skge.c 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24. */
  25. #include <linux/in.h>
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/if_vlan.h>
  34. #include <linux/ip.h>
  35. #include <linux/delay.h>
  36. #include <linux/crc32.h>
  37. #include <linux/dma-mapping.h>
  38. #include <linux/mii.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "1.10"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  48. #define MAX_RX_RING_SIZE 4096
  49. #define RX_COPY_THRESHOLD 128
  50. #define RX_BUF_SIZE 1536
  51. #define PHY_RETRIES 1000
  52. #define ETH_JUMBO_MTU 9000
  53. #define TX_WATCHDOG (5 * HZ)
  54. #define NAPI_WEIGHT 64
  55. #define BLINK_MS 250
  56. #define LINK_HZ (HZ/2)
  57. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  58. MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
  59. MODULE_LICENSE("GPL");
  60. MODULE_VERSION(DRV_VERSION);
  61. static const u32 default_msg
  62. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  63. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  64. static int debug = -1; /* defaults above */
  65. module_param(debug, int, 0);
  66. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67. static const struct pci_device_id skge_id_table[] = {
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  74. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  76. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  77. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  78. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
  79. { 0 }
  80. };
  81. MODULE_DEVICE_TABLE(pci, skge_id_table);
  82. static int skge_up(struct net_device *dev);
  83. static int skge_down(struct net_device *dev);
  84. static void skge_phy_reset(struct skge_port *skge);
  85. static void skge_tx_clean(struct net_device *dev);
  86. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  87. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  89. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_init(struct skge_hw *hw, int port);
  91. static void genesis_mac_init(struct skge_hw *hw, int port);
  92. static void genesis_link_up(struct skge_port *skge);
  93. /* Avoid conditionals by using array */
  94. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  95. static const int rxqaddr[] = { Q_R1, Q_R2 };
  96. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  97. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  98. static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  99. static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
  100. static int skge_get_regs_len(struct net_device *dev)
  101. {
  102. return 0x4000;
  103. }
  104. /*
  105. * Returns copy of whole control register region
  106. * Note: skip RAM address register because accessing it will
  107. * cause bus hangs!
  108. */
  109. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  110. void *p)
  111. {
  112. const struct skge_port *skge = netdev_priv(dev);
  113. const void __iomem *io = skge->hw->regs;
  114. regs->version = 1;
  115. memset(p, 0, regs->len);
  116. memcpy_fromio(p, io, B3_RAM_ADDR);
  117. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  118. regs->len - B3_RI_WTO_R1);
  119. }
  120. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  121. static u32 wol_supported(const struct skge_hw *hw)
  122. {
  123. if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev != 0)
  124. return WAKE_MAGIC | WAKE_PHY;
  125. else
  126. return 0;
  127. }
  128. static u32 pci_wake_enabled(struct pci_dev *dev)
  129. {
  130. int pm = pci_find_capability(dev, PCI_CAP_ID_PM);
  131. u16 value;
  132. /* If device doesn't support PM Capabilities, but request is to disable
  133. * wake events, it's a nop; otherwise fail */
  134. if (!pm)
  135. return 0;
  136. pci_read_config_word(dev, pm + PCI_PM_PMC, &value);
  137. value &= PCI_PM_CAP_PME_MASK;
  138. value >>= ffs(PCI_PM_CAP_PME_MASK) - 1; /* First bit of mask */
  139. return value != 0;
  140. }
  141. static void skge_wol_init(struct skge_port *skge)
  142. {
  143. struct skge_hw *hw = skge->hw;
  144. int port = skge->port;
  145. enum pause_control save_mode;
  146. u32 ctrl;
  147. /* Bring hardware out of reset */
  148. skge_write16(hw, B0_CTST, CS_RST_CLR);
  149. skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
  150. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR);
  151. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  152. /* Force to 10/100 skge_reset will re-enable on resume */
  153. save_mode = skge->flow_control;
  154. skge->flow_control = FLOW_MODE_SYMMETRIC;
  155. ctrl = skge->advertising;
  156. skge->advertising &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
  157. skge_phy_reset(skge);
  158. skge->flow_control = save_mode;
  159. skge->advertising = ctrl;
  160. /* Set GMAC to no flow control and auto update for speed/duplex */
  161. gma_write16(hw, port, GM_GP_CTRL,
  162. GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
  163. GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
  164. /* Set WOL address */
  165. memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
  166. skge->netdev->dev_addr, ETH_ALEN);
  167. /* Turn on appropriate WOL control bits */
  168. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
  169. ctrl = 0;
  170. if (skge->wol & WAKE_PHY)
  171. ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
  172. else
  173. ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
  174. if (skge->wol & WAKE_MAGIC)
  175. ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
  176. else
  177. ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;;
  178. ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
  179. skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
  180. /* block receiver */
  181. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  182. }
  183. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  184. {
  185. struct skge_port *skge = netdev_priv(dev);
  186. wol->supported = wol_supported(skge->hw);
  187. wol->wolopts = skge->wol;
  188. }
  189. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  190. {
  191. struct skge_port *skge = netdev_priv(dev);
  192. struct skge_hw *hw = skge->hw;
  193. if (wol->wolopts & wol_supported(hw))
  194. return -EOPNOTSUPP;
  195. skge->wol = wol->wolopts;
  196. if (!netif_running(dev))
  197. skge_wol_init(skge);
  198. return 0;
  199. }
  200. /* Determine supported/advertised modes based on hardware.
  201. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  202. */
  203. static u32 skge_supported_modes(const struct skge_hw *hw)
  204. {
  205. u32 supported;
  206. if (hw->copper) {
  207. supported = SUPPORTED_10baseT_Half
  208. | SUPPORTED_10baseT_Full
  209. | SUPPORTED_100baseT_Half
  210. | SUPPORTED_100baseT_Full
  211. | SUPPORTED_1000baseT_Half
  212. | SUPPORTED_1000baseT_Full
  213. | SUPPORTED_Autoneg| SUPPORTED_TP;
  214. if (hw->chip_id == CHIP_ID_GENESIS)
  215. supported &= ~(SUPPORTED_10baseT_Half
  216. | SUPPORTED_10baseT_Full
  217. | SUPPORTED_100baseT_Half
  218. | SUPPORTED_100baseT_Full);
  219. else if (hw->chip_id == CHIP_ID_YUKON)
  220. supported &= ~SUPPORTED_1000baseT_Half;
  221. } else
  222. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  223. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  224. return supported;
  225. }
  226. static int skge_get_settings(struct net_device *dev,
  227. struct ethtool_cmd *ecmd)
  228. {
  229. struct skge_port *skge = netdev_priv(dev);
  230. struct skge_hw *hw = skge->hw;
  231. ecmd->transceiver = XCVR_INTERNAL;
  232. ecmd->supported = skge_supported_modes(hw);
  233. if (hw->copper) {
  234. ecmd->port = PORT_TP;
  235. ecmd->phy_address = hw->phy_addr;
  236. } else
  237. ecmd->port = PORT_FIBRE;
  238. ecmd->advertising = skge->advertising;
  239. ecmd->autoneg = skge->autoneg;
  240. ecmd->speed = skge->speed;
  241. ecmd->duplex = skge->duplex;
  242. return 0;
  243. }
  244. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  245. {
  246. struct skge_port *skge = netdev_priv(dev);
  247. const struct skge_hw *hw = skge->hw;
  248. u32 supported = skge_supported_modes(hw);
  249. if (ecmd->autoneg == AUTONEG_ENABLE) {
  250. ecmd->advertising = supported;
  251. skge->duplex = -1;
  252. skge->speed = -1;
  253. } else {
  254. u32 setting;
  255. switch (ecmd->speed) {
  256. case SPEED_1000:
  257. if (ecmd->duplex == DUPLEX_FULL)
  258. setting = SUPPORTED_1000baseT_Full;
  259. else if (ecmd->duplex == DUPLEX_HALF)
  260. setting = SUPPORTED_1000baseT_Half;
  261. else
  262. return -EINVAL;
  263. break;
  264. case SPEED_100:
  265. if (ecmd->duplex == DUPLEX_FULL)
  266. setting = SUPPORTED_100baseT_Full;
  267. else if (ecmd->duplex == DUPLEX_HALF)
  268. setting = SUPPORTED_100baseT_Half;
  269. else
  270. return -EINVAL;
  271. break;
  272. case SPEED_10:
  273. if (ecmd->duplex == DUPLEX_FULL)
  274. setting = SUPPORTED_10baseT_Full;
  275. else if (ecmd->duplex == DUPLEX_HALF)
  276. setting = SUPPORTED_10baseT_Half;
  277. else
  278. return -EINVAL;
  279. break;
  280. default:
  281. return -EINVAL;
  282. }
  283. if ((setting & supported) == 0)
  284. return -EINVAL;
  285. skge->speed = ecmd->speed;
  286. skge->duplex = ecmd->duplex;
  287. }
  288. skge->autoneg = ecmd->autoneg;
  289. skge->advertising = ecmd->advertising;
  290. if (netif_running(dev))
  291. skge_phy_reset(skge);
  292. return (0);
  293. }
  294. static void skge_get_drvinfo(struct net_device *dev,
  295. struct ethtool_drvinfo *info)
  296. {
  297. struct skge_port *skge = netdev_priv(dev);
  298. strcpy(info->driver, DRV_NAME);
  299. strcpy(info->version, DRV_VERSION);
  300. strcpy(info->fw_version, "N/A");
  301. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  302. }
  303. static const struct skge_stat {
  304. char name[ETH_GSTRING_LEN];
  305. u16 xmac_offset;
  306. u16 gma_offset;
  307. } skge_stats[] = {
  308. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  309. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  310. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  311. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  312. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  313. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  314. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  315. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  316. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  317. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  318. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  319. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  320. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  321. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  322. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  323. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  324. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  325. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  326. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  327. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  328. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  329. };
  330. static int skge_get_stats_count(struct net_device *dev)
  331. {
  332. return ARRAY_SIZE(skge_stats);
  333. }
  334. static void skge_get_ethtool_stats(struct net_device *dev,
  335. struct ethtool_stats *stats, u64 *data)
  336. {
  337. struct skge_port *skge = netdev_priv(dev);
  338. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  339. genesis_get_stats(skge, data);
  340. else
  341. yukon_get_stats(skge, data);
  342. }
  343. /* Use hardware MIB variables for critical path statistics and
  344. * transmit feedback not reported at interrupt.
  345. * Other errors are accounted for in interrupt handler.
