dma.c 26 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082
  1. /*
  2. * Filename: dma.c
  3. *
  4. *
  5. * Authors: Joshua Morris <josh.h.morris@us.ibm.com>
  6. * Philip Kelleher <pjk1939@linux.vnet.ibm.com>
  7. *
  8. * (C) Copyright 2013 IBM Corporation
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software Foundation,
  22. * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/slab.h>
  25. #include "rsxx_priv.h"
  26. struct rsxx_dma {
  27. struct list_head list;
  28. u8 cmd;
  29. unsigned int laddr; /* Logical address */
  30. struct {
  31. u32 off;
  32. u32 cnt;
  33. } sub_page;
  34. dma_addr_t dma_addr;
  35. struct page *page;
  36. unsigned int pg_off; /* Page Offset */
  37. rsxx_dma_cb cb;
  38. void *cb_data;
  39. };
  40. /* This timeout is used to detect a stalled DMA channel */
  41. #define DMA_ACTIVITY_TIMEOUT msecs_to_jiffies(10000)
  42. struct hw_status {
  43. u8 status;
  44. u8 tag;
  45. __le16 count;
  46. __le32 _rsvd2;
  47. __le64 _rsvd3;
  48. } __packed;
  49. enum rsxx_dma_status {
  50. DMA_SW_ERR = 0x1,
  51. DMA_HW_FAULT = 0x2,
  52. DMA_CANCELLED = 0x4,
  53. };
  54. struct hw_cmd {
  55. u8 command;
  56. u8 tag;
  57. u8 _rsvd;
  58. u8 sub_page; /* Bit[0:2]: 512byte offset */
  59. /* Bit[4:6]: 512byte count */
  60. __le32 device_addr;
  61. __le64 host_addr;
  62. } __packed;
  63. enum rsxx_hw_cmd {
  64. HW_CMD_BLK_DISCARD = 0x70,
  65. HW_CMD_BLK_WRITE = 0x80,
  66. HW_CMD_BLK_READ = 0xC0,
  67. HW_CMD_BLK_RECON_READ = 0xE0,
  68. };
  69. enum rsxx_hw_status {
  70. HW_STATUS_CRC = 0x01,
  71. HW_STATUS_HARD_ERR = 0x02,
  72. HW_STATUS_SOFT_ERR = 0x04,
  73. HW_STATUS_FAULT = 0x08,
  74. };
  75. static struct kmem_cache *rsxx_dma_pool;
  76. struct dma_tracker {
  77. int next_tag;
  78. struct rsxx_dma *dma;
  79. };
  80. #define DMA_TRACKER_LIST_SIZE8 (sizeof(struct dma_tracker_list) + \
  81. (sizeof(struct dma_tracker) * RSXX_MAX_OUTSTANDING_CMDS))
  82. struct dma_tracker_list {
  83. spinlock_t lock;
  84. int head;
  85. struct dma_tracker list[0];
  86. };
  87. /*----------------- Misc Utility Functions -------------------*/
  88. static unsigned int rsxx_addr8_to_laddr(u64 addr8, struct rsxx_cardinfo *card)
  89. {
  90. unsigned long long tgt_addr8;
  91. tgt_addr8 = ((addr8 >> card->_stripe.upper_shift) &
  92. card->_stripe.upper_mask) |
  93. ((addr8) & card->_stripe.lower_mask);
  94. do_div(tgt_addr8, RSXX_HW_BLK_SIZE);
  95. return tgt_addr8;
  96. }
  97. static unsigned int rsxx_get_dma_tgt(struct rsxx_cardinfo *card, u64 addr8)
  98. {
  99. unsigned int tgt;
  100. tgt = (addr8 >> card->_stripe.target_shift) & card->_stripe.target_mask;
  101. return tgt;
  102. }
  103. void rsxx_dma_queue_reset(struct rsxx_cardinfo *card)
  104. {
  105. /* Reset all DMA Command/Status Queues */
  106. iowrite32(DMA_QUEUE_RESET, card->regmap + RESET);
  107. }
  108. static unsigned int get_dma_size(struct rsxx_dma *dma)
  109. {
  110. if (dma->sub_page.cnt)
  111. return dma->sub_page.cnt << 9;
  112. else
  113. return RSXX_HW_BLK_SIZE;
  114. }
  115. /*----------------- DMA Tracker -------------------*/
  116. static void set_tracker_dma(struct dma_tracker_list *trackers,
  117. int tag,
  118. struct rsxx_dma *dma)
  119. {
  120. trackers->list[tag].dma = dma;
  121. }
  122. static struct rsxx_dma *get_tracker_dma(struct dma_tracker_list *trackers,
  123. int tag)
