sched.c 220 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_CGROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. struct cgroup_subsys_state css;
  209. #ifdef CONFIG_FAIR_GROUP_SCHED
  210. /* schedulable entities of this group on each cpu */
  211. struct sched_entity **se;
  212. /* runqueue "owned" by this group on each cpu */
  213. struct cfs_rq **cfs_rq;
  214. unsigned long shares;
  215. #endif
  216. #ifdef CONFIG_RT_GROUP_SCHED
  217. struct sched_rt_entity **rt_se;
  218. struct rt_rq **rt_rq;
  219. struct rt_bandwidth rt_bandwidth;
  220. #endif
  221. struct rcu_head rcu;
  222. struct list_head list;
  223. struct task_group *parent;
  224. struct list_head siblings;
  225. struct list_head children;
  226. };
  227. #define root_task_group init_task_group
  228. /* task_group_lock serializes add/remove of task groups and also changes to
  229. * a task group's cpu shares.
  230. */
  231. static DEFINE_SPINLOCK(task_group_lock);
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. #ifdef CONFIG_SMP
  234. static int root_task_group_empty(void)
  235. {
  236. return list_empty(&root_task_group.children);
  237. }
  238. #endif
  239. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  240. /*
  241. * A weight of 0 or 1 can cause arithmetics problems.
  242. * A weight of a cfs_rq is the sum of weights of which entities
  243. * are queued on this cfs_rq, so a weight of a entity should not be
  244. * too large, so as the shares value of a task group.
  245. * (The default weight is 1024 - so there's no practical
  246. * limitation from this.)
  247. */
  248. #define MIN_SHARES 2
  249. #define MAX_SHARES (1UL << 18)
  250. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  251. #endif
  252. /* Default task group.
  253. * Every task in system belong to this group at bootup.
  254. */
  255. struct task_group init_task_group;
  256. /* return group to which a task belongs */
  257. static inline struct task_group *task_group(struct task_struct *p)
  258. {
  259. struct task_group *tg;
  260. #ifdef CONFIG_CGROUP_SCHED
  261. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  262. struct task_group, css);
  263. #else
  264. tg = &init_task_group;
  265. #endif
  266. return tg;
  267. }
  268. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  269. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  270. {
  271. /*
  272. * Strictly speaking this rcu_read_lock() is not needed since the
  273. * task_group is tied to the cgroup, which in turn can never go away
  274. * as long as there are tasks attached to it.
  275. *
  276. * However since task_group() uses task_subsys_state() which is an
  277. * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
  278. */
  279. rcu_read_lock();
  280. #ifdef CONFIG_FAIR_GROUP_SCHED
  281. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  282. p->se.parent = task_group(p)->se[cpu];
  283. #endif
  284. #ifdef CONFIG_RT_GROUP_SCHED
  285. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  286. p->rt.parent = task_group(p)->rt_se[cpu];
  287. #endif
  288. rcu_read_unlock();
  289. }
  290. #else
  291. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  292. static inline struct task_group *task_group(struct task_struct *p)
  293. {
  294. return NULL;
  295. }
  296. #endif /* CONFIG_CGROUP_SCHED */
  297. /* CFS-related fields in a runqueue */
  298. struct cfs_rq {
  299. struct load_weight load;
  300. unsigned long nr_running;
  301. u64 exec_clock;
  302. u64 min_vruntime;
  303. struct rb_root tasks_timeline;
  304. struct rb_node *rb_leftmost;
  305. struct list_head tasks;
  306. struct list_head *balance_iterator;
  307. /*
  308. * 'curr' points to currently running entity on this cfs_rq.
  309. * It is set to NULL otherwise (i.e when none are currently running).
  310. */
  311. struct sched_entity *curr, *next, *last;
  312. unsigned int nr_spread_over;
  313. #ifdef CONFIG_FAIR_GROUP_SCHED
  314. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  315. /*
  316. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  317. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  318. * (like users, containers etc.)
  319. *
  320. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  321. * list is used during load balance.
  322. */
  323. struct list_head leaf_cfs_rq_list;
  324. struct task_group *tg; /* group that "owns" this runqueue */
  325. #ifdef CONFIG_SMP
  326. /*
  327. * the part of load.weight contributed by tasks
  328. */
  329. unsigned long task_weight;
  330. /*
  331. * h_load = weight * f(tg)
  332. *
  333. * Where f(tg) is the recursive weight fraction assigned to
  334. * this group.
  335. */
  336. unsigned long h_load;
  337. /*
  338. * this cpu's part of tg->shares
  339. */
  340. unsigned long shares;
  341. /*
  342. * load.weight at the time we set shares
  343. */
  344. unsigned long rq_weight;
  345. #endif
  346. #endif
  347. };
  348. /* Real-Time classes' related field in a runqueue: */
  349. struct rt_rq {
  350. struct rt_prio_array active;
  351. unsigned long rt_nr_running;
  352. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  353. struct {
  354. int curr; /* highest queued rt task prio */
  355. #ifdef CONFIG_SMP
  356. int next; /* next highest */
  357. #endif
  358. } highest_prio;
  359. #endif
  360. #ifdef CONFIG_SMP
  361. unsigned long rt_nr_migratory;
  362. unsigned long rt_nr_total;
  363. int overloaded;
  364. struct plist_head pushable_tasks;
  365. #endif
  366. int rt_throttled;
  367. u64 rt_time;
  368. u64 rt_runtime;
  369. /* Nests inside the rq lock: */
  370. raw_spinlock_t rt_runtime_lock;
  371. #ifdef CONFIG_RT_GROUP_SCHED
  372. unsigned long rt_nr_boosted;
  373. struct rq *rq;
  374. struct list_head leaf_rt_rq_list;
  375. struct task_group *tg;
  376. #endif
  377. };
  378. #ifdef CONFIG_SMP
  379. /*
  380. * We add the notion of a root-domain which will be used to define per-domain
  381. * variables. Each exclusive cpuset essentially defines an island domain by
  382. * fully partitioning the member cpus from any other cpuset. Whenever a new
  383. * exclusive cpuset is created, we also create and attach a new root-domain
  384. * object.
  385. *
  386. */
  387. struct root_domain {
  388. atomic_t refcount;
  389. cpumask_var_t span;
  390. cpumask_var_t online;
  391. /*
  392. * The "RT overload" flag: it gets set if a CPU has more than
  393. * one runnable RT task.
  394. */
  395. cpumask_var_t rto_mask;
  396. atomic_t rto_count;
  397. #ifdef CONFIG_SMP
  398. struct cpupri cpupri;
  399. #endif
  400. };
  401. /*
  402. * By default the system creates a single root-domain with all cpus as
  403. * members (mimicking the global state we have today).
  404. */
  405. static struct root_domain def_root_domain;
  406. #endif
  407. /*
  408. * This is the main, per-CPU runqueue data structure.
  409. *
  410. * Locking rule: those places that want to lock multiple runqueues
  411. * (such as the load balancing or the thread migration code), lock
  412. * acquire operations must be ordered by ascending &runqueue.
  413. */
  414. struct rq {
  415. /* runqueue lock: */
  416. raw_spinlock_t lock;
  417. /*
  418. * nr_running and cpu_load should be in the same cacheline because
  419. * remote CPUs use both these fields when doing load calculation.
  420. */
  421. unsigned long nr_running;
  422. #define CPU_LOAD_IDX_MAX 5
  423. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  424. #ifdef CONFIG_NO_HZ
  425. unsigned char in_nohz_recently;
  426. #endif
  427. /* capture load from *all* tasks on this cpu: */
  428. struct load_weight load;
  429. unsigned long nr_load_updates;
  430. u64 nr_switches;
  431. struct cfs_rq cfs;
  432. struct rt_rq rt;
  433. #ifdef CONFIG_FAIR_GROUP_SCHED
  434. /* list of leaf cfs_rq on this cpu: */
  435. struct list_head leaf_cfs_rq_list;
  436. #endif
  437. #ifdef CONFIG_RT_GROUP_SCHED
  438. struct list_head leaf_rt_rq_list;
  439. #endif
  440. /*
  441. * This is part of a global counter where only the total sum
  442. * over all CPUs matters. A task can increase this counter on
  443. * one CPU and if it got migrated afterwards it may decrease
  444. * it on another CPU. Always updated under the runqueue lock:
  445. */
  446. unsigned long nr_uninterruptible;
  447. struct task_struct *curr, *idle;
  448. unsigned long next_balance;
  449. struct mm_struct *prev_mm;
  450. u64 clock;
  451. atomic_t nr_iowait;
  452. #ifdef CONFIG_SMP
  453. struct root_domain *rd;
  454. struct sched_domain *sd;
  455. unsigned char idle_at_tick;
  456. /* For active balancing */
  457. int post_schedule;
  458. int active_balance;
  459. int push_cpu;
  460. /* cpu of this runqueue: */
  461. int cpu;
  462. int online;
  463. unsigned long avg_load_per_task;
  464. struct task_struct *migration_thread;
  465. struct list_head migration_queue;
  466. u64 rt_avg;
  467. u64 age_stamp;
  468. u64 idle_stamp;
  469. u64 avg_idle;
  470. #endif
  471. /* calc_load related fields */
  472. unsigned long calc_load_update;
  473. long calc_load_active;
  474. #ifdef CONFIG_SCHED_HRTICK
  475. #ifdef CONFIG_SMP
  476. int hrtick_csd_pending;
  477. struct call_single_data hrtick_csd;
  478. #endif
  479. struct hrtimer hrtick_timer;
  480. #endif
  481. #ifdef CONFIG_SCHEDSTATS
  482. /* latency stats */
  483. struct sched_info rq_sched_info;
  484. unsigned long long rq_cpu_time;
  485. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  486. /* sys_sched_yield() stats */
  487. unsigned int yld_count;
  488. /* schedule() stats */
  489. unsigned int sched_switch;
  490. unsigned int sched_count;
  491. unsigned int sched_goidle;
  492. /* try_to_wake_up() stats */
  493. unsigned int ttwu_count;
  494. unsigned int ttwu_local;
  495. /* BKL stats */
  496. unsigned int bkl_count;
  497. #endif
  498. };
  499. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  500. static inline
  501. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  502. {
  503. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  504. }
  505. static inline int cpu_of(struct rq *rq)
  506. {
  507. #ifdef CONFIG_SMP
  508. return rq->cpu;
  509. #else
  510. return 0;
  511. #endif
  512. }
  513. #define rcu_dereference_check_sched_domain(p) \
  514. rcu_dereference_check((p), \
  515. rcu_read_lock_sched_held() || \
  516. lockdep_is_held(&sched_domains_mutex))
  517. /*
  518. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  519. * See detach_destroy_domains: synchronize_sched for details.
  520. *
  521. * The domain tree of any CPU may only be accessed from within
  522. * preempt-disabled sections.
  523. */
  524. #define for_each_domain(cpu, __sd) \
  525. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  526. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  527. #define this_rq() (&__get_cpu_var(runqueues))
  528. #define task_rq(p) cpu_rq(task_cpu(p))
  529. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  530. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  531. inline void update_rq_clock(struct rq *rq)
  532. {
  533. rq->clock = sched_clock_cpu(cpu_of(rq));
  534. }
  535. /*
  536. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  537. */
  538. #ifdef CONFIG_SCHED_DEBUG
  539. # define const_debug __read_mostly
  540. #else
  541. # define const_debug static const
  542. #endif
  543. /**
  544. * runqueue_is_locked
  545. * @cpu: the processor in question.
  546. *
  547. * Returns true if the current cpu runqueue is locked.
  548. * This interface allows printk to be called with the runqueue lock
  549. * held and know whether or not it is OK to wake up the klogd.
  550. */
  551. int runqueue_is_locked(int cpu)
  552. {
  553. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  554. }
  555. /*
  556. * Debugging: various feature bits
  557. */
  558. #define SCHED_FEAT(name, enabled) \
  559. __SCHED_FEAT_##name ,
  560. enum {
  561. #include "sched_features.h"
  562. };
  563. #undef SCHED_FEAT
  564. #define SCHED_FEAT(name, enabled) \
  565. (1UL << __SCHED_FEAT_##name) * enabled |
  566. const_debug unsigned int sysctl_sched_features =
  567. #include "sched_features.h"
  568. 0;
  569. #undef SCHED_FEAT
  570. #ifdef CONFIG_SCHED_DEBUG
  571. #define SCHED_FEAT(name, enabled) \
  572. #name ,
  573. static __read_mostly char *sched_feat_names[] = {
  574. #include "sched_features.h"
  575. NULL
  576. };
  577. #undef SCHED_FEAT
  578. static int sched_feat_show(struct seq_file *m, void *v)
  579. {
  580. int i;
  581. for (i = 0; sched_feat_names[i]; i++) {
  582. if (!(sysctl_sched_features & (1UL << i)))
  583. seq_puts(m, "NO_");
  584. seq_printf(m, "%s ", sched_feat_names[i]);
  585. }
  586. seq_puts(m, "\n");
  587. return 0;
  588. }
  589. static ssize_t
  590. sched_feat_write(struct file *filp, const char __user *ubuf,
  591. size_t cnt, loff_t *ppos)
  592. {
  593. char buf[64];
  594. char *cmp = buf;
  595. int neg = 0;
  596. int i;
  597. if (cnt > 63)
  598. cnt = 63;
  599. if (copy_from_user(&buf, ubuf, cnt))
  600. return -EFAULT;
  601. buf[cnt] = 0;
  602. if (strncmp(buf, "NO_", 3) == 0) {
  603. neg = 1;
  604. cmp += 3;
  605. }
  606. for (i = 0; sched_feat_names[i]; i++) {
  607. int len = strlen(sched_feat_names[i]);
  608. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  609. if (neg)
  610. sysctl_sched_features &= ~(1UL << i);
  611. else
  612. sysctl_sched_features |= (1UL << i);
  613. break;
  614. }
  615. }
  616. if (!sched_feat_names[i])
  617. return -EINVAL;
  618. *ppos += cnt;
  619. return cnt;
  620. }
  621. static int sched_feat_open(struct inode *inode, struct file *filp)
  622. {
  623. return single_open(filp, sched_feat_show, NULL);
  624. }
  625. static const struct file_operations sched_feat_fops = {
  626. .open = sched_feat_open,
  627. .write = sched_feat_write,
  628. .read = seq_read,
  629. .llseek = seq_lseek,
  630. .release = single_release,
  631. };
  632. static __init int sched_init_debug(void)
  633. {
  634. debugfs_create_file("sched_features", 0644, NULL, NULL,
  635. &sched_feat_fops);
  636. return 0;
  637. }
  638. late_initcall(sched_init_debug);
  639. #endif
  640. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  641. /*
  642. * Number of tasks to iterate in a single balance run.
  643. * Limited because this is done with IRQs disabled.
  644. */
  645. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  646. /*
  647. * ratelimit for updating the group shares.
  648. * default: 0.25ms
  649. */
  650. unsigned int sysctl_sched_shares_ratelimit = 250000;
  651. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  652. /*
  653. * Inject some fuzzyness into changing the per-cpu group shares
  654. * this avoids remote rq-locks at the expense of fairness.
  655. * default: 4
  656. */
  657. unsigned int sysctl_sched_shares_thresh = 4;
  658. /*
  659. * period over which we average the RT time consumption, measured
  660. * in ms.
  661. *
  662. * default: 1s
  663. */
  664. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  665. /*
  666. * period over which we measure -rt task cpu usage in us.
  667. * default: 1s
  668. */
  669. unsigned int sysctl_sched_rt_period = 1000000;
  670. static __read_mostly int scheduler_running;
  671. /*
  672. * part of the period that we allow rt tasks to run in us.
  673. * default: 0.95s
  674. */
  675. int sysctl_sched_rt_runtime = 950000;
  676. static inline u64 global_rt_period(void)
  677. {
  678. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  679. }
  680. static inline u64 global_rt_runtime(void)
  681. {
  682. if (sysctl_sched_rt_runtime < 0)
  683. return RUNTIME_INF;
  684. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  685. }
  686. #ifndef prepare_arch_switch
  687. # define prepare_arch_switch(next) do { } while (0)
  688. #endif
  689. #ifndef finish_arch_switch
  690. # define finish_arch_switch(prev) do { } while (0)
  691. #endif
  692. static inline int task_current(struct rq *rq, struct task_struct *p)
  693. {
  694. return rq->curr == p;
  695. }
  696. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  697. static inline int task_running(struct rq *rq, struct task_struct *p)
  698. {
  699. return task_current(rq, p);
  700. }
  701. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  702. {
  703. }
  704. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  705. {
  706. #ifdef CONFIG_DEBUG_SPINLOCK
  707. /* this is a valid case when another task releases the spinlock */
  708. rq->lock.owner = current;
  709. #endif
  710. /*
  711. * If we are tracking spinlock dependencies then we have to
  712. * fix up the runqueue lock - which gets 'carried over' from
  713. * prev into current:
  714. */
  715. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  716. raw_spin_unlock_irq(&rq->lock);
  717. }
  718. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  719. static inline int task_running(struct rq *rq, struct task_struct *p)
  720. {
  721. #ifdef CONFIG_SMP
  722. return p->oncpu;
  723. #else
  724. return task_current(rq, p);
  725. #endif
  726. }
  727. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  728. {
  729. #ifdef CONFIG_SMP
  730. /*
  731. * We can optimise this out completely for !SMP, because the
  732. * SMP rebalancing from interrupt is the only thing that cares
  733. * here.
  734. */
  735. next->oncpu = 1;
  736. #endif
  737. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  738. raw_spin_unlock_irq(&rq->lock);
  739. #else
  740. raw_spin_unlock(&rq->lock);
  741. #endif
  742. }
  743. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  744. {
  745. #ifdef CONFIG_SMP
  746. /*
  747. * After ->oncpu is cleared, the task can be moved to a different CPU.
  748. * We must ensure this doesn't happen until the switch is completely
  749. * finished.
  750. */
  751. smp_wmb();
  752. prev->oncpu = 0;
  753. #endif
  754. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  755. local_irq_enable();
  756. #endif
  757. }
  758. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  759. /*
  760. * Check whether the task is waking, we use this to synchronize against
  761. * ttwu() so that task_cpu() reports a stable number.
  762. *
  763. * We need to make an exception for PF_STARTING tasks because the fork
  764. * path might require task_rq_lock() to work, eg. it can call
  765. * set_cpus_allowed_ptr() from the cpuset clone_ns code.
  766. */
  767. static inline int task_is_waking(struct task_struct *p)
  768. {
  769. return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
  770. }
  771. /*
  772. * __task_rq_lock - lock the runqueue a given task resides on.
  773. * Must be called interrupts disabled.
  774. */
  775. static inline struct rq *__task_rq_lock(struct task_struct *p)
  776. __acquires(rq->lock)
  777. {
  778. struct rq *rq;
  779. for (;;) {
  780. while (task_is_waking(p))
  781. cpu_relax();
  782. rq = task_rq(p);
  783. raw_spin_lock(&rq->lock);
  784. if (likely(rq == task_rq(p) && !task_is_waking(p)))
  785. return rq;
  786. raw_spin_unlock(&rq->lock);
  787. }
  788. }
  789. /*
  790. * task_rq_lock - lock the runqueue a given task resides on and disable
  791. * interrupts. Note the ordering: we can safely lookup the task_rq without
  792. * explicitly disabling preemption.
  793. */
  794. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  795. __acquires(rq->lock)
  796. {
  797. struct rq *rq;
  798. for (;;) {
  799. while (task_is_waking(p))
  800. cpu_relax();
  801. local_irq_save(*flags);
  802. rq = task_rq(p);
  803. raw_spin_lock(&rq->lock);
  804. if (likely(rq == task_rq(p) && !task_is_waking(p)))
  805. return rq;
  806. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  807. }
  808. }
  809. void task_rq_unlock_wait(struct task_struct *p)
  810. {
  811. struct rq *rq = task_rq(p);
  812. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  813. raw_spin_unlock_wait(&rq->lock);
  814. }
  815. static void __task_rq_unlock(struct rq *rq)
  816. __releases(rq->lock)
  817. {
  818. raw_spin_unlock(&rq->lock);
  819. }
  820. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  821. __releases(rq->lock)
  822. {
  823. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  824. }
  825. /*
  826. * this_rq_lock - lock this runqueue and disable interrupts.
  827. */
  828. static struct rq *this_rq_lock(void)
  829. __acquires(rq->lock)
  830. {
  831. struct rq *rq;
  832. local_irq_disable();
  833. rq = this_rq();
  834. raw_spin_lock(&rq->lock);
  835. return rq;
  836. }
  837. #ifdef CONFIG_SCHED_HRTICK
  838. /*
  839. * Use HR-timers to deliver accurate preemption points.
  840. *
  841. * Its all a bit involved since we cannot program an hrt while holding the
  842. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  843. * reschedule event.
  844. *
  845. * When we get rescheduled we reprogram the hrtick_timer outside of the
  846. * rq->lock.
  847. */
  848. /*
  849. * Use hrtick when:
  850. * - enabled by features
  851. * - hrtimer is actually high res
  852. */
  853. static inline int hrtick_enabled(struct rq *rq)
  854. {
  855. if (!sched_feat(HRTICK))
  856. return 0;
  857. if (!cpu_active(cpu_of(rq)))
  858. return 0;
  859. return hrtimer_is_hres_active(&rq->hrtick_timer);
  860. }
  861. static void hrtick_clear(struct rq *rq)
  862. {
  863. if (hrtimer_active(&rq->hrtick_timer))
  864. hrtimer_cancel(&rq->hrtick_timer);
  865. }
  866. /*
  867. * High-resolution timer tick.
  868. * Runs from hardirq context with interrupts disabled.
  869. */
  870. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  871. {
  872. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  873. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  874. raw_spin_lock(&rq->lock);
  875. update_rq_clock(rq);
  876. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  877. raw_spin_unlock(&rq->lock);
  878. return HRTIMER_NORESTART;
  879. }
  880. #ifdef CONFIG_SMP
  881. /*
  882. * called from hardirq (IPI) context
  883. */
  884. static void __hrtick_start(void *arg)
  885. {
  886. struct rq *rq = arg;
  887. raw_spin_lock(&rq->lock);
  888. hrtimer_restart(&rq->hrtick_timer);
  889. rq->hrtick_csd_pending = 0;
  890. raw_spin_unlock(&rq->lock);
  891. }
  892. /*
  893. * Called to set the hrtick timer state.
  894. *
  895. * called with rq->lock held and irqs disabled
  896. */
  897. static void hrtick_start(struct rq *rq, u64 delay)
  898. {
  899. struct hrtimer *timer = &rq->hrtick_timer;
  900. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  901. hrtimer_set_expires(timer, time);
  902. if (rq == this_rq()) {
  903. hrtimer_restart(timer);
  904. } else if (!rq->hrtick_csd_pending) {
  905. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  906. rq->hrtick_csd_pending = 1;
  907. }
  908. }
  909. static int
  910. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  911. {
  912. int cpu = (int)(long)hcpu;
  913. switch (action) {
  914. case CPU_UP_CANCELED:
  915. case CPU_UP_CANCELED_FROZEN:
  916. case CPU_DOWN_PREPARE:
  917. case CPU_DOWN_PREPARE_FROZEN:
  918. case CPU_DEAD:
  919. case CPU_DEAD_FROZEN:
  920. hrtick_clear(cpu_rq(cpu));
  921. return NOTIFY_OK;
  922. }
  923. return NOTIFY_DONE;
  924. }
  925. static __init void init_hrtick(void)
  926. {
  927. hotcpu_notifier(hotplug_hrtick, 0);
  928. }
  929. #else
  930. /*
  931. * Called to set the hrtick timer state.
  932. *
  933. * called with rq->lock held and irqs disabled
  934. */
  935. static void hrtick_start(struct rq *rq, u64 delay)
  936. {
  937. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  938. HRTIMER_MODE_REL_PINNED, 0);
  939. }
  940. static inline void init_hrtick(void)
  941. {
  942. }
  943. #endif /* CONFIG_SMP */
  944. static void init_rq_hrtick(struct rq *rq)
  945. {
  946. #ifdef CONFIG_SMP
  947. rq->hrtick_csd_pending = 0;
  948. rq->hrtick_csd.flags = 0;
  949. rq->hrtick_csd.func = __hrtick_start;
  950. rq->hrtick_csd.info = rq;
  951. #endif
  952. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  953. rq->hrtick_timer.function = hrtick;
  954. }
  955. #else /* CONFIG_SCHED_HRTICK */
  956. static inline void hrtick_clear(struct rq *rq)
  957. {
  958. }
  959. static inline void init_rq_hrtick(struct rq *rq)
  960. {
  961. }
  962. static inline void init_hrtick(void)
  963. {
  964. }
  965. #endif /* CONFIG_SCHED_HRTICK */
  966. /*
  967. * resched_task - mark a task 'to be rescheduled now'.
  968. *
  969. * On UP this means the setting of the need_resched flag, on SMP it
  970. * might also involve a cross-CPU call to trigger the scheduler on
  971. * the target CPU.
  972. */
  973. #ifdef CONFIG_SMP
  974. #ifndef tsk_is_polling
  975. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  976. #endif
  977. static void resched_task(struct task_struct *p)
  978. {
  979. int cpu;
  980. assert_raw_spin_locked(&task_rq(p)->lock);
  981. if (test_tsk_need_resched(p))
  982. return;
  983. set_tsk_need_resched(p);
  984. cpu = task_cpu(p);
  985. if (cpu == smp_processor_id())
  986. return;
  987. /* NEED_RESCHED must be visible before we test polling */
  988. smp_mb();
  989. if (!tsk_is_polling(p))
  990. smp_send_reschedule(cpu);
  991. }
  992. static void resched_cpu(int cpu)
  993. {
  994. struct rq *rq = cpu_rq(cpu);
  995. unsigned long flags;
  996. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  997. return;
  998. resched_task(cpu_curr(cpu));
  999. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1000. }
  1001. #ifdef CONFIG_NO_HZ
  1002. /*
  1003. * When add_timer_on() enqueues a timer into the timer wheel of an
  1004. * idle CPU then this timer might expire before the next timer event
  1005. * which is scheduled to wake up that CPU. In case of a completely
  1006. * idle system the next event might even be infinite time into the
  1007. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1008. * leaves the inner idle loop so the newly added timer is taken into
  1009. * account when the CPU goes back to idle and evaluates the timer
  1010. * wheel for the next timer event.
  1011. */
  1012. void wake_up_idle_cpu(int cpu)
  1013. {
  1014. struct rq *rq = cpu_rq(cpu);
  1015. if (cpu == smp_processor_id())
  1016. return;
  1017. /*
  1018. * This is safe, as this function is called with the timer
  1019. * wheel base lock of (cpu) held. When the CPU is on the way
  1020. * to idle and has not yet set rq->curr to idle then it will
  1021. * be serialized on the timer wheel base lock and take the new
  1022. * timer into account automatically.
  1023. */
  1024. if (rq->curr != rq->idle)
  1025. return;
  1026. /*
  1027. * We can set TIF_RESCHED on the idle task of the other CPU
  1028. * lockless. The worst case is that the other CPU runs the
  1029. * idle task through an additional NOOP schedule()
  1030. */
  1031. set_tsk_need_resched(rq->idle);
  1032. /* NEED_RESCHED must be visible before we test polling */
  1033. smp_mb();
  1034. if (!tsk_is_polling(rq->idle))
  1035. smp_send_reschedule(cpu);
  1036. }
  1037. #endif /* CONFIG_NO_HZ */
  1038. static u64 sched_avg_period(void)
  1039. {
  1040. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1041. }
  1042. static void sched_avg_update(struct rq *rq)
  1043. {
  1044. s64 period = sched_avg_period();
  1045. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1046. rq->age_stamp += period;
  1047. rq->rt_avg /= 2;
  1048. }
  1049. }
  1050. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1051. {
  1052. rq->rt_avg += rt_delta;
  1053. sched_avg_update(rq);
  1054. }
  1055. #else /* !CONFIG_SMP */
  1056. static void resched_task(struct task_struct *p)
  1057. {
  1058. assert_raw_spin_locked(&task_rq(p)->lock);
  1059. set_tsk_need_resched(p);
  1060. }
  1061. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1062. {
  1063. }
  1064. #endif /* CONFIG_SMP */
  1065. #if BITS_PER_LONG == 32
  1066. # define WMULT_CONST (~0UL)
  1067. #else
  1068. # define WMULT_CONST (1UL << 32)
  1069. #endif
  1070. #define WMULT_SHIFT 32
  1071. /*
  1072. * Shift right and round:
  1073. */
  1074. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1075. /*
  1076. * delta *= weight / lw
  1077. */
  1078. static unsigned long
  1079. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1080. struct load_weight *lw)
  1081. {
  1082. u64 tmp;
  1083. if (!lw->inv_weight) {
  1084. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1085. lw->inv_weight = 1;
  1086. else
  1087. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1088. / (lw->weight+1);
  1089. }
  1090. tmp = (u64)delta_exec * weight;
  1091. /*
  1092. * Check whether we'd overflow the 64-bit multiplication:
  1093. */
  1094. if (unlikely(tmp > WMULT_CONST))
  1095. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1096. WMULT_SHIFT/2);
  1097. else
  1098. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1099. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1100. }
  1101. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1102. {
  1103. lw->weight += inc;
  1104. lw->inv_weight = 0;
  1105. }
  1106. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1107. {
  1108. lw->weight -= dec;
  1109. lw->inv_weight = 0;
  1110. }
  1111. /*
  1112. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1113. * of tasks with abnormal "nice" values across CPUs the contribution that
  1114. * each task makes to its run queue's load is weighted according to its
  1115. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1116. * scaled version of the new time slice allocation that they receive on time
  1117. * slice expiry etc.
  1118. */
  1119. #define WEIGHT_IDLEPRIO 3
  1120. #define WMULT_IDLEPRIO 1431655765
  1121. /*
  1122. * Nice levels are multiplicative, with a gentle 10% change for every
  1123. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1124. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1125. * that remained on nice 0.