  346. */
  347. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  348. {
  349. struct skge_port *skge = netdev_priv(dev);
  350. u64 data[ARRAY_SIZE(skge_stats)];
  351. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  352. genesis_get_stats(skge, data);
  353. else
  354. yukon_get_stats(skge, data);
  355. skge->net_stats.tx_bytes = data[0];
  356. skge->net_stats.rx_bytes = data[1];
  357. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  358. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  359. skge->net_stats.multicast = data[3] + data[5];
  360. skge->net_stats.collisions = data[10];
  361. skge->net_stats.tx_aborted_errors = data[12];
  362. return &skge->net_stats;
  363. }
  364. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  365. {
  366. int i;
  367. switch (stringset) {
  368. case ETH_SS_STATS:
  369. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  370. memcpy(data + i * ETH_GSTRING_LEN,
  371. skge_stats[i].name, ETH_GSTRING_LEN);
  372. break;
  373. }
  374. }
  375. static void skge_get_ring_param(struct net_device *dev,
  376. struct ethtool_ringparam *p)
  377. {
  378. struct skge_port *skge = netdev_priv(dev);
  379. p->rx_max_pending = MAX_RX_RING_SIZE;
  380. p->tx_max_pending = MAX_TX_RING_SIZE;
  381. p->rx_mini_max_pending = 0;
  382. p->rx_jumbo_max_pending = 0;
  383. p->rx_pending = skge->rx_ring.count;
  384. p->tx_pending = skge->tx_ring.count;
  385. p->rx_mini_pending = 0;
  386. p->rx_jumbo_pending = 0;
  387. }
  388. static int skge_set_ring_param(struct net_device *dev,
  389. struct ethtool_ringparam *p)
  390. {
  391. struct skge_port *skge = netdev_priv(dev);
  392. int err;
  393. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  394. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  395. return -EINVAL;
  396. skge->rx_ring.count = p->rx_pending;
  397. skge->tx_ring.count = p->tx_pending;
  398. if (netif_running(dev)) {
  399. skge_down(dev);
  400. err = skge_up(dev);
  401. if (err)
  402. dev_close(dev);
  403. }
  404. return 0;
  405. }
  406. static u32 skge_get_msglevel(struct net_device *netdev)
  407. {
  408. struct skge_port *skge = netdev_priv(netdev);
  409. return skge->msg_enable;
  410. }
  411. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  412. {
  413. struct skge_port *skge = netdev_priv(netdev);
  414. skge->msg_enable = value;
  415. }
  416. static int skge_nway_reset(struct net_device *dev)
  417. {
  418. struct skge_port *skge = netdev_priv(dev);
  419. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  420. return -EINVAL;
  421. skge_phy_reset(skge);
  422. return 0;
  423. }
  424. static int skge_set_sg(struct net_device *dev, u32 data)
  425. {
  426. struct skge_port *skge = netdev_priv(dev);
  427. struct skge_hw *hw = skge->hw;
  428. if (hw->chip_id == CHIP_ID_GENESIS && data)
  429. return -EOPNOTSUPP;
  430. return ethtool_op_set_sg(dev, data);
  431. }
  432. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  433. {
  434. struct skge_port *skge = netdev_priv(dev);
  435. struct skge_hw *hw = skge->hw;
  436. if (hw->chip_id == CHIP_ID_GENESIS && data)
  437. return -EOPNOTSUPP;
  438. return ethtool_op_set_tx_csum(dev, data);
  439. }
  440. static u32 skge_get_rx_csum(struct net_device *dev)
  441. {
  442. struct skge_port *skge = netdev_priv(dev);
  443. return skge->rx_csum;
  444. }
  445. /* Only Yukon supports checksum offload. */
  446. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  447. {
  448. struct skge_port *skge = netdev_priv(dev);
  449. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  450. return -EOPNOTSUPP;
  451. skge->rx_csum = data;
  452. return 0;
  453. }
  454. static void skge_get_pauseparam(struct net_device *dev,
  455. struct ethtool_pauseparam *ecmd)
  456. {
  457. struct skge_port *skge = netdev_priv(dev);
  458. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  459. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  460. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  461. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  462. }
  463. static int skge_set_pauseparam(struct net_device *dev,
  464. struct ethtool_pauseparam *ecmd)
  465. {
  466. struct skge_port *skge = netdev_priv(dev);
  467. struct ethtool_pauseparam old;
  468. skge_get_pauseparam(dev, &old);
  469. if (ecmd->autoneg != old.autoneg)
  470. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  471. else {
  472. if (ecmd->rx_pause && ecmd->tx_pause)
  473. skge->flow_control = FLOW_MODE_SYMMETRIC;
  474. else if (ecmd->rx_pause && !ecmd->tx_pause)
  475. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  476. else if (!ecmd->rx_pause && ecmd->tx_pause)
  477. skge->flow_control = FLOW_MODE_LOC_SEND;
  478. else
  479. skge->flow_control = FLOW_MODE_NONE;
  480. }
  481. if (netif_running(dev))
  482. skge_phy_reset(skge);
  483. return 0;
  484. }
  485. /* Chip internal frequency for clock calculations */
  486. static inline u32 hwkhz(const struct skge_hw *hw)
  487. {
  488. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  489. }
  490. /* Chip HZ to microseconds */
  491. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  492. {
  493. return (ticks * 1000) / hwkhz(hw);
  494. }
  495. /* Microseconds to chip HZ */
  496. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  497. {
  498. return hwkhz(hw) * usec / 1000;
  499. }
  500. static int skge_get_coalesce(struct net_device *dev,
  501. struct ethtool_coalesce *ecmd)
  502. {
  503. struct skge_port *skge = netdev_priv(dev);
  504. struct skge_hw *hw = skge->hw;
  505. int port = skge->port;
  506. ecmd->rx_coalesce_usecs = 0;
  507. ecmd->tx_coalesce_usecs = 0;
  508. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  509. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  510. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  511. if (msk & rxirqmask[port])
  512. ecmd->rx_coalesce_usecs = delay;
  513. if (msk & txirqmask[port])
  514. ecmd->tx_coalesce_usecs = delay;
  515. }
  516. return 0;
  517. }
  518. /* Note: interrupt timer is per board, but can turn on/off per port */
  519. static int skge_set_coalesce(struct net_device *dev,
  520. struct ethtool_coalesce *ecmd)
  521. {
  522. struct skge_port *skge = netdev_priv(dev);
  523. struct skge_hw *hw = skge->hw;
  524. int port = skge->port;
  525. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  526. u32 delay = 25;
  527. if (ecmd->rx_coalesce_usecs == 0)
  528. msk &= ~rxirqmask[port];
  529. else if (ecmd->rx_coalesce_usecs < 25 ||
  530. ecmd->rx_coalesce_usecs > 33333)
  531. return -EINVAL;
  532. else {
  533. msk |= rxirqmask[port];
  534. delay = ecmd->rx_coalesce_usecs;
  535. }
  536. if (ecmd->tx_coalesce_usecs == 0)
  537. msk &= ~txirqmask[port];
  538. else if (ecmd->tx_coalesce_usecs < 25 ||
  539. ecmd->tx_coalesce_usecs > 33333)
  540. return -EINVAL;
  541. else {
  542. msk |= txirqmask[port];
  543. delay = min(delay, ecmd->rx_coalesce_usecs);
  544. }
  545. skge_write32(hw, B2_IRQM_MSK, msk);
  546. if (msk == 0)
  547. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  548. else {
  549. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  550. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  551. }
  552. return 0;
  553. }
  554. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  555. static void skge_led(struct skge_port *skge, enum led_mode mode)
  556. {
  557. struct skge_hw *hw = skge->hw;
  558. int port = skge->port;
  559. spin_lock_bh(&hw->phy_lock);
  560. if (hw->chip_id == CHIP_ID_GENESIS) {
  561. switch (mode) {
  562. case LED_MODE_OFF:
  563. if (hw->phy_type == SK_PHY_BCOM)
  564. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  565. else {
  566. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  567. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  568. }
  569. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  570. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  571. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  572. break;
  573. case LED_MODE_ON:
  574. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  575. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  576. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  577. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  578. break;
  579. case LED_MODE_TST:
  580. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  581. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  582. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  583. if (hw->phy_type == SK_PHY_BCOM)
  584. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  585. else {
  586. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  587. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  588. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  589. }
  590. }
  591. } else {
  592. switch (mode) {
  593. case LED_MODE_OFF:
  594. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  595. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  596. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  597. PHY_M_LED_MO_10(MO_LED_OFF) |
  598. PHY_M_LED_MO_100(MO_LED_OFF) |
  599. PHY_M_LED_MO_1000(MO_LED_OFF) |
  600. PHY_M_LED_MO_RX(MO_LED_OFF));
  601. break;
  602. case LED_MODE_ON:
  603. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  604. PHY_M_LED_PULS_DUR(PULS_170MS) |
  605. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  606. PHY_M_LEDC_TX_CTRL |
  607. PHY_M_LEDC_DP_CTRL);
  608. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  609. PHY_M_LED_MO_RX(MO_LED_OFF) |
  610. (skge->speed == SPEED_100 ?
  611. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  612. break;
  613. case LED_MODE_TST:
  614. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  615. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  616. PHY_M_LED_MO_DUP(MO_LED_ON) |
  617. PHY_M_LED_MO_10(MO_LED_ON) |
  618. PHY_M_LED_MO_100(MO_LED_ON) |
  619. PHY_M_LED_MO_1000(MO_LED_ON) |
  620. PHY_M_LED_MO_RX(MO_LED_ON));
  621. }
  622. }
  623. spin_unlock_bh(&hw->phy_lock);
  624. }
  625. /* blink LED's for finding board */
  626. static int skge_phys_id(struct net_device *dev, u32 data)
  627. {
  628. struct skge_port *skge = netdev_priv(dev);
  629. unsigned long ms;
  630. enum led_mode mode = LED_MODE_TST;
  631. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  632. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  633. else
  634. ms = data * 1000;
  635. while (ms > 0) {
  636. skge_led(skge, mode);
  637. mode ^= LED_MODE_TST;
  638. if (msleep_interruptible(BLINK_MS))
  639. break;
  640. ms -= BLINK_MS;
  641. }
  642. /* back to regular LED state */
  643. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  644. return 0;
  645. }
  646. static const struct ethtool_ops skge_ethtool_ops = {
  647. .get_settings = skge_get_settings,
  648. .set_settings = skge_set_settings,
  649. .get_drvinfo = skge_get_drvinfo,
  650. .get_regs_len = skge_get_regs_len,
  651. .get_regs = skge_get_regs,
  652. .get_wol = skge_get_wol,
  653. .set_wol = skge_set_wol,
  654. .get_msglevel = skge_get_msglevel,
  655. .set_msglevel = skge_set_msglevel,
  656. .nway_reset = skge_nway_reset,
  657. .get_link = ethtool_op_get_link,
  658. .get_ringparam = skge_get_ring_param,
  659. .set_ringparam = skge_set_ring_param,
  660. .get_pauseparam = skge_get_pauseparam,
  661. .set_pauseparam = skge_set_pauseparam,
  662. .get_coalesce = skge_get_coalesce,
  663. .set_coalesce = skge_set_coalesce,
  664. .get_sg = ethtool_op_get_sg,
  665. .set_sg = skge_set_sg,
  666. .get_tx_csum = ethtool_op_get_tx_csum,
  667. .set_tx_csum = skge_set_tx_csum,
  668. .get_rx_csum = skge_get_rx_csum,
  669. .set_rx_csum = skge_set_rx_csum,
  670. .get_strings = skge_get_strings,
  671. .phys_id = skge_phys_id,
  672. .get_stats_count = skge_get_stats_count,
  673. .get_ethtool_stats = skge_get_ethtool_stats,
  674. .get_perm_addr = ethtool_op_get_perm_addr,
  675. };
  676. /*
  677. * Allocate ring elements and chain them together
  678. * One-to-one association of board descriptors with ring elements
  679. */
  680. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  681. {
  682. struct skge_tx_desc *d;
  683. struct skge_element *e;
  684. int i;
  685. ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
  686. if (!ring->start)
  687. return -ENOMEM;
  688. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  689. e->desc = d;
  690. if (i == ring->count - 1) {
  691. e->next = ring->start;
  692. d->next_offset = base;
  693. } else {
  694. e->next = e + 1;
  695. d->next_offset = base + (i+1) * sizeof(*d);
  696. }
  697. }
  698. ring->to_use = ring->to_clean = ring->start;
  699. return 0;
  700. }
  701. /* Allocate and setup a new buffer for receiving */
  702. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  703. struct sk_buff *skb, unsigned int bufsize)
  704. {
  705. struct skge_rx_desc *rd = e->desc;
  706. u64 map;
  707. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  708. PCI_DMA_FROMDEVICE);
  709. rd->dma_lo = map;
  710. rd->dma_hi = map >> 32;
  711. e->skb = skb;
  712. rd->csum1_start = ETH_HLEN;
  713. rd->csum2_start = ETH_HLEN;
  714. rd->csum1 = 0;
  715. rd->csum2 = 0;
  716. wmb();
  717. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  718. pci_unmap_addr_set(e, mapaddr, map);
  719. pci_unmap_len_set(e, maplen, bufsize);
  720. }
  721. /* Resume receiving using existing skb,
  722. * Note: DMA address is not changed by chip.
  723. * MTU not changed while receiver active.
  724. */
  725. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  726. {
  727. struct skge_rx_desc *rd = e->desc;
  728. rd->csum2 = 0;
  729. rd->csum2_start = ETH_HLEN;
  730. wmb();
  731. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  732. }
  733. /* Free all buffers in receive ring, assumes receiver stopped */
  734. static void skge_rx_clean(struct skge_port *skge)
  735. {
  736. struct skge_hw *hw = skge->hw;
  737. struct skge_ring *ring = &skge->rx_ring;
  738. struct skge_element *e;
  739. e = ring->start;
  740. do {
  741. struct skge_rx_desc *rd = e->desc;
  742. rd->control = 0;
  743. if (e->skb) {
  744. pci_unmap_single(hw->pdev,
  745. pci_unmap_addr(e, mapaddr),
  746. pci_unmap_len(e, maplen),
  747. PCI_DMA_FROMDEVICE);
  748. dev_kfree_skb(e->skb);
  749. e->skb = NULL;
  750. }
  751. } while ((e = e->next) != ring->start);
  752. }
  753. /* Allocate buffers for receive ring
  754. * For receive: to_clean is next received frame.