  124. {
  125. return trackers->list[tag].dma;
  126. }
  127. static int pop_tracker(struct dma_tracker_list *trackers)
  128. {
  129. int tag;
  130. spin_lock(&trackers->lock);
  131. tag = trackers->head;
  132. if (tag != -1) {
  133. trackers->head = trackers->list[tag].next_tag;
  134. trackers->list[tag].next_tag = -1;
  135. }
  136. spin_unlock(&trackers->lock);
  137. return tag;
  138. }
  139. static void push_tracker(struct dma_tracker_list *trackers, int tag)
  140. {
  141. spin_lock(&trackers->lock);
  142. trackers->list[tag].next_tag = trackers->head;
  143. trackers->head = tag;
  144. trackers->list[tag].dma = NULL;
  145. spin_unlock(&trackers->lock);
  146. }
  147. /*----------------- Interrupt Coalescing -------------*/
  148. /*
  149. * Interrupt Coalescing Register Format:
  150. * Interrupt Timer (64ns units) [15:0]
  151. * Interrupt Count [24:16]
  152. * Reserved [31:25]
  153. */
  154. #define INTR_COAL_LATENCY_MASK (0x0000ffff)
  155. #define INTR_COAL_COUNT_SHIFT 16
  156. #define INTR_COAL_COUNT_BITS 9
  157. #define INTR_COAL_COUNT_MASK (((1 << INTR_COAL_COUNT_BITS) - 1) << \
  158. INTR_COAL_COUNT_SHIFT)
  159. #define INTR_COAL_LATENCY_UNITS_NS 64
  160. static u32 dma_intr_coal_val(u32 mode, u32 count, u32 latency)
  161. {
  162. u32 latency_units = latency / INTR_COAL_LATENCY_UNITS_NS;
  163. if (mode == RSXX_INTR_COAL_DISABLED)
  164. return 0;
  165. return ((count << INTR_COAL_COUNT_SHIFT) & INTR_COAL_COUNT_MASK) |
  166. (latency_units & INTR_COAL_LATENCY_MASK);
  167. }
  168. static void dma_intr_coal_auto_tune(struct rsxx_cardinfo *card)
  169. {
  170. int i;
  171. u32 q_depth = 0;
  172. u32 intr_coal;
  173. if (card->config.data.intr_coal.mode != RSXX_INTR_COAL_AUTO_TUNE ||
  174. unlikely(card->eeh_state))
  175. return;
  176. for (i = 0; i < card->n_targets; i++)
  177. q_depth += atomic_read(&card->ctrl[i].stats.hw_q_depth);
  178. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  179. q_depth / 2,
  180. card->config.data.intr_coal.latency);
  181. iowrite32(intr_coal, card->regmap + INTR_COAL);
  182. }
  183. /*----------------- RSXX DMA Handling -------------------*/
  184. static void rsxx_complete_dma(struct rsxx_dma_ctrl *ctrl,
  185. struct rsxx_dma *dma,
  186. unsigned int status)
  187. {
  188. if (status & DMA_SW_ERR)
  189. ctrl->stats.dma_sw_err++;
  190. if (status & DMA_HW_FAULT)
  191. ctrl->stats.dma_hw_fault++;
  192. if (status & DMA_CANCELLED)
  193. ctrl->stats.dma_cancelled++;
  194. if (dma->dma_addr)
  195. pci_unmap_page(ctrl->card->dev, dma->dma_addr,
  196. get_dma_size(dma),
  197. dma->cmd == HW_CMD_BLK_WRITE ?
  198. PCI_DMA_TODEVICE :
  199. PCI_DMA_FROMDEVICE);
  200. if (dma->cb)
  201. dma->cb(ctrl->card, dma->cb_data, status ? 1 : 0);
  202. kmem_cache_free(rsxx_dma_pool, dma);
  203. }
  204. int rsxx_cleanup_dma_queue(struct rsxx_dma_ctrl *ctrl,
  205. struct list_head *q)
  206. {
  207. struct rsxx_dma *dma;
  208. struct rsxx_dma *tmp;
  209. int cnt = 0;
  210. list_for_each_entry_safe(dma, tmp, q, list) {
  211. list_del(&dma->list);
  212. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  213. cnt++;
  214. }
  215. return cnt;
  216. }
  217. static void rsxx_requeue_dma(struct rsxx_dma_ctrl *ctrl,
  218. struct rsxx_dma *dma)
  219. {
  220. /*
  221. * Requeued DMAs go to the front of the queue so they are issued
  222. * first.
