mmu.c 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include <linux/kvm_host.h>
  25. #include <linux/types.h>
  26. #include <linux/string.h>
  27. #include <linux/mm.h>
  28. #include <linux/highmem.h>
  29. #include <linux/module.h>
  30. #include <linux/swap.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/compiler.h>
  33. #include <linux/srcu.h>
  34. #include <linux/slab.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/page.h>
  37. #include <asm/cmpxchg.h>
  38. #include <asm/io.h>
  39. #include <asm/vmx.h>
  40. /*
  41. * When setting this variable to true it enables Two-Dimensional-Paging
  42. * where the hardware walks 2 page tables:
  43. * 1. the guest-virtual to guest-physical
  44. * 2. while doing 1. it walks guest-physical to host-physical
  45. * If the hardware supports that we don't need to do shadow paging.
  46. */
  47. bool tdp_enabled = false;
  48. enum {
  49. AUDIT_PRE_PAGE_FAULT,
  50. AUDIT_POST_PAGE_FAULT,
  51. AUDIT_PRE_PTE_WRITE,
  52. AUDIT_POST_PTE_WRITE,
  53. AUDIT_PRE_SYNC,
  54. AUDIT_POST_SYNC
  55. };
  56. #undef MMU_DEBUG
  57. #ifdef MMU_DEBUG
  58. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  59. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  60. #else
  61. #define pgprintk(x...) do { } while (0)
  62. #define rmap_printk(x...) do { } while (0)
  63. #endif
  64. #ifdef MMU_DEBUG
  65. static bool dbg = 0;
  66. module_param(dbg, bool, 0644);
  67. #endif
  68. #ifndef MMU_DEBUG
  69. #define ASSERT(x) do { } while (0)
  70. #else
  71. #define ASSERT(x) \
  72. if (!(x)) { \
  73. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  74. __FILE__, __LINE__, #x); \
  75. }
  76. #endif
  77. #define PTE_PREFETCH_NUM 8
  78. #define PT_FIRST_AVAIL_BITS_SHIFT 10
  79. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LVL_OFFSET_MASK(level) \
  89. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  90. * PT32_LEVEL_BITS))) - 1))
  91. #define PT32_INDEX(address, level)\
  92. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  93. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  94. #define PT64_DIR_BASE_ADDR_MASK \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  96. #define PT64_LVL_ADDR_MASK(level) \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  98. * PT64_LEVEL_BITS))) - 1))
  99. #define PT64_LVL_OFFSET_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT32_BASE_ADDR_MASK PAGE_MASK
  103. #define PT32_DIR_BASE_ADDR_MASK \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  105. #define PT32_LVL_ADDR_MASK(level) \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  107. * PT32_LEVEL_BITS))) - 1))
  108. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  109. | PT64_NX_MASK)
  110. #define ACC_EXEC_MASK 1
  111. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  112. #define ACC_USER_MASK PT_USER_MASK
  113. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  114. #include <trace/events/kvm.h>
  115. #define CREATE_TRACE_POINTS
  116. #include "mmutrace.h"
  117. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  118. #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
  119. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  120. /* make pte_list_desc fit well in cache line */
  121. #define PTE_LIST_EXT 3
  122. struct pte_list_desc {
  123. u64 *sptes[PTE_LIST_EXT];
  124. struct pte_list_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. u64 *sptep;
  130. int level;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
  138. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  139. shadow_walk_okay(&(_walker)) && \
  140. ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
  141. __shadow_walk_next(&(_walker), spte))
  142. static struct kmem_cache *pte_list_desc_cache;
  143. static struct kmem_cache *mmu_page_header_cache;
  144. static struct percpu_counter kvm_total_used_mmu_pages;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static u64 __read_mostly shadow_mmio_mask;
  151. static void mmu_spte_set(u64 *sptep, u64 spte);
  152. static void mmu_free_roots(struct kvm_vcpu *vcpu);
  153. void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
  154. {
  155. shadow_mmio_mask = mmio_mask;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
  158. /*
  159. * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
  160. * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
  161. * number.
  162. */
  163. #define MMIO_SPTE_GEN_LOW_SHIFT 3
  164. #define MMIO_SPTE_GEN_HIGH_SHIFT 52
  165. #define MMIO_GEN_SHIFT 19
  166. #define MMIO_GEN_LOW_SHIFT 9
  167. #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
  168. #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
  169. #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
  170. static u64 generation_mmio_spte_mask(unsigned int gen)
  171. {
  172. u64 mask;
  173. WARN_ON(gen > MMIO_MAX_GEN);
  174. mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
  175. mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
  176. return mask;
  177. }
  178. static unsigned int get_mmio_spte_generation(u64 spte)
  179. {
  180. unsigned int gen;
  181. spte &= ~shadow_mmio_mask;
  182. gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
  183. gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
  184. return gen;
  185. }
  186. static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
  187. {
  188. /*
  189. * Init kvm generation close to MMIO_MAX_GEN to easily test the
  190. * code of handling generation number wrap-around.
  191. */
  192. return (kvm_memslots(kvm)->generation +
  193. MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
  194. }
  195. static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
  196. unsigned access)
  197. {
  198. unsigned int gen = kvm_current_mmio_generation(kvm);
  199. u64 mask = generation_mmio_spte_mask(gen);
  200. access &= ACC_WRITE_MASK | ACC_USER_MASK;
  201. mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
  202. trace_mark_mmio_spte(sptep, gfn, access, gen);
  203. mmu_spte_set(sptep, mask);
  204. }
  205. static bool is_mmio_spte(u64 spte)
  206. {
  207. return (spte & shadow_mmio_mask) == shadow_mmio_mask;
  208. }
  209. static gfn_t get_mmio_spte_gfn(u64 spte)
  210. {
  211. u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
  212. return (spte & ~mask) >> PAGE_SHIFT;
  213. }
  214. static unsigned get_mmio_spte_access(u64 spte)
  215. {
  216. u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
  217. return (spte & ~mask) & ~PAGE_MASK;
  218. }
  219. static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  220. pfn_t pfn, unsigned access)
  221. {
  222. if (unlikely(is_noslot_pfn(pfn))) {
  223. mark_mmio_spte(kvm, sptep, gfn, access);
  224. return true;
  225. }
  226. return false;
  227. }
  228. static bool check_mmio_spte(struct kvm *kvm, u64 spte)
  229. {
  230. unsigned int kvm_gen, spte_gen;
  231. kvm_gen = kvm_current_mmio_generation(kvm);
  232. spte_gen = get_mmio_spte_generation(spte);
  233. trace_check_mmio_spte(spte, kvm_gen, spte_gen);
  234. return likely(kvm_gen == spte_gen);
  235. }
  236. static inline u64 rsvd_bits(int s, int e)
  237. {
  238. return ((1ULL << (e - s + 1)) - 1) << s;
  239. }
  240. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  241. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  242. {
  243. shadow_user_mask = user_mask;
  244. shadow_accessed_mask = accessed_mask;
  245. shadow_dirty_mask = dirty_mask;
  246. shadow_nx_mask = nx_mask;
  247. shadow_x_mask = x_mask;
  248. }
  249. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  250. static int is_cpuid_PSE36(void)
  251. {
  252. return 1;
  253. }
  254. static int is_nx(struct kvm_vcpu *vcpu)
  255. {
  256. return vcpu->arch.efer & EFER_NX;
  257. }
  258. static int is_shadow_present_pte(u64 pte)
  259. {
  260. return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
  261. }
  262. static int is_large_pte(u64 pte)
  263. {
  264. return pte & PT_PAGE_SIZE_MASK;
  265. }
  266. static int is_rmap_spte(u64 pte)
  267. {
  268. return is_shadow_present_pte(pte);
  269. }
  270. static int is_last_spte(u64 pte, int level)
  271. {
  272. if (level == PT_PAGE_TABLE_LEVEL)
  273. return 1;
  274. if (is_large_pte(pte))
  275. return 1;
  276. return 0;
  277. }
  278. static pfn_t spte_to_pfn(u64 pte)
  279. {
  280. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  281. }
  282. static gfn_t pse36_gfn_delta(u32 gpte)
  283. {
  284. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  285. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  286. }
  287. #ifdef CONFIG_X86_64
  288. static void __set_spte(u64 *sptep, u64 spte)
  289. {
  290. *sptep = spte;
  291. }
  292. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  293. {
  294. *sptep = spte;
  295. }
  296. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  297. {
  298. return xchg(sptep, spte);
  299. }
  300. static u64 __get_spte_lockless(u64 *sptep)
  301. {
  302. return ACCESS_ONCE(*sptep);
  303. }
  304. static bool __check_direct_spte_mmio_pf(u64 spte)
  305. {
  306. /* It is valid if the spte is zapped. */
  307. return spte == 0ull;
  308. }
  309. #else
  310. union split_spte {
  311. struct {
  312. u32 spte_low;
  313. u32 spte_high;
  314. };
  315. u64 spte;
  316. };
  317. static void count_spte_clear(u64 *sptep, u64 spte)
  318. {
  319. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  320. if (is_shadow_present_pte(spte))
  321. return;
  322. /* Ensure the spte is completely set before we increase the count */
  323. smp_wmb();
  324. sp->clear_spte_count++;
  325. }
  326. static void __set_spte(u64 *sptep, u64 spte)
  327. {
  328. union split_spte *ssptep, sspte;
  329. ssptep = (union split_spte *)sptep;
  330. sspte = (union split_spte)spte;
  331. ssptep->spte_high = sspte.spte_high;
  332. /*
  333. * If we map the spte from nonpresent to present, We should store
  334. * the high bits firstly, then set present bit, so cpu can not
  335. * fetch this spte while we are setting the spte.
  336. */
  337. smp_wmb();
  338. ssptep->spte_low = sspte.spte_low;
  339. }
  340. static void __update_clear_spte_fast(u64 *sptep, u64 spte)
  341. {
  342. union split_spte *ssptep, sspte;
  343. ssptep = (union split_spte *)sptep;
  344. sspte = (union split_spte)spte;
  345. ssptep->spte_low = sspte.spte_low;
  346. /*
  347. * If we map the spte from present to nonpresent, we should clear
  348. * present bit firstly to avoid vcpu fetch the old high bits.
  349. */
  350. smp_wmb();
  351. ssptep->spte_high = sspte.spte_high;
  352. count_spte_clear(sptep, spte);
  353. }
  354. static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
  355. {
  356. union split_spte *ssptep, sspte, orig;
  357. ssptep = (union split_spte *)sptep;
  358. sspte = (union split_spte)spte;
  359. /* xchg acts as a barrier before the setting of the high bits */
  360. orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
  361. orig.spte_high = ssptep->spte_high;
  362. ssptep->spte_high = sspte.spte_high;
  363. count_spte_clear(sptep, spte);
  364. return orig.spte;
  365. }
  366. /*
  367. * The idea using the light way get the spte on x86_32 guest is from
  368. * gup_get_pte(arch/x86/mm/gup.c).
  369. *
  370. * An spte tlb flush may be pending, because kvm_set_pte_rmapp
  371. * coalesces them and we are running out of the MMU lock. Therefore
  372. * we need to protect against in-progress updates of the spte.
  373. *
  374. * Reading the spte while an update is in progress may get the old value
  375. * for the high part of the spte. The race is fine for a present->non-present
  376. * change (because the high part of the spte is ignored for non-present spte),
  377. * but for a present->present change we must reread the spte.
  378. *
  379. * All such changes are done in two steps (present->non-present and
  380. * non-present->present), hence it is enough to count the number of
  381. * present->non-present updates: if it changed while reading the spte,
  382. * we might have hit the race. This is done using clear_spte_count.
  383. */
  384. static u64 __get_spte_lockless(u64 *sptep)
  385. {
  386. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  387. union split_spte spte, *orig = (union split_spte *)sptep;
  388. int count;
  389. retry:
  390. count = sp->clear_spte_count;
  391. smp_rmb();
  392. spte.spte_low = orig->spte_low;
  393. smp_rmb();
  394. spte.spte_high = orig->spte_high;
  395. smp_rmb();
  396. if (unlikely(spte.spte_low != orig->spte_low ||
  397. count != sp->clear_spte_count))
  398. goto retry;
  399. return spte.spte;
  400. }
  401. static bool __check_direct_spte_mmio_pf(u64 spte)
  402. {
  403. union split_spte sspte = (union split_spte)spte;
  404. u32 high_mmio_mask = shadow_mmio_mask >> 32;
  405. /* It is valid if the spte is zapped. */
  406. if (spte == 0ull)
  407. return true;
  408. /* It is valid if the spte is being zapped. */
  409. if (sspte.spte_low == 0ull &&
  410. (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
  411. return true;
  412. return false;
  413. }
  414. #endif
  415. static bool spte_is_locklessly_modifiable(u64 spte)
  416. {
  417. return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
  418. (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
  419. }
  420. static bool spte_has_volatile_bits(u64 spte)
  421. {
  422. /*
  423. * Always atomicly update spte if it can be updated
  424. * out of mmu-lock, it can ensure dirty bit is not lost,
  425. * also, it can help us to get a stable is_writable_pte()
  426. * to ensure tlb flush is not missed.
  427. */
  428. if (spte_is_locklessly_modifiable(spte))
  429. return true;
  430. if (!shadow_accessed_mask)
  431. return false;
  432. if (!is_shadow_present_pte(spte))
  433. return false;
  434. if ((spte & shadow_accessed_mask) &&
  435. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  436. return false;
  437. return true;
  438. }
  439. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  440. {
  441. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  442. }
  443. /* Rules for using mmu_spte_set:
  444. * Set the sptep from nonpresent to present.
  445. * Note: the sptep being assigned *must* be either not present
  446. * or in a state where the hardware will not attempt to update
  447. * the spte.
  448. */
  449. static void mmu_spte_set(u64 *sptep, u64 new_spte)
  450. {
  451. WARN_ON(is_shadow_present_pte(*sptep));
  452. __set_spte(sptep, new_spte);
  453. }
  454. /* Rules for using mmu_spte_update:
  455. * Update the state bits, it means the mapped pfn is not changged.
  456. *
  457. * Whenever we overwrite a writable spte with a read-only one we
  458. * should flush remote TLBs. Otherwise rmap_write_protect
  459. * will find a read-only spte, even though the writable spte
  460. * might be cached on a CPU's TLB, the return value indicates this
  461. * case.
  462. */
  463. static bool mmu_spte_update(u64 *sptep, u64 new_spte)
  464. {
  465. u64 old_spte = *sptep;
  466. bool ret = false;
  467. WARN_ON(!is_rmap_spte(new_spte));
  468. if (!is_shadow_present_pte(old_spte)) {
  469. mmu_spte_set(sptep, new_spte);
  470. return ret;
  471. }
  472. if (!spte_has_volatile_bits(old_spte))
  473. __update_clear_spte_fast(sptep, new_spte);
  474. else
  475. old_spte = __update_clear_spte_slow(sptep, new_spte);
  476. /*
  477. * For the spte updated out of mmu-lock is safe, since
  478. * we always atomicly update it, see the comments in
  479. * spte_has_volatile_bits().
  480. */
  481. if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
  482. ret = true;
  483. if (!shadow_accessed_mask)
  484. return ret;
  485. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  486. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  487. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  488. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  489. return ret;
  490. }
  491. /*
  492. * Rules for using mmu_spte_clear_track_bits:
  493. * It sets the sptep from present to nonpresent, and track the
  494. * state bits, it is used to clear the last level sptep.