  755. */
  756. static int skge_rx_fill(struct net_device *dev)
  757. {
  758. struct skge_port *skge = netdev_priv(dev);
  759. struct skge_ring *ring = &skge->rx_ring;
  760. struct skge_element *e;
  761. e = ring->start;
  762. do {
  763. struct sk_buff *skb;
  764. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  765. GFP_KERNEL);
  766. if (!skb)
  767. return -ENOMEM;
  768. skb_reserve(skb, NET_IP_ALIGN);
  769. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  770. } while ( (e = e->next) != ring->start);
  771. ring->to_clean = ring->start;
  772. return 0;
  773. }
  774. static const char *skge_pause(enum pause_status status)
  775. {
  776. switch(status) {
  777. case FLOW_STAT_NONE:
  778. return "none";
  779. case FLOW_STAT_REM_SEND:
  780. return "rx only";
  781. case FLOW_STAT_LOC_SEND:
  782. return "tx_only";
  783. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  784. return "both";
  785. default:
  786. return "indeterminated";
  787. }
  788. }
  789. static void skge_link_up(struct skge_port *skge)
  790. {
  791. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  792. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  793. netif_carrier_on(skge->netdev);
  794. netif_wake_queue(skge->netdev);
  795. if (netif_msg_link(skge)) {
  796. printk(KERN_INFO PFX
  797. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  798. skge->netdev->name, skge->speed,
  799. skge->duplex == DUPLEX_FULL ? "full" : "half",
  800. skge_pause(skge->flow_status));
  801. }
  802. }
  803. static void skge_link_down(struct skge_port *skge)
  804. {
  805. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  806. netif_carrier_off(skge->netdev);
  807. netif_stop_queue(skge->netdev);
  808. if (netif_msg_link(skge))
  809. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  810. }
  811. static void xm_link_down(struct skge_hw *hw, int port)
  812. {
  813. struct net_device *dev = hw->dev[port];
  814. struct skge_port *skge = netdev_priv(dev);
  815. u16 cmd, msk;
  816. if (hw->phy_type == SK_PHY_XMAC) {
  817. msk = xm_read16(hw, port, XM_IMSK);
  818. msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
  819. xm_write16(hw, port, XM_IMSK, msk);
  820. }
  821. cmd = xm_read16(hw, port, XM_MMU_CMD);
  822. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  823. xm_write16(hw, port, XM_MMU_CMD, cmd);
  824. /* dummy read to ensure writing */
  825. (void) xm_read16(hw, port, XM_MMU_CMD);
  826. if (netif_carrier_ok(dev))
  827. skge_link_down(skge);
  828. }
  829. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  830. {
  831. int i;
  832. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  833. *val = xm_read16(hw, port, XM_PHY_DATA);
  834. if (hw->phy_type == SK_PHY_XMAC)
  835. goto ready;
  836. for (i = 0; i < PHY_RETRIES; i++) {
  837. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  838. goto ready;
  839. udelay(1);
  840. }
  841. return -ETIMEDOUT;
  842. ready:
  843. *val = xm_read16(hw, port, XM_PHY_DATA);
  844. return 0;
  845. }
  846. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  847. {
  848. u16 v = 0;
  849. if (__xm_phy_read(hw, port, reg, &v))
  850. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  851. hw->dev[port]->name);
  852. return v;
  853. }
  854. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  855. {
  856. int i;
  857. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  858. for (i = 0; i < PHY_RETRIES; i++) {
  859. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  860. goto ready;
  861. udelay(1);
  862. }
  863. return -EIO;
  864. ready:
  865. xm_write16(hw, port, XM_PHY_DATA, val);
  866. for (i = 0; i < PHY_RETRIES; i++) {
  867. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  868. return 0;
  869. udelay(1);
  870. }
  871. return -ETIMEDOUT;
  872. }
  873. static void genesis_init(struct skge_hw *hw)
  874. {
  875. /* set blink source counter */
  876. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  877. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  878. /* configure mac arbiter */
  879. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  880. /* configure mac arbiter timeout values */
  881. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  882. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  883. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  884. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  885. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  886. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  887. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  888. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  889. /* configure packet arbiter timeout */
  890. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  891. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  892. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  893. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  894. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  895. }
  896. static void genesis_reset(struct skge_hw *hw, int port)
  897. {
  898. const u8 zero[8] = { 0 };
  899. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  900. /* reset the statistics module */
  901. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  902. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  903. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  904. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  905. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  906. /* disable Broadcom PHY IRQ */
  907. if (hw->phy_type == SK_PHY_BCOM)
  908. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  909. xm_outhash(hw, port, XM_HSM, zero);
  910. }
  911. /* Convert mode to MII values */
  912. static const u16 phy_pause_map[] = {
  913. [FLOW_MODE_NONE] = 0,
  914. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  915. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  916. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  917. };
  918. /* special defines for FIBER (88E1011S only) */
  919. static const u16 fiber_pause_map[] = {
  920. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  921. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  922. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  923. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  924. };
  925. /* Check status of Broadcom phy link */
  926. static void bcom_check_link(struct skge_hw *hw, int port)
  927. {
  928. struct net_device *dev = hw->dev[port];
  929. struct skge_port *skge = netdev_priv(dev);
  930. u16 status;
  931. /* read twice because of latch */
  932. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  933. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  934. if ((status & PHY_ST_LSYNC) == 0) {
  935. xm_link_down(hw, port);
  936. return;
  937. }
  938. if (skge->autoneg == AUTONEG_ENABLE) {
  939. u16 lpa, aux;
  940. if (!(status & PHY_ST_AN_OVER))
  941. return;
  942. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  943. if (lpa & PHY_B_AN_RF) {
  944. printk(KERN_NOTICE PFX "%s: remote fault\n",
  945. dev->name);
  946. return;
  947. }
  948. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  949. /* Check Duplex mismatch */
  950. switch (aux & PHY_B_AS_AN_RES_MSK) {
  951. case PHY_B_RES_1000FD:
  952. skge->duplex = DUPLEX_FULL;
  953. break;
  954. case PHY_B_RES_1000HD:
  955. skge->duplex = DUPLEX_HALF;
  956. break;
  957. default:
  958. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  959. dev->name);
  960. return;
  961. }
  962. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  963. switch (aux & PHY_B_AS_PAUSE_MSK) {
  964. case PHY_B_AS_PAUSE_MSK:
  965. skge->flow_status = FLOW_STAT_SYMMETRIC;
  966. break;
  967. case PHY_B_AS_PRR:
  968. skge->flow_status = FLOW_STAT_REM_SEND;
  969. break;
  970. case PHY_B_AS_PRT:
  971. skge->flow_status = FLOW_STAT_LOC_SEND;
  972. break;
  973. default:
  974. skge->flow_status = FLOW_STAT_NONE;
  975. }
  976. skge->speed = SPEED_1000;
  977. }
  978. if (!netif_carrier_ok(dev))
  979. genesis_link_up(skge);
  980. }
  981. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  982. * Phy on for 100 or 10Mbit operation
  983. */
  984. static void bcom_phy_init(struct skge_port *skge)
  985. {
  986. struct skge_hw *hw = skge->hw;
  987. int port = skge->port;
  988. int i;
  989. u16 id1, r, ext, ctl;
  990. /* magic workaround patterns for Broadcom */
  991. static const struct {
  992. u16 reg;
  993. u16 val;
  994. } A1hack[] = {
  995. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  996. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  997. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  998. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  999. }, C0hack[] = {
  1000. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  1001. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  1002. };
  1003. /* read Id from external PHY (all have the same address) */
  1004. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  1005. /* Optimize MDIO transfer by suppressing preamble. */
  1006. r = xm_read16(hw, port, XM_MMU_CMD);
  1007. r |= XM_MMU_NO_PRE;
  1008. xm_write16(hw, port, XM_MMU_CMD,r);
  1009. switch (id1) {
  1010. case PHY_BCOM_ID1_C0:
  1011. /*
  1012. * Workaround BCOM Errata for the C0 type.
  1013. * Write magic patterns to reserved registers.
  1014. */
  1015. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  1016. xm_phy_write(hw, port,
  1017. C0hack[i].reg, C0hack[i].val);
  1018. break;
  1019. case PHY_BCOM_ID1_A1:
  1020. /*
  1021. * Workaround BCOM Errata for the A1 type.
  1022. * Write magic patterns to reserved registers.
  1023. */
  1024. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  1025. xm_phy_write(hw, port,
  1026. A1hack[i].reg, A1hack[i].val);
  1027. break;
  1028. }
  1029. /*
  1030. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  1031. * Disable Power Management after reset.
  1032. */
  1033. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  1034. r |= PHY_B_AC_DIS_PM;
  1035. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  1036. /* Dummy read */
  1037. xm_read16(hw, port, XM_ISRC);
  1038. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  1039. ctl = PHY_CT_SP1000; /* always 1000mbit */
  1040. if (skge->autoneg == AUTONEG_ENABLE) {
  1041. /*
  1042. * Workaround BCOM Errata #1 for the C5 type.
  1043. * 1000Base-T Link Acquisition Failure in Slave Mode
  1044. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1045. */
  1046. u16 adv = PHY_B_1000C_RD;
  1047. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1048. adv |= PHY_B_1000C_AHD;
  1049. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1050. adv |= PHY_B_1000C_AFD;
  1051. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1052. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1053. } else {
  1054. if (skge->duplex == DUPLEX_FULL)
  1055. ctl |= PHY_CT_DUP_MD;
  1056. /* Force to slave */
  1057. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1058. }
  1059. /* Set autonegotiation pause parameters */
  1060. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1061. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1062. /* Handle Jumbo frames */
  1063. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1064. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1065. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1066. ext |= PHY_B_PEC_HIGH_LA;
  1067. }
  1068. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1069. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1070. /* Use link status change interrupt */
  1071. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1072. }
  1073. static void xm_phy_init(struct skge_port *skge)
  1074. {
  1075. struct skge_hw *hw = skge->hw;
  1076. int port = skge->port;
  1077. u16 ctrl = 0;
  1078. if (skge->autoneg == AUTONEG_ENABLE) {
  1079. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1080. ctrl |= PHY_X_AN_HD;
  1081. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1082. ctrl |= PHY_X_AN_FD;
  1083. ctrl |= fiber_pause_map[skge->flow_control];
  1084. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1085. /* Restart Auto-negotiation */
  1086. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1087. } else {
  1088. /* Set DuplexMode in Config register */
  1089. if (skge->duplex == DUPLEX_FULL)
  1090. ctrl |= PHY_CT_DUP_MD;
  1091. /*
  1092. * Do NOT enable Auto-negotiation here. This would hold
  1093. * the link down because no IDLEs are transmitted
  1094. */
  1095. }
  1096. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1097. /* Poll PHY for status changes */
  1098. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1099. }
  1100. static void xm_check_link(struct net_device *dev)
  1101. {
  1102. struct skge_port *skge = netdev_priv(dev);
  1103. struct skge_hw *hw = skge->hw;
  1104. int port = skge->port;
  1105. u16 status;
  1106. /* read twice because of latch */
  1107. (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
  1108. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1109. if ((status & PHY_ST_LSYNC) == 0) {
  1110. xm_link_down(hw, port);
  1111. return;
  1112. }
  1113. if (skge->autoneg == AUTONEG_ENABLE) {
  1114. u16 lpa, res;
  1115. if (!(status & PHY_ST_AN_OVER))
  1116. return;
  1117. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1118. if (lpa & PHY_B_AN_RF) {
  1119. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1120. dev->name);
  1121. return;
  1122. }
  1123. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1124. /* Check Duplex mismatch */
  1125. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1126. case PHY_X_RS_FD:
  1127. skge->duplex = DUPLEX_FULL;
  1128. break;
  1129. case PHY_X_RS_HD:
  1130. skge->duplex = DUPLEX_HALF;
  1131. break;
  1132. default:
  1133. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1134. dev->name);
  1135. return;
  1136. }
  1137. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1138. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1139. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1140. (lpa & PHY_X_P_SYM_MD))
  1141. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1142. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1143. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1144. /* Enable PAUSE receive, disable PAUSE transmit */
  1145. skge->flow_status = FLOW_STAT_REM_SEND;
  1146. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1147. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1148. /* Disable PAUSE receive, enable PAUSE transmit */
  1149. skge->flow_status = FLOW_STAT_LOC_SEND;
  1150. else
  1151. skge->flow_status = FLOW_STAT_NONE;
  1152. skge->speed = SPEED_1000;
  1153. }
  1154. if (!netif_carrier_ok(dev))
  1155. genesis_link_up(skge);
  1156. }
  1157. /* Poll to check for link coming up.
  1158. * Since internal PHY is wired to a level triggered pin, can't
  1159. * get an interrupt when carrier is detected.
  1160. */
  1161. static void xm_link_timer(unsigned long arg)
  1162. {
  1163. struct skge_port *skge = (struct skge_port *) arg;
  1164. struct net_device *dev = skge->netdev;
  1165. struct skge_hw *hw = skge->hw;
  1166. int port = skge->port;
  1167. if (!netif_running(dev))
  1168. return;
  1169. if (netif_carrier_ok(dev)) {
  1170. xm_read16(hw, port, XM_ISRC);
  1171. if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
  1172. goto nochange;
  1173. } else {
  1174. if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1175. goto nochange;
  1176. xm_read16(hw, port, XM_ISRC);
  1177. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1178. goto nochange;
  1179. }
  1180. spin_lock(&hw->phy_lock);
  1181. xm_check_link(dev);
  1182. spin_unlock(&hw->phy_lock);
  1183. nochange:
  1184. if (netif_running(dev))
  1185. mod_timer(&skge->link_timer, jiffies + LINK_HZ);
  1186. }
  1187. static void genesis_mac_init(struct skge_hw *hw, int port)
  1188. {
  1189. struct net_device *dev = hw->dev[port];
  1190. struct skge_port *skge = netdev_priv(dev);
  1191. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1192. int i;
  1193. u32 r;
  1194. const u8 zero[6] = { 0 };
  1195. for (i = 0; i < 10; i++) {
  1196. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1197. MFF_SET_MAC_RST);
  1198. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1199. goto reset_ok;
  1200. udelay(1);
  1201. }
  1202. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1203. reset_ok:
  1204. /* Unreset the XMAC. */
  1205. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1206. /*
  1207. * Perform additional initialization for external PHYs,
  1208. * namely for the 1000baseTX cards that use the XMAC's
  1209. * GMII mode.
  1210. */
  1211. if (hw->phy_type != SK_PHY_XMAC) {
  1212. /* Take external Phy out of reset */
  1213. r = skge_read32(hw, B2_GP_IO);
  1214. if (port == 0)
  1215. r |= GP_DIR_0|GP_IO_0;
  1216. else
  1217. r |= GP_DIR_2|GP_IO_2;
  1218. skge_write32(hw, B2_GP_IO, r);
  1219. /* Enable GMII interface */
  1220. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1221. }
  1222. switch(hw->phy_type) {
  1223. case SK_PHY_XMAC:
  1224. xm_phy_init(skge);
  1225. break;
  1226. case SK_PHY_BCOM:
  1227. bcom_phy_init(skge);
  1228. bcom_check_link(hw, port);
  1229. }
  1230. /* Set Station Address */
  1231. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1232. /* We don't use match addresses so clear */
  1233. for (i = 1; i < 16; i++)
  1234. xm_outaddr(hw, port, XM_EXM(i), zero);
  1235. /* Clear MIB counters */
  1236. xm_write16(hw, port, XM_STAT_CMD,
  1237. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1238. /* Clear two times according to Errata #3 */
  1239. xm_write16(hw, port, XM_STAT_CMD,
  1240. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1241. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1242. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1243. /* We don't need the FCS appended to the packet. */
  1244. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1245. if (jumbo)
  1246. r |= XM_RX_BIG_PK_OK;
  1247. if (skge->duplex == DUPLEX_HALF) {
  1248. /*
  1249. * If in manual half duplex mode the other side might be in
  1250. * full duplex mode, so ignore if a carrier extension is not seen
  1251. * on frames received
  1252. */
  1253. r |= XM_RX_DIS_CEXT;
  1254. }
  1255. xm_write16(hw, port, XM_RX_CMD, r);
  1256. /* We want short frames padded to 60 bytes. */
  1257. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1258. /*
  1259. * Bump up the transmit threshold. This helps hold off transmit
  1260. * underruns when we're blasting traffic from both ports at once.