  223. */
  224. spin_lock_bh(&ctrl->queue_lock);
  225. list_add(&dma->list, &ctrl->queue);
  226. spin_unlock_bh(&ctrl->queue_lock);
  227. }
  228. static void rsxx_handle_dma_error(struct rsxx_dma_ctrl *ctrl,
  229. struct rsxx_dma *dma,
  230. u8 hw_st)
  231. {
  232. unsigned int status = 0;
  233. int requeue_cmd = 0;
  234. dev_dbg(CARD_TO_DEV(ctrl->card),
  235. "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n",
  236. dma->cmd, dma->laddr, hw_st);
  237. if (hw_st & HW_STATUS_CRC)
  238. ctrl->stats.crc_errors++;
  239. if (hw_st & HW_STATUS_HARD_ERR)
  240. ctrl->stats.hard_errors++;
  241. if (hw_st & HW_STATUS_SOFT_ERR)
  242. ctrl->stats.soft_errors++;
  243. switch (dma->cmd) {
  244. case HW_CMD_BLK_READ:
  245. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  246. if (ctrl->card->scrub_hard) {
  247. dma->cmd = HW_CMD_BLK_RECON_READ;
  248. requeue_cmd = 1;
  249. ctrl->stats.reads_retried++;
  250. } else {
  251. status |= DMA_HW_FAULT;
  252. ctrl->stats.reads_failed++;
  253. }
  254. } else if (hw_st & HW_STATUS_FAULT) {
  255. status |= DMA_HW_FAULT;
  256. ctrl->stats.reads_failed++;
  257. }
  258. break;
  259. case HW_CMD_BLK_RECON_READ:
  260. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  261. /* Data could not be reconstructed. */
  262. status |= DMA_HW_FAULT;
  263. ctrl->stats.reads_failed++;
  264. }
  265. break;
  266. case HW_CMD_BLK_WRITE:
  267. status |= DMA_HW_FAULT;
  268. ctrl->stats.writes_failed++;
  269. break;
  270. case HW_CMD_BLK_DISCARD:
  271. status |= DMA_HW_FAULT;
  272. ctrl->stats.discards_failed++;
  273. break;
  274. default:
  275. dev_err(CARD_TO_DEV(ctrl->card),
  276. "Unknown command in DMA!(cmd: x%02x "
  277. "laddr x%08x st: x%02x\n",
  278. dma->cmd, dma->laddr, hw_st);
  279. status |= DMA_SW_ERR;
  280. break;
  281. }
  282. if (requeue_cmd)
  283. rsxx_requeue_dma(ctrl, dma);
  284. else
  285. rsxx_complete_dma(ctrl, dma, status);
  286. }
  287. static void dma_engine_stalled(unsigned long data)
  288. {
  289. struct rsxx_dma_ctrl *ctrl = (struct rsxx_dma_ctrl *)data;
  290. int cnt;
  291. if (atomic_read(&ctrl->stats.hw_q_depth) == 0 ||
  292. unlikely(ctrl->card->eeh_state))
  293. return;
  294. if (ctrl->cmd.idx != ioread32(ctrl->regmap + SW_CMD_IDX)) {
  295. /*
  296. * The dma engine was stalled because the SW_CMD_IDX write
  297. * was lost. Issue it again to recover.
  298. */
  299. dev_warn(CARD_TO_DEV(ctrl->card),
  300. "SW_CMD_IDX write was lost, re-writing...\n");
  301. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  302. mod_timer(&ctrl->activity_timer,
  303. jiffies + DMA_ACTIVITY_TIMEOUT);
  304. } else {
  305. dev_warn(CARD_TO_DEV(ctrl->card),
  306. "DMA channel %d has stalled, faulting interface.\n",
  307. ctrl->id);
  308. ctrl->card->dma_fault = 1;
  309. /* Clean up the DMA queue */
  310. spin_lock(&ctrl->queue_lock);
  311. cnt = rsxx_cleanup_dma_queue(ctrl, &ctrl->queue);
  312. spin_unlock(&ctrl->queue_lock);
  313. cnt += rsxx_dma_cancel(ctrl);
  314. if (cnt)
  315. dev_info(CARD_TO_DEV(ctrl->card),
  316. "Freed %d queued DMAs on channel %d\n",
  317. cnt, ctrl->id);
  318. }
  319. }
  320. static void rsxx_issue_dmas(struct work_struct *work)
  321. {
  322. struct rsxx_dma_ctrl *ctrl;
  323. struct rsxx_dma *dma;
  324. int tag;
  325. int cmds_pending = 0;
  326. struct hw_cmd *hw_cmd_buf;
  327. ctrl = container_of(work, struct rsxx_dma_ctrl, issue_dma_work);
  328. hw_cmd_buf = ctrl->cmd.buf;
  329. if (unlikely(ctrl->card->halt) ||
  330. unlikely(ctrl->card->eeh_state))
  331. return;
  332. while (1) {
  333. spin_lock_bh(&ctrl->queue_lock);
  334. if (list_empty(&ctrl->queue)) {
  335. spin_unlock_bh(&ctrl->queue_lock);
  336. break;
  337. }
  338. spin_unlock_bh(&ctrl->queue_lock);
  339. tag = pop_tracker(ctrl->trackers);
  340. if (tag == -1)
  341. break;
  342. spin_lock_bh(&ctrl->queue_lock);
  343. dma = list_entry(ctrl->queue.next, struct rsxx_dma, list);
  344. list_del(&dma->list);
  345. ctrl->stats.sw_q_depth--;
  346. spin_unlock_bh(&ctrl->queue_lock);
  347. /*
  348. * This will catch any DMAs that slipped in right before the
  349. * fault, but was queued after all the other DMAs were
  350. * cancelled.
