1305. {
  1306. struct page *page, *page2;
  1307. void *object = NULL;
  1308. /*
  1309. * Racy check. If we mistakenly see no partial slabs then we
  1310. * just allocate an empty slab. If we mistakenly try to get a
  1311. * partial slab and there is none available then get_partials()
  1312. * will return NULL.
  1313. */
  1314. if (!n || !n->nr_partial)
  1315. return NULL;
  1316. spin_lock(&n->list_lock);
  1317. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1318. void *t = acquire_slab(s, n, page, object == NULL);
  1319. int available;
  1320. if (!t)
  1321. break;
  1322. if (!object) {
  1323. c->page = page;
  1324. c->node = page_to_nid(page);
  1325. stat(s, ALLOC_FROM_PARTIAL);
  1326. object = t;
  1327. available = page->objects - page->inuse;
  1328. } else {
  1329. page->freelist = t;
  1330. available = put_cpu_partial(s, page, 0);
  1331. }
  1332. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1333. break;
  1334. }
  1335. spin_unlock(&n->list_lock);
  1336. return object;
  1337. }
  1338. /*
  1339. * Get a page from somewhere. Search in increasing NUMA distances.
  1340. */
  1341. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1342. struct kmem_cache_cpu *c)
  1343. {
  1344. #ifdef CONFIG_NUMA
  1345. struct zonelist *zonelist;
  1346. struct zoneref *z;
  1347. struct zone *zone;
  1348. enum zone_type high_zoneidx = gfp_zone(flags);
  1349. void *object;
  1350. /*
  1351. * The defrag ratio allows a configuration of the tradeoffs between
  1352. * inter node defragmentation and node local allocations. A lower
  1353. * defrag_ratio increases the tendency to do local allocations
  1354. * instead of attempting to obtain partial slabs from other nodes.
  1355. *
  1356. * If the defrag_ratio is set to 0 then kmalloc() always
  1357. * returns node local objects. If the ratio is higher then kmalloc()
  1358. * may return off node objects because partial slabs are obtained
  1359. * from other nodes and filled up.
  1360. *
  1361. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1362. * defrag_ratio = 1000) then every (well almost) allocation will
  1363. * first attempt to defrag slab caches on other nodes. This means
  1364. * scanning over all nodes to look for partial slabs which may be
  1365. * expensive if we do it every time we are trying to find a slab
  1366. * with available objects.
  1367. */
  1368. if (!s->remote_node_defrag_ratio ||
  1369. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1370. return NULL;
  1371. get_mems_allowed();
  1372. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1373. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1374. struct kmem_cache_node *n;
  1375. n = get_node(s, zone_to_nid(zone));
  1376. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1377. n->nr_partial > s->min_partial) {
  1378. object = get_partial_node(s, n, c);
  1379. if (object) {
  1380. put_mems_allowed();
  1381. return object;
  1382. }
  1383. }
  1384. }
  1385. put_mems_allowed();
  1386. #endif
  1387. return NULL;
  1388. }
  1389. /*
  1390. * Get a partial page, lock it and return it.
  1391. */
  1392. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1393. struct kmem_cache_cpu *c)
  1394. {
  1395. void *object;
  1396. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1397. object = get_partial_node(s, get_node(s, searchnode), c);
  1398. if (object || node != NUMA_NO_NODE)
  1399. return object;
  1400. return get_any_partial(s, flags, c);
  1401. }
  1402. #ifdef CONFIG_PREEMPT
  1403. /*
  1404. * Calculate the next globally unique transaction for disambiguiation
  1405. * during cmpxchg. The transactions start with the cpu number and are then
  1406. * incremented by CONFIG_NR_CPUS.
  1407. */
  1408. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1409. #else
  1410. /*
  1411. * No preemption supported therefore also no need to check for
  1412. * different cpus.
  1413. */
  1414. #define TID_STEP 1
  1415. #endif
  1416. static inline unsigned long next_tid(unsigned long tid)
  1417. {
  1418. return tid + TID_STEP;
  1419. }
  1420. static inline unsigned int tid_to_cpu(unsigned long tid)
  1421. {
  1422. return tid % TID_STEP;
  1423. }
  1424. static inline unsigned long tid_to_event(unsigned long tid)
  1425. {
  1426. return tid / TID_STEP;
  1427. }
  1428. static inline unsigned int init_tid(int cpu)
  1429. {
  1430. return cpu;
  1431. }
  1432. static inline void note_cmpxchg_failure(const char *n,
  1433. const struct kmem_cache *s, unsigned long tid)
  1434. {
  1435. #ifdef SLUB_DEBUG_CMPXCHG
  1436. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1437. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1438. #ifdef CONFIG_PREEMPT
  1439. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1440. printk("due to cpu change %d -> %d\n",
  1441. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1442. else
  1443. #endif
  1444. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1445. printk("due to cpu running other code. Event %ld->%ld\n",
  1446. tid_to_event(tid), tid_to_event(actual_tid));
  1447. else
  1448. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1449. actual_tid, tid, next_tid(tid));
  1450. #endif
  1451. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1452. }
  1453. void init_kmem_cache_cpus(struct kmem_cache *s)
  1454. {
  1455. int cpu;
  1456. for_each_possible_cpu(cpu)
  1457. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1458. }
  1459. /*
  1460. * Remove the cpu slab
  1461. */
  1462. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1463. {
  1464. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1465. struct page *page = c->page;
  1466. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1467. int lock = 0;
  1468. enum slab_modes l = M_NONE, m = M_NONE;
  1469. void *freelist;
  1470. void *nextfree;
  1471. int tail = DEACTIVATE_TO_HEAD;
  1472. struct page new;
  1473. struct page old;
  1474. if (page->freelist) {
  1475. stat(s, DEACTIVATE_REMOTE_FREES);
  1476. tail = DEACTIVATE_TO_TAIL;
  1477. }
  1478. c->tid = next_tid(c->tid);
  1479. c->page = NULL;
  1480. freelist = c->freelist;
  1481. c->freelist = NULL;
  1482. /*
  1483. * Stage one: Free all available per cpu objects back
  1484. * to the page freelist while it is still frozen. Leave the
  1485. * last one.
  1486. *
  1487. * There is no need to take the list->lock because the page
  1488. * is still frozen.
  1489. */
  1490. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1491. void *prior;
  1492. unsigned long counters;
  1493. do {
  1494. prior = page->freelist;
  1495. counters = page->counters;
  1496. set_freepointer(s, freelist, prior);
  1497. new.counters = counters;
  1498. new.inuse--;
  1499. VM_BUG_ON(!new.frozen);
  1500. } while (!__cmpxchg_double_slab(s, page,
  1501. prior, counters,
  1502. freelist, new.counters,
  1503. "drain percpu freelist"));
  1504. freelist = nextfree;
  1505. }
  1506. /*
  1507. * Stage two: Ensure that the page is unfrozen while the
  1508. * list presence reflects the actual number of objects
  1509. * during unfreeze.
  1510. *
  1511. * We setup the list membership and then perform a cmpxchg
  1512. * with the count. If there is a mismatch then the page
  1513. * is not unfrozen but the page is on the wrong list.
  1514. *
  1515. * Then we restart the process which may have to remove
  1516. * the page from the list that we just put it on again
  1517. * because the number of objects in the slab may have
  1518. * changed.
  1519. */
  1520. redo:
  1521. old.freelist = page->freelist;
  1522. old.counters = page->counters;
  1523. VM_BUG_ON(!old.frozen);
  1524. /* Determine target state of the slab */
  1525. new.counters = old.counters;
  1526. if (freelist) {
  1527. new.inuse--;
  1528. set_freepointer(s, freelist, old.freelist);
  1529. new.freelist = freelist;
  1530. } else
  1531. new.freelist = old.freelist;
  1532. new.frozen = 0;
  1533. if (!new.inuse && n->nr_partial > s->min_partial)
  1534. m = M_FREE;
  1535. else if (new.freelist) {
  1536. m = M_PARTIAL;
  1537. if (!lock) {
  1538. lock = 1;
  1539. /*
  1540. * Taking the spinlock removes the possiblity
  1541. * that acquire_slab() will see a slab page that
  1542. * is frozen
  1543. */
  1544. spin_lock(&n->list_lock);
  1545. }
  1546. } else {
  1547. m = M_FULL;
  1548. if (kmem_cache_debug(s) && !lock) {
  1549. lock = 1;
  1550. /*
  1551. * This also ensures that the scanning of full
  1552. * slabs from diagnostic functions will not see
  1553. * any frozen slabs.
  1554. */
  1555. spin_lock(&n->list_lock);
  1556. }
  1557. }
  1558. if (l != m) {
  1559. if (l == M_PARTIAL)
  1560. remove_partial(n, page);
  1561. else if (l == M_FULL)
  1562. remove_full(s, page);
  1563. if (m == M_PARTIAL) {
  1564. add_partial(n, page, tail);
  1565. stat(s, tail);
  1566. } else if (m == M_FULL) {
  1567. stat(s, DEACTIVATE_FULL);
  1568. add_full(s, n, page);
  1569. }
  1570. }
  1571. l = m;
  1572. if (!__cmpxchg_double_slab(s, page,
  1573. old.freelist, old.counters,
  1574. new.freelist, new.counters,
  1575. "unfreezing slab"))
  1576. goto redo;
  1577. if (lock)
  1578. spin_unlock(&n->list_lock);
  1579. if (m == M_FREE) {
  1580. stat(s, DEACTIVATE_EMPTY);
  1581. discard_slab(s, page);
  1582. stat(s, FREE_SLAB);
  1583. }
  1584. }
  1585. /* Unfreeze all the cpu partial slabs */
  1586. static void unfreeze_partials(struct kmem_cache *s)
  1587. {
  1588. struct kmem_cache_node *n = NULL;
  1589. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1590. struct page *page, *discard_page = NULL;
  1591. while ((page = c->partial)) {
  1592. enum slab_modes { M_PARTIAL, M_FREE };
  1593. enum slab_modes l, m;
  1594. struct page new;
  1595. struct page old;
  1596. c->partial = page->next;
  1597. l = M_FREE;
  1598. do {
  1599. old.freelist = page->freelist;
  1600. old.counters = page->counters;
  1601. VM_BUG_ON(!old.frozen);
  1602. new.counters = old.counters;
  1603. new.freelist = old.freelist;
  1604. new.frozen = 0;
  1605. if (!new.inuse && (!n || n->nr_partial > s->min_partial))
  1606. m = M_FREE;
  1607. else {
  1608. struct kmem_cache_node *n2 = get_node(s,
  1609. page_to_nid(page));
  1610. m = M_PARTIAL;
  1611. if (n != n2) {
  1612. if (n)
  1613. spin_unlock(&n->list_lock);
  1614. n = n2;
  1615. spin_lock(&n->list_lock);
  1616. }
  1617. }
  1618. if (l != m) {
  1619. if (l == M_PARTIAL) {
  1620. remove_partial(n, page);
  1621. stat(s, FREE_REMOVE_PARTIAL);
  1622. } else {
  1623. add_partial(n, page,
  1624. DEACTIVATE_TO_TAIL);
  1625. stat(s, FREE_ADD_PARTIAL);
  1626. }
  1627. l = m;
  1628. }
  1629. } while (!cmpxchg_double_slab(s, page,
  1630. old.freelist, old.counters,
  1631. new.freelist, new.counters,
  1632. "unfreezing slab"));
  1633. if (m == M_FREE) {
  1634. page->next = discard_page;
  1635. discard_page = page;
  1636. }
  1637. }
  1638. if (n)
  1639. spin_unlock(&n->list_lock);
  1640. while (discard_page) {
  1641. page = discard_page;
  1642. discard_page = discard_page->next;
  1643. stat(s, DEACTIVATE_EMPTY);
  1644. discard_slab(s, page);
  1645. stat(s, FREE_SLAB);
  1646. }
  1647. }
  1648. /*
  1649. * Put a page that was just frozen (in __slab_free) into a partial page
  1650. * slot if available. This is done without interrupts disabled and without
  1651. * preemption disabled. The cmpxchg is racy and may put the partial page
  1652. * onto a random cpus partial slot.
  1653. *
  1654. * If we did not find a slot then simply move all the partials to the
  1655. * per node partial list.
  1656. */
  1657. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1658. {
  1659. struct page *oldpage;
  1660. int pages;
  1661. int pobjects;
  1662. do {
  1663. pages = 0;
  1664. pobjects = 0;
  1665. oldpage = this_cpu_read(s->cpu_slab->partial);
  1666. if (oldpage) {
  1667. pobjects = oldpage->pobjects;
  1668. pages = oldpage->pages;
  1669. if (drain && pobjects > s->cpu_partial) {
  1670. unsigned long flags;
  1671. /*
  1672. * partial array is full. Move the existing
  1673. * set to the per node partial list.
  1674. */
  1675. local_irq_save(flags);
  1676. unfreeze_partials(s);
  1677. local_irq_restore(flags);
  1678. pobjects = 0;
  1679. pages = 0;
  1680. }
  1681. }
  1682. pages++;
  1683. pobjects += page->objects - page->inuse;
  1684. page->pages = pages;
  1685. page->pobjects = pobjects;
  1686. page->next = oldpage;
  1687. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1688. stat(s, CPU_PARTIAL_FREE);
  1689. return pobjects;
  1690. }
  1691. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1692. {
  1693. stat(s, CPUSLAB_FLUSH);
  1694. deactivate_slab(s, c);
  1695. }
  1696. /*
  1697. * Flush cpu slab.
  1698. *
  1699. * Called from IPI handler with interrupts disabled.
  1700. */
  1701. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1702. {
  1703. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1704. if (likely(c)) {
  1705. if (c->page)
  1706. flush_slab(s, c);
  1707. unfreeze_partials(s);
  1708. }
  1709. }
  1710. static void flush_cpu_slab(void *d)
  1711. {
  1712. struct kmem_cache *s = d;
  1713. __flush_cpu_slab(s, smp_processor_id());
  1714. }
  1715. static void flush_all(struct kmem_cache *s)
  1716. {
  1717. on_each_cpu(flush_cpu_slab, s, 1);
  1718. }
  1719. /*
  1720. * Check if the objects in a per cpu structure fit numa
  1721. * locality expectations.