  1261. */
  1262. xm_write16(hw, port, XM_TX_THR, 512);
  1263. /*
  1264. * Enable the reception of all error frames. This is is
  1265. * a necessary evil due to the design of the XMAC. The
  1266. * XMAC's receive FIFO is only 8K in size, however jumbo
  1267. * frames can be up to 9000 bytes in length. When bad
  1268. * frame filtering is enabled, the XMAC's RX FIFO operates
  1269. * in 'store and forward' mode. For this to work, the
  1270. * entire frame has to fit into the FIFO, but that means
  1271. * that jumbo frames larger than 8192 bytes will be
  1272. * truncated. Disabling all bad frame filtering causes
  1273. * the RX FIFO to operate in streaming mode, in which
  1274. * case the XMAC will start transferring frames out of the
  1275. * RX FIFO as soon as the FIFO threshold is reached.
  1276. */
  1277. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1278. /*
  1279. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1280. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1281. * and 'Octets Rx OK Hi Cnt Ov'.
  1282. */
  1283. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1284. /*
  1285. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1286. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1287. * and 'Octets Tx OK Hi Cnt Ov'.
  1288. */
  1289. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1290. /* Configure MAC arbiter */
  1291. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1292. /* configure timeout values */
  1293. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1294. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1295. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1296. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1297. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1298. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1299. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1300. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1301. /* Configure Rx MAC FIFO */
  1302. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1303. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1304. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1305. /* Configure Tx MAC FIFO */
  1306. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1307. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1308. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1309. if (jumbo) {
  1310. /* Enable frame flushing if jumbo frames used */
  1311. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1312. } else {
  1313. /* enable timeout timers if normal frames */
  1314. skge_write16(hw, B3_PA_CTRL,
  1315. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1316. }
  1317. }
  1318. static void genesis_stop(struct skge_port *skge)
  1319. {
  1320. struct skge_hw *hw = skge->hw;
  1321. int port = skge->port;
  1322. u32 reg;
  1323. genesis_reset(hw, port);
  1324. /* Clear Tx packet arbiter timeout IRQ */
  1325. skge_write16(hw, B3_PA_CTRL,
  1326. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1327. /*
  1328. * If the transfer sticks at the MAC the STOP command will not
  1329. * terminate if we don't flush the XMAC's transmit FIFO !
  1330. */
  1331. xm_write32(hw, port, XM_MODE,
  1332. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1333. /* Reset the MAC */
  1334. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1335. /* For external PHYs there must be special handling */
  1336. if (hw->phy_type != SK_PHY_XMAC) {
  1337. reg = skge_read32(hw, B2_GP_IO);
  1338. if (port == 0) {
  1339. reg |= GP_DIR_0;
  1340. reg &= ~GP_IO_0;
  1341. } else {
  1342. reg |= GP_DIR_2;
  1343. reg &= ~GP_IO_2;
  1344. }
  1345. skge_write32(hw, B2_GP_IO, reg);
  1346. skge_read32(hw, B2_GP_IO);
  1347. }
  1348. xm_write16(hw, port, XM_MMU_CMD,
  1349. xm_read16(hw, port, XM_MMU_CMD)
  1350. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1351. xm_read16(hw, port, XM_MMU_CMD);
  1352. }
  1353. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1354. {
  1355. struct skge_hw *hw = skge->hw;
  1356. int port = skge->port;
  1357. int i;
  1358. unsigned long timeout = jiffies + HZ;
  1359. xm_write16(hw, port,
  1360. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1361. /* wait for update to complete */
  1362. while (xm_read16(hw, port, XM_STAT_CMD)
  1363. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1364. if (time_after(jiffies, timeout))
  1365. break;
  1366. udelay(10);
  1367. }
  1368. /* special case for 64 bit octet counter */
  1369. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1370. | xm_read32(hw, port, XM_TXO_OK_LO);
  1371. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1372. | xm_read32(hw, port, XM_RXO_OK_LO);
  1373. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1374. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1375. }
  1376. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1377. {
  1378. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1379. u16 status = xm_read16(hw, port, XM_ISRC);
  1380. if (netif_msg_intr(skge))
  1381. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1382. skge->netdev->name, status);
  1383. if (hw->phy_type == SK_PHY_XMAC &&
  1384. (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
  1385. xm_link_down(hw, port);
  1386. if (status & XM_IS_TXF_UR) {
  1387. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1388. ++skge->net_stats.tx_fifo_errors;
  1389. }
  1390. if (status & XM_IS_RXF_OV) {
  1391. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1392. ++skge->net_stats.rx_fifo_errors;
  1393. }
  1394. }
  1395. static void genesis_link_up(struct skge_port *skge)
  1396. {
  1397. struct skge_hw *hw = skge->hw;
  1398. int port = skge->port;
  1399. u16 cmd, msk;
  1400. u32 mode;
  1401. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1402. /*
  1403. * enabling pause frame reception is required for 1000BT
  1404. * because the XMAC is not reset if the link is going down
  1405. */
  1406. if (skge->flow_status == FLOW_STAT_NONE ||
  1407. skge->flow_status == FLOW_STAT_LOC_SEND)
  1408. /* Disable Pause Frame Reception */
  1409. cmd |= XM_MMU_IGN_PF;
  1410. else
  1411. /* Enable Pause Frame Reception */
  1412. cmd &= ~XM_MMU_IGN_PF;
  1413. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1414. mode = xm_read32(hw, port, XM_MODE);
  1415. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1416. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1417. /*
  1418. * Configure Pause Frame Generation
  1419. * Use internal and external Pause Frame Generation.
  1420. * Sending pause frames is edge triggered.
  1421. * Send a Pause frame with the maximum pause time if
  1422. * internal oder external FIFO full condition occurs.
  1423. * Send a zero pause time frame to re-start transmission.
  1424. */
  1425. /* XM_PAUSE_DA = '010000C28001' (default) */
  1426. /* XM_MAC_PTIME = 0xffff (maximum) */
  1427. /* remember this value is defined in big endian (!) */
  1428. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1429. mode |= XM_PAUSE_MODE;
  1430. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1431. } else {
  1432. /*
  1433. * disable pause frame generation is required for 1000BT
  1434. * because the XMAC is not reset if the link is going down
  1435. */
  1436. /* Disable Pause Mode in Mode Register */
  1437. mode &= ~XM_PAUSE_MODE;
  1438. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1439. }
  1440. xm_write32(hw, port, XM_MODE, mode);
  1441. msk = XM_DEF_MSK;
  1442. if (hw->phy_type != SK_PHY_XMAC)
  1443. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1444. xm_write16(hw, port, XM_IMSK, msk);
  1445. xm_read16(hw, port, XM_ISRC);
  1446. /* get MMU Command Reg. */
  1447. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1448. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1449. cmd |= XM_MMU_GMII_FD;
  1450. /*
  1451. * Workaround BCOM Errata (#10523) for all BCom Phys
  1452. * Enable Power Management after link up
  1453. */
  1454. if (hw->phy_type == SK_PHY_BCOM) {
  1455. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1456. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1457. & ~PHY_B_AC_DIS_PM);
  1458. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1459. }
  1460. /* enable Rx/Tx */
  1461. xm_write16(hw, port, XM_MMU_CMD,
  1462. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1463. skge_link_up(skge);
  1464. }
  1465. static inline void bcom_phy_intr(struct skge_port *skge)
  1466. {
  1467. struct skge_hw *hw = skge->hw;
  1468. int port = skge->port;
  1469. u16 isrc;
  1470. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1471. if (netif_msg_intr(skge))
  1472. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1473. skge->netdev->name, isrc);
  1474. if (isrc & PHY_B_IS_PSE)
  1475. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1476. hw->dev[port]->name);
  1477. /* Workaround BCom Errata:
  1478. * enable and disable loopback mode if "NO HCD" occurs.
  1479. */
  1480. if (isrc & PHY_B_IS_NO_HDCL) {
  1481. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1482. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1483. ctrl | PHY_CT_LOOP);
  1484. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1485. ctrl & ~PHY_CT_LOOP);
  1486. }
  1487. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1488. bcom_check_link(hw, port);
  1489. }
  1490. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1491. {
  1492. int i;
  1493. gma_write16(hw, port, GM_SMI_DATA, val);
  1494. gma_write16(hw, port, GM_SMI_CTRL,
  1495. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1496. for (i = 0; i < PHY_RETRIES; i++) {
  1497. udelay(1);
  1498. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1499. return 0;
  1500. }
  1501. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1502. hw->dev[port]->name);
  1503. return -EIO;
  1504. }
  1505. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1506. {
  1507. int i;
  1508. gma_write16(hw, port, GM_SMI_CTRL,
  1509. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1510. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1511. for (i = 0; i < PHY_RETRIES; i++) {
  1512. udelay(1);
  1513. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1514. goto ready;
  1515. }
  1516. return -ETIMEDOUT;
  1517. ready:
  1518. *val = gma_read16(hw, port, GM_SMI_DATA);
  1519. return 0;
  1520. }
  1521. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1522. {
  1523. u16 v = 0;
  1524. if (__gm_phy_read(hw, port, reg, &v))
  1525. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1526. hw->dev[port]->name);
  1527. return v;
  1528. }
  1529. /* Marvell Phy Initialization */
  1530. static void yukon_init(struct skge_hw *hw, int port)
  1531. {
  1532. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1533. u16 ctrl, ct1000, adv;
  1534. if (skge->autoneg == AUTONEG_ENABLE) {
  1535. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1536. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1537. PHY_M_EC_MAC_S_MSK);
  1538. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1539. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1540. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1541. }
  1542. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1543. if (skge->autoneg == AUTONEG_DISABLE)
  1544. ctrl &= ~PHY_CT_ANE;
  1545. ctrl |= PHY_CT_RESET;
  1546. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1547. ctrl = 0;
  1548. ct1000 = 0;
  1549. adv = PHY_AN_CSMA;
  1550. if (skge->autoneg == AUTONEG_ENABLE) {
  1551. if (hw->copper) {
  1552. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1553. ct1000 |= PHY_M_1000C_AFD;
  1554. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1555. ct1000 |= PHY_M_1000C_AHD;
  1556. if (skge->advertising & ADVERTISED_100baseT_Full)
  1557. adv |= PHY_M_AN_100_FD;
  1558. if (skge->advertising & ADVERTISED_100baseT_Half)
  1559. adv |= PHY_M_AN_100_HD;
  1560. if (skge->advertising & ADVERTISED_10baseT_Full)
  1561. adv |= PHY_M_AN_10_FD;
  1562. if (skge->advertising & ADVERTISED_10baseT_Half)
  1563. adv |= PHY_M_AN_10_HD;
  1564. /* Set Flow-control capabilities */
  1565. adv |= phy_pause_map[skge->flow_control];
  1566. } else {
  1567. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1568. adv |= PHY_M_AN_1000X_AFD;
  1569. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1570. adv |= PHY_M_AN_1000X_AHD;
  1571. adv |= fiber_pause_map[skge->flow_control];
  1572. }
  1573. /* Restart Auto-negotiation */
  1574. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1575. } else {
  1576. /* forced speed/duplex settings */
  1577. ct1000 = PHY_M_1000C_MSE;
  1578. if (skge->duplex == DUPLEX_FULL)
  1579. ctrl |= PHY_CT_DUP_MD;
  1580. switch (skge->speed) {
  1581. case SPEED_1000:
  1582. ctrl |= PHY_CT_SP1000;
  1583. break;
  1584. case SPEED_100:
  1585. ctrl |= PHY_CT_SP100;
  1586. break;
  1587. }
  1588. ctrl |= PHY_CT_RESET;
  1589. }
  1590. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1591. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1592. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1593. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1594. if (skge->autoneg == AUTONEG_ENABLE)
  1595. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1596. else
  1597. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1598. }
  1599. static void yukon_reset(struct skge_hw *hw, int port)
  1600. {
  1601. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1602. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1603. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1604. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1605. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1606. gma_write16(hw, port, GM_RX_CTRL,
  1607. gma_read16(hw, port, GM_RX_CTRL)
  1608. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1609. }
  1610. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1611. static int is_yukon_lite_a0(struct skge_hw *hw)
  1612. {
  1613. u32 reg;
  1614. int ret;
  1615. if (hw->chip_id != CHIP_ID_YUKON)
  1616. return 0;
  1617. reg = skge_read32(hw, B2_FAR);
  1618. skge_write8(hw, B2_FAR + 3, 0xff);
  1619. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1620. skge_write32(hw, B2_FAR, reg);
  1621. return ret;