  351. */
  352. if (unlikely(ctrl->card->dma_fault)) {
  353. push_tracker(ctrl->trackers, tag);
  354. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  355. continue;
  356. }
  357. set_tracker_dma(ctrl->trackers, tag, dma);
  358. hw_cmd_buf[ctrl->cmd.idx].command = dma->cmd;
  359. hw_cmd_buf[ctrl->cmd.idx].tag = tag;
  360. hw_cmd_buf[ctrl->cmd.idx]._rsvd = 0;
  361. hw_cmd_buf[ctrl->cmd.idx].sub_page =
  362. ((dma->sub_page.cnt & 0x7) << 4) |
  363. (dma->sub_page.off & 0x7);
  364. hw_cmd_buf[ctrl->cmd.idx].device_addr =
  365. cpu_to_le32(dma->laddr);
  366. hw_cmd_buf[ctrl->cmd.idx].host_addr =
  367. cpu_to_le64(dma->dma_addr);
  368. dev_dbg(CARD_TO_DEV(ctrl->card),
  369. "Issue DMA%d(laddr %d tag %d) to idx %d\n",
  370. ctrl->id, dma->laddr, tag, ctrl->cmd.idx);
  371. ctrl->cmd.idx = (ctrl->cmd.idx + 1) & RSXX_CS_IDX_MASK;
  372. cmds_pending++;
  373. if (dma->cmd == HW_CMD_BLK_WRITE)
  374. ctrl->stats.writes_issued++;
  375. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  376. ctrl->stats.discards_issued++;
  377. else
  378. ctrl->stats.reads_issued++;
  379. }
  380. /* Let HW know we've queued commands. */
  381. if (cmds_pending) {
  382. atomic_add(cmds_pending, &ctrl->stats.hw_q_depth);
  383. mod_timer(&ctrl->activity_timer,
  384. jiffies + DMA_ACTIVITY_TIMEOUT);
  385. if (unlikely(ctrl->card->eeh_state)) {
  386. del_timer_sync(&ctrl->activity_timer);
  387. return;
  388. }
  389. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  390. }
  391. }
  392. static void rsxx_dma_done(struct work_struct *work)
  393. {
  394. struct rsxx_dma_ctrl *ctrl;
  395. struct rsxx_dma *dma;
  396. unsigned long flags;
  397. u16 count;
  398. u8 status;
  399. u8 tag;
  400. struct hw_status *hw_st_buf;
  401. ctrl = container_of(work, struct rsxx_dma_ctrl, dma_done_work);
  402. hw_st_buf = ctrl->status.buf;
  403. if (unlikely(ctrl->card->halt) ||
  404. unlikely(ctrl->card->dma_fault) ||
  405. unlikely(ctrl->card->eeh_state))
  406. return;
  407. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  408. while (count == ctrl->e_cnt) {
  409. /*
  410. * The read memory-barrier is necessary to keep aggressive
  411. * processors/optimizers (such as the PPC Apple G5) from
  412. * reordering the following status-buffer tag & status read
  413. * *before* the count read on subsequent iterations of the
  414. * loop!
  415. */
  416. rmb();
  417. status = hw_st_buf[ctrl->status.idx].status;
  418. tag = hw_st_buf[ctrl->status.idx].tag;
  419. dma = get_tracker_dma(ctrl->trackers, tag);
  420. if (dma == NULL) {
  421. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  422. rsxx_disable_ier(ctrl->card, CR_INTR_DMA_ALL);
  423. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  424. dev_err(CARD_TO_DEV(ctrl->card),
  425. "No tracker for tag %d "
  426. "(idx %d id %d)\n",
  427. tag, ctrl->status.idx, ctrl->id);
  428. return;
  429. }
  430. dev_dbg(CARD_TO_DEV(ctrl->card),
  431. "Completing DMA%d"
  432. "(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n",
  433. ctrl->id, dma->laddr, tag, status, count,
  434. ctrl->status.idx);
  435. atomic_dec(&ctrl->stats.hw_q_depth);
  436. mod_timer(&ctrl->activity_timer,
  437. jiffies + DMA_ACTIVITY_TIMEOUT);
  438. if (status)
  439. rsxx_handle_dma_error(ctrl, dma, status);
  440. else
  441. rsxx_complete_dma(ctrl, dma, 0);
  442. push_tracker(ctrl->trackers, tag);
  443. ctrl->status.idx = (ctrl->status.idx + 1) &
  444. RSXX_CS_IDX_MASK;
  445. ctrl->e_cnt++;
  446. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  447. }
  448. dma_intr_coal_auto_tune(ctrl->card);
  449. if (atomic_read(&ctrl->stats.hw_q_depth) == 0)
  450. del_timer_sync(&ctrl->activity_timer);