  495. */
  496. static int mmu_spte_clear_track_bits(u64 *sptep)
  497. {
  498. pfn_t pfn;
  499. u64 old_spte = *sptep;
  500. if (!spte_has_volatile_bits(old_spte))
  501. __update_clear_spte_fast(sptep, 0ull);
  502. else
  503. old_spte = __update_clear_spte_slow(sptep, 0ull);
  504. if (!is_rmap_spte(old_spte))
  505. return 0;
  506. pfn = spte_to_pfn(old_spte);
  507. /*
  508. * KVM does not hold the refcount of the page used by
  509. * kvm mmu, before reclaiming the page, we should
  510. * unmap it from mmu first.
  511. */
  512. WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
  513. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  514. kvm_set_pfn_accessed(pfn);
  515. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  516. kvm_set_pfn_dirty(pfn);
  517. return 1;
  518. }
  519. /*
  520. * Rules for using mmu_spte_clear_no_track:
  521. * Directly clear spte without caring the state bits of sptep,
  522. * it is used to set the upper level spte.
  523. */
  524. static void mmu_spte_clear_no_track(u64 *sptep)
  525. {
  526. __update_clear_spte_fast(sptep, 0ull);
  527. }
  528. static u64 mmu_spte_get_lockless(u64 *sptep)
  529. {
  530. return __get_spte_lockless(sptep);
  531. }
  532. static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
  533. {
  534. /*
  535. * Prevent page table teardown by making any free-er wait during
  536. * kvm_flush_remote_tlbs() IPI to all active vcpus.
  537. */
  538. local_irq_disable();
  539. vcpu->mode = READING_SHADOW_PAGE_TABLES;
  540. /*
  541. * Make sure a following spte read is not reordered ahead of the write
  542. * to vcpu->mode.
  543. */
  544. smp_mb();
  545. }
  546. static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
  547. {
  548. /*
  549. * Make sure the write to vcpu->mode is not reordered in front of
  550. * reads to sptes. If it does, kvm_commit_zap_page() can see us
  551. * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
  552. */
  553. smp_mb();
  554. vcpu->mode = OUTSIDE_GUEST_MODE;
  555. local_irq_enable();
  556. }
  557. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  558. struct kmem_cache *base_cache, int min)
  559. {
  560. void *obj;
  561. if (cache->nobjs >= min)
  562. return 0;
  563. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  564. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  565. if (!obj)
  566. return -ENOMEM;
  567. cache->objects[cache->nobjs++] = obj;
  568. }
  569. return 0;
  570. }
  571. static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
  572. {
  573. return cache->nobjs;
  574. }
  575. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  576. struct kmem_cache *cache)
  577. {
  578. while (mc->nobjs)
  579. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  580. }
  581. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  582. int min)
  583. {
  584. void *page;
  585. if (cache->nobjs >= min)
  586. return 0;
  587. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  588. page = (void *)__get_free_page(GFP_KERNEL);
  589. if (!page)
  590. return -ENOMEM;
  591. cache->objects[cache->nobjs++] = page;
  592. }
  593. return 0;
  594. }
  595. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  596. {
  597. while (mc->nobjs)
  598. free_page((unsigned long)mc->objects[--mc->nobjs]);
  599. }
  600. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  601. {
  602. int r;
  603. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  604. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  605. if (r)
  606. goto out;
  607. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  608. if (r)
  609. goto out;
  610. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  611. mmu_page_header_cache, 4);
  612. out:
  613. return r;
  614. }
  615. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  616. {
  617. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  618. pte_list_desc_cache);
  619. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  620. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  621. mmu_page_header_cache);
  622. }
  623. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
  624. {
  625. void *p;
  626. BUG_ON(!mc->nobjs);
  627. p = mc->objects[--mc->nobjs];
  628. return p;
  629. }
  630. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  631. {
  632. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
  633. }
  634. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  635. {
  636. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  637. }
  638. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  639. {
  640. if (!sp->role.direct)
  641. return sp->gfns[index];
  642. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  643. }
  644. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  645. {
  646. if (sp->role.direct)
  647. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  648. else
  649. sp->gfns[index] = gfn;
  650. }
  651. /*
  652. * Return the pointer to the large page information for a given gfn,
  653. * handling slots that are not large page aligned.
  654. */
  655. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  656. struct kvm_memory_slot *slot,
  657. int level)
  658. {
  659. unsigned long idx;
  660. idx = gfn_to_index(gfn, slot->base_gfn, level);
  661. return &slot->arch.lpage_info[level - 2][idx];
  662. }
  663. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  664. {
  665. struct kvm_memory_slot *slot;
  666. struct kvm_lpage_info *linfo;
  667. int i;
  668. slot = gfn_to_memslot(kvm, gfn);
  669. for (i = PT_DIRECTORY_LEVEL;
  670. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  671. linfo = lpage_info_slot(gfn, slot, i);
  672. linfo->write_count += 1;
  673. }
  674. kvm->arch.indirect_shadow_pages++;
  675. }
  676. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  677. {
  678. struct kvm_memory_slot *slot;
  679. struct kvm_lpage_info *linfo;
  680. int i;
  681. slot = gfn_to_memslot(kvm, gfn);
  682. for (i = PT_DIRECTORY_LEVEL;
  683. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  684. linfo = lpage_info_slot(gfn, slot, i);
  685. linfo->write_count -= 1;
  686. WARN_ON(linfo->write_count < 0);
  687. }
  688. kvm->arch.indirect_shadow_pages--;
  689. }
  690. static int has_wrprotected_page(struct kvm *kvm,
  691. gfn_t gfn,
  692. int level)
  693. {
  694. struct kvm_memory_slot *slot;
  695. struct kvm_lpage_info *linfo;
  696. slot = gfn_to_memslot(kvm, gfn);
  697. if (slot) {
  698. linfo = lpage_info_slot(gfn, slot, level);
  699. return linfo->write_count;
  700. }
  701. return 1;
  702. }
  703. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  704. {
  705. unsigned long page_size;
  706. int i, ret = 0;
  707. page_size = kvm_host_page_size(kvm, gfn);
  708. for (i = PT_PAGE_TABLE_LEVEL;
  709. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  710. if (page_size >= KVM_HPAGE_SIZE(i))
  711. ret = i;
  712. else
  713. break;
  714. }
  715. return ret;
  716. }
  717. static struct kvm_memory_slot *
  718. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  719. bool no_dirty_log)
  720. {
  721. struct kvm_memory_slot *slot;
  722. slot = gfn_to_memslot(vcpu->kvm, gfn);
  723. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  724. (no_dirty_log && slot->dirty_bitmap))
  725. slot = NULL;
  726. return slot;
  727. }
  728. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  729. {
  730. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  731. }
  732. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  733. {
  734. int host_level, level, max_level;
  735. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  736. if (host_level == PT_PAGE_TABLE_LEVEL)
  737. return host_level;
  738. max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
  739. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  740. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  741. break;
  742. return level - 1;
  743. }
  744. /*
  745. * Pte mapping structures:
  746. *
  747. * If pte_list bit zero is zero, then pte_list point to the spte.
  748. *
  749. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  750. * pte_list_desc containing more mappings.
  751. *
  752. * Returns the number of pte entries before the spte was added or zero if
  753. * the spte was not added.
  754. *
  755. */
  756. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  757. unsigned long *pte_list)
  758. {
  759. struct pte_list_desc *desc;
  760. int i, count = 0;
  761. if (!*pte_list) {
  762. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  763. *pte_list = (unsigned long)spte;
  764. } else if (!(*pte_list & 1)) {
  765. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  766. desc = mmu_alloc_pte_list_desc(vcpu);
  767. desc->sptes[0] = (u64 *)*pte_list;
  768. desc->sptes[1] = spte;
  769. *pte_list = (unsigned long)desc | 1;
  770. ++count;
  771. } else {
  772. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  773. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  774. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  775. desc = desc->more;
  776. count += PTE_LIST_EXT;
  777. }
  778. if (desc->sptes[PTE_LIST_EXT-1]) {
  779. desc->more = mmu_alloc_pte_list_desc(vcpu);
  780. desc = desc->more;
  781. }
  782. for (i = 0; desc->sptes[i]; ++i)
  783. ++count;
  784. desc->sptes[i] = spte;
  785. }
  786. return count;
  787. }
  788. static void
  789. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  790. int i, struct pte_list_desc *prev_desc)
  791. {
  792. int j;
  793. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  794. ;
  795. desc->sptes[i] = desc->sptes[j];
  796. desc->sptes[j] = NULL;
  797. if (j != 0)
  798. return;
  799. if (!prev_desc && !desc->more)
  800. *pte_list = (unsigned long)desc->sptes[0];
  801. else
  802. if (prev_desc)
  803. prev_desc->more = desc->more;
  804. else
  805. *pte_list = (unsigned long)desc->more | 1;
  806. mmu_free_pte_list_desc(desc);
  807. }
  808. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  809. {
  810. struct pte_list_desc *desc;
  811. struct pte_list_desc *prev_desc;
  812. int i;
  813. if (!*pte_list) {
  814. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  815. BUG();
  816. } else if (!(*pte_list & 1)) {
  817. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  818. if ((u64 *)*pte_list != spte) {
  819. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  820. BUG();
  821. }
  822. *pte_list = 0;
  823. } else {
  824. rmap_printk("pte_list_remove: %p many->many\n", spte);
  825. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  826. prev_desc = NULL;
  827. while (desc) {
  828. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  829. if (desc->sptes[i] == spte) {
  830. pte_list_desc_remove_entry(pte_list,
  831. desc, i,
  832. prev_desc);
  833. return;
  834. }
  835. prev_desc = desc;
  836. desc = desc->more;
  837. }
  838. pr_err("pte_list_remove: %p many->many\n", spte);
  839. BUG();
  840. }
  841. }
  842. typedef void (*pte_list_walk_fn) (u64 *spte);
  843. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  844. {
  845. struct pte_list_desc *desc;
  846. int i;
  847. if (!*pte_list)
  848. return;
  849. if (!(*pte_list & 1))
  850. return fn((u64 *)*pte_list);
  851. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  852. while (desc) {
  853. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  854. fn(desc->sptes[i]);
  855. desc = desc->more;
  856. }
  857. }
  858. static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
  859. struct kvm_memory_slot *slot)
  860. {
  861. unsigned long idx;
  862. idx = gfn_to_index(gfn, slot->base_gfn, level);
  863. return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
  864. }
  865. /*
  866. * Take gfn and return the reverse mapping to it.
  867. */
  868. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  869. {
  870. struct kvm_memory_slot *slot;
  871. slot = gfn_to_memslot(kvm, gfn);
  872. return __gfn_to_rmap(gfn, level, slot);
  873. }
  874. static bool rmap_can_add(struct kvm_vcpu *vcpu)
  875. {
  876. struct kvm_mmu_memory_cache *cache;
  877. cache = &vcpu->arch.mmu_pte_list_desc_cache;
  878. return mmu_memory_cache_free_objects(cache);
  879. }
  880. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  881. {
  882. struct kvm_mmu_page *sp;
  883. unsigned long *rmapp;
  884. sp = page_header(__pa(spte));
  885. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  886. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  887. return pte_list_add(vcpu, spte, rmapp);
  888. }
  889. static void rmap_remove(struct kvm *kvm, u64 *spte)
  890. {
  891. struct kvm_mmu_page *sp;
  892. gfn_t gfn;
  893. unsigned long *rmapp;
  894. sp = page_header(__pa(spte));
  895. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  896. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  897. pte_list_remove(spte, rmapp);
  898. }
  899. /*
  900. * Used by the following functions to iterate through the sptes linked by a
  901. * rmap. All fields are private and not assumed to be used outside.
  902. */
  903. struct rmap_iterator {
  904. /* private fields */
  905. struct pte_list_desc *desc; /* holds the sptep if not NULL */
  906. int pos; /* index of the sptep */
  907. };
  908. /*
  909. * Iteration must be started by this function. This should also be used after
  910. * removing/dropping sptes from the rmap link because in such cases the
  911. * information in the itererator may not be valid.
  912. *
  913. * Returns sptep if found, NULL otherwise.
  914. */
  915. static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
  916. {
  917. if (!rmap)
  918. return NULL;
  919. if (!(rmap & 1)) {
  920. iter->desc = NULL;
  921. return (u64 *)rmap;
  922. }
  923. iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
  924. iter->pos = 0;
  925. return iter->desc->sptes[iter->pos];
  926. }
  927. /*
  928. * Must be used with a valid iterator: e.g. after rmap_get_first().
  929. *
  930. * Returns sptep if found, NULL otherwise.
  931. */
  932. static u64 *rmap_get_next(struct rmap_iterator *iter)
  933. {
  934. if (iter->desc) {
  935. if (iter->pos < PTE_LIST_EXT - 1) {
  936. u64 *sptep;
  937. ++iter->pos;
  938. sptep = iter->desc->sptes[iter->pos];
  939. if (sptep)
  940. return sptep;
  941. }
  942. iter->desc = iter->desc->more;
  943. if (iter->desc) {
  944. iter->pos = 0;
  945. /* desc->sptes[0] cannot be NULL */
  946. return iter->desc->sptes[iter->pos];
  947. }
  948. }
  949. return NULL;
  950. }
  951. static void drop_spte(struct kvm *kvm, u64 *sptep)
  952. {
  953. if (mmu_spte_clear_track_bits(sptep))
  954. rmap_remove(kvm, sptep);
  955. }
  956. static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
  957. {
  958. if (is_large_pte(*sptep)) {
  959. WARN_ON(page_header(__pa(sptep))->role.level ==
  960. PT_PAGE_TABLE_LEVEL);
  961. drop_spte(kvm, sptep);
  962. --kvm->stat.lpages;
  963. return true;
  964. }
  965. return false;
  966. }
  967. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  968. {
  969. if (__drop_large_spte(vcpu->kvm, sptep))
  970. kvm_flush_remote_tlbs(vcpu->kvm);
  971. }
  972. /*
  973. * Write-protect on the specified @sptep, @pt_protect indicates whether
  974. * spte writ-protection is caused by protecting shadow page table.
  975. * @flush indicates whether tlb need be flushed.
  976. *
  977. * Note: write protection is difference between drity logging and spte
  978. * protection:
  979. * - for dirty logging, the spte can be set to writable at anytime if
  980. * its dirty bitmap is properly set.
  981. * - for spte protection, the spte can be writable only after unsync-ing
  982. * shadow page.
  983. *
  984. * Return true if the spte is dropped.
  985. */
  986. static bool
  987. spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
  988. {
  989. u64 spte = *sptep;
  990. if (!is_writable_pte(spte) &&
  991. !(pt_protect && spte_is_locklessly_modifiable(spte)))
  992. return false;
  993. rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
  994. if (__drop_large_spte(kvm, sptep)) {
  995. *flush |= true;
  996. return true;
  997. }
  998. if (pt_protect)
  999. spte &= ~SPTE_MMU_WRITEABLE;
  1000. spte = spte & ~PT_WRITABLE_MASK;
  1001. *flush |= mmu_spte_update(sptep, spte);
  1002. return false;
  1003. }
  1004. static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
  1005. bool pt_protect)
  1006. {
  1007. u64 *sptep;
  1008. struct rmap_iterator iter;
  1009. bool flush = false;
  1010. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1011. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1012. if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
  1013. sptep = rmap_get_first(*rmapp, &iter);
  1014. continue;
  1015. }
  1016. sptep = rmap_get_next(&iter);
  1017. }
  1018. return flush;
  1019. }
  1020. /**
  1021. * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
  1022. * @kvm: kvm instance
  1023. * @slot: slot to protect
  1024. * @gfn_offset: start of the BITS_PER_LONG pages we care about
  1025. * @mask: indicates which pages we should protect
  1026. *
  1027. * Used when we do not need to care about huge page mappings: e.g. during dirty
  1028. * logging we do not have any such mappings.