  1622. }
  1623. static void yukon_mac_init(struct skge_hw *hw, int port)
  1624. {
  1625. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1626. int i;
  1627. u32 reg;
  1628. const u8 *addr = hw->dev[port]->dev_addr;
  1629. /* WA code for COMA mode -- set PHY reset */
  1630. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1631. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1632. reg = skge_read32(hw, B2_GP_IO);
  1633. reg |= GP_DIR_9 | GP_IO_9;
  1634. skge_write32(hw, B2_GP_IO, reg);
  1635. }
  1636. /* hard reset */
  1637. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1638. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1639. /* WA code for COMA mode -- clear PHY reset */
  1640. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1641. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1642. reg = skge_read32(hw, B2_GP_IO);
  1643. reg |= GP_DIR_9;
  1644. reg &= ~GP_IO_9;
  1645. skge_write32(hw, B2_GP_IO, reg);
  1646. }
  1647. /* Set hardware config mode */
  1648. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1649. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1650. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1651. /* Clear GMC reset */
  1652. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1653. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1654. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1655. if (skge->autoneg == AUTONEG_DISABLE) {
  1656. reg = GM_GPCR_AU_ALL_DIS;
  1657. gma_write16(hw, port, GM_GP_CTRL,
  1658. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1659. switch (skge->speed) {
  1660. case SPEED_1000:
  1661. reg &= ~GM_GPCR_SPEED_100;
  1662. reg |= GM_GPCR_SPEED_1000;
  1663. break;
  1664. case SPEED_100:
  1665. reg &= ~GM_GPCR_SPEED_1000;
  1666. reg |= GM_GPCR_SPEED_100;
  1667. break;
  1668. case SPEED_10:
  1669. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1670. break;
  1671. }
  1672. if (skge->duplex == DUPLEX_FULL)
  1673. reg |= GM_GPCR_DUP_FULL;
  1674. } else
  1675. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1676. switch (skge->flow_control) {
  1677. case FLOW_MODE_NONE:
  1678. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1679. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1680. break;
  1681. case FLOW_MODE_LOC_SEND:
  1682. /* disable Rx flow-control */
  1683. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1684. break;
  1685. case FLOW_MODE_SYMMETRIC:
  1686. case FLOW_MODE_SYM_OR_REM:
  1687. /* enable Tx & Rx flow-control */
  1688. break;
  1689. }
  1690. gma_write16(hw, port, GM_GP_CTRL, reg);
  1691. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1692. yukon_init(hw, port);
  1693. /* MIB clear */
  1694. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1695. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1696. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1697. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1698. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1699. /* transmit control */
  1700. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1701. /* receive control reg: unicast + multicast + no FCS */
  1702. gma_write16(hw, port, GM_RX_CTRL,
  1703. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1704. /* transmit flow control */
  1705. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1706. /* transmit parameter */
  1707. gma_write16(hw, port, GM_TX_PARAM,
  1708. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1709. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1710. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1711. /* serial mode register */
  1712. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1713. if (hw->dev[port]->mtu > 1500)
  1714. reg |= GM_SMOD_JUMBO_ENA;
  1715. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1716. /* physical address: used for pause frames */
  1717. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1718. /* virtual address for data */
  1719. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1720. /* enable interrupt mask for counter overflows */
  1721. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1722. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1723. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1724. /* Initialize Mac Fifo */
  1725. /* Configure Rx MAC FIFO */
  1726. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1727. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1728. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1729. if (is_yukon_lite_a0(hw))
  1730. reg &= ~GMF_RX_F_FL_ON;
  1731. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1732. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1733. /*
  1734. * because Pause Packet Truncation in GMAC is not working
  1735. * we have to increase the Flush Threshold to 64 bytes
  1736. * in order to flush pause packets in Rx FIFO on Yukon-1
  1737. */
  1738. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1739. /* Configure Tx MAC FIFO */
  1740. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1741. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1742. }
  1743. /* Go into power down mode */
  1744. static void yukon_suspend(struct skge_hw *hw, int port)
  1745. {
  1746. u16 ctrl;
  1747. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1748. ctrl |= PHY_M_PC_POL_R_DIS;
  1749. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1750. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1751. ctrl |= PHY_CT_RESET;
  1752. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1753. /* switch IEEE compatible power down mode on */
  1754. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1755. ctrl |= PHY_CT_PDOWN;
  1756. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1757. }
  1758. static void yukon_stop(struct skge_port *skge)
  1759. {
  1760. struct skge_hw *hw = skge->hw;
  1761. int port = skge->port;
  1762. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1763. yukon_reset(hw, port);
  1764. gma_write16(hw, port, GM_GP_CTRL,
  1765. gma_read16(hw, port, GM_GP_CTRL)
  1766. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1767. gma_read16(hw, port, GM_GP_CTRL);
  1768. yukon_suspend(hw, port);
  1769. /* set GPHY Control reset */
  1770. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1771. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1772. }
  1773. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1774. {
  1775. struct skge_hw *hw = skge->hw;
  1776. int port = skge->port;
  1777. int i;
  1778. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1779. | gma_read32(hw, port, GM_TXO_OK_LO);
  1780. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1781. | gma_read32(hw, port, GM_RXO_OK_LO);
  1782. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1783. data[i] = gma_read32(hw, port,
  1784. skge_stats[i].gma_offset);
  1785. }
  1786. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1787. {
  1788. struct net_device *dev = hw->dev[port];
  1789. struct skge_port *skge = netdev_priv(dev);
  1790. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1791. if (netif_msg_intr(skge))
  1792. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1793. dev->name, status);
  1794. if (status & GM_IS_RX_FF_OR) {
  1795. ++skge->net_stats.rx_fifo_errors;
  1796. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1797. }
  1798. if (status & GM_IS_TX_FF_UR) {
  1799. ++skge->net_stats.tx_fifo_errors;
  1800. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1801. }
  1802. }
  1803. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1804. {
  1805. switch (aux & PHY_M_PS_SPEED_MSK) {
  1806. case PHY_M_PS_SPEED_1000:
  1807. return SPEED_1000;
  1808. case PHY_M_PS_SPEED_100:
  1809. return SPEED_100;
  1810. default:
  1811. return SPEED_10;
  1812. }
  1813. }
  1814. static void yukon_link_up(struct skge_port *skge)
  1815. {
  1816. struct skge_hw *hw = skge->hw;
  1817. int port = skge->port;
  1818. u16 reg;
  1819. /* Enable Transmit FIFO Underrun */
  1820. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1821. reg = gma_read16(hw, port, GM_GP_CTRL);
  1822. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1823. reg |= GM_GPCR_DUP_FULL;
  1824. /* enable Rx/Tx */
  1825. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1826. gma_write16(hw, port, GM_GP_CTRL, reg);
  1827. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1828. skge_link_up(skge);
  1829. }
  1830. static void yukon_link_down(struct skge_port *skge)
  1831. {
  1832. struct skge_hw *hw = skge->hw;
  1833. int port = skge->port;
  1834. u16 ctrl;
  1835. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1836. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1837. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1838. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1839. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1840. ctrl |= PHY_M_AN_ASP;
  1841. /* restore Asymmetric Pause bit */
  1842. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1843. }
  1844. skge_link_down(skge);
  1845. yukon_init(hw, port);
  1846. }
  1847. static void yukon_phy_intr(struct skge_port *skge)
  1848. {
  1849. struct skge_hw *hw = skge->hw;
  1850. int port = skge->port;
  1851. const char *reason = NULL;
  1852. u16 istatus, phystat;
  1853. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1854. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1855. if (netif_msg_intr(skge))
  1856. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1857. skge->netdev->name, istatus, phystat);
  1858. if (istatus & PHY_M_IS_AN_COMPL) {
  1859. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1860. & PHY_M_AN_RF) {
  1861. reason = "remote fault";
  1862. goto failed;
  1863. }
  1864. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1865. reason = "master/slave fault";
  1866. goto failed;
  1867. }
  1868. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1869. reason = "speed/duplex";
  1870. goto failed;
  1871. }
  1872. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1873. ? DUPLEX_FULL : DUPLEX_HALF;
  1874. skge->speed = yukon_speed(hw, phystat);
  1875. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1876. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1877. case PHY_M_PS_PAUSE_MSK:
  1878. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1879. break;
  1880. case PHY_M_PS_RX_P_EN:
  1881. skge->flow_status = FLOW_STAT_REM_SEND;
  1882. break;
  1883. case PHY_M_PS_TX_P_EN:
  1884. skge->flow_status = FLOW_STAT_LOC_SEND;
  1885. break;
  1886. default:
  1887. skge->flow_status = FLOW_STAT_NONE;
  1888. }
  1889. if (skge->flow_status == FLOW_STAT_NONE ||
  1890. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1891. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1892. else
  1893. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1894. yukon_link_up(skge);
  1895. return;
  1896. }
  1897. if (istatus & PHY_M_IS_LSP_CHANGE)
  1898. skge->speed = yukon_speed(hw, phystat);
  1899. if (istatus & PHY_M_IS_DUP_CHANGE)
  1900. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1901. if (istatus & PHY_M_IS_LST_CHANGE) {
  1902. if (phystat & PHY_M_PS_LINK_UP)
  1903. yukon_link_up(skge);
  1904. else
  1905. yukon_link_down(skge);
  1906. }
  1907. return;
  1908. failed:
  1909. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1910. skge->netdev->name, reason);
  1911. /* XXX restart autonegotiation? */
  1912. }
  1913. static void skge_phy_reset(struct skge_port *skge)
  1914. {
  1915. struct skge_hw *hw = skge->hw;
  1916. int port = skge->port;
  1917. struct net_device *dev = hw->dev[port];
  1918. netif_stop_queue(skge->netdev);
  1919. netif_carrier_off(skge->netdev);
  1920. spin_lock_bh(&hw->phy_lock);
  1921. if (hw->chip_id == CHIP_ID_GENESIS) {
  1922. genesis_reset(hw, port);
  1923. genesis_mac_init(hw, port);
  1924. } else {
  1925. yukon_reset(hw, port);
  1926. yukon_init(hw, port);
  1927. }
  1928. spin_unlock_bh(&hw->phy_lock);
  1929. dev->set_multicast_list(dev);
  1930. }
  1931. /* Basic MII support */
  1932. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1933. {
  1934. struct mii_ioctl_data *data = if_mii(ifr);
  1935. struct skge_port *skge = netdev_priv(dev);
  1936. struct skge_hw *hw = skge->hw;
  1937. int err = -EOPNOTSUPP;
  1938. if (!netif_running(dev))
  1939. return -ENODEV; /* Phy still in reset */
  1940. switch(cmd) {
  1941. case SIOCGMIIPHY:
  1942. data->phy_id = hw->phy_addr;
  1943. /* fallthru */
  1944. case SIOCGMIIREG: {
  1945. u16 val = 0;
  1946. spin_lock_bh(&hw->phy_lock);
  1947. if (hw->chip_id == CHIP_ID_GENESIS)
  1948. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1949. else
  1950. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1951. spin_unlock_bh(&hw->phy_lock);
  1952. data->val_out = val;
  1953. break;
  1954. }
  1955. case SIOCSMIIREG:
  1956. if (!capable(CAP_NET_ADMIN))
  1957. return -EPERM;
  1958. spin_lock_bh(&hw->phy_lock);
  1959. if (hw->chip_id == CHIP_ID_GENESIS)
  1960. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1961. data->val_in);
  1962. else
  1963. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1964. data->val_in);
  1965. spin_unlock_bh(&hw->phy_lock);
  1966. break;
  1967. }
  1968. return err;
  1969. }
  1970. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1971. {
  1972. u32 end;
  1973. start /= 8;
  1974. len /= 8;
  1975. end = start + len - 1;
  1976. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1977. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1978. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1979. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1980. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1981. if (q == Q_R1 || q == Q_R2) {
  1982. /* Set thresholds on receive queue's */
  1983. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1984. start + (2*len)/3);
  1985. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1986. start + (len/3));
  1987. } else {
  1988. /* Enable store & forward on Tx queue's because
  1989. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1990. */
  1991. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1992. }
  1993. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1994. }
  1995. /* Setup Bus Memory Interface */