  451. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  452. rsxx_enable_ier(ctrl->card, CR_INTR_DMA(ctrl->id));
  453. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  454. spin_lock_bh(&ctrl->queue_lock);
  455. if (ctrl->stats.sw_q_depth)
  456. queue_work(ctrl->issue_wq, &ctrl->issue_dma_work);
  457. spin_unlock_bh(&ctrl->queue_lock);
  458. }
  459. static int rsxx_queue_discard(struct rsxx_cardinfo *card,
  460. struct list_head *q,
  461. unsigned int laddr,
  462. rsxx_dma_cb cb,
  463. void *cb_data)
  464. {
  465. struct rsxx_dma *dma;
  466. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  467. if (!dma)
  468. return -ENOMEM;
  469. dma->cmd = HW_CMD_BLK_DISCARD;
  470. dma->laddr = laddr;
  471. dma->dma_addr = 0;
  472. dma->sub_page.off = 0;
  473. dma->sub_page.cnt = 0;
  474. dma->page = NULL;
  475. dma->pg_off = 0;
  476. dma->cb = cb;
  477. dma->cb_data = cb_data;
  478. dev_dbg(CARD_TO_DEV(card), "Queuing[D] laddr %x\n", dma->laddr);
  479. list_add_tail(&dma->list, q);
  480. return 0;
  481. }
  482. static int rsxx_queue_dma(struct rsxx_cardinfo *card,
  483. struct list_head *q,
  484. int dir,
  485. unsigned int dma_off,
  486. unsigned int dma_len,
  487. unsigned int laddr,
  488. struct page *page,
  489. unsigned int pg_off,
  490. rsxx_dma_cb cb,
  491. void *cb_data)
  492. {
  493. struct rsxx_dma *dma;
  494. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  495. if (!dma)
  496. return -ENOMEM;
  497. dma->dma_addr = pci_map_page(card->dev, page, pg_off, dma_len,
  498. dir ? PCI_DMA_TODEVICE :
  499. PCI_DMA_FROMDEVICE);
  500. if (!dma->dma_addr) {
  501. kmem_cache_free(rsxx_dma_pool, dma);
  502. return -ENOMEM;
  503. }
  504. dma->cmd = dir ? HW_CMD_BLK_WRITE : HW_CMD_BLK_READ;
  505. dma->laddr = laddr;
  506. dma->sub_page.off = (dma_off >> 9);
  507. dma->sub_page.cnt = (dma_len >> 9);
  508. dma->page = page;
  509. dma->pg_off = pg_off;
  510. dma->cb = cb;
  511. dma->cb_data = cb_data;
  512. dev_dbg(CARD_TO_DEV(card),
  513. "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n",
  514. dir ? 'W' : 'R', dma->laddr, dma->sub_page.off,
  515. dma->sub_page.cnt, dma->page, dma->pg_off);
  516. /* Queue the DMA */
  517. list_add_tail(&dma->list, q);
  518. return 0;
  519. }
  520. int rsxx_dma_queue_bio(struct rsxx_cardinfo *card,
  521. struct bio *bio,
  522. atomic_t *n_dmas,
  523. rsxx_dma_cb cb,
  524. void *cb_data)
  525. {
  526. struct list_head dma_list[RSXX_MAX_TARGETS];
  527. struct bio_vec *bvec;
  528. unsigned long long addr8;
  529. unsigned int laddr;
  530. unsigned int bv_len;
  531. unsigned int bv_off;
  532. unsigned int dma_off;
  533. unsigned int dma_len;
  534. int dma_cnt[RSXX_MAX_TARGETS];
  535. int tgt;
  536. int st;
  537. int i;
  538. addr8 = bio->bi_sector << 9; /* sectors are 512 bytes */
  539. atomic_set(n_dmas, 0);
  540. for (i = 0; i < card->n_targets; i++) {
  541. INIT_LIST_HEAD(&dma_list[i]);
  542. dma_cnt[i] = 0;
  543. }
  544. if (bio->bi_rw & REQ_DISCARD) {
  545. bv_len = bio->bi_size;
  546. while (bv_len > 0) {
  547. tgt = rsxx_get_dma_tgt(card, addr8);
  548. laddr = rsxx_addr8_to_laddr(addr8, card);
  549. st = rsxx_queue_discard(card, &dma_list[tgt], laddr,
  550. cb, cb_data);
  551. if (st)
  552. goto bvec_err;
  553. dma_cnt[tgt]++;
  554. atomic_inc(n_dmas);
  555. addr8 += RSXX_HW_BLK_SIZE;
  556. bv_len -= RSXX_HW_BLK_SIZE;
  557. }
  558. } else {
  559. bio_for_each_segment(bvec, bio, i) {
  560. bv_len = bvec->bv_len;
  561. bv_off = bvec->bv_offset;
  562. while (bv_len > 0) {
  563. tgt = rsxx_get_dma_tgt(card, addr8);
  564. laddr = rsxx_addr8_to_laddr(addr8, card);
  565. dma_off = addr8 & RSXX_HW_BLK_MASK;
  566. dma_len = min(bv_len,
  567. RSXX_HW_BLK_SIZE - dma_off);
  568. st = rsxx_queue_dma(card, &dma_list[tgt],