  1722. */
  1723. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1724. {
  1725. #ifdef CONFIG_NUMA
  1726. if (node != NUMA_NO_NODE && c->node != node)
  1727. return 0;
  1728. #endif
  1729. return 1;
  1730. }
  1731. static int count_free(struct page *page)
  1732. {
  1733. return page->objects - page->inuse;
  1734. }
  1735. static unsigned long count_partial(struct kmem_cache_node *n,
  1736. int (*get_count)(struct page *))
  1737. {
  1738. unsigned long flags;
  1739. unsigned long x = 0;
  1740. struct page *page;
  1741. spin_lock_irqsave(&n->list_lock, flags);
  1742. list_for_each_entry(page, &n->partial, lru)
  1743. x += get_count(page);
  1744. spin_unlock_irqrestore(&n->list_lock, flags);
  1745. return x;
  1746. }
  1747. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1748. {
  1749. #ifdef CONFIG_SLUB_DEBUG
  1750. return atomic_long_read(&n->total_objects);
  1751. #else
  1752. return 0;
  1753. #endif
  1754. }
  1755. static noinline void
  1756. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1757. {
  1758. int node;
  1759. printk(KERN_WARNING
  1760. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1761. nid, gfpflags);
  1762. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1763. "default order: %d, min order: %d\n", s->name, s->objsize,
  1764. s->size, oo_order(s->oo), oo_order(s->min));
  1765. if (oo_order(s->min) > get_order(s->objsize))
  1766. printk(KERN_WARNING " %s debugging increased min order, use "
  1767. "slub_debug=O to disable.\n", s->name);
  1768. for_each_online_node(node) {
  1769. struct kmem_cache_node *n = get_node(s, node);
  1770. unsigned long nr_slabs;
  1771. unsigned long nr_objs;
  1772. unsigned long nr_free;
  1773. if (!n)
  1774. continue;
  1775. nr_free = count_partial(n, count_free);
  1776. nr_slabs = node_nr_slabs(n);
  1777. nr_objs = node_nr_objs(n);
  1778. printk(KERN_WARNING
  1779. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1780. node, nr_slabs, nr_objs, nr_free);
  1781. }
  1782. }
  1783. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1784. int node, struct kmem_cache_cpu **pc)
  1785. {
  1786. void *object;
  1787. struct kmem_cache_cpu *c;
  1788. struct page *page = new_slab(s, flags, node);
  1789. if (page) {
  1790. c = __this_cpu_ptr(s->cpu_slab);
  1791. if (c->page)
  1792. flush_slab(s, c);
  1793. /*
  1794. * No other reference to the page yet so we can
  1795. * muck around with it freely without cmpxchg
  1796. */
  1797. object = page->freelist;
  1798. page->freelist = NULL;
  1799. stat(s, ALLOC_SLAB);
  1800. c->node = page_to_nid(page);
  1801. c->page = page;
  1802. *pc = c;
  1803. } else
  1804. object = NULL;
  1805. return object;
  1806. }
  1807. /*
  1808. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1809. * or deactivate the page.
  1810. *
  1811. * The page is still frozen if the return value is not NULL.
  1812. *
  1813. * If this function returns NULL then the page has been unfrozen.
  1814. */
  1815. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1816. {
  1817. struct page new;
  1818. unsigned long counters;
  1819. void *freelist;
  1820. do {
  1821. freelist = page->freelist;
  1822. counters = page->counters;
  1823. new.counters = counters;
  1824. VM_BUG_ON(!new.frozen);
  1825. new.inuse = page->objects;
  1826. new.frozen = freelist != NULL;
  1827. } while (!cmpxchg_double_slab(s, page,
  1828. freelist, counters,
  1829. NULL, new.counters,
  1830. "get_freelist"));
  1831. return freelist;
  1832. }
  1833. /*
  1834. * Slow path. The lockless freelist is empty or we need to perform
  1835. * debugging duties.
  1836. *
  1837. * Processing is still very fast if new objects have been freed to the
  1838. * regular freelist. In that case we simply take over the regular freelist
  1839. * as the lockless freelist and zap the regular freelist.
  1840. *
  1841. * If that is not working then we fall back to the partial lists. We take the
  1842. * first element of the freelist as the object to allocate now and move the
  1843. * rest of the freelist to the lockless freelist.
  1844. *
  1845. * And if we were unable to get a new slab from the partial slab lists then
  1846. * we need to allocate a new slab. This is the slowest path since it involves
  1847. * a call to the page allocator and the setup of a new slab.
  1848. */
  1849. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1850. unsigned long addr, struct kmem_cache_cpu *c)
  1851. {
  1852. void **object;
  1853. unsigned long flags;
  1854. local_irq_save(flags);
  1855. #ifdef CONFIG_PREEMPT
  1856. /*
  1857. * We may have been preempted and rescheduled on a different
  1858. * cpu before disabling interrupts. Need to reload cpu area
  1859. * pointer.
  1860. */
  1861. c = this_cpu_ptr(s->cpu_slab);
  1862. #endif
  1863. if (!c->page)
  1864. goto new_slab;
  1865. redo:
  1866. if (unlikely(!node_match(c, node))) {
  1867. stat(s, ALLOC_NODE_MISMATCH);
  1868. deactivate_slab(s, c);
  1869. goto new_slab;
  1870. }
  1871. /* must check again c->freelist in case of cpu migration or IRQ */
  1872. object = c->freelist;
  1873. if (object)
  1874. goto load_freelist;
  1875. stat(s, ALLOC_SLOWPATH);
  1876. object = get_freelist(s, c->page);
  1877. if (!object) {
  1878. c->page = NULL;
  1879. stat(s, DEACTIVATE_BYPASS);
  1880. goto new_slab;
  1881. }
  1882. stat(s, ALLOC_REFILL);
  1883. load_freelist:
  1884. c->freelist = get_freepointer(s, object);
  1885. c->tid = next_tid(c->tid);
  1886. local_irq_restore(flags);
  1887. return object;
  1888. new_slab:
  1889. if (c->partial) {
  1890. c->page = c->partial;
  1891. c->partial = c->page->next;
  1892. c->node = page_to_nid(c->page);
  1893. stat(s, CPU_PARTIAL_ALLOC);
  1894. c->freelist = NULL;
  1895. goto redo;
  1896. }
  1897. /* Then do expensive stuff like retrieving pages from the partial lists */
  1898. object = get_partial(s, gfpflags, node, c);
  1899. if (unlikely(!object)) {
  1900. object = new_slab_objects(s, gfpflags, node, &c);
  1901. if (unlikely(!object)) {
  1902. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1903. slab_out_of_memory(s, gfpflags, node);
  1904. local_irq_restore(flags);
  1905. return NULL;
  1906. }
  1907. }
  1908. if (likely(!kmem_cache_debug(s)))
  1909. goto load_freelist;
  1910. /* Only entered in the debug case */
  1911. if (!alloc_debug_processing(s, c->page, object, addr))
  1912. goto new_slab; /* Slab failed checks. Next slab needed */
  1913. c->freelist = get_freepointer(s, object);
  1914. deactivate_slab(s, c);
  1915. c->node = NUMA_NO_NODE;
  1916. local_irq_restore(flags);
  1917. return object;
  1918. }
  1919. /*
  1920. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1921. * have the fastpath folded into their functions. So no function call
  1922. * overhead for requests that can be satisfied on the fastpath.
  1923. *
  1924. * The fastpath works by first checking if the lockless freelist can be used.
  1925. * If not then __slab_alloc is called for slow processing.
  1926. *
  1927. * Otherwise we can simply pick the next object from the lockless free list.
  1928. */
  1929. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1930. gfp_t gfpflags, int node, unsigned long addr)
  1931. {
  1932. void **object;
  1933. struct kmem_cache_cpu *c;
  1934. unsigned long tid;
  1935. if (slab_pre_alloc_hook(s, gfpflags))
  1936. return NULL;
  1937. redo:
  1938. /*
  1939. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1940. * enabled. We may switch back and forth between cpus while
  1941. * reading from one cpu area. That does not matter as long
  1942. * as we end up on the original cpu again when doing the cmpxchg.
  1943. */
  1944. c = __this_cpu_ptr(s->cpu_slab);
  1945. /*
  1946. * The transaction ids are globally unique per cpu and per operation on
  1947. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1948. * occurs on the right processor and that there was no operation on the
  1949. * linked list in between.
  1950. */
  1951. tid = c->tid;
  1952. barrier();
  1953. object = c->freelist;
  1954. if (unlikely(!object || !node_match(c, node)))
  1955. object = __slab_alloc(s, gfpflags, node, addr, c);
  1956. else {
  1957. void *next_object = get_freepointer_safe(s, object);
  1958. /*
  1959. * The cmpxchg will only match if there was no additional
  1960. * operation and if we are on the right processor.
  1961. *
  1962. * The cmpxchg does the following atomically (without lock semantics!)
  1963. * 1. Relocate first pointer to the current per cpu area.
  1964. * 2. Verify that tid and freelist have not been changed
  1965. * 3. If they were not changed replace tid and freelist
  1966. *
  1967. * Since this is without lock semantics the protection is only against
  1968. * code executing on this cpu *not* from access by other cpus.
  1969. */
  1970. if (unlikely(!this_cpu_cmpxchg_double(
  1971. s->cpu_slab->freelist, s->cpu_slab->tid,
  1972. object, tid,
  1973. next_object, next_tid(tid)))) {
  1974. note_cmpxchg_failure("slab_alloc", s, tid);
  1975. goto redo;
  1976. }
  1977. prefetch_freepointer(s, next_object);
  1978. stat(s, ALLOC_FASTPATH);
  1979. }
  1980. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1981. memset(object, 0, s->objsize);
  1982. slab_post_alloc_hook(s, gfpflags, object);
  1983. return object;
  1984. }
  1985. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1986. {
  1987. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1988. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1989. return ret;
  1990. }
  1991. EXPORT_SYMBOL(kmem_cache_alloc);
  1992. #ifdef CONFIG_TRACING
  1993. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1994. {
  1995. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1996. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1997. return ret;
  1998. }
  1999. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2000. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2001. {
  2002. void *ret = kmalloc_order(size, flags, order);
  2003. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2004. return ret;
  2005. }
  2006. EXPORT_SYMBOL(kmalloc_order_trace);
  2007. #endif
  2008. #ifdef CONFIG_NUMA
  2009. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2010. {
  2011. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2012. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2013. s->objsize, s->size, gfpflags, node);
  2014. return ret;
  2015. }
  2016. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2017. #ifdef CONFIG_TRACING
  2018. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2019. gfp_t gfpflags,
  2020. int node, size_t size)
  2021. {
  2022. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2023. trace_kmalloc_node(_RET_IP_, ret,
  2024. size, s->size, gfpflags, node);
  2025. return ret;
  2026. }
  2027. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2028. #endif
  2029. #endif
  2030. /*
  2031. * Slow patch handling. This may still be called frequently since objects
  2032. * have a longer lifetime than the cpu slabs in most processing loads.
  2033. *
  2034. * So we still attempt to reduce cache line usage. Just take the slab
  2035. * lock and free the item. If there is no additional partial page
  2036. * handling required then we can return immediately.
  2037. */
  2038. static void __slab_free(struct kmem_cache *s, struct page *page,
  2039. void *x, unsigned long addr)
  2040. {
  2041. void *prior;
  2042. void **object = (void *)x;
  2043. int was_frozen;
  2044. int inuse;
  2045. struct page new;
  2046. unsigned long counters;
  2047. struct kmem_cache_node *n = NULL;
  2048. unsigned long uninitialized_var(flags);
  2049. stat(s, FREE_SLOWPATH);
  2050. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2051. return;
  2052. do {
  2053. prior = page->freelist;
  2054. counters = page->counters;
  2055. set_freepointer(s, object, prior);
  2056. new.counters = counters;
  2057. was_frozen = new.frozen;
  2058. new.inuse--;
  2059. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2060. if (!kmem_cache_debug(s) && !prior)
  2061. /*
  2062. * Slab was on no list before and will be partially empty
  2063. * We can defer the list move and instead freeze it.
  2064. */
  2065. new.frozen = 1;
  2066. else { /* Needs to be taken off a list */
  2067. n = get_node(s, page_to_nid(page));
  2068. /*
  2069. * Speculatively acquire the list_lock.
  2070. * If the cmpxchg does not succeed then we may
  2071. * drop the list_lock without any processing.
  2072. *
  2073. * Otherwise the list_lock will synchronize with
  2074. * other processors updating the list of slabs.
  2075. */
  2076. spin_lock_irqsave(&n->list_lock, flags);
  2077. }
  2078. }
  2079. inuse = new.inuse;
  2080. } while (!cmpxchg_double_slab(s, page,
  2081. prior, counters,
  2082. object, new.counters,
  2083. "__slab_free"));
  2084. if (likely(!n)) {
  2085. /*
  2086. * If we just froze the page then put it onto the
  2087. * per cpu partial list.
  2088. */
  2089. if (new.frozen && !was_frozen)
  2090. put_cpu_partial(s, page, 1);
  2091. /*
  2092. * The list lock was not taken therefore no list
  2093. * activity can be necessary.
  2094. */
  2095. if (was_frozen)
  2096. stat(s, FREE_FROZEN);
  2097. return;
  2098. }
  2099. /*
  2100. * was_frozen may have been set after we acquired the list_lock in
  2101. * an earlier loop. So we need to check it here again.
  2102. */
  2103. if (was_frozen)
  2104. stat(s, FREE_FROZEN);
  2105. else {
  2106. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2107. goto slab_empty;
  2108. /*
  2109. * Objects left in the slab. If it was not on the partial list before
  2110. * then add it.
  2111. */
  2112. if (unlikely(!prior)) {
  2113. remove_full(s, page);
  2114. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2115. stat(s, FREE_ADD_PARTIAL);
  2116. }
  2117. }
  2118. spin_unlock_irqrestore(&n->list_lock, flags);
  2119. return;
  2120. slab_empty:
  2121. if (prior) {
  2122. /*
  2123. * Slab on the partial list.
  2124. */
  2125. remove_partial(n, page);
  2126. stat(s, FREE_REMOVE_PARTIAL);
  2127. } else
  2128. /* Slab must be on the full list */
  2129. remove_full(s, page);
  2130. spin_unlock_irqrestore(&n->list_lock, flags);
  2131. stat(s, FREE_SLAB);
  2132. discard_slab(s, page);
  2133. }
  2134. /*
  2135. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2136. * can perform fastpath freeing without additional function calls.