  1996. static void skge_qset(struct skge_port *skge, u16 q,
  1997. const struct skge_element *e)
  1998. {
  1999. struct skge_hw *hw = skge->hw;
  2000. u32 watermark = 0x600;
  2001. u64 base = skge->dma + (e->desc - skge->mem);
  2002. /* optimization to reduce window on 32bit/33mhz */
  2003. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  2004. watermark /= 2;
  2005. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  2006. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  2007. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  2008. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  2009. }
  2010. static int skge_up(struct net_device *dev)
  2011. {
  2012. struct skge_port *skge = netdev_priv(dev);
  2013. struct skge_hw *hw = skge->hw;
  2014. int port = skge->port;
  2015. u32 chunk, ram_addr;
  2016. size_t rx_size, tx_size;
  2017. int err;
  2018. if (!is_valid_ether_addr(dev->dev_addr))
  2019. return -EINVAL;
  2020. if (netif_msg_ifup(skge))
  2021. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  2022. if (dev->mtu > RX_BUF_SIZE)
  2023. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  2024. else
  2025. skge->rx_buf_size = RX_BUF_SIZE;
  2026. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  2027. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  2028. skge->mem_size = tx_size + rx_size;
  2029. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  2030. if (!skge->mem)
  2031. return -ENOMEM;
  2032. BUG_ON(skge->dma & 7);
  2033. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  2034. dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
  2035. err = -EINVAL;
  2036. goto free_pci_mem;
  2037. }
  2038. memset(skge->mem, 0, skge->mem_size);
  2039. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  2040. if (err)
  2041. goto free_pci_mem;
  2042. err = skge_rx_fill(dev);
  2043. if (err)
  2044. goto free_rx_ring;
  2045. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  2046. skge->dma + rx_size);
  2047. if (err)
  2048. goto free_rx_ring;
  2049. /* Initialize MAC */
  2050. spin_lock_bh(&hw->phy_lock);
  2051. if (hw->chip_id == CHIP_ID_GENESIS)
  2052. genesis_mac_init(hw, port);
  2053. else
  2054. yukon_mac_init(hw, port);
  2055. spin_unlock_bh(&hw->phy_lock);
  2056. /* Configure RAMbuffers */
  2057. chunk = hw->ram_size / ((hw->ports + 1)*2);
  2058. ram_addr = hw->ram_offset + 2 * chunk * port;
  2059. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2060. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2061. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2062. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2063. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2064. /* Start receiver BMU */
  2065. wmb();
  2066. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2067. skge_led(skge, LED_MODE_ON);
  2068. spin_lock_irq(&hw->hw_lock);
  2069. hw->intr_mask |= portmask[port];
  2070. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2071. spin_unlock_irq(&hw->hw_lock);
  2072. netif_poll_enable(dev);
  2073. return 0;
  2074. free_rx_ring:
  2075. skge_rx_clean(skge);
  2076. kfree(skge->rx_ring.start);
  2077. free_pci_mem:
  2078. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2079. skge->mem = NULL;
  2080. return err;
  2081. }
  2082. static int skge_down(struct net_device *dev)
  2083. {
  2084. struct skge_port *skge = netdev_priv(dev);
  2085. struct skge_hw *hw = skge->hw;
  2086. int port = skge->port;
  2087. if (skge->mem == NULL)
  2088. return 0;
  2089. if (netif_msg_ifdown(skge))
  2090. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2091. netif_stop_queue(dev);
  2092. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2093. del_timer_sync(&skge->link_timer);
  2094. netif_poll_disable(dev);
  2095. spin_lock_irq(&hw->hw_lock);
  2096. hw->intr_mask &= ~portmask[port];
  2097. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2098. spin_unlock_irq(&hw->hw_lock);
  2099. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2100. if (hw->chip_id == CHIP_ID_GENESIS)
  2101. genesis_stop(skge);
  2102. else
  2103. yukon_stop(skge);
  2104. /* Stop transmitter */
  2105. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2106. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2107. RB_RST_SET|RB_DIS_OP_MD);
  2108. /* Disable Force Sync bit and Enable Alloc bit */
  2109. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2110. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2111. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2112. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2113. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2114. /* Reset PCI FIFO */
  2115. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2116. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2117. /* Reset the RAM Buffer async Tx queue */
  2118. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2119. /* stop receiver */
  2120. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2121. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2122. RB_RST_SET|RB_DIS_OP_MD);
  2123. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2124. if (hw->chip_id == CHIP_ID_GENESIS) {
  2125. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2126. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2127. } else {
  2128. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2129. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2130. }
  2131. skge_led(skge, LED_MODE_OFF);
  2132. netif_tx_lock_bh(dev);
  2133. skge_tx_clean(dev);
  2134. netif_tx_unlock_bh(dev);
  2135. skge_rx_clean(skge);
  2136. kfree(skge->rx_ring.start);
  2137. kfree(skge->tx_ring.start);
  2138. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2139. skge->mem = NULL;
  2140. return 0;
  2141. }
  2142. static inline int skge_avail(const struct skge_ring *ring)
  2143. {
  2144. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2145. + (ring->to_clean - ring->to_use) - 1;
  2146. }
  2147. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2148. {
  2149. struct skge_port *skge = netdev_priv(dev);
  2150. struct skge_hw *hw = skge->hw;
  2151. struct skge_element *e;
  2152. struct skge_tx_desc *td;
  2153. int i;
  2154. u32 control, len;
  2155. u64 map;
  2156. if (skb_padto(skb, ETH_ZLEN))
  2157. return NETDEV_TX_OK;
  2158. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2159. return NETDEV_TX_BUSY;
  2160. e = skge->tx_ring.to_use;
  2161. td = e->desc;
  2162. BUG_ON(td->control & BMU_OWN);
  2163. e->skb = skb;
  2164. len = skb_headlen(skb);
  2165. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2166. pci_unmap_addr_set(e, mapaddr, map);
  2167. pci_unmap_len_set(e, maplen, len);
  2168. td->dma_lo = map;
  2169. td->dma_hi = map >> 32;
  2170. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2171. int offset = skb->h.raw - skb->data;
  2172. /* This seems backwards, but it is what the sk98lin
  2173. * does. Looks like hardware is wrong?
  2174. */
  2175. if (skb->h.ipiph->protocol == IPPROTO_UDP
  2176. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2177. control = BMU_TCP_CHECK;
  2178. else
  2179. control = BMU_UDP_CHECK;
  2180. td->csum_offs = 0;
  2181. td->csum_start = offset;
  2182. td->csum_write = offset + skb->csum_offset;
  2183. } else
  2184. control = BMU_CHECK;
  2185. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2186. control |= BMU_EOF| BMU_IRQ_EOF;
  2187. else {
  2188. struct skge_tx_desc *tf = td;
  2189. control |= BMU_STFWD;
  2190. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2191. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2192. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2193. frag->size, PCI_DMA_TODEVICE);
  2194. e = e->next;
  2195. e->skb = skb;
  2196. tf = e->desc;
  2197. BUG_ON(tf->control & BMU_OWN);
  2198. tf->dma_lo = map;
  2199. tf->dma_hi = (u64) map >> 32;
  2200. pci_unmap_addr_set(e, mapaddr, map);
  2201. pci_unmap_len_set(e, maplen, frag->size);
  2202. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2203. }
  2204. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2205. }
  2206. /* Make sure all the descriptors written */
  2207. wmb();
  2208. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2209. wmb();
  2210. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2211. if (unlikely(netif_msg_tx_queued(skge)))
  2212. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2213. dev->name, e - skge->tx_ring.start, skb->len);
  2214. skge->tx_ring.to_use = e->next;
  2215. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2216. pr_debug("%s: transmit queue full\n", dev->name);
  2217. netif_stop_queue(dev);
  2218. }
  2219. dev->trans_start = jiffies;
  2220. return NETDEV_TX_OK;
  2221. }
  2222. /* Free resources associated with this reing element */
  2223. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2224. u32 control)
  2225. {
  2226. struct pci_dev *pdev = skge->hw->pdev;
  2227. BUG_ON(!e->skb);
  2228. /* skb header vs. fragment */
  2229. if (control & BMU_STF)
  2230. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2231. pci_unmap_len(e, maplen),
  2232. PCI_DMA_TODEVICE);
  2233. else
  2234. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2235. pci_unmap_len(e, maplen),
  2236. PCI_DMA_TODEVICE);
  2237. if (control & BMU_EOF) {
  2238. if (unlikely(netif_msg_tx_done(skge)))
  2239. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2240. skge->netdev->name, e - skge->tx_ring.start);
  2241. dev_kfree_skb(e->skb);
  2242. }
  2243. e->skb = NULL;
  2244. }
  2245. /* Free all buffers in transmit ring */
  2246. static void skge_tx_clean(struct net_device *dev)
  2247. {
  2248. struct skge_port *skge = netdev_priv(dev);
  2249. struct skge_element *e;
  2250. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2251. struct skge_tx_desc *td = e->desc;
  2252. skge_tx_free(skge, e, td->control);
  2253. td->control = 0;
  2254. }
  2255. skge->tx_ring.to_clean = e;
  2256. netif_wake_queue(dev);
  2257. }
  2258. static void skge_tx_timeout(struct net_device *dev)
  2259. {
  2260. struct skge_port *skge = netdev_priv(dev);
  2261. if (netif_msg_timer(skge))
  2262. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2263. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2264. skge_tx_clean(dev);
  2265. }
  2266. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2267. {
  2268. int err;
  2269. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2270. return -EINVAL;
  2271. if (!netif_running(dev)) {
  2272. dev->mtu = new_mtu;
  2273. return 0;
  2274. }
  2275. skge_down(dev);
  2276. dev->mtu = new_mtu;
  2277. err = skge_up(dev);
  2278. if (err)
  2279. dev_close(dev);
  2280. return err;
  2281. }
  2282. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2283. static void genesis_add_filter(u8 filter[8], const u8 *addr)
  2284. {
  2285. u32 crc, bit;
  2286. crc = ether_crc_le(ETH_ALEN, addr);
  2287. bit = ~crc & 0x3f;
  2288. filter[bit/8] |= 1 << (bit%8);
  2289. }
  2290. static void genesis_set_multicast(struct net_device *dev)
  2291. {
  2292. struct skge_port *skge = netdev_priv(dev);
  2293. struct skge_hw *hw = skge->hw;
  2294. int port = skge->port;
  2295. int i, count = dev->mc_count;
  2296. struct dev_mc_list *list = dev->mc_list;
  2297. u32 mode;
  2298. u8 filter[8];
  2299. mode = xm_read32(hw, port, XM_MODE);
  2300. mode |= XM_MD_ENA_HASH;
  2301. if (dev->flags & IFF_PROMISC)
  2302. mode |= XM_MD_ENA_PROM;
  2303. else
  2304. mode &= ~XM_MD_ENA_PROM;
  2305. if (dev->flags & IFF_ALLMULTI)
  2306. memset(filter, 0xff, sizeof(filter));
  2307. else {
  2308. memset(filter, 0, sizeof(filter));
  2309. if (skge->flow_status == FLOW_STAT_REM_SEND
  2310. || skge->flow_status == FLOW_STAT_SYMMETRIC)
  2311. genesis_add_filter(filter, pause_mc_addr);
  2312. for (i = 0; list && i < count; i++, list = list->next)
  2313. genesis_add_filter(filter, list->dmi_addr);
  2314. }
  2315. xm_write32(hw, port, XM_MODE, mode);
  2316. xm_outhash(hw, port, XM_HSM, filter);
  2317. }
  2318. static void yukon_add_filter(u8 filter[8], const u8 *addr)
  2319. {
  2320. u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
  2321. filter[bit/8] |= 1 << (bit%8);
  2322. }
  2323. static void yukon_set_multicast(struct net_device *dev)
  2324. {
  2325. struct skge_port *skge = netdev_priv(dev);
  2326. struct skge_hw *hw = skge->hw;
  2327. int port = skge->port;
  2328. struct dev_mc_list *list = dev->mc_list;
  2329. int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND
  2330. || skge->flow_status == FLOW_STAT_SYMMETRIC);
  2331. u16 reg;
  2332. u8 filter[8];
  2333. memset(filter, 0, sizeof(filter));
  2334. reg = gma_read16(hw, port, GM_RX_CTRL);
  2335. reg |= GM_RXCR_UCF_ENA;
  2336. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2337. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2338. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2339. memset(filter, 0xff, sizeof(filter));
  2340. else if (dev->mc_count == 0 && !rx_pause)/* no multicast */
  2341. reg &= ~GM_RXCR_MCF_ENA;
  2342. else {
  2343. int i;
  2344. reg |= GM_RXCR_MCF_ENA;
  2345. if (rx_pause)
  2346. yukon_add_filter(filter, pause_mc_addr);
  2347. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2348. yukon_add_filter(filter, list->dmi_addr);
  2349. }
  2350. gma_write16(hw, port, GM_MC_ADDR_H1,
  2351. (u16)filter[0] | ((u16)filter[1] << 8));
  2352. gma_write16(hw, port, GM_MC_ADDR_H2,
  2353. (u16)filter[2] | ((u16)filter[3] << 8));
  2354. gma_write16(hw, port, GM_MC_ADDR_H3,
  2355. (u16)filter[4] | ((u16)filter[5] << 8));
  2356. gma_write16(hw, port, GM_MC_ADDR_H4,
  2357. (u16)filter[6] | ((u16)filter[7] << 8));
  2358. gma_write16(hw, port, GM_RX_CTRL, reg);
  2359. }
  2360. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2361. {
  2362. if (hw->chip_id == CHIP_ID_GENESIS)
  2363. return status >> XMR_FS_LEN_SHIFT;
  2364. else
  2365. return status >> GMR_FS_LEN_SHIFT;
  2366. }
  2367. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2368. {
  2369. if (hw->chip_id == CHIP_ID_GENESIS)
  2370. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2371. else
  2372. return (status & GMR_FS_ANY_ERR) ||
  2373. (status & GMR_FS_RX_OK) == 0;
  2374. }
  2375. /* Get receive buffer from descriptor.
