irq.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436
  1. /*
  2. * Platform dependent support for SGI SN
  3. *
  4. * This file is subject to the terms and conditions of the GNU General Public
  5. * License. See the file "COPYING" in the main directory of this archive
  6. * for more details.
  7. *
  8. * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
  9. */
  10. #include <linux/irq.h>
  11. #include <linux/spinlock.h>
  12. #include <asm/sn/addrs.h>
  13. #include <asm/sn/arch.h>
  14. #include <asm/sn/intr.h>
  15. #include <asm/sn/pcibr_provider.h>
  16. #include <asm/sn/pcibus_provider_defs.h>
  17. #include <asm/sn/pcidev.h>
  18. #include <asm/sn/shub_mmr.h>
  19. #include <asm/sn/sn_sal.h>
  20. static void force_interrupt(int irq);
  21. static void register_intr_pda(struct sn_irq_info *sn_irq_info);
  22. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info);
  23. extern int sn_force_interrupt_flag;
  24. extern int sn_ioif_inited;
  25. static struct list_head **sn_irq_lh;
  26. static spinlock_t sn_irq_info_lock = SPIN_LOCK_UNLOCKED; /* non-IRQ lock */
  27. static inline uint64_t sn_intr_alloc(nasid_t local_nasid, int local_widget,
  28. u64 sn_irq_info,
  29. int req_irq, nasid_t req_nasid,
  30. int req_slice)
  31. {
  32. struct ia64_sal_retval ret_stuff;
  33. ret_stuff.status = 0;
  34. ret_stuff.v0 = 0;
  35. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  36. (u64) SAL_INTR_ALLOC, (u64) local_nasid,
  37. (u64) local_widget, (u64) sn_irq_info, (u64) req_irq,
  38. (u64) req_nasid, (u64) req_slice);
  39. return ret_stuff.status;
  40. }
  41. static inline void sn_intr_free(nasid_t local_nasid, int local_widget,
  42. struct sn_irq_info *sn_irq_info)
  43. {
  44. struct ia64_sal_retval ret_stuff;
  45. ret_stuff.status = 0;
  46. ret_stuff.v0 = 0;
  47. SAL_CALL_NOLOCK(ret_stuff, (u64) SN_SAL_IOIF_INTERRUPT,
  48. (u64) SAL_INTR_FREE, (u64) local_nasid,
  49. (u64) local_widget, (u64) sn_irq_info->irq_irq,
  50. (u64) sn_irq_info->irq_cookie, 0, 0);
  51. }
  52. static unsigned int sn_startup_irq(unsigned int irq)
  53. {
  54. return 0;
  55. }
  56. static void sn_shutdown_irq(unsigned int irq)
  57. {
  58. }
  59. static void sn_disable_irq(unsigned int irq)
  60. {
  61. }
  62. static void sn_enable_irq(unsigned int irq)
  63. {
  64. }
  65. static void sn_ack_irq(unsigned int irq)
  66. {
  67. u64 event_occurred, mask = 0;
  68. irq = irq & 0xff;
  69. event_occurred =
  70. HUB_L((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED));
  71. mask = event_occurred & SH_ALL_INT_MASK;
  72. HUB_S((u64*)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
  73. mask);
  74. __set_bit(irq, (volatile void *)pda->sn_in_service_ivecs);
  75. move_irq(irq);
  76. }
  77. static void sn_end_irq(unsigned int irq)
  78. {
  79. int ivec;
  80. u64 event_occurred;
  81. ivec = irq & 0xff;
  82. if (ivec == SGI_UART_VECTOR) {
  83. event_occurred = HUB_L((u64*)LOCAL_MMR_ADDR (SH_EVENT_OCCURRED));
  84. /* If the UART bit is set here, we may have received an
  85. * interrupt from the UART that the driver missed. To
  86. * make sure, we IPI ourselves to force us to look again.