  1126. *
  1127. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1128. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1129. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1130. * If a task goes up by ~10% and another task goes down by ~10% then
  1131. * the relative distance between them is ~25%.)
  1132. */
  1133. static const int prio_to_weight[40] = {
  1134. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1135. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1136. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1137. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1138. /* 0 */ 1024, 820, 655, 526, 423,
  1139. /* 5 */ 335, 272, 215, 172, 137,
  1140. /* 10 */ 110, 87, 70, 56, 45,
  1141. /* 15 */ 36, 29, 23, 18, 15,
  1142. };
  1143. /*
  1144. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1145. *
  1146. * In cases where the weight does not change often, we can use the
  1147. * precalculated inverse to speed up arithmetics by turning divisions
  1148. * into multiplications:
  1149. */
  1150. static const u32 prio_to_wmult[40] = {
  1151. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1152. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1153. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1154. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1155. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1156. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1157. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1158. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1159. };
  1160. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1161. enum cpuacct_stat_index {
  1162. CPUACCT_STAT_USER, /* ... user mode */
  1163. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1164. CPUACCT_STAT_NSTATS,
  1165. };
  1166. #ifdef CONFIG_CGROUP_CPUACCT
  1167. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1168. static void cpuacct_update_stats(struct task_struct *tsk,
  1169. enum cpuacct_stat_index idx, cputime_t val);
  1170. #else
  1171. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1172. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1173. enum cpuacct_stat_index idx, cputime_t val) {}
  1174. #endif
  1175. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1176. {
  1177. update_load_add(&rq->load, load);
  1178. }
  1179. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1180. {
  1181. update_load_sub(&rq->load, load);
  1182. }
  1183. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1184. typedef int (*tg_visitor)(struct task_group *, void *);
  1185. /*
  1186. * Iterate the full tree, calling @down when first entering a node and @up when
  1187. * leaving it for the final time.
  1188. */
  1189. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1190. {
  1191. struct task_group *parent, *child;
  1192. int ret;
  1193. rcu_read_lock();
  1194. parent = &root_task_group;
  1195. down:
  1196. ret = (*down)(parent, data);
  1197. if (ret)
  1198. goto out_unlock;
  1199. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1200. parent = child;
  1201. goto down;
  1202. up:
  1203. continue;
  1204. }
  1205. ret = (*up)(parent, data);
  1206. if (ret)
  1207. goto out_unlock;
  1208. child = parent;
  1209. parent = parent->parent;
  1210. if (parent)
  1211. goto up;
  1212. out_unlock:
  1213. rcu_read_unlock();
  1214. return ret;
  1215. }
  1216. static int tg_nop(struct task_group *tg, void *data)
  1217. {
  1218. return 0;
  1219. }
  1220. #endif
  1221. #ifdef CONFIG_SMP
  1222. /* Used instead of source_load when we know the type == 0 */
  1223. static unsigned long weighted_cpuload(const int cpu)
  1224. {
  1225. return cpu_rq(cpu)->load.weight;
  1226. }
  1227. /*
  1228. * Return a low guess at the load of a migration-source cpu weighted
  1229. * according to the scheduling class and "nice" value.
  1230. *
  1231. * We want to under-estimate the load of migration sources, to
  1232. * balance conservatively.
  1233. */
  1234. static unsigned long source_load(int cpu, int type)
  1235. {
  1236. struct rq *rq = cpu_rq(cpu);
  1237. unsigned long total = weighted_cpuload(cpu);
  1238. if (type == 0 || !sched_feat(LB_BIAS))
  1239. return total;
  1240. return min(rq->cpu_load[type-1], total);
  1241. }
  1242. /*
  1243. * Return a high guess at the load of a migration-target cpu weighted
  1244. * according to the scheduling class and "nice" value.
  1245. */
  1246. static unsigned long target_load(int cpu, int type)
  1247. {
  1248. struct rq *rq = cpu_rq(cpu);
  1249. unsigned long total = weighted_cpuload(cpu);
  1250. if (type == 0 || !sched_feat(LB_BIAS))
  1251. return total;
  1252. return max(rq->cpu_load[type-1], total);
  1253. }
  1254. static struct sched_group *group_of(int cpu)
  1255. {
  1256. struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
  1257. if (!sd)
  1258. return NULL;
  1259. return sd->groups;
  1260. }
  1261. static unsigned long power_of(int cpu)
  1262. {
  1263. struct sched_group *group = group_of(cpu);
  1264. if (!group)
  1265. return SCHED_LOAD_SCALE;
  1266. return group->cpu_power;
  1267. }
  1268. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1269. static unsigned long cpu_avg_load_per_task(int cpu)
  1270. {
  1271. struct rq *rq = cpu_rq(cpu);
  1272. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1273. if (nr_running)
  1274. rq->avg_load_per_task = rq->load.weight / nr_running;
  1275. else
  1276. rq->avg_load_per_task = 0;
  1277. return rq->avg_load_per_task;
  1278. }
  1279. #ifdef CONFIG_FAIR_GROUP_SCHED
  1280. static __read_mostly unsigned long __percpu *update_shares_data;
  1281. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1282. /*
  1283. * Calculate and set the cpu's group shares.
  1284. */
  1285. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1286. unsigned long sd_shares,
  1287. unsigned long sd_rq_weight,
  1288. unsigned long *usd_rq_weight)
  1289. {
  1290. unsigned long shares, rq_weight;
  1291. int boost = 0;
  1292. rq_weight = usd_rq_weight[cpu];
  1293. if (!rq_weight) {
  1294. boost = 1;
  1295. rq_weight = NICE_0_LOAD;
  1296. }
  1297. /*
  1298. * \Sum_j shares_j * rq_weight_i
  1299. * shares_i = -----------------------------
  1300. * \Sum_j rq_weight_j
  1301. */
  1302. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1303. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1304. if (abs(shares - tg->se[cpu]->load.weight) >
  1305. sysctl_sched_shares_thresh) {
  1306. struct rq *rq = cpu_rq(cpu);
  1307. unsigned long flags;
  1308. raw_spin_lock_irqsave(&rq->lock, flags);
  1309. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1310. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1311. __set_se_shares(tg->se[cpu], shares);
  1312. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1313. }
  1314. }
  1315. /*
  1316. * Re-compute the task group their per cpu shares over the given domain.
  1317. * This needs to be done in a bottom-up fashion because the rq weight of a
  1318. * parent group depends on the shares of its child groups.
  1319. */
  1320. static int tg_shares_up(struct task_group *tg, void *data)
  1321. {
  1322. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1323. unsigned long *usd_rq_weight;
  1324. struct sched_domain *sd = data;
  1325. unsigned long flags;
  1326. int i;
  1327. if (!tg->se[0])
  1328. return 0;
  1329. local_irq_save(flags);
  1330. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1331. for_each_cpu(i, sched_domain_span(sd)) {
  1332. weight = tg->cfs_rq[i]->load.weight;
  1333. usd_rq_weight[i] = weight;
  1334. rq_weight += weight;
  1335. /*
  1336. * If there are currently no tasks on the cpu pretend there
  1337. * is one of average load so that when a new task gets to
  1338. * run here it will not get delayed by group starvation.
  1339. */
  1340. if (!weight)
  1341. weight = NICE_0_LOAD;
  1342. sum_weight += weight;
  1343. shares += tg->cfs_rq[i]->shares;
  1344. }
  1345. if (!rq_weight)
  1346. rq_weight = sum_weight;
  1347. if ((!shares && rq_weight) || shares > tg->shares)
  1348. shares = tg->shares;
  1349. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1350. shares = tg->shares;
  1351. for_each_cpu(i, sched_domain_span(sd))
  1352. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1353. local_irq_restore(flags);
  1354. return 0;
  1355. }
  1356. /*
  1357. * Compute the cpu's hierarchical load factor for each task group.
  1358. * This needs to be done in a top-down fashion because the load of a child
  1359. * group is a fraction of its parents load.
  1360. */
  1361. static int tg_load_down(struct task_group *tg, void *data)
  1362. {
  1363. unsigned long load;
  1364. long cpu = (long)data;
  1365. if (!tg->parent) {
  1366. load = cpu_rq(cpu)->load.weight;
  1367. } else {
  1368. load = tg->parent->cfs_rq[cpu]->h_load;
  1369. load *= tg->cfs_rq[cpu]->shares;
  1370. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1371. }
  1372. tg->cfs_rq[cpu]->h_load = load;
  1373. return 0;
  1374. }
  1375. static void update_shares(struct sched_domain *sd)
  1376. {
  1377. s64 elapsed;
  1378. u64 now;
  1379. if (root_task_group_empty())
  1380. return;
  1381. now = cpu_clock(raw_smp_processor_id());
  1382. elapsed = now - sd->last_update;
  1383. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1384. sd->last_update = now;
  1385. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1386. }
  1387. }
  1388. static void update_h_load(long cpu)
  1389. {
  1390. if (root_task_group_empty())
  1391. return;
  1392. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1393. }
  1394. #else
  1395. static inline void update_shares(struct sched_domain *sd)
  1396. {
  1397. }
  1398. #endif
  1399. #ifdef CONFIG_PREEMPT
  1400. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1401. /*
  1402. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1403. * way at the expense of forcing extra atomic operations in all
  1404. * invocations. This assures that the double_lock is acquired using the
  1405. * same underlying policy as the spinlock_t on this architecture, which
  1406. * reduces latency compared to the unfair variant below. However, it
  1407. * also adds more overhead and therefore may reduce throughput.
  1408. */
  1409. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1410. __releases(this_rq->lock)
  1411. __acquires(busiest->lock)
  1412. __acquires(this_rq->lock)
  1413. {
  1414. raw_spin_unlock(&this_rq->lock);
  1415. double_rq_lock(this_rq, busiest);
  1416. return 1;
  1417. }
  1418. #else
  1419. /*
  1420. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1421. * latency by eliminating extra atomic operations when the locks are
  1422. * already in proper order on entry. This favors lower cpu-ids and will
  1423. * grant the double lock to lower cpus over higher ids under contention,
  1424. * regardless of entry order into the function.
  1425. */
  1426. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1427. __releases(this_rq->lock)
  1428. __acquires(busiest->lock)
  1429. __acquires(this_rq->lock)
  1430. {
  1431. int ret = 0;
  1432. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1433. if (busiest < this_rq) {
  1434. raw_spin_unlock(&this_rq->lock);
  1435. raw_spin_lock(&busiest->lock);
  1436. raw_spin_lock_nested(&this_rq->lock,
  1437. SINGLE_DEPTH_NESTING);
  1438. ret = 1;
  1439. } else
  1440. raw_spin_lock_nested(&busiest->lock,
  1441. SINGLE_DEPTH_NESTING);
  1442. }
  1443. return ret;
  1444. }
  1445. #endif /* CONFIG_PREEMPT */
  1446. /*
  1447. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1448. */
  1449. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1450. {
  1451. if (unlikely(!irqs_disabled())) {
  1452. /* printk() doesn't work good under rq->lock */
  1453. raw_spin_unlock(&this_rq->lock);
  1454. BUG_ON(1);
  1455. }
  1456. return _double_lock_balance(this_rq, busiest);
  1457. }
  1458. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1459. __releases(busiest->lock)
  1460. {
  1461. raw_spin_unlock(&busiest->lock);
  1462. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1463. }
  1464. /*
  1465. * double_rq_lock - safely lock two runqueues
  1466. *
  1467. * Note this does not disable interrupts like task_rq_lock,
  1468. * you need to do so manually before calling.
  1469. */
  1470. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1471. __acquires(rq1->lock)
  1472. __acquires(rq2->lock)
  1473. {
  1474. BUG_ON(!irqs_disabled());
  1475. if (rq1 == rq2) {
  1476. raw_spin_lock(&rq1->lock);
  1477. __acquire(rq2->lock); /* Fake it out ;) */
  1478. } else {
  1479. if (rq1 < rq2) {
  1480. raw_spin_lock(&rq1->lock);
  1481. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1482. } else {
  1483. raw_spin_lock(&rq2->lock);
  1484. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1485. }
  1486. }
  1487. update_rq_clock(rq1);
  1488. update_rq_clock(rq2);
  1489. }
  1490. /*
  1491. * double_rq_unlock - safely unlock two runqueues
  1492. *
  1493. * Note this does not restore interrupts like task_rq_unlock,
  1494. * you need to do so manually after calling.
  1495. */
  1496. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1497. __releases(rq1->lock)
  1498. __releases(rq2->lock)
  1499. {
  1500. raw_spin_unlock(&rq1->lock);
  1501. if (rq1 != rq2)
  1502. raw_spin_unlock(&rq2->lock);
  1503. else
  1504. __release(rq2->lock);
  1505. }
  1506. #endif
  1507. #ifdef CONFIG_FAIR_GROUP_SCHED
  1508. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1509. {
  1510. #ifdef CONFIG_SMP
  1511. cfs_rq->shares = shares;
  1512. #endif
  1513. }
  1514. #endif
  1515. static void calc_load_account_active(struct rq *this_rq);
  1516. static void update_sysctl(void);
  1517. static int get_update_sysctl_factor(void);
  1518. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1519. {
  1520. set_task_rq(p, cpu);
  1521. #ifdef CONFIG_SMP
  1522. /*
  1523. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1524. * successfuly executed on another CPU. We must ensure that updates of
  1525. * per-task data have been completed by this moment.
  1526. */
  1527. smp_wmb();
  1528. task_thread_info(p)->cpu = cpu;
  1529. #endif
  1530. }
  1531. static const struct sched_class rt_sched_class;
  1532. #define sched_class_highest (&rt_sched_class)
  1533. #define for_each_class(class) \
  1534. for (class = sched_class_highest; class; class = class->next)
  1535. #include "sched_stats.h"
  1536. static void inc_nr_running(struct rq *rq)
  1537. {
  1538. rq->nr_running++;
  1539. }
  1540. static void dec_nr_running(struct rq *rq)
  1541. {
  1542. rq->nr_running--;
  1543. }
  1544. static void set_load_weight(struct task_struct *p)
  1545. {
  1546. if (task_has_rt_policy(p)) {
  1547. p->se.load.weight = prio_to_weight[0] * 2;
  1548. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1549. return;
  1550. }
  1551. /*
  1552. * SCHED_IDLE tasks get minimal weight:
  1553. */
  1554. if (p->policy == SCHED_IDLE) {
  1555. p->se.load.weight = WEIGHT_IDLEPRIO;
  1556. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1557. return;
  1558. }
  1559. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1560. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1561. }
  1562. static void update_avg(u64 *avg, u64 sample)
  1563. {
  1564. s64 diff = sample - *avg;
  1565. *avg += diff >> 3;
  1566. }
  1567. static void
  1568. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
  1569. {
  1570. if (wakeup)
  1571. p->se.start_runtime = p->se.sum_exec_runtime;
  1572. sched_info_queued(p);
  1573. p->sched_class->enqueue_task(rq, p, wakeup, head);
  1574. p->se.on_rq = 1;
  1575. }
  1576. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1577. {
  1578. if (sleep) {
  1579. if (p->se.last_wakeup) {
  1580. update_avg(&p->se.avg_overlap,
  1581. p->se.sum_exec_runtime - p->se.last_wakeup);
  1582. p->se.last_wakeup = 0;
  1583. } else {
  1584. update_avg(&p->se.avg_wakeup,
  1585. sysctl_sched_wakeup_granularity);
  1586. }
  1587. }
  1588. sched_info_dequeued(p);
  1589. p->sched_class->dequeue_task(rq, p, sleep);
  1590. p->se.on_rq = 0;
  1591. }
  1592. /*
  1593. * activate_task - move a task to the runqueue.
  1594. */
  1595. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1596. {
  1597. if (task_contributes_to_load(p))
  1598. rq->nr_uninterruptible--;
  1599. enqueue_task(rq, p, wakeup, false);
  1600. inc_nr_running(rq);
  1601. }
  1602. /*
  1603. * deactivate_task - remove a task from the runqueue.
  1604. */
  1605. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1606. {
  1607. if (task_contributes_to_load(p))
  1608. rq->nr_uninterruptible++;
  1609. dequeue_task(rq, p, sleep);
  1610. dec_nr_running(rq);
  1611. }
  1612. #include "sched_idletask.c"
  1613. #include "sched_fair.c"
  1614. #include "sched_rt.c"
  1615. #ifdef CONFIG_SCHED_DEBUG
  1616. # include "sched_debug.c"
  1617. #endif
  1618. /*
  1619. * __normal_prio - return the priority that is based on the static prio
  1620. */
  1621. static inline int __normal_prio(struct task_struct *p)
  1622. {
  1623. return p->static_prio;
  1624. }
  1625. /*
  1626. * Calculate the expected normal priority: i.e. priority
  1627. * without taking RT-inheritance into account. Might be
  1628. * boosted by interactivity modifiers. Changes upon fork,
  1629. * setprio syscalls, and whenever the interactivity
  1630. * estimator recalculates.
  1631. */
  1632. static inline int normal_prio(struct task_struct *p)
  1633. {
  1634. int prio;
  1635. if (task_has_rt_policy(p))
  1636. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1637. else
  1638. prio = __normal_prio(p);
  1639. return prio;
  1640. }
  1641. /*
  1642. * Calculate the current priority, i.e. the priority
  1643. * taken into account by the scheduler. This value might
  1644. * be boosted by RT tasks, or might be boosted by
  1645. * interactivity modifiers. Will be RT if the task got
  1646. * RT-boosted. If not then it returns p->normal_prio.
  1647. */
  1648. static int effective_prio(struct task_struct *p)
  1649. {
  1650. p->normal_prio = normal_prio(p);
  1651. /*
  1652. * If we are RT tasks or we were boosted to RT priority,
  1653. * keep the priority unchanged. Otherwise, update priority
  1654. * to the normal priority:
  1655. */
  1656. if (!rt_prio(p->prio))
  1657. return p->normal_prio;
  1658. return p->prio;
  1659. }
  1660. /**
  1661. * task_curr - is this task currently executing on a CPU?
  1662. * @p: the task in question.
  1663. */
  1664. inline int task_curr(const struct task_struct *p)
  1665. {
  1666. return cpu_curr(task_cpu(p)) == p;
  1667. }
  1668. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1669. const struct sched_class *prev_class,
  1670. int oldprio, int running)
  1671. {
  1672. if (prev_class != p->sched_class) {
  1673. if (prev_class->switched_from)
  1674. prev_class->switched_from(rq, p, running);
  1675. p->sched_class->switched_to(rq, p, running);
  1676. } else
  1677. p->sched_class->prio_changed(rq, p, oldprio, running);
  1678. }
  1679. #ifdef CONFIG_SMP
  1680. /*
  1681. * Is this task likely cache-hot:
  1682. */
  1683. static int
  1684. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1685. {
  1686. s64 delta;
  1687. if (p->sched_class != &fair_sched_class)
  1688. return 0;
  1689. /*
  1690. * Buddy candidates are cache hot:
  1691. */
  1692. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1693. (&p->se == cfs_rq_of(&p->se)->next ||
  1694. &p->se == cfs_rq_of(&p->se)->last))
  1695. return 1;
  1696. if (sysctl_sched_migration_cost == -1)
  1697. return 1;
  1698. if (sysctl_sched_migration_cost == 0)
  1699. return 0;
  1700. delta = now - p->se.exec_start;
  1701. return delta < (s64)sysctl_sched_migration_cost;
  1702. }
  1703. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1704. {
  1705. #ifdef CONFIG_SCHED_DEBUG
  1706. /*
  1707. * We should never call set_task_cpu() on a blocked task,
  1708. * ttwu() will sort out the placement.
  1709. */
  1710. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1711. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1712. #endif
  1713. trace_sched_migrate_task(p, new_cpu);
  1714. if (task_cpu(p) != new_cpu) {
  1715. p->se.nr_migrations++;
  1716. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1717. }
  1718. __set_task_cpu(p, new_cpu);
  1719. }
  1720. struct migration_req {
  1721. struct list_head list;
  1722. struct task_struct *task;
  1723. int dest_cpu;
  1724. struct completion done;
  1725. };
  1726. /*
  1727. * The task's runqueue lock must be held.
  1728. * Returns true if you have to wait for migration thread.
  1729. */
  1730. static int
  1731. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1732. {
  1733. struct rq *rq = task_rq(p);
  1734. /*
  1735. * If the task is not on a runqueue (and not running), then
  1736. * the next wake-up will properly place the task.
  1737. */
  1738. if (!p->se.on_rq && !task_running(rq, p))
  1739. return 0;
  1740. init_completion(&req->done);
  1741. req->task = p;
  1742. req->dest_cpu = dest_cpu;
  1743. list_add(&req->list, &rq->migration_queue);
  1744. return 1;
  1745. }
  1746. /*
  1747. * wait_task_context_switch - wait for a thread to complete at least one
  1748. * context switch.
  1749. *
  1750. * @p must not be current.
  1751. */
  1752. void wait_task_context_switch(struct task_struct *p)
  1753. {
  1754. unsigned long nvcsw, nivcsw, flags;
  1755. int running;
  1756. struct rq *rq;
  1757. nvcsw = p->nvcsw;
  1758. nivcsw = p->nivcsw;
  1759. for (;;) {
  1760. /*
  1761. * The runqueue is assigned before the actual context
  1762. * switch. We need to take the runqueue lock.
  1763. *
  1764. * We could check initially without the lock but it is
  1765. * very likely that we need to take the lock in every
  1766. * iteration.
  1767. */
  1768. rq = task_rq_lock(p, &flags);
  1769. running = task_running(rq, p);
  1770. task_rq_unlock(rq, &flags);
  1771. if (likely(!running))
  1772. break;
  1773. /*
  1774. * The switch count is incremented before the actual
  1775. * context switch. We thus wait for two switches to be
  1776. * sure at least one completed.
  1777. */
  1778. if ((p->nvcsw - nvcsw) > 1)
  1779. break;
  1780. if ((p->nivcsw - nivcsw) > 1)
  1781. break;
  1782. cpu_relax();
  1783. }
  1784. }
  1785. /*
  1786. * wait_task_inactive - wait for a thread to unschedule.
  1787. *
  1788. * If @match_state is nonzero, it's the @p->state value just checked and
  1789. * not expected to change. If it changes, i.e. @p might have woken up,
  1790. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1791. * we return a positive number (its total switch count). If a second call
  1792. * a short while later returns the same number, the caller can be sure that
  1793. * @p has remained unscheduled the whole time.
  1794. *
  1795. * The caller must ensure that the task *will* unschedule sometime soon,
  1796. * else this function might spin for a *long* time. This function can't
  1797. * be called with interrupts off, or it may introduce deadlock with
  1798. * smp_call_function() if an IPI is sent by the same process we are
  1799. * waiting to become inactive.
  1800. */
  1801. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1802. {
  1803. unsigned long flags;
  1804. int running, on_rq;
  1805. unsigned long ncsw;
  1806. struct rq *rq;
  1807. for (;;) {
  1808. /*
  1809. * We do the initial early heuristics without holding
  1810. * any task-queue locks at all. We'll only try to get
  1811. * the runqueue lock when things look like they will
  1812. * work out!
  1813. */
  1814. rq = task_rq(p);
  1815. /*
  1816. * If the task is actively running on another CPU
  1817. * still, just relax and busy-wait without holding
  1818. * any locks.
  1819. *
  1820. * NOTE! Since we don't hold any locks, it's not
  1821. * even sure that "rq" stays as the right runqueue!
  1822. * But we don't care, since "task_running()" will
  1823. * return false if the runqueue has changed and p
  1824. * is actually now running somewhere else!
  1825. */
  1826. while (task_running(rq, p)) {
  1827. if (match_state && unlikely(p->state != match_state))
  1828. return 0;
  1829. cpu_relax();
  1830. }
  1831. /*
  1832. * Ok, time to look more closely! We need the rq
  1833. * lock now, to be *sure*. If we're wrong, we'll
  1834. * just go back and repeat.
  1835. */
  1836. rq = task_rq_lock(p, &flags);
  1837. trace_sched_wait_task(rq, p);
  1838. running = task_running(rq, p);
  1839. on_rq = p->se.on_rq;
  1840. ncsw = 0;
  1841. if (!match_state || p->state == match_state)
  1842. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1843. task_rq_unlock(rq, &flags);
  1844. /*
  1845. * If it changed from the expected state, bail out now.
  1846. */
  1847. if (unlikely(!ncsw))
  1848. break;
  1849. /*
  1850. * Was it really running after all now that we
  1851. * checked with the proper locks actually held?
  1852. *
  1853. * Oops. Go back and try again..
  1854. */
  1855. if (unlikely(running)) {
  1856. cpu_relax();
  1857. continue;
  1858. }
  1859. /*
  1860. * It's not enough that it's not actively running,
  1861. * it must be off the runqueue _entirely_, and not
  1862. * preempted!
  1863. *
  1864. * So if it was still runnable (but just not actively
  1865. * running right now), it's preempted, and we should
  1866. * yield - it could be a while.
  1867. */
  1868. if (unlikely(on_rq)) {
  1869. schedule_timeout_uninterruptible(1);
  1870. continue;
  1871. }
  1872. /*
  1873. * Ahh, all good. It wasn't running, and it wasn't
  1874. * runnable, which means that it will never become
  1875. * running in the future either. We're all done!
  1876. */
  1877. break;
  1878. }
  1879. return ncsw;
  1880. }
  1881. /***
  1882. * kick_process - kick a running thread to enter/exit the kernel
  1883. * @p: the to-be-kicked thread
  1884. *
  1885. * Cause a process which is running on another CPU to enter
  1886. * kernel-mode, without any delay. (to get signals handled.)
  1887. *
  1888. * NOTE: this function doesnt have to take the runqueue lock,
  1889. * because all it wants to ensure is that the remote task enters
  1890. * the kernel. If the IPI races and the task has been migrated
  1891. * to another CPU then no harm is done and the purpose has been
  1892. * achieved as well.
  1893. */
  1894. void kick_process(struct task_struct *p)
  1895. {
  1896. int cpu;
  1897. preempt_disable();
  1898. cpu = task_cpu(p);
  1899. if ((cpu != smp_processor_id()) && task_curr(p))
  1900. smp_send_reschedule(cpu);
  1901. preempt_enable();
  1902. }
  1903. EXPORT_SYMBOL_GPL(kick_process);
  1904. #endif /* CONFIG_SMP */
  1905. /**
  1906. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1907. * @p: the task to evaluate
  1908. * @func: the function to be called
  1909. * @info: the function call argument
  1910. *
  1911. * Calls the function @func when the task is currently running. This might
  1912. * be on the current CPU, which just calls the function directly
  1913. */
  1914. void task_oncpu_function_call(struct task_struct *p,
  1915. void (*func) (void *info), void *info)
  1916. {
  1917. int cpu;
  1918. preempt_disable();
  1919. cpu = task_cpu(p);
  1920. if (task_curr(p))
  1921. smp_call_function_single(cpu, func, info, 1);
  1922. preempt_enable();
  1923. }
  1924. #ifdef CONFIG_SMP
  1925. static int select_fallback_rq(int cpu, struct task_struct *p)
  1926. {
  1927. int dest_cpu;
  1928. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1929. /* Look for allowed, online CPU in same node. */
  1930. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1931. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1932. return dest_cpu;
  1933. /* Any allowed, online CPU? */
  1934. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1935. if (dest_cpu < nr_cpu_ids)
  1936. return dest_cpu;
  1937. /* No more Mr. Nice Guy. */
  1938. if (dest_cpu >= nr_cpu_ids) {
  1939. rcu_read_lock();
  1940. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1941. rcu_read_unlock();
  1942. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1943. /*
  1944. * Don't tell them about moving exiting tasks or
  1945. * kernel threads (both mm NULL), since they never
  1946. * leave kernel.
  1947. */
  1948. if (p->mm && printk_ratelimit()) {
  1949. printk(KERN_INFO "process %d (%s) no "
  1950. "longer affine to cpu%d\n",
  1951. task_pid_nr(p), p->comm, cpu);
  1952. }
  1953. }
  1954. return dest_cpu;
  1955. }
  1956. /*
  1957. * Gets called from 3 sites (exec, fork, wakeup), since it is called without
  1958. * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
  1959. * by:
  1960. *
  1961. * exec: is unstable, retry loop
  1962. * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
  1963. */
  1964. static inline
  1965. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1966. {
  1967. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1968. /*
  1969. * In order not to call set_task_cpu() on a blocking task we need
  1970. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1971. * cpu.
  1972. *
  1973. * Since this is common to all placement strategies, this lives here.
  1974. *
  1975. * [ this allows ->select_task() to simply return task_cpu(p) and
  1976. * not worry about this generic constraint ]
  1977. */
  1978. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1979. !cpu_online(cpu)))
  1980. cpu = select_fallback_rq(task_cpu(p), p);
  1981. return cpu;
  1982. }
  1983. #endif
  1984. /***
  1985. * try_to_wake_up - wake up a thread
  1986. * @p: the to-be-woken-up thread
  1987. * @state: the mask of task states that can be woken
  1988. * @sync: do a synchronous wakeup?
  1989. *
  1990. * Put it on the run-queue if it's not already there. The "current"
  1991. * thread is always on the run-queue (except when the actual
  1992. * re-schedule is in progress), and as such you're allowed to do
  1993. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1994. * runnable without the overhead of this.
  1995. *
  1996. * returns failure only if the task is already active.
  1997. */
  1998. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1999. int wake_flags)
  2000. {
  2001. int cpu, orig_cpu, this_cpu, success = 0;
  2002. unsigned long flags;
  2003. struct rq *rq;
  2004. if (!sched_feat(SYNC_WAKEUPS))
  2005. wake_flags &= ~WF_SYNC;
  2006. this_cpu = get_cpu();
  2007. smp_wmb();
  2008. rq = task_rq_lock(p, &flags);
  2009. update_rq_clock(rq);
  2010. if (!(p->state & state))
  2011. goto out;
  2012. if (p->se.on_rq)
  2013. goto out_running;
  2014. cpu = task_cpu(p);
  2015. orig_cpu = cpu;
  2016. #ifdef CONFIG_SMP
  2017. if (unlikely(task_running(rq, p)))
  2018. goto out_activate;
  2019. /*
  2020. * In order to handle concurrent wakeups and release the rq->lock
  2021. * we put the task in TASK_WAKING state.