  2137. *
  2138. * The fastpath is only possible if we are freeing to the current cpu slab
  2139. * of this processor. This typically the case if we have just allocated
  2140. * the item before.
  2141. *
  2142. * If fastpath is not possible then fall back to __slab_free where we deal
  2143. * with all sorts of special processing.
  2144. */
  2145. static __always_inline void slab_free(struct kmem_cache *s,
  2146. struct page *page, void *x, unsigned long addr)
  2147. {
  2148. void **object = (void *)x;
  2149. struct kmem_cache_cpu *c;
  2150. unsigned long tid;
  2151. slab_free_hook(s, x);
  2152. redo:
  2153. /*
  2154. * Determine the currently cpus per cpu slab.
  2155. * The cpu may change afterward. However that does not matter since
  2156. * data is retrieved via this pointer. If we are on the same cpu
  2157. * during the cmpxchg then the free will succedd.
  2158. */
  2159. c = __this_cpu_ptr(s->cpu_slab);
  2160. tid = c->tid;
  2161. barrier();
  2162. if (likely(page == c->page)) {
  2163. set_freepointer(s, object, c->freelist);
  2164. if (unlikely(!this_cpu_cmpxchg_double(
  2165. s->cpu_slab->freelist, s->cpu_slab->tid,
  2166. c->freelist, tid,
  2167. object, next_tid(tid)))) {
  2168. note_cmpxchg_failure("slab_free", s, tid);
  2169. goto redo;
  2170. }
  2171. stat(s, FREE_FASTPATH);
  2172. } else
  2173. __slab_free(s, page, x, addr);
  2174. }
  2175. void kmem_cache_free(struct kmem_cache *s, void *x)
  2176. {
  2177. struct page *page;
  2178. page = virt_to_head_page(x);
  2179. slab_free(s, page, x, _RET_IP_);
  2180. trace_kmem_cache_free(_RET_IP_, x);
  2181. }
  2182. EXPORT_SYMBOL(kmem_cache_free);
  2183. /*
  2184. * Object placement in a slab is made very easy because we always start at
  2185. * offset 0. If we tune the size of the object to the alignment then we can
  2186. * get the required alignment by putting one properly sized object after
  2187. * another.
  2188. *
  2189. * Notice that the allocation order determines the sizes of the per cpu
  2190. * caches. Each processor has always one slab available for allocations.
  2191. * Increasing the allocation order reduces the number of times that slabs
  2192. * must be moved on and off the partial lists and is therefore a factor in
  2193. * locking overhead.
  2194. */
  2195. /*
  2196. * Mininum / Maximum order of slab pages. This influences locking overhead
  2197. * and slab fragmentation. A higher order reduces the number of partial slabs
  2198. * and increases the number of allocations possible without having to
  2199. * take the list_lock.
  2200. */
  2201. static int slub_min_order;
  2202. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2203. static int slub_min_objects;
  2204. /*
  2205. * Merge control. If this is set then no merging of slab caches will occur.
  2206. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2207. */
  2208. static int slub_nomerge;
  2209. /*
  2210. * Calculate the order of allocation given an slab object size.
  2211. *
  2212. * The order of allocation has significant impact on performance and other
  2213. * system components. Generally order 0 allocations should be preferred since
  2214. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2215. * be problematic to put into order 0 slabs because there may be too much
  2216. * unused space left. We go to a higher order if more than 1/16th of the slab
  2217. * would be wasted.
  2218. *
  2219. * In order to reach satisfactory performance we must ensure that a minimum
  2220. * number of objects is in one slab. Otherwise we may generate too much
  2221. * activity on the partial lists which requires taking the list_lock. This is
  2222. * less a concern for large slabs though which are rarely used.
  2223. *
  2224. * slub_max_order specifies the order where we begin to stop considering the
  2225. * number of objects in a slab as critical. If we reach slub_max_order then
  2226. * we try to keep the page order as low as possible. So we accept more waste
  2227. * of space in favor of a small page order.
  2228. *
  2229. * Higher order allocations also allow the placement of more objects in a
  2230. * slab and thereby reduce object handling overhead. If the user has
  2231. * requested a higher mininum order then we start with that one instead of
  2232. * the smallest order which will fit the object.
  2233. */
  2234. static inline int slab_order(int size, int min_objects,
  2235. int max_order, int fract_leftover, int reserved)
  2236. {
  2237. int order;
  2238. int rem;
  2239. int min_order = slub_min_order;
  2240. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2241. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2242. for (order = max(min_order,
  2243. fls(min_objects * size - 1) - PAGE_SHIFT);
  2244. order <= max_order; order++) {
  2245. unsigned long slab_size = PAGE_SIZE << order;
  2246. if (slab_size < min_objects * size + reserved)
  2247. continue;
  2248. rem = (slab_size - reserved) % size;
  2249. if (rem <= slab_size / fract_leftover)
  2250. break;
  2251. }
  2252. return order;
  2253. }
  2254. static inline int calculate_order(int size, int reserved)
  2255. {
  2256. int order;
  2257. int min_objects;
  2258. int fraction;
  2259. int max_objects;
  2260. /*
  2261. * Attempt to find best configuration for a slab. This
  2262. * works by first attempting to generate a layout with
  2263. * the best configuration and backing off gradually.
  2264. *
  2265. * First we reduce the acceptable waste in a slab. Then
  2266. * we reduce the minimum objects required in a slab.
  2267. */
  2268. min_objects = slub_min_objects;
  2269. if (!min_objects)
  2270. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2271. max_objects = order_objects(slub_max_order, size, reserved);
  2272. min_objects = min(min_objects, max_objects);
  2273. while (min_objects > 1) {
  2274. fraction = 16;
  2275. while (fraction >= 4) {
  2276. order = slab_order(size, min_objects,
  2277. slub_max_order, fraction, reserved);
  2278. if (order <= slub_max_order)
  2279. return order;
  2280. fraction /= 2;
  2281. }
  2282. min_objects--;
  2283. }
  2284. /*
  2285. * We were unable to place multiple objects in a slab. Now
  2286. * lets see if we can place a single object there.
  2287. */
  2288. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2289. if (order <= slub_max_order)
  2290. return order;
  2291. /*
  2292. * Doh this slab cannot be placed using slub_max_order.
  2293. */
  2294. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2295. if (order < MAX_ORDER)
  2296. return order;
  2297. return -ENOSYS;
  2298. }
  2299. /*
  2300. * Figure out what the alignment of the objects will be.
  2301. */
  2302. static unsigned long calculate_alignment(unsigned long flags,
  2303. unsigned long align, unsigned long size)
  2304. {
  2305. /*
  2306. * If the user wants hardware cache aligned objects then follow that
  2307. * suggestion if the object is sufficiently large.
  2308. *
  2309. * The hardware cache alignment cannot override the specified
  2310. * alignment though. If that is greater then use it.
  2311. */
  2312. if (flags & SLAB_HWCACHE_ALIGN) {
  2313. unsigned long ralign = cache_line_size();
  2314. while (size <= ralign / 2)
  2315. ralign /= 2;
  2316. align = max(align, ralign);
  2317. }
  2318. if (align < ARCH_SLAB_MINALIGN)
  2319. align = ARCH_SLAB_MINALIGN;
  2320. return ALIGN(align, sizeof(void *));
  2321. }
  2322. static void
  2323. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  2324. {
  2325. n->nr_partial = 0;
  2326. spin_lock_init(&n->list_lock);
  2327. INIT_LIST_HEAD(&n->partial);
  2328. #ifdef CONFIG_SLUB_DEBUG
  2329. atomic_long_set(&n->nr_slabs, 0);
  2330. atomic_long_set(&n->total_objects, 0);
  2331. INIT_LIST_HEAD(&n->full);
  2332. #endif
  2333. }
  2334. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2335. {
  2336. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2337. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2338. /*
  2339. * Must align to double word boundary for the double cmpxchg
  2340. * instructions to work; see __pcpu_double_call_return_bool().
  2341. */
  2342. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2343. 2 * sizeof(void *));
  2344. if (!s->cpu_slab)
  2345. return 0;
  2346. init_kmem_cache_cpus(s);
  2347. return 1;
  2348. }
  2349. static struct kmem_cache *kmem_cache_node;
  2350. /*
  2351. * No kmalloc_node yet so do it by hand. We know that this is the first
  2352. * slab on the node for this slabcache. There are no concurrent accesses
  2353. * possible.
  2354. *
  2355. * Note that this function only works on the kmalloc_node_cache
  2356. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2357. * memory on a fresh node that has no slab structures yet.
  2358. */
  2359. static void early_kmem_cache_node_alloc(int node)
  2360. {
  2361. struct page *page;
  2362. struct kmem_cache_node *n;
  2363. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2364. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2365. BUG_ON(!page);
  2366. if (page_to_nid(page) != node) {
  2367. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2368. "node %d\n", node);
  2369. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2370. "in order to be able to continue\n");
  2371. }
  2372. n = page->freelist;
  2373. BUG_ON(!n);
  2374. page->freelist = get_freepointer(kmem_cache_node, n);
  2375. page->inuse = 1;
  2376. page->frozen = 0;
  2377. kmem_cache_node->node[node] = n;
  2378. #ifdef CONFIG_SLUB_DEBUG
  2379. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2380. init_tracking(kmem_cache_node, n);
  2381. #endif
  2382. init_kmem_cache_node(n, kmem_cache_node);
  2383. inc_slabs_node(kmem_cache_node, node, page->objects);
  2384. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2385. }
  2386. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2387. {
  2388. int node;
  2389. for_each_node_state(node, N_NORMAL_MEMORY) {
  2390. struct kmem_cache_node *n = s->node[node];
  2391. if (n)
  2392. kmem_cache_free(kmem_cache_node, n);
  2393. s->node[node] = NULL;
  2394. }
  2395. }
  2396. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2397. {
  2398. int node;
  2399. for_each_node_state(node, N_NORMAL_MEMORY) {
  2400. struct kmem_cache_node *n;
  2401. if (slab_state == DOWN) {
  2402. early_kmem_cache_node_alloc(node);
  2403. continue;
  2404. }
  2405. n = kmem_cache_alloc_node(kmem_cache_node,
  2406. GFP_KERNEL, node);
  2407. if (!n) {
  2408. free_kmem_cache_nodes(s);
  2409. return 0;
  2410. }
  2411. s->node[node] = n;
  2412. init_kmem_cache_node(n, s);
  2413. }
  2414. return 1;
  2415. }
  2416. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2417. {
  2418. if (min < MIN_PARTIAL)
  2419. min = MIN_PARTIAL;
  2420. else if (min > MAX_PARTIAL)
  2421. min = MAX_PARTIAL;
  2422. s->min_partial = min;
  2423. }
  2424. /*
  2425. * calculate_sizes() determines the order and the distribution of data within
  2426. * a slab object.
  2427. */
  2428. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2429. {
  2430. unsigned long flags = s->flags;
  2431. unsigned long size = s->objsize;
  2432. unsigned long align = s->align;
  2433. int order;
  2434. /*
  2435. * Round up object size to the next word boundary. We can only
  2436. * place the free pointer at word boundaries and this determines
  2437. * the possible location of the free pointer.
  2438. */
  2439. size = ALIGN(size, sizeof(void *));
  2440. #ifdef CONFIG_SLUB_DEBUG
  2441. /*
  2442. * Determine if we can poison the object itself. If the user of
  2443. * the slab may touch the object after free or before allocation
  2444. * then we should never poison the object itself.
  2445. */
  2446. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2447. !s->ctor)
  2448. s->flags |= __OBJECT_POISON;
  2449. else
  2450. s->flags &= ~__OBJECT_POISON;
  2451. /*
  2452. * If we are Redzoning then check if there is some space between the
  2453. * end of the object and the free pointer. If not then add an
  2454. * additional word to have some bytes to store Redzone information.
  2455. */
  2456. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  2457. size += sizeof(void *);
  2458. #endif
  2459. /*
  2460. * With that we have determined the number of bytes in actual use
  2461. * by the object. This is the potential offset to the free pointer.
  2462. */
  2463. s->inuse = size;
  2464. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2465. s->ctor)) {
  2466. /*
  2467. * Relocate free pointer after the object if it is not
  2468. * permitted to overwrite the first word of the object on
  2469. * kmem_cache_free.
  2470. *
  2471. * This is the case if we do RCU, have a constructor or
  2472. * destructor or are poisoning the objects.
  2473. */
  2474. s->offset = size;
  2475. size += sizeof(void *);
  2476. }
  2477. #ifdef CONFIG_SLUB_DEBUG
  2478. if (flags & SLAB_STORE_USER)
  2479. /*
  2480. * Need to store information about allocs and frees after
  2481. * the object.
  2482. */
  2483. size += 2 * sizeof(struct track);
  2484. if (flags & SLAB_RED_ZONE)
  2485. /*
  2486. * Add some empty padding so that we can catch
  2487. * overwrites from earlier objects rather than let
  2488. * tracking information or the free pointer be
  2489. * corrupted if a user writes before the start
  2490. * of the object.
  2491. */
  2492. size += sizeof(void *);
  2493. #endif
  2494. /*
  2495. * Determine the alignment based on various parameters that the
  2496. * user specified and the dynamic determination of cache line size
  2497. * on bootup.
  2498. */
  2499. align = calculate_alignment(flags, align, s->objsize);
  2500. s->align = align;
  2501. /*
  2502. * SLUB stores one object immediately after another beginning from
  2503. * offset 0. In order to align the objects we have to simply size
  2504. * each object to conform to the alignment.