  87. */
  88. if (event_occurred & SH_EVENT_OCCURRED_UART_INT_MASK) {
  89. platform_send_ipi(smp_processor_id(), SGI_UART_VECTOR,
  90. IA64_IPI_DM_INT, 0);
  91. }
  92. }
  93. __clear_bit(ivec, (volatile void *)pda->sn_in_service_ivecs);
  94. if (sn_force_interrupt_flag)
  95. force_interrupt(irq);
  96. }
  97. static void sn_irq_info_free(struct rcu_head *head);
  98. static void sn_set_affinity_irq(unsigned int irq, cpumask_t mask)
  99. {
  100. struct sn_irq_info *sn_irq_info, *sn_irq_info_safe;
  101. int cpuid, cpuphys;
  102. cpuid = first_cpu(mask);
  103. cpuphys = cpu_physical_id(cpuid);
  104. list_for_each_entry_safe(sn_irq_info, sn_irq_info_safe,
  105. sn_irq_lh[irq], list) {
  106. uint64_t bridge;
  107. int local_widget, status;
  108. nasid_t local_nasid;
  109. struct sn_irq_info *new_irq_info;
  110. new_irq_info = kmalloc(sizeof(struct sn_irq_info), GFP_ATOMIC);
  111. if (new_irq_info == NULL)
  112. break;
  113. memcpy(new_irq_info, sn_irq_info, sizeof(struct sn_irq_info));
  114. bridge = (uint64_t) new_irq_info->irq_bridge;
  115. if (!bridge) {
  116. kfree(new_irq_info);
  117. break; /* irq is not a device interrupt */
  118. }
  119. local_nasid = NASID_GET(bridge);
  120. if (local_nasid & 1)
  121. local_widget = TIO_SWIN_WIDGETNUM(bridge);
  122. else
  123. local_widget = SWIN_WIDGETNUM(bridge);
  124. /* Free the old PROM new_irq_info structure */
  125. sn_intr_free(local_nasid, local_widget, new_irq_info);
  126. /* Update kernels new_irq_info with new target info */
  127. unregister_intr_pda(new_irq_info);
  128. /* allocate a new PROM new_irq_info struct */
  129. status = sn_intr_alloc(local_nasid, local_widget,
  130. __pa(new_irq_info), irq,
  131. cpuid_to_nasid(cpuid),
  132. cpuid_to_slice(cpuid));
  133. /* SAL call failed */
  134. if (status) {
  135. kfree(new_irq_info);
  136. break;
  137. }
  138. new_irq_info->irq_cpuid = cpuid;
  139. register_intr_pda(new_irq_info);
  140. if (IS_PCI_BRIDGE_ASIC(new_irq_info->irq_bridge_type))
  141. pcibr_change_devices_irq(new_irq_info);
  142. spin_lock(&sn_irq_info_lock);
  143. list_replace_rcu(&sn_irq_info->list, &new_irq_info->list);
  144. spin_unlock(&sn_irq_info_lock);
  145. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  146. #ifdef CONFIG_SMP
  147. set_irq_affinity_info((irq & 0xff), cpuphys, 0);
  148. #endif
  149. }
  150. }
  151. struct hw_interrupt_type irq_type_sn = {
  152. .typename = "SN hub",
  153. .startup = sn_startup_irq,
  154. .shutdown = sn_shutdown_irq,
  155. .enable = sn_enable_irq,
  156. .disable = sn_disable_irq,
  157. .ack = sn_ack_irq,
  158. .end = sn_end_irq,
  159. .set_affinity = sn_set_affinity_irq
  160. };
  161. unsigned int sn_local_vector_to_irq(u8 vector)
  162. {
  163. return (CPU_VECTOR_TO_IRQ(smp_processor_id(), vector));
  164. }
  165. void sn_irq_init(void)
  166. {
  167. int i;
  168. irq_desc_t *base_desc = irq_desc;
  169. for (i = 0; i < NR_IRQS; i++) {
  170. if (base_desc[i].handler == &no_irq_type) {
  171. base_desc[i].handler = &irq_type_sn;
  172. }
  173. }
  174. }
  175. static void register_intr_pda(struct sn_irq_info *sn_irq_info)
  176. {
  177. int irq = sn_irq_info->irq_irq;
  178. int cpu = sn_irq_info->irq_cpuid;
  179. if (pdacpu(cpu)->sn_last_irq < irq) {
  180. pdacpu(cpu)->sn_last_irq = irq;
  181. }
  182. if (pdacpu(cpu)->sn_first_irq == 0 || pdacpu(cpu)->sn_first_irq > irq) {
  183. pdacpu(cpu)->sn_first_irq = irq;
  184. }
  185. }
  186. static void unregister_intr_pda(struct sn_irq_info *sn_irq_info)
  187. {
  188. int irq = sn_irq_info->irq_irq;