  2022. *
  2023. * First fix up the nr_uninterruptible count:
  2024. */
  2025. if (task_contributes_to_load(p))
  2026. rq->nr_uninterruptible--;
  2027. p->state = TASK_WAKING;
  2028. if (p->sched_class->task_waking)
  2029. p->sched_class->task_waking(rq, p);
  2030. __task_rq_unlock(rq);
  2031. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2032. if (cpu != orig_cpu) {
  2033. /*
  2034. * Since we migrate the task without holding any rq->lock,
  2035. * we need to be careful with task_rq_lock(), since that
  2036. * might end up locking an invalid rq.
  2037. */
  2038. set_task_cpu(p, cpu);
  2039. }
  2040. rq = cpu_rq(cpu);
  2041. raw_spin_lock(&rq->lock);
  2042. update_rq_clock(rq);
  2043. /*
  2044. * We migrated the task without holding either rq->lock, however
  2045. * since the task is not on the task list itself, nobody else
  2046. * will try and migrate the task, hence the rq should match the
  2047. * cpu we just moved it to.
  2048. */
  2049. WARN_ON(task_cpu(p) != cpu);
  2050. WARN_ON(p->state != TASK_WAKING);
  2051. #ifdef CONFIG_SCHEDSTATS
  2052. schedstat_inc(rq, ttwu_count);
  2053. if (cpu == this_cpu)
  2054. schedstat_inc(rq, ttwu_local);
  2055. else {
  2056. struct sched_domain *sd;
  2057. for_each_domain(this_cpu, sd) {
  2058. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2059. schedstat_inc(sd, ttwu_wake_remote);
  2060. break;
  2061. }
  2062. }
  2063. }
  2064. #endif /* CONFIG_SCHEDSTATS */
  2065. out_activate:
  2066. #endif /* CONFIG_SMP */
  2067. schedstat_inc(p, se.nr_wakeups);
  2068. if (wake_flags & WF_SYNC)
  2069. schedstat_inc(p, se.nr_wakeups_sync);
  2070. if (orig_cpu != cpu)
  2071. schedstat_inc(p, se.nr_wakeups_migrate);
  2072. if (cpu == this_cpu)
  2073. schedstat_inc(p, se.nr_wakeups_local);
  2074. else
  2075. schedstat_inc(p, se.nr_wakeups_remote);
  2076. activate_task(rq, p, 1);
  2077. success = 1;
  2078. /*
  2079. * Only attribute actual wakeups done by this task.
  2080. */
  2081. if (!in_interrupt()) {
  2082. struct sched_entity *se = &current->se;
  2083. u64 sample = se->sum_exec_runtime;
  2084. if (se->last_wakeup)
  2085. sample -= se->last_wakeup;
  2086. else
  2087. sample -= se->start_runtime;
  2088. update_avg(&se->avg_wakeup, sample);
  2089. se->last_wakeup = se->sum_exec_runtime;
  2090. }
  2091. out_running:
  2092. trace_sched_wakeup(rq, p, success);
  2093. check_preempt_curr(rq, p, wake_flags);
  2094. p->state = TASK_RUNNING;
  2095. #ifdef CONFIG_SMP
  2096. if (p->sched_class->task_woken)
  2097. p->sched_class->task_woken(rq, p);
  2098. if (unlikely(rq->idle_stamp)) {
  2099. u64 delta = rq->clock - rq->idle_stamp;
  2100. u64 max = 2*sysctl_sched_migration_cost;
  2101. if (delta > max)
  2102. rq->avg_idle = max;
  2103. else
  2104. update_avg(&rq->avg_idle, delta);
  2105. rq->idle_stamp = 0;
  2106. }
  2107. #endif
  2108. out:
  2109. task_rq_unlock(rq, &flags);
  2110. put_cpu();
  2111. return success;
  2112. }
  2113. /**
  2114. * wake_up_process - Wake up a specific process
  2115. * @p: The process to be woken up.
  2116. *
  2117. * Attempt to wake up the nominated process and move it to the set of runnable
  2118. * processes. Returns 1 if the process was woken up, 0 if it was already
  2119. * running.
  2120. *
  2121. * It may be assumed that this function implies a write memory barrier before
  2122. * changing the task state if and only if any tasks are woken up.
  2123. */
  2124. int wake_up_process(struct task_struct *p)
  2125. {
  2126. return try_to_wake_up(p, TASK_ALL, 0);
  2127. }
  2128. EXPORT_SYMBOL(wake_up_process);
  2129. int wake_up_state(struct task_struct *p, unsigned int state)
  2130. {
  2131. return try_to_wake_up(p, state, 0);
  2132. }
  2133. /*
  2134. * Perform scheduler related setup for a newly forked process p.
  2135. * p is forked by current.
  2136. *
  2137. * __sched_fork() is basic setup used by init_idle() too:
  2138. */
  2139. static void __sched_fork(struct task_struct *p)
  2140. {
  2141. p->se.exec_start = 0;
  2142. p->se.sum_exec_runtime = 0;
  2143. p->se.prev_sum_exec_runtime = 0;
  2144. p->se.nr_migrations = 0;
  2145. p->se.last_wakeup = 0;
  2146. p->se.avg_overlap = 0;
  2147. p->se.start_runtime = 0;
  2148. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2149. #ifdef CONFIG_SCHEDSTATS
  2150. p->se.wait_start = 0;
  2151. p->se.wait_max = 0;
  2152. p->se.wait_count = 0;
  2153. p->se.wait_sum = 0;
  2154. p->se.sleep_start = 0;
  2155. p->se.sleep_max = 0;
  2156. p->se.sum_sleep_runtime = 0;
  2157. p->se.block_start = 0;
  2158. p->se.block_max = 0;
  2159. p->se.exec_max = 0;
  2160. p->se.slice_max = 0;
  2161. p->se.nr_migrations_cold = 0;
  2162. p->se.nr_failed_migrations_affine = 0;
  2163. p->se.nr_failed_migrations_running = 0;
  2164. p->se.nr_failed_migrations_hot = 0;
  2165. p->se.nr_forced_migrations = 0;
  2166. p->se.nr_wakeups = 0;
  2167. p->se.nr_wakeups_sync = 0;
  2168. p->se.nr_wakeups_migrate = 0;
  2169. p->se.nr_wakeups_local = 0;
  2170. p->se.nr_wakeups_remote = 0;
  2171. p->se.nr_wakeups_affine = 0;
  2172. p->se.nr_wakeups_affine_attempts = 0;
  2173. p->se.nr_wakeups_passive = 0;
  2174. p->se.nr_wakeups_idle = 0;
  2175. #endif
  2176. INIT_LIST_HEAD(&p->rt.run_list);
  2177. p->se.on_rq = 0;
  2178. INIT_LIST_HEAD(&p->se.group_node);
  2179. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2180. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2181. #endif
  2182. }
  2183. /*
  2184. * fork()/clone()-time setup:
  2185. */
  2186. void sched_fork(struct task_struct *p, int clone_flags)
  2187. {
  2188. int cpu = get_cpu();
  2189. __sched_fork(p);
  2190. /*
  2191. * We mark the process as waking here. This guarantees that
  2192. * nobody will actually run it, and a signal or other external
  2193. * event cannot wake it up and insert it on the runqueue either.
  2194. */
  2195. p->state = TASK_WAKING;
  2196. /*
  2197. * Revert to default priority/policy on fork if requested.
  2198. */
  2199. if (unlikely(p->sched_reset_on_fork)) {
  2200. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2201. p->policy = SCHED_NORMAL;
  2202. p->normal_prio = p->static_prio;
  2203. }
  2204. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2205. p->static_prio = NICE_TO_PRIO(0);
  2206. p->normal_prio = p->static_prio;
  2207. set_load_weight(p);
  2208. }
  2209. /*
  2210. * We don't need the reset flag anymore after the fork. It has
  2211. * fulfilled its duty:
  2212. */
  2213. p->sched_reset_on_fork = 0;
  2214. }
  2215. /*
  2216. * Make sure we do not leak PI boosting priority to the child.
  2217. */
  2218. p->prio = current->normal_prio;
  2219. if (!rt_prio(p->prio))
  2220. p->sched_class = &fair_sched_class;
  2221. if (p->sched_class->task_fork)
  2222. p->sched_class->task_fork(p);
  2223. set_task_cpu(p, cpu);
  2224. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2225. if (likely(sched_info_on()))
  2226. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2227. #endif
  2228. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2229. p->oncpu = 0;
  2230. #endif
  2231. #ifdef CONFIG_PREEMPT
  2232. /* Want to start with kernel preemption disabled. */
  2233. task_thread_info(p)->preempt_count = 1;
  2234. #endif
  2235. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2236. put_cpu();
  2237. }
  2238. /*
  2239. * wake_up_new_task - wake up a newly created task for the first time.
  2240. *
  2241. * This function will do some initial scheduler statistics housekeeping
  2242. * that must be done for every newly created context, then puts the task
  2243. * on the runqueue and wakes it.
  2244. */
  2245. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2246. {
  2247. unsigned long flags;
  2248. struct rq *rq;
  2249. int cpu __maybe_unused = get_cpu();
  2250. #ifdef CONFIG_SMP
  2251. /*
  2252. * Fork balancing, do it here and not earlier because:
  2253. * - cpus_allowed can change in the fork path
  2254. * - any previously selected cpu might disappear through hotplug
  2255. *
  2256. * We still have TASK_WAKING but PF_STARTING is gone now, meaning
  2257. * ->cpus_allowed is stable, we have preemption disabled, meaning
  2258. * cpu_online_mask is stable.
  2259. */
  2260. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2261. set_task_cpu(p, cpu);
  2262. #endif
  2263. /*
  2264. * Since the task is not on the rq and we still have TASK_WAKING set
  2265. * nobody else will migrate this task.
  2266. */
  2267. rq = cpu_rq(cpu);
  2268. raw_spin_lock_irqsave(&rq->lock, flags);
  2269. BUG_ON(p->state != TASK_WAKING);
  2270. p->state = TASK_RUNNING;
  2271. update_rq_clock(rq);
  2272. activate_task(rq, p, 0);
  2273. trace_sched_wakeup_new(rq, p, 1);
  2274. check_preempt_curr(rq, p, WF_FORK);
  2275. #ifdef CONFIG_SMP
  2276. if (p->sched_class->task_woken)
  2277. p->sched_class->task_woken(rq, p);
  2278. #endif
  2279. task_rq_unlock(rq, &flags);
  2280. put_cpu();
  2281. }
  2282. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2283. /**
  2284. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2285. * @notifier: notifier struct to register
  2286. */
  2287. void preempt_notifier_register(struct preempt_notifier *notifier)
  2288. {
  2289. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2290. }
  2291. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2292. /**
  2293. * preempt_notifier_unregister - no longer interested in preemption notifications
  2294. * @notifier: notifier struct to unregister
  2295. *
  2296. * This is safe to call from within a preemption notifier.
  2297. */
  2298. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2299. {
  2300. hlist_del(&notifier->link);
  2301. }
  2302. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2303. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2304. {
  2305. struct preempt_notifier *notifier;
  2306. struct hlist_node *node;
  2307. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2308. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2309. }
  2310. static void
  2311. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2312. struct task_struct *next)
  2313. {
  2314. struct preempt_notifier *notifier;
  2315. struct hlist_node *node;
  2316. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2317. notifier->ops->sched_out(notifier, next);
  2318. }
  2319. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2320. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2321. {
  2322. }
  2323. static void
  2324. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2325. struct task_struct *next)
  2326. {
  2327. }
  2328. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2329. /**
  2330. * prepare_task_switch - prepare to switch tasks
  2331. * @rq: the runqueue preparing to switch
  2332. * @prev: the current task that is being switched out
  2333. * @next: the task we are going to switch to.
  2334. *
  2335. * This is called with the rq lock held and interrupts off. It must
  2336. * be paired with a subsequent finish_task_switch after the context
  2337. * switch.
  2338. *
  2339. * prepare_task_switch sets up locking and calls architecture specific
  2340. * hooks.
  2341. */
  2342. static inline void
  2343. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2344. struct task_struct *next)
  2345. {
  2346. fire_sched_out_preempt_notifiers(prev, next);
  2347. prepare_lock_switch(rq, next);
  2348. prepare_arch_switch(next);
  2349. }
  2350. /**
  2351. * finish_task_switch - clean up after a task-switch
  2352. * @rq: runqueue associated with task-switch
  2353. * @prev: the thread we just switched away from.
  2354. *
  2355. * finish_task_switch must be called after the context switch, paired
  2356. * with a prepare_task_switch call before the context switch.
  2357. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2358. * and do any other architecture-specific cleanup actions.
  2359. *
  2360. * Note that we may have delayed dropping an mm in context_switch(). If
  2361. * so, we finish that here outside of the runqueue lock. (Doing it
  2362. * with the lock held can cause deadlocks; see schedule() for
  2363. * details.)
  2364. */
  2365. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2366. __releases(rq->lock)
  2367. {
  2368. struct mm_struct *mm = rq->prev_mm;
  2369. long prev_state;
  2370. rq->prev_mm = NULL;
  2371. /*
  2372. * A task struct has one reference for the use as "current".
  2373. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2374. * schedule one last time. The schedule call will never return, and
  2375. * the scheduled task must drop that reference.
  2376. * The test for TASK_DEAD must occur while the runqueue locks are
  2377. * still held, otherwise prev could be scheduled on another cpu, die
  2378. * there before we look at prev->state, and then the reference would
  2379. * be dropped twice.
  2380. * Manfred Spraul <manfred@colorfullife.com>
  2381. */
  2382. prev_state = prev->state;
  2383. finish_arch_switch(prev);
  2384. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2385. local_irq_disable();
  2386. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2387. perf_event_task_sched_in(current);
  2388. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2389. local_irq_enable();
  2390. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2391. finish_lock_switch(rq, prev);
  2392. fire_sched_in_preempt_notifiers(current);
  2393. if (mm)
  2394. mmdrop(mm);
  2395. if (unlikely(prev_state == TASK_DEAD)) {
  2396. /*
  2397. * Remove function-return probe instances associated with this
  2398. * task and put them back on the free list.
  2399. */
  2400. kprobe_flush_task(prev);
  2401. put_task_struct(prev);
  2402. }
  2403. }
  2404. #ifdef CONFIG_SMP
  2405. /* assumes rq->lock is held */
  2406. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2407. {
  2408. if (prev->sched_class->pre_schedule)
  2409. prev->sched_class->pre_schedule(rq, prev);
  2410. }
  2411. /* rq->lock is NOT held, but preemption is disabled */
  2412. static inline void post_schedule(struct rq *rq)
  2413. {
  2414. if (rq->post_schedule) {
  2415. unsigned long flags;
  2416. raw_spin_lock_irqsave(&rq->lock, flags);
  2417. if (rq->curr->sched_class->post_schedule)
  2418. rq->curr->sched_class->post_schedule(rq);
  2419. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2420. rq->post_schedule = 0;
  2421. }
  2422. }
  2423. #else
  2424. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2425. {
  2426. }
  2427. static inline void post_schedule(struct rq *rq)
  2428. {
  2429. }
  2430. #endif
  2431. /**
  2432. * schedule_tail - first thing a freshly forked thread must call.
  2433. * @prev: the thread we just switched away from.
  2434. */
  2435. asmlinkage void schedule_tail(struct task_struct *prev)
  2436. __releases(rq->lock)
  2437. {
  2438. struct rq *rq = this_rq();
  2439. finish_task_switch(rq, prev);
  2440. /*
  2441. * FIXME: do we need to worry about rq being invalidated by the
  2442. * task_switch?
  2443. */
  2444. post_schedule(rq);
  2445. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2446. /* In this case, finish_task_switch does not reenable preemption */
  2447. preempt_enable();
  2448. #endif
  2449. if (current->set_child_tid)
  2450. put_user(task_pid_vnr(current), current->set_child_tid);
  2451. }
  2452. /*
  2453. * context_switch - switch to the new MM and the new
  2454. * thread's register state.
  2455. */
  2456. static inline void
  2457. context_switch(struct rq *rq, struct task_struct *prev,
  2458. struct task_struct *next)
  2459. {
  2460. struct mm_struct *mm, *oldmm;
  2461. prepare_task_switch(rq, prev, next);
  2462. trace_sched_switch(rq, prev, next);
  2463. mm = next->mm;
  2464. oldmm = prev->active_mm;
  2465. /*
  2466. * For paravirt, this is coupled with an exit in switch_to to
  2467. * combine the page table reload and the switch backend into
  2468. * one hypercall.
  2469. */
  2470. arch_start_context_switch(prev);
  2471. if (likely(!mm)) {
  2472. next->active_mm = oldmm;
  2473. atomic_inc(&oldmm->mm_count);
  2474. enter_lazy_tlb(oldmm, next);
  2475. } else
  2476. switch_mm(oldmm, mm, next);
  2477. if (likely(!prev->mm)) {
  2478. prev->active_mm = NULL;
  2479. rq->prev_mm = oldmm;
  2480. }
  2481. /*
  2482. * Since the runqueue lock will be released by the next
  2483. * task (which is an invalid locking op but in the case
  2484. * of the scheduler it's an obvious special-case), so we
  2485. * do an early lockdep release here:
  2486. */
  2487. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2488. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2489. #endif
  2490. /* Here we just switch the register state and the stack. */
  2491. switch_to(prev, next, prev);
  2492. barrier();
  2493. /*
  2494. * this_rq must be evaluated again because prev may have moved
  2495. * CPUs since it called schedule(), thus the 'rq' on its stack
  2496. * frame will be invalid.
  2497. */
  2498. finish_task_switch(this_rq(), prev);
  2499. }
  2500. /*
  2501. * nr_running, nr_uninterruptible and nr_context_switches:
  2502. *
  2503. * externally visible scheduler statistics: current number of runnable
  2504. * threads, current number of uninterruptible-sleeping threads, total
  2505. * number of context switches performed since bootup.
  2506. */
  2507. unsigned long nr_running(void)
  2508. {
  2509. unsigned long i, sum = 0;
  2510. for_each_online_cpu(i)
  2511. sum += cpu_rq(i)->nr_running;
  2512. return sum;
  2513. }
  2514. unsigned long nr_uninterruptible(void)
  2515. {
  2516. unsigned long i, sum = 0;
  2517. for_each_possible_cpu(i)
  2518. sum += cpu_rq(i)->nr_uninterruptible;
  2519. /*
  2520. * Since we read the counters lockless, it might be slightly
  2521. * inaccurate. Do not allow it to go below zero though:
  2522. */
  2523. if (unlikely((long)sum < 0))
  2524. sum = 0;
  2525. return sum;
  2526. }
  2527. unsigned long long nr_context_switches(void)
  2528. {
  2529. int i;
  2530. unsigned long long sum = 0;
  2531. for_each_possible_cpu(i)
  2532. sum += cpu_rq(i)->nr_switches;
  2533. return sum;
  2534. }
  2535. unsigned long nr_iowait(void)
  2536. {
  2537. unsigned long i, sum = 0;
  2538. for_each_possible_cpu(i)
  2539. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2540. return sum;
  2541. }
  2542. unsigned long nr_iowait_cpu(void)
  2543. {
  2544. struct rq *this = this_rq();
  2545. return atomic_read(&this->nr_iowait);
  2546. }
  2547. unsigned long this_cpu_load(void)
  2548. {
  2549. struct rq *this = this_rq();
  2550. return this->cpu_load[0];
  2551. }
  2552. /* Variables and functions for calc_load */
  2553. static atomic_long_t calc_load_tasks;
  2554. static unsigned long calc_load_update;
  2555. unsigned long avenrun[3];
  2556. EXPORT_SYMBOL(avenrun);
  2557. /**
  2558. * get_avenrun - get the load average array
  2559. * @loads: pointer to dest load array
  2560. * @offset: offset to add
  2561. * @shift: shift count to shift the result left
  2562. *
  2563. * These values are estimates at best, so no need for locking.
  2564. */
  2565. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2566. {
  2567. loads[0] = (avenrun[0] + offset) << shift;
  2568. loads[1] = (avenrun[1] + offset) << shift;
  2569. loads[2] = (avenrun[2] + offset) << shift;
  2570. }
  2571. static unsigned long
  2572. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2573. {
  2574. load *= exp;
  2575. load += active * (FIXED_1 - exp);
  2576. return load >> FSHIFT;
  2577. }
  2578. /*
  2579. * calc_load - update the avenrun load estimates 10 ticks after the
  2580. * CPUs have updated calc_load_tasks.
  2581. */
  2582. void calc_global_load(void)
  2583. {
  2584. unsigned long upd = calc_load_update + 10;
  2585. long active;
  2586. if (time_before(jiffies, upd))
  2587. return;
  2588. active = atomic_long_read(&calc_load_tasks);
  2589. active = active > 0 ? active * FIXED_1 : 0;
  2590. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2591. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2592. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2593. calc_load_update += LOAD_FREQ;
  2594. }
  2595. /*
  2596. * Either called from update_cpu_load() or from a cpu going idle
  2597. */
  2598. static void calc_load_account_active(struct rq *this_rq)
  2599. {
  2600. long nr_active, delta;
  2601. nr_active = this_rq->nr_running;
  2602. nr_active += (long) this_rq->nr_uninterruptible;
  2603. if (nr_active != this_rq->calc_load_active) {
  2604. delta = nr_active - this_rq->calc_load_active;
  2605. this_rq->calc_load_active = nr_active;
  2606. atomic_long_add(delta, &calc_load_tasks);
  2607. }
  2608. }
  2609. /*
  2610. * Update rq->cpu_load[] statistics. This function is usually called every
  2611. * scheduler tick (TICK_NSEC).
  2612. */
  2613. static void update_cpu_load(struct rq *this_rq)
  2614. {
  2615. unsigned long this_load = this_rq->load.weight;
  2616. int i, scale;
  2617. this_rq->nr_load_updates++;
  2618. /* Update our load: */
  2619. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2620. unsigned long old_load, new_load;
  2621. /* scale is effectively 1 << i now, and >> i divides by scale */
  2622. old_load = this_rq->cpu_load[i];
  2623. new_load = this_load;
  2624. /*
  2625. * Round up the averaging division if load is increasing. This
  2626. * prevents us from getting stuck on 9 if the load is 10, for
  2627. * example.
  2628. */
  2629. if (new_load > old_load)
  2630. new_load += scale-1;
  2631. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2632. }
  2633. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2634. this_rq->calc_load_update += LOAD_FREQ;
  2635. calc_load_account_active(this_rq);
  2636. }
  2637. }
  2638. #ifdef CONFIG_SMP
  2639. /*
  2640. * sched_exec - execve() is a valuable balancing opportunity, because at
  2641. * this point the task has the smallest effective memory and cache footprint.
  2642. */
  2643. void sched_exec(void)
  2644. {
  2645. struct task_struct *p = current;
  2646. struct migration_req req;
  2647. int dest_cpu, this_cpu;
  2648. unsigned long flags;
  2649. struct rq *rq;
  2650. again:
  2651. this_cpu = get_cpu();
  2652. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2653. if (dest_cpu == this_cpu) {
  2654. put_cpu();
  2655. return;
  2656. }
  2657. rq = task_rq_lock(p, &flags);
  2658. put_cpu();
  2659. /*
  2660. * select_task_rq() can race against ->cpus_allowed
  2661. */
  2662. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2663. || unlikely(!cpu_active(dest_cpu))) {
  2664. task_rq_unlock(rq, &flags);
  2665. goto again;
  2666. }
  2667. /* force the process onto the specified CPU */
  2668. if (migrate_task(p, dest_cpu, &req)) {
  2669. /* Need to wait for migration thread (might exit: take ref). */
  2670. struct task_struct *mt = rq->migration_thread;
  2671. get_task_struct(mt);
  2672. task_rq_unlock(rq, &flags);
  2673. wake_up_process(mt);
  2674. put_task_struct(mt);
  2675. wait_for_completion(&req.done);
  2676. return;
  2677. }
  2678. task_rq_unlock(rq, &flags);
  2679. }
  2680. #endif
  2681. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2682. EXPORT_PER_CPU_SYMBOL(kstat);
  2683. /*
  2684. * Return any ns on the sched_clock that have not yet been accounted in
  2685. * @p in case that task is currently running.
  2686. *
  2687. * Called with task_rq_lock() held on @rq.
  2688. */
  2689. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2690. {
  2691. u64 ns = 0;
  2692. if (task_current(rq, p)) {
  2693. update_rq_clock(rq);
  2694. ns = rq->clock - p->se.exec_start;
  2695. if ((s64)ns < 0)
  2696. ns = 0;
  2697. }
  2698. return ns;
  2699. }
  2700. unsigned long long task_delta_exec(struct task_struct *p)
  2701. {
  2702. unsigned long flags;
  2703. struct rq *rq;
  2704. u64 ns = 0;
  2705. rq = task_rq_lock(p, &flags);
  2706. ns = do_task_delta_exec(p, rq);
  2707. task_rq_unlock(rq, &flags);
  2708. return ns;
  2709. }
  2710. /*
  2711. * Return accounted runtime for the task.
  2712. * In case the task is currently running, return the runtime plus current's
  2713. * pending runtime that have not been accounted yet.
  2714. */
  2715. unsigned long long task_sched_runtime(struct task_struct *p)
  2716. {
  2717. unsigned long flags;
  2718. struct rq *rq;
  2719. u64 ns = 0;
  2720. rq = task_rq_lock(p, &flags);
  2721. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2722. task_rq_unlock(rq, &flags);
  2723. return ns;
  2724. }
  2725. /*
  2726. * Return sum_exec_runtime for the thread group.
  2727. * In case the task is currently running, return the sum plus current's
  2728. * pending runtime that have not been accounted yet.
  2729. *
  2730. * Note that the thread group might have other running tasks as well,
  2731. * so the return value not includes other pending runtime that other
  2732. * running tasks might have.
  2733. */
  2734. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2735. {
  2736. struct task_cputime totals;
  2737. unsigned long flags;
  2738. struct rq *rq;
  2739. u64 ns;
  2740. rq = task_rq_lock(p, &flags);
  2741. thread_group_cputime(p, &totals);
  2742. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2743. task_rq_unlock(rq, &flags);
  2744. return ns;
  2745. }
  2746. /*
  2747. * Account user cpu time to a process.
  2748. * @p: the process that the cpu time gets accounted to
  2749. * @cputime: the cpu time spent in user space since the last update
  2750. * @cputime_scaled: cputime scaled by cpu frequency
  2751. */
  2752. void account_user_time(struct task_struct *p, cputime_t cputime,
  2753. cputime_t cputime_scaled)
  2754. {
  2755. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2756. cputime64_t tmp;
  2757. /* Add user time to process. */
  2758. p->utime = cputime_add(p->utime, cputime);
  2759. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2760. account_group_user_time(p, cputime);
  2761. /* Add user time to cpustat. */
  2762. tmp = cputime_to_cputime64(cputime);
  2763. if (TASK_NICE(p) > 0)
  2764. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2765. else
  2766. cpustat->user = cputime64_add(cpustat->user, tmp);
  2767. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2768. /* Account for user time used */
  2769. acct_update_integrals(p);
  2770. }
  2771. /*
  2772. * Account guest cpu time to a process.
  2773. * @p: the process that the cpu time gets accounted to
  2774. * @cputime: the cpu time spent in virtual machine since the last update
  2775. * @cputime_scaled: cputime scaled by cpu frequency
  2776. */
  2777. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2778. cputime_t cputime_scaled)
  2779. {
  2780. cputime64_t tmp;
  2781. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2782. tmp = cputime_to_cputime64(cputime);
  2783. /* Add guest time to process. */
  2784. p->utime = cputime_add(p->utime, cputime);
  2785. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2786. account_group_user_time(p, cputime);
  2787. p->gtime = cputime_add(p->gtime, cputime);
  2788. /* Add guest time to cpustat. */
  2789. if (TASK_NICE(p) > 0) {
  2790. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2791. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2792. } else {
  2793. cpustat->user = cputime64_add(cpustat->user, tmp);
  2794. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2795. }
  2796. }
  2797. /*
  2798. * Account system cpu time to a process.
  2799. * @p: the process that the cpu time gets accounted to
  2800. * @hardirq_offset: the offset to subtract from hardirq_count()
  2801. * @cputime: the cpu time spent in kernel space since the last update
  2802. * @cputime_scaled: cputime scaled by cpu frequency
  2803. */
  2804. void account_system_time(struct task_struct *p, int hardirq_offset,
  2805. cputime_t cputime, cputime_t cputime_scaled)
  2806. {
  2807. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2808. cputime64_t tmp;
  2809. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2810. account_guest_time(p, cputime, cputime_scaled);
  2811. return;
  2812. }
  2813. /* Add system time to process. */
  2814. p->stime = cputime_add(p->stime, cputime);
  2815. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2816. account_group_system_time(p, cputime);
  2817. /* Add system time to cpustat. */
  2818. tmp = cputime_to_cputime64(cputime);
  2819. if (hardirq_count() - hardirq_offset)
  2820. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2821. else if (softirq_count())
  2822. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2823. else
  2824. cpustat->system = cputime64_add(cpustat->system, tmp);
  2825. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2826. /* Account for system time used */
  2827. acct_update_integrals(p);
  2828. }
  2829. /*
  2830. * Account for involuntary wait time.
  2831. * @steal: the cpu time spent in involuntary wait
  2832. */
  2833. void account_steal_time(cputime_t cputime)
  2834. {
  2835. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2836. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2837. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2838. }
  2839. /*
  2840. * Account for idle time.
  2841. * @cputime: the cpu time spent in idle wait
  2842. */
  2843. void account_idle_time(cputime_t cputime)
  2844. {
  2845. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2846. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2847. struct rq *rq = this_rq();
  2848. if (atomic_read(&rq->nr_iowait) > 0)
  2849. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2850. else
  2851. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2852. }
  2853. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2854. /*
  2855. * Account a single tick of cpu time.