  2376. * Handles copy of small buffers and reallocation failures
  2377. */
  2378. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2379. struct skge_element *e,
  2380. u32 control, u32 status, u16 csum)
  2381. {
  2382. struct skge_port *skge = netdev_priv(dev);
  2383. struct sk_buff *skb;
  2384. u16 len = control & BMU_BBC;
  2385. if (unlikely(netif_msg_rx_status(skge)))
  2386. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2387. dev->name, e - skge->rx_ring.start,
  2388. status, len);
  2389. if (len > skge->rx_buf_size)
  2390. goto error;
  2391. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2392. goto error;
  2393. if (bad_phy_status(skge->hw, status))
  2394. goto error;
  2395. if (phy_length(skge->hw, status) != len)
  2396. goto error;
  2397. if (len < RX_COPY_THRESHOLD) {
  2398. skb = netdev_alloc_skb(dev, len + 2);
  2399. if (!skb)
  2400. goto resubmit;
  2401. skb_reserve(skb, 2);
  2402. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2403. pci_unmap_addr(e, mapaddr),
  2404. len, PCI_DMA_FROMDEVICE);
  2405. memcpy(skb->data, e->skb->data, len);
  2406. pci_dma_sync_single_for_device(skge->hw->pdev,
  2407. pci_unmap_addr(e, mapaddr),
  2408. len, PCI_DMA_FROMDEVICE);
  2409. skge_rx_reuse(e, skge->rx_buf_size);
  2410. } else {
  2411. struct sk_buff *nskb;
  2412. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2413. if (!nskb)
  2414. goto resubmit;
  2415. skb_reserve(nskb, NET_IP_ALIGN);
  2416. pci_unmap_single(skge->hw->pdev,
  2417. pci_unmap_addr(e, mapaddr),
  2418. pci_unmap_len(e, maplen),
  2419. PCI_DMA_FROMDEVICE);
  2420. skb = e->skb;
  2421. prefetch(skb->data);
  2422. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2423. }
  2424. skb_put(skb, len);
  2425. if (skge->rx_csum) {
  2426. skb->csum = csum;
  2427. skb->ip_summed = CHECKSUM_COMPLETE;
  2428. }
  2429. skb->protocol = eth_type_trans(skb, dev);
  2430. return skb;
  2431. error:
  2432. if (netif_msg_rx_err(skge))
  2433. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2434. dev->name, e - skge->rx_ring.start,
  2435. control, status);
  2436. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2437. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2438. skge->net_stats.rx_length_errors++;
  2439. if (status & XMR_FS_FRA_ERR)
  2440. skge->net_stats.rx_frame_errors++;
  2441. if (status & XMR_FS_FCS_ERR)
  2442. skge->net_stats.rx_crc_errors++;
  2443. } else {
  2444. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2445. skge->net_stats.rx_length_errors++;
  2446. if (status & GMR_FS_FRAGMENT)
  2447. skge->net_stats.rx_frame_errors++;
  2448. if (status & GMR_FS_CRC_ERR)
  2449. skge->net_stats.rx_crc_errors++;
  2450. }
  2451. resubmit:
  2452. skge_rx_reuse(e, skge->rx_buf_size);
  2453. return NULL;
  2454. }
  2455. /* Free all buffers in Tx ring which are no longer owned by device */
  2456. static void skge_tx_done(struct net_device *dev)
  2457. {
  2458. struct skge_port *skge = netdev_priv(dev);
  2459. struct skge_ring *ring = &skge->tx_ring;
  2460. struct skge_element *e;
  2461. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2462. netif_tx_lock(dev);
  2463. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2464. struct skge_tx_desc *td = e->desc;
  2465. if (td->control & BMU_OWN)
  2466. break;
  2467. skge_tx_free(skge, e, td->control);
  2468. }
  2469. skge->tx_ring.to_clean = e;
  2470. if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
  2471. netif_wake_queue(dev);
  2472. netif_tx_unlock(dev);
  2473. }
  2474. static int skge_poll(struct net_device *dev, int *budget)
  2475. {
  2476. struct skge_port *skge = netdev_priv(dev);
  2477. struct skge_hw *hw = skge->hw;
  2478. struct skge_ring *ring = &skge->rx_ring;
  2479. struct skge_element *e;
  2480. unsigned long flags;
  2481. int to_do = min(dev->quota, *budget);
  2482. int work_done = 0;
  2483. skge_tx_done(dev);
  2484. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2485. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2486. struct skge_rx_desc *rd = e->desc;
  2487. struct sk_buff *skb;
  2488. u32 control;
  2489. rmb();
  2490. control = rd->control;
  2491. if (control & BMU_OWN)
  2492. break;
  2493. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2494. if (likely(skb)) {
  2495. dev->last_rx = jiffies;
  2496. netif_receive_skb(skb);
  2497. ++work_done;
  2498. }
  2499. }
  2500. ring->to_clean = e;
  2501. /* restart receiver */
  2502. wmb();
  2503. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2504. *budget -= work_done;
  2505. dev->quota -= work_done;
  2506. if (work_done >= to_do)
  2507. return 1; /* not done */
  2508. spin_lock_irqsave(&hw->hw_lock, flags);
  2509. __netif_rx_complete(dev);
  2510. hw->intr_mask |= napimask[skge->port];
  2511. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2512. skge_read32(hw, B0_IMSK);
  2513. spin_unlock_irqrestore(&hw->hw_lock, flags);
  2514. return 0;
  2515. }
  2516. /* Parity errors seem to happen when Genesis is connected to a switch
  2517. * with no other ports present. Heartbeat error??
  2518. */
  2519. static void skge_mac_parity(struct skge_hw *hw, int port)
  2520. {
  2521. struct net_device *dev = hw->dev[port];
  2522. if (dev) {
  2523. struct skge_port *skge = netdev_priv(dev);
  2524. ++skge->net_stats.tx_heartbeat_errors;
  2525. }
  2526. if (hw->chip_id == CHIP_ID_GENESIS)
  2527. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2528. MFF_CLR_PERR);
  2529. else
  2530. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2531. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2532. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2533. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2534. }
  2535. static void skge_mac_intr(struct skge_hw *hw, int port)
  2536. {
  2537. if (hw->chip_id == CHIP_ID_GENESIS)
  2538. genesis_mac_intr(hw, port);
  2539. else
  2540. yukon_mac_intr(hw, port);
  2541. }
  2542. /* Handle device specific framing and timeout interrupts */
  2543. static void skge_error_irq(struct skge_hw *hw)
  2544. {
  2545. struct pci_dev *pdev = hw->pdev;
  2546. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2547. if (hw->chip_id == CHIP_ID_GENESIS) {
  2548. /* clear xmac errors */
  2549. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2550. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2551. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2552. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2553. } else {
  2554. /* Timestamp (unused) overflow */
  2555. if (hwstatus & IS_IRQ_TIST_OV)
  2556. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2557. }
  2558. if (hwstatus & IS_RAM_RD_PAR) {
  2559. dev_err(&pdev->dev, "Ram read data parity error\n");
  2560. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2561. }
  2562. if (hwstatus & IS_RAM_WR_PAR) {
  2563. dev_err(&pdev->dev, "Ram write data parity error\n");
  2564. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2565. }
  2566. if (hwstatus & IS_M1_PAR_ERR)
  2567. skge_mac_parity(hw, 0);
  2568. if (hwstatus & IS_M2_PAR_ERR)
  2569. skge_mac_parity(hw, 1);
  2570. if (hwstatus & IS_R1_PAR_ERR) {
  2571. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2572. hw->dev[0]->name);
  2573. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2574. }
  2575. if (hwstatus & IS_R2_PAR_ERR) {
  2576. dev_err(&pdev->dev, "%s: receive queue parity error\n",
  2577. hw->dev[1]->name);
  2578. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2579. }
  2580. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2581. u16 pci_status, pci_cmd;
  2582. pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
  2583. pci_read_config_word(pdev, PCI_STATUS, &pci_status);
  2584. dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
  2585. pci_cmd, pci_status);
  2586. /* Write the error bits back to clear them. */
  2587. pci_status &= PCI_STATUS_ERROR_BITS;
  2588. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2589. pci_write_config_word(pdev, PCI_COMMAND,
  2590. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2591. pci_write_config_word(pdev, PCI_STATUS, pci_status);
  2592. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2593. /* if error still set then just ignore it */
  2594. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2595. if (hwstatus & IS_IRQ_STAT) {
  2596. dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
  2597. hw->intr_mask &= ~IS_HW_ERR;
  2598. }
  2599. }
  2600. }
  2601. /*
  2602. * Interrupt from PHY are handled in tasklet (softirq)
  2603. * because accessing phy registers requires spin wait which might
  2604. * cause excess interrupt latency.
  2605. */
  2606. static void skge_extirq(unsigned long arg)
  2607. {
  2608. struct skge_hw *hw = (struct skge_hw *) arg;
  2609. int port;
  2610. for (port = 0; port < hw->ports; port++) {
  2611. struct net_device *dev = hw->dev[port];
  2612. if (netif_running(dev)) {
  2613. struct skge_port *skge = netdev_priv(dev);
  2614. spin_lock(&hw->phy_lock);
  2615. if (hw->chip_id != CHIP_ID_GENESIS)
  2616. yukon_phy_intr(skge);
  2617. else if (hw->phy_type == SK_PHY_BCOM)
  2618. bcom_phy_intr(skge);
  2619. spin_unlock(&hw->phy_lock);
  2620. }
  2621. }
  2622. spin_lock_irq(&hw->hw_lock);
  2623. hw->intr_mask |= IS_EXT_REG;
  2624. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2625. skge_read32(hw, B0_IMSK);
  2626. spin_unlock_irq(&hw->hw_lock);
  2627. }
  2628. static irqreturn_t skge_intr(int irq, void *dev_id)
  2629. {
  2630. struct skge_hw *hw = dev_id;
  2631. u32 status;
  2632. int handled = 0;
  2633. spin_lock(&hw->hw_lock);
  2634. /* Reading this register masks IRQ */
  2635. status = skge_read32(hw, B0_SP_ISRC);
  2636. if (status == 0 || status == ~0)
  2637. goto out;
  2638. handled = 1;
  2639. status &= hw->intr_mask;
  2640. if (status & IS_EXT_REG) {
  2641. hw->intr_mask &= ~IS_EXT_REG;
  2642. tasklet_schedule(&hw->phy_task);
  2643. }
  2644. if (status & (IS_XA1_F|IS_R1_F)) {
  2645. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2646. netif_rx_schedule(hw->dev[0]);
  2647. }
  2648. if (status & IS_PA_TO_TX1)
  2649. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2650. if (status & IS_PA_TO_RX1) {
  2651. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2652. ++skge->net_stats.rx_over_errors;
  2653. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2654. }
  2655. if (status & IS_MAC1)
  2656. skge_mac_intr(hw, 0);
  2657. if (hw->dev[1]) {
  2658. if (status & (IS_XA2_F|IS_R2_F)) {
  2659. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2660. netif_rx_schedule(hw->dev[1]);
  2661. }
  2662. if (status & IS_PA_TO_RX2) {
  2663. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2664. ++skge->net_stats.rx_over_errors;
  2665. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2666. }
  2667. if (status & IS_PA_TO_TX2)
  2668. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2669. if (status & IS_MAC2)
  2670. skge_mac_intr(hw, 1);
  2671. }
  2672. if (status & IS_HW_ERR)
  2673. skge_error_irq(hw);
  2674. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2675. skge_read32(hw, B0_IMSK);
  2676. out:
  2677. spin_unlock(&hw->hw_lock);
  2678. return IRQ_RETVAL(handled);
  2679. }
  2680. #ifdef CONFIG_NET_POLL_CONTROLLER
  2681. static void skge_netpoll(struct net_device *dev)
  2682. {
  2683. struct skge_port *skge = netdev_priv(dev);
  2684. disable_irq(dev->irq);
  2685. skge_intr(dev->irq, skge->hw);
  2686. enable_irq(dev->irq);
  2687. }
  2688. #endif
  2689. static int skge_set_mac_address(struct net_device *dev, void *p)
  2690. {
  2691. struct skge_port *skge = netdev_priv(dev);
  2692. struct skge_hw *hw = skge->hw;
  2693. unsigned port = skge->port;
  2694. const struct sockaddr *addr = p;
  2695. u16 ctrl;
  2696. if (!is_valid_ether_addr(addr->sa_data))
  2697. return -EADDRNOTAVAIL;
  2698. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2699. if (!netif_running(dev)) {
  2700. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2701. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2702. } else {
  2703. /* disable Rx */
  2704. spin_lock_bh(&hw->phy_lock);
  2705. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  2706. gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
  2707. memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
  2708. memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
  2709. if (hw->chip_id == CHIP_ID_GENESIS)
  2710. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2711. else {
  2712. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2713. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2714. }
  2715. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  2716. spin_unlock_bh(&hw->phy_lock);
  2717. }
  2718. return 0;
  2719. }
  2720. static const struct {
  2721. u8 id;
  2722. const char *name;
  2723. } skge_chips[] = {
  2724. { CHIP_ID_GENESIS, "Genesis" },
  2725. { CHIP_ID_YUKON, "Yukon" },
  2726. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2727. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2728. };
  2729. static const char *skge_board_name(const struct skge_hw *hw)
  2730. {
  2731. int i;
  2732. static char buf[16];
  2733. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2734. if (skge_chips[i].id == hw->chip_id)
  2735. return skge_chips[i].name;
  2736. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2737. return buf;
  2738. }
  2739. /*
  2740. * Setup the board data structure, but don't bring up
  2741. * the port(s)
  2742. */
  2743. static int skge_reset(struct skge_hw *hw)
  2744. {
  2745. u32 reg;
  2746. u16 ctst, pci_status;
  2747. u8 t8, mac_cfg, pmd_type;
  2748. int i;
  2749. ctst = skge_read16(hw, B0_CTST);
  2750. /* do a SW reset */
  2751. skge_write8(hw, B0_CTST, CS_RST_SET);
  2752. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2753. /* clear PCI errors, if any */
  2754. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2755. skge_write8(hw, B2_TST_CTRL2, 0);
  2756. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2757. pci_write_config_word(hw->pdev, PCI_STATUS,
  2758. pci_status | PCI_STATUS_ERROR_BITS);
  2759. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2760. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2761. /* restore CLK_RUN bits (for Yukon-Lite) */
  2762. skge_write16(hw, B0_CTST,