  1029. */
  1030. void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
  1031. struct kvm_memory_slot *slot,
  1032. gfn_t gfn_offset, unsigned long mask)
  1033. {
  1034. unsigned long *rmapp;
  1035. while (mask) {
  1036. rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
  1037. PT_PAGE_TABLE_LEVEL, slot);
  1038. __rmap_write_protect(kvm, rmapp, false);
  1039. /* clear the first set bit */
  1040. mask &= mask - 1;
  1041. }
  1042. }
  1043. static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
  1044. {
  1045. struct kvm_memory_slot *slot;
  1046. unsigned long *rmapp;
  1047. int i;
  1048. bool write_protected = false;
  1049. slot = gfn_to_memslot(kvm, gfn);
  1050. for (i = PT_PAGE_TABLE_LEVEL;
  1051. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  1052. rmapp = __gfn_to_rmap(gfn, i, slot);
  1053. write_protected |= __rmap_write_protect(kvm, rmapp, true);
  1054. }
  1055. return write_protected;
  1056. }
  1057. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1058. struct kvm_memory_slot *slot, unsigned long data)
  1059. {
  1060. u64 *sptep;
  1061. struct rmap_iterator iter;
  1062. int need_tlb_flush = 0;
  1063. while ((sptep = rmap_get_first(*rmapp, &iter))) {
  1064. BUG_ON(!(*sptep & PT_PRESENT_MASK));
  1065. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
  1066. drop_spte(kvm, sptep);
  1067. need_tlb_flush = 1;
  1068. }
  1069. return need_tlb_flush;
  1070. }
  1071. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1072. struct kvm_memory_slot *slot, unsigned long data)
  1073. {
  1074. u64 *sptep;
  1075. struct rmap_iterator iter;
  1076. int need_flush = 0;
  1077. u64 new_spte;
  1078. pte_t *ptep = (pte_t *)data;
  1079. pfn_t new_pfn;
  1080. WARN_ON(pte_huge(*ptep));
  1081. new_pfn = pte_pfn(*ptep);
  1082. for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
  1083. BUG_ON(!is_shadow_present_pte(*sptep));
  1084. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
  1085. need_flush = 1;
  1086. if (pte_write(*ptep)) {
  1087. drop_spte(kvm, sptep);
  1088. sptep = rmap_get_first(*rmapp, &iter);
  1089. } else {
  1090. new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
  1091. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  1092. new_spte &= ~PT_WRITABLE_MASK;
  1093. new_spte &= ~SPTE_HOST_WRITEABLE;
  1094. new_spte &= ~shadow_accessed_mask;
  1095. mmu_spte_clear_track_bits(sptep);
  1096. mmu_spte_set(sptep, new_spte);
  1097. sptep = rmap_get_next(&iter);
  1098. }
  1099. }
  1100. if (need_flush)
  1101. kvm_flush_remote_tlbs(kvm);
  1102. return 0;
  1103. }
  1104. static int kvm_handle_hva_range(struct kvm *kvm,
  1105. unsigned long start,
  1106. unsigned long end,
  1107. unsigned long data,
  1108. int (*handler)(struct kvm *kvm,
  1109. unsigned long *rmapp,
  1110. struct kvm_memory_slot *slot,
  1111. unsigned long data))
  1112. {
  1113. int j;
  1114. int ret = 0;
  1115. struct kvm_memslots *slots;
  1116. struct kvm_memory_slot *memslot;
  1117. slots = kvm_memslots(kvm);
  1118. kvm_for_each_memslot(memslot, slots) {
  1119. unsigned long hva_start, hva_end;
  1120. gfn_t gfn_start, gfn_end;
  1121. hva_start = max(start, memslot->userspace_addr);
  1122. hva_end = min(end, memslot->userspace_addr +
  1123. (memslot->npages << PAGE_SHIFT));
  1124. if (hva_start >= hva_end)
  1125. continue;
  1126. /*
  1127. * {gfn(page) | page intersects with [hva_start, hva_end)} =
  1128. * {gfn_start, gfn_start+1, ..., gfn_end-1}.
  1129. */
  1130. gfn_start = hva_to_gfn_memslot(hva_start, memslot);
  1131. gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
  1132. for (j = PT_PAGE_TABLE_LEVEL;
  1133. j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
  1134. unsigned long idx, idx_end;
  1135. unsigned long *rmapp;
  1136. /*
  1137. * {idx(page_j) | page_j intersects with
  1138. * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
  1139. */
  1140. idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
  1141. idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
  1142. rmapp = __gfn_to_rmap(gfn_start, j, memslot);
  1143. for (; idx <= idx_end; ++idx)
  1144. ret |= handler(kvm, rmapp++, memslot, data);
  1145. }
  1146. }
  1147. return ret;
  1148. }
  1149. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  1150. unsigned long data,
  1151. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  1152. struct kvm_memory_slot *slot,
  1153. unsigned long data))
  1154. {
  1155. return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
  1156. }
  1157. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  1158. {
  1159. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  1160. }
  1161. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  1162. {
  1163. return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
  1164. }
  1165. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  1166. {
  1167. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  1168. }
  1169. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1170. struct kvm_memory_slot *slot, unsigned long data)
  1171. {
  1172. u64 *sptep;
  1173. struct rmap_iterator uninitialized_var(iter);
  1174. int young = 0;
  1175. /*
  1176. * In case of absence of EPT Access and Dirty Bits supports,
  1177. * emulate the accessed bit for EPT, by checking if this page has
  1178. * an EPT mapping, and clearing it if it does. On the next access,
  1179. * a new EPT mapping will be established.
  1180. * This has some overhead, but not as much as the cost of swapping
  1181. * out actively used pages or breaking up actively used hugepages.
  1182. */
  1183. if (!shadow_accessed_mask) {
  1184. young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
  1185. goto out;
  1186. }
  1187. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1188. sptep = rmap_get_next(&iter)) {
  1189. BUG_ON(!is_shadow_present_pte(*sptep));
  1190. if (*sptep & shadow_accessed_mask) {
  1191. young = 1;
  1192. clear_bit((ffs(shadow_accessed_mask) - 1),
  1193. (unsigned long *)sptep);
  1194. }
  1195. }
  1196. out:
  1197. /* @data has hva passed to kvm_age_hva(). */
  1198. trace_kvm_age_page(data, slot, young);
  1199. return young;
  1200. }
  1201. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  1202. struct kvm_memory_slot *slot, unsigned long data)
  1203. {
  1204. u64 *sptep;
  1205. struct rmap_iterator iter;
  1206. int young = 0;
  1207. /*
  1208. * If there's no access bit in the secondary pte set by the
  1209. * hardware it's up to gup-fast/gup to set the access bit in
  1210. * the primary pte or in the page structure.
  1211. */
  1212. if (!shadow_accessed_mask)
  1213. goto out;
  1214. for (sptep = rmap_get_first(*rmapp, &iter); sptep;
  1215. sptep = rmap_get_next(&iter)) {
  1216. BUG_ON(!is_shadow_present_pte(*sptep));
  1217. if (*sptep & shadow_accessed_mask) {
  1218. young = 1;
  1219. break;
  1220. }
  1221. }
  1222. out:
  1223. return young;
  1224. }
  1225. #define RMAP_RECYCLE_THRESHOLD 1000
  1226. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  1227. {
  1228. unsigned long *rmapp;
  1229. struct kvm_mmu_page *sp;
  1230. sp = page_header(__pa(spte));
  1231. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  1232. kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
  1233. kvm_flush_remote_tlbs(vcpu->kvm);
  1234. }
  1235. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  1236. {
  1237. return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
  1238. }
  1239. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  1240. {
  1241. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  1242. }
  1243. #ifdef MMU_DEBUG
  1244. static int is_empty_shadow_page(u64 *spt)
  1245. {
  1246. u64 *pos;
  1247. u64 *end;
  1248. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  1249. if (is_shadow_present_pte(*pos)) {
  1250. printk(KERN_ERR "%s: %p %llx\n", __func__,
  1251. pos, *pos);
  1252. return 0;
  1253. }
  1254. return 1;
  1255. }
  1256. #endif
  1257. /*
  1258. * This value is the sum of all of the kvm instances's
  1259. * kvm->arch.n_used_mmu_pages values. We need a global,
  1260. * aggregate version in order to make the slab shrinker
  1261. * faster
  1262. */
  1263. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  1264. {
  1265. kvm->arch.n_used_mmu_pages += nr;
  1266. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  1267. }
  1268. static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
  1269. {
  1270. ASSERT(is_empty_shadow_page(sp->spt));
  1271. hlist_del(&sp->hash_link);
  1272. list_del(&sp->link);
  1273. free_page((unsigned long)sp->spt);
  1274. if (!sp->role.direct)
  1275. free_page((unsigned long)sp->gfns);
  1276. kmem_cache_free(mmu_page_header_cache, sp);
  1277. }
  1278. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  1279. {
  1280. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  1281. }
  1282. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  1283. struct kvm_mmu_page *sp, u64 *parent_pte)
  1284. {
  1285. if (!parent_pte)
  1286. return;
  1287. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  1288. }
  1289. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  1290. u64 *parent_pte)
  1291. {
  1292. pte_list_remove(parent_pte, &sp->parent_ptes);
  1293. }
  1294. static void drop_parent_pte(struct kvm_mmu_page *sp,
  1295. u64 *parent_pte)
  1296. {
  1297. mmu_page_remove_parent_pte(sp, parent_pte);
  1298. mmu_spte_clear_no_track(parent_pte);
  1299. }
  1300. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  1301. u64 *parent_pte, int direct)
  1302. {
  1303. struct kvm_mmu_page *sp;
  1304. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
  1305. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1306. if (!direct)
  1307. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
  1308. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  1309. /*
  1310. * The active_mmu_pages list is the FIFO list, do not move the
  1311. * page until it is zapped. kvm_zap_obsolete_pages depends on
  1312. * this feature. See the comments in kvm_zap_obsolete_pages().
  1313. */
  1314. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  1315. sp->parent_ptes = 0;
  1316. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1317. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  1318. return sp;
  1319. }
  1320. static void mark_unsync(u64 *spte);
  1321. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  1322. {
  1323. pte_list_walk(&sp->parent_ptes, mark_unsync);
  1324. }
  1325. static void mark_unsync(u64 *spte)
  1326. {
  1327. struct kvm_mmu_page *sp;
  1328. unsigned int index;
  1329. sp = page_header(__pa(spte));
  1330. index = spte - sp->spt;
  1331. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  1332. return;
  1333. if (sp->unsync_children++)
  1334. return;
  1335. kvm_mmu_mark_parents_unsync(sp);
  1336. }
  1337. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  1338. struct kvm_mmu_page *sp)
  1339. {
  1340. return 1;
  1341. }
  1342. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  1343. {
  1344. }
  1345. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  1346. struct kvm_mmu_page *sp, u64 *spte,
  1347. const void *pte)
  1348. {
  1349. WARN_ON(1);
  1350. }
  1351. #define KVM_PAGE_ARRAY_NR 16
  1352. struct kvm_mmu_pages {
  1353. struct mmu_page_and_offset {
  1354. struct kvm_mmu_page *sp;
  1355. unsigned int idx;
  1356. } page[KVM_PAGE_ARRAY_NR];
  1357. unsigned int nr;
  1358. };
  1359. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  1360. int idx)
  1361. {
  1362. int i;
  1363. if (sp->unsync)
  1364. for (i=0; i < pvec->nr; i++)
  1365. if (pvec->page[i].sp == sp)
  1366. return 0;
  1367. pvec->page[pvec->nr].sp = sp;
  1368. pvec->page[pvec->nr].idx = idx;
  1369. pvec->nr++;
  1370. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  1371. }
  1372. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  1373. struct kvm_mmu_pages *pvec)
  1374. {
  1375. int i, ret, nr_unsync_leaf = 0;
  1376. for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
  1377. struct kvm_mmu_page *child;
  1378. u64 ent = sp->spt[i];
  1379. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  1380. goto clear_child_bitmap;
  1381. child = page_header(ent & PT64_BASE_ADDR_MASK);
  1382. if (child->unsync_children) {
  1383. if (mmu_pages_add(pvec, child, i))
  1384. return -ENOSPC;
  1385. ret = __mmu_unsync_walk(child, pvec);
  1386. if (!ret)
  1387. goto clear_child_bitmap;
  1388. else if (ret > 0)
  1389. nr_unsync_leaf += ret;
  1390. else
  1391. return ret;
  1392. } else if (child->unsync) {
  1393. nr_unsync_leaf++;
  1394. if (mmu_pages_add(pvec, child, i))
  1395. return -ENOSPC;
  1396. } else
  1397. goto clear_child_bitmap;
  1398. continue;
  1399. clear_child_bitmap:
  1400. __clear_bit(i, sp->unsync_child_bitmap);
  1401. sp->unsync_children--;
  1402. WARN_ON((int)sp->unsync_children < 0);
  1403. }
  1404. return nr_unsync_leaf;
  1405. }
  1406. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1407. struct kvm_mmu_pages *pvec)
  1408. {
  1409. if (!sp->unsync_children)
  1410. return 0;
  1411. mmu_pages_add(pvec, sp, 0);
  1412. return __mmu_unsync_walk(sp, pvec);
  1413. }
  1414. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1415. {
  1416. WARN_ON(!sp->unsync);
  1417. trace_kvm_mmu_sync_page(sp);
  1418. sp->unsync = 0;
  1419. --kvm->stat.mmu_unsync;
  1420. }
  1421. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1422. struct list_head *invalid_list);
  1423. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1424. struct list_head *invalid_list);
  1425. /*
  1426. * NOTE: we should pay more attention on the zapped-obsolete page
  1427. * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
  1428. * since it has been deleted from active_mmu_pages but still can be found
  1429. * at hast list.
  1430. *
  1431. * for_each_gfn_indirect_valid_sp has skipped that kind of page and
  1432. * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
  1433. * all the obsolete pages.