  189. int cpu = sn_irq_info->irq_cpuid;
  190. struct sn_irq_info *tmp_irq_info;
  191. int i, foundmatch;
  192. rcu_read_lock();
  193. if (pdacpu(cpu)->sn_last_irq == irq) {
  194. foundmatch = 0;
  195. for (i = pdacpu(cpu)->sn_last_irq - 1;
  196. i && !foundmatch; i--) {
  197. list_for_each_entry_rcu(tmp_irq_info,
  198. sn_irq_lh[i],
  199. list) {
  200. if (tmp_irq_info->irq_cpuid == cpu) {
  201. foundmatch = 1;
  202. break;
  203. }
  204. }
  205. }
  206. pdacpu(cpu)->sn_last_irq = i;
  207. }
  208. if (pdacpu(cpu)->sn_first_irq == irq) {
  209. foundmatch = 0;
  210. for (i = pdacpu(cpu)->sn_first_irq + 1;
  211. i < NR_IRQS && !foundmatch; i++) {
  212. list_for_each_entry_rcu(tmp_irq_info,
  213. sn_irq_lh[i],
  214. list) {
  215. if (tmp_irq_info->irq_cpuid == cpu) {
  216. foundmatch = 1;
  217. break;
  218. }
  219. }
  220. }
  221. pdacpu(cpu)->sn_first_irq = ((i == NR_IRQS) ? 0 : i);
  222. }
  223. rcu_read_unlock();
  224. }
  225. static void sn_irq_info_free(struct rcu_head *head)
  226. {
  227. struct sn_irq_info *sn_irq_info;
  228. sn_irq_info = container_of(head, struct sn_irq_info, rcu);
  229. kfree(sn_irq_info);
  230. }
  231. void sn_irq_fixup(struct pci_dev *pci_dev, struct sn_irq_info *sn_irq_info)
  232. {
  233. nasid_t nasid = sn_irq_info->irq_nasid;
  234. int slice = sn_irq_info->irq_slice;
  235. int cpu = nasid_slice_to_cpuid(nasid, slice);
  236. pci_dev_get(pci_dev);
  237. sn_irq_info->irq_cpuid = cpu;
  238. sn_irq_info->irq_pciioinfo = SN_PCIDEV_INFO(pci_dev);
  239. /* link it into the sn_irq[irq] list */
  240. spin_lock(&sn_irq_info_lock);
  241. list_add_rcu(&sn_irq_info->list, sn_irq_lh[sn_irq_info->irq_irq]);
  242. spin_unlock(&sn_irq_info_lock);
  243. (void)register_intr_pda(sn_irq_info);
  244. }
  245. void sn_irq_unfixup(struct pci_dev *pci_dev)
  246. {
  247. struct sn_irq_info *sn_irq_info;
  248. /* Only cleanup IRQ stuff if this device has a host bus context */
  249. if (!SN_PCIDEV_BUSSOFT(pci_dev))
  250. return;
  251. sn_irq_info = SN_PCIDEV_INFO(pci_dev)->pdi_sn_irq_info;
  252. if (!sn_irq_info || !sn_irq_info->irq_irq) {
  253. kfree(sn_irq_info);
  254. return;
  255. }
  256. unregister_intr_pda(sn_irq_info);
  257. spin_lock(&sn_irq_info_lock);
  258. list_del_rcu(&sn_irq_info->list);
  259. spin_unlock(&sn_irq_info_lock);
  260. call_rcu(&sn_irq_info->rcu, sn_irq_info_free);
  261. pci_dev_put(pci_dev);
  262. }
  263. static inline void
  264. sn_call_force_intr_provider(struct sn_irq_info *sn_irq_info)
  265. {
  266. struct sn_pcibus_provider *pci_provider;
  267. pci_provider = sn_pci_provider[sn_irq_info->irq_bridge_type];
  268. if (pci_provider && pci_provider->force_interrupt)
  269. (*pci_provider->force_interrupt)(sn_irq_info);
  270. }
  271. static void force_interrupt(int irq)
  272. {
  273. struct sn_irq_info *sn_irq_info;
  274. if (!sn_ioif_inited)
  275. return;
  276. rcu_read_lock();
  277. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[irq], list)
  278. sn_call_force_intr_provider(sn_irq_info);
  279. rcu_read_unlock();
  280. }
  281. /*
  282. * Check for lost interrupts. If the PIC int_status reg. says that
  283. * an interrupt has been sent, but not handled, and the interrupt
  284. * is not pending in either the cpu irr regs or in the soft irr regs,
  285. * and the interrupt is not in service, then the interrupt may have
  286. * been lost. Force an interrupt on that pin. It is possible that
  287. * the interrupt is in flight, so we may generate a spurious interrupt,
  288. * but we should never miss a real lost interrupt.