  569. bio_data_dir(bio),
  570. dma_off, dma_len,
  571. laddr, bvec->bv_page,
  572. bv_off, cb, cb_data);
  573. if (st)
  574. goto bvec_err;
  575. dma_cnt[tgt]++;
  576. atomic_inc(n_dmas);
  577. addr8 += dma_len;
  578. bv_off += dma_len;
  579. bv_len -= dma_len;
  580. }
  581. }
  582. }
  583. for (i = 0; i < card->n_targets; i++) {
  584. if (!list_empty(&dma_list[i])) {
  585. spin_lock_bh(&card->ctrl[i].queue_lock);
  586. card->ctrl[i].stats.sw_q_depth += dma_cnt[i];
  587. list_splice_tail(&dma_list[i], &card->ctrl[i].queue);
  588. spin_unlock_bh(&card->ctrl[i].queue_lock);
  589. queue_work(card->ctrl[i].issue_wq,
  590. &card->ctrl[i].issue_dma_work);
  591. }
  592. }
  593. return 0;
  594. bvec_err:
  595. for (i = 0; i < card->n_targets; i++) {
  596. spin_lock_bh(&card->ctrl[i].queue_lock);
  597. rsxx_cleanup_dma_queue(&card->ctrl[i], &dma_list[i]);
  598. spin_unlock_bh(&card->ctrl[i].queue_lock);
  599. }
  600. return st;
  601. }
  602. /*----------------- DMA Engine Initialization & Setup -------------------*/
  603. int rsxx_hw_buffers_init(struct pci_dev *dev, struct rsxx_dma_ctrl *ctrl)
  604. {
  605. ctrl->status.buf = pci_alloc_consistent(dev, STATUS_BUFFER_SIZE8,
  606. &ctrl->status.dma_addr);
  607. ctrl->cmd.buf = pci_alloc_consistent(dev, COMMAND_BUFFER_SIZE8,
  608. &ctrl->cmd.dma_addr);
  609. if (ctrl->status.buf == NULL || ctrl->cmd.buf == NULL)
  610. return -ENOMEM;
  611. memset(ctrl->status.buf, 0xac, STATUS_BUFFER_SIZE8);
  612. iowrite32(lower_32_bits(ctrl->status.dma_addr),
  613. ctrl->regmap + SB_ADD_LO);
  614. iowrite32(upper_32_bits(ctrl->status.dma_addr),
  615. ctrl->regmap + SB_ADD_HI);
  616. memset(ctrl->cmd.buf, 0x83, COMMAND_BUFFER_SIZE8);
  617. iowrite32(lower_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_LO);
  618. iowrite32(upper_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_HI);
  619. ctrl->status.idx = ioread32(ctrl->regmap + HW_STATUS_CNT);
  620. if (ctrl->status.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  621. dev_crit(&dev->dev, "Failed reading status cnt x%x\n",
  622. ctrl->status.idx);
  623. return -EINVAL;
  624. }
  625. iowrite32(ctrl->status.idx, ctrl->regmap + HW_STATUS_CNT);
  626. iowrite32(ctrl->status.idx, ctrl->regmap + SW_STATUS_CNT);
  627. ctrl->cmd.idx = ioread32(ctrl->regmap + HW_CMD_IDX);
  628. if (ctrl->cmd.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  629. dev_crit(&dev->dev, "Failed reading cmd cnt x%x\n",
  630. ctrl->status.idx);
  631. return -EINVAL;
  632. }
  633. iowrite32(ctrl->cmd.idx, ctrl->regmap + HW_CMD_IDX);
  634. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  635. return 0;
  636. }
  637. static int rsxx_dma_ctrl_init(struct pci_dev *dev,
  638. struct rsxx_dma_ctrl *ctrl)
  639. {
  640. int i;
  641. int st;
  642. memset(&ctrl->stats, 0, sizeof(ctrl->stats));
  643. ctrl->trackers = vmalloc(DMA_TRACKER_LIST_SIZE8);
  644. if (!ctrl->trackers)
  645. return -ENOMEM;
  646. ctrl->trackers->head = 0;
  647. for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
  648. ctrl->trackers->list[i].next_tag = i + 1;
  649. ctrl->trackers->list[i].dma = NULL;
  650. }
  651. ctrl->trackers->list[RSXX_MAX_OUTSTANDING_CMDS-1].next_tag = -1;
  652. spin_lock_init(&ctrl->trackers->lock);
  653. spin_lock_init(&ctrl->queue_lock);
  654. INIT_LIST_HEAD(&ctrl->queue);
  655. setup_timer(&ctrl->activity_timer, dma_engine_stalled,
  656. (unsigned long)ctrl);
  657. ctrl->issue_wq = alloc_ordered_workqueue(DRIVER_NAME"_issue", 0);
  658. if (!ctrl->issue_wq)
  659. return -ENOMEM;
  660. ctrl->done_wq = alloc_ordered_workqueue(DRIVER_NAME"_done", 0);
  661. if (!ctrl->done_wq)
  662. return -ENOMEM;
  663. INIT_WORK(&ctrl->issue_dma_work, rsxx_issue_dmas);