  1434. */
  1435. #define for_each_gfn_sp(_kvm, _sp, _gfn) \
  1436. hlist_for_each_entry(_sp, \
  1437. &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
  1438. if ((_sp)->gfn != (_gfn)) {} else
  1439. #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
  1440. for_each_gfn_sp(_kvm, _sp, _gfn) \
  1441. if ((_sp)->role.direct || (_sp)->role.invalid) {} else
  1442. /* @sp->gfn should be write-protected at the call site */
  1443. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1444. struct list_head *invalid_list, bool clear_unsync)
  1445. {
  1446. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1447. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1448. return 1;
  1449. }
  1450. if (clear_unsync)
  1451. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1452. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1453. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1454. return 1;
  1455. }
  1456. kvm_mmu_flush_tlb(vcpu);
  1457. return 0;
  1458. }
  1459. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1460. struct kvm_mmu_page *sp)
  1461. {
  1462. LIST_HEAD(invalid_list);
  1463. int ret;
  1464. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1465. if (ret)
  1466. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1467. return ret;
  1468. }
  1469. #ifdef CONFIG_KVM_MMU_AUDIT
  1470. #include "mmu_audit.c"
  1471. #else
  1472. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
  1473. static void mmu_audit_disable(void) { }
  1474. #endif
  1475. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1476. struct list_head *invalid_list)
  1477. {
  1478. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1479. }
  1480. /* @gfn should be write-protected at the call site */
  1481. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1482. {
  1483. struct kvm_mmu_page *s;
  1484. LIST_HEAD(invalid_list);
  1485. bool flush = false;
  1486. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1487. if (!s->unsync)
  1488. continue;
  1489. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1490. kvm_unlink_unsync_page(vcpu->kvm, s);
  1491. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1492. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1493. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1494. continue;
  1495. }
  1496. flush = true;
  1497. }
  1498. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1499. if (flush)
  1500. kvm_mmu_flush_tlb(vcpu);
  1501. }
  1502. struct mmu_page_path {
  1503. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1504. unsigned int idx[PT64_ROOT_LEVEL-1];
  1505. };
  1506. #define for_each_sp(pvec, sp, parents, i) \
  1507. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1508. sp = pvec.page[i].sp; \
  1509. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1510. i = mmu_pages_next(&pvec, &parents, i))
  1511. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1512. struct mmu_page_path *parents,
  1513. int i)
  1514. {
  1515. int n;
  1516. for (n = i+1; n < pvec->nr; n++) {
  1517. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1518. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1519. parents->idx[0] = pvec->page[n].idx;
  1520. return n;
  1521. }
  1522. parents->parent[sp->role.level-2] = sp;
  1523. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1524. }
  1525. return n;
  1526. }
  1527. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1528. {
  1529. struct kvm_mmu_page *sp;
  1530. unsigned int level = 0;
  1531. do {
  1532. unsigned int idx = parents->idx[level];
  1533. sp = parents->parent[level];
  1534. if (!sp)
  1535. return;
  1536. --sp->unsync_children;
  1537. WARN_ON((int)sp->unsync_children < 0);
  1538. __clear_bit(idx, sp->unsync_child_bitmap);
  1539. level++;
  1540. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1541. }
  1542. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1543. struct mmu_page_path *parents,
  1544. struct kvm_mmu_pages *pvec)
  1545. {
  1546. parents->parent[parent->role.level-1] = NULL;
  1547. pvec->nr = 0;
  1548. }
  1549. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1550. struct kvm_mmu_page *parent)
  1551. {
  1552. int i;
  1553. struct kvm_mmu_page *sp;
  1554. struct mmu_page_path parents;
  1555. struct kvm_mmu_pages pages;
  1556. LIST_HEAD(invalid_list);
  1557. kvm_mmu_pages_init(parent, &parents, &pages);
  1558. while (mmu_unsync_walk(parent, &pages)) {
  1559. bool protected = false;
  1560. for_each_sp(pages, sp, parents, i)
  1561. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1562. if (protected)
  1563. kvm_flush_remote_tlbs(vcpu->kvm);
  1564. for_each_sp(pages, sp, parents, i) {
  1565. kvm_sync_page(vcpu, sp, &invalid_list);
  1566. mmu_pages_clear_parents(&parents);
  1567. }
  1568. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1569. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1570. kvm_mmu_pages_init(parent, &parents, &pages);
  1571. }
  1572. }
  1573. static void init_shadow_page_table(struct kvm_mmu_page *sp)
  1574. {
  1575. int i;
  1576. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1577. sp->spt[i] = 0ull;
  1578. }
  1579. static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
  1580. {
  1581. sp->write_flooding_count = 0;
  1582. }
  1583. static void clear_sp_write_flooding_count(u64 *spte)
  1584. {
  1585. struct kvm_mmu_page *sp = page_header(__pa(spte));
  1586. __clear_sp_write_flooding_count(sp);
  1587. }
  1588. static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
  1589. {
  1590. return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
  1591. }
  1592. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1593. gfn_t gfn,
  1594. gva_t gaddr,
  1595. unsigned level,
  1596. int direct,
  1597. unsigned access,
  1598. u64 *parent_pte)
  1599. {
  1600. union kvm_mmu_page_role role;
  1601. unsigned quadrant;
  1602. struct kvm_mmu_page *sp;
  1603. bool need_sync = false;
  1604. role = vcpu->arch.mmu.base_role;
  1605. role.level = level;
  1606. role.direct = direct;
  1607. if (role.direct)
  1608. role.cr4_pae = 0;
  1609. role.access = access;
  1610. if (!vcpu->arch.mmu.direct_map
  1611. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1612. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1613. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1614. role.quadrant = quadrant;
  1615. }
  1616. for_each_gfn_sp(vcpu->kvm, sp, gfn) {
  1617. if (is_obsolete_sp(vcpu->kvm, sp))
  1618. continue;
  1619. if (!need_sync && sp->unsync)
  1620. need_sync = true;
  1621. if (sp->role.word != role.word)
  1622. continue;
  1623. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1624. break;
  1625. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1626. if (sp->unsync_children) {
  1627. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1628. kvm_mmu_mark_parents_unsync(sp);
  1629. } else if (sp->unsync)
  1630. kvm_mmu_mark_parents_unsync(sp);
  1631. __clear_sp_write_flooding_count(sp);
  1632. trace_kvm_mmu_get_page(sp, false);
  1633. return sp;
  1634. }
  1635. ++vcpu->kvm->stat.mmu_cache_miss;
  1636. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1637. if (!sp)
  1638. return sp;
  1639. sp->gfn = gfn;
  1640. sp->role = role;
  1641. hlist_add_head(&sp->hash_link,
  1642. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1643. if (!direct) {
  1644. if (rmap_write_protect(vcpu->kvm, gfn))
  1645. kvm_flush_remote_tlbs(vcpu->kvm);
  1646. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1647. kvm_sync_pages(vcpu, gfn);
  1648. account_shadowed(vcpu->kvm, gfn);
  1649. }
  1650. sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
  1651. init_shadow_page_table(sp);
  1652. trace_kvm_mmu_get_page(sp, true);
  1653. return sp;
  1654. }
  1655. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1656. struct kvm_vcpu *vcpu, u64 addr)
  1657. {
  1658. iterator->addr = addr;
  1659. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1660. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1661. if (iterator->level == PT64_ROOT_LEVEL &&
  1662. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1663. !vcpu->arch.mmu.direct_map)
  1664. --iterator->level;
  1665. if (iterator->level == PT32E_ROOT_LEVEL) {
  1666. iterator->shadow_addr
  1667. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1668. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1669. --iterator->level;
  1670. if (!iterator->shadow_addr)
  1671. iterator->level = 0;
  1672. }
  1673. }
  1674. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1675. {
  1676. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1677. return false;
  1678. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1679. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1680. return true;
  1681. }
  1682. static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
  1683. u64 spte)
  1684. {
  1685. if (is_last_spte(spte, iterator->level)) {
  1686. iterator->level = 0;
  1687. return;
  1688. }
  1689. iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
  1690. --iterator->level;
  1691. }
  1692. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1693. {
  1694. return __shadow_walk_next(iterator, *iterator->sptep);
  1695. }
  1696. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1697. {
  1698. u64 spte;
  1699. spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  1700. shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
  1701. mmu_spte_set(sptep, spte);
  1702. }
  1703. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1704. unsigned direct_access)
  1705. {
  1706. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1707. struct kvm_mmu_page *child;
  1708. /*
  1709. * For the direct sp, if the guest pte's dirty bit
  1710. * changed form clean to dirty, it will corrupt the
  1711. * sp's access: allow writable in the read-only sp,
  1712. * so we should update the spte at this point to get
  1713. * a new sp with the correct access.
  1714. */
  1715. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1716. if (child->role.access == direct_access)
  1717. return;
  1718. drop_parent_pte(child, sptep);
  1719. kvm_flush_remote_tlbs(vcpu->kvm);
  1720. }
  1721. }
  1722. static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1723. u64 *spte)
  1724. {
  1725. u64 pte;
  1726. struct kvm_mmu_page *child;
  1727. pte = *spte;
  1728. if (is_shadow_present_pte(pte)) {
  1729. if (is_last_spte(pte, sp->role.level)) {
  1730. drop_spte(kvm, spte);
  1731. if (is_large_pte(pte))
  1732. --kvm->stat.lpages;
  1733. } else {
  1734. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1735. drop_parent_pte(child, spte);
  1736. }
  1737. return true;
  1738. }
  1739. if (is_mmio_spte(pte))
  1740. mmu_spte_clear_no_track(spte);
  1741. return false;
  1742. }
  1743. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1744. struct kvm_mmu_page *sp)
  1745. {
  1746. unsigned i;
  1747. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1748. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1749. }
  1750. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1751. {
  1752. mmu_page_remove_parent_pte(sp, parent_pte);
  1753. }
  1754. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1755. {
  1756. u64 *sptep;
  1757. struct rmap_iterator iter;
  1758. while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
  1759. drop_parent_pte(sp, sptep);
  1760. }
  1761. static int mmu_zap_unsync_children(struct kvm *kvm,
  1762. struct kvm_mmu_page *parent,
  1763. struct list_head *invalid_list)
  1764. {
  1765. int i, zapped = 0;
  1766. struct mmu_page_path parents;
  1767. struct kvm_mmu_pages pages;
  1768. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1769. return 0;
  1770. kvm_mmu_pages_init(parent, &parents, &pages);
  1771. while (mmu_unsync_walk(parent, &pages)) {
  1772. struct kvm_mmu_page *sp;
  1773. for_each_sp(pages, sp, parents, i) {
  1774. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1775. mmu_pages_clear_parents(&parents);
  1776. zapped++;
  1777. }
  1778. kvm_mmu_pages_init(parent, &parents, &pages);
  1779. }
  1780. return zapped;
  1781. }
  1782. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1783. struct list_head *invalid_list)
  1784. {
  1785. int ret;
  1786. trace_kvm_mmu_prepare_zap_page(sp);
  1787. ++kvm->stat.mmu_shadow_zapped;
  1788. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1789. kvm_mmu_page_unlink_children(kvm, sp);
  1790. kvm_mmu_unlink_parents(kvm, sp);
  1791. if (!sp->role.invalid && !sp->role.direct)
  1792. unaccount_shadowed(kvm, sp->gfn);
  1793. if (sp->unsync)
  1794. kvm_unlink_unsync_page(kvm, sp);
  1795. if (!sp->root_count) {
  1796. /* Count self */
  1797. ret++;
  1798. list_move(&sp->link, invalid_list);
  1799. kvm_mod_used_mmu_pages(kvm, -1);
  1800. } else {
  1801. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1802. /*
  1803. * The obsolete pages can not be used on any vcpus.
  1804. * See the comments in kvm_mmu_invalidate_zap_all_pages().
  1805. */
  1806. if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
  1807. kvm_reload_remote_mmus(kvm);
  1808. }
  1809. sp->role.invalid = 1;
  1810. return ret;
  1811. }
  1812. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1813. struct list_head *invalid_list)
  1814. {
  1815. struct kvm_mmu_page *sp, *nsp;
  1816. if (list_empty(invalid_list))
  1817. return;
  1818. /*
  1819. * wmb: make sure everyone sees our modifications to the page tables
  1820. * rmb: make sure we see changes to vcpu->mode
  1821. */
  1822. smp_mb();
  1823. /*
  1824. * Wait for all vcpus to exit guest mode and/or lockless shadow
  1825. * page table walks.
  1826. */
  1827. kvm_flush_remote_tlbs(kvm);
  1828. list_for_each_entry_safe(sp, nsp, invalid_list, link) {
  1829. WARN_ON(!sp->role.invalid || sp->root_count);
  1830. kvm_mmu_free_page(sp);
  1831. }
  1832. }
  1833. static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
  1834. struct list_head *invalid_list)
  1835. {
  1836. struct kvm_mmu_page *sp;
  1837. if (list_empty(&kvm->arch.active_mmu_pages))
  1838. return false;
  1839. sp = list_entry(kvm->arch.active_mmu_pages.prev,
  1840. struct kvm_mmu_page, link);
  1841. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1842. return true;
  1843. }
  1844. /*
  1845. * Changing the number of mmu pages allocated to the vm
  1846. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1847. */
  1848. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1849. {
  1850. LIST_HEAD(invalid_list);
  1851. spin_lock(&kvm->mmu_lock);
  1852. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1853. /* Need to free some mmu pages to achieve the goal. */
  1854. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
  1855. if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
  1856. break;
  1857. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1858. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1859. }
  1860. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1861. spin_unlock(&kvm->mmu_lock);
  1862. }
  1863. int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1864. {
  1865. struct kvm_mmu_page *sp;
  1866. LIST_HEAD(invalid_list);
  1867. int r;
  1868. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1869. r = 0;
  1870. spin_lock(&kvm->mmu_lock);
  1871. for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
  1872. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1873. sp->role.word);
  1874. r = 1;
  1875. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1876. }
  1877. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1878. spin_unlock(&kvm->mmu_lock);
  1879. return r;
  1880. }
  1881. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
  1882. /*
  1883. * The function is based on mtrr_type_lookup() in
  1884. * arch/x86/kernel/cpu/mtrr/generic.c
  1885. */
  1886. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1887. u64 start, u64 end)
  1888. {
  1889. int i;
  1890. u64 base, mask;
  1891. u8 prev_match, curr_match;
  1892. int num_var_ranges = KVM_NR_VAR_MTRR;
  1893. if (!mtrr_state->enabled)
  1894. return 0xFF;
  1895. /* Make end inclusive end, instead of exclusive */
  1896. end--;
  1897. /* Look in fixed ranges. Just return the type as per start */
  1898. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1899. int idx;
  1900. if (start < 0x80000) {
  1901. idx = 0;
  1902. idx += (start >> 16);
  1903. return mtrr_state->fixed_ranges[idx];
  1904. } else if (start < 0xC0000) {
  1905. idx = 1 * 8;
  1906. idx += ((start - 0x80000) >> 14);
  1907. return mtrr_state->fixed_ranges[idx];
  1908. } else if (start < 0x1000000) {
  1909. idx = 3 * 8;
  1910. idx += ((start - 0xC0000) >> 12);
  1911. return mtrr_state->fixed_ranges[idx];
  1912. }
  1913. }
  1914. /*
  1915. * Look in variable ranges
  1916. * Look of multiple ranges matching this address and pick type
  1917. * as per MTRR precedence
  1918. */
  1919. if (!(mtrr_state->enabled & 2))
  1920. return mtrr_state->def_type;
  1921. prev_match = 0xFF;
  1922. for (i = 0; i < num_var_ranges; ++i) {
  1923. unsigned short start_state, end_state;
  1924. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1925. continue;
  1926. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1927. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1928. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1929. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1930. start_state = ((start & mask) == (base & mask));
  1931. end_state = ((end & mask) == (base & mask));
  1932. if (start_state != end_state)
  1933. return 0xFE;
  1934. if ((start & mask) != (base & mask))
  1935. continue;
  1936. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1937. if (prev_match == 0xFF) {
  1938. prev_match = curr_match;
  1939. continue;
  1940. }
  1941. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1942. curr_match == MTRR_TYPE_UNCACHABLE)
  1943. return MTRR_TYPE_UNCACHABLE;
  1944. if ((prev_match == MTRR_TYPE_WRBACK &&
  1945. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1946. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1947. curr_match == MTRR_TYPE_WRBACK)) {
  1948. prev_match = MTRR_TYPE_WRTHROUGH;
  1949. curr_match = MTRR_TYPE_WRTHROUGH;
  1950. }
  1951. if (prev_match != curr_match)
  1952. return MTRR_TYPE_UNCACHABLE;
  1953. }
  1954. if (prev_match != 0xFF)
  1955. return prev_match;
  1956. return mtrr_state->def_type;
  1957. }
  1958. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1959. {
  1960. u8 mtrr;
  1961. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1962. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1963. if (mtrr == 0xfe || mtrr == 0xff)
  1964. mtrr = MTRR_TYPE_WRBACK;
  1965. return mtrr;
  1966. }
  1967. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1968. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1969. {
  1970. trace_kvm_mmu_unsync_page(sp);
  1971. ++vcpu->kvm->stat.mmu_unsync;
  1972. sp->unsync = 1;
  1973. kvm_mmu_mark_parents_unsync(sp);
  1974. }
  1975. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1976. {
  1977. struct kvm_mmu_page *s;
  1978. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1979. if (s->unsync)
  1980. continue;
  1981. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1982. __kvm_unsync_page(vcpu, s);
  1983. }
  1984. }
  1985. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1986. bool can_unsync)
  1987. {
  1988. struct kvm_mmu_page *s;
  1989. bool need_unsync = false;
  1990. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
  1991. if (!can_unsync)
  1992. return 1;
  1993. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1994. return 1;
  1995. if (!s->unsync)
  1996. need_unsync = true;
  1997. }
  1998. if (need_unsync)
  1999. kvm_unsync_pages(vcpu, gfn);
  2000. return 0;
  2001. }
  2002. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2003. unsigned pte_access, int level,
  2004. gfn_t gfn, pfn_t pfn, bool speculative,
  2005. bool can_unsync, bool host_writable)
  2006. {
  2007. u64 spte;
  2008. int ret = 0;
  2009. if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
  2010. return 0;
  2011. spte = PT_PRESENT_MASK;
  2012. if (!speculative)
  2013. spte |= shadow_accessed_mask;
  2014. if (pte_access & ACC_EXEC_MASK)
  2015. spte |= shadow_x_mask;
  2016. else
  2017. spte |= shadow_nx_mask;
  2018. if (pte_access & ACC_USER_MASK)
  2019. spte |= shadow_user_mask;
  2020. if (level > PT_PAGE_TABLE_LEVEL)
  2021. spte |= PT_PAGE_SIZE_MASK;
  2022. if (tdp_enabled)
  2023. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  2024. kvm_is_mmio_pfn(pfn));
  2025. if (host_writable)
  2026. spte |= SPTE_HOST_WRITEABLE;
  2027. else
  2028. pte_access &= ~ACC_WRITE_MASK;
  2029. spte |= (u64)pfn << PAGE_SHIFT;
  2030. if (pte_access & ACC_WRITE_MASK) {
  2031. /*
  2032. * Other vcpu creates new sp in the window between
  2033. * mapping_level() and acquiring mmu-lock. We can
  2034. * allow guest to retry the access, the mapping can
  2035. * be fixed if guest refault.