  2856. * @p: the process that the cpu time gets accounted to
  2857. * @user_tick: indicates if the tick is a user or a system tick
  2858. */
  2859. void account_process_tick(struct task_struct *p, int user_tick)
  2860. {
  2861. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2862. struct rq *rq = this_rq();
  2863. if (user_tick)
  2864. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2865. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2866. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2867. one_jiffy_scaled);
  2868. else
  2869. account_idle_time(cputime_one_jiffy);
  2870. }
  2871. /*
  2872. * Account multiple ticks of steal time.
  2873. * @p: the process from which the cpu time has been stolen
  2874. * @ticks: number of stolen ticks
  2875. */
  2876. void account_steal_ticks(unsigned long ticks)
  2877. {
  2878. account_steal_time(jiffies_to_cputime(ticks));
  2879. }
  2880. /*
  2881. * Account multiple ticks of idle time.
  2882. * @ticks: number of stolen ticks
  2883. */
  2884. void account_idle_ticks(unsigned long ticks)
  2885. {
  2886. account_idle_time(jiffies_to_cputime(ticks));
  2887. }
  2888. #endif
  2889. /*
  2890. * Use precise platform statistics if available:
  2891. */
  2892. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2893. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2894. {
  2895. *ut = p->utime;
  2896. *st = p->stime;
  2897. }
  2898. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2899. {
  2900. struct task_cputime cputime;
  2901. thread_group_cputime(p, &cputime);
  2902. *ut = cputime.utime;
  2903. *st = cputime.stime;
  2904. }
  2905. #else
  2906. #ifndef nsecs_to_cputime
  2907. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2908. #endif
  2909. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2910. {
  2911. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2912. /*
  2913. * Use CFS's precise accounting:
  2914. */
  2915. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2916. if (total) {
  2917. u64 temp;
  2918. temp = (u64)(rtime * utime);
  2919. do_div(temp, total);
  2920. utime = (cputime_t)temp;
  2921. } else
  2922. utime = rtime;
  2923. /*
  2924. * Compare with previous values, to keep monotonicity:
  2925. */
  2926. p->prev_utime = max(p->prev_utime, utime);
  2927. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2928. *ut = p->prev_utime;
  2929. *st = p->prev_stime;
  2930. }
  2931. /*
  2932. * Must be called with siglock held.
  2933. */
  2934. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2935. {
  2936. struct signal_struct *sig = p->signal;
  2937. struct task_cputime cputime;
  2938. cputime_t rtime, utime, total;
  2939. thread_group_cputime(p, &cputime);
  2940. total = cputime_add(cputime.utime, cputime.stime);
  2941. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2942. if (total) {
  2943. u64 temp;
  2944. temp = (u64)(rtime * cputime.utime);
  2945. do_div(temp, total);
  2946. utime = (cputime_t)temp;
  2947. } else
  2948. utime = rtime;
  2949. sig->prev_utime = max(sig->prev_utime, utime);
  2950. sig->prev_stime = max(sig->prev_stime,
  2951. cputime_sub(rtime, sig->prev_utime));
  2952. *ut = sig->prev_utime;
  2953. *st = sig->prev_stime;
  2954. }
  2955. #endif
  2956. /*
  2957. * This function gets called by the timer code, with HZ frequency.
  2958. * We call it with interrupts disabled.
  2959. *
  2960. * It also gets called by the fork code, when changing the parent's
  2961. * timeslices.
  2962. */
  2963. void scheduler_tick(void)
  2964. {
  2965. int cpu = smp_processor_id();
  2966. struct rq *rq = cpu_rq(cpu);
  2967. struct task_struct *curr = rq->curr;
  2968. sched_clock_tick();
  2969. raw_spin_lock(&rq->lock);
  2970. update_rq_clock(rq);
  2971. update_cpu_load(rq);
  2972. curr->sched_class->task_tick(rq, curr, 0);
  2973. raw_spin_unlock(&rq->lock);
  2974. perf_event_task_tick(curr);
  2975. #ifdef CONFIG_SMP
  2976. rq->idle_at_tick = idle_cpu(cpu);
  2977. trigger_load_balance(rq, cpu);
  2978. #endif
  2979. }
  2980. notrace unsigned long get_parent_ip(unsigned long addr)
  2981. {
  2982. if (in_lock_functions(addr)) {
  2983. addr = CALLER_ADDR2;
  2984. if (in_lock_functions(addr))
  2985. addr = CALLER_ADDR3;
  2986. }
  2987. return addr;
  2988. }
  2989. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2990. defined(CONFIG_PREEMPT_TRACER))
  2991. void __kprobes add_preempt_count(int val)
  2992. {
  2993. #ifdef CONFIG_DEBUG_PREEMPT
  2994. /*
  2995. * Underflow?
  2996. */
  2997. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2998. return;
  2999. #endif
  3000. preempt_count() += val;
  3001. #ifdef CONFIG_DEBUG_PREEMPT
  3002. /*
  3003. * Spinlock count overflowing soon?
  3004. */
  3005. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  3006. PREEMPT_MASK - 10);
  3007. #endif
  3008. if (preempt_count() == val)
  3009. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3010. }
  3011. EXPORT_SYMBOL(add_preempt_count);
  3012. void __kprobes sub_preempt_count(int val)
  3013. {
  3014. #ifdef CONFIG_DEBUG_PREEMPT
  3015. /*
  3016. * Underflow?
  3017. */
  3018. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  3019. return;
  3020. /*
  3021. * Is the spinlock portion underflowing?
  3022. */
  3023. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  3024. !(preempt_count() & PREEMPT_MASK)))
  3025. return;
  3026. #endif
  3027. if (preempt_count() == val)
  3028. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  3029. preempt_count() -= val;
  3030. }
  3031. EXPORT_SYMBOL(sub_preempt_count);
  3032. #endif
  3033. /*
  3034. * Print scheduling while atomic bug:
  3035. */
  3036. static noinline void __schedule_bug(struct task_struct *prev)
  3037. {
  3038. struct pt_regs *regs = get_irq_regs();
  3039. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3040. prev->comm, prev->pid, preempt_count());
  3041. debug_show_held_locks(prev);
  3042. print_modules();
  3043. if (irqs_disabled())
  3044. print_irqtrace_events(prev);
  3045. if (regs)
  3046. show_regs(regs);
  3047. else
  3048. dump_stack();
  3049. }
  3050. /*
  3051. * Various schedule()-time debugging checks and statistics:
  3052. */
  3053. static inline void schedule_debug(struct task_struct *prev)
  3054. {
  3055. /*
  3056. * Test if we are atomic. Since do_exit() needs to call into
  3057. * schedule() atomically, we ignore that path for now.
  3058. * Otherwise, whine if we are scheduling when we should not be.
  3059. */
  3060. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3061. __schedule_bug(prev);
  3062. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3063. schedstat_inc(this_rq(), sched_count);
  3064. #ifdef CONFIG_SCHEDSTATS
  3065. if (unlikely(prev->lock_depth >= 0)) {
  3066. schedstat_inc(this_rq(), bkl_count);
  3067. schedstat_inc(prev, sched_info.bkl_count);
  3068. }
  3069. #endif
  3070. }
  3071. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3072. {
  3073. if (prev->state == TASK_RUNNING) {
  3074. u64 runtime = prev->se.sum_exec_runtime;
  3075. runtime -= prev->se.prev_sum_exec_runtime;
  3076. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  3077. /*
  3078. * In order to avoid avg_overlap growing stale when we are
  3079. * indeed overlapping and hence not getting put to sleep, grow
  3080. * the avg_overlap on preemption.
  3081. *
  3082. * We use the average preemption runtime because that
  3083. * correlates to the amount of cache footprint a task can
  3084. * build up.
  3085. */
  3086. update_avg(&prev->se.avg_overlap, runtime);
  3087. }
  3088. prev->sched_class->put_prev_task(rq, prev);
  3089. }
  3090. /*
  3091. * Pick up the highest-prio task:
  3092. */
  3093. static inline struct task_struct *
  3094. pick_next_task(struct rq *rq)
  3095. {
  3096. const struct sched_class *class;
  3097. struct task_struct *p;
  3098. /*
  3099. * Optimization: we know that if all tasks are in
  3100. * the fair class we can call that function directly:
  3101. */
  3102. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3103. p = fair_sched_class.pick_next_task(rq);
  3104. if (likely(p))
  3105. return p;
  3106. }
  3107. class = sched_class_highest;
  3108. for ( ; ; ) {
  3109. p = class->pick_next_task(rq);
  3110. if (p)
  3111. return p;
  3112. /*
  3113. * Will never be NULL as the idle class always
  3114. * returns a non-NULL p:
  3115. */
  3116. class = class->next;
  3117. }
  3118. }
  3119. /*
  3120. * schedule() is the main scheduler function.
  3121. */
  3122. asmlinkage void __sched schedule(void)
  3123. {
  3124. struct task_struct *prev, *next;
  3125. unsigned long *switch_count;
  3126. struct rq *rq;
  3127. int cpu;
  3128. need_resched:
  3129. preempt_disable();
  3130. cpu = smp_processor_id();
  3131. rq = cpu_rq(cpu);
  3132. rcu_sched_qs(cpu);
  3133. prev = rq->curr;
  3134. switch_count = &prev->nivcsw;
  3135. release_kernel_lock(prev);
  3136. need_resched_nonpreemptible:
  3137. schedule_debug(prev);
  3138. if (sched_feat(HRTICK))
  3139. hrtick_clear(rq);
  3140. raw_spin_lock_irq(&rq->lock);
  3141. update_rq_clock(rq);
  3142. clear_tsk_need_resched(prev);
  3143. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3144. if (unlikely(signal_pending_state(prev->state, prev)))
  3145. prev->state = TASK_RUNNING;
  3146. else
  3147. deactivate_task(rq, prev, 1);
  3148. switch_count = &prev->nvcsw;
  3149. }
  3150. pre_schedule(rq, prev);
  3151. if (unlikely(!rq->nr_running))
  3152. idle_balance(cpu, rq);
  3153. put_prev_task(rq, prev);
  3154. next = pick_next_task(rq);
  3155. if (likely(prev != next)) {
  3156. sched_info_switch(prev, next);
  3157. perf_event_task_sched_out(prev, next);
  3158. rq->nr_switches++;
  3159. rq->curr = next;
  3160. ++*switch_count;
  3161. context_switch(rq, prev, next); /* unlocks the rq */
  3162. /*
  3163. * the context switch might have flipped the stack from under
  3164. * us, hence refresh the local variables.
  3165. */
  3166. cpu = smp_processor_id();
  3167. rq = cpu_rq(cpu);
  3168. } else
  3169. raw_spin_unlock_irq(&rq->lock);
  3170. post_schedule(rq);
  3171. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3172. prev = rq->curr;
  3173. switch_count = &prev->nivcsw;
  3174. goto need_resched_nonpreemptible;
  3175. }
  3176. preempt_enable_no_resched();
  3177. if (need_resched())
  3178. goto need_resched;
  3179. }
  3180. EXPORT_SYMBOL(schedule);
  3181. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3182. /*
  3183. * Look out! "owner" is an entirely speculative pointer
  3184. * access and not reliable.
  3185. */
  3186. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3187. {
  3188. unsigned int cpu;
  3189. struct rq *rq;
  3190. if (!sched_feat(OWNER_SPIN))
  3191. return 0;
  3192. #ifdef CONFIG_DEBUG_PAGEALLOC
  3193. /*
  3194. * Need to access the cpu field knowing that
  3195. * DEBUG_PAGEALLOC could have unmapped it if
  3196. * the mutex owner just released it and exited.
  3197. */
  3198. if (probe_kernel_address(&owner->cpu, cpu))
  3199. return 0;
  3200. #else
  3201. cpu = owner->cpu;
  3202. #endif
  3203. /*
  3204. * Even if the access succeeded (likely case),
  3205. * the cpu field may no longer be valid.
  3206. */
  3207. if (cpu >= nr_cpumask_bits)
  3208. return 0;
  3209. /*
  3210. * We need to validate that we can do a
  3211. * get_cpu() and that we have the percpu area.
  3212. */
  3213. if (!cpu_online(cpu))
  3214. return 0;
  3215. rq = cpu_rq(cpu);
  3216. for (;;) {
  3217. /*
  3218. * Owner changed, break to re-assess state.
  3219. */
  3220. if (lock->owner != owner)
  3221. break;
  3222. /*
  3223. * Is that owner really running on that cpu?
  3224. */
  3225. if (task_thread_info(rq->curr) != owner || need_resched())
  3226. return 0;
  3227. cpu_relax();
  3228. }
  3229. return 1;
  3230. }
  3231. #endif
  3232. #ifdef CONFIG_PREEMPT
  3233. /*
  3234. * this is the entry point to schedule() from in-kernel preemption
  3235. * off of preempt_enable. Kernel preemptions off return from interrupt
  3236. * occur there and call schedule directly.
  3237. */
  3238. asmlinkage void __sched preempt_schedule(void)
  3239. {
  3240. struct thread_info *ti = current_thread_info();
  3241. /*
  3242. * If there is a non-zero preempt_count or interrupts are disabled,
  3243. * we do not want to preempt the current task. Just return..
  3244. */
  3245. if (likely(ti->preempt_count || irqs_disabled()))
  3246. return;
  3247. do {
  3248. add_preempt_count(PREEMPT_ACTIVE);
  3249. schedule();
  3250. sub_preempt_count(PREEMPT_ACTIVE);
  3251. /*
  3252. * Check again in case we missed a preemption opportunity
  3253. * between schedule and now.
  3254. */
  3255. barrier();
  3256. } while (need_resched());
  3257. }
  3258. EXPORT_SYMBOL(preempt_schedule);
  3259. /*
  3260. * this is the entry point to schedule() from kernel preemption
  3261. * off of irq context.
  3262. * Note, that this is called and return with irqs disabled. This will
  3263. * protect us against recursive calling from irq.
  3264. */
  3265. asmlinkage void __sched preempt_schedule_irq(void)
  3266. {
  3267. struct thread_info *ti = current_thread_info();
  3268. /* Catch callers which need to be fixed */
  3269. BUG_ON(ti->preempt_count || !irqs_disabled());
  3270. do {
  3271. add_preempt_count(PREEMPT_ACTIVE);
  3272. local_irq_enable();
  3273. schedule();
  3274. local_irq_disable();
  3275. sub_preempt_count(PREEMPT_ACTIVE);
  3276. /*
  3277. * Check again in case we missed a preemption opportunity
  3278. * between schedule and now.
  3279. */
  3280. barrier();
  3281. } while (need_resched());
  3282. }
  3283. #endif /* CONFIG_PREEMPT */
  3284. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3285. void *key)
  3286. {
  3287. return try_to_wake_up(curr->private, mode, wake_flags);
  3288. }
  3289. EXPORT_SYMBOL(default_wake_function);
  3290. /*
  3291. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3292. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3293. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3294. *
  3295. * There are circumstances in which we can try to wake a task which has already
  3296. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3297. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3298. */
  3299. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3300. int nr_exclusive, int wake_flags, void *key)
  3301. {
  3302. wait_queue_t *curr, *next;
  3303. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3304. unsigned flags = curr->flags;
  3305. if (curr->func(curr, mode, wake_flags, key) &&
  3306. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3307. break;
  3308. }
  3309. }
  3310. /**
  3311. * __wake_up - wake up threads blocked on a waitqueue.
  3312. * @q: the waitqueue
  3313. * @mode: which threads
  3314. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3315. * @key: is directly passed to the wakeup function
  3316. *
  3317. * It may be assumed that this function implies a write memory barrier before
  3318. * changing the task state if and only if any tasks are woken up.
  3319. */
  3320. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3321. int nr_exclusive, void *key)
  3322. {
  3323. unsigned long flags;
  3324. spin_lock_irqsave(&q->lock, flags);
  3325. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3326. spin_unlock_irqrestore(&q->lock, flags);
  3327. }
  3328. EXPORT_SYMBOL(__wake_up);
  3329. /*
  3330. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3331. */
  3332. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3333. {
  3334. __wake_up_common(q, mode, 1, 0, NULL);
  3335. }
  3336. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3337. {
  3338. __wake_up_common(q, mode, 1, 0, key);
  3339. }
  3340. /**
  3341. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3342. * @q: the waitqueue
  3343. * @mode: which threads
  3344. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3345. * @key: opaque value to be passed to wakeup targets
  3346. *
  3347. * The sync wakeup differs that the waker knows that it will schedule
  3348. * away soon, so while the target thread will be woken up, it will not
  3349. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3350. * with each other. This can prevent needless bouncing between CPUs.
  3351. *
  3352. * On UP it can prevent extra preemption.
  3353. *
  3354. * It may be assumed that this function implies a write memory barrier before
  3355. * changing the task state if and only if any tasks are woken up.
  3356. */
  3357. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3358. int nr_exclusive, void *key)
  3359. {
  3360. unsigned long flags;
  3361. int wake_flags = WF_SYNC;
  3362. if (unlikely(!q))
  3363. return;
  3364. if (unlikely(!nr_exclusive))
  3365. wake_flags = 0;
  3366. spin_lock_irqsave(&q->lock, flags);
  3367. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3368. spin_unlock_irqrestore(&q->lock, flags);
  3369. }
  3370. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3371. /*
  3372. * __wake_up_sync - see __wake_up_sync_key()
  3373. */
  3374. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3375. {
  3376. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3377. }
  3378. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3379. /**
  3380. * complete: - signals a single thread waiting on this completion
  3381. * @x: holds the state of this particular completion
  3382. *
  3383. * This will wake up a single thread waiting on this completion. Threads will be
  3384. * awakened in the same order in which they were queued.
  3385. *
  3386. * See also complete_all(), wait_for_completion() and related routines.
  3387. *
  3388. * It may be assumed that this function implies a write memory barrier before
  3389. * changing the task state if and only if any tasks are woken up.
  3390. */
  3391. void complete(struct completion *x)
  3392. {
  3393. unsigned long flags;
  3394. spin_lock_irqsave(&x->wait.lock, flags);
  3395. x->done++;
  3396. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3397. spin_unlock_irqrestore(&x->wait.lock, flags);
  3398. }
  3399. EXPORT_SYMBOL(complete);
  3400. /**
  3401. * complete_all: - signals all threads waiting on this completion
  3402. * @x: holds the state of this particular completion
  3403. *
  3404. * This will wake up all threads waiting on this particular completion event.
  3405. *
  3406. * It may be assumed that this function implies a write memory barrier before
  3407. * changing the task state if and only if any tasks are woken up.
  3408. */
  3409. void complete_all(struct completion *x)
  3410. {
  3411. unsigned long flags;
  3412. spin_lock_irqsave(&x->wait.lock, flags);
  3413. x->done += UINT_MAX/2;
  3414. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3415. spin_unlock_irqrestore(&x->wait.lock, flags);
  3416. }
  3417. EXPORT_SYMBOL(complete_all);
  3418. static inline long __sched
  3419. do_wait_for_common(struct completion *x, long timeout, int state)
  3420. {
  3421. if (!x->done) {
  3422. DECLARE_WAITQUEUE(wait, current);
  3423. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3424. __add_wait_queue_tail(&x->wait, &wait);
  3425. do {
  3426. if (signal_pending_state(state, current)) {
  3427. timeout = -ERESTARTSYS;
  3428. break;
  3429. }
  3430. __set_current_state(state);
  3431. spin_unlock_irq(&x->wait.lock);
  3432. timeout = schedule_timeout(timeout);
  3433. spin_lock_irq(&x->wait.lock);
  3434. } while (!x->done && timeout);
  3435. __remove_wait_queue(&x->wait, &wait);
  3436. if (!x->done)
  3437. return timeout;
  3438. }
  3439. x->done--;
  3440. return timeout ?: 1;
  3441. }
  3442. static long __sched
  3443. wait_for_common(struct completion *x, long timeout, int state)
  3444. {
  3445. might_sleep();
  3446. spin_lock_irq(&x->wait.lock);
  3447. timeout = do_wait_for_common(x, timeout, state);
  3448. spin_unlock_irq(&x->wait.lock);
  3449. return timeout;
  3450. }
  3451. /**
  3452. * wait_for_completion: - waits for completion of a task
  3453. * @x: holds the state of this particular completion
  3454. *
  3455. * This waits to be signaled for completion of a specific task. It is NOT
  3456. * interruptible and there is no timeout.
  3457. *
  3458. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3459. * and interrupt capability. Also see complete().
  3460. */
  3461. void __sched wait_for_completion(struct completion *x)
  3462. {
  3463. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3464. }
  3465. EXPORT_SYMBOL(wait_for_completion);
  3466. /**
  3467. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3468. * @x: holds the state of this particular completion
  3469. * @timeout: timeout value in jiffies
  3470. *
  3471. * This waits for either a completion of a specific task to be signaled or for a
  3472. * specified timeout to expire. The timeout is in jiffies. It is not
  3473. * interruptible.
  3474. */
  3475. unsigned long __sched
  3476. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3477. {
  3478. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3479. }
  3480. EXPORT_SYMBOL(wait_for_completion_timeout);
  3481. /**
  3482. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3483. * @x: holds the state of this particular completion
  3484. *
  3485. * This waits for completion of a specific task to be signaled. It is
  3486. * interruptible.
  3487. */
  3488. int __sched wait_for_completion_interruptible(struct completion *x)
  3489. {
  3490. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3491. if (t == -ERESTARTSYS)
  3492. return t;
  3493. return 0;
  3494. }
  3495. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3496. /**
  3497. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3498. * @x: holds the state of this particular completion
  3499. * @timeout: timeout value in jiffies
  3500. *
  3501. * This waits for either a completion of a specific task to be signaled or for a
  3502. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3503. */
  3504. unsigned long __sched
  3505. wait_for_completion_interruptible_timeout(struct completion *x,
  3506. unsigned long timeout)
  3507. {
  3508. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3509. }
  3510. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3511. /**
  3512. * wait_for_completion_killable: - waits for completion of a task (killable)
  3513. * @x: holds the state of this particular completion
  3514. *
  3515. * This waits to be signaled for completion of a specific task. It can be
  3516. * interrupted by a kill signal.
  3517. */
  3518. int __sched wait_for_completion_killable(struct completion *x)
  3519. {
  3520. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3521. if (t == -ERESTARTSYS)
  3522. return t;
  3523. return 0;
  3524. }
  3525. EXPORT_SYMBOL(wait_for_completion_killable);
  3526. /**
  3527. * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
  3528. * @x: holds the state of this particular completion
  3529. * @timeout: timeout value in jiffies
  3530. *
  3531. * This waits for either a completion of a specific task to be
  3532. * signaled or for a specified timeout to expire. It can be
  3533. * interrupted by a kill signal. The timeout is in jiffies.
  3534. */
  3535. unsigned long __sched
  3536. wait_for_completion_killable_timeout(struct completion *x,
  3537. unsigned long timeout)
  3538. {
  3539. return wait_for_common(x, timeout, TASK_KILLABLE);
  3540. }
  3541. EXPORT_SYMBOL(wait_for_completion_killable_timeout);
  3542. /**
  3543. * try_wait_for_completion - try to decrement a completion without blocking
  3544. * @x: completion structure
  3545. *
  3546. * Returns: 0 if a decrement cannot be done without blocking
  3547. * 1 if a decrement succeeded.
  3548. *
  3549. * If a completion is being used as a counting completion,
  3550. * attempt to decrement the counter without blocking. This
  3551. * enables us to avoid waiting if the resource the completion
  3552. * is protecting is not available.
  3553. */
  3554. bool try_wait_for_completion(struct completion *x)
  3555. {
  3556. unsigned long flags;
  3557. int ret = 1;
  3558. spin_lock_irqsave(&x->wait.lock, flags);
  3559. if (!x->done)
  3560. ret = 0;
  3561. else
  3562. x->done--;
  3563. spin_unlock_irqrestore(&x->wait.lock, flags);
  3564. return ret;
  3565. }
  3566. EXPORT_SYMBOL(try_wait_for_completion);
  3567. /**
  3568. * completion_done - Test to see if a completion has any waiters
  3569. * @x: completion structure
  3570. *
  3571. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3572. * 1 if there are no waiters.
  3573. *
  3574. */
  3575. bool completion_done(struct completion *x)
  3576. {
  3577. unsigned long flags;
  3578. int ret = 1;
  3579. spin_lock_irqsave(&x->wait.lock, flags);
  3580. if (!x->done)
  3581. ret = 0;
  3582. spin_unlock_irqrestore(&x->wait.lock, flags);
  3583. return ret;
  3584. }
  3585. EXPORT_SYMBOL(completion_done);
  3586. static long __sched
  3587. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3588. {
  3589. unsigned long flags;
  3590. wait_queue_t wait;
  3591. init_waitqueue_entry(&wait, current);
  3592. __set_current_state(state);
  3593. spin_lock_irqsave(&q->lock, flags);
  3594. __add_wait_queue(q, &wait);
  3595. spin_unlock(&q->lock);
  3596. timeout = schedule_timeout(timeout);
  3597. spin_lock_irq(&q->lock);
  3598. __remove_wait_queue(q, &wait);
  3599. spin_unlock_irqrestore(&q->lock, flags);
  3600. return timeout;
  3601. }
  3602. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3603. {
  3604. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3605. }
  3606. EXPORT_SYMBOL(interruptible_sleep_on);
  3607. long __sched
  3608. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3609. {
  3610. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3611. }
  3612. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3613. void __sched sleep_on(wait_queue_head_t *q)
  3614. {
  3615. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3616. }
  3617. EXPORT_SYMBOL(sleep_on);
  3618. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3619. {
  3620. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3621. }
  3622. EXPORT_SYMBOL(sleep_on_timeout);
  3623. #ifdef CONFIG_RT_MUTEXES
  3624. /*
  3625. * rt_mutex_setprio - set the current priority of a task
  3626. * @p: task
  3627. * @prio: prio value (kernel-internal form)
  3628. *
  3629. * This function changes the 'effective' priority of a task. It does
  3630. * not touch ->normal_prio like __setscheduler().
  3631. *
  3632. * Used by the rt_mutex code to implement priority inheritance logic.
  3633. */
  3634. void rt_mutex_setprio(struct task_struct *p, int prio)
  3635. {
  3636. unsigned long flags;
  3637. int oldprio, on_rq, running;
  3638. struct rq *rq;
  3639. const struct sched_class *prev_class;
  3640. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3641. rq = task_rq_lock(p, &flags);
  3642. update_rq_clock(rq);
  3643. oldprio = p->prio;
  3644. prev_class = p->sched_class;
  3645. on_rq = p->se.on_rq;
  3646. running = task_current(rq, p);
  3647. if (on_rq)
  3648. dequeue_task(rq, p, 0);
  3649. if (running)
  3650. p->sched_class->put_prev_task(rq, p);
  3651. if (rt_prio(prio))
  3652. p->sched_class = &rt_sched_class;
  3653. else
  3654. p->sched_class = &fair_sched_class;
  3655. p->prio = prio;
  3656. if (running)
  3657. p->sched_class->set_curr_task(rq);
  3658. if (on_rq) {
  3659. enqueue_task(rq, p, 0, oldprio < prio);
  3660. check_class_changed(rq, p, prev_class, oldprio, running);
  3661. }
  3662. task_rq_unlock(rq, &flags);
  3663. }
  3664. #endif
  3665. void set_user_nice(struct task_struct *p, long nice)
  3666. {
  3667. int old_prio, delta, on_rq;
  3668. unsigned long flags;
  3669. struct rq *rq;
  3670. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3671. return;
  3672. /*
  3673. * We have to be careful, if called from sys_setpriority(),
  3674. * the task might be in the middle of scheduling on another CPU.
  3675. */
  3676. rq = task_rq_lock(p, &flags);
  3677. update_rq_clock(rq);
  3678. /*
  3679. * The RT priorities are set via sched_setscheduler(), but we still
  3680. * allow the 'normal' nice value to be set - but as expected
  3681. * it wont have any effect on scheduling until the task is
  3682. * SCHED_FIFO/SCHED_RR:
  3683. */
  3684. if (task_has_rt_policy(p)) {
  3685. p->static_prio = NICE_TO_PRIO(nice);
  3686. goto out_unlock;
  3687. }
  3688. on_rq = p->se.on_rq;
  3689. if (on_rq)
  3690. dequeue_task(rq, p, 0);
  3691. p->static_prio = NICE_TO_PRIO(nice);
  3692. set_load_weight(p);
  3693. old_prio = p->prio;
  3694. p->prio = effective_prio(p);
  3695. delta = p->prio - old_prio;
  3696. if (on_rq) {
  3697. enqueue_task(rq, p, 0, false);
  3698. /*
  3699. * If the task increased its priority or is running and
  3700. * lowered its priority, then reschedule its CPU:
  3701. */
  3702. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3703. resched_task(rq->curr);
  3704. }
  3705. out_unlock:
  3706. task_rq_unlock(rq, &flags);
  3707. }
  3708. EXPORT_SYMBOL(set_user_nice);
  3709. /*
  3710. * can_nice - check if a task can reduce its nice value
  3711. * @p: task
  3712. * @nice: nice value
  3713. */
  3714. int can_nice(const struct task_struct *p, const int nice)
  3715. {
  3716. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3717. int nice_rlim = 20 - nice;
  3718. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3719. capable(CAP_SYS_NICE));
  3720. }
  3721. #ifdef __ARCH_WANT_SYS_NICE
  3722. /*
  3723. * sys_nice - change the priority of the current process.
  3724. * @increment: priority increment
  3725. *
  3726. * sys_setpriority is a more generic, but much slower function that
  3727. * does similar things.
  3728. */
  3729. SYSCALL_DEFINE1(nice, int, increment)
  3730. {
  3731. long nice, retval;
  3732. /*
  3733. * Setpriority might change our priority at the same moment.
  3734. * We don't have to worry. Conceptually one call occurs first
  3735. * and we have a single winner.