  2505. */
  2506. size = ALIGN(size, align);
  2507. s->size = size;
  2508. if (forced_order >= 0)
  2509. order = forced_order;
  2510. else
  2511. order = calculate_order(size, s->reserved);
  2512. if (order < 0)
  2513. return 0;
  2514. s->allocflags = 0;
  2515. if (order)
  2516. s->allocflags |= __GFP_COMP;
  2517. if (s->flags & SLAB_CACHE_DMA)
  2518. s->allocflags |= SLUB_DMA;
  2519. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2520. s->allocflags |= __GFP_RECLAIMABLE;
  2521. /*
  2522. * Determine the number of objects per slab
  2523. */
  2524. s->oo = oo_make(order, size, s->reserved);
  2525. s->min = oo_make(get_order(size), size, s->reserved);
  2526. if (oo_objects(s->oo) > oo_objects(s->max))
  2527. s->max = s->oo;
  2528. return !!oo_objects(s->oo);
  2529. }
  2530. static int kmem_cache_open(struct kmem_cache *s,
  2531. const char *name, size_t size,
  2532. size_t align, unsigned long flags,
  2533. void (*ctor)(void *))
  2534. {
  2535. memset(s, 0, kmem_size);
  2536. s->name = name;
  2537. s->ctor = ctor;
  2538. s->objsize = size;
  2539. s->align = align;
  2540. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2541. s->reserved = 0;
  2542. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2543. s->reserved = sizeof(struct rcu_head);
  2544. if (!calculate_sizes(s, -1))
  2545. goto error;
  2546. if (disable_higher_order_debug) {
  2547. /*
  2548. * Disable debugging flags that store metadata if the min slab
  2549. * order increased.
  2550. */
  2551. if (get_order(s->size) > get_order(s->objsize)) {
  2552. s->flags &= ~DEBUG_METADATA_FLAGS;
  2553. s->offset = 0;
  2554. if (!calculate_sizes(s, -1))
  2555. goto error;
  2556. }
  2557. }
  2558. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2559. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2560. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2561. /* Enable fast mode */
  2562. s->flags |= __CMPXCHG_DOUBLE;
  2563. #endif
  2564. /*
  2565. * The larger the object size is, the more pages we want on the partial
  2566. * list to avoid pounding the page allocator excessively.
  2567. */
  2568. set_min_partial(s, ilog2(s->size) / 2);
  2569. /*
  2570. * cpu_partial determined the maximum number of objects kept in the
  2571. * per cpu partial lists of a processor.
  2572. *
  2573. * Per cpu partial lists mainly contain slabs that just have one
  2574. * object freed. If they are used for allocation then they can be
  2575. * filled up again with minimal effort. The slab will never hit the
  2576. * per node partial lists and therefore no locking will be required.
  2577. *
  2578. * This setting also determines
  2579. *
  2580. * A) The number of objects from per cpu partial slabs dumped to the
  2581. * per node list when we reach the limit.
  2582. * B) The number of objects in cpu partial slabs to extract from the
  2583. * per node list when we run out of per cpu objects. We only fetch 50%
  2584. * to keep some capacity around for frees.
  2585. */
  2586. if (kmem_cache_debug(s))
  2587. s->cpu_partial = 0;
  2588. else if (s->size >= PAGE_SIZE)
  2589. s->cpu_partial = 2;
  2590. else if (s->size >= 1024)
  2591. s->cpu_partial = 6;
  2592. else if (s->size >= 256)
  2593. s->cpu_partial = 13;
  2594. else
  2595. s->cpu_partial = 30;
  2596. s->refcount = 1;
  2597. #ifdef CONFIG_NUMA
  2598. s->remote_node_defrag_ratio = 1000;
  2599. #endif
  2600. if (!init_kmem_cache_nodes(s))
  2601. goto error;
  2602. if (alloc_kmem_cache_cpus(s))
  2603. return 1;
  2604. free_kmem_cache_nodes(s);
  2605. error:
  2606. if (flags & SLAB_PANIC)
  2607. panic("Cannot create slab %s size=%lu realsize=%u "
  2608. "order=%u offset=%u flags=%lx\n",
  2609. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2610. s->offset, flags);
  2611. return 0;
  2612. }
  2613. /*
  2614. * Determine the size of a slab object
  2615. */
  2616. unsigned int kmem_cache_size(struct kmem_cache *s)
  2617. {
  2618. return s->objsize;
  2619. }
  2620. EXPORT_SYMBOL(kmem_cache_size);
  2621. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2622. const char *text)
  2623. {
  2624. #ifdef CONFIG_SLUB_DEBUG
  2625. void *addr = page_address(page);
  2626. void *p;
  2627. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2628. sizeof(long), GFP_ATOMIC);
  2629. if (!map)
  2630. return;
  2631. slab_err(s, page, "%s", text);
  2632. slab_lock(page);
  2633. get_map(s, page, map);
  2634. for_each_object(p, s, addr, page->objects) {
  2635. if (!test_bit(slab_index(p, s, addr), map)) {
  2636. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2637. p, p - addr);
  2638. print_tracking(s, p);
  2639. }
  2640. }
  2641. slab_unlock(page);
  2642. kfree(map);
  2643. #endif
  2644. }
  2645. /*
  2646. * Attempt to free all partial slabs on a node.
  2647. * This is called from kmem_cache_close(). We must be the last thread
  2648. * using the cache and therefore we do not need to lock anymore.
  2649. */
  2650. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2651. {
  2652. struct page *page, *h;
  2653. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2654. if (!page->inuse) {
  2655. remove_partial(n, page);
  2656. discard_slab(s, page);
  2657. } else {
  2658. list_slab_objects(s, page,
  2659. "Objects remaining on kmem_cache_close()");
  2660. }
  2661. }
  2662. }
  2663. /*
  2664. * Release all resources used by a slab cache.
  2665. */
  2666. static inline int kmem_cache_close(struct kmem_cache *s)
  2667. {
  2668. int node;
  2669. flush_all(s);
  2670. free_percpu(s->cpu_slab);
  2671. /* Attempt to free all objects */
  2672. for_each_node_state(node, N_NORMAL_MEMORY) {
  2673. struct kmem_cache_node *n = get_node(s, node);
  2674. free_partial(s, n);
  2675. if (n->nr_partial || slabs_node(s, node))
  2676. return 1;
  2677. }
  2678. free_kmem_cache_nodes(s);
  2679. return 0;
  2680. }
  2681. /*
  2682. * Close a cache and release the kmem_cache structure
  2683. * (must be used for caches created using kmem_cache_create)
  2684. */
  2685. void kmem_cache_destroy(struct kmem_cache *s)
  2686. {
  2687. down_write(&slub_lock);
  2688. s->refcount--;
  2689. if (!s->refcount) {
  2690. list_del(&s->list);
  2691. up_write(&slub_lock);
  2692. if (kmem_cache_close(s)) {
  2693. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2694. "still has objects.\n", s->name, __func__);
  2695. dump_stack();
  2696. }
  2697. if (s->flags & SLAB_DESTROY_BY_RCU)
  2698. rcu_barrier();
  2699. sysfs_slab_remove(s);
  2700. } else
  2701. up_write(&slub_lock);
  2702. }
  2703. EXPORT_SYMBOL(kmem_cache_destroy);
  2704. /********************************************************************
  2705. * Kmalloc subsystem
  2706. *******************************************************************/
  2707. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2708. EXPORT_SYMBOL(kmalloc_caches);
  2709. static struct kmem_cache *kmem_cache;
  2710. #ifdef CONFIG_ZONE_DMA
  2711. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2712. #endif
  2713. static int __init setup_slub_min_order(char *str)
  2714. {
  2715. get_option(&str, &slub_min_order);
  2716. return 1;
  2717. }
  2718. __setup("slub_min_order=", setup_slub_min_order);
  2719. static int __init setup_slub_max_order(char *str)
  2720. {
  2721. get_option(&str, &slub_max_order);
  2722. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2723. return 1;
  2724. }
  2725. __setup("slub_max_order=", setup_slub_max_order);
  2726. static int __init setup_slub_min_objects(char *str)
  2727. {
  2728. get_option(&str, &slub_min_objects);
  2729. return 1;
  2730. }
  2731. __setup("slub_min_objects=", setup_slub_min_objects);
  2732. static int __init setup_slub_nomerge(char *str)
  2733. {
  2734. slub_nomerge = 1;
  2735. return 1;
  2736. }
  2737. __setup("slub_nomerge", setup_slub_nomerge);
  2738. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2739. int size, unsigned int flags)
  2740. {
  2741. struct kmem_cache *s;
  2742. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2743. /*
  2744. * This function is called with IRQs disabled during early-boot on
  2745. * single CPU so there's no need to take slub_lock here.
  2746. */
  2747. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2748. flags, NULL))
  2749. goto panic;
  2750. list_add(&s->list, &slab_caches);
  2751. return s;
  2752. panic:
  2753. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2754. return NULL;
  2755. }
  2756. /*
  2757. * Conversion table for small slabs sizes / 8 to the index in the
  2758. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2759. * of two cache sizes there. The size of larger slabs can be determined using
  2760. * fls.
  2761. */
  2762. static s8 size_index[24] = {
  2763. 3, /* 8 */
  2764. 4, /* 16 */
  2765. 5, /* 24 */
  2766. 5, /* 32 */
  2767. 6, /* 40 */
  2768. 6, /* 48 */
  2769. 6, /* 56 */
  2770. 6, /* 64 */
  2771. 1, /* 72 */
  2772. 1, /* 80 */
  2773. 1, /* 88 */
  2774. 1, /* 96 */
  2775. 7, /* 104 */
  2776. 7, /* 112 */
  2777. 7, /* 120 */
  2778. 7, /* 128 */
  2779. 2, /* 136 */
  2780. 2, /* 144 */
  2781. 2, /* 152 */
  2782. 2, /* 160 */
  2783. 2, /* 168 */
  2784. 2, /* 176 */
  2785. 2, /* 184 */
  2786. 2 /* 192 */
  2787. };
  2788. static inline int size_index_elem(size_t bytes)
  2789. {
  2790. return (bytes - 1) / 8;
  2791. }
  2792. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2793. {
  2794. int index;
  2795. if (size <= 192) {
  2796. if (!size)
  2797. return ZERO_SIZE_PTR;
  2798. index = size_index[size_index_elem(size)];
  2799. } else
  2800. index = fls(size - 1);
  2801. #ifdef CONFIG_ZONE_DMA
  2802. if (unlikely((flags & SLUB_DMA)))
  2803. return kmalloc_dma_caches[index];
  2804. #endif
  2805. return kmalloc_caches[index];
  2806. }
  2807. void *__kmalloc(size_t size, gfp_t flags)
  2808. {
  2809. struct kmem_cache *s;
  2810. void *ret;
  2811. if (unlikely(size > SLUB_MAX_SIZE))
  2812. return kmalloc_large(size, flags);
  2813. s = get_slab(size, flags);
  2814. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2815. return s;
  2816. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2817. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2818. return ret;
  2819. }
  2820. EXPORT_SYMBOL(__kmalloc);
  2821. #ifdef CONFIG_NUMA
  2822. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2823. {
  2824. struct page *page;
  2825. void *ptr = NULL;
  2826. flags |= __GFP_COMP | __GFP_NOTRACK;
  2827. page = alloc_pages_node(node, flags, get_order(size));
  2828. if (page)
  2829. ptr = page_address(page);
  2830. kmemleak_alloc(ptr, size, 1, flags);
  2831. return ptr;
  2832. }
  2833. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2834. {
  2835. struct kmem_cache *s;
  2836. void *ret;
  2837. if (unlikely(size > SLUB_MAX_SIZE)) {
  2838. ret = kmalloc_large_node(size, flags, node);
  2839. trace_kmalloc_node(_RET_IP_, ret,
  2840. size, PAGE_SIZE << get_order(size),
  2841. flags, node);
  2842. return ret;
  2843. }
  2844. s = get_slab(size, flags);
  2845. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2846. return s;
  2847. ret = slab_alloc(s, flags, node, _RET_IP_);
  2848. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2849. return ret;
  2850. }
  2851. EXPORT_SYMBOL(__kmalloc_node);
  2852. #endif
  2853. size_t ksize(const void *object)
  2854. {
  2855. struct page *page;
  2856. if (unlikely(object == ZERO_SIZE_PTR))
  2857. return 0;
  2858. page = virt_to_head_page(object);
  2859. if (unlikely(!PageSlab(page))) {
  2860. WARN_ON(!PageCompound(page));
  2861. return PAGE_SIZE << compound_order(page);
  2862. }
  2863. return slab_ksize(page->slab);
  2864. }
  2865. EXPORT_SYMBOL(ksize);
  2866. #ifdef CONFIG_SLUB_DEBUG
  2867. bool verify_mem_not_deleted(const void *x)
  2868. {
  2869. struct page *page;
  2870. void *object = (void *)x;
  2871. unsigned long flags;
  2872. bool rv;
  2873. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2874. return false;
  2875. local_irq_save(flags);
  2876. page = virt_to_head_page(x);
  2877. if (unlikely(!PageSlab(page))) {
  2878. /* maybe it was from stack? */
  2879. rv = true;
  2880. goto out_unlock;
  2881. }
  2882. slab_lock(page);
  2883. if (on_freelist(page->slab, page, object)) {
  2884. object_err(page->slab, page, object, "Object is on free-list");
  2885. rv = false;
  2886. } else {
  2887. rv = true;
  2888. }
  2889. slab_unlock(page);
  2890. out_unlock:
  2891. local_irq_restore(flags);
  2892. return rv;
  2893. }
  2894. EXPORT_SYMBOL(verify_mem_not_deleted);
  2895. #endif
  2896. void kfree(const void *x)
  2897. {
  2898. struct page *page;
  2899. void *object = (void *)x;
  2900. trace_kfree(_RET_IP_, x);
  2901. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2902. return;
  2903. page = virt_to_head_page(x);
  2904. if (unlikely(!PageSlab(page))) {
  2905. BUG_ON(!PageCompound(page));
  2906. kmemleak_free(x);
  2907. put_page(page);
  2908. return;
  2909. }
  2910. slab_free(page->slab, page, object, _RET_IP_);
  2911. }
  2912. EXPORT_SYMBOL(kfree);
  2913. /*
  2914. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2915. * the remaining slabs by the number of items in use. The slabs with the
  2916. * most items in use come first. New allocations will then fill those up
  2917. * and thus they can be removed from the partial lists.
  2918. *
  2919. * The slabs with the least items are placed last. This results in them
  2920. * being allocated from last increasing the chance that the last objects
  2921. * are freed in them.