  2036. */
  2037. if (level > PT_PAGE_TABLE_LEVEL &&
  2038. has_wrprotected_page(vcpu->kvm, gfn, level))
  2039. goto done;
  2040. spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
  2041. /*
  2042. * Optimization: for pte sync, if spte was writable the hash
  2043. * lookup is unnecessary (and expensive). Write protection
  2044. * is responsibility of mmu_get_page / kvm_sync_page.
  2045. * Same reasoning can be applied to dirty page accounting.
  2046. */
  2047. if (!can_unsync && is_writable_pte(*sptep))
  2048. goto set_pte;
  2049. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  2050. pgprintk("%s: found shadow page for %llx, marking ro\n",
  2051. __func__, gfn);
  2052. ret = 1;
  2053. pte_access &= ~ACC_WRITE_MASK;
  2054. spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
  2055. }
  2056. }
  2057. if (pte_access & ACC_WRITE_MASK)
  2058. mark_page_dirty(vcpu->kvm, gfn);
  2059. set_pte:
  2060. if (mmu_spte_update(sptep, spte))
  2061. kvm_flush_remote_tlbs(vcpu->kvm);
  2062. done:
  2063. return ret;
  2064. }
  2065. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  2066. unsigned pte_access, int write_fault, int *emulate,
  2067. int level, gfn_t gfn, pfn_t pfn, bool speculative,
  2068. bool host_writable)
  2069. {
  2070. int was_rmapped = 0;
  2071. int rmap_count;
  2072. pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
  2073. *sptep, write_fault, gfn);
  2074. if (is_rmap_spte(*sptep)) {
  2075. /*
  2076. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  2077. * the parent of the now unreachable PTE.
  2078. */
  2079. if (level > PT_PAGE_TABLE_LEVEL &&
  2080. !is_large_pte(*sptep)) {
  2081. struct kvm_mmu_page *child;
  2082. u64 pte = *sptep;
  2083. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2084. drop_parent_pte(child, sptep);
  2085. kvm_flush_remote_tlbs(vcpu->kvm);
  2086. } else if (pfn != spte_to_pfn(*sptep)) {
  2087. pgprintk("hfn old %llx new %llx\n",
  2088. spte_to_pfn(*sptep), pfn);
  2089. drop_spte(vcpu->kvm, sptep);
  2090. kvm_flush_remote_tlbs(vcpu->kvm);
  2091. } else
  2092. was_rmapped = 1;
  2093. }
  2094. if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
  2095. true, host_writable)) {
  2096. if (write_fault)
  2097. *emulate = 1;
  2098. kvm_mmu_flush_tlb(vcpu);
  2099. }
  2100. if (unlikely(is_mmio_spte(*sptep) && emulate))
  2101. *emulate = 1;
  2102. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  2103. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  2104. is_large_pte(*sptep)? "2MB" : "4kB",
  2105. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  2106. *sptep, sptep);
  2107. if (!was_rmapped && is_large_pte(*sptep))
  2108. ++vcpu->kvm->stat.lpages;
  2109. if (is_shadow_present_pte(*sptep)) {
  2110. if (!was_rmapped) {
  2111. rmap_count = rmap_add(vcpu, sptep, gfn);
  2112. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  2113. rmap_recycle(vcpu, sptep, gfn);
  2114. }
  2115. }
  2116. kvm_release_pfn_clean(pfn);
  2117. }
  2118. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  2119. {
  2120. mmu_free_roots(vcpu);
  2121. }
  2122. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  2123. bool no_dirty_log)
  2124. {
  2125. struct kvm_memory_slot *slot;
  2126. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  2127. if (!slot)
  2128. return KVM_PFN_ERR_FAULT;
  2129. return gfn_to_pfn_memslot_atomic(slot, gfn);
  2130. }
  2131. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  2132. struct kvm_mmu_page *sp,
  2133. u64 *start, u64 *end)
  2134. {
  2135. struct page *pages[PTE_PREFETCH_NUM];
  2136. unsigned access = sp->role.access;
  2137. int i, ret;
  2138. gfn_t gfn;
  2139. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  2140. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  2141. return -1;
  2142. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  2143. if (ret <= 0)
  2144. return -1;
  2145. for (i = 0; i < ret; i++, gfn++, start++)
  2146. mmu_set_spte(vcpu, start, access, 0, NULL,
  2147. sp->role.level, gfn, page_to_pfn(pages[i]),
  2148. true, true);
  2149. return 0;
  2150. }
  2151. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  2152. struct kvm_mmu_page *sp, u64 *sptep)
  2153. {
  2154. u64 *spte, *start = NULL;
  2155. int i;
  2156. WARN_ON(!sp->role.direct);
  2157. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  2158. spte = sp->spt + i;
  2159. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  2160. if (is_shadow_present_pte(*spte) || spte == sptep) {
  2161. if (!start)
  2162. continue;
  2163. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  2164. break;
  2165. start = NULL;
  2166. } else if (!start)
  2167. start = spte;
  2168. }
  2169. }
  2170. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  2171. {
  2172. struct kvm_mmu_page *sp;
  2173. /*
  2174. * Since it's no accessed bit on EPT, it's no way to
  2175. * distinguish between actually accessed translations
  2176. * and prefetched, so disable pte prefetch if EPT is
  2177. * enabled.
  2178. */
  2179. if (!shadow_accessed_mask)
  2180. return;
  2181. sp = page_header(__pa(sptep));
  2182. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  2183. return;
  2184. __direct_pte_prefetch(vcpu, sp, sptep);
  2185. }
  2186. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  2187. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  2188. bool prefault)
  2189. {
  2190. struct kvm_shadow_walk_iterator iterator;
  2191. struct kvm_mmu_page *sp;
  2192. int emulate = 0;
  2193. gfn_t pseudo_gfn;
  2194. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  2195. if (iterator.level == level) {
  2196. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
  2197. write, &emulate, level, gfn, pfn,
  2198. prefault, map_writable);
  2199. direct_pte_prefetch(vcpu, iterator.sptep);
  2200. ++vcpu->stat.pf_fixed;
  2201. break;
  2202. }
  2203. if (!is_shadow_present_pte(*iterator.sptep)) {
  2204. u64 base_addr = iterator.addr;
  2205. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  2206. pseudo_gfn = base_addr >> PAGE_SHIFT;
  2207. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  2208. iterator.level - 1,
  2209. 1, ACC_ALL, iterator.sptep);
  2210. link_shadow_page(iterator.sptep, sp);
  2211. }
  2212. }
  2213. return emulate;
  2214. }
  2215. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  2216. {
  2217. siginfo_t info;
  2218. info.si_signo = SIGBUS;
  2219. info.si_errno = 0;
  2220. info.si_code = BUS_MCEERR_AR;
  2221. info.si_addr = (void __user *)address;
  2222. info.si_addr_lsb = PAGE_SHIFT;
  2223. send_sig_info(SIGBUS, &info, tsk);
  2224. }
  2225. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
  2226. {
  2227. /*
  2228. * Do not cache the mmio info caused by writing the readonly gfn
  2229. * into the spte otherwise read access on readonly gfn also can
  2230. * caused mmio page fault and treat it as mmio access.
  2231. * Return 1 to tell kvm to emulate it.
  2232. */
  2233. if (pfn == KVM_PFN_ERR_RO_FAULT)
  2234. return 1;
  2235. if (pfn == KVM_PFN_ERR_HWPOISON) {
  2236. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  2237. return 0;
  2238. }
  2239. return -EFAULT;
  2240. }
  2241. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  2242. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  2243. {
  2244. pfn_t pfn = *pfnp;
  2245. gfn_t gfn = *gfnp;
  2246. int level = *levelp;
  2247. /*
  2248. * Check if it's a transparent hugepage. If this would be an
  2249. * hugetlbfs page, level wouldn't be set to
  2250. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  2251. * here.
  2252. */
  2253. if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  2254. level == PT_PAGE_TABLE_LEVEL &&
  2255. PageTransCompound(pfn_to_page(pfn)) &&
  2256. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  2257. unsigned long mask;
  2258. /*
  2259. * mmu_notifier_retry was successful and we hold the
  2260. * mmu_lock here, so the pmd can't become splitting
  2261. * from under us, and in turn
  2262. * __split_huge_page_refcount() can't run from under
  2263. * us and we can safely transfer the refcount from
  2264. * PG_tail to PG_head as we switch the pfn to tail to
  2265. * head.
  2266. */
  2267. *levelp = level = PT_DIRECTORY_LEVEL;
  2268. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  2269. VM_BUG_ON((gfn & mask) != (pfn & mask));
  2270. if (pfn & mask) {
  2271. gfn &= ~mask;
  2272. *gfnp = gfn;
  2273. kvm_release_pfn_clean(pfn);
  2274. pfn &= ~mask;
  2275. kvm_get_pfn(pfn);
  2276. *pfnp = pfn;
  2277. }
  2278. }
  2279. }
  2280. static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
  2281. pfn_t pfn, unsigned access, int *ret_val)
  2282. {
  2283. bool ret = true;
  2284. /* The pfn is invalid, report the error! */
  2285. if (unlikely(is_error_pfn(pfn))) {
  2286. *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
  2287. goto exit;
  2288. }
  2289. if (unlikely(is_noslot_pfn(pfn)))
  2290. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  2291. ret = false;
  2292. exit:
  2293. return ret;
  2294. }
  2295. static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
  2296. {
  2297. /*
  2298. * Do not fix the mmio spte with invalid generation number which
  2299. * need to be updated by slow page fault path.
  2300. */
  2301. if (unlikely(error_code & PFERR_RSVD_MASK))
  2302. return false;
  2303. /*
  2304. * #PF can be fast only if the shadow page table is present and it
  2305. * is caused by write-protect, that means we just need change the
  2306. * W bit of the spte which can be done out of mmu-lock.
  2307. */
  2308. if (!(error_code & PFERR_PRESENT_MASK) ||
  2309. !(error_code & PFERR_WRITE_MASK))
  2310. return false;
  2311. return true;
  2312. }
  2313. static bool
  2314. fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
  2315. {
  2316. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  2317. gfn_t gfn;
  2318. WARN_ON(!sp->role.direct);
  2319. /*
  2320. * The gfn of direct spte is stable since it is calculated
  2321. * by sp->gfn.
  2322. */
  2323. gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
  2324. if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
  2325. mark_page_dirty(vcpu->kvm, gfn);
  2326. return true;
  2327. }
  2328. /*
  2329. * Return value:
  2330. * - true: let the vcpu to access on the same address again.
  2331. * - false: let the real page fault path to fix it.
  2332. */
  2333. static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
  2334. u32 error_code)
  2335. {
  2336. struct kvm_shadow_walk_iterator iterator;
  2337. bool ret = false;
  2338. u64 spte = 0ull;
  2339. if (!page_fault_can_be_fast(vcpu, error_code))
  2340. return false;
  2341. walk_shadow_page_lockless_begin(vcpu);
  2342. for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
  2343. if (!is_shadow_present_pte(spte) || iterator.level < level)
  2344. break;
  2345. /*
  2346. * If the mapping has been changed, let the vcpu fault on the
  2347. * same address again.
  2348. */
  2349. if (!is_rmap_spte(spte)) {
  2350. ret = true;
  2351. goto exit;
  2352. }
  2353. if (!is_last_spte(spte, level))
  2354. goto exit;
  2355. /*
  2356. * Check if it is a spurious fault caused by TLB lazily flushed.
  2357. *
  2358. * Need not check the access of upper level table entries since
  2359. * they are always ACC_ALL.
  2360. */
  2361. if (is_writable_pte(spte)) {
  2362. ret = true;
  2363. goto exit;
  2364. }
  2365. /*
  2366. * Currently, to simplify the code, only the spte write-protected
  2367. * by dirty-log can be fast fixed.
  2368. */
  2369. if (!spte_is_locklessly_modifiable(spte))
  2370. goto exit;
  2371. /*
  2372. * Currently, fast page fault only works for direct mapping since
  2373. * the gfn is not stable for indirect shadow page.
  2374. * See Documentation/virtual/kvm/locking.txt to get more detail.