  3736. */
  3737. if (increment < -40)
  3738. increment = -40;
  3739. if (increment > 40)
  3740. increment = 40;
  3741. nice = TASK_NICE(current) + increment;
  3742. if (nice < -20)
  3743. nice = -20;
  3744. if (nice > 19)
  3745. nice = 19;
  3746. if (increment < 0 && !can_nice(current, nice))
  3747. return -EPERM;
  3748. retval = security_task_setnice(current, nice);
  3749. if (retval)
  3750. return retval;
  3751. set_user_nice(current, nice);
  3752. return 0;
  3753. }
  3754. #endif
  3755. /**
  3756. * task_prio - return the priority value of a given task.
  3757. * @p: the task in question.
  3758. *
  3759. * This is the priority value as seen by users in /proc.
  3760. * RT tasks are offset by -200. Normal tasks are centered
  3761. * around 0, value goes from -16 to +15.
  3762. */
  3763. int task_prio(const struct task_struct *p)
  3764. {
  3765. return p->prio - MAX_RT_PRIO;
  3766. }
  3767. /**
  3768. * task_nice - return the nice value of a given task.
  3769. * @p: the task in question.
  3770. */
  3771. int task_nice(const struct task_struct *p)
  3772. {
  3773. return TASK_NICE(p);
  3774. }
  3775. EXPORT_SYMBOL(task_nice);
  3776. /**
  3777. * idle_cpu - is a given cpu idle currently?
  3778. * @cpu: the processor in question.
  3779. */
  3780. int idle_cpu(int cpu)
  3781. {
  3782. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3783. }
  3784. /**
  3785. * idle_task - return the idle task for a given cpu.
  3786. * @cpu: the processor in question.
  3787. */
  3788. struct task_struct *idle_task(int cpu)
  3789. {
  3790. return cpu_rq(cpu)->idle;
  3791. }
  3792. /**
  3793. * find_process_by_pid - find a process with a matching PID value.
  3794. * @pid: the pid in question.
  3795. */
  3796. static struct task_struct *find_process_by_pid(pid_t pid)
  3797. {
  3798. return pid ? find_task_by_vpid(pid) : current;
  3799. }
  3800. /* Actually do priority change: must hold rq lock. */
  3801. static void
  3802. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3803. {
  3804. BUG_ON(p->se.on_rq);
  3805. p->policy = policy;
  3806. p->rt_priority = prio;
  3807. p->normal_prio = normal_prio(p);
  3808. /* we are holding p->pi_lock already */
  3809. p->prio = rt_mutex_getprio(p);
  3810. if (rt_prio(p->prio))
  3811. p->sched_class = &rt_sched_class;
  3812. else
  3813. p->sched_class = &fair_sched_class;
  3814. set_load_weight(p);
  3815. }
  3816. /*
  3817. * check the target process has a UID that matches the current process's
  3818. */
  3819. static bool check_same_owner(struct task_struct *p)
  3820. {
  3821. const struct cred *cred = current_cred(), *pcred;
  3822. bool match;
  3823. rcu_read_lock();
  3824. pcred = __task_cred(p);
  3825. match = (cred->euid == pcred->euid ||
  3826. cred->euid == pcred->uid);
  3827. rcu_read_unlock();
  3828. return match;
  3829. }
  3830. static int __sched_setscheduler(struct task_struct *p, int policy,
  3831. struct sched_param *param, bool user)
  3832. {
  3833. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3834. unsigned long flags;
  3835. const struct sched_class *prev_class;
  3836. struct rq *rq;
  3837. int reset_on_fork;
  3838. /* may grab non-irq protected spin_locks */
  3839. BUG_ON(in_interrupt());
  3840. recheck:
  3841. /* double check policy once rq lock held */
  3842. if (policy < 0) {
  3843. reset_on_fork = p->sched_reset_on_fork;
  3844. policy = oldpolicy = p->policy;
  3845. } else {
  3846. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3847. policy &= ~SCHED_RESET_ON_FORK;
  3848. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3849. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3850. policy != SCHED_IDLE)
  3851. return -EINVAL;
  3852. }
  3853. /*
  3854. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3855. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3856. * SCHED_BATCH and SCHED_IDLE is 0.
  3857. */
  3858. if (param->sched_priority < 0 ||
  3859. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3860. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3861. return -EINVAL;
  3862. if (rt_policy(policy) != (param->sched_priority != 0))
  3863. return -EINVAL;
  3864. /*
  3865. * Allow unprivileged RT tasks to decrease priority:
  3866. */
  3867. if (user && !capable(CAP_SYS_NICE)) {
  3868. if (rt_policy(policy)) {
  3869. unsigned long rlim_rtprio;
  3870. if (!lock_task_sighand(p, &flags))
  3871. return -ESRCH;
  3872. rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
  3873. unlock_task_sighand(p, &flags);
  3874. /* can't set/change the rt policy */
  3875. if (policy != p->policy && !rlim_rtprio)
  3876. return -EPERM;
  3877. /* can't increase priority */
  3878. if (param->sched_priority > p->rt_priority &&
  3879. param->sched_priority > rlim_rtprio)
  3880. return -EPERM;
  3881. }
  3882. /*
  3883. * Like positive nice levels, dont allow tasks to
  3884. * move out of SCHED_IDLE either:
  3885. */
  3886. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3887. return -EPERM;
  3888. /* can't change other user's priorities */
  3889. if (!check_same_owner(p))
  3890. return -EPERM;
  3891. /* Normal users shall not reset the sched_reset_on_fork flag */
  3892. if (p->sched_reset_on_fork && !reset_on_fork)
  3893. return -EPERM;
  3894. }
  3895. if (user) {
  3896. #ifdef CONFIG_RT_GROUP_SCHED
  3897. /*
  3898. * Do not allow realtime tasks into groups that have no runtime
  3899. * assigned.
  3900. */
  3901. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3902. task_group(p)->rt_bandwidth.rt_runtime == 0)
  3903. return -EPERM;
  3904. #endif
  3905. retval = security_task_setscheduler(p, policy, param);
  3906. if (retval)
  3907. return retval;
  3908. }
  3909. /*
  3910. * make sure no PI-waiters arrive (or leave) while we are
  3911. * changing the priority of the task:
  3912. */
  3913. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3914. /*
  3915. * To be able to change p->policy safely, the apropriate
  3916. * runqueue lock must be held.
  3917. */
  3918. rq = __task_rq_lock(p);
  3919. /* recheck policy now with rq lock held */
  3920. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3921. policy = oldpolicy = -1;
  3922. __task_rq_unlock(rq);
  3923. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3924. goto recheck;
  3925. }
  3926. update_rq_clock(rq);
  3927. on_rq = p->se.on_rq;
  3928. running = task_current(rq, p);
  3929. if (on_rq)
  3930. deactivate_task(rq, p, 0);
  3931. if (running)
  3932. p->sched_class->put_prev_task(rq, p);
  3933. p->sched_reset_on_fork = reset_on_fork;
  3934. oldprio = p->prio;
  3935. prev_class = p->sched_class;
  3936. __setscheduler(rq, p, policy, param->sched_priority);
  3937. if (running)
  3938. p->sched_class->set_curr_task(rq);
  3939. if (on_rq) {
  3940. activate_task(rq, p, 0);
  3941. check_class_changed(rq, p, prev_class, oldprio, running);
  3942. }
  3943. __task_rq_unlock(rq);
  3944. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3945. rt_mutex_adjust_pi(p);
  3946. return 0;
  3947. }
  3948. /**
  3949. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3950. * @p: the task in question.
  3951. * @policy: new policy.
  3952. * @param: structure containing the new RT priority.
  3953. *
  3954. * NOTE that the task may be already dead.
  3955. */
  3956. int sched_setscheduler(struct task_struct *p, int policy,
  3957. struct sched_param *param)
  3958. {
  3959. return __sched_setscheduler(p, policy, param, true);
  3960. }
  3961. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3962. /**
  3963. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3964. * @p: the task in question.
  3965. * @policy: new policy.
  3966. * @param: structure containing the new RT priority.
  3967. *
  3968. * Just like sched_setscheduler, only don't bother checking if the
  3969. * current context has permission. For example, this is needed in
  3970. * stop_machine(): we create temporary high priority worker threads,
  3971. * but our caller might not have that capability.
  3972. */
  3973. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3974. struct sched_param *param)
  3975. {
  3976. return __sched_setscheduler(p, policy, param, false);
  3977. }
  3978. static int
  3979. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3980. {
  3981. struct sched_param lparam;
  3982. struct task_struct *p;
  3983. int retval;
  3984. if (!param || pid < 0)
  3985. return -EINVAL;
  3986. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3987. return -EFAULT;
  3988. rcu_read_lock();
  3989. retval = -ESRCH;
  3990. p = find_process_by_pid(pid);
  3991. if (p != NULL)
  3992. retval = sched_setscheduler(p, policy, &lparam);
  3993. rcu_read_unlock();
  3994. return retval;
  3995. }
  3996. /**
  3997. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3998. * @pid: the pid in question.
  3999. * @policy: new policy.
  4000. * @param: structure containing the new RT priority.
  4001. */
  4002. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  4003. struct sched_param __user *, param)
  4004. {
  4005. /* negative values for policy are not valid */
  4006. if (policy < 0)
  4007. return -EINVAL;
  4008. return do_sched_setscheduler(pid, policy, param);
  4009. }
  4010. /**
  4011. * sys_sched_setparam - set/change the RT priority of a thread
  4012. * @pid: the pid in question.
  4013. * @param: structure containing the new RT priority.
  4014. */
  4015. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  4016. {
  4017. return do_sched_setscheduler(pid, -1, param);
  4018. }
  4019. /**
  4020. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  4021. * @pid: the pid in question.
  4022. */
  4023. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  4024. {
  4025. struct task_struct *p;
  4026. int retval;
  4027. if (pid < 0)
  4028. return -EINVAL;
  4029. retval = -ESRCH;
  4030. rcu_read_lock();
  4031. p = find_process_by_pid(pid);
  4032. if (p) {
  4033. retval = security_task_getscheduler(p);
  4034. if (!retval)
  4035. retval = p->policy
  4036. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  4037. }
  4038. rcu_read_unlock();
  4039. return retval;
  4040. }
  4041. /**
  4042. * sys_sched_getparam - get the RT priority of a thread
  4043. * @pid: the pid in question.
  4044. * @param: structure containing the RT priority.
  4045. */
  4046. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  4047. {
  4048. struct sched_param lp;
  4049. struct task_struct *p;
  4050. int retval;
  4051. if (!param || pid < 0)
  4052. return -EINVAL;
  4053. rcu_read_lock();
  4054. p = find_process_by_pid(pid);
  4055. retval = -ESRCH;
  4056. if (!p)
  4057. goto out_unlock;
  4058. retval = security_task_getscheduler(p);
  4059. if (retval)
  4060. goto out_unlock;
  4061. lp.sched_priority = p->rt_priority;
  4062. rcu_read_unlock();
  4063. /*
  4064. * This one might sleep, we cannot do it with a spinlock held ...
  4065. */
  4066. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4067. return retval;
  4068. out_unlock:
  4069. rcu_read_unlock();
  4070. return retval;
  4071. }
  4072. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4073. {
  4074. cpumask_var_t cpus_allowed, new_mask;
  4075. struct task_struct *p;
  4076. int retval;
  4077. get_online_cpus();
  4078. rcu_read_lock();
  4079. p = find_process_by_pid(pid);
  4080. if (!p) {
  4081. rcu_read_unlock();
  4082. put_online_cpus();
  4083. return -ESRCH;
  4084. }
  4085. /* Prevent p going away */
  4086. get_task_struct(p);
  4087. rcu_read_unlock();
  4088. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4089. retval = -ENOMEM;
  4090. goto out_put_task;
  4091. }
  4092. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4093. retval = -ENOMEM;
  4094. goto out_free_cpus_allowed;
  4095. }
  4096. retval = -EPERM;
  4097. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4098. goto out_unlock;
  4099. retval = security_task_setscheduler(p, 0, NULL);
  4100. if (retval)
  4101. goto out_unlock;
  4102. cpuset_cpus_allowed(p, cpus_allowed);
  4103. cpumask_and(new_mask, in_mask, cpus_allowed);
  4104. again:
  4105. retval = set_cpus_allowed_ptr(p, new_mask);
  4106. if (!retval) {
  4107. cpuset_cpus_allowed(p, cpus_allowed);
  4108. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4109. /*
  4110. * We must have raced with a concurrent cpuset
  4111. * update. Just reset the cpus_allowed to the
  4112. * cpuset's cpus_allowed
  4113. */
  4114. cpumask_copy(new_mask, cpus_allowed);
  4115. goto again;
  4116. }
  4117. }
  4118. out_unlock:
  4119. free_cpumask_var(new_mask);
  4120. out_free_cpus_allowed:
  4121. free_cpumask_var(cpus_allowed);
  4122. out_put_task:
  4123. put_task_struct(p);
  4124. put_online_cpus();
  4125. return retval;
  4126. }
  4127. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4128. struct cpumask *new_mask)
  4129. {
  4130. if (len < cpumask_size())
  4131. cpumask_clear(new_mask);
  4132. else if (len > cpumask_size())
  4133. len = cpumask_size();
  4134. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4135. }
  4136. /**
  4137. * sys_sched_setaffinity - set the cpu affinity of a process
  4138. * @pid: pid of the process
  4139. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4140. * @user_mask_ptr: user-space pointer to the new cpu mask
  4141. */
  4142. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4143. unsigned long __user *, user_mask_ptr)
  4144. {
  4145. cpumask_var_t new_mask;
  4146. int retval;
  4147. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4148. return -ENOMEM;
  4149. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4150. if (retval == 0)
  4151. retval = sched_setaffinity(pid, new_mask);
  4152. free_cpumask_var(new_mask);
  4153. return retval;
  4154. }
  4155. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4156. {
  4157. struct task_struct *p;
  4158. unsigned long flags;
  4159. struct rq *rq;
  4160. int retval;
  4161. get_online_cpus();
  4162. rcu_read_lock();
  4163. retval = -ESRCH;
  4164. p = find_process_by_pid(pid);
  4165. if (!p)
  4166. goto out_unlock;
  4167. retval = security_task_getscheduler(p);
  4168. if (retval)
  4169. goto out_unlock;
  4170. rq = task_rq_lock(p, &flags);
  4171. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4172. task_rq_unlock(rq, &flags);
  4173. out_unlock:
  4174. rcu_read_unlock();
  4175. put_online_cpus();
  4176. return retval;
  4177. }
  4178. /**
  4179. * sys_sched_getaffinity - get the cpu affinity of a process
  4180. * @pid: pid of the process
  4181. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4182. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4183. */
  4184. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4185. unsigned long __user *, user_mask_ptr)
  4186. {
  4187. int ret;
  4188. cpumask_var_t mask;
  4189. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4190. return -EINVAL;
  4191. if (len & (sizeof(unsigned long)-1))
  4192. return -EINVAL;
  4193. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4194. return -ENOMEM;
  4195. ret = sched_getaffinity(pid, mask);
  4196. if (ret == 0) {
  4197. size_t retlen = min_t(size_t, len, cpumask_size());
  4198. if (copy_to_user(user_mask_ptr, mask, retlen))
  4199. ret = -EFAULT;
  4200. else
  4201. ret = retlen;
  4202. }
  4203. free_cpumask_var(mask);
  4204. return ret;
  4205. }
  4206. /**
  4207. * sys_sched_yield - yield the current processor to other threads.
  4208. *
  4209. * This function yields the current CPU to other tasks. If there are no
  4210. * other threads running on this CPU then this function will return.
  4211. */
  4212. SYSCALL_DEFINE0(sched_yield)
  4213. {
  4214. struct rq *rq = this_rq_lock();
  4215. schedstat_inc(rq, yld_count);
  4216. current->sched_class->yield_task(rq);
  4217. /*
  4218. * Since we are going to call schedule() anyway, there's
  4219. * no need to preempt or enable interrupts:
  4220. */
  4221. __release(rq->lock);
  4222. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4223. do_raw_spin_unlock(&rq->lock);
  4224. preempt_enable_no_resched();
  4225. schedule();
  4226. return 0;
  4227. }
  4228. static inline int should_resched(void)
  4229. {
  4230. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4231. }
  4232. static void __cond_resched(void)
  4233. {
  4234. add_preempt_count(PREEMPT_ACTIVE);
  4235. schedule();
  4236. sub_preempt_count(PREEMPT_ACTIVE);
  4237. }
  4238. int __sched _cond_resched(void)
  4239. {
  4240. if (should_resched()) {
  4241. __cond_resched();
  4242. return 1;
  4243. }
  4244. return 0;
  4245. }
  4246. EXPORT_SYMBOL(_cond_resched);
  4247. /*
  4248. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4249. * call schedule, and on return reacquire the lock.
  4250. *
  4251. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4252. * operations here to prevent schedule() from being called twice (once via
  4253. * spin_unlock(), once by hand).
  4254. */
  4255. int __cond_resched_lock(spinlock_t *lock)
  4256. {
  4257. int resched = should_resched();
  4258. int ret = 0;
  4259. lockdep_assert_held(lock);
  4260. if (spin_needbreak(lock) || resched) {
  4261. spin_unlock(lock);
  4262. if (resched)
  4263. __cond_resched();
  4264. else
  4265. cpu_relax();
  4266. ret = 1;
  4267. spin_lock(lock);
  4268. }
  4269. return ret;
  4270. }
  4271. EXPORT_SYMBOL(__cond_resched_lock);
  4272. int __sched __cond_resched_softirq(void)
  4273. {
  4274. BUG_ON(!in_softirq());
  4275. if (should_resched()) {
  4276. local_bh_enable();
  4277. __cond_resched();
  4278. local_bh_disable();
  4279. return 1;
  4280. }
  4281. return 0;
  4282. }
  4283. EXPORT_SYMBOL(__cond_resched_softirq);
  4284. /**
  4285. * yield - yield the current processor to other threads.
  4286. *
  4287. * This is a shortcut for kernel-space yielding - it marks the
  4288. * thread runnable and calls sys_sched_yield().
  4289. */
  4290. void __sched yield(void)
  4291. {
  4292. set_current_state(TASK_RUNNING);
  4293. sys_sched_yield();
  4294. }
  4295. EXPORT_SYMBOL(yield);
  4296. /*
  4297. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4298. * that process accounting knows that this is a task in IO wait state.
  4299. */
  4300. void __sched io_schedule(void)
  4301. {
  4302. struct rq *rq = raw_rq();
  4303. delayacct_blkio_start();
  4304. atomic_inc(&rq->nr_iowait);
  4305. current->in_iowait = 1;
  4306. schedule();
  4307. current->in_iowait = 0;
  4308. atomic_dec(&rq->nr_iowait);
  4309. delayacct_blkio_end();
  4310. }
  4311. EXPORT_SYMBOL(io_schedule);
  4312. long __sched io_schedule_timeout(long timeout)
  4313. {
  4314. struct rq *rq = raw_rq();
  4315. long ret;
  4316. delayacct_blkio_start();
  4317. atomic_inc(&rq->nr_iowait);
  4318. current->in_iowait = 1;
  4319. ret = schedule_timeout(timeout);
  4320. current->in_iowait = 0;
  4321. atomic_dec(&rq->nr_iowait);
  4322. delayacct_blkio_end();
  4323. return ret;
  4324. }
  4325. /**
  4326. * sys_sched_get_priority_max - return maximum RT priority.
  4327. * @policy: scheduling class.
  4328. *
  4329. * this syscall returns the maximum rt_priority that can be used
  4330. * by a given scheduling class.
  4331. */
  4332. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4333. {
  4334. int ret = -EINVAL;
  4335. switch (policy) {
  4336. case SCHED_FIFO:
  4337. case SCHED_RR:
  4338. ret = MAX_USER_RT_PRIO-1;
  4339. break;
  4340. case SCHED_NORMAL:
  4341. case SCHED_BATCH:
  4342. case SCHED_IDLE:
  4343. ret = 0;
  4344. break;
  4345. }
  4346. return ret;
  4347. }
  4348. /**
  4349. * sys_sched_get_priority_min - return minimum RT priority.
  4350. * @policy: scheduling class.
  4351. *
  4352. * this syscall returns the minimum rt_priority that can be used
  4353. * by a given scheduling class.
  4354. */
  4355. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4356. {
  4357. int ret = -EINVAL;
  4358. switch (policy) {
  4359. case SCHED_FIFO:
  4360. case SCHED_RR:
  4361. ret = 1;
  4362. break;
  4363. case SCHED_NORMAL:
  4364. case SCHED_BATCH:
  4365. case SCHED_IDLE:
  4366. ret = 0;
  4367. }
  4368. return ret;
  4369. }
  4370. /**
  4371. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4372. * @pid: pid of the process.
  4373. * @interval: userspace pointer to the timeslice value.
  4374. *
  4375. * this syscall writes the default timeslice value of a given process
  4376. * into the user-space timespec buffer. A value of '0' means infinity.
  4377. */
  4378. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4379. struct timespec __user *, interval)
  4380. {
  4381. struct task_struct *p;
  4382. unsigned int time_slice;
  4383. unsigned long flags;
  4384. struct rq *rq;
  4385. int retval;
  4386. struct timespec t;
  4387. if (pid < 0)
  4388. return -EINVAL;
  4389. retval = -ESRCH;
  4390. rcu_read_lock();
  4391. p = find_process_by_pid(pid);
  4392. if (!p)
  4393. goto out_unlock;
  4394. retval = security_task_getscheduler(p);
  4395. if (retval)
  4396. goto out_unlock;
  4397. rq = task_rq_lock(p, &flags);
  4398. time_slice = p->sched_class->get_rr_interval(rq, p);
  4399. task_rq_unlock(rq, &flags);
  4400. rcu_read_unlock();
  4401. jiffies_to_timespec(time_slice, &t);
  4402. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4403. return retval;
  4404. out_unlock:
  4405. rcu_read_unlock();
  4406. return retval;
  4407. }
  4408. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4409. void sched_show_task(struct task_struct *p)
  4410. {
  4411. unsigned long free = 0;
  4412. unsigned state;
  4413. state = p->state ? __ffs(p->state) + 1 : 0;
  4414. printk(KERN_INFO "%-13.13s %c", p->comm,
  4415. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4416. #if BITS_PER_LONG == 32
  4417. if (state == TASK_RUNNING)
  4418. printk(KERN_CONT " running ");
  4419. else
  4420. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4421. #else
  4422. if (state == TASK_RUNNING)
  4423. printk(KERN_CONT " running task ");
  4424. else
  4425. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4426. #endif
  4427. #ifdef CONFIG_DEBUG_STACK_USAGE
  4428. free = stack_not_used(p);
  4429. #endif
  4430. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4431. task_pid_nr(p), task_pid_nr(p->real_parent),
  4432. (unsigned long)task_thread_info(p)->flags);
  4433. show_stack(p, NULL);
  4434. }
  4435. void show_state_filter(unsigned long state_filter)
  4436. {
  4437. struct task_struct *g, *p;
  4438. #if BITS_PER_LONG == 32
  4439. printk(KERN_INFO
  4440. " task PC stack pid father\n");
  4441. #else
  4442. printk(KERN_INFO
  4443. " task PC stack pid father\n");
  4444. #endif
  4445. read_lock(&tasklist_lock);
  4446. do_each_thread(g, p) {
  4447. /*
  4448. * reset the NMI-timeout, listing all files on a slow
  4449. * console might take alot of time:
  4450. */
  4451. touch_nmi_watchdog();
  4452. if (!state_filter || (p->state & state_filter))
  4453. sched_show_task(p);
  4454. } while_each_thread(g, p);
  4455. touch_all_softlockup_watchdogs();
  4456. #ifdef CONFIG_SCHED_DEBUG
  4457. sysrq_sched_debug_show();
  4458. #endif
  4459. read_unlock(&tasklist_lock);
  4460. /*
  4461. * Only show locks if all tasks are dumped:
  4462. */
  4463. if (!state_filter)
  4464. debug_show_all_locks();
  4465. }
  4466. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4467. {
  4468. idle->sched_class = &idle_sched_class;
  4469. }
  4470. /**
  4471. * init_idle - set up an idle thread for a given CPU
  4472. * @idle: task in question
  4473. * @cpu: cpu the idle task belongs to
  4474. *
  4475. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4476. * flag, to make booting more robust.
  4477. */
  4478. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4479. {
  4480. struct rq *rq = cpu_rq(cpu);
  4481. unsigned long flags;
  4482. raw_spin_lock_irqsave(&rq->lock, flags);
  4483. __sched_fork(idle);
  4484. idle->state = TASK_RUNNING;
  4485. idle->se.exec_start = sched_clock();
  4486. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4487. __set_task_cpu(idle, cpu);
  4488. rq->curr = rq->idle = idle;
  4489. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4490. idle->oncpu = 1;
  4491. #endif
  4492. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4493. /* Set the preempt count _outside_ the spinlocks! */
  4494. #if defined(CONFIG_PREEMPT)
  4495. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4496. #else
  4497. task_thread_info(idle)->preempt_count = 0;
  4498. #endif
  4499. /*
  4500. * The idle tasks have their own, simple scheduling class:
  4501. */
  4502. idle->sched_class = &idle_sched_class;
  4503. ftrace_graph_init_task(idle);
  4504. }
  4505. /*
  4506. * In a system that switches off the HZ timer nohz_cpu_mask
  4507. * indicates which cpus entered this state. This is used
  4508. * in the rcu update to wait only for active cpus. For system
  4509. * which do not switch off the HZ timer nohz_cpu_mask should
  4510. * always be CPU_BITS_NONE.
  4511. */
  4512. cpumask_var_t nohz_cpu_mask;
  4513. /*
  4514. * Increase the granularity value when there are more CPUs,
  4515. * because with more CPUs the 'effective latency' as visible
  4516. * to users decreases. But the relationship is not linear,
  4517. * so pick a second-best guess by going with the log2 of the
  4518. * number of CPUs.
  4519. *
  4520. * This idea comes from the SD scheduler of Con Kolivas:
  4521. */
  4522. static int get_update_sysctl_factor(void)
  4523. {
  4524. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4525. unsigned int factor;
  4526. switch (sysctl_sched_tunable_scaling) {
  4527. case SCHED_TUNABLESCALING_NONE:
  4528. factor = 1;
  4529. break;
  4530. case SCHED_TUNABLESCALING_LINEAR:
  4531. factor = cpus;
  4532. break;
  4533. case SCHED_TUNABLESCALING_LOG:
  4534. default:
  4535. factor = 1 + ilog2(cpus);
  4536. break;
  4537. }
  4538. return factor;
  4539. }
  4540. static void update_sysctl(void)
  4541. {
  4542. unsigned int factor = get_update_sysctl_factor();
  4543. #define SET_SYSCTL(name) \
  4544. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4545. SET_SYSCTL(sched_min_granularity);
  4546. SET_SYSCTL(sched_latency);
  4547. SET_SYSCTL(sched_wakeup_granularity);
  4548. SET_SYSCTL(sched_shares_ratelimit);
  4549. #undef SET_SYSCTL
  4550. }
  4551. static inline void sched_init_granularity(void)
  4552. {
  4553. update_sysctl();
  4554. }
  4555. #ifdef CONFIG_SMP
  4556. /*
  4557. * This is how migration works:
  4558. *
  4559. * 1) we queue a struct migration_req structure in the source CPU's
  4560. * runqueue and wake up that CPU's migration thread.
  4561. * 2) we down() the locked semaphore => thread blocks.
  4562. * 3) migration thread wakes up (implicitly it forces the migrated
  4563. * thread off the CPU)
  4564. * 4) it gets the migration request and checks whether the migrated
  4565. * task is still in the wrong runqueue.
  4566. * 5) if it's in the wrong runqueue then the migration thread removes
  4567. * it and puts it into the right queue.
  4568. * 6) migration thread up()s the semaphore.
  4569. * 7) we wake up and the migration is done.
  4570. */
  4571. /*
  4572. * Change a given task's CPU affinity. Migrate the thread to a
  4573. * proper CPU and schedule it away if the CPU it's executing on
  4574. * is removed from the allowed bitmask.
  4575. *
  4576. * NOTE: the caller must have a valid reference to the task, the
  4577. * task must not exit() & deallocate itself prematurely. The
  4578. * call is not atomic; no spinlocks may be held.
  4579. */
  4580. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4581. {
  4582. struct migration_req req;
  4583. unsigned long flags;
  4584. struct rq *rq;
  4585. int ret = 0;
  4586. rq = task_rq_lock(p, &flags);
  4587. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4588. ret = -EINVAL;
  4589. goto out;
  4590. }
  4591. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4592. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4593. ret = -EINVAL;
  4594. goto out;
  4595. }
  4596. if (p->sched_class->set_cpus_allowed)
  4597. p->sched_class->set_cpus_allowed(p, new_mask);
  4598. else {
  4599. cpumask_copy(&p->cpus_allowed, new_mask);
  4600. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4601. }
  4602. /* Can the task run on the task's current CPU? If so, we're done */
  4603. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4604. goto out;
  4605. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  4606. /* Need help from migration thread: drop lock and wait. */
  4607. struct task_struct *mt = rq->migration_thread;
  4608. get_task_struct(mt);
  4609. task_rq_unlock(rq, &flags);
  4610. wake_up_process(mt);
  4611. put_task_struct(mt);
  4612. wait_for_completion(&req.done);
  4613. tlb_migrate_finish(p->mm);
  4614. return 0;
  4615. }
  4616. out:
  4617. task_rq_unlock(rq, &flags);
  4618. return ret;
  4619. }
  4620. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4621. /*
  4622. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4623. * this because either it can't run here any more (set_cpus_allowed()
  4624. * away from this CPU, or CPU going down), or because we're
  4625. * attempting to rebalance this task on exec (sched_exec).
  4626. *
  4627. * So we race with normal scheduler movements, but that's OK, as long
  4628. * as the task is no longer on this CPU.
  4629. *
  4630. * Returns non-zero if task was successfully migrated.