  2922. */
  2923. int kmem_cache_shrink(struct kmem_cache *s)
  2924. {
  2925. int node;
  2926. int i;
  2927. struct kmem_cache_node *n;
  2928. struct page *page;
  2929. struct page *t;
  2930. int objects = oo_objects(s->max);
  2931. struct list_head *slabs_by_inuse =
  2932. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2933. unsigned long flags;
  2934. if (!slabs_by_inuse)
  2935. return -ENOMEM;
  2936. flush_all(s);
  2937. for_each_node_state(node, N_NORMAL_MEMORY) {
  2938. n = get_node(s, node);
  2939. if (!n->nr_partial)
  2940. continue;
  2941. for (i = 0; i < objects; i++)
  2942. INIT_LIST_HEAD(slabs_by_inuse + i);
  2943. spin_lock_irqsave(&n->list_lock, flags);
  2944. /*
  2945. * Build lists indexed by the items in use in each slab.
  2946. *
  2947. * Note that concurrent frees may occur while we hold the
  2948. * list_lock. page->inuse here is the upper limit.
  2949. */
  2950. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2951. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2952. if (!page->inuse)
  2953. n->nr_partial--;
  2954. }
  2955. /*
  2956. * Rebuild the partial list with the slabs filled up most
  2957. * first and the least used slabs at the end.
  2958. */
  2959. for (i = objects - 1; i > 0; i--)
  2960. list_splice(slabs_by_inuse + i, n->partial.prev);
  2961. spin_unlock_irqrestore(&n->list_lock, flags);
  2962. /* Release empty slabs */
  2963. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2964. discard_slab(s, page);
  2965. }
  2966. kfree(slabs_by_inuse);
  2967. return 0;
  2968. }
  2969. EXPORT_SYMBOL(kmem_cache_shrink);
  2970. #if defined(CONFIG_MEMORY_HOTPLUG)
  2971. static int slab_mem_going_offline_callback(void *arg)
  2972. {
  2973. struct kmem_cache *s;
  2974. down_read(&slub_lock);
  2975. list_for_each_entry(s, &slab_caches, list)
  2976. kmem_cache_shrink(s);
  2977. up_read(&slub_lock);
  2978. return 0;
  2979. }
  2980. static void slab_mem_offline_callback(void *arg)
  2981. {
  2982. struct kmem_cache_node *n;
  2983. struct kmem_cache *s;
  2984. struct memory_notify *marg = arg;
  2985. int offline_node;
  2986. offline_node = marg->status_change_nid;
  2987. /*
  2988. * If the node still has available memory. we need kmem_cache_node
  2989. * for it yet.
  2990. */
  2991. if (offline_node < 0)
  2992. return;
  2993. down_read(&slub_lock);
  2994. list_for_each_entry(s, &slab_caches, list) {
  2995. n = get_node(s, offline_node);
  2996. if (n) {
  2997. /*
  2998. * if n->nr_slabs > 0, slabs still exist on the node
  2999. * that is going down. We were unable to free them,
  3000. * and offline_pages() function shouldn't call this
  3001. * callback. So, we must fail.
  3002. */
  3003. BUG_ON(slabs_node(s, offline_node));
  3004. s->node[offline_node] = NULL;
  3005. kmem_cache_free(kmem_cache_node, n);
  3006. }
  3007. }
  3008. up_read(&slub_lock);
  3009. }
  3010. static int slab_mem_going_online_callback(void *arg)
  3011. {
  3012. struct kmem_cache_node *n;
  3013. struct kmem_cache *s;
  3014. struct memory_notify *marg = arg;
  3015. int nid = marg->status_change_nid;
  3016. int ret = 0;
  3017. /*
  3018. * If the node's memory is already available, then kmem_cache_node is
  3019. * already created. Nothing to do.
  3020. */
  3021. if (nid < 0)
  3022. return 0;
  3023. /*
  3024. * We are bringing a node online. No memory is available yet. We must
  3025. * allocate a kmem_cache_node structure in order to bring the node
  3026. * online.
  3027. */
  3028. down_read(&slub_lock);
  3029. list_for_each_entry(s, &slab_caches, list) {
  3030. /*
  3031. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3032. * since memory is not yet available from the node that
  3033. * is brought up.
  3034. */
  3035. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3036. if (!n) {
  3037. ret = -ENOMEM;
  3038. goto out;
  3039. }
  3040. init_kmem_cache_node(n, s);
  3041. s->node[nid] = n;
  3042. }
  3043. out:
  3044. up_read(&slub_lock);
  3045. return ret;
  3046. }
  3047. static int slab_memory_callback(struct notifier_block *self,
  3048. unsigned long action, void *arg)
  3049. {
  3050. int ret = 0;
  3051. switch (action) {
  3052. case MEM_GOING_ONLINE:
  3053. ret = slab_mem_going_online_callback(arg);
  3054. break;
  3055. case MEM_GOING_OFFLINE:
  3056. ret = slab_mem_going_offline_callback(arg);
  3057. break;
  3058. case MEM_OFFLINE:
  3059. case MEM_CANCEL_ONLINE:
  3060. slab_mem_offline_callback(arg);
  3061. break;
  3062. case MEM_ONLINE:
  3063. case MEM_CANCEL_OFFLINE:
  3064. break;
  3065. }
  3066. if (ret)
  3067. ret = notifier_from_errno(ret);
  3068. else
  3069. ret = NOTIFY_OK;
  3070. return ret;
  3071. }
  3072. #endif /* CONFIG_MEMORY_HOTPLUG */
  3073. /********************************************************************
  3074. * Basic setup of slabs
  3075. *******************************************************************/
  3076. /*
  3077. * Used for early kmem_cache structures that were allocated using
  3078. * the page allocator
  3079. */
  3080. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3081. {
  3082. int node;
  3083. list_add(&s->list, &slab_caches);
  3084. s->refcount = -1;
  3085. for_each_node_state(node, N_NORMAL_MEMORY) {
  3086. struct kmem_cache_node *n = get_node(s, node);
  3087. struct page *p;
  3088. if (n) {
  3089. list_for_each_entry(p, &n->partial, lru)
  3090. p->slab = s;
  3091. #ifdef CONFIG_SLUB_DEBUG
  3092. list_for_each_entry(p, &n->full, lru)
  3093. p->slab = s;
  3094. #endif
  3095. }
  3096. }
  3097. }
  3098. void __init kmem_cache_init(void)
  3099. {
  3100. int i;
  3101. int caches = 0;
  3102. struct kmem_cache *temp_kmem_cache;
  3103. int order;
  3104. struct kmem_cache *temp_kmem_cache_node;
  3105. unsigned long kmalloc_size;
  3106. if (debug_guardpage_minorder())
  3107. slub_max_order = 0;
  3108. kmem_size = offsetof(struct kmem_cache, node) +
  3109. nr_node_ids * sizeof(struct kmem_cache_node *);
  3110. /* Allocate two kmem_caches from the page allocator */
  3111. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3112. order = get_order(2 * kmalloc_size);
  3113. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3114. /*
  3115. * Must first have the slab cache available for the allocations of the
  3116. * struct kmem_cache_node's. There is special bootstrap code in
  3117. * kmem_cache_open for slab_state == DOWN.
  3118. */
  3119. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3120. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3121. sizeof(struct kmem_cache_node),
  3122. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3123. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3124. /* Able to allocate the per node structures */
  3125. slab_state = PARTIAL;
  3126. temp_kmem_cache = kmem_cache;
  3127. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3128. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3129. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3130. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3131. /*
  3132. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3133. * kmem_cache_node is separately allocated so no need to
  3134. * update any list pointers.
  3135. */
  3136. temp_kmem_cache_node = kmem_cache_node;
  3137. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3138. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3139. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3140. caches++;
  3141. kmem_cache_bootstrap_fixup(kmem_cache);
  3142. caches++;
  3143. /* Free temporary boot structure */
  3144. free_pages((unsigned long)temp_kmem_cache, order);
  3145. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3146. /*
  3147. * Patch up the size_index table if we have strange large alignment
  3148. * requirements for the kmalloc array. This is only the case for
  3149. * MIPS it seems. The standard arches will not generate any code here.
  3150. *
  3151. * Largest permitted alignment is 256 bytes due to the way we
  3152. * handle the index determination for the smaller caches.
  3153. *
  3154. * Make sure that nothing crazy happens if someone starts tinkering
  3155. * around with ARCH_KMALLOC_MINALIGN
  3156. */
  3157. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3158. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3159. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3160. int elem = size_index_elem(i);
  3161. if (elem >= ARRAY_SIZE(size_index))
  3162. break;
  3163. size_index[elem] = KMALLOC_SHIFT_LOW;
  3164. }
  3165. if (KMALLOC_MIN_SIZE == 64) {
  3166. /*
  3167. * The 96 byte size cache is not used if the alignment
  3168. * is 64 byte.
  3169. */
  3170. for (i = 64 + 8; i <= 96; i += 8)
  3171. size_index[size_index_elem(i)] = 7;
  3172. } else if (KMALLOC_MIN_SIZE == 128) {
  3173. /*
  3174. * The 192 byte sized cache is not used if the alignment
  3175. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3176. * instead.
  3177. */
  3178. for (i = 128 + 8; i <= 192; i += 8)
  3179. size_index[size_index_elem(i)] = 8;
  3180. }
  3181. /* Caches that are not of the two-to-the-power-of size */
  3182. if (KMALLOC_MIN_SIZE <= 32) {
  3183. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3184. caches++;
  3185. }
  3186. if (KMALLOC_MIN_SIZE <= 64) {
  3187. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3188. caches++;
  3189. }
  3190. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3191. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3192. caches++;
  3193. }
  3194. slab_state = UP;
  3195. /* Provide the correct kmalloc names now that the caches are up */
  3196. if (KMALLOC_MIN_SIZE <= 32) {
  3197. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3198. BUG_ON(!kmalloc_caches[1]->name);
  3199. }
  3200. if (KMALLOC_MIN_SIZE <= 64) {
  3201. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3202. BUG_ON(!kmalloc_caches[2]->name);
  3203. }
  3204. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3205. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3206. BUG_ON(!s);
  3207. kmalloc_caches[i]->name = s;
  3208. }
  3209. #ifdef CONFIG_SMP
  3210. register_cpu_notifier(&slab_notifier);
  3211. #endif
  3212. #ifdef CONFIG_ZONE_DMA
  3213. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3214. struct kmem_cache *s = kmalloc_caches[i];
  3215. if (s && s->size) {
  3216. char *name = kasprintf(GFP_NOWAIT,
  3217. "dma-kmalloc-%d", s->objsize);
  3218. BUG_ON(!name);
  3219. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3220. s->objsize, SLAB_CACHE_DMA);
  3221. }
  3222. }
  3223. #endif
  3224. printk(KERN_INFO
  3225. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3226. " CPUs=%d, Nodes=%d\n",
  3227. caches, cache_line_size(),
  3228. slub_min_order, slub_max_order, slub_min_objects,
  3229. nr_cpu_ids, nr_node_ids);
  3230. }
  3231. void __init kmem_cache_init_late(void)
  3232. {
  3233. }
  3234. /*
  3235. * Find a mergeable slab cache
  3236. */
  3237. static int slab_unmergeable(struct kmem_cache *s)
  3238. {
  3239. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3240. return 1;
  3241. if (s->ctor)
  3242. return 1;
  3243. /*
  3244. * We may have set a slab to be unmergeable during bootstrap.
  3245. */
  3246. if (s->refcount < 0)
  3247. return 1;
  3248. return 0;
  3249. }
  3250. static struct kmem_cache *find_mergeable(size_t size,
  3251. size_t align, unsigned long flags, const char *name,
  3252. void (*ctor)(void *))
  3253. {
  3254. struct kmem_cache *s;
  3255. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3256. return NULL;
  3257. if (ctor)
  3258. return NULL;
  3259. size = ALIGN(size, sizeof(void *));
  3260. align = calculate_alignment(flags, align, size);
  3261. size = ALIGN(size, align);
  3262. flags = kmem_cache_flags(size, flags, name, NULL);
  3263. list_for_each_entry(s, &slab_caches, list) {
  3264. if (slab_unmergeable(s))
  3265. continue;
  3266. if (size > s->size)
  3267. continue;
  3268. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3269. continue;
  3270. /*
  3271. * Check if alignment is compatible.
  3272. * Courtesy of Adrian Drzewiecki
  3273. */
  3274. if ((s->size & ~(align - 1)) != s->size)
  3275. continue;
  3276. if (s->size - size >= sizeof(void *))
  3277. continue;
  3278. return s;
  3279. }
  3280. return NULL;
  3281. }
  3282. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  3283. size_t align, unsigned long flags, void (*ctor)(void *))
  3284. {
  3285. struct kmem_cache *s;
  3286. char *n;
  3287. if (WARN_ON(!name))
  3288. return NULL;
  3289. down_write(&slub_lock);
  3290. s = find_mergeable(size, align, flags, name, ctor);
  3291. if (s) {
  3292. s->refcount++;
  3293. /*
  3294. * Adjust the object sizes so that we clear
  3295. * the complete object on kzalloc.
  3296. */
  3297. s->objsize = max(s->objsize, (int)size);
  3298. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3299. if (sysfs_slab_alias(s, name)) {
  3300. s->refcount--;
  3301. goto err;
  3302. }
  3303. up_write(&slub_lock);
  3304. return s;
  3305. }
  3306. n = kstrdup(name, GFP_KERNEL);
  3307. if (!n)
  3308. goto err;
  3309. s = kmalloc(kmem_size, GFP_KERNEL);
  3310. if (s) {
  3311. if (kmem_cache_open(s, n,
  3312. size, align, flags, ctor)) {
  3313. list_add(&s->list, &slab_caches);
  3314. if (sysfs_slab_add(s)) {
  3315. list_del(&s->list);
  3316. kfree(n);
  3317. kfree(s);
  3318. goto err;
  3319. }
  3320. up_write(&slub_lock);
  3321. return s;
  3322. }
  3323. kfree(n);
  3324. kfree(s);
  3325. }
  3326. err:
  3327. up_write(&slub_lock);
  3328. if (flags & SLAB_PANIC)
  3329. panic("Cannot create slabcache %s\n", name);
  3330. else
  3331. s = NULL;
  3332. return s;
  3333. }
  3334. EXPORT_SYMBOL(kmem_cache_create);
  3335. #ifdef CONFIG_SMP
  3336. /*
  3337. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3338. * necessary.