  664. INIT_WORK(&ctrl->dma_done_work, rsxx_dma_done);
  665. st = rsxx_hw_buffers_init(dev, ctrl);
  666. if (st)
  667. return st;
  668. return 0;
  669. }
  670. static int rsxx_dma_stripe_setup(struct rsxx_cardinfo *card,
  671. unsigned int stripe_size8)
  672. {
  673. if (!is_power_of_2(stripe_size8)) {
  674. dev_err(CARD_TO_DEV(card),
  675. "stripe_size is NOT a power of 2!\n");
  676. return -EINVAL;
  677. }
  678. card->_stripe.lower_mask = stripe_size8 - 1;
  679. card->_stripe.upper_mask = ~(card->_stripe.lower_mask);
  680. card->_stripe.upper_shift = ffs(card->n_targets) - 1;
  681. card->_stripe.target_mask = card->n_targets - 1;
  682. card->_stripe.target_shift = ffs(stripe_size8) - 1;
  683. dev_dbg(CARD_TO_DEV(card), "_stripe.lower_mask = x%016llx\n",
  684. card->_stripe.lower_mask);
  685. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_shift = x%016llx\n",
  686. card->_stripe.upper_shift);
  687. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_mask = x%016llx\n",
  688. card->_stripe.upper_mask);
  689. dev_dbg(CARD_TO_DEV(card), "_stripe.target_mask = x%016llx\n",
  690. card->_stripe.target_mask);
  691. dev_dbg(CARD_TO_DEV(card), "_stripe.target_shift = x%016llx\n",
  692. card->_stripe.target_shift);
  693. return 0;
  694. }
  695. int rsxx_dma_configure(struct rsxx_cardinfo *card)
  696. {
  697. u32 intr_coal;
  698. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  699. card->config.data.intr_coal.count,
  700. card->config.data.intr_coal.latency);
  701. iowrite32(intr_coal, card->regmap + INTR_COAL);
  702. return rsxx_dma_stripe_setup(card, card->config.data.stripe_size);
  703. }
  704. int rsxx_dma_setup(struct rsxx_cardinfo *card)
  705. {
  706. unsigned long flags;
  707. int st;
  708. int i;
  709. dev_info(CARD_TO_DEV(card),
  710. "Initializing %d DMA targets\n",
  711. card->n_targets);
  712. /* Regmap is divided up into 4K chunks. One for each DMA channel */
  713. for (i = 0; i < card->n_targets; i++)
  714. card->ctrl[i].regmap = card->regmap + (i * 4096);
  715. card->dma_fault = 0;
  716. /* Reset the DMA queues */
  717. rsxx_dma_queue_reset(card);
  718. /************* Setup DMA Control *************/
  719. for (i = 0; i < card->n_targets; i++) {
  720. st = rsxx_dma_ctrl_init(card->dev, &card->ctrl[i]);
  721. if (st)
  722. goto failed_dma_setup;
  723. card->ctrl[i].card = card;
  724. card->ctrl[i].id = i;
  725. }
  726. card->scrub_hard = 1;
  727. if (card->config_valid)
  728. rsxx_dma_configure(card);
  729. /* Enable the interrupts after all setup has completed. */
  730. for (i = 0; i < card->n_targets; i++) {
  731. spin_lock_irqsave(&card->irq_lock, flags);
  732. rsxx_enable_ier_and_isr(card, CR_INTR_DMA(i));
  733. spin_unlock_irqrestore(&card->irq_lock, flags);
  734. }
  735. return 0;
  736. failed_dma_setup:
  737. for (i = 0; i < card->n_targets; i++) {
  738. struct rsxx_dma_ctrl *ctrl = &card->ctrl[i];
  739. if (ctrl->issue_wq) {
  740. destroy_workqueue(ctrl->issue_wq);
  741. ctrl->issue_wq = NULL;
  742. }
  743. if (ctrl->done_wq) {
  744. destroy_workqueue(ctrl->done_wq);
  745. ctrl->done_wq = NULL;
  746. }
  747. if (ctrl->trackers)
  748. vfree(ctrl->trackers);
  749. if (ctrl->status.buf)
  750. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  751. ctrl->status.buf,
  752. ctrl->status.dma_addr);
  753. if (ctrl->cmd.buf)
  754. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  755. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  756. }
  757. return st;
  758. }
  759. int rsxx_dma_cancel(struct rsxx_dma_ctrl *ctrl)
  760. {
  761. struct rsxx_dma *dma;
  762. int i;
  763. int cnt = 0;
  764. /* Clean up issued DMAs */
  765. for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