  4631. */
  4632. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4633. {
  4634. struct rq *rq_dest, *rq_src;
  4635. int ret = 0;
  4636. if (unlikely(!cpu_active(dest_cpu)))
  4637. return ret;
  4638. rq_src = cpu_rq(src_cpu);
  4639. rq_dest = cpu_rq(dest_cpu);
  4640. double_rq_lock(rq_src, rq_dest);
  4641. /* Already moved. */
  4642. if (task_cpu(p) != src_cpu)
  4643. goto done;
  4644. /* Affinity changed (again). */
  4645. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4646. goto fail;
  4647. /*
  4648. * If we're not on a rq, the next wake-up will ensure we're
  4649. * placed properly.
  4650. */
  4651. if (p->se.on_rq) {
  4652. deactivate_task(rq_src, p, 0);
  4653. set_task_cpu(p, dest_cpu);
  4654. activate_task(rq_dest, p, 0);
  4655. check_preempt_curr(rq_dest, p, 0);
  4656. }
  4657. done:
  4658. ret = 1;
  4659. fail:
  4660. double_rq_unlock(rq_src, rq_dest);
  4661. return ret;
  4662. }
  4663. #define RCU_MIGRATION_IDLE 0
  4664. #define RCU_MIGRATION_NEED_QS 1
  4665. #define RCU_MIGRATION_GOT_QS 2
  4666. #define RCU_MIGRATION_MUST_SYNC 3
  4667. /*
  4668. * migration_thread - this is a highprio system thread that performs
  4669. * thread migration by bumping thread off CPU then 'pushing' onto
  4670. * another runqueue.
  4671. */
  4672. static int migration_thread(void *data)
  4673. {
  4674. int badcpu;
  4675. int cpu = (long)data;
  4676. struct rq *rq;
  4677. rq = cpu_rq(cpu);
  4678. BUG_ON(rq->migration_thread != current);
  4679. set_current_state(TASK_INTERRUPTIBLE);
  4680. while (!kthread_should_stop()) {
  4681. struct migration_req *req;
  4682. struct list_head *head;
  4683. raw_spin_lock_irq(&rq->lock);
  4684. if (cpu_is_offline(cpu)) {
  4685. raw_spin_unlock_irq(&rq->lock);
  4686. break;
  4687. }
  4688. if (rq->active_balance) {
  4689. active_load_balance(rq, cpu);
  4690. rq->active_balance = 0;
  4691. }
  4692. head = &rq->migration_queue;
  4693. if (list_empty(head)) {
  4694. raw_spin_unlock_irq(&rq->lock);
  4695. schedule();
  4696. set_current_state(TASK_INTERRUPTIBLE);
  4697. continue;
  4698. }
  4699. req = list_entry(head->next, struct migration_req, list);
  4700. list_del_init(head->next);
  4701. if (req->task != NULL) {
  4702. raw_spin_unlock(&rq->lock);
  4703. __migrate_task(req->task, cpu, req->dest_cpu);
  4704. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  4705. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  4706. raw_spin_unlock(&rq->lock);
  4707. } else {
  4708. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  4709. raw_spin_unlock(&rq->lock);
  4710. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  4711. }
  4712. local_irq_enable();
  4713. complete(&req->done);
  4714. }
  4715. __set_current_state(TASK_RUNNING);
  4716. return 0;
  4717. }
  4718. #ifdef CONFIG_HOTPLUG_CPU
  4719. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  4720. {
  4721. int ret;
  4722. local_irq_disable();
  4723. ret = __migrate_task(p, src_cpu, dest_cpu);
  4724. local_irq_enable();
  4725. return ret;
  4726. }
  4727. /*
  4728. * Figure out where task on dead CPU should go, use force if necessary.
  4729. */
  4730. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4731. {
  4732. int dest_cpu;
  4733. again:
  4734. dest_cpu = select_fallback_rq(dead_cpu, p);
  4735. /* It can have affinity changed while we were choosing. */
  4736. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  4737. goto again;
  4738. }
  4739. /*
  4740. * While a dead CPU has no uninterruptible tasks queued at this point,
  4741. * it might still have a nonzero ->nr_uninterruptible counter, because
  4742. * for performance reasons the counter is not stricly tracking tasks to
  4743. * their home CPUs. So we just add the counter to another CPU's counter,
  4744. * to keep the global sum constant after CPU-down:
  4745. */
  4746. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4747. {
  4748. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4749. unsigned long flags;
  4750. local_irq_save(flags);
  4751. double_rq_lock(rq_src, rq_dest);
  4752. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4753. rq_src->nr_uninterruptible = 0;
  4754. double_rq_unlock(rq_src, rq_dest);
  4755. local_irq_restore(flags);
  4756. }
  4757. /* Run through task list and migrate tasks from the dead cpu. */
  4758. static void migrate_live_tasks(int src_cpu)
  4759. {
  4760. struct task_struct *p, *t;
  4761. read_lock(&tasklist_lock);
  4762. do_each_thread(t, p) {
  4763. if (p == current)
  4764. continue;
  4765. if (task_cpu(p) == src_cpu)
  4766. move_task_off_dead_cpu(src_cpu, p);
  4767. } while_each_thread(t, p);
  4768. read_unlock(&tasklist_lock);
  4769. }
  4770. /*
  4771. * Schedules idle task to be the next runnable task on current CPU.
  4772. * It does so by boosting its priority to highest possible.
  4773. * Used by CPU offline code.
  4774. */
  4775. void sched_idle_next(void)
  4776. {
  4777. int this_cpu = smp_processor_id();
  4778. struct rq *rq = cpu_rq(this_cpu);
  4779. struct task_struct *p = rq->idle;
  4780. unsigned long flags;
  4781. /* cpu has to be offline */
  4782. BUG_ON(cpu_online(this_cpu));
  4783. /*
  4784. * Strictly not necessary since rest of the CPUs are stopped by now
  4785. * and interrupts disabled on the current cpu.
  4786. */
  4787. raw_spin_lock_irqsave(&rq->lock, flags);
  4788. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4789. update_rq_clock(rq);
  4790. activate_task(rq, p, 0);
  4791. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4792. }
  4793. /*
  4794. * Ensures that the idle task is using init_mm right before its cpu goes
  4795. * offline.
  4796. */
  4797. void idle_task_exit(void)
  4798. {
  4799. struct mm_struct *mm = current->active_mm;
  4800. BUG_ON(cpu_online(smp_processor_id()));
  4801. if (mm != &init_mm)
  4802. switch_mm(mm, &init_mm, current);
  4803. mmdrop(mm);
  4804. }
  4805. /* called under rq->lock with disabled interrupts */
  4806. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4807. {
  4808. struct rq *rq = cpu_rq(dead_cpu);
  4809. /* Must be exiting, otherwise would be on tasklist. */
  4810. BUG_ON(!p->exit_state);
  4811. /* Cannot have done final schedule yet: would have vanished. */
  4812. BUG_ON(p->state == TASK_DEAD);
  4813. get_task_struct(p);
  4814. /*
  4815. * Drop lock around migration; if someone else moves it,
  4816. * that's OK. No task can be added to this CPU, so iteration is
  4817. * fine.
  4818. */
  4819. raw_spin_unlock_irq(&rq->lock);
  4820. move_task_off_dead_cpu(dead_cpu, p);
  4821. raw_spin_lock_irq(&rq->lock);
  4822. put_task_struct(p);
  4823. }
  4824. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4825. static void migrate_dead_tasks(unsigned int dead_cpu)
  4826. {
  4827. struct rq *rq = cpu_rq(dead_cpu);
  4828. struct task_struct *next;
  4829. for ( ; ; ) {
  4830. if (!rq->nr_running)
  4831. break;
  4832. update_rq_clock(rq);
  4833. next = pick_next_task(rq);
  4834. if (!next)
  4835. break;
  4836. next->sched_class->put_prev_task(rq, next);
  4837. migrate_dead(dead_cpu, next);
  4838. }
  4839. }
  4840. /*
  4841. * remove the tasks which were accounted by rq from calc_load_tasks.
  4842. */
  4843. static void calc_global_load_remove(struct rq *rq)
  4844. {
  4845. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4846. rq->calc_load_active = 0;
  4847. }
  4848. #endif /* CONFIG_HOTPLUG_CPU */
  4849. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4850. static struct ctl_table sd_ctl_dir[] = {
  4851. {
  4852. .procname = "sched_domain",
  4853. .mode = 0555,
  4854. },
  4855. {}
  4856. };
  4857. static struct ctl_table sd_ctl_root[] = {
  4858. {
  4859. .procname = "kernel",
  4860. .mode = 0555,
  4861. .child = sd_ctl_dir,
  4862. },
  4863. {}
  4864. };
  4865. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4866. {
  4867. struct ctl_table *entry =
  4868. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4869. return entry;
  4870. }
  4871. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4872. {
  4873. struct ctl_table *entry;
  4874. /*
  4875. * In the intermediate directories, both the child directory and
  4876. * procname are dynamically allocated and could fail but the mode
  4877. * will always be set. In the lowest directory the names are
  4878. * static strings and all have proc handlers.
  4879. */
  4880. for (entry = *tablep; entry->mode; entry++) {
  4881. if (entry->child)
  4882. sd_free_ctl_entry(&entry->child);
  4883. if (entry->proc_handler == NULL)
  4884. kfree(entry->procname);
  4885. }
  4886. kfree(*tablep);
  4887. *tablep = NULL;
  4888. }
  4889. static void
  4890. set_table_entry(struct ctl_table *entry,
  4891. const char *procname, void *data, int maxlen,
  4892. mode_t mode, proc_handler *proc_handler)
  4893. {
  4894. entry->procname = procname;
  4895. entry->data = data;
  4896. entry->maxlen = maxlen;
  4897. entry->mode = mode;
  4898. entry->proc_handler = proc_handler;
  4899. }
  4900. static struct ctl_table *
  4901. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4902. {
  4903. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4904. if (table == NULL)
  4905. return NULL;
  4906. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4907. sizeof(long), 0644, proc_doulongvec_minmax);
  4908. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4909. sizeof(long), 0644, proc_doulongvec_minmax);
  4910. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4911. sizeof(int), 0644, proc_dointvec_minmax);
  4912. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4913. sizeof(int), 0644, proc_dointvec_minmax);
  4914. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4915. sizeof(int), 0644, proc_dointvec_minmax);
  4916. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4917. sizeof(int), 0644, proc_dointvec_minmax);
  4918. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4919. sizeof(int), 0644, proc_dointvec_minmax);
  4920. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4921. sizeof(int), 0644, proc_dointvec_minmax);
  4922. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4923. sizeof(int), 0644, proc_dointvec_minmax);
  4924. set_table_entry(&table[9], "cache_nice_tries",
  4925. &sd->cache_nice_tries,
  4926. sizeof(int), 0644, proc_dointvec_minmax);
  4927. set_table_entry(&table[10], "flags", &sd->flags,
  4928. sizeof(int), 0644, proc_dointvec_minmax);
  4929. set_table_entry(&table[11], "name", sd->name,
  4930. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4931. /* &table[12] is terminator */
  4932. return table;
  4933. }
  4934. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4935. {
  4936. struct ctl_table *entry, *table;
  4937. struct sched_domain *sd;
  4938. int domain_num = 0, i;
  4939. char buf[32];
  4940. for_each_domain(cpu, sd)
  4941. domain_num++;
  4942. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4943. if (table == NULL)
  4944. return NULL;
  4945. i = 0;
  4946. for_each_domain(cpu, sd) {
  4947. snprintf(buf, 32, "domain%d", i);
  4948. entry->procname = kstrdup(buf, GFP_KERNEL);
  4949. entry->mode = 0555;
  4950. entry->child = sd_alloc_ctl_domain_table(sd);
  4951. entry++;
  4952. i++;
  4953. }
  4954. return table;
  4955. }
  4956. static struct ctl_table_header *sd_sysctl_header;
  4957. static void register_sched_domain_sysctl(void)
  4958. {
  4959. int i, cpu_num = num_possible_cpus();
  4960. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4961. char buf[32];
  4962. WARN_ON(sd_ctl_dir[0].child);
  4963. sd_ctl_dir[0].child = entry;
  4964. if (entry == NULL)
  4965. return;
  4966. for_each_possible_cpu(i) {
  4967. snprintf(buf, 32, "cpu%d", i);
  4968. entry->procname = kstrdup(buf, GFP_KERNEL);
  4969. entry->mode = 0555;
  4970. entry->child = sd_alloc_ctl_cpu_table(i);
  4971. entry++;
  4972. }
  4973. WARN_ON(sd_sysctl_header);
  4974. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4975. }
  4976. /* may be called multiple times per register */
  4977. static void unregister_sched_domain_sysctl(void)
  4978. {
  4979. if (sd_sysctl_header)
  4980. unregister_sysctl_table(sd_sysctl_header);
  4981. sd_sysctl_header = NULL;
  4982. if (sd_ctl_dir[0].child)
  4983. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4984. }
  4985. #else
  4986. static void register_sched_domain_sysctl(void)
  4987. {
  4988. }
  4989. static void unregister_sched_domain_sysctl(void)
  4990. {
  4991. }
  4992. #endif
  4993. static void set_rq_online(struct rq *rq)
  4994. {
  4995. if (!rq->online) {
  4996. const struct sched_class *class;
  4997. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4998. rq->online = 1;
  4999. for_each_class(class) {
  5000. if (class->rq_online)
  5001. class->rq_online(rq);
  5002. }
  5003. }
  5004. }
  5005. static void set_rq_offline(struct rq *rq)
  5006. {
  5007. if (rq->online) {
  5008. const struct sched_class *class;
  5009. for_each_class(class) {
  5010. if (class->rq_offline)
  5011. class->rq_offline(rq);
  5012. }
  5013. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  5014. rq->online = 0;
  5015. }
  5016. }
  5017. /*
  5018. * migration_call - callback that gets triggered when a CPU is added.
  5019. * Here we can start up the necessary migration thread for the new CPU.
  5020. */
  5021. static int __cpuinit
  5022. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  5023. {
  5024. struct task_struct *p;
  5025. int cpu = (long)hcpu;
  5026. unsigned long flags;
  5027. struct rq *rq;
  5028. switch (action) {
  5029. case CPU_UP_PREPARE:
  5030. case CPU_UP_PREPARE_FROZEN:
  5031. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  5032. if (IS_ERR(p))
  5033. return NOTIFY_BAD;
  5034. kthread_bind(p, cpu);
  5035. /* Must be high prio: stop_machine expects to yield to it. */
  5036. rq = task_rq_lock(p, &flags);
  5037. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  5038. task_rq_unlock(rq, &flags);
  5039. get_task_struct(p);
  5040. cpu_rq(cpu)->migration_thread = p;
  5041. rq->calc_load_update = calc_load_update;
  5042. break;
  5043. case CPU_ONLINE:
  5044. case CPU_ONLINE_FROZEN:
  5045. /* Strictly unnecessary, as first user will wake it. */
  5046. wake_up_process(cpu_rq(cpu)->migration_thread);
  5047. /* Update our root-domain */
  5048. rq = cpu_rq(cpu);
  5049. raw_spin_lock_irqsave(&rq->lock, flags);
  5050. if (rq->rd) {
  5051. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5052. set_rq_online(rq);
  5053. }
  5054. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5055. break;
  5056. #ifdef CONFIG_HOTPLUG_CPU
  5057. case CPU_UP_CANCELED:
  5058. case CPU_UP_CANCELED_FROZEN:
  5059. if (!cpu_rq(cpu)->migration_thread)
  5060. break;
  5061. /* Unbind it from offline cpu so it can run. Fall thru. */
  5062. kthread_bind(cpu_rq(cpu)->migration_thread,
  5063. cpumask_any(cpu_online_mask));
  5064. kthread_stop(cpu_rq(cpu)->migration_thread);
  5065. put_task_struct(cpu_rq(cpu)->migration_thread);
  5066. cpu_rq(cpu)->migration_thread = NULL;
  5067. break;
  5068. case CPU_DEAD:
  5069. case CPU_DEAD_FROZEN:
  5070. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  5071. migrate_live_tasks(cpu);
  5072. rq = cpu_rq(cpu);
  5073. kthread_stop(rq->migration_thread);
  5074. put_task_struct(rq->migration_thread);
  5075. rq->migration_thread = NULL;
  5076. /* Idle task back to normal (off runqueue, low prio) */
  5077. raw_spin_lock_irq(&rq->lock);
  5078. update_rq_clock(rq);
  5079. deactivate_task(rq, rq->idle, 0);
  5080. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5081. rq->idle->sched_class = &idle_sched_class;
  5082. migrate_dead_tasks(cpu);
  5083. raw_spin_unlock_irq(&rq->lock);
  5084. cpuset_unlock();
  5085. migrate_nr_uninterruptible(rq);
  5086. BUG_ON(rq->nr_running != 0);
  5087. calc_global_load_remove(rq);
  5088. /*
  5089. * No need to migrate the tasks: it was best-effort if
  5090. * they didn't take sched_hotcpu_mutex. Just wake up
  5091. * the requestors.
  5092. */
  5093. raw_spin_lock_irq(&rq->lock);
  5094. while (!list_empty(&rq->migration_queue)) {
  5095. struct migration_req *req;
  5096. req = list_entry(rq->migration_queue.next,
  5097. struct migration_req, list);
  5098. list_del_init(&req->list);
  5099. raw_spin_unlock_irq(&rq->lock);
  5100. complete(&req->done);
  5101. raw_spin_lock_irq(&rq->lock);
  5102. }
  5103. raw_spin_unlock_irq(&rq->lock);
  5104. break;
  5105. case CPU_DYING:
  5106. case CPU_DYING_FROZEN:
  5107. /* Update our root-domain */
  5108. rq = cpu_rq(cpu);
  5109. raw_spin_lock_irqsave(&rq->lock, flags);
  5110. if (rq->rd) {
  5111. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5112. set_rq_offline(rq);
  5113. }
  5114. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5115. break;
  5116. #endif
  5117. }
  5118. return NOTIFY_OK;
  5119. }
  5120. /*
  5121. * Register at high priority so that task migration (migrate_all_tasks)
  5122. * happens before everything else. This has to be lower priority than
  5123. * the notifier in the perf_event subsystem, though.
  5124. */
  5125. static struct notifier_block __cpuinitdata migration_notifier = {
  5126. .notifier_call = migration_call,
  5127. .priority = 10
  5128. };
  5129. static int __init migration_init(void)
  5130. {
  5131. void *cpu = (void *)(long)smp_processor_id();
  5132. int err;
  5133. /* Start one for the boot CPU: */
  5134. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5135. BUG_ON(err == NOTIFY_BAD);
  5136. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5137. register_cpu_notifier(&migration_notifier);
  5138. return 0;
  5139. }
  5140. early_initcall(migration_init);
  5141. #endif
  5142. #ifdef CONFIG_SMP
  5143. #ifdef CONFIG_SCHED_DEBUG
  5144. static __read_mostly int sched_domain_debug_enabled;
  5145. static int __init sched_domain_debug_setup(char *str)
  5146. {
  5147. sched_domain_debug_enabled = 1;
  5148. return 0;
  5149. }
  5150. early_param("sched_debug", sched_domain_debug_setup);
  5151. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5152. struct cpumask *groupmask)
  5153. {
  5154. struct sched_group *group = sd->groups;
  5155. char str[256];
  5156. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5157. cpumask_clear(groupmask);
  5158. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5159. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5160. printk("does not load-balance\n");
  5161. if (sd->parent)
  5162. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5163. " has parent");
  5164. return -1;
  5165. }
  5166. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5167. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5168. printk(KERN_ERR "ERROR: domain->span does not contain "
  5169. "CPU%d\n", cpu);
  5170. }
  5171. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5172. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5173. " CPU%d\n", cpu);
  5174. }
  5175. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5176. do {
  5177. if (!group) {
  5178. printk("\n");
  5179. printk(KERN_ERR "ERROR: group is NULL\n");
  5180. break;
  5181. }
  5182. if (!group->cpu_power) {
  5183. printk(KERN_CONT "\n");
  5184. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5185. "set\n");
  5186. break;
  5187. }
  5188. if (!cpumask_weight(sched_group_cpus(group))) {
  5189. printk(KERN_CONT "\n");
  5190. printk(KERN_ERR "ERROR: empty group\n");
  5191. break;
  5192. }
  5193. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5194. printk(KERN_CONT "\n");
  5195. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5196. break;
  5197. }
  5198. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5199. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5200. printk(KERN_CONT " %s", str);
  5201. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5202. printk(KERN_CONT " (cpu_power = %d)",
  5203. group->cpu_power);
  5204. }
  5205. group = group->next;
  5206. } while (group != sd->groups);
  5207. printk(KERN_CONT "\n");
  5208. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5209. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5210. if (sd->parent &&
  5211. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5212. printk(KERN_ERR "ERROR: parent span is not a superset "
  5213. "of domain->span\n");
  5214. return 0;
  5215. }
  5216. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5217. {
  5218. cpumask_var_t groupmask;
  5219. int level = 0;
  5220. if (!sched_domain_debug_enabled)
  5221. return;
  5222. if (!sd) {
  5223. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5224. return;
  5225. }
  5226. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5227. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5228. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5229. return;
  5230. }
  5231. for (;;) {
  5232. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5233. break;
  5234. level++;
  5235. sd = sd->parent;
  5236. if (!sd)
  5237. break;
  5238. }
  5239. free_cpumask_var(groupmask);
  5240. }
  5241. #else /* !CONFIG_SCHED_DEBUG */
  5242. # define sched_domain_debug(sd, cpu) do { } while (0)
  5243. #endif /* CONFIG_SCHED_DEBUG */
  5244. static int sd_degenerate(struct sched_domain *sd)
  5245. {
  5246. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5247. return 1;
  5248. /* Following flags need at least 2 groups */
  5249. if (sd->flags & (SD_LOAD_BALANCE |
  5250. SD_BALANCE_NEWIDLE |
  5251. SD_BALANCE_FORK |
  5252. SD_BALANCE_EXEC |
  5253. SD_SHARE_CPUPOWER |
  5254. SD_SHARE_PKG_RESOURCES)) {
  5255. if (sd->groups != sd->groups->next)
  5256. return 0;
  5257. }
  5258. /* Following flags don't use groups */
  5259. if (sd->flags & (SD_WAKE_AFFINE))
  5260. return 0;
  5261. return 1;
  5262. }
  5263. static int
  5264. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5265. {
  5266. unsigned long cflags = sd->flags, pflags = parent->flags;
  5267. if (sd_degenerate(parent))
  5268. return 1;
  5269. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5270. return 0;
  5271. /* Flags needing groups don't count if only 1 group in parent */
  5272. if (parent->groups == parent->groups->next) {
  5273. pflags &= ~(SD_LOAD_BALANCE |
  5274. SD_BALANCE_NEWIDLE |
  5275. SD_BALANCE_FORK |
  5276. SD_BALANCE_EXEC |
  5277. SD_SHARE_CPUPOWER |
  5278. SD_SHARE_PKG_RESOURCES);
  5279. if (nr_node_ids == 1)
  5280. pflags &= ~SD_SERIALIZE;
  5281. }
  5282. if (~cflags & pflags)
  5283. return 0;
  5284. return 1;
  5285. }
  5286. static void free_rootdomain(struct root_domain *rd)
  5287. {
  5288. synchronize_sched();
  5289. cpupri_cleanup(&rd->cpupri);
  5290. free_cpumask_var(rd->rto_mask);
  5291. free_cpumask_var(rd->online);
  5292. free_cpumask_var(rd->span);
  5293. kfree(rd);
  5294. }
  5295. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5296. {
  5297. struct root_domain *old_rd = NULL;
  5298. unsigned long flags;
  5299. raw_spin_lock_irqsave(&rq->lock, flags);
  5300. if (rq->rd) {
  5301. old_rd = rq->rd;
  5302. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5303. set_rq_offline(rq);
  5304. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5305. /*
  5306. * If we dont want to free the old_rt yet then
  5307. * set old_rd to NULL to skip the freeing later
  5308. * in this function:
  5309. */
  5310. if (!atomic_dec_and_test(&old_rd->refcount))
  5311. old_rd = NULL;
  5312. }
  5313. atomic_inc(&rd->refcount);
  5314. rq->rd = rd;
  5315. cpumask_set_cpu(rq->cpu, rd->span);
  5316. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5317. set_rq_online(rq);
  5318. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5319. if (old_rd)
  5320. free_rootdomain(old_rd);
  5321. }
  5322. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5323. {
  5324. gfp_t gfp = GFP_KERNEL;
  5325. memset(rd, 0, sizeof(*rd));
  5326. if (bootmem)
  5327. gfp = GFP_NOWAIT;
  5328. if (!alloc_cpumask_var(&rd->span, gfp))
  5329. goto out;
  5330. if (!alloc_cpumask_var(&rd->online, gfp))
  5331. goto free_span;
  5332. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5333. goto free_online;
  5334. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5335. goto free_rto_mask;
  5336. return 0;
  5337. free_rto_mask:
  5338. free_cpumask_var(rd->rto_mask);
  5339. free_online:
  5340. free_cpumask_var(rd->online);
  5341. free_span:
  5342. free_cpumask_var(rd->span);
  5343. out:
  5344. return -ENOMEM;
  5345. }
  5346. static void init_defrootdomain(void)
  5347. {
  5348. init_rootdomain(&def_root_domain, true);
  5349. atomic_set(&def_root_domain.refcount, 1);
  5350. }
  5351. static struct root_domain *alloc_rootdomain(void)
  5352. {
  5353. struct root_domain *rd;
  5354. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5355. if (!rd)
  5356. return NULL;
  5357. if (init_rootdomain(rd, false) != 0) {
  5358. kfree(rd);
  5359. return NULL;
  5360. }
  5361. return rd;
  5362. }
  5363. /*
  5364. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5365. * hold the hotplug lock.
  5366. */
  5367. static void
  5368. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5369. {
  5370. struct rq *rq = cpu_rq(cpu);
  5371. struct sched_domain *tmp;
  5372. /* Remove the sched domains which do not contribute to scheduling. */
  5373. for (tmp = sd; tmp; ) {
  5374. struct sched_domain *parent = tmp->parent;
  5375. if (!parent)
  5376. break;
  5377. if (sd_parent_degenerate(tmp, parent)) {
  5378. tmp->parent = parent->parent;
  5379. if (parent->parent)
  5380. parent->parent->child = tmp;
  5381. } else
  5382. tmp = tmp->parent;
  5383. }
  5384. if (sd && sd_degenerate(sd)) {
  5385. sd = sd->parent;
  5386. if (sd)
  5387. sd->child = NULL;
  5388. }
  5389. sched_domain_debug(sd, cpu);
  5390. rq_attach_root(rq, rd);
  5391. rcu_assign_pointer(rq->sd, sd);
  5392. }
  5393. /* cpus with isolated domains */
  5394. static cpumask_var_t cpu_isolated_map;
  5395. /* Setup the mask of cpus configured for isolated domains */
  5396. static int __init isolated_cpu_setup(char *str)
  5397. {
  5398. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5399. cpulist_parse(str, cpu_isolated_map);
  5400. return 1;
  5401. }
  5402. __setup("isolcpus=", isolated_cpu_setup);
  5403. /*
  5404. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5405. * to a function which identifies what group(along with sched group) a CPU
  5406. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5407. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5408. *
  5409. * init_sched_build_groups will build a circular linked list of the groups
  5410. * covered by the given span, and will set each group's ->cpumask correctly,
  5411. * and ->cpu_power to 0.
  5412. */
  5413. static void
  5414. init_sched_build_groups(const struct cpumask *span,
  5415. const struct cpumask *cpu_map,
  5416. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5417. struct sched_group **sg,
  5418. struct cpumask *tmpmask),
  5419. struct cpumask *covered, struct cpumask *tmpmask)
  5420. {
  5421. struct sched_group *first = NULL, *last = NULL;
  5422. int i;
  5423. cpumask_clear(covered);
  5424. for_each_cpu(i, span) {
  5425. struct sched_group *sg;
  5426. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5427. int j;
  5428. if (cpumask_test_cpu(i, covered))
  5429. continue;
  5430. cpumask_clear(sched_group_cpus(sg));
  5431. sg->cpu_power = 0;
  5432. for_each_cpu(j, span) {
  5433. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5434. continue;
  5435. cpumask_set_cpu(j, covered);
  5436. cpumask_set_cpu(j, sched_group_cpus(sg));
  5437. }
  5438. if (!first)
  5439. first = sg;
  5440. if (last)
  5441. last->next = sg;
  5442. last = sg;
  5443. }
  5444. last->next = first;
  5445. }
  5446. #define SD_NODES_PER_DOMAIN 16
  5447. #ifdef CONFIG_NUMA
  5448. /**
  5449. * find_next_best_node - find the next node to include in a sched_domain
  5450. * @node: node whose sched_domain we're building
  5451. * @used_nodes: nodes already in the sched_domain
  5452. *
  5453. * Find the next node to include in a given scheduling domain. Simply
  5454. * finds the closest node not already in the @used_nodes map.
  5455. *
  5456. * Should use nodemask_t.
  5457. */
  5458. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5459. {
  5460. int i, n, val, min_val, best_node = 0;
  5461. min_val = INT_MAX;
  5462. for (i = 0; i < nr_node_ids; i++) {
  5463. /* Start at @node */
  5464. n = (node + i) % nr_node_ids;
  5465. if (!nr_cpus_node(n))
  5466. continue;
  5467. /* Skip already used nodes */
  5468. if (node_isset(n, *used_nodes))
  5469. continue;
  5470. /* Simple min distance search */
  5471. val = node_distance(node, n);
  5472. if (val < min_val) {
  5473. min_val = val;
  5474. best_node = n;
  5475. }
  5476. }
  5477. node_set(best_node, *used_nodes);
  5478. return best_node;
  5479. }
  5480. /**
  5481. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5482. * @node: node whose cpumask we're constructing
  5483. * @span: resulting cpumask
  5484. *
  5485. * Given a node, construct a good cpumask for its sched_domain to span. It
  5486. * should be one that prevents unnecessary balancing, but also spreads tasks
  5487. * out optimally.