  3339. */
  3340. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3341. unsigned long action, void *hcpu)
  3342. {
  3343. long cpu = (long)hcpu;
  3344. struct kmem_cache *s;
  3345. unsigned long flags;
  3346. switch (action) {
  3347. case CPU_UP_CANCELED:
  3348. case CPU_UP_CANCELED_FROZEN:
  3349. case CPU_DEAD:
  3350. case CPU_DEAD_FROZEN:
  3351. down_read(&slub_lock);
  3352. list_for_each_entry(s, &slab_caches, list) {
  3353. local_irq_save(flags);
  3354. __flush_cpu_slab(s, cpu);
  3355. local_irq_restore(flags);
  3356. }
  3357. up_read(&slub_lock);
  3358. break;
  3359. default:
  3360. break;
  3361. }
  3362. return NOTIFY_OK;
  3363. }
  3364. static struct notifier_block __cpuinitdata slab_notifier = {
  3365. .notifier_call = slab_cpuup_callback
  3366. };
  3367. #endif
  3368. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3369. {
  3370. struct kmem_cache *s;
  3371. void *ret;
  3372. if (unlikely(size > SLUB_MAX_SIZE))
  3373. return kmalloc_large(size, gfpflags);
  3374. s = get_slab(size, gfpflags);
  3375. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3376. return s;
  3377. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3378. /* Honor the call site pointer we received. */
  3379. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3380. return ret;
  3381. }
  3382. #ifdef CONFIG_NUMA
  3383. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3384. int node, unsigned long caller)
  3385. {
  3386. struct kmem_cache *s;
  3387. void *ret;
  3388. if (unlikely(size > SLUB_MAX_SIZE)) {
  3389. ret = kmalloc_large_node(size, gfpflags, node);
  3390. trace_kmalloc_node(caller, ret,
  3391. size, PAGE_SIZE << get_order(size),
  3392. gfpflags, node);
  3393. return ret;
  3394. }
  3395. s = get_slab(size, gfpflags);
  3396. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3397. return s;
  3398. ret = slab_alloc(s, gfpflags, node, caller);
  3399. /* Honor the call site pointer we received. */
  3400. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3401. return ret;
  3402. }
  3403. #endif
  3404. #ifdef CONFIG_SYSFS
  3405. static int count_inuse(struct page *page)
  3406. {
  3407. return page->inuse;
  3408. }
  3409. static int count_total(struct page *page)
  3410. {
  3411. return page->objects;
  3412. }
  3413. #endif
  3414. #ifdef CONFIG_SLUB_DEBUG
  3415. static int validate_slab(struct kmem_cache *s, struct page *page,
  3416. unsigned long *map)
  3417. {
  3418. void *p;
  3419. void *addr = page_address(page);
  3420. if (!check_slab(s, page) ||
  3421. !on_freelist(s, page, NULL))
  3422. return 0;
  3423. /* Now we know that a valid freelist exists */
  3424. bitmap_zero(map, page->objects);
  3425. get_map(s, page, map);
  3426. for_each_object(p, s, addr, page->objects) {
  3427. if (test_bit(slab_index(p, s, addr), map))
  3428. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3429. return 0;
  3430. }
  3431. for_each_object(p, s, addr, page->objects)
  3432. if (!test_bit(slab_index(p, s, addr), map))
  3433. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3434. return 0;
  3435. return 1;
  3436. }
  3437. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3438. unsigned long *map)
  3439. {
  3440. slab_lock(page);
  3441. validate_slab(s, page, map);
  3442. slab_unlock(page);
  3443. }
  3444. static int validate_slab_node(struct kmem_cache *s,
  3445. struct kmem_cache_node *n, unsigned long *map)
  3446. {
  3447. unsigned long count = 0;
  3448. struct page *page;
  3449. unsigned long flags;
  3450. spin_lock_irqsave(&n->list_lock, flags);
  3451. list_for_each_entry(page, &n->partial, lru) {
  3452. validate_slab_slab(s, page, map);
  3453. count++;
  3454. }
  3455. if (count != n->nr_partial)
  3456. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3457. "counter=%ld\n", s->name, count, n->nr_partial);
  3458. if (!(s->flags & SLAB_STORE_USER))
  3459. goto out;
  3460. list_for_each_entry(page, &n->full, lru) {
  3461. validate_slab_slab(s, page, map);
  3462. count++;
  3463. }
  3464. if (count != atomic_long_read(&n->nr_slabs))
  3465. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3466. "counter=%ld\n", s->name, count,
  3467. atomic_long_read(&n->nr_slabs));
  3468. out:
  3469. spin_unlock_irqrestore(&n->list_lock, flags);
  3470. return count;
  3471. }
  3472. static long validate_slab_cache(struct kmem_cache *s)
  3473. {
  3474. int node;
  3475. unsigned long count = 0;
  3476. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3477. sizeof(unsigned long), GFP_KERNEL);
  3478. if (!map)
  3479. return -ENOMEM;
  3480. flush_all(s);
  3481. for_each_node_state(node, N_NORMAL_MEMORY) {
  3482. struct kmem_cache_node *n = get_node(s, node);
  3483. count += validate_slab_node(s, n, map);
  3484. }
  3485. kfree(map);
  3486. return count;
  3487. }
  3488. /*
  3489. * Generate lists of code addresses where slabcache objects are allocated
  3490. * and freed.
  3491. */
  3492. struct location {
  3493. unsigned long count;
  3494. unsigned long addr;
  3495. long long sum_time;
  3496. long min_time;
  3497. long max_time;
  3498. long min_pid;
  3499. long max_pid;
  3500. DECLARE_BITMAP(cpus, NR_CPUS);
  3501. nodemask_t nodes;
  3502. };
  3503. struct loc_track {
  3504. unsigned long max;
  3505. unsigned long count;
  3506. struct location *loc;
  3507. };
  3508. static void free_loc_track(struct loc_track *t)
  3509. {
  3510. if (t->max)
  3511. free_pages((unsigned long)t->loc,
  3512. get_order(sizeof(struct location) * t->max));
  3513. }
  3514. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3515. {
  3516. struct location *l;
  3517. int order;
  3518. order = get_order(sizeof(struct location) * max);
  3519. l = (void *)__get_free_pages(flags, order);
  3520. if (!l)
  3521. return 0;
  3522. if (t->count) {
  3523. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3524. free_loc_track(t);
  3525. }
  3526. t->max = max;
  3527. t->loc = l;
  3528. return 1;
  3529. }
  3530. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3531. const struct track *track)
  3532. {
  3533. long start, end, pos;
  3534. struct location *l;
  3535. unsigned long caddr;
  3536. unsigned long age = jiffies - track->when;
  3537. start = -1;
  3538. end = t->count;
  3539. for ( ; ; ) {
  3540. pos = start + (end - start + 1) / 2;
  3541. /*
  3542. * There is nothing at "end". If we end up there
  3543. * we need to add something to before end.
  3544. */
  3545. if (pos == end)
  3546. break;
  3547. caddr = t->loc[pos].addr;
  3548. if (track->addr == caddr) {
  3549. l = &t->loc[pos];
  3550. l->count++;
  3551. if (track->when) {
  3552. l->sum_time += age;
  3553. if (age < l->min_time)
  3554. l->min_time = age;
  3555. if (age > l->max_time)
  3556. l->max_time = age;
  3557. if (track->pid < l->min_pid)
  3558. l->min_pid = track->pid;
  3559. if (track->pid > l->max_pid)
  3560. l->max_pid = track->pid;
  3561. cpumask_set_cpu(track->cpu,
  3562. to_cpumask(l->cpus));
  3563. }
  3564. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3565. return 1;
  3566. }
  3567. if (track->addr < caddr)
  3568. end = pos;
  3569. else
  3570. start = pos;
  3571. }
  3572. /*
  3573. * Not found. Insert new tracking element.
  3574. */
  3575. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3576. return 0;
  3577. l = t->loc + pos;
  3578. if (pos < t->count)
  3579. memmove(l + 1, l,
  3580. (t->count - pos) * sizeof(struct location));
  3581. t->count++;
  3582. l->count = 1;
  3583. l->addr = track->addr;
  3584. l->sum_time = age;
  3585. l->min_time = age;
  3586. l->max_time = age;
  3587. l->min_pid = track->pid;
  3588. l->max_pid = track->pid;
  3589. cpumask_clear(to_cpumask(l->cpus));
  3590. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3591. nodes_clear(l->nodes);
  3592. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3593. return 1;
  3594. }
  3595. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3596. struct page *page, enum track_item alloc,
  3597. unsigned long *map)
  3598. {
  3599. void *addr = page_address(page);
  3600. void *p;
  3601. bitmap_zero(map, page->objects);
  3602. get_map(s, page, map);
  3603. for_each_object(p, s, addr, page->objects)
  3604. if (!test_bit(slab_index(p, s, addr), map))
  3605. add_location(t, s, get_track(s, p, alloc));
  3606. }
  3607. static int list_locations(struct kmem_cache *s, char *buf,
  3608. enum track_item alloc)
  3609. {
  3610. int len = 0;
  3611. unsigned long i;
  3612. struct loc_track t = { 0, 0, NULL };
  3613. int node;
  3614. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3615. sizeof(unsigned long), GFP_KERNEL);
  3616. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3617. GFP_TEMPORARY)) {
  3618. kfree(map);
  3619. return sprintf(buf, "Out of memory\n");
  3620. }
  3621. /* Push back cpu slabs */
  3622. flush_all(s);
  3623. for_each_node_state(node, N_NORMAL_MEMORY) {
  3624. struct kmem_cache_node *n = get_node(s, node);
  3625. unsigned long flags;
  3626. struct page *page;
  3627. if (!atomic_long_read(&n->nr_slabs))
  3628. continue;
  3629. spin_lock_irqsave(&n->list_lock, flags);
  3630. list_for_each_entry(page, &n->partial, lru)
  3631. process_slab(&t, s, page, alloc, map);
  3632. list_for_each_entry(page, &n->full, lru)
  3633. process_slab(&t, s, page, alloc, map);
  3634. spin_unlock_irqrestore(&n->list_lock, flags);
  3635. }
  3636. for (i = 0; i < t.count; i++) {
  3637. struct location *l = &t.loc[i];
  3638. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3639. break;
  3640. len += sprintf(buf + len, "%7ld ", l->count);
  3641. if (l->addr)
  3642. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3643. else
  3644. len += sprintf(buf + len, "<not-available>");
  3645. if (l->sum_time != l->min_time) {
  3646. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3647. l->min_time,
  3648. (long)div_u64(l->sum_time, l->count),
  3649. l->max_time);
  3650. } else
  3651. len += sprintf(buf + len, " age=%ld",
  3652. l->min_time);
  3653. if (l->min_pid != l->max_pid)
  3654. len += sprintf(buf + len, " pid=%ld-%ld",
  3655. l->min_pid, l->max_pid);
  3656. else
  3657. len += sprintf(buf + len, " pid=%ld",
  3658. l->min_pid);
  3659. if (num_online_cpus() > 1 &&
  3660. !cpumask_empty(to_cpumask(l->cpus)) &&
  3661. len < PAGE_SIZE - 60) {
  3662. len += sprintf(buf + len, " cpus=");
  3663. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3664. to_cpumask(l->cpus));
  3665. }
  3666. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3667. len < PAGE_SIZE - 60) {
  3668. len += sprintf(buf + len, " nodes=");
  3669. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3670. l->nodes);
  3671. }
  3672. len += sprintf(buf + len, "\n");
  3673. }
  3674. free_loc_track(&t);
  3675. kfree(map);
  3676. if (!t.count)
  3677. len += sprintf(buf, "No data\n");
  3678. return len;
  3679. }
  3680. #endif
  3681. #ifdef SLUB_RESILIENCY_TEST
  3682. static void resiliency_test(void)
  3683. {
  3684. u8 *p;
  3685. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3686. printk(KERN_ERR "SLUB resiliency testing\n");
  3687. printk(KERN_ERR "-----------------------\n");
  3688. printk(KERN_ERR "A. Corruption after allocation\n");
  3689. p = kzalloc(16, GFP_KERNEL);
  3690. p[16] = 0x12;
  3691. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3692. " 0x12->0x%p\n\n", p + 16);
  3693. validate_slab_cache(kmalloc_caches[4]);
  3694. /* Hmmm... The next two are dangerous */
  3695. p = kzalloc(32, GFP_KERNEL);
  3696. p[32 + sizeof(void *)] = 0x34;
  3697. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3698. " 0x34 -> -0x%p\n", p);
  3699. printk(KERN_ERR
  3700. "If allocated object is overwritten then not detectable\n\n");
  3701. validate_slab_cache(kmalloc_caches[5]);
  3702. p = kzalloc(64, GFP_KERNEL);
  3703. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3704. *p = 0x56;
  3705. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3706. p);
  3707. printk(KERN_ERR
  3708. "If allocated object is overwritten then not detectable\n\n");
  3709. validate_slab_cache(kmalloc_caches[6]);
  3710. printk(KERN_ERR "\nB. Corruption after free\n");
  3711. p = kzalloc(128, GFP_KERNEL);
  3712. kfree(p);
  3713. *p = 0x78;
  3714. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3715. validate_slab_cache(kmalloc_caches[7]);
  3716. p = kzalloc(256, GFP_KERNEL);
  3717. kfree(p);
  3718. p[50] = 0x9a;
  3719. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3720. p);
  3721. validate_slab_cache(kmalloc_caches[8]);
  3722. p = kzalloc(512, GFP_KERNEL);
  3723. kfree(p);
  3724. p[512] = 0xab;
  3725. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3726. validate_slab_cache(kmalloc_caches[9]);
  3727. }
  3728. #else
  3729. #ifdef CONFIG_SYSFS
  3730. static void resiliency_test(void) {};
  3731. #endif
  3732. #endif
  3733. #ifdef CONFIG_SYSFS
  3734. enum slab_stat_type {
  3735. SL_ALL, /* All slabs */
  3736. SL_PARTIAL, /* Only partially allocated slabs */
  3737. SL_CPU, /* Only slabs used for cpu caches */
  3738. SL_OBJECTS, /* Determine allocated objects not slabs */
  3739. SL_TOTAL /* Determine object capacity not slabs */
  3740. };
  3741. #define SO_ALL (1 << SL_ALL)
  3742. #define SO_PARTIAL (1 << SL_PARTIAL)
  3743. #define SO_CPU (1 << SL_CPU)
  3744. #define SO_OBJECTS (1 << SL_OBJECTS)
  3745. #define SO_TOTAL (1 << SL_TOTAL)
  3746. static ssize_t show_slab_objects(struct kmem_cache *s,
  3747. char *buf, unsigned long flags)
  3748. {
  3749. unsigned long total = 0;
  3750. int node;
  3751. int x;
  3752. unsigned long *nodes;