  2763. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2764. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2765. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2766. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2767. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2768. switch (hw->chip_id) {
  2769. case CHIP_ID_GENESIS:
  2770. switch (hw->phy_type) {
  2771. case SK_PHY_XMAC:
  2772. hw->phy_addr = PHY_ADDR_XMAC;
  2773. break;
  2774. case SK_PHY_BCOM:
  2775. hw->phy_addr = PHY_ADDR_BCOM;
  2776. break;
  2777. default:
  2778. dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
  2779. hw->phy_type);
  2780. return -EOPNOTSUPP;
  2781. }
  2782. break;
  2783. case CHIP_ID_YUKON:
  2784. case CHIP_ID_YUKON_LITE:
  2785. case CHIP_ID_YUKON_LP:
  2786. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2787. hw->copper = 1;
  2788. hw->phy_addr = PHY_ADDR_MARV;
  2789. break;
  2790. default:
  2791. dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
  2792. hw->chip_id);
  2793. return -EOPNOTSUPP;
  2794. }
  2795. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2796. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2797. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2798. /* read the adapters RAM size */
  2799. t8 = skge_read8(hw, B2_E_0);
  2800. if (hw->chip_id == CHIP_ID_GENESIS) {
  2801. if (t8 == 3) {
  2802. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2803. hw->ram_size = 0x100000;
  2804. hw->ram_offset = 0x80000;
  2805. } else
  2806. hw->ram_size = t8 * 512;
  2807. }
  2808. else if (t8 == 0)
  2809. hw->ram_size = 0x20000;
  2810. else
  2811. hw->ram_size = t8 * 4096;
  2812. hw->intr_mask = IS_HW_ERR;
  2813. /* Use PHY IRQ for all but fiber based Genesis board */
  2814. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2815. hw->intr_mask |= IS_EXT_REG;
  2816. if (hw->chip_id == CHIP_ID_GENESIS)
  2817. genesis_init(hw);
  2818. else {
  2819. /* switch power to VCC (WA for VAUX problem) */
  2820. skge_write8(hw, B0_POWER_CTRL,
  2821. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2822. /* avoid boards with stuck Hardware error bits */
  2823. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2824. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2825. dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
  2826. hw->intr_mask &= ~IS_HW_ERR;
  2827. }
  2828. /* Clear PHY COMA */
  2829. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2830. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2831. reg &= ~PCI_PHY_COMA;
  2832. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2833. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2834. for (i = 0; i < hw->ports; i++) {
  2835. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2836. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2837. }
  2838. }
  2839. /* turn off hardware timer (unused) */
  2840. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2841. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2842. skge_write8(hw, B0_LED, LED_STAT_ON);
  2843. /* enable the Tx Arbiters */
  2844. for (i = 0; i < hw->ports; i++)
  2845. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2846. /* Initialize ram interface */
  2847. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2848. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2849. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2850. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2851. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2852. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2853. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2854. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2855. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2856. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2857. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2858. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2859. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2860. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2861. /* Set interrupt moderation for Transmit only
  2862. * Receive interrupts avoided by NAPI
  2863. */
  2864. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2865. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2866. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2867. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2868. for (i = 0; i < hw->ports; i++) {
  2869. if (hw->chip_id == CHIP_ID_GENESIS)
  2870. genesis_reset(hw, i);
  2871. else
  2872. yukon_reset(hw, i);
  2873. }
  2874. return 0;
  2875. }
  2876. /* Initialize network device */
  2877. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2878. int highmem)
  2879. {
  2880. struct skge_port *skge;
  2881. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2882. if (!dev) {
  2883. dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
  2884. return NULL;
  2885. }
  2886. SET_MODULE_OWNER(dev);
  2887. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2888. dev->open = skge_up;
  2889. dev->stop = skge_down;
  2890. dev->do_ioctl = skge_ioctl;
  2891. dev->hard_start_xmit = skge_xmit_frame;
  2892. dev->get_stats = skge_get_stats;
  2893. if (hw->chip_id == CHIP_ID_GENESIS)
  2894. dev->set_multicast_list = genesis_set_multicast;
  2895. else
  2896. dev->set_multicast_list = yukon_set_multicast;
  2897. dev->set_mac_address = skge_set_mac_address;
  2898. dev->change_mtu = skge_change_mtu;
  2899. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2900. dev->tx_timeout = skge_tx_timeout;
  2901. dev->watchdog_timeo = TX_WATCHDOG;
  2902. dev->poll = skge_poll;
  2903. dev->weight = NAPI_WEIGHT;
  2904. #ifdef CONFIG_NET_POLL_CONTROLLER
  2905. dev->poll_controller = skge_netpoll;
  2906. #endif
  2907. dev->irq = hw->pdev->irq;
  2908. if (highmem)
  2909. dev->features |= NETIF_F_HIGHDMA;
  2910. skge = netdev_priv(dev);
  2911. skge->netdev = dev;
  2912. skge->hw = hw;
  2913. skge->msg_enable = netif_msg_init(debug, default_msg);
  2914. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2915. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2916. /* Auto speed and flow control */
  2917. skge->autoneg = AUTONEG_ENABLE;
  2918. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  2919. skge->duplex = -1;
  2920. skge->speed = -1;
  2921. skge->advertising = skge_supported_modes(hw);
  2922. skge->wol = pci_wake_enabled(hw->pdev) ? wol_supported(hw) : 0;
  2923. hw->dev[port] = dev;
  2924. skge->port = port;
  2925. /* Only used for Genesis XMAC */
  2926. setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
  2927. if (hw->chip_id != CHIP_ID_GENESIS) {
  2928. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2929. skge->rx_csum = 1;
  2930. }
  2931. /* read the mac address */
  2932. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2933. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2934. /* device is off until link detection */
  2935. netif_carrier_off(dev);
  2936. netif_stop_queue(dev);
  2937. return dev;
  2938. }
  2939. static void __devinit skge_show_addr(struct net_device *dev)
  2940. {
  2941. const struct skge_port *skge = netdev_priv(dev);
  2942. if (netif_msg_probe(skge))
  2943. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2944. dev->name,
  2945. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2946. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2947. }
  2948. static int __devinit skge_probe(struct pci_dev *pdev,
  2949. const struct pci_device_id *ent)
  2950. {
  2951. struct net_device *dev, *dev1;
  2952. struct skge_hw *hw;
  2953. int err, using_dac = 0;
  2954. err = pci_enable_device(pdev);
  2955. if (err) {
  2956. dev_err(&pdev->dev, "cannot enable PCI device\n");
  2957. goto err_out;
  2958. }
  2959. err = pci_request_regions(pdev, DRV_NAME);
  2960. if (err) {
  2961. dev_err(&pdev->dev, "cannot obtain PCI resources\n");
  2962. goto err_out_disable_pdev;
  2963. }
  2964. pci_set_master(pdev);
  2965. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2966. using_dac = 1;
  2967. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2968. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2969. using_dac = 0;
  2970. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2971. }
  2972. if (err) {
  2973. dev_err(&pdev->dev, "no usable DMA configuration\n");
  2974. goto err_out_free_regions;
  2975. }
  2976. #ifdef __BIG_ENDIAN
  2977. /* byte swap descriptors in hardware */
  2978. {
  2979. u32 reg;
  2980. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2981. reg |= PCI_REV_DESC;
  2982. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2983. }
  2984. #endif
  2985. err = -ENOMEM;
  2986. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2987. if (!hw) {
  2988. dev_err(&pdev->dev, "cannot allocate hardware struct\n");
  2989. goto err_out_free_regions;
  2990. }
  2991. hw->pdev = pdev;
  2992. spin_lock_init(&hw->hw_lock);
  2993. spin_lock_init(&hw->phy_lock);
  2994. tasklet_init(&hw->phy_task, &skge_extirq, (unsigned long) hw);
  2995. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2996. if (!hw->regs) {
  2997. dev_err(&pdev->dev, "cannot map device registers\n");
  2998. goto err_out_free_hw;
  2999. }
  3000. err = skge_reset(hw);
  3001. if (err)
  3002. goto err_out_iounmap;
  3003. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  3004. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  3005. skge_board_name(hw), hw->chip_rev);
  3006. dev = skge_devinit(hw, 0, using_dac);
  3007. if (!dev)
  3008. goto err_out_led_off;
  3009. /* Some motherboards are broken and has zero in ROM. */
  3010. if (!is_valid_ether_addr(dev->dev_addr))
  3011. dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
  3012. err = register_netdev(dev);
  3013. if (err) {
  3014. dev_err(&pdev->dev, "cannot register net device\n");
  3015. goto err_out_free_netdev;
  3016. }
  3017. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  3018. if (err) {
  3019. dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
  3020. dev->name, pdev->irq);
  3021. goto err_out_unregister;
  3022. }
  3023. skge_show_addr(dev);
  3024. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  3025. if (register_netdev(dev1) == 0)
  3026. skge_show_addr(dev1);
  3027. else {
  3028. /* Failure to register second port need not be fatal */
  3029. dev_warn(&pdev->dev, "register of second port failed\n");
  3030. hw->dev[1] = NULL;
  3031. free_netdev(dev1);
  3032. }
  3033. }
  3034. pci_set_drvdata(pdev, hw);
  3035. return 0;
  3036. err_out_unregister:
  3037. unregister_netdev(dev);
  3038. err_out_free_netdev:
  3039. free_netdev(dev);
  3040. err_out_led_off:
  3041. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3042. err_out_iounmap:
  3043. iounmap(hw->regs);
  3044. err_out_free_hw:
  3045. kfree(hw);
  3046. err_out_free_regions:
  3047. pci_release_regions(pdev);
  3048. err_out_disable_pdev:
  3049. pci_disable_device(pdev);
  3050. pci_set_drvdata(pdev, NULL);
  3051. err_out:
  3052. return err;
  3053. }
  3054. static void __devexit skge_remove(struct pci_dev *pdev)
  3055. {
  3056. struct skge_hw *hw = pci_get_drvdata(pdev);
  3057. struct net_device *dev0, *dev1;
  3058. if (!hw)
  3059. return;
  3060. flush_scheduled_work();
  3061. if ((dev1 = hw->dev[1]))
  3062. unregister_netdev(dev1);
  3063. dev0 = hw->dev[0];
  3064. unregister_netdev(dev0);
  3065. tasklet_disable(&hw->phy_task);
  3066. spin_lock_irq(&hw->hw_lock);
  3067. hw->intr_mask = 0;
  3068. skge_write32(hw, B0_IMSK, 0);
  3069. skge_read32(hw, B0_IMSK);
  3070. spin_unlock_irq(&hw->hw_lock);
  3071. skge_write16(hw, B0_LED, LED_STAT_OFF);
  3072. skge_write8(hw, B0_CTST, CS_RST_SET);
  3073. free_irq(pdev->irq, hw);
  3074. pci_release_regions(pdev);
  3075. pci_disable_device(pdev);
  3076. if (dev1)
  3077. free_netdev(dev1);
  3078. free_netdev(dev0);
  3079. iounmap(hw->regs);
  3080. kfree(hw);
  3081. pci_set_drvdata(pdev, NULL);
  3082. }
  3083. #ifdef CONFIG_PM
  3084. static int vaux_avail(struct pci_dev *pdev)
  3085. {
  3086. int pm_cap;
  3087. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  3088. if (pm_cap) {
  3089. u16 ctl;
  3090. pci_read_config_word(pdev, pm_cap + PCI_PM_PMC, &ctl);
  3091. if (ctl & PCI_PM_CAP_AUX_POWER)
  3092. return 1;
  3093. }
  3094. return 0;
  3095. }
  3096. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3097. {
  3098. struct skge_hw *hw = pci_get_drvdata(pdev);
  3099. int i, err, wol = 0;
  3100. err = pci_save_state(pdev);
  3101. if (err)
  3102. return err;
  3103. for (i = 0; i < hw->ports; i++) {
  3104. struct net_device *dev = hw->dev[i];
  3105. struct skge_port *skge = netdev_priv(dev);
  3106. if (netif_running(dev))
  3107. skge_down(dev);
  3108. if (skge->wol)
  3109. skge_wol_init(skge);
  3110. wol |= skge->wol;
  3111. }
  3112. if (wol && vaux_avail(pdev))
  3113. skge_write8(hw, B0_POWER_CTRL,
  3114. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
  3115. skge_write32(hw, B0_IMSK, 0);
  3116. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  3117. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3118. return 0;
  3119. }
  3120. static int skge_resume(struct pci_dev *pdev)
  3121. {
  3122. struct skge_hw *hw = pci_get_drvdata(pdev);
  3123. int i, err;
  3124. err = pci_set_power_state(pdev, PCI_D0);
  3125. if (err)
  3126. goto out;
  3127. err = pci_restore_state(pdev);
  3128. if (err)
  3129. goto out;
  3130. pci_enable_wake(pdev, PCI_D0, 0);
  3131. err = skge_reset(hw);
  3132. if (err)
  3133. goto out;
  3134. for (i = 0; i < hw->ports; i++) {
  3135. struct net_device *dev = hw->dev[i];
  3136. if (netif_running(dev)) {
  3137. err = skge_up(dev);
  3138. if (err) {
  3139. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3140. dev->name, err);
  3141. dev_close(dev);
  3142. goto out;
  3143. }
  3144. }
  3145. }
  3146. out:
  3147. return err;
  3148. }
  3149. #endif
  3150. static struct pci_driver skge_driver = {
  3151. .name = DRV_NAME,
  3152. .id_table = skge_id_table,
  3153. .probe = skge_probe,
  3154. .remove = __devexit_p(skge_remove),
  3155. #ifdef CONFIG_PM
  3156. .suspend = skge_suspend,
  3157. .resume = skge_resume,
  3158. #endif
  3159. };
  3160. static int __init skge_init_module(void)
  3161. {
  3162. return pci_register_driver(&skge_driver);
  3163. }
  3164. static void __exit skge_cleanup_module(void)
  3165. {
  3166. pci_unregister_driver(&skge_driver);
  3167. }
  3168. module_init(skge_init_module);
  3169. module_exit(skge_cleanup_module);