  5488. */
  5489. static void sched_domain_node_span(int node, struct cpumask *span)
  5490. {
  5491. nodemask_t used_nodes;
  5492. int i;
  5493. cpumask_clear(span);
  5494. nodes_clear(used_nodes);
  5495. cpumask_or(span, span, cpumask_of_node(node));
  5496. node_set(node, used_nodes);
  5497. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5498. int next_node = find_next_best_node(node, &used_nodes);
  5499. cpumask_or(span, span, cpumask_of_node(next_node));
  5500. }
  5501. }
  5502. #endif /* CONFIG_NUMA */
  5503. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5504. /*
  5505. * The cpus mask in sched_group and sched_domain hangs off the end.
  5506. *
  5507. * ( See the the comments in include/linux/sched.h:struct sched_group
  5508. * and struct sched_domain. )
  5509. */
  5510. struct static_sched_group {
  5511. struct sched_group sg;
  5512. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5513. };
  5514. struct static_sched_domain {
  5515. struct sched_domain sd;
  5516. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5517. };
  5518. struct s_data {
  5519. #ifdef CONFIG_NUMA
  5520. int sd_allnodes;
  5521. cpumask_var_t domainspan;
  5522. cpumask_var_t covered;
  5523. cpumask_var_t notcovered;
  5524. #endif
  5525. cpumask_var_t nodemask;
  5526. cpumask_var_t this_sibling_map;
  5527. cpumask_var_t this_core_map;
  5528. cpumask_var_t send_covered;
  5529. cpumask_var_t tmpmask;
  5530. struct sched_group **sched_group_nodes;
  5531. struct root_domain *rd;
  5532. };
  5533. enum s_alloc {
  5534. sa_sched_groups = 0,
  5535. sa_rootdomain,
  5536. sa_tmpmask,
  5537. sa_send_covered,
  5538. sa_this_core_map,
  5539. sa_this_sibling_map,
  5540. sa_nodemask,
  5541. sa_sched_group_nodes,
  5542. #ifdef CONFIG_NUMA
  5543. sa_notcovered,
  5544. sa_covered,
  5545. sa_domainspan,
  5546. #endif
  5547. sa_none,
  5548. };
  5549. /*
  5550. * SMT sched-domains:
  5551. */
  5552. #ifdef CONFIG_SCHED_SMT
  5553. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5554. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5555. static int
  5556. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5557. struct sched_group **sg, struct cpumask *unused)
  5558. {
  5559. if (sg)
  5560. *sg = &per_cpu(sched_groups, cpu).sg;
  5561. return cpu;
  5562. }
  5563. #endif /* CONFIG_SCHED_SMT */
  5564. /*
  5565. * multi-core sched-domains:
  5566. */
  5567. #ifdef CONFIG_SCHED_MC
  5568. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5569. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5570. #endif /* CONFIG_SCHED_MC */
  5571. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5572. static int
  5573. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5574. struct sched_group **sg, struct cpumask *mask)
  5575. {
  5576. int group;
  5577. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5578. group = cpumask_first(mask);
  5579. if (sg)
  5580. *sg = &per_cpu(sched_group_core, group).sg;
  5581. return group;
  5582. }
  5583. #elif defined(CONFIG_SCHED_MC)
  5584. static int
  5585. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5586. struct sched_group **sg, struct cpumask *unused)
  5587. {
  5588. if (sg)
  5589. *sg = &per_cpu(sched_group_core, cpu).sg;
  5590. return cpu;
  5591. }
  5592. #endif
  5593. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5594. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5595. static int
  5596. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5597. struct sched_group **sg, struct cpumask *mask)
  5598. {
  5599. int group;
  5600. #ifdef CONFIG_SCHED_MC
  5601. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5602. group = cpumask_first(mask);
  5603. #elif defined(CONFIG_SCHED_SMT)
  5604. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5605. group = cpumask_first(mask);
  5606. #else
  5607. group = cpu;
  5608. #endif
  5609. if (sg)
  5610. *sg = &per_cpu(sched_group_phys, group).sg;
  5611. return group;
  5612. }
  5613. #ifdef CONFIG_NUMA
  5614. /*
  5615. * The init_sched_build_groups can't handle what we want to do with node
  5616. * groups, so roll our own. Now each node has its own list of groups which
  5617. * gets dynamically allocated.
  5618. */
  5619. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5620. static struct sched_group ***sched_group_nodes_bycpu;
  5621. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5622. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5623. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5624. struct sched_group **sg,
  5625. struct cpumask *nodemask)
  5626. {
  5627. int group;
  5628. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5629. group = cpumask_first(nodemask);
  5630. if (sg)
  5631. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5632. return group;
  5633. }
  5634. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5635. {
  5636. struct sched_group *sg = group_head;
  5637. int j;
  5638. if (!sg)
  5639. return;
  5640. do {
  5641. for_each_cpu(j, sched_group_cpus(sg)) {
  5642. struct sched_domain *sd;
  5643. sd = &per_cpu(phys_domains, j).sd;
  5644. if (j != group_first_cpu(sd->groups)) {
  5645. /*
  5646. * Only add "power" once for each
  5647. * physical package.
  5648. */
  5649. continue;
  5650. }
  5651. sg->cpu_power += sd->groups->cpu_power;
  5652. }
  5653. sg = sg->next;
  5654. } while (sg != group_head);
  5655. }
  5656. static int build_numa_sched_groups(struct s_data *d,
  5657. const struct cpumask *cpu_map, int num)
  5658. {
  5659. struct sched_domain *sd;
  5660. struct sched_group *sg, *prev;
  5661. int n, j;
  5662. cpumask_clear(d->covered);
  5663. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5664. if (cpumask_empty(d->nodemask)) {
  5665. d->sched_group_nodes[num] = NULL;
  5666. goto out;
  5667. }
  5668. sched_domain_node_span(num, d->domainspan);
  5669. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5670. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5671. GFP_KERNEL, num);
  5672. if (!sg) {
  5673. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5674. num);
  5675. return -ENOMEM;
  5676. }
  5677. d->sched_group_nodes[num] = sg;
  5678. for_each_cpu(j, d->nodemask) {
  5679. sd = &per_cpu(node_domains, j).sd;
  5680. sd->groups = sg;
  5681. }
  5682. sg->cpu_power = 0;
  5683. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5684. sg->next = sg;
  5685. cpumask_or(d->covered, d->covered, d->nodemask);
  5686. prev = sg;
  5687. for (j = 0; j < nr_node_ids; j++) {
  5688. n = (num + j) % nr_node_ids;
  5689. cpumask_complement(d->notcovered, d->covered);
  5690. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5691. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5692. if (cpumask_empty(d->tmpmask))
  5693. break;
  5694. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5695. if (cpumask_empty(d->tmpmask))
  5696. continue;
  5697. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5698. GFP_KERNEL, num);
  5699. if (!sg) {
  5700. printk(KERN_WARNING
  5701. "Can not alloc domain group for node %d\n", j);
  5702. return -ENOMEM;
  5703. }
  5704. sg->cpu_power = 0;
  5705. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5706. sg->next = prev->next;
  5707. cpumask_or(d->covered, d->covered, d->tmpmask);
  5708. prev->next = sg;
  5709. prev = sg;
  5710. }
  5711. out:
  5712. return 0;
  5713. }
  5714. #endif /* CONFIG_NUMA */
  5715. #ifdef CONFIG_NUMA
  5716. /* Free memory allocated for various sched_group structures */
  5717. static void free_sched_groups(const struct cpumask *cpu_map,
  5718. struct cpumask *nodemask)
  5719. {
  5720. int cpu, i;
  5721. for_each_cpu(cpu, cpu_map) {
  5722. struct sched_group **sched_group_nodes
  5723. = sched_group_nodes_bycpu[cpu];
  5724. if (!sched_group_nodes)
  5725. continue;
  5726. for (i = 0; i < nr_node_ids; i++) {
  5727. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5728. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5729. if (cpumask_empty(nodemask))
  5730. continue;
  5731. if (sg == NULL)
  5732. continue;
  5733. sg = sg->next;
  5734. next_sg:
  5735. oldsg = sg;
  5736. sg = sg->next;
  5737. kfree(oldsg);
  5738. if (oldsg != sched_group_nodes[i])
  5739. goto next_sg;
  5740. }
  5741. kfree(sched_group_nodes);
  5742. sched_group_nodes_bycpu[cpu] = NULL;
  5743. }
  5744. }
  5745. #else /* !CONFIG_NUMA */
  5746. static void free_sched_groups(const struct cpumask *cpu_map,
  5747. struct cpumask *nodemask)
  5748. {
  5749. }
  5750. #endif /* CONFIG_NUMA */
  5751. /*
  5752. * Initialize sched groups cpu_power.
  5753. *
  5754. * cpu_power indicates the capacity of sched group, which is used while
  5755. * distributing the load between different sched groups in a sched domain.
  5756. * Typically cpu_power for all the groups in a sched domain will be same unless
  5757. * there are asymmetries in the topology. If there are asymmetries, group
  5758. * having more cpu_power will pickup more load compared to the group having
  5759. * less cpu_power.
  5760. */
  5761. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5762. {
  5763. struct sched_domain *child;
  5764. struct sched_group *group;
  5765. long power;
  5766. int weight;
  5767. WARN_ON(!sd || !sd->groups);
  5768. if (cpu != group_first_cpu(sd->groups))
  5769. return;
  5770. child = sd->child;
  5771. sd->groups->cpu_power = 0;
  5772. if (!child) {
  5773. power = SCHED_LOAD_SCALE;
  5774. weight = cpumask_weight(sched_domain_span(sd));
  5775. /*
  5776. * SMT siblings share the power of a single core.
  5777. * Usually multiple threads get a better yield out of
  5778. * that one core than a single thread would have,
  5779. * reflect that in sd->smt_gain.
  5780. */
  5781. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5782. power *= sd->smt_gain;
  5783. power /= weight;
  5784. power >>= SCHED_LOAD_SHIFT;
  5785. }
  5786. sd->groups->cpu_power += power;
  5787. return;
  5788. }
  5789. /*
  5790. * Add cpu_power of each child group to this groups cpu_power.
  5791. */
  5792. group = child->groups;
  5793. do {
  5794. sd->groups->cpu_power += group->cpu_power;
  5795. group = group->next;
  5796. } while (group != child->groups);
  5797. }
  5798. /*
  5799. * Initializers for schedule domains
  5800. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5801. */
  5802. #ifdef CONFIG_SCHED_DEBUG
  5803. # define SD_INIT_NAME(sd, type) sd->name = #type
  5804. #else
  5805. # define SD_INIT_NAME(sd, type) do { } while (0)
  5806. #endif
  5807. #define SD_INIT(sd, type) sd_init_##type(sd)
  5808. #define SD_INIT_FUNC(type) \
  5809. static noinline void sd_init_##type(struct sched_domain *sd) \
  5810. { \
  5811. memset(sd, 0, sizeof(*sd)); \
  5812. *sd = SD_##type##_INIT; \
  5813. sd->level = SD_LV_##type; \
  5814. SD_INIT_NAME(sd, type); \
  5815. }
  5816. SD_INIT_FUNC(CPU)
  5817. #ifdef CONFIG_NUMA
  5818. SD_INIT_FUNC(ALLNODES)
  5819. SD_INIT_FUNC(NODE)
  5820. #endif
  5821. #ifdef CONFIG_SCHED_SMT
  5822. SD_INIT_FUNC(SIBLING)
  5823. #endif
  5824. #ifdef CONFIG_SCHED_MC
  5825. SD_INIT_FUNC(MC)
  5826. #endif
  5827. static int default_relax_domain_level = -1;
  5828. static int __init setup_relax_domain_level(char *str)
  5829. {
  5830. unsigned long val;
  5831. val = simple_strtoul(str, NULL, 0);
  5832. if (val < SD_LV_MAX)
  5833. default_relax_domain_level = val;
  5834. return 1;
  5835. }
  5836. __setup("relax_domain_level=", setup_relax_domain_level);
  5837. static void set_domain_attribute(struct sched_domain *sd,
  5838. struct sched_domain_attr *attr)
  5839. {
  5840. int request;
  5841. if (!attr || attr->relax_domain_level < 0) {
  5842. if (default_relax_domain_level < 0)
  5843. return;
  5844. else
  5845. request = default_relax_domain_level;
  5846. } else
  5847. request = attr->relax_domain_level;
  5848. if (request < sd->level) {
  5849. /* turn off idle balance on this domain */
  5850. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5851. } else {
  5852. /* turn on idle balance on this domain */
  5853. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5854. }
  5855. }
  5856. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5857. const struct cpumask *cpu_map)
  5858. {
  5859. switch (what) {
  5860. case sa_sched_groups:
  5861. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5862. d->sched_group_nodes = NULL;
  5863. case sa_rootdomain:
  5864. free_rootdomain(d->rd); /* fall through */
  5865. case sa_tmpmask:
  5866. free_cpumask_var(d->tmpmask); /* fall through */
  5867. case sa_send_covered:
  5868. free_cpumask_var(d->send_covered); /* fall through */
  5869. case sa_this_core_map:
  5870. free_cpumask_var(d->this_core_map); /* fall through */
  5871. case sa_this_sibling_map:
  5872. free_cpumask_var(d->this_sibling_map); /* fall through */
  5873. case sa_nodemask:
  5874. free_cpumask_var(d->nodemask); /* fall through */
  5875. case sa_sched_group_nodes:
  5876. #ifdef CONFIG_NUMA
  5877. kfree(d->sched_group_nodes); /* fall through */
  5878. case sa_notcovered:
  5879. free_cpumask_var(d->notcovered); /* fall through */
  5880. case sa_covered:
  5881. free_cpumask_var(d->covered); /* fall through */
  5882. case sa_domainspan:
  5883. free_cpumask_var(d->domainspan); /* fall through */
  5884. #endif
  5885. case sa_none:
  5886. break;
  5887. }
  5888. }
  5889. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5890. const struct cpumask *cpu_map)
  5891. {
  5892. #ifdef CONFIG_NUMA
  5893. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5894. return sa_none;
  5895. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5896. return sa_domainspan;
  5897. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5898. return sa_covered;
  5899. /* Allocate the per-node list of sched groups */
  5900. d->sched_group_nodes = kcalloc(nr_node_ids,
  5901. sizeof(struct sched_group *), GFP_KERNEL);
  5902. if (!d->sched_group_nodes) {
  5903. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5904. return sa_notcovered;
  5905. }
  5906. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5907. #endif
  5908. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5909. return sa_sched_group_nodes;
  5910. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5911. return sa_nodemask;
  5912. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5913. return sa_this_sibling_map;
  5914. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5915. return sa_this_core_map;
  5916. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5917. return sa_send_covered;
  5918. d->rd = alloc_rootdomain();
  5919. if (!d->rd) {
  5920. printk(KERN_WARNING "Cannot alloc root domain\n");
  5921. return sa_tmpmask;
  5922. }
  5923. return sa_rootdomain;
  5924. }
  5925. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5926. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5927. {
  5928. struct sched_domain *sd = NULL;
  5929. #ifdef CONFIG_NUMA
  5930. struct sched_domain *parent;
  5931. d->sd_allnodes = 0;
  5932. if (cpumask_weight(cpu_map) >
  5933. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5934. sd = &per_cpu(allnodes_domains, i).sd;
  5935. SD_INIT(sd, ALLNODES);
  5936. set_domain_attribute(sd, attr);
  5937. cpumask_copy(sched_domain_span(sd), cpu_map);
  5938. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5939. d->sd_allnodes = 1;
  5940. }
  5941. parent = sd;
  5942. sd = &per_cpu(node_domains, i).sd;
  5943. SD_INIT(sd, NODE);
  5944. set_domain_attribute(sd, attr);
  5945. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5946. sd->parent = parent;
  5947. if (parent)
  5948. parent->child = sd;
  5949. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5950. #endif
  5951. return sd;
  5952. }
  5953. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5954. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5955. struct sched_domain *parent, int i)
  5956. {
  5957. struct sched_domain *sd;
  5958. sd = &per_cpu(phys_domains, i).sd;
  5959. SD_INIT(sd, CPU);
  5960. set_domain_attribute(sd, attr);
  5961. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5962. sd->parent = parent;
  5963. if (parent)
  5964. parent->child = sd;
  5965. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5966. return sd;
  5967. }
  5968. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5969. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5970. struct sched_domain *parent, int i)
  5971. {
  5972. struct sched_domain *sd = parent;
  5973. #ifdef CONFIG_SCHED_MC
  5974. sd = &per_cpu(core_domains, i).sd;
  5975. SD_INIT(sd, MC);
  5976. set_domain_attribute(sd, attr);
  5977. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5978. sd->parent = parent;
  5979. parent->child = sd;
  5980. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5981. #endif
  5982. return sd;
  5983. }
  5984. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5985. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5986. struct sched_domain *parent, int i)
  5987. {
  5988. struct sched_domain *sd = parent;
  5989. #ifdef CONFIG_SCHED_SMT
  5990. sd = &per_cpu(cpu_domains, i).sd;
  5991. SD_INIT(sd, SIBLING);
  5992. set_domain_attribute(sd, attr);
  5993. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5994. sd->parent = parent;
  5995. parent->child = sd;
  5996. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5997. #endif
  5998. return sd;
  5999. }
  6000. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  6001. const struct cpumask *cpu_map, int cpu)
  6002. {
  6003. switch (l) {
  6004. #ifdef CONFIG_SCHED_SMT
  6005. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  6006. cpumask_and(d->this_sibling_map, cpu_map,
  6007. topology_thread_cpumask(cpu));
  6008. if (cpu == cpumask_first(d->this_sibling_map))
  6009. init_sched_build_groups(d->this_sibling_map, cpu_map,
  6010. &cpu_to_cpu_group,
  6011. d->send_covered, d->tmpmask);
  6012. break;
  6013. #endif
  6014. #ifdef CONFIG_SCHED_MC
  6015. case SD_LV_MC: /* set up multi-core groups */
  6016. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  6017. if (cpu == cpumask_first(d->this_core_map))
  6018. init_sched_build_groups(d->this_core_map, cpu_map,
  6019. &cpu_to_core_group,
  6020. d->send_covered, d->tmpmask);
  6021. break;
  6022. #endif
  6023. case SD_LV_CPU: /* set up physical groups */
  6024. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  6025. if (!cpumask_empty(d->nodemask))
  6026. init_sched_build_groups(d->nodemask, cpu_map,
  6027. &cpu_to_phys_group,
  6028. d->send_covered, d->tmpmask);
  6029. break;
  6030. #ifdef CONFIG_NUMA
  6031. case SD_LV_ALLNODES:
  6032. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  6033. d->send_covered, d->tmpmask);
  6034. break;
  6035. #endif
  6036. default:
  6037. break;
  6038. }
  6039. }
  6040. /*
  6041. * Build sched domains for a given set of cpus and attach the sched domains
  6042. * to the individual cpus
  6043. */
  6044. static int __build_sched_domains(const struct cpumask *cpu_map,
  6045. struct sched_domain_attr *attr)
  6046. {
  6047. enum s_alloc alloc_state = sa_none;
  6048. struct s_data d;
  6049. struct sched_domain *sd;
  6050. int i;
  6051. #ifdef CONFIG_NUMA
  6052. d.sd_allnodes = 0;
  6053. #endif
  6054. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6055. if (alloc_state != sa_rootdomain)
  6056. goto error;
  6057. alloc_state = sa_sched_groups;
  6058. /*
  6059. * Set up domains for cpus specified by the cpu_map.
  6060. */
  6061. for_each_cpu(i, cpu_map) {
  6062. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6063. cpu_map);
  6064. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6065. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6066. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6067. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6068. }
  6069. for_each_cpu(i, cpu_map) {
  6070. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6071. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6072. }
  6073. /* Set up physical groups */
  6074. for (i = 0; i < nr_node_ids; i++)
  6075. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6076. #ifdef CONFIG_NUMA
  6077. /* Set up node groups */
  6078. if (d.sd_allnodes)
  6079. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6080. for (i = 0; i < nr_node_ids; i++)
  6081. if (build_numa_sched_groups(&d, cpu_map, i))
  6082. goto error;
  6083. #endif
  6084. /* Calculate CPU power for physical packages and nodes */
  6085. #ifdef CONFIG_SCHED_SMT
  6086. for_each_cpu(i, cpu_map) {
  6087. sd = &per_cpu(cpu_domains, i).sd;
  6088. init_sched_groups_power(i, sd);
  6089. }
  6090. #endif
  6091. #ifdef CONFIG_SCHED_MC
  6092. for_each_cpu(i, cpu_map) {
  6093. sd = &per_cpu(core_domains, i).sd;
  6094. init_sched_groups_power(i, sd);
  6095. }
  6096. #endif
  6097. for_each_cpu(i, cpu_map) {
  6098. sd = &per_cpu(phys_domains, i).sd;
  6099. init_sched_groups_power(i, sd);
  6100. }
  6101. #ifdef CONFIG_NUMA
  6102. for (i = 0; i < nr_node_ids; i++)
  6103. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6104. if (d.sd_allnodes) {
  6105. struct sched_group *sg;
  6106. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6107. d.tmpmask);
  6108. init_numa_sched_groups_power(sg);
  6109. }
  6110. #endif
  6111. /* Attach the domains */
  6112. for_each_cpu(i, cpu_map) {
  6113. #ifdef CONFIG_SCHED_SMT
  6114. sd = &per_cpu(cpu_domains, i).sd;
  6115. #elif defined(CONFIG_SCHED_MC)
  6116. sd = &per_cpu(core_domains, i).sd;
  6117. #else
  6118. sd = &per_cpu(phys_domains, i).sd;
  6119. #endif
  6120. cpu_attach_domain(sd, d.rd, i);
  6121. }
  6122. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6123. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6124. return 0;
  6125. error:
  6126. __free_domain_allocs(&d, alloc_state, cpu_map);
  6127. return -ENOMEM;
  6128. }
  6129. static int build_sched_domains(const struct cpumask *cpu_map)
  6130. {
  6131. return __build_sched_domains(cpu_map, NULL);
  6132. }
  6133. static cpumask_var_t *doms_cur; /* current sched domains */
  6134. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6135. static struct sched_domain_attr *dattr_cur;
  6136. /* attribues of custom domains in 'doms_cur' */
  6137. /*
  6138. * Special case: If a kmalloc of a doms_cur partition (array of
  6139. * cpumask) fails, then fallback to a single sched domain,
  6140. * as determined by the single cpumask fallback_doms.
  6141. */
  6142. static cpumask_var_t fallback_doms;
  6143. /*
  6144. * arch_update_cpu_topology lets virtualized architectures update the
  6145. * cpu core maps. It is supposed to return 1 if the topology changed
  6146. * or 0 if it stayed the same.
  6147. */
  6148. int __attribute__((weak)) arch_update_cpu_topology(void)
  6149. {
  6150. return 0;
  6151. }
  6152. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6153. {
  6154. int i;
  6155. cpumask_var_t *doms;
  6156. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6157. if (!doms)
  6158. return NULL;
  6159. for (i = 0; i < ndoms; i++) {
  6160. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6161. free_sched_domains(doms, i);
  6162. return NULL;
  6163. }
  6164. }
  6165. return doms;
  6166. }
  6167. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6168. {
  6169. unsigned int i;
  6170. for (i = 0; i < ndoms; i++)
  6171. free_cpumask_var(doms[i]);
  6172. kfree(doms);
  6173. }
  6174. /*
  6175. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6176. * For now this just excludes isolated cpus, but could be used to
  6177. * exclude other special cases in the future.
  6178. */
  6179. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6180. {
  6181. int err;
  6182. arch_update_cpu_topology();
  6183. ndoms_cur = 1;
  6184. doms_cur = alloc_sched_domains(ndoms_cur);
  6185. if (!doms_cur)
  6186. doms_cur = &fallback_doms;
  6187. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6188. dattr_cur = NULL;
  6189. err = build_sched_domains(doms_cur[0]);
  6190. register_sched_domain_sysctl();
  6191. return err;
  6192. }
  6193. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6194. struct cpumask *tmpmask)
  6195. {
  6196. free_sched_groups(cpu_map, tmpmask);
  6197. }
  6198. /*
  6199. * Detach sched domains from a group of cpus specified in cpu_map
  6200. * These cpus will now be attached to the NULL domain
  6201. */
  6202. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6203. {
  6204. /* Save because hotplug lock held. */
  6205. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6206. int i;
  6207. for_each_cpu(i, cpu_map)
  6208. cpu_attach_domain(NULL, &def_root_domain, i);
  6209. synchronize_sched();
  6210. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6211. }
  6212. /* handle null as "default" */
  6213. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6214. struct sched_domain_attr *new, int idx_new)
  6215. {
  6216. struct sched_domain_attr tmp;
  6217. /* fast path */
  6218. if (!new && !cur)
  6219. return 1;
  6220. tmp = SD_ATTR_INIT;
  6221. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6222. new ? (new + idx_new) : &tmp,
  6223. sizeof(struct sched_domain_attr));
  6224. }
  6225. /*
  6226. * Partition sched domains as specified by the 'ndoms_new'
  6227. * cpumasks in the array doms_new[] of cpumasks. This compares
  6228. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6229. * It destroys each deleted domain and builds each new domain.
  6230. *
  6231. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6232. * The masks don't intersect (don't overlap.) We should setup one
  6233. * sched domain for each mask. CPUs not in any of the cpumasks will
  6234. * not be load balanced. If the same cpumask appears both in the
  6235. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6236. * it as it is.
  6237. *
  6238. * The passed in 'doms_new' should be allocated using
  6239. * alloc_sched_domains. This routine takes ownership of it and will
  6240. * free_sched_domains it when done with it. If the caller failed the
  6241. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6242. * and partition_sched_domains() will fallback to the single partition
  6243. * 'fallback_doms', it also forces the domains to be rebuilt.
  6244. *
  6245. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6246. * ndoms_new == 0 is a special case for destroying existing domains,
  6247. * and it will not create the default domain.
  6248. *
  6249. * Call with hotplug lock held
  6250. */
  6251. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6252. struct sched_domain_attr *dattr_new)
  6253. {
  6254. int i, j, n;
  6255. int new_topology;
  6256. mutex_lock(&sched_domains_mutex);
  6257. /* always unregister in case we don't destroy any domains */
  6258. unregister_sched_domain_sysctl();
  6259. /* Let architecture update cpu core mappings. */
  6260. new_topology = arch_update_cpu_topology();
  6261. n = doms_new ? ndoms_new : 0;
  6262. /* Destroy deleted domains */
  6263. for (i = 0; i < ndoms_cur; i++) {
  6264. for (j = 0; j < n && !new_topology; j++) {
  6265. if (cpumask_equal(doms_cur[i], doms_new[j])
  6266. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6267. goto match1;
  6268. }
  6269. /* no match - a current sched domain not in new doms_new[] */
  6270. detach_destroy_domains(doms_cur[i]);
  6271. match1:
  6272. ;
  6273. }
  6274. if (doms_new == NULL) {
  6275. ndoms_cur = 0;
  6276. doms_new = &fallback_doms;
  6277. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6278. WARN_ON_ONCE(dattr_new);
  6279. }
  6280. /* Build new domains */
  6281. for (i = 0; i < ndoms_new; i++) {
  6282. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6283. if (cpumask_equal(doms_new[i], doms_cur[j])
  6284. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6285. goto match2;
  6286. }
  6287. /* no match - add a new doms_new */
  6288. __build_sched_domains(doms_new[i],
  6289. dattr_new ? dattr_new + i : NULL);
  6290. match2:
  6291. ;
  6292. }
  6293. /* Remember the new sched domains */
  6294. if (doms_cur != &fallback_doms)
  6295. free_sched_domains(doms_cur, ndoms_cur);
  6296. kfree(dattr_cur); /* kfree(NULL) is safe */
  6297. doms_cur = doms_new;
  6298. dattr_cur = dattr_new;
  6299. ndoms_cur = ndoms_new;
  6300. register_sched_domain_sysctl();
  6301. mutex_unlock(&sched_domains_mutex);
  6302. }
  6303. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6304. static void arch_reinit_sched_domains(void)
  6305. {
  6306. get_online_cpus();
  6307. /* Destroy domains first to force the rebuild */
  6308. partition_sched_domains(0, NULL, NULL);
  6309. rebuild_sched_domains();
  6310. put_online_cpus();
  6311. }
  6312. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6313. {
  6314. unsigned int level = 0;
  6315. if (sscanf(buf, "%u", &level) != 1)
  6316. return -EINVAL;
  6317. /*
  6318. * level is always be positive so don't check for
  6319. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6320. * What happens on 0 or 1 byte write,
  6321. * need to check for count as well?
  6322. */
  6323. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6324. return -EINVAL;
  6325. if (smt)
  6326. sched_smt_power_savings = level;
  6327. else
  6328. sched_mc_power_savings = level;
  6329. arch_reinit_sched_domains();
  6330. return count;
  6331. }
  6332. #ifdef CONFIG_SCHED_MC
  6333. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6334. struct sysdev_class_attribute *attr,
  6335. char *page)
  6336. {
  6337. return sprintf(page, "%u\n", sched_mc_power_savings);
  6338. }
  6339. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6340. struct sysdev_class_attribute *attr,
  6341. const char *buf, size_t count)
  6342. {
  6343. return sched_power_savings_store(buf, count, 0);
  6344. }
  6345. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6346. sched_mc_power_savings_show,
  6347. sched_mc_power_savings_store);
  6348. #endif
  6349. #ifdef CONFIG_SCHED_SMT
  6350. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6351. struct sysdev_class_attribute *attr,
  6352. char *page)
  6353. {
  6354. return sprintf(page, "%u\n", sched_smt_power_savings);
  6355. }
  6356. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6357. struct sysdev_class_attribute *attr,
  6358. const char *buf, size_t count)
  6359. {
  6360. return sched_power_savings_store(buf, count, 1);
  6361. }
  6362. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6363. sched_smt_power_savings_show,
  6364. sched_smt_power_savings_store);
  6365. #endif
  6366. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6367. {
  6368. int err = 0;
  6369. #ifdef CONFIG_SCHED_SMT
  6370. if (smt_capable())
  6371. err = sysfs_create_file(&cls->kset.kobj,
  6372. &attr_sched_smt_power_savings.attr);
  6373. #endif
  6374. #ifdef CONFIG_SCHED_MC
  6375. if (!err && mc_capable())
  6376. err = sysfs_create_file(&cls->kset.kobj,
  6377. &attr_sched_mc_power_savings.attr);
  6378. #endif
  6379. return err;
  6380. }
  6381. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6382. #ifndef CONFIG_CPUSETS
  6383. /*
  6384. * Add online and remove offline CPUs from the scheduler domains.