  3753. unsigned long *per_cpu;
  3754. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3755. if (!nodes)
  3756. return -ENOMEM;
  3757. per_cpu = nodes + nr_node_ids;
  3758. if (flags & SO_CPU) {
  3759. int cpu;
  3760. for_each_possible_cpu(cpu) {
  3761. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3762. int node = ACCESS_ONCE(c->node);
  3763. struct page *page;
  3764. if (node < 0)
  3765. continue;
  3766. page = ACCESS_ONCE(c->page);
  3767. if (page) {
  3768. if (flags & SO_TOTAL)
  3769. x = page->objects;
  3770. else if (flags & SO_OBJECTS)
  3771. x = page->inuse;
  3772. else
  3773. x = 1;
  3774. total += x;
  3775. nodes[node] += x;
  3776. }
  3777. page = c->partial;
  3778. if (page) {
  3779. x = page->pobjects;
  3780. total += x;
  3781. nodes[node] += x;
  3782. }
  3783. per_cpu[node]++;
  3784. }
  3785. }
  3786. lock_memory_hotplug();
  3787. #ifdef CONFIG_SLUB_DEBUG
  3788. if (flags & SO_ALL) {
  3789. for_each_node_state(node, N_NORMAL_MEMORY) {
  3790. struct kmem_cache_node *n = get_node(s, node);
  3791. if (flags & SO_TOTAL)
  3792. x = atomic_long_read(&n->total_objects);
  3793. else if (flags & SO_OBJECTS)
  3794. x = atomic_long_read(&n->total_objects) -
  3795. count_partial(n, count_free);
  3796. else
  3797. x = atomic_long_read(&n->nr_slabs);
  3798. total += x;
  3799. nodes[node] += x;
  3800. }
  3801. } else
  3802. #endif
  3803. if (flags & SO_PARTIAL) {
  3804. for_each_node_state(node, N_NORMAL_MEMORY) {
  3805. struct kmem_cache_node *n = get_node(s, node);
  3806. if (flags & SO_TOTAL)
  3807. x = count_partial(n, count_total);
  3808. else if (flags & SO_OBJECTS)
  3809. x = count_partial(n, count_inuse);
  3810. else
  3811. x = n->nr_partial;
  3812. total += x;
  3813. nodes[node] += x;
  3814. }
  3815. }
  3816. x = sprintf(buf, "%lu", total);
  3817. #ifdef CONFIG_NUMA
  3818. for_each_node_state(node, N_NORMAL_MEMORY)
  3819. if (nodes[node])
  3820. x += sprintf(buf + x, " N%d=%lu",
  3821. node, nodes[node]);
  3822. #endif
  3823. unlock_memory_hotplug();
  3824. kfree(nodes);
  3825. return x + sprintf(buf + x, "\n");
  3826. }
  3827. #ifdef CONFIG_SLUB_DEBUG
  3828. static int any_slab_objects(struct kmem_cache *s)
  3829. {
  3830. int node;
  3831. for_each_online_node(node) {
  3832. struct kmem_cache_node *n = get_node(s, node);
  3833. if (!n)
  3834. continue;
  3835. if (atomic_long_read(&n->total_objects))
  3836. return 1;
  3837. }
  3838. return 0;
  3839. }
  3840. #endif
  3841. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3842. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3843. struct slab_attribute {
  3844. struct attribute attr;
  3845. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3846. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3847. };
  3848. #define SLAB_ATTR_RO(_name) \
  3849. static struct slab_attribute _name##_attr = \
  3850. __ATTR(_name, 0400, _name##_show, NULL)
  3851. #define SLAB_ATTR(_name) \
  3852. static struct slab_attribute _name##_attr = \
  3853. __ATTR(_name, 0600, _name##_show, _name##_store)
  3854. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3855. {
  3856. return sprintf(buf, "%d\n", s->size);
  3857. }
  3858. SLAB_ATTR_RO(slab_size);
  3859. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3860. {
  3861. return sprintf(buf, "%d\n", s->align);
  3862. }
  3863. SLAB_ATTR_RO(align);
  3864. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3865. {
  3866. return sprintf(buf, "%d\n", s->objsize);
  3867. }
  3868. SLAB_ATTR_RO(object_size);
  3869. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3870. {
  3871. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3872. }
  3873. SLAB_ATTR_RO(objs_per_slab);
  3874. static ssize_t order_store(struct kmem_cache *s,
  3875. const char *buf, size_t length)
  3876. {
  3877. unsigned long order;
  3878. int err;
  3879. err = strict_strtoul(buf, 10, &order);
  3880. if (err)
  3881. return err;
  3882. if (order > slub_max_order || order < slub_min_order)
  3883. return -EINVAL;
  3884. calculate_sizes(s, order);
  3885. return length;
  3886. }
  3887. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3888. {
  3889. return sprintf(buf, "%d\n", oo_order(s->oo));
  3890. }
  3891. SLAB_ATTR(order);
  3892. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3893. {
  3894. return sprintf(buf, "%lu\n", s->min_partial);
  3895. }
  3896. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3897. size_t length)
  3898. {
  3899. unsigned long min;
  3900. int err;
  3901. err = strict_strtoul(buf, 10, &min);
  3902. if (err)
  3903. return err;
  3904. set_min_partial(s, min);
  3905. return length;
  3906. }
  3907. SLAB_ATTR(min_partial);
  3908. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3909. {
  3910. return sprintf(buf, "%u\n", s->cpu_partial);
  3911. }
  3912. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3913. size_t length)
  3914. {
  3915. unsigned long objects;
  3916. int err;
  3917. err = strict_strtoul(buf, 10, &objects);
  3918. if (err)
  3919. return err;
  3920. if (objects && kmem_cache_debug(s))
  3921. return -EINVAL;
  3922. s->cpu_partial = objects;
  3923. flush_all(s);
  3924. return length;
  3925. }
  3926. SLAB_ATTR(cpu_partial);
  3927. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3928. {
  3929. if (!s->ctor)
  3930. return 0;
  3931. return sprintf(buf, "%pS\n", s->ctor);
  3932. }
  3933. SLAB_ATTR_RO(ctor);
  3934. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3935. {
  3936. return sprintf(buf, "%d\n", s->refcount - 1);
  3937. }
  3938. SLAB_ATTR_RO(aliases);
  3939. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3940. {
  3941. return show_slab_objects(s, buf, SO_PARTIAL);
  3942. }
  3943. SLAB_ATTR_RO(partial);
  3944. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3945. {
  3946. return show_slab_objects(s, buf, SO_CPU);
  3947. }
  3948. SLAB_ATTR_RO(cpu_slabs);
  3949. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3950. {
  3951. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3952. }
  3953. SLAB_ATTR_RO(objects);
  3954. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3955. {
  3956. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3957. }
  3958. SLAB_ATTR_RO(objects_partial);
  3959. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3960. {
  3961. int objects = 0;
  3962. int pages = 0;
  3963. int cpu;
  3964. int len;
  3965. for_each_online_cpu(cpu) {
  3966. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3967. if (page) {
  3968. pages += page->pages;
  3969. objects += page->pobjects;
  3970. }
  3971. }
  3972. len = sprintf(buf, "%d(%d)", objects, pages);
  3973. #ifdef CONFIG_SMP
  3974. for_each_online_cpu(cpu) {
  3975. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3976. if (page && len < PAGE_SIZE - 20)
  3977. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3978. page->pobjects, page->pages);
  3979. }
  3980. #endif
  3981. return len + sprintf(buf + len, "\n");
  3982. }
  3983. SLAB_ATTR_RO(slabs_cpu_partial);
  3984. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3985. {
  3986. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3987. }
  3988. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3989. const char *buf, size_t length)
  3990. {
  3991. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3992. if (buf[0] == '1')
  3993. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3994. return length;
  3995. }
  3996. SLAB_ATTR(reclaim_account);
  3997. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3998. {
  3999. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  4000. }
  4001. SLAB_ATTR_RO(hwcache_align);
  4002. #ifdef CONFIG_ZONE_DMA
  4003. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4004. {
  4005. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4006. }
  4007. SLAB_ATTR_RO(cache_dma);
  4008. #endif
  4009. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4010. {
  4011. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4012. }
  4013. SLAB_ATTR_RO(destroy_by_rcu);
  4014. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4015. {
  4016. return sprintf(buf, "%d\n", s->reserved);
  4017. }
  4018. SLAB_ATTR_RO(reserved);
  4019. #ifdef CONFIG_SLUB_DEBUG
  4020. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4021. {
  4022. return show_slab_objects(s, buf, SO_ALL);
  4023. }
  4024. SLAB_ATTR_RO(slabs);
  4025. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4026. {
  4027. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4028. }
  4029. SLAB_ATTR_RO(total_objects);
  4030. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4031. {
  4032. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4033. }
  4034. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4035. const char *buf, size_t length)
  4036. {
  4037. s->flags &= ~SLAB_DEBUG_FREE;
  4038. if (buf[0] == '1') {
  4039. s->flags &= ~__CMPXCHG_DOUBLE;
  4040. s->flags |= SLAB_DEBUG_FREE;
  4041. }
  4042. return length;
  4043. }
  4044. SLAB_ATTR(sanity_checks);
  4045. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4046. {
  4047. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4048. }
  4049. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4050. size_t length)
  4051. {
  4052. s->flags &= ~SLAB_TRACE;
  4053. if (buf[0] == '1') {
  4054. s->flags &= ~__CMPXCHG_DOUBLE;
  4055. s->flags |= SLAB_TRACE;
  4056. }
  4057. return length;
  4058. }
  4059. SLAB_ATTR(trace);
  4060. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4061. {
  4062. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4063. }
  4064. static ssize_t red_zone_store(struct kmem_cache *s,
  4065. const char *buf, size_t length)
  4066. {
  4067. if (any_slab_objects(s))
  4068. return -EBUSY;
  4069. s->flags &= ~SLAB_RED_ZONE;
  4070. if (buf[0] == '1') {
  4071. s->flags &= ~__CMPXCHG_DOUBLE;
  4072. s->flags |= SLAB_RED_ZONE;
  4073. }
  4074. calculate_sizes(s, -1);
  4075. return length;
  4076. }
  4077. SLAB_ATTR(red_zone);
  4078. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4079. {
  4080. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4081. }
  4082. static ssize_t poison_store(struct kmem_cache *s,
  4083. const char *buf, size_t length)
  4084. {
  4085. if (any_slab_objects(s))
  4086. return -EBUSY;
  4087. s->flags &= ~SLAB_POISON;
  4088. if (buf[0] == '1') {
  4089. s->flags &= ~__CMPXCHG_DOUBLE;
  4090. s->flags |= SLAB_POISON;
  4091. }
  4092. calculate_sizes(s, -1);
  4093. return length;
  4094. }
  4095. SLAB_ATTR(poison);
  4096. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4097. {
  4098. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4099. }
  4100. static ssize_t store_user_store(struct kmem_cache *s,
  4101. const char *buf, size_t length)
  4102. {
  4103. if (any_slab_objects(s))
  4104. return -EBUSY;
  4105. s->flags &= ~SLAB_STORE_USER;
  4106. if (buf[0] == '1') {
  4107. s->flags &= ~__CMPXCHG_DOUBLE;
  4108. s->flags |= SLAB_STORE_USER;
  4109. }
  4110. calculate_sizes(s, -1);
  4111. return length;
  4112. }
  4113. SLAB_ATTR(store_user);
  4114. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4115. {
  4116. return 0;
  4117. }
  4118. static ssize_t validate_store(struct kmem_cache *s,
  4119. const char *buf, size_t length)
  4120. {
  4121. int ret = -EINVAL;
  4122. if (buf[0] == '1') {
  4123. ret = validate_slab_cache(s);
  4124. if (ret >= 0)
  4125. ret = length;
  4126. }
  4127. return ret;
  4128. }
  4129. SLAB_ATTR(validate);
  4130. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4131. {
  4132. if (!(s->flags & SLAB_STORE_USER))
  4133. return -ENOSYS;
  4134. return list_locations(s, buf, TRACK_ALLOC);
  4135. }
  4136. SLAB_ATTR_RO(alloc_calls);
  4137. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4138. {
  4139. if (!(s->flags & SLAB_STORE_USER))
  4140. return -ENOSYS;
  4141. return list_locations(s, buf, TRACK_FREE);
  4142. }
  4143. SLAB_ATTR_RO(free_calls);
  4144. #endif /* CONFIG_SLUB_DEBUG */
  4145. #ifdef CONFIG_FAILSLAB
  4146. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4147. {
  4148. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4149. }
  4150. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4151. size_t length)
  4152. {
  4153. s->flags &= ~SLAB_FAILSLAB;
  4154. if (buf[0] == '1')
  4155. s->flags |= SLAB_FAILSLAB;
  4156. return length;
  4157. }
  4158. SLAB_ATTR(failslab);
  4159. #endif
  4160. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4161. {
  4162. return 0;
  4163. }
  4164. static ssize_t shrink_store(struct kmem_cache *s,
  4165. const char *buf, size_t length)
  4166. {
  4167. if (buf[0] == '1') {
  4168. int rc = kmem_cache_shrink(s);
  4169. if (rc)
  4170. return rc;
  4171. } else
  4172. return -EINVAL;
  4173. return length;
  4174. }
  4175. SLAB_ATTR(shrink);
  4176. #ifdef CONFIG_NUMA
  4177. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4178. {
  4179. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4180. }
  4181. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4182. const char *buf, size_t length)
  4183. {
  4184. unsigned long ratio;
  4185. int err;
  4186. err = strict_strtoul(buf, 10, &ratio);
  4187. if (err)
  4188. return err;
  4189. if (ratio <= 100)
  4190. s->remote_node_defrag_ratio = ratio * 10;
  4191. return length;
  4192. }
  4193. SLAB_ATTR(remote_node_defrag_ratio);
  4194. #endif
  4195. #ifdef CONFIG_SLUB_STATS
  4196. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4197. {
  4198. unsigned long sum = 0;
  4199. int cpu;
  4200. int len;
  4201. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4202. if (!data)