  766. dma = get_tracker_dma(ctrl->trackers, i);
  767. if (dma) {
  768. atomic_dec(&ctrl->stats.hw_q_depth);
  769. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  770. push_tracker(ctrl->trackers, i);
  771. cnt++;
  772. }
  773. }
  774. return cnt;
  775. }
  776. void rsxx_dma_destroy(struct rsxx_cardinfo *card)
  777. {
  778. struct rsxx_dma_ctrl *ctrl;
  779. int i;
  780. for (i = 0; i < card->n_targets; i++) {
  781. ctrl = &card->ctrl[i];
  782. if (ctrl->issue_wq) {
  783. destroy_workqueue(ctrl->issue_wq);
  784. ctrl->issue_wq = NULL;
  785. }
  786. if (ctrl->done_wq) {
  787. destroy_workqueue(ctrl->done_wq);
  788. ctrl->done_wq = NULL;
  789. }
  790. if (timer_pending(&ctrl->activity_timer))
  791. del_timer_sync(&ctrl->activity_timer);
  792. /* Clean up the DMA queue */
  793. spin_lock_bh(&ctrl->queue_lock);
  794. rsxx_cleanup_dma_queue(ctrl, &ctrl->queue);
  795. spin_unlock_bh(&ctrl->queue_lock);
  796. rsxx_dma_cancel(ctrl);
  797. vfree(ctrl->trackers);
  798. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  799. ctrl->status.buf, ctrl->status.dma_addr);
  800. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  801. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  802. }
  803. }
  804. int rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card)
  805. {
  806. int i;
  807. int j;
  808. int cnt;
  809. struct rsxx_dma *dma;
  810. struct list_head *issued_dmas;
  811. issued_dmas = kzalloc(sizeof(*issued_dmas) * card->n_targets,
  812. GFP_KERNEL);
  813. if (!issued_dmas)
  814. return -ENOMEM;
  815. for (i = 0; i < card->n_targets; i++) {
  816. INIT_LIST_HEAD(&issued_dmas[i]);
  817. cnt = 0;
  818. for (j = 0; j < RSXX_MAX_OUTSTANDING_CMDS; j++) {
  819. dma = get_tracker_dma(card->ctrl[i].trackers, j);
  820. if (dma == NULL)
  821. continue;
  822. if (dma->cmd == HW_CMD_BLK_WRITE)
  823. card->ctrl[i].stats.writes_issued--;
  824. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  825. card->ctrl[i].stats.discards_issued--;
  826. else
  827. card->ctrl[i].stats.reads_issued--;
  828. list_add_tail(&dma->list, &issued_dmas[i]);
  829. push_tracker(card->ctrl[i].trackers, j);
  830. cnt++;
  831. }
  832. spin_lock_bh(&card->ctrl[i].queue_lock);
  833. list_splice(&issued_dmas[i], &card->ctrl[i].queue);
  834. atomic_sub(cnt, &card->ctrl[i].stats.hw_q_depth);
  835. card->ctrl[i].stats.sw_q_depth += cnt;
  836. card->ctrl[i].e_cnt = 0;
  837. list_for_each_entry(dma, &card->ctrl[i].queue, list) {
  838. if (dma->dma_addr)
  839. pci_unmap_page(card->dev, dma->dma_addr,
  840. get_dma_size(dma),
  841. dma->cmd == HW_CMD_BLK_WRITE ?
  842. PCI_DMA_TODEVICE :
  843. PCI_DMA_FROMDEVICE);
  844. }
  845. spin_unlock_bh(&card->ctrl[i].queue_lock);
  846. }
  847. kfree(issued_dmas);
  848. return 0;
  849. }
  850. int rsxx_eeh_remap_dmas(struct rsxx_cardinfo *card)
  851. {
  852. struct rsxx_dma *dma;
  853. int i;
  854. for (i = 0; i < card->n_targets; i++) {
  855. spin_lock_bh(&card->ctrl[i].queue_lock);
  856. list_for_each_entry(dma, &card->ctrl[i].queue, list) {
  857. dma->dma_addr = pci_map_page(card->dev, dma->page,
  858. dma->pg_off, get_dma_size(dma),
  859. dma->cmd == HW_CMD_BLK_WRITE ?
  860. PCI_DMA_TODEVICE :
  861. PCI_DMA_FROMDEVICE);
  862. if (!dma->dma_addr) {
  863. spin_unlock_bh(&card->ctrl[i].queue_lock);
  864. kmem_cache_free(rsxx_dma_pool, dma);
  865. return -ENOMEM;
  866. }
  867. }
  868. spin_unlock_bh(&card->ctrl[i].queue_lock);
  869. }
  870. return 0;
  871. }
  872. int rsxx_dma_init(void)
  873. {
  874. rsxx_dma_pool = KMEM_CACHE(rsxx_dma, SLAB_HWCACHE_ALIGN);
  875. if (!rsxx_dma_pool)
  876. return -ENOMEM;
  877. return 0;
  878. }
  879. void rsxx_dma_cleanup(void)
  880. {
  881. kmem_cache_destroy(rsxx_dma_pool);
  882. }