  2375. */
  2376. ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
  2377. exit:
  2378. trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
  2379. spte, ret);
  2380. walk_shadow_page_lockless_end(vcpu);
  2381. return ret;
  2382. }
  2383. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2384. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  2385. static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
  2386. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
  2387. gfn_t gfn, bool prefault)
  2388. {
  2389. int r;
  2390. int level;
  2391. int force_pt_level;
  2392. pfn_t pfn;
  2393. unsigned long mmu_seq;
  2394. bool map_writable, write = error_code & PFERR_WRITE_MASK;
  2395. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2396. if (likely(!force_pt_level)) {
  2397. level = mapping_level(vcpu, gfn);
  2398. /*
  2399. * This path builds a PAE pagetable - so we can map
  2400. * 2mb pages at maximum. Therefore check if the level
  2401. * is larger than that.
  2402. */
  2403. if (level > PT_DIRECTORY_LEVEL)
  2404. level = PT_DIRECTORY_LEVEL;
  2405. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2406. } else
  2407. level = PT_PAGE_TABLE_LEVEL;
  2408. if (fast_page_fault(vcpu, v, level, error_code))
  2409. return 0;
  2410. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2411. smp_rmb();
  2412. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  2413. return 0;
  2414. if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
  2415. return r;
  2416. spin_lock(&vcpu->kvm->mmu_lock);
  2417. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2418. goto out_unlock;
  2419. make_mmu_pages_available(vcpu);
  2420. if (likely(!force_pt_level))
  2421. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2422. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  2423. prefault);
  2424. spin_unlock(&vcpu->kvm->mmu_lock);
  2425. return r;
  2426. out_unlock:
  2427. spin_unlock(&vcpu->kvm->mmu_lock);
  2428. kvm_release_pfn_clean(pfn);
  2429. return 0;
  2430. }
  2431. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  2432. {
  2433. int i;
  2434. struct kvm_mmu_page *sp;
  2435. LIST_HEAD(invalid_list);
  2436. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2437. return;
  2438. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  2439. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  2440. vcpu->arch.mmu.direct_map)) {
  2441. hpa_t root = vcpu->arch.mmu.root_hpa;
  2442. spin_lock(&vcpu->kvm->mmu_lock);
  2443. sp = page_header(root);
  2444. --sp->root_count;
  2445. if (!sp->root_count && sp->role.invalid) {
  2446. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2447. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2448. }
  2449. spin_unlock(&vcpu->kvm->mmu_lock);
  2450. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2451. return;
  2452. }
  2453. spin_lock(&vcpu->kvm->mmu_lock);
  2454. for (i = 0; i < 4; ++i) {
  2455. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2456. if (root) {
  2457. root &= PT64_BASE_ADDR_MASK;
  2458. sp = page_header(root);
  2459. --sp->root_count;
  2460. if (!sp->root_count && sp->role.invalid)
  2461. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2462. &invalid_list);
  2463. }
  2464. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2465. }
  2466. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2467. spin_unlock(&vcpu->kvm->mmu_lock);
  2468. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2469. }
  2470. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2471. {
  2472. int ret = 0;
  2473. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2474. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2475. ret = 1;
  2476. }
  2477. return ret;
  2478. }
  2479. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2480. {
  2481. struct kvm_mmu_page *sp;
  2482. unsigned i;
  2483. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2484. spin_lock(&vcpu->kvm->mmu_lock);
  2485. make_mmu_pages_available(vcpu);
  2486. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2487. 1, ACC_ALL, NULL);
  2488. ++sp->root_count;
  2489. spin_unlock(&vcpu->kvm->mmu_lock);
  2490. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2491. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2492. for (i = 0; i < 4; ++i) {
  2493. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2494. ASSERT(!VALID_PAGE(root));
  2495. spin_lock(&vcpu->kvm->mmu_lock);
  2496. make_mmu_pages_available(vcpu);
  2497. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2498. i << 30,
  2499. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2500. NULL);
  2501. root = __pa(sp->spt);
  2502. ++sp->root_count;
  2503. spin_unlock(&vcpu->kvm->mmu_lock);
  2504. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2505. }
  2506. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2507. } else
  2508. BUG();
  2509. return 0;
  2510. }
  2511. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2512. {
  2513. struct kvm_mmu_page *sp;
  2514. u64 pdptr, pm_mask;
  2515. gfn_t root_gfn;
  2516. int i;
  2517. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2518. if (mmu_check_root(vcpu, root_gfn))
  2519. return 1;
  2520. /*
  2521. * Do we shadow a long mode page table? If so we need to
  2522. * write-protect the guests page table root.
  2523. */
  2524. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2525. hpa_t root = vcpu->arch.mmu.root_hpa;
  2526. ASSERT(!VALID_PAGE(root));
  2527. spin_lock(&vcpu->kvm->mmu_lock);
  2528. make_mmu_pages_available(vcpu);
  2529. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2530. 0, ACC_ALL, NULL);
  2531. root = __pa(sp->spt);
  2532. ++sp->root_count;
  2533. spin_unlock(&vcpu->kvm->mmu_lock);
  2534. vcpu->arch.mmu.root_hpa = root;
  2535. return 0;
  2536. }
  2537. /*
  2538. * We shadow a 32 bit page table. This may be a legacy 2-level
  2539. * or a PAE 3-level page table. In either case we need to be aware that
  2540. * the shadow page table may be a PAE or a long mode page table.
  2541. */
  2542. pm_mask = PT_PRESENT_MASK;
  2543. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2544. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2545. for (i = 0; i < 4; ++i) {
  2546. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2547. ASSERT(!VALID_PAGE(root));
  2548. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2549. pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
  2550. if (!is_present_gpte(pdptr)) {
  2551. vcpu->arch.mmu.pae_root[i] = 0;
  2552. continue;
  2553. }
  2554. root_gfn = pdptr >> PAGE_SHIFT;
  2555. if (mmu_check_root(vcpu, root_gfn))
  2556. return 1;
  2557. }
  2558. spin_lock(&vcpu->kvm->mmu_lock);
  2559. make_mmu_pages_available(vcpu);
  2560. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2561. PT32_ROOT_LEVEL, 0,
  2562. ACC_ALL, NULL);
  2563. root = __pa(sp->spt);
  2564. ++sp->root_count;
  2565. spin_unlock(&vcpu->kvm->mmu_lock);
  2566. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2567. }
  2568. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2569. /*
  2570. * If we shadow a 32 bit page table with a long mode page
  2571. * table we enter this path.
  2572. */
  2573. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2574. if (vcpu->arch.mmu.lm_root == NULL) {
  2575. /*
  2576. * The additional page necessary for this is only
  2577. * allocated on demand.
  2578. */
  2579. u64 *lm_root;
  2580. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2581. if (lm_root == NULL)
  2582. return 1;
  2583. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2584. vcpu->arch.mmu.lm_root = lm_root;
  2585. }
  2586. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2587. }
  2588. return 0;
  2589. }
  2590. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2591. {
  2592. if (vcpu->arch.mmu.direct_map)
  2593. return mmu_alloc_direct_roots(vcpu);
  2594. else
  2595. return mmu_alloc_shadow_roots(vcpu);
  2596. }
  2597. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2598. {
  2599. int i;
  2600. struct kvm_mmu_page *sp;
  2601. if (vcpu->arch.mmu.direct_map)
  2602. return;
  2603. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2604. return;
  2605. vcpu_clear_mmio_info(vcpu, ~0ul);
  2606. kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2607. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2608. hpa_t root = vcpu->arch.mmu.root_hpa;
  2609. sp = page_header(root);
  2610. mmu_sync_children(vcpu, sp);
  2611. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2612. return;
  2613. }
  2614. for (i = 0; i < 4; ++i) {
  2615. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2616. if (root && VALID_PAGE(root)) {
  2617. root &= PT64_BASE_ADDR_MASK;
  2618. sp = page_header(root);
  2619. mmu_sync_children(vcpu, sp);
  2620. }
  2621. }
  2622. kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2623. }
  2624. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2625. {
  2626. spin_lock(&vcpu->kvm->mmu_lock);
  2627. mmu_sync_roots(vcpu);
  2628. spin_unlock(&vcpu->kvm->mmu_lock);
  2629. }
  2630. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2631. u32 access, struct x86_exception *exception)
  2632. {
  2633. if (exception)
  2634. exception->error_code = 0;
  2635. return vaddr;
  2636. }
  2637. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2638. u32 access,
  2639. struct x86_exception *exception)
  2640. {
  2641. if (exception)
  2642. exception->error_code = 0;
  2643. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2644. }
  2645. static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2646. {
  2647. if (direct)
  2648. return vcpu_match_mmio_gpa(vcpu, addr);
  2649. return vcpu_match_mmio_gva(vcpu, addr);
  2650. }
  2651. /*
  2652. * On direct hosts, the last spte is only allows two states
  2653. * for mmio page fault:
  2654. * - It is the mmio spte
  2655. * - It is zapped or it is being zapped.
  2656. *
  2657. * This function completely checks the spte when the last spte
  2658. * is not the mmio spte.
  2659. */
  2660. static bool check_direct_spte_mmio_pf(u64 spte)
  2661. {
  2662. return __check_direct_spte_mmio_pf(spte);
  2663. }
  2664. static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
  2665. {
  2666. struct kvm_shadow_walk_iterator iterator;
  2667. u64 spte = 0ull;
  2668. walk_shadow_page_lockless_begin(vcpu);
  2669. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
  2670. if (!is_shadow_present_pte(spte))
  2671. break;
  2672. walk_shadow_page_lockless_end(vcpu);
  2673. return spte;
  2674. }
  2675. int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
  2676. {
  2677. u64 spte;
  2678. if (quickly_check_mmio_pf(vcpu, addr, direct))
  2679. return RET_MMIO_PF_EMULATE;
  2680. spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
  2681. if (is_mmio_spte(spte)) {
  2682. gfn_t gfn = get_mmio_spte_gfn(spte);
  2683. unsigned access = get_mmio_spte_access(spte);
  2684. if (!check_mmio_spte(vcpu->kvm, spte))
  2685. return RET_MMIO_PF_INVALID;
  2686. if (direct)
  2687. addr = 0;
  2688. trace_handle_mmio_page_fault(addr, gfn, access);
  2689. vcpu_cache_mmio_info(vcpu, addr, gfn, access);
  2690. return RET_MMIO_PF_EMULATE;
  2691. }
  2692. /*
  2693. * It's ok if the gva is remapped by other cpus on shadow guest,
  2694. * it's a BUG if the gfn is not a mmio page.
  2695. */
  2696. if (direct && !check_direct_spte_mmio_pf(spte))
  2697. return RET_MMIO_PF_BUG;
  2698. /*
  2699. * If the page table is zapped by other cpus, let CPU fault again on
  2700. * the address.
  2701. */
  2702. return RET_MMIO_PF_RETRY;
  2703. }
  2704. EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
  2705. static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
  2706. u32 error_code, bool direct)
  2707. {
  2708. int ret;
  2709. ret = handle_mmio_page_fault_common(vcpu, addr, direct);
  2710. WARN_ON(ret == RET_MMIO_PF_BUG);
  2711. return ret;
  2712. }
  2713. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2714. u32 error_code, bool prefault)
  2715. {
  2716. gfn_t gfn;
  2717. int r;
  2718. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2719. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2720. r = handle_mmio_page_fault(vcpu, gva, error_code, true);
  2721. if (likely(r != RET_MMIO_PF_INVALID))
  2722. return r;
  2723. }
  2724. r = mmu_topup_memory_caches(vcpu);
  2725. if (r)
  2726. return r;
  2727. ASSERT(vcpu);
  2728. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2729. gfn = gva >> PAGE_SHIFT;
  2730. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2731. error_code, gfn, prefault);
  2732. }
  2733. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2734. {
  2735. struct kvm_arch_async_pf arch;
  2736. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2737. arch.gfn = gfn;
  2738. arch.direct_map = vcpu->arch.mmu.direct_map;
  2739. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2740. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2741. }
  2742. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2743. {
  2744. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2745. kvm_event_needs_reinjection(vcpu)))
  2746. return false;
  2747. return kvm_x86_ops->interrupt_allowed(vcpu);
  2748. }
  2749. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2750. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2751. {
  2752. bool async;
  2753. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2754. if (!async)
  2755. return false; /* *pfn has correct page already */
  2756. if (!prefault && can_do_async_pf(vcpu)) {
  2757. trace_kvm_try_async_get_page(gva, gfn);
  2758. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2759. trace_kvm_async_pf_doublefault(gva, gfn);
  2760. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2761. return true;
  2762. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2763. return true;
  2764. }
  2765. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2766. return false;
  2767. }
  2768. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2769. bool prefault)
  2770. {
  2771. pfn_t pfn;
  2772. int r;
  2773. int level;
  2774. int force_pt_level;
  2775. gfn_t gfn = gpa >> PAGE_SHIFT;
  2776. unsigned long mmu_seq;
  2777. int write = error_code & PFERR_WRITE_MASK;
  2778. bool map_writable;
  2779. ASSERT(vcpu);
  2780. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2781. if (unlikely(error_code & PFERR_RSVD_MASK)) {
  2782. r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
  2783. if (likely(r != RET_MMIO_PF_INVALID))
  2784. return r;
  2785. }
  2786. r = mmu_topup_memory_caches(vcpu);
  2787. if (r)
  2788. return r;
  2789. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2790. if (likely(!force_pt_level)) {
  2791. level = mapping_level(vcpu, gfn);
  2792. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2793. } else
  2794. level = PT_PAGE_TABLE_LEVEL;
  2795. if (fast_page_fault(vcpu, gpa, level, error_code))
  2796. return 0;
  2797. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2798. smp_rmb();
  2799. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2800. return 0;
  2801. if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
  2802. return r;
  2803. spin_lock(&vcpu->kvm->mmu_lock);
  2804. if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
  2805. goto out_unlock;
  2806. make_mmu_pages_available(vcpu);
  2807. if (likely(!force_pt_level))
  2808. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2809. r = __direct_map(vcpu, gpa, write, map_writable,
  2810. level, gfn, pfn, prefault);
  2811. spin_unlock(&vcpu->kvm->mmu_lock);
  2812. return r;
  2813. out_unlock:
  2814. spin_unlock(&vcpu->kvm->mmu_lock);
  2815. kvm_release_pfn_clean(pfn);
  2816. return 0;
  2817. }
  2818. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2819. {
  2820. mmu_free_roots(vcpu);
  2821. }
  2822. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2823. struct kvm_mmu *context)
  2824. {
  2825. context->new_cr3 = nonpaging_new_cr3;
  2826. context->page_fault = nonpaging_page_fault;
  2827. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2828. context->free = nonpaging_free;
  2829. context->sync_page = nonpaging_sync_page;
  2830. context->invlpg = nonpaging_invlpg;
  2831. context->update_pte = nonpaging_update_pte;