  4203. return -ENOMEM;
  4204. for_each_online_cpu(cpu) {
  4205. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4206. data[cpu] = x;
  4207. sum += x;
  4208. }
  4209. len = sprintf(buf, "%lu", sum);
  4210. #ifdef CONFIG_SMP
  4211. for_each_online_cpu(cpu) {
  4212. if (data[cpu] && len < PAGE_SIZE - 20)
  4213. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4214. }
  4215. #endif
  4216. kfree(data);
  4217. return len + sprintf(buf + len, "\n");
  4218. }
  4219. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4220. {
  4221. int cpu;
  4222. for_each_online_cpu(cpu)
  4223. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4224. }
  4225. #define STAT_ATTR(si, text) \
  4226. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4227. { \
  4228. return show_stat(s, buf, si); \
  4229. } \
  4230. static ssize_t text##_store(struct kmem_cache *s, \
  4231. const char *buf, size_t length) \
  4232. { \
  4233. if (buf[0] != '0') \
  4234. return -EINVAL; \
  4235. clear_stat(s, si); \
  4236. return length; \
  4237. } \
  4238. SLAB_ATTR(text); \
  4239. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4240. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4241. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4242. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4243. STAT_ATTR(FREE_FROZEN, free_frozen);
  4244. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4245. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4246. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4247. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4248. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4249. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4250. STAT_ATTR(FREE_SLAB, free_slab);
  4251. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4252. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4253. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4254. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4255. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4256. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4257. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4258. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4259. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4260. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4261. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4262. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4263. #endif
  4264. static struct attribute *slab_attrs[] = {
  4265. &slab_size_attr.attr,
  4266. &object_size_attr.attr,
  4267. &objs_per_slab_attr.attr,
  4268. &order_attr.attr,
  4269. &min_partial_attr.attr,
  4270. &cpu_partial_attr.attr,
  4271. &objects_attr.attr,
  4272. &objects_partial_attr.attr,
  4273. &partial_attr.attr,
  4274. &cpu_slabs_attr.attr,
  4275. &ctor_attr.attr,
  4276. &aliases_attr.attr,
  4277. &align_attr.attr,
  4278. &hwcache_align_attr.attr,
  4279. &reclaim_account_attr.attr,
  4280. &destroy_by_rcu_attr.attr,
  4281. &shrink_attr.attr,
  4282. &reserved_attr.attr,
  4283. &slabs_cpu_partial_attr.attr,
  4284. #ifdef CONFIG_SLUB_DEBUG
  4285. &total_objects_attr.attr,
  4286. &slabs_attr.attr,
  4287. &sanity_checks_attr.attr,
  4288. &trace_attr.attr,
  4289. &red_zone_attr.attr,
  4290. &poison_attr.attr,
  4291. &store_user_attr.attr,
  4292. &validate_attr.attr,
  4293. &alloc_calls_attr.attr,
  4294. &free_calls_attr.attr,
  4295. #endif
  4296. #ifdef CONFIG_ZONE_DMA
  4297. &cache_dma_attr.attr,
  4298. #endif
  4299. #ifdef CONFIG_NUMA
  4300. &remote_node_defrag_ratio_attr.attr,
  4301. #endif
  4302. #ifdef CONFIG_SLUB_STATS
  4303. &alloc_fastpath_attr.attr,
  4304. &alloc_slowpath_attr.attr,
  4305. &free_fastpath_attr.attr,
  4306. &free_slowpath_attr.attr,
  4307. &free_frozen_attr.attr,
  4308. &free_add_partial_attr.attr,
  4309. &free_remove_partial_attr.attr,
  4310. &alloc_from_partial_attr.attr,
  4311. &alloc_slab_attr.attr,
  4312. &alloc_refill_attr.attr,
  4313. &alloc_node_mismatch_attr.attr,
  4314. &free_slab_attr.attr,
  4315. &cpuslab_flush_attr.attr,
  4316. &deactivate_full_attr.attr,
  4317. &deactivate_empty_attr.attr,
  4318. &deactivate_to_head_attr.attr,
  4319. &deactivate_to_tail_attr.attr,
  4320. &deactivate_remote_frees_attr.attr,
  4321. &deactivate_bypass_attr.attr,
  4322. &order_fallback_attr.attr,
  4323. &cmpxchg_double_fail_attr.attr,
  4324. &cmpxchg_double_cpu_fail_attr.attr,
  4325. &cpu_partial_alloc_attr.attr,
  4326. &cpu_partial_free_attr.attr,
  4327. #endif
  4328. #ifdef CONFIG_FAILSLAB
  4329. &failslab_attr.attr,
  4330. #endif
  4331. NULL
  4332. };
  4333. static struct attribute_group slab_attr_group = {
  4334. .attrs = slab_attrs,
  4335. };
  4336. static ssize_t slab_attr_show(struct kobject *kobj,
  4337. struct attribute *attr,
  4338. char *buf)
  4339. {
  4340. struct slab_attribute *attribute;
  4341. struct kmem_cache *s;
  4342. int err;
  4343. attribute = to_slab_attr(attr);
  4344. s = to_slab(kobj);
  4345. if (!attribute->show)
  4346. return -EIO;
  4347. err = attribute->show(s, buf);
  4348. return err;
  4349. }
  4350. static ssize_t slab_attr_store(struct kobject *kobj,
  4351. struct attribute *attr,
  4352. const char *buf, size_t len)
  4353. {
  4354. struct slab_attribute *attribute;
  4355. struct kmem_cache *s;
  4356. int err;
  4357. attribute = to_slab_attr(attr);
  4358. s = to_slab(kobj);
  4359. if (!attribute->store)
  4360. return -EIO;
  4361. err = attribute->store(s, buf, len);
  4362. return err;
  4363. }
  4364. static void kmem_cache_release(struct kobject *kobj)
  4365. {
  4366. struct kmem_cache *s = to_slab(kobj);
  4367. kfree(s->name);
  4368. kfree(s);
  4369. }
  4370. static const struct sysfs_ops slab_sysfs_ops = {
  4371. .show = slab_attr_show,
  4372. .store = slab_attr_store,
  4373. };
  4374. static struct kobj_type slab_ktype = {
  4375. .sysfs_ops = &slab_sysfs_ops,
  4376. .release = kmem_cache_release
  4377. };
  4378. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4379. {
  4380. struct kobj_type *ktype = get_ktype(kobj);
  4381. if (ktype == &slab_ktype)
  4382. return 1;
  4383. return 0;
  4384. }
  4385. static const struct kset_uevent_ops slab_uevent_ops = {
  4386. .filter = uevent_filter,
  4387. };
  4388. static struct kset *slab_kset;
  4389. #define ID_STR_LENGTH 64
  4390. /* Create a unique string id for a slab cache:
  4391. *
  4392. * Format :[flags-]size
  4393. */
  4394. static char *create_unique_id(struct kmem_cache *s)
  4395. {
  4396. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4397. char *p = name;
  4398. BUG_ON(!name);
  4399. *p++ = ':';
  4400. /*
  4401. * First flags affecting slabcache operations. We will only
  4402. * get here for aliasable slabs so we do not need to support
  4403. * too many flags. The flags here must cover all flags that
  4404. * are matched during merging to guarantee that the id is
  4405. * unique.
  4406. */
  4407. if (s->flags & SLAB_CACHE_DMA)
  4408. *p++ = 'd';
  4409. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4410. *p++ = 'a';
  4411. if (s->flags & SLAB_DEBUG_FREE)
  4412. *p++ = 'F';
  4413. if (!(s->flags & SLAB_NOTRACK))
  4414. *p++ = 't';
  4415. if (p != name + 1)
  4416. *p++ = '-';
  4417. p += sprintf(p, "%07d", s->size);
  4418. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4419. return name;
  4420. }
  4421. static int sysfs_slab_add(struct kmem_cache *s)
  4422. {
  4423. int err;
  4424. const char *name;
  4425. int unmergeable;
  4426. if (slab_state < SYSFS)
  4427. /* Defer until later */
  4428. return 0;
  4429. unmergeable = slab_unmergeable(s);
  4430. if (unmergeable) {
  4431. /*
  4432. * Slabcache can never be merged so we can use the name proper.
  4433. * This is typically the case for debug situations. In that
  4434. * case we can catch duplicate names easily.
  4435. */
  4436. sysfs_remove_link(&slab_kset->kobj, s->name);
  4437. name = s->name;
  4438. } else {
  4439. /*
  4440. * Create a unique name for the slab as a target
  4441. * for the symlinks.
  4442. */
  4443. name = create_unique_id(s);
  4444. }
  4445. s->kobj.kset = slab_kset;
  4446. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4447. if (err) {
  4448. kobject_put(&s->kobj);
  4449. return err;
  4450. }
  4451. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4452. if (err) {
  4453. kobject_del(&s->kobj);
  4454. kobject_put(&s->kobj);
  4455. return err;
  4456. }
  4457. kobject_uevent(&s->kobj, KOBJ_ADD);
  4458. if (!unmergeable) {
  4459. /* Setup first alias */
  4460. sysfs_slab_alias(s, s->name);
  4461. kfree(name);
  4462. }
  4463. return 0;
  4464. }
  4465. static void sysfs_slab_remove(struct kmem_cache *s)
  4466. {
  4467. if (slab_state < SYSFS)
  4468. /*
  4469. * Sysfs has not been setup yet so no need to remove the
  4470. * cache from sysfs.
  4471. */
  4472. return;
  4473. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4474. kobject_del(&s->kobj);
  4475. kobject_put(&s->kobj);
  4476. }
  4477. /*
  4478. * Need to buffer aliases during bootup until sysfs becomes
  4479. * available lest we lose that information.
  4480. */
  4481. struct saved_alias {
  4482. struct kmem_cache *s;
  4483. const char *name;
  4484. struct saved_alias *next;
  4485. };
  4486. static struct saved_alias *alias_list;
  4487. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4488. {
  4489. struct saved_alias *al;
  4490. if (slab_state == SYSFS) {
  4491. /*
  4492. * If we have a leftover link then remove it.
  4493. */
  4494. sysfs_remove_link(&slab_kset->kobj, name);
  4495. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4496. }
  4497. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4498. if (!al)
  4499. return -ENOMEM;
  4500. al->s = s;
  4501. al->name = name;
  4502. al->next = alias_list;
  4503. alias_list = al;
  4504. return 0;
  4505. }
  4506. static int __init slab_sysfs_init(void)
  4507. {
  4508. struct kmem_cache *s;
  4509. int err;
  4510. down_write(&slub_lock);
  4511. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4512. if (!slab_kset) {
  4513. up_write(&slub_lock);
  4514. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4515. return -ENOSYS;
  4516. }
  4517. slab_state = SYSFS;
  4518. list_for_each_entry(s, &slab_caches, list) {
  4519. err = sysfs_slab_add(s);
  4520. if (err)
  4521. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4522. " to sysfs\n", s->name);
  4523. }
  4524. while (alias_list) {
  4525. struct saved_alias *al = alias_list;
  4526. alias_list = alias_list->next;
  4527. err = sysfs_slab_alias(al->s, al->name);
  4528. if (err)
  4529. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4530. " %s to sysfs\n", s->name);
  4531. kfree(al);
  4532. }
  4533. up_write(&slub_lock);
  4534. resiliency_test();
  4535. return 0;
  4536. }
  4537. __initcall(slab_sysfs_init);
  4538. #endif /* CONFIG_SYSFS */
  4539. /*
  4540. * The /proc/slabinfo ABI
  4541. */
  4542. #ifdef CONFIG_SLABINFO
  4543. static void print_slabinfo_header(struct seq_file *m)
  4544. {
  4545. seq_puts(m, "slabinfo - version: 2.1\n");
  4546. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  4547. "<objperslab> <pagesperslab>");
  4548. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4549. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4550. seq_putc(m, '\n');
  4551. }
  4552. static void *s_start(struct seq_file *m, loff_t *pos)
  4553. {
  4554. loff_t n = *pos;
  4555. down_read(&slub_lock);
  4556. if (!n)
  4557. print_slabinfo_header(m);
  4558. return seq_list_start(&slab_caches, *pos);
  4559. }
  4560. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4561. {
  4562. return seq_list_next(p, &slab_caches, pos);
  4563. }
  4564. static void s_stop(struct seq_file *m, void *p)
  4565. {
  4566. up_read(&slub_lock);
  4567. }
  4568. static int s_show(struct seq_file *m, void *p)
  4569. {
  4570. unsigned long nr_partials = 0;
  4571. unsigned long nr_slabs = 0;
  4572. unsigned long nr_inuse = 0;
  4573. unsigned long nr_objs = 0;
  4574. unsigned long nr_free = 0;
  4575. struct kmem_cache *s;
  4576. int node;
  4577. s = list_entry(p, struct kmem_cache, list);
  4578. for_each_online_node(node) {
  4579. struct kmem_cache_node *n = get_node(s, node);
  4580. if (!n)
  4581. continue;
  4582. nr_partials += n->nr_partial;
  4583. nr_slabs += atomic_long_read(&n->nr_slabs);
  4584. nr_objs += atomic_long_read(&n->total_objects);
  4585. nr_free += count_partial(n, count_free);
  4586. }
  4587. nr_inuse = nr_objs - nr_free;
  4588. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4589. nr_objs, s->size, oo_objects(s->oo),
  4590. (1 << oo_order(s->oo)));
  4591. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4592. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4593. 0UL);
  4594. seq_putc(m, '\n');
  4595. return 0;
  4596. }
  4597. static const struct seq_operations slabinfo_op = {
  4598. .start = s_start,
  4599. .next = s_next,
  4600. .stop = s_stop,
  4601. .show = s_show,
  4602. };
  4603. static int slabinfo_open(struct inode *inode, struct file *file)
  4604. {
  4605. return seq_open(file, &slabinfo_op);
  4606. }
  4607. static const struct file_operations proc_slabinfo_operations = {
  4608. .open = slabinfo_open,
  4609. .read = seq_read,
  4610. .llseek = seq_lseek,
  4611. .release = seq_release,
  4612. };
  4613. static int __init slab_proc_init(void)
  4614. {
  4615. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4616. return 0;
  4617. }
  4618. module_init(slab_proc_init);
  4619. #endif /* CONFIG_SLABINFO */