  289. */
  290. static void sn_check_intr(int irq, struct sn_irq_info *sn_irq_info)
  291. {
  292. uint64_t regval;
  293. int irr_reg_num;
  294. int irr_bit;
  295. uint64_t irr_reg;
  296. struct pcidev_info *pcidev_info;
  297. struct pcibus_info *pcibus_info;
  298. /*
  299. * Bridge types attached to TIO (anything but PIC) do not need this WAR
  300. * since they do not target Shub II interrupt registers. If that
  301. * ever changes, this check needs to accomodate.
  302. */
  303. if (sn_irq_info->irq_bridge_type != PCIIO_ASIC_TYPE_PIC)
  304. return;
  305. pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
  306. if (!pcidev_info)
  307. return;
  308. pcibus_info =
  309. (struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
  310. pdi_pcibus_info;
  311. regval = pcireg_intr_status_get(pcibus_info);
  312. irr_reg_num = irq_to_vector(irq) / 64;
  313. irr_bit = irq_to_vector(irq) % 64;
  314. switch (irr_reg_num) {
  315. case 0:
  316. irr_reg = ia64_getreg(_IA64_REG_CR_IRR0);
  317. break;
  318. case 1:
  319. irr_reg = ia64_getreg(_IA64_REG_CR_IRR1);
  320. break;
  321. case 2:
  322. irr_reg = ia64_getreg(_IA64_REG_CR_IRR2);
  323. break;
  324. case 3:
  325. irr_reg = ia64_getreg(_IA64_REG_CR_IRR3);
  326. break;
  327. }
  328. if (!test_bit(irr_bit, &irr_reg)) {
  329. if (!test_bit(irq, pda->sn_in_service_ivecs)) {
  330. regval &= 0xff;
  331. if (sn_irq_info->irq_int_bit & regval &
  332. sn_irq_info->irq_last_intr) {
  333. regval &= ~(sn_irq_info->irq_int_bit & regval);
  334. sn_call_force_intr_provider(sn_irq_info);
  335. }
  336. }
  337. }
  338. sn_irq_info->irq_last_intr = regval;
  339. }
  340. void sn_lb_int_war_check(void)
  341. {
  342. struct sn_irq_info *sn_irq_info;
  343. int i;
  344. if (!sn_ioif_inited || pda->sn_first_irq == 0)
  345. return;
  346. rcu_read_lock();
  347. for (i = pda->sn_first_irq; i <= pda->sn_last_irq; i++) {
  348. list_for_each_entry_rcu(sn_irq_info, sn_irq_lh[i], list) {
  349. sn_check_intr(i, sn_irq_info);
  350. }
  351. }
  352. rcu_read_unlock();
  353. }
  354. void sn_irq_lh_init(void)
  355. {
  356. int i;
  357. sn_irq_lh = kmalloc(sizeof(struct list_head *) * NR_IRQS, GFP_KERNEL);
  358. if (!sn_irq_lh)
  359. panic("SN PCI INIT: Failed to allocate memory for PCI init\n");
  360. for (i = 0; i < NR_IRQS; i++) {
  361. sn_irq_lh[i] = kmalloc(sizeof(struct list_head), GFP_KERNEL);
  362. if (!sn_irq_lh[i])
  363. panic("SN PCI INIT: Failed IRQ memory allocation\n");
  364. INIT_LIST_HEAD(sn_irq_lh[i]);
  365. }
  366. }