  2832. context->root_level = 0;
  2833. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2834. context->root_hpa = INVALID_PAGE;
  2835. context->direct_map = true;
  2836. context->nx = false;
  2837. return 0;
  2838. }
  2839. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2840. {
  2841. ++vcpu->stat.tlb_flush;
  2842. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2843. }
  2844. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2845. {
  2846. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2847. mmu_free_roots(vcpu);
  2848. }
  2849. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2850. {
  2851. return kvm_read_cr3(vcpu);
  2852. }
  2853. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2854. struct x86_exception *fault)
  2855. {
  2856. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2857. }
  2858. static void paging_free(struct kvm_vcpu *vcpu)
  2859. {
  2860. nonpaging_free(vcpu);
  2861. }
  2862. static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
  2863. unsigned access, int *nr_present)
  2864. {
  2865. if (unlikely(is_mmio_spte(*sptep))) {
  2866. if (gfn != get_mmio_spte_gfn(*sptep)) {
  2867. mmu_spte_clear_no_track(sptep);
  2868. return true;
  2869. }
  2870. (*nr_present)++;
  2871. mark_mmio_spte(kvm, sptep, gfn, access);
  2872. return true;
  2873. }
  2874. return false;
  2875. }
  2876. static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
  2877. {
  2878. unsigned index;
  2879. index = level - 1;
  2880. index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
  2881. return mmu->last_pte_bitmap & (1 << index);
  2882. }
  2883. #define PTTYPE 64
  2884. #include "paging_tmpl.h"
  2885. #undef PTTYPE
  2886. #define PTTYPE 32
  2887. #include "paging_tmpl.h"
  2888. #undef PTTYPE
  2889. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2890. struct kvm_mmu *context)
  2891. {
  2892. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2893. u64 exb_bit_rsvd = 0;
  2894. if (!context->nx)
  2895. exb_bit_rsvd = rsvd_bits(63, 63);
  2896. switch (context->root_level) {
  2897. case PT32_ROOT_LEVEL:
  2898. /* no rsvd bits for 2 level 4K page table entries */
  2899. context->rsvd_bits_mask[0][1] = 0;
  2900. context->rsvd_bits_mask[0][0] = 0;
  2901. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2902. if (!is_pse(vcpu)) {
  2903. context->rsvd_bits_mask[1][1] = 0;
  2904. break;
  2905. }
  2906. if (is_cpuid_PSE36())
  2907. /* 36bits PSE 4MB page */
  2908. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2909. else
  2910. /* 32 bits PSE 4MB page */
  2911. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2912. break;
  2913. case PT32E_ROOT_LEVEL:
  2914. context->rsvd_bits_mask[0][2] =
  2915. rsvd_bits(maxphyaddr, 63) |
  2916. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2917. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2918. rsvd_bits(maxphyaddr, 62); /* PDE */
  2919. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2920. rsvd_bits(maxphyaddr, 62); /* PTE */
  2921. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2922. rsvd_bits(maxphyaddr, 62) |
  2923. rsvd_bits(13, 20); /* large page */
  2924. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2925. break;
  2926. case PT64_ROOT_LEVEL:
  2927. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2928. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2929. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2930. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2931. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2932. rsvd_bits(maxphyaddr, 51);
  2933. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2934. rsvd_bits(maxphyaddr, 51);
  2935. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2936. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2937. rsvd_bits(maxphyaddr, 51) |
  2938. rsvd_bits(13, 29);
  2939. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2940. rsvd_bits(maxphyaddr, 51) |
  2941. rsvd_bits(13, 20); /* large page */
  2942. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2943. break;
  2944. }
  2945. }
  2946. static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2947. {
  2948. unsigned bit, byte, pfec;
  2949. u8 map;
  2950. bool fault, x, w, u, wf, uf, ff, smep;
  2951. smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2952. for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
  2953. pfec = byte << 1;
  2954. map = 0;
  2955. wf = pfec & PFERR_WRITE_MASK;
  2956. uf = pfec & PFERR_USER_MASK;
  2957. ff = pfec & PFERR_FETCH_MASK;
  2958. for (bit = 0; bit < 8; ++bit) {
  2959. x = bit & ACC_EXEC_MASK;
  2960. w = bit & ACC_WRITE_MASK;
  2961. u = bit & ACC_USER_MASK;
  2962. /* Not really needed: !nx will cause pte.nx to fault */
  2963. x |= !mmu->nx;
  2964. /* Allow supervisor writes if !cr0.wp */
  2965. w |= !is_write_protection(vcpu) && !uf;
  2966. /* Disallow supervisor fetches of user code if cr4.smep */
  2967. x &= !(smep && u && !uf);
  2968. fault = (ff && !x) || (uf && !u) || (wf && !w);
  2969. map |= fault << bit;
  2970. }
  2971. mmu->permissions[byte] = map;
  2972. }
  2973. }
  2974. static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
  2975. {
  2976. u8 map;
  2977. unsigned level, root_level = mmu->root_level;
  2978. const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
  2979. if (root_level == PT32E_ROOT_LEVEL)
  2980. --root_level;
  2981. /* PT_PAGE_TABLE_LEVEL always terminates */
  2982. map = 1 | (1 << ps_set_index);
  2983. for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
  2984. if (level <= PT_PDPE_LEVEL
  2985. && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
  2986. map |= 1 << (ps_set_index | (level - 1));
  2987. }
  2988. mmu->last_pte_bitmap = map;
  2989. }
  2990. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2991. struct kvm_mmu *context,
  2992. int level)
  2993. {
  2994. context->nx = is_nx(vcpu);
  2995. context->root_level = level;
  2996. reset_rsvds_bits_mask(vcpu, context);
  2997. update_permission_bitmask(vcpu, context);
  2998. update_last_pte_bitmap(vcpu, context);
  2999. ASSERT(is_pae(vcpu));
  3000. context->new_cr3 = paging_new_cr3;
  3001. context->page_fault = paging64_page_fault;
  3002. context->gva_to_gpa = paging64_gva_to_gpa;
  3003. context->sync_page = paging64_sync_page;
  3004. context->invlpg = paging64_invlpg;
  3005. context->update_pte = paging64_update_pte;
  3006. context->free = paging_free;
  3007. context->shadow_root_level = level;
  3008. context->root_hpa = INVALID_PAGE;
  3009. context->direct_map = false;
  3010. return 0;
  3011. }
  3012. static int paging64_init_context(struct kvm_vcpu *vcpu,
  3013. struct kvm_mmu *context)
  3014. {
  3015. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  3016. }
  3017. static int paging32_init_context(struct kvm_vcpu *vcpu,
  3018. struct kvm_mmu *context)
  3019. {
  3020. context->nx = false;
  3021. context->root_level = PT32_ROOT_LEVEL;
  3022. reset_rsvds_bits_mask(vcpu, context);
  3023. update_permission_bitmask(vcpu, context);
  3024. update_last_pte_bitmap(vcpu, context);
  3025. context->new_cr3 = paging_new_cr3;
  3026. context->page_fault = paging32_page_fault;
  3027. context->gva_to_gpa = paging32_gva_to_gpa;
  3028. context->free = paging_free;
  3029. context->sync_page = paging32_sync_page;
  3030. context->invlpg = paging32_invlpg;
  3031. context->update_pte = paging32_update_pte;
  3032. context->shadow_root_level = PT32E_ROOT_LEVEL;
  3033. context->root_hpa = INVALID_PAGE;
  3034. context->direct_map = false;
  3035. return 0;
  3036. }
  3037. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  3038. struct kvm_mmu *context)
  3039. {
  3040. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  3041. }
  3042. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  3043. {
  3044. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  3045. context->base_role.word = 0;
  3046. context->new_cr3 = nonpaging_new_cr3;
  3047. context->page_fault = tdp_page_fault;
  3048. context->free = nonpaging_free;
  3049. context->sync_page = nonpaging_sync_page;
  3050. context->invlpg = nonpaging_invlpg;
  3051. context->update_pte = nonpaging_update_pte;
  3052. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  3053. context->root_hpa = INVALID_PAGE;
  3054. context->direct_map = true;
  3055. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  3056. context->get_cr3 = get_cr3;
  3057. context->get_pdptr = kvm_pdptr_read;
  3058. context->inject_page_fault = kvm_inject_page_fault;
  3059. if (!is_paging(vcpu)) {
  3060. context->nx = false;
  3061. context->gva_to_gpa = nonpaging_gva_to_gpa;
  3062. context->root_level = 0;
  3063. } else if (is_long_mode(vcpu)) {
  3064. context->nx = is_nx(vcpu);
  3065. context->root_level = PT64_ROOT_LEVEL;
  3066. reset_rsvds_bits_mask(vcpu, context);
  3067. context->gva_to_gpa = paging64_gva_to_gpa;
  3068. } else if (is_pae(vcpu)) {
  3069. context->nx = is_nx(vcpu);
  3070. context->root_level = PT32E_ROOT_LEVEL;
  3071. reset_rsvds_bits_mask(vcpu, context);
  3072. context->gva_to_gpa = paging64_gva_to_gpa;
  3073. } else {
  3074. context->nx = false;
  3075. context->root_level = PT32_ROOT_LEVEL;
  3076. reset_rsvds_bits_mask(vcpu, context);
  3077. context->gva_to_gpa = paging32_gva_to_gpa;
  3078. }
  3079. update_permission_bitmask(vcpu, context);
  3080. update_last_pte_bitmap(vcpu, context);
  3081. return 0;
  3082. }
  3083. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  3084. {
  3085. int r;
  3086. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  3087. ASSERT(vcpu);
  3088. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3089. if (!is_paging(vcpu))
  3090. r = nonpaging_init_context(vcpu, context);
  3091. else if (is_long_mode(vcpu))
  3092. r = paging64_init_context(vcpu, context);
  3093. else if (is_pae(vcpu))
  3094. r = paging32E_init_context(vcpu, context);
  3095. else
  3096. r = paging32_init_context(vcpu, context);
  3097. vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
  3098. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  3099. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  3100. vcpu->arch.mmu.base_role.smep_andnot_wp
  3101. = smep && !is_write_protection(vcpu);
  3102. return r;
  3103. }
  3104. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  3105. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  3106. {
  3107. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  3108. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  3109. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  3110. vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
  3111. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  3112. return r;
  3113. }
  3114. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  3115. {
  3116. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  3117. g_context->get_cr3 = get_cr3;
  3118. g_context->get_pdptr = kvm_pdptr_read;
  3119. g_context->inject_page_fault = kvm_inject_page_fault;
  3120. /*
  3121. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  3122. * translation of l2_gpa to l1_gpa addresses is done using the
  3123. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  3124. * functions between mmu and nested_mmu are swapped.
  3125. */
  3126. if (!is_paging(vcpu)) {
  3127. g_context->nx = false;
  3128. g_context->root_level = 0;
  3129. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  3130. } else if (is_long_mode(vcpu)) {
  3131. g_context->nx = is_nx(vcpu);
  3132. g_context->root_level = PT64_ROOT_LEVEL;
  3133. reset_rsvds_bits_mask(vcpu, g_context);
  3134. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3135. } else if (is_pae(vcpu)) {
  3136. g_context->nx = is_nx(vcpu);
  3137. g_context->root_level = PT32E_ROOT_LEVEL;
  3138. reset_rsvds_bits_mask(vcpu, g_context);
  3139. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  3140. } else {
  3141. g_context->nx = false;
  3142. g_context->root_level = PT32_ROOT_LEVEL;
  3143. reset_rsvds_bits_mask(vcpu, g_context);
  3144. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  3145. }
  3146. update_permission_bitmask(vcpu, g_context);
  3147. update_last_pte_bitmap(vcpu, g_context);
  3148. return 0;
  3149. }
  3150. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  3151. {
  3152. if (mmu_is_nested(vcpu))
  3153. return init_kvm_nested_mmu(vcpu);
  3154. else if (tdp_enabled)
  3155. return init_kvm_tdp_mmu(vcpu);
  3156. else
  3157. return init_kvm_softmmu(vcpu);
  3158. }
  3159. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  3160. {
  3161. ASSERT(vcpu);
  3162. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  3163. /* mmu.free() should set root_hpa = INVALID_PAGE */
  3164. vcpu->arch.mmu.free(vcpu);
  3165. }
  3166. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  3167. {
  3168. destroy_kvm_mmu(vcpu);
  3169. return init_kvm_mmu(vcpu);
  3170. }
  3171. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  3172. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  3173. {
  3174. int r;
  3175. r = mmu_topup_memory_caches(vcpu);
  3176. if (r)
  3177. goto out;
  3178. r = mmu_alloc_roots(vcpu);
  3179. kvm_mmu_sync_roots(vcpu);
  3180. if (r)
  3181. goto out;
  3182. /* set_cr3() should ensure TLB has been flushed */
  3183. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  3184. out:
  3185. return r;
  3186. }
  3187. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  3188. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  3189. {
  3190. mmu_free_roots(vcpu);
  3191. }
  3192. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  3193. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  3194. struct kvm_mmu_page *sp, u64 *spte,
  3195. const void *new)
  3196. {
  3197. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  3198. ++vcpu->kvm->stat.mmu_pde_zapped;
  3199. return;
  3200. }
  3201. ++vcpu->kvm->stat.mmu_pte_updated;
  3202. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  3203. }
  3204. static bool need_remote_flush(u64 old, u64 new)
  3205. {
  3206. if (!is_shadow_present_pte(old))
  3207. return false;
  3208. if (!is_shadow_present_pte(new))
  3209. return true;
  3210. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  3211. return true;
  3212. old ^= PT64_NX_MASK;
  3213. new ^= PT64_NX_MASK;
  3214. return (old & ~new & PT64_PERM_MASK) != 0;
  3215. }
  3216. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  3217. bool remote_flush, bool local_flush)
  3218. {
  3219. if (zap_page)
  3220. return;
  3221. if (remote_flush)
  3222. kvm_flush_remote_tlbs(vcpu->kvm);
  3223. else if (local_flush)
  3224. kvm_mmu_flush_tlb(vcpu);
  3225. }
  3226. static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
  3227. const u8 *new, int *bytes)
  3228. {
  3229. u64 gentry;
  3230. int r;
  3231. /*
  3232. * Assume that the pte write on a page table of the same type
  3233. * as the current vcpu paging mode since we update the sptes only
  3234. * when they have the same mode.
  3235. */
  3236. if (is_pae(vcpu) && *bytes == 4) {
  3237. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  3238. *gpa &= ~(gpa_t)7;
  3239. *bytes = 8;
  3240. r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
  3241. if (r)
  3242. gentry = 0;
  3243. new = (const u8 *)&gentry;
  3244. }
  3245. switch (*bytes) {
  3246. case 4:
  3247. gentry = *(const u32 *)new;
  3248. break;
  3249. case 8:
  3250. gentry = *(const u64 *)new;
  3251. break;
  3252. default:
  3253. gentry = 0;
  3254. break;
  3255. }
  3256. return gentry;
  3257. }
  3258. /*
  3259. * If we're seeing too many writes to a page, it may no longer be a page table,
  3260. * or we may be forking, in which case it is better to unmap the page.
  3261. */
  3262. static bool detect_write_flooding(struct kvm_mmu_page *sp)
  3263. {
  3264. /*
  3265. * Skip write-flooding detected for the sp whose level is 1, because
  3266. * it can become unsync, then the guest page is not write-protected.
  3267. */
  3268. if (sp->role.level == PT_PAGE_TABLE_LEVEL)
  3269. return false;
  3270. return ++sp->write_flooding_count >= 3;
  3271. }
  3272. /*
  3273. * Misaligned accesses are too much trouble to fix up; also, they usually
  3274. * indicate a page is not used as a page table.
  3275. */
  3276. static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
  3277. int bytes)
  3278. {
  3279. unsigned offset, pte_size, misaligned;
  3280. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  3281. gpa, bytes, sp->role.word);
  3282. offset = offset_in_page(gpa);
  3283. pte_size = sp->role.cr4_pae ? 8 : 4;
  3284. /*
  3285. * Sometimes, the OS only writes the last one bytes to update status
  3286. * bits, for example, in linux, andb instruction is used in clear_bit().
  3287. */
  3288. if (!(offset & (pte_size - 1)) && bytes == 1)
  3289. return false;
  3290. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  3291. misaligned |= bytes < 4;
  3292. return misaligned;
  3293. }
  3294. static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
  3295. {
  3296. unsigned page_offset, quadrant;
  3297. u64 *spte;
  3298. int level;
  3299. page_offset = offset_in_page(gpa);
  3300. level = sp->role.level;
  3301. *nspte = 1;
  3302. if (!sp->role.cr4_pae) {
  3303. page_offset <<= 1; /* 32->64 */
  3304. /*
  3305. * A 32-bit pde maps 4MB while the shadow pdes map
  3306. * only 2MB. So we need to double the offset again
  3307. * and zap two pdes instead of one.
  3308. */
  3309. if (level == PT32_ROOT_LEVEL) {
  3310. page_offset &= ~7; /* kill rounding error */
  3311. page_offset <<= 1;
  3312. *nspte = 2;
  3313. }
  3314. quadrant = page_offset >> PAGE_SHIFT;
  3315. page_offset &= ~PAGE_MASK;
  3316. if (quadrant != sp->role.quadrant)
  3317. return NULL;
  3318. }
  3319. spte = &sp->spt[page_offset / sizeof(*spte)];
  3320. return spte;
  3321. }
  3322. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  3323. const u8 *new, int bytes)
  3324. {
  3325. gfn_t gfn = gpa >> PAGE_SHIFT;
  3326. union kvm_mmu_page_role mask = { .word = 0 };
  3327. struct kvm_mmu_page *sp;
  3328. LIST_HEAD(invalid_list);
  3329. u64 entry, gentry, *spte;
  3330. int npte;
  3331. bool remote_flush, local_flush, zap_page;
  3332. /*
  3333. * If we don't have indirect shadow pages, it means no page is
  3334. * write-protected, so we can exit simply.
  3335. */
  3336. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  3337. return;
  3338. zap_page = remote_flush = local_flush = false;
  3339. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  3340. gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
  3341. /*
  3342. * No need to care whether allocation memory is successful
  3343. * or not since pte prefetch is skiped if it does not have
  3344. * enough objects in the cache.
  3345. */
  3346. mmu_topup_memory_caches(vcpu);
  3347. spin_lock(&vcpu->kvm->mmu_lock);
  3348. ++vcpu->kvm->stat.mmu_pte_write;
  3349. kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  3350. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  3351. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
  3352. if (detect_write_misaligned(sp, gpa, bytes) ||
  3353. detect_write_flooding(sp)) {
  3354. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  3355. &invalid_list);
  3356. ++vcpu->kvm->stat.mmu_flooded;
  3357. continue;
  3358. }
  3359. spte = get_written_sptes(sp, gpa, &npte);
  3360. if (!spte)
  3361. continue;
  3362. local_flush = true;
  3363. while (npte--) {
  3364. entry = *spte;
  3365. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  3366. if (gentry &&
  3367. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  3368. & mask.word) && rmap_can_add(vcpu))
  3369. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  3370. if (need_remote_flush(entry, *spte))
  3371. remote_flush = true;
  3372. ++spte;
  3373. }
  3374. }
  3375. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  3376. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3377. kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  3378. spin_unlock(&vcpu->kvm->mmu_lock);
  3379. }
  3380. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  3381. {
  3382. gpa_t gpa;
  3383. int r;
  3384. if (vcpu->arch.mmu.direct_map)
  3385. return 0;
  3386. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  3387. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3388. return r;
  3389. }
  3390. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  3391. static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
  3392. {
  3393. LIST_HEAD(invalid_list);
  3394. if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
  3395. return;
  3396. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
  3397. if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
  3398. break;
  3399. ++vcpu->kvm->stat.mmu_recycled;
  3400. }
  3401. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  3402. }
  3403. static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
  3404. {
  3405. if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
  3406. return vcpu_match_mmio_gpa(vcpu, addr);
  3407. return vcpu_match_mmio_gva(vcpu, addr);
  3408. }
  3409. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  3410. void *insn, int insn_len)
  3411. {
  3412. int r, emulation_type = EMULTYPE_RETRY;
  3413. enum emulation_result er;
  3414. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  3415. if (r < 0)
  3416. goto out;
  3417. if (!r) {
  3418. r = 1;
  3419. goto out;
  3420. }
  3421. if (is_mmio_page_fault(vcpu, cr2))
  3422. emulation_type = 0;
  3423. er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
  3424. switch (er) {
  3425. case EMULATE_DONE:
  3426. return 1;
  3427. case EMULATE_USER_EXIT:
  3428. ++vcpu->stat.mmio_exits;
  3429. /* fall through */
  3430. case EMULATE_FAIL:
  3431. return 0;
  3432. default:
  3433. BUG();
  3434. }
  3435. out:
  3436. return r;
  3437. }
  3438. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  3439. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  3440. {
  3441. vcpu->arch.mmu.invlpg(vcpu, gva);
  3442. kvm_mmu_flush_tlb(vcpu);
  3443. ++vcpu->stat.invlpg;
  3444. }
  3445. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  3446. void kvm_enable_tdp(void)
  3447. {
  3448. tdp_enabled = true;
  3449. }
  3450. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  3451. void kvm_disable_tdp(void)
  3452. {
  3453. tdp_enabled = false;
  3454. }
  3455. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  3456. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  3457. {
  3458. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  3459. if (vcpu->arch.mmu.lm_root != NULL)
  3460. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  3461. }
  3462. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  3463. {
  3464. struct page *page;
  3465. int i;
  3466. ASSERT(vcpu);
  3467. /*
  3468. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  3469. * Therefore we need to allocate shadow page tables in the first
  3470. * 4GB of memory, which happens to fit the DMA32 zone.
  3471. */
  3472. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  3473. if (!page)
  3474. return -ENOMEM;
  3475. vcpu->arch.mmu.pae_root = page_address(page);
  3476. for (i = 0; i < 4; ++i)
  3477. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  3478. return 0;
  3479. }
  3480. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  3481. {
  3482. ASSERT(vcpu);
  3483. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  3484. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3485. vcpu->arch.mmu.translate_gpa = translate_gpa;
  3486. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  3487. return alloc_mmu_pages(vcpu);
  3488. }
  3489. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  3490. {
  3491. ASSERT(vcpu);
  3492. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  3493. return init_kvm_mmu(vcpu);
  3494. }
  3495. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  3496. {
  3497. struct kvm_memory_slot *memslot;
  3498. gfn_t last_gfn;
  3499. int i;
  3500. memslot = id_to_memslot(kvm->memslots, slot);
  3501. last_gfn = memslot->base_gfn + memslot->npages - 1;
  3502. spin_lock(&kvm->mmu_lock);
  3503. for (i = PT_PAGE_TABLE_LEVEL;
  3504. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  3505. unsigned long *rmapp;
  3506. unsigned long last_index, index;
  3507. rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
  3508. last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
  3509. for (index = 0; index <= last_index; ++index, ++rmapp) {
  3510. if (*rmapp)
  3511. __rmap_write_protect(kvm, rmapp, false);
  3512. if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
  3513. kvm_flush_remote_tlbs(kvm);
  3514. cond_resched_lock(&kvm->mmu_lock);
  3515. }
  3516. }
  3517. }
  3518. kvm_flush_remote_tlbs(kvm);
  3519. spin_unlock(&kvm->mmu_lock);
  3520. }
  3521. #define BATCH_ZAP_PAGES 10
  3522. static void kvm_zap_obsolete_pages(struct kvm *kvm)
  3523. {
  3524. struct kvm_mmu_page *sp, *node;
  3525. int batch = 0;
  3526. restart:
  3527. list_for_each_entry_safe_reverse(sp, node,
  3528. &kvm->arch.active_mmu_pages, link) {
  3529. int ret;
  3530. /*
  3531. * No obsolete page exists before new created page since
  3532. * active_mmu_pages is the FIFO list.
  3533. */
  3534. if (!is_obsolete_sp(kvm, sp))
  3535. break;
  3536. /*
  3537. * Since we are reversely walking the list and the invalid
  3538. * list will be moved to the head, skip the invalid page
  3539. * can help us to avoid the infinity list walking.
  3540. */
  3541. if (sp->role.invalid)
  3542. continue;
  3543. /*
  3544. * Need not flush tlb since we only zap the sp with invalid
  3545. * generation number.
  3546. */
  3547. if (batch >= BATCH_ZAP_PAGES &&
  3548. cond_resched_lock(&kvm->mmu_lock)) {
  3549. batch = 0;
  3550. goto restart;
  3551. }
  3552. ret = kvm_mmu_prepare_zap_page(kvm, sp,
  3553. &kvm->arch.zapped_obsolete_pages);
  3554. batch += ret;
  3555. if (ret)
  3556. goto restart;
  3557. }
  3558. /*
  3559. * Should flush tlb before free page tables since lockless-walking
  3560. * may use the pages.
  3561. */
  3562. kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
  3563. }
  3564. /*
  3565. * Fast invalidate all shadow pages and use lock-break technique
  3566. * to zap obsolete pages.
  3567. *
  3568. * It's required when memslot is being deleted or VM is being
  3569. * destroyed, in these cases, we should ensure that KVM MMU does
  3570. * not use any resource of the being-deleted slot or all slots
  3571. * after calling the function.
  3572. */
  3573. void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
  3574. {
  3575. spin_lock(&kvm->mmu_lock);
  3576. trace_kvm_mmu_invalidate_zap_all_pages(kvm);
  3577. kvm->arch.mmu_valid_gen++;
  3578. /*
  3579. * Notify all vcpus to reload its shadow page table
  3580. * and flush TLB. Then all vcpus will switch to new
  3581. * shadow page table with the new mmu_valid_gen.
  3582. *
  3583. * Note: we should do this under the protection of
  3584. * mmu-lock, otherwise, vcpu would purge shadow page
  3585. * but miss tlb flush.
  3586. */
  3587. kvm_reload_remote_mmus(kvm);
  3588. kvm_zap_obsolete_pages(kvm);
  3589. spin_unlock(&kvm->mmu_lock);
  3590. }
  3591. static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
  3592. {
  3593. return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
  3594. }
  3595. void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
  3596. {
  3597. /*
  3598. * The very rare case: if the generation-number is round,
  3599. * zap all shadow pages.
  3600. */
  3601. if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
  3602. printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
  3603. kvm_mmu_invalidate_zap_all_pages(kvm);
  3604. }
  3605. }
  3606. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  3607. {
  3608. struct kvm *kvm;
  3609. int nr_to_scan = sc->nr_to_scan;
  3610. if (nr_to_scan == 0)
  3611. goto out;
  3612. raw_spin_lock(&kvm_lock);
  3613. list_for_each_entry(kvm, &vm_list, vm_list) {
  3614. int idx;
  3615. LIST_HEAD(invalid_list);
  3616. /*
  3617. * Never scan more than sc->nr_to_scan VM instances.
  3618. * Will not hit this condition practically since we do not try
  3619. * to shrink more than one VM and it is very unlikely to see
  3620. * !n_used_mmu_pages so many times.
  3621. */
  3622. if (!nr_to_scan--)
  3623. break;
  3624. /*
  3625. * n_used_mmu_pages is accessed without holding kvm->mmu_lock
  3626. * here. We may skip a VM instance errorneosly, but we do not
  3627. * want to shrink a VM that only started to populate its MMU
  3628. * anyway.
  3629. */
  3630. if (!kvm->arch.n_used_mmu_pages &&
  3631. !kvm_has_zapped_obsolete_pages(kvm))
  3632. continue;
  3633. idx = srcu_read_lock(&kvm->srcu);
  3634. spin_lock(&kvm->mmu_lock);
  3635. if (kvm_has_zapped_obsolete_pages(kvm)) {
  3636. kvm_mmu_commit_zap_page(kvm,
  3637. &kvm->arch.zapped_obsolete_pages);
  3638. goto unlock;
  3639. }
  3640. prepare_zap_oldest_mmu_page(kvm, &invalid_list);
  3641. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  3642. unlock:
  3643. spin_unlock(&kvm->mmu_lock);
  3644. srcu_read_unlock(&kvm->srcu, idx);
  3645. list_move_tail(&kvm->vm_list, &vm_list);
  3646. break;
  3647. }
  3648. raw_spin_unlock(&kvm_lock);
  3649. out:
  3650. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  3651. }
  3652. static struct shrinker mmu_shrinker = {
  3653. .shrink = mmu_shrink,
  3654. .seeks = DEFAULT_SEEKS * 10,
  3655. };
  3656. static void mmu_destroy_caches(void)
  3657. {
  3658. if (pte_list_desc_cache)
  3659. kmem_cache_destroy(pte_list_desc_cache);
  3660. if (mmu_page_header_cache)
  3661. kmem_cache_destroy(mmu_page_header_cache);
  3662. }
  3663. int kvm_mmu_module_init(void)
  3664. {
  3665. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  3666. sizeof(struct pte_list_desc),
  3667. 0, 0, NULL);
  3668. if (!pte_list_desc_cache)
  3669. goto nomem;
  3670. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  3671. sizeof(struct kvm_mmu_page),
  3672. 0, 0, NULL);
  3673. if (!mmu_page_header_cache)
  3674. goto nomem;
  3675. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  3676. goto nomem;
  3677. register_shrinker(&mmu_shrinker);
  3678. return 0;
  3679. nomem:
  3680. mmu_destroy_caches();
  3681. return -ENOMEM;
  3682. }
  3683. /*
  3684. * Caculate mmu pages needed for kvm.
  3685. */
  3686. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  3687. {
  3688. unsigned int nr_mmu_pages;
  3689. unsigned int nr_pages = 0;
  3690. struct kvm_memslots *slots;
  3691. struct kvm_memory_slot *memslot;
  3692. slots = kvm_memslots(kvm);
  3693. kvm_for_each_memslot(memslot, slots)
  3694. nr_pages += memslot->npages;
  3695. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3696. nr_mmu_pages = max(nr_mmu_pages,
  3697. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3698. return nr_mmu_pages;
  3699. }
  3700. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3701. {
  3702. struct kvm_shadow_walk_iterator iterator;
  3703. u64 spte;
  3704. int nr_sptes = 0;
  3705. walk_shadow_page_lockless_begin(vcpu);
  3706. for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
  3707. sptes[iterator.level-1] = spte;
  3708. nr_sptes++;
  3709. if (!is_shadow_present_pte(spte))
  3710. break;
  3711. }
  3712. walk_shadow_page_lockless_end(vcpu);
  3713. return nr_sptes;
  3714. }
  3715. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3716. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3717. {
  3718. ASSERT(vcpu);
  3719. destroy_kvm_mmu(vcpu);
  3720. free_mmu_pages(vcpu);
  3721. mmu_free_memory_caches(vcpu);
  3722. }
  3723. void kvm_mmu_module_exit(void)
  3724. {
  3725. mmu_destroy_caches();
  3726. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3727. unregister_shrinker(&mmu_shrinker);
  3728. mmu_audit_disable();
  3729. }