  6385. * When cpusets are enabled they take over this function.
  6386. */
  6387. static int update_sched_domains(struct notifier_block *nfb,
  6388. unsigned long action, void *hcpu)
  6389. {
  6390. switch (action) {
  6391. case CPU_ONLINE:
  6392. case CPU_ONLINE_FROZEN:
  6393. case CPU_DOWN_PREPARE:
  6394. case CPU_DOWN_PREPARE_FROZEN:
  6395. case CPU_DOWN_FAILED:
  6396. case CPU_DOWN_FAILED_FROZEN:
  6397. partition_sched_domains(1, NULL, NULL);
  6398. return NOTIFY_OK;
  6399. default:
  6400. return NOTIFY_DONE;
  6401. }
  6402. }
  6403. #endif
  6404. static int update_runtime(struct notifier_block *nfb,
  6405. unsigned long action, void *hcpu)
  6406. {
  6407. int cpu = (int)(long)hcpu;
  6408. switch (action) {
  6409. case CPU_DOWN_PREPARE:
  6410. case CPU_DOWN_PREPARE_FROZEN:
  6411. disable_runtime(cpu_rq(cpu));
  6412. return NOTIFY_OK;
  6413. case CPU_DOWN_FAILED:
  6414. case CPU_DOWN_FAILED_FROZEN:
  6415. case CPU_ONLINE:
  6416. case CPU_ONLINE_FROZEN:
  6417. enable_runtime(cpu_rq(cpu));
  6418. return NOTIFY_OK;
  6419. default:
  6420. return NOTIFY_DONE;
  6421. }
  6422. }
  6423. void __init sched_init_smp(void)
  6424. {
  6425. cpumask_var_t non_isolated_cpus;
  6426. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6427. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6428. #if defined(CONFIG_NUMA)
  6429. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6430. GFP_KERNEL);
  6431. BUG_ON(sched_group_nodes_bycpu == NULL);
  6432. #endif
  6433. get_online_cpus();
  6434. mutex_lock(&sched_domains_mutex);
  6435. arch_init_sched_domains(cpu_active_mask);
  6436. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6437. if (cpumask_empty(non_isolated_cpus))
  6438. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6439. mutex_unlock(&sched_domains_mutex);
  6440. put_online_cpus();
  6441. #ifndef CONFIG_CPUSETS
  6442. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6443. hotcpu_notifier(update_sched_domains, 0);
  6444. #endif
  6445. /* RT runtime code needs to handle some hotplug events */
  6446. hotcpu_notifier(update_runtime, 0);
  6447. init_hrtick();
  6448. /* Move init over to a non-isolated CPU */
  6449. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6450. BUG();
  6451. sched_init_granularity();
  6452. free_cpumask_var(non_isolated_cpus);
  6453. init_sched_rt_class();
  6454. }
  6455. #else
  6456. void __init sched_init_smp(void)
  6457. {
  6458. sched_init_granularity();
  6459. }
  6460. #endif /* CONFIG_SMP */
  6461. const_debug unsigned int sysctl_timer_migration = 1;
  6462. int in_sched_functions(unsigned long addr)
  6463. {
  6464. return in_lock_functions(addr) ||
  6465. (addr >= (unsigned long)__sched_text_start
  6466. && addr < (unsigned long)__sched_text_end);
  6467. }
  6468. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6469. {
  6470. cfs_rq->tasks_timeline = RB_ROOT;
  6471. INIT_LIST_HEAD(&cfs_rq->tasks);
  6472. #ifdef CONFIG_FAIR_GROUP_SCHED
  6473. cfs_rq->rq = rq;
  6474. #endif
  6475. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6476. }
  6477. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6478. {
  6479. struct rt_prio_array *array;
  6480. int i;
  6481. array = &rt_rq->active;
  6482. for (i = 0; i < MAX_RT_PRIO; i++) {
  6483. INIT_LIST_HEAD(array->queue + i);
  6484. __clear_bit(i, array->bitmap);
  6485. }
  6486. /* delimiter for bitsearch: */
  6487. __set_bit(MAX_RT_PRIO, array->bitmap);
  6488. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6489. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6490. #ifdef CONFIG_SMP
  6491. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6492. #endif
  6493. #endif
  6494. #ifdef CONFIG_SMP
  6495. rt_rq->rt_nr_migratory = 0;
  6496. rt_rq->overloaded = 0;
  6497. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6498. #endif
  6499. rt_rq->rt_time = 0;
  6500. rt_rq->rt_throttled = 0;
  6501. rt_rq->rt_runtime = 0;
  6502. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6503. #ifdef CONFIG_RT_GROUP_SCHED
  6504. rt_rq->rt_nr_boosted = 0;
  6505. rt_rq->rq = rq;
  6506. #endif
  6507. }
  6508. #ifdef CONFIG_FAIR_GROUP_SCHED
  6509. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6510. struct sched_entity *se, int cpu, int add,
  6511. struct sched_entity *parent)
  6512. {
  6513. struct rq *rq = cpu_rq(cpu);
  6514. tg->cfs_rq[cpu] = cfs_rq;
  6515. init_cfs_rq(cfs_rq, rq);
  6516. cfs_rq->tg = tg;
  6517. if (add)
  6518. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6519. tg->se[cpu] = se;
  6520. /* se could be NULL for init_task_group */
  6521. if (!se)
  6522. return;
  6523. if (!parent)
  6524. se->cfs_rq = &rq->cfs;
  6525. else
  6526. se->cfs_rq = parent->my_q;
  6527. se->my_q = cfs_rq;
  6528. se->load.weight = tg->shares;
  6529. se->load.inv_weight = 0;
  6530. se->parent = parent;
  6531. }
  6532. #endif
  6533. #ifdef CONFIG_RT_GROUP_SCHED
  6534. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6535. struct sched_rt_entity *rt_se, int cpu, int add,
  6536. struct sched_rt_entity *parent)
  6537. {
  6538. struct rq *rq = cpu_rq(cpu);
  6539. tg->rt_rq[cpu] = rt_rq;
  6540. init_rt_rq(rt_rq, rq);
  6541. rt_rq->tg = tg;
  6542. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6543. if (add)
  6544. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6545. tg->rt_se[cpu] = rt_se;
  6546. if (!rt_se)
  6547. return;
  6548. if (!parent)
  6549. rt_se->rt_rq = &rq->rt;
  6550. else
  6551. rt_se->rt_rq = parent->my_q;
  6552. rt_se->my_q = rt_rq;
  6553. rt_se->parent = parent;
  6554. INIT_LIST_HEAD(&rt_se->run_list);
  6555. }
  6556. #endif
  6557. void __init sched_init(void)
  6558. {
  6559. int i, j;
  6560. unsigned long alloc_size = 0, ptr;
  6561. #ifdef CONFIG_FAIR_GROUP_SCHED
  6562. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6563. #endif
  6564. #ifdef CONFIG_RT_GROUP_SCHED
  6565. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6566. #endif
  6567. #ifdef CONFIG_CPUMASK_OFFSTACK
  6568. alloc_size += num_possible_cpus() * cpumask_size();
  6569. #endif
  6570. if (alloc_size) {
  6571. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6572. #ifdef CONFIG_FAIR_GROUP_SCHED
  6573. init_task_group.se = (struct sched_entity **)ptr;
  6574. ptr += nr_cpu_ids * sizeof(void **);
  6575. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6576. ptr += nr_cpu_ids * sizeof(void **);
  6577. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6578. #ifdef CONFIG_RT_GROUP_SCHED
  6579. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6580. ptr += nr_cpu_ids * sizeof(void **);
  6581. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6582. ptr += nr_cpu_ids * sizeof(void **);
  6583. #endif /* CONFIG_RT_GROUP_SCHED */
  6584. #ifdef CONFIG_CPUMASK_OFFSTACK
  6585. for_each_possible_cpu(i) {
  6586. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6587. ptr += cpumask_size();
  6588. }
  6589. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6590. }
  6591. #ifdef CONFIG_SMP
  6592. init_defrootdomain();
  6593. #endif
  6594. init_rt_bandwidth(&def_rt_bandwidth,
  6595. global_rt_period(), global_rt_runtime());
  6596. #ifdef CONFIG_RT_GROUP_SCHED
  6597. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6598. global_rt_period(), global_rt_runtime());
  6599. #endif /* CONFIG_RT_GROUP_SCHED */
  6600. #ifdef CONFIG_CGROUP_SCHED
  6601. list_add(&init_task_group.list, &task_groups);
  6602. INIT_LIST_HEAD(&init_task_group.children);
  6603. #endif /* CONFIG_CGROUP_SCHED */
  6604. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6605. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6606. __alignof__(unsigned long));
  6607. #endif
  6608. for_each_possible_cpu(i) {
  6609. struct rq *rq;
  6610. rq = cpu_rq(i);
  6611. raw_spin_lock_init(&rq->lock);
  6612. rq->nr_running = 0;
  6613. rq->calc_load_active = 0;
  6614. rq->calc_load_update = jiffies + LOAD_FREQ;
  6615. init_cfs_rq(&rq->cfs, rq);
  6616. init_rt_rq(&rq->rt, rq);
  6617. #ifdef CONFIG_FAIR_GROUP_SCHED
  6618. init_task_group.shares = init_task_group_load;
  6619. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6620. #ifdef CONFIG_CGROUP_SCHED
  6621. /*
  6622. * How much cpu bandwidth does init_task_group get?
  6623. *
  6624. * In case of task-groups formed thr' the cgroup filesystem, it
  6625. * gets 100% of the cpu resources in the system. This overall
  6626. * system cpu resource is divided among the tasks of
  6627. * init_task_group and its child task-groups in a fair manner,
  6628. * based on each entity's (task or task-group's) weight
  6629. * (se->load.weight).
  6630. *
  6631. * In other words, if init_task_group has 10 tasks of weight
  6632. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6633. * then A0's share of the cpu resource is:
  6634. *
  6635. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6636. *
  6637. * We achieve this by letting init_task_group's tasks sit
  6638. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6639. */
  6640. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6641. #endif
  6642. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6643. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6644. #ifdef CONFIG_RT_GROUP_SCHED
  6645. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6646. #ifdef CONFIG_CGROUP_SCHED
  6647. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6648. #endif
  6649. #endif
  6650. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6651. rq->cpu_load[j] = 0;
  6652. #ifdef CONFIG_SMP
  6653. rq->sd = NULL;
  6654. rq->rd = NULL;
  6655. rq->post_schedule = 0;
  6656. rq->active_balance = 0;
  6657. rq->next_balance = jiffies;
  6658. rq->push_cpu = 0;
  6659. rq->cpu = i;
  6660. rq->online = 0;
  6661. rq->migration_thread = NULL;
  6662. rq->idle_stamp = 0;
  6663. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6664. INIT_LIST_HEAD(&rq->migration_queue);
  6665. rq_attach_root(rq, &def_root_domain);
  6666. #endif
  6667. init_rq_hrtick(rq);
  6668. atomic_set(&rq->nr_iowait, 0);
  6669. }
  6670. set_load_weight(&init_task);
  6671. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6672. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6673. #endif
  6674. #ifdef CONFIG_SMP
  6675. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6676. #endif
  6677. #ifdef CONFIG_RT_MUTEXES
  6678. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6679. #endif
  6680. /*
  6681. * The boot idle thread does lazy MMU switching as well:
  6682. */
  6683. atomic_inc(&init_mm.mm_count);
  6684. enter_lazy_tlb(&init_mm, current);
  6685. /*
  6686. * Make us the idle thread. Technically, schedule() should not be
  6687. * called from this thread, however somewhere below it might be,
  6688. * but because we are the idle thread, we just pick up running again
  6689. * when this runqueue becomes "idle".
  6690. */
  6691. init_idle(current, smp_processor_id());
  6692. calc_load_update = jiffies + LOAD_FREQ;
  6693. /*
  6694. * During early bootup we pretend to be a normal task:
  6695. */
  6696. current->sched_class = &fair_sched_class;
  6697. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6698. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6699. #ifdef CONFIG_SMP
  6700. #ifdef CONFIG_NO_HZ
  6701. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6702. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6703. #endif
  6704. /* May be allocated at isolcpus cmdline parse time */
  6705. if (cpu_isolated_map == NULL)
  6706. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6707. #endif /* SMP */
  6708. perf_event_init();
  6709. scheduler_running = 1;
  6710. }
  6711. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6712. static inline int preempt_count_equals(int preempt_offset)
  6713. {
  6714. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6715. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6716. }
  6717. void __might_sleep(const char *file, int line, int preempt_offset)
  6718. {
  6719. #ifdef in_atomic
  6720. static unsigned long prev_jiffy; /* ratelimiting */
  6721. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6722. system_state != SYSTEM_RUNNING || oops_in_progress)
  6723. return;
  6724. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6725. return;
  6726. prev_jiffy = jiffies;
  6727. printk(KERN_ERR
  6728. "BUG: sleeping function called from invalid context at %s:%d\n",
  6729. file, line);
  6730. printk(KERN_ERR
  6731. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6732. in_atomic(), irqs_disabled(),
  6733. current->pid, current->comm);
  6734. debug_show_held_locks(current);
  6735. if (irqs_disabled())
  6736. print_irqtrace_events(current);
  6737. dump_stack();
  6738. #endif
  6739. }
  6740. EXPORT_SYMBOL(__might_sleep);
  6741. #endif
  6742. #ifdef CONFIG_MAGIC_SYSRQ
  6743. static void normalize_task(struct rq *rq, struct task_struct *p)
  6744. {
  6745. int on_rq;
  6746. update_rq_clock(rq);
  6747. on_rq = p->se.on_rq;
  6748. if (on_rq)
  6749. deactivate_task(rq, p, 0);
  6750. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6751. if (on_rq) {
  6752. activate_task(rq, p, 0);
  6753. resched_task(rq->curr);
  6754. }
  6755. }
  6756. void normalize_rt_tasks(void)
  6757. {
  6758. struct task_struct *g, *p;
  6759. unsigned long flags;
  6760. struct rq *rq;
  6761. read_lock_irqsave(&tasklist_lock, flags);
  6762. do_each_thread(g, p) {
  6763. /*
  6764. * Only normalize user tasks:
  6765. */
  6766. if (!p->mm)
  6767. continue;
  6768. p->se.exec_start = 0;
  6769. #ifdef CONFIG_SCHEDSTATS
  6770. p->se.wait_start = 0;
  6771. p->se.sleep_start = 0;
  6772. p->se.block_start = 0;
  6773. #endif
  6774. if (!rt_task(p)) {
  6775. /*
  6776. * Renice negative nice level userspace
  6777. * tasks back to 0:
  6778. */
  6779. if (TASK_NICE(p) < 0 && p->mm)
  6780. set_user_nice(p, 0);
  6781. continue;
  6782. }
  6783. raw_spin_lock(&p->pi_lock);
  6784. rq = __task_rq_lock(p);
  6785. normalize_task(rq, p);
  6786. __task_rq_unlock(rq);
  6787. raw_spin_unlock(&p->pi_lock);
  6788. } while_each_thread(g, p);
  6789. read_unlock_irqrestore(&tasklist_lock, flags);
  6790. }
  6791. #endif /* CONFIG_MAGIC_SYSRQ */
  6792. #ifdef CONFIG_IA64
  6793. /*
  6794. * These functions are only useful for the IA64 MCA handling.
  6795. *
  6796. * They can only be called when the whole system has been
  6797. * stopped - every CPU needs to be quiescent, and no scheduling
  6798. * activity can take place. Using them for anything else would
  6799. * be a serious bug, and as a result, they aren't even visible
  6800. * under any other configuration.
  6801. */
  6802. /**
  6803. * curr_task - return the current task for a given cpu.
  6804. * @cpu: the processor in question.
  6805. *
  6806. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6807. */
  6808. struct task_struct *curr_task(int cpu)
  6809. {
  6810. return cpu_curr(cpu);
  6811. }
  6812. /**
  6813. * set_curr_task - set the current task for a given cpu.
  6814. * @cpu: the processor in question.
  6815. * @p: the task pointer to set.
  6816. *
  6817. * Description: This function must only be used when non-maskable interrupts
  6818. * are serviced on a separate stack. It allows the architecture to switch the
  6819. * notion of the current task on a cpu in a non-blocking manner. This function
  6820. * must be called with all CPU's synchronized, and interrupts disabled, the
  6821. * and caller must save the original value of the current task (see
  6822. * curr_task() above) and restore that value before reenabling interrupts and
  6823. * re-starting the system.
  6824. *
  6825. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6826. */
  6827. void set_curr_task(int cpu, struct task_struct *p)
  6828. {
  6829. cpu_curr(cpu) = p;
  6830. }
  6831. #endif
  6832. #ifdef CONFIG_FAIR_GROUP_SCHED
  6833. static void free_fair_sched_group(struct task_group *tg)
  6834. {
  6835. int i;
  6836. for_each_possible_cpu(i) {
  6837. if (tg->cfs_rq)
  6838. kfree(tg->cfs_rq[i]);
  6839. if (tg->se)
  6840. kfree(tg->se[i]);
  6841. }
  6842. kfree(tg->cfs_rq);
  6843. kfree(tg->se);
  6844. }
  6845. static
  6846. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6847. {
  6848. struct cfs_rq *cfs_rq;
  6849. struct sched_entity *se;
  6850. struct rq *rq;
  6851. int i;
  6852. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6853. if (!tg->cfs_rq)
  6854. goto err;
  6855. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6856. if (!tg->se)
  6857. goto err;
  6858. tg->shares = NICE_0_LOAD;
  6859. for_each_possible_cpu(i) {
  6860. rq = cpu_rq(i);
  6861. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6862. GFP_KERNEL, cpu_to_node(i));
  6863. if (!cfs_rq)
  6864. goto err;
  6865. se = kzalloc_node(sizeof(struct sched_entity),
  6866. GFP_KERNEL, cpu_to_node(i));
  6867. if (!se)
  6868. goto err_free_rq;
  6869. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6870. }
  6871. return 1;
  6872. err_free_rq:
  6873. kfree(cfs_rq);
  6874. err:
  6875. return 0;
  6876. }
  6877. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6878. {
  6879. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6880. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6881. }
  6882. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6883. {
  6884. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6885. }
  6886. #else /* !CONFG_FAIR_GROUP_SCHED */
  6887. static inline void free_fair_sched_group(struct task_group *tg)
  6888. {
  6889. }
  6890. static inline
  6891. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6892. {
  6893. return 1;
  6894. }
  6895. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6896. {
  6897. }
  6898. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6899. {
  6900. }
  6901. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6902. #ifdef CONFIG_RT_GROUP_SCHED
  6903. static void free_rt_sched_group(struct task_group *tg)
  6904. {
  6905. int i;
  6906. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6907. for_each_possible_cpu(i) {
  6908. if (tg->rt_rq)
  6909. kfree(tg->rt_rq[i]);
  6910. if (tg->rt_se)
  6911. kfree(tg->rt_se[i]);
  6912. }
  6913. kfree(tg->rt_rq);
  6914. kfree(tg->rt_se);
  6915. }
  6916. static
  6917. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6918. {
  6919. struct rt_rq *rt_rq;
  6920. struct sched_rt_entity *rt_se;
  6921. struct rq *rq;
  6922. int i;
  6923. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6924. if (!tg->rt_rq)
  6925. goto err;
  6926. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6927. if (!tg->rt_se)
  6928. goto err;
  6929. init_rt_bandwidth(&tg->rt_bandwidth,
  6930. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6931. for_each_possible_cpu(i) {
  6932. rq = cpu_rq(i);
  6933. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6934. GFP_KERNEL, cpu_to_node(i));
  6935. if (!rt_rq)
  6936. goto err;
  6937. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6938. GFP_KERNEL, cpu_to_node(i));
  6939. if (!rt_se)
  6940. goto err_free_rq;
  6941. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6942. }
  6943. return 1;
  6944. err_free_rq:
  6945. kfree(rt_rq);
  6946. err:
  6947. return 0;
  6948. }
  6949. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6950. {
  6951. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6952. &cpu_rq(cpu)->leaf_rt_rq_list);
  6953. }
  6954. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6955. {
  6956. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6957. }
  6958. #else /* !CONFIG_RT_GROUP_SCHED */
  6959. static inline void free_rt_sched_group(struct task_group *tg)
  6960. {
  6961. }
  6962. static inline
  6963. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6964. {
  6965. return 1;
  6966. }
  6967. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6968. {
  6969. }
  6970. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6971. {
  6972. }
  6973. #endif /* CONFIG_RT_GROUP_SCHED */
  6974. #ifdef CONFIG_CGROUP_SCHED
  6975. static void free_sched_group(struct task_group *tg)
  6976. {
  6977. free_fair_sched_group(tg);
  6978. free_rt_sched_group(tg);
  6979. kfree(tg);
  6980. }
  6981. /* allocate runqueue etc for a new task group */
  6982. struct task_group *sched_create_group(struct task_group *parent)
  6983. {
  6984. struct task_group *tg;
  6985. unsigned long flags;
  6986. int i;
  6987. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6988. if (!tg)
  6989. return ERR_PTR(-ENOMEM);
  6990. if (!alloc_fair_sched_group(tg, parent))
  6991. goto err;
  6992. if (!alloc_rt_sched_group(tg, parent))
  6993. goto err;
  6994. spin_lock_irqsave(&task_group_lock, flags);
  6995. for_each_possible_cpu(i) {
  6996. register_fair_sched_group(tg, i);
  6997. register_rt_sched_group(tg, i);
  6998. }
  6999. list_add_rcu(&tg->list, &task_groups);
  7000. WARN_ON(!parent); /* root should already exist */
  7001. tg->parent = parent;
  7002. INIT_LIST_HEAD(&tg->children);
  7003. list_add_rcu(&tg->siblings, &parent->children);
  7004. spin_unlock_irqrestore(&task_group_lock, flags);
  7005. return tg;
  7006. err:
  7007. free_sched_group(tg);
  7008. return ERR_PTR(-ENOMEM);
  7009. }
  7010. /* rcu callback to free various structures associated with a task group */
  7011. static void free_sched_group_rcu(struct rcu_head *rhp)
  7012. {
  7013. /* now it should be safe to free those cfs_rqs */
  7014. free_sched_group(container_of(rhp, struct task_group, rcu));
  7015. }
  7016. /* Destroy runqueue etc associated with a task group */
  7017. void sched_destroy_group(struct task_group *tg)
  7018. {
  7019. unsigned long flags;
  7020. int i;
  7021. spin_lock_irqsave(&task_group_lock, flags);
  7022. for_each_possible_cpu(i) {
  7023. unregister_fair_sched_group(tg, i);
  7024. unregister_rt_sched_group(tg, i);
  7025. }
  7026. list_del_rcu(&tg->list);
  7027. list_del_rcu(&tg->siblings);
  7028. spin_unlock_irqrestore(&task_group_lock, flags);
  7029. /* wait for possible concurrent references to cfs_rqs complete */
  7030. call_rcu(&tg->rcu, free_sched_group_rcu);
  7031. }
  7032. /* change task's runqueue when it moves between groups.
  7033. * The caller of this function should have put the task in its new group
  7034. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  7035. * reflect its new group.
  7036. */
  7037. void sched_move_task(struct task_struct *tsk)
  7038. {
  7039. int on_rq, running;
  7040. unsigned long flags;
  7041. struct rq *rq;
  7042. rq = task_rq_lock(tsk, &flags);
  7043. update_rq_clock(rq);
  7044. running = task_current(rq, tsk);
  7045. on_rq = tsk->se.on_rq;
  7046. if (on_rq)
  7047. dequeue_task(rq, tsk, 0);
  7048. if (unlikely(running))
  7049. tsk->sched_class->put_prev_task(rq, tsk);
  7050. set_task_rq(tsk, task_cpu(tsk));
  7051. #ifdef CONFIG_FAIR_GROUP_SCHED
  7052. if (tsk->sched_class->moved_group)
  7053. tsk->sched_class->moved_group(tsk, on_rq);
  7054. #endif
  7055. if (unlikely(running))
  7056. tsk->sched_class->set_curr_task(rq);
  7057. if (on_rq)
  7058. enqueue_task(rq, tsk, 0, false);
  7059. task_rq_unlock(rq, &flags);
  7060. }
  7061. #endif /* CONFIG_CGROUP_SCHED */
  7062. #ifdef CONFIG_FAIR_GROUP_SCHED
  7063. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7064. {
  7065. struct cfs_rq *cfs_rq = se->cfs_rq;
  7066. int on_rq;
  7067. on_rq = se->on_rq;
  7068. if (on_rq)
  7069. dequeue_entity(cfs_rq, se, 0);
  7070. se->load.weight = shares;
  7071. se->load.inv_weight = 0;
  7072. if (on_rq)
  7073. enqueue_entity(cfs_rq, se, 0);
  7074. }
  7075. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7076. {
  7077. struct cfs_rq *cfs_rq = se->cfs_rq;
  7078. struct rq *rq = cfs_rq->rq;
  7079. unsigned long flags;
  7080. raw_spin_lock_irqsave(&rq->lock, flags);
  7081. __set_se_shares(se, shares);
  7082. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7083. }
  7084. static DEFINE_MUTEX(shares_mutex);
  7085. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7086. {
  7087. int i;
  7088. unsigned long flags;
  7089. /*
  7090. * We can't change the weight of the root cgroup.
  7091. */
  7092. if (!tg->se[0])
  7093. return -EINVAL;
  7094. if (shares < MIN_SHARES)
  7095. shares = MIN_SHARES;
  7096. else if (shares > MAX_SHARES)
  7097. shares = MAX_SHARES;
  7098. mutex_lock(&shares_mutex);
  7099. if (tg->shares == shares)
  7100. goto done;
  7101. spin_lock_irqsave(&task_group_lock, flags);
  7102. for_each_possible_cpu(i)
  7103. unregister_fair_sched_group(tg, i);
  7104. list_del_rcu(&tg->siblings);
  7105. spin_unlock_irqrestore(&task_group_lock, flags);
  7106. /* wait for any ongoing reference to this group to finish */
  7107. synchronize_sched();
  7108. /*
  7109. * Now we are free to modify the group's share on each cpu
  7110. * w/o tripping rebalance_share or load_balance_fair.
  7111. */
  7112. tg->shares = shares;
  7113. for_each_possible_cpu(i) {
  7114. /*
  7115. * force a rebalance
  7116. */
  7117. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7118. set_se_shares(tg->se[i], shares);
  7119. }
  7120. /*
  7121. * Enable load balance activity on this group, by inserting it back on
  7122. * each cpu's rq->leaf_cfs_rq_list.
  7123. */
  7124. spin_lock_irqsave(&task_group_lock, flags);
  7125. for_each_possible_cpu(i)
  7126. register_fair_sched_group(tg, i);
  7127. list_add_rcu(&tg->siblings, &tg->parent->children);
  7128. spin_unlock_irqrestore(&task_group_lock, flags);
  7129. done:
  7130. mutex_unlock(&shares_mutex);
  7131. return 0;
  7132. }
  7133. unsigned long sched_group_shares(struct task_group *tg)
  7134. {
  7135. return tg->shares;
  7136. }
  7137. #endif
  7138. #ifdef CONFIG_RT_GROUP_SCHED
  7139. /*
  7140. * Ensure that the real time constraints are schedulable.
  7141. */
  7142. static DEFINE_MUTEX(rt_constraints_mutex);
  7143. static unsigned long to_ratio(u64 period, u64 runtime)
  7144. {
  7145. if (runtime == RUNTIME_INF)
  7146. return 1ULL << 20;
  7147. return div64_u64(runtime << 20, period);
  7148. }
  7149. /* Must be called with tasklist_lock held */
  7150. static inline int tg_has_rt_tasks(struct task_group *tg)
  7151. {
  7152. struct task_struct *g, *p;
  7153. do_each_thread(g, p) {
  7154. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7155. return 1;
  7156. } while_each_thread(g, p);
  7157. return 0;
  7158. }
  7159. struct rt_schedulable_data {
  7160. struct task_group *tg;
  7161. u64 rt_period;
  7162. u64 rt_runtime;
  7163. };
  7164. static int tg_schedulable(struct task_group *tg, void *data)
  7165. {
  7166. struct rt_schedulable_data *d = data;
  7167. struct task_group *child;
  7168. unsigned long total, sum = 0;
  7169. u64 period, runtime;
  7170. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7171. runtime = tg->rt_bandwidth.rt_runtime;
  7172. if (tg == d->tg) {
  7173. period = d->rt_period;
  7174. runtime = d->rt_runtime;
  7175. }
  7176. /*
  7177. * Cannot have more runtime than the period.
  7178. */
  7179. if (runtime > period && runtime != RUNTIME_INF)
  7180. return -EINVAL;
  7181. /*
  7182. * Ensure we don't starve existing RT tasks.
  7183. */
  7184. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7185. return -EBUSY;
  7186. total = to_ratio(period, runtime);
  7187. /*
  7188. * Nobody can have more than the global setting allows.
  7189. */
  7190. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7191. return -EINVAL;
  7192. /*
  7193. * The sum of our children's runtime should not exceed our own.
  7194. */
  7195. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7196. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7197. runtime = child->rt_bandwidth.rt_runtime;
  7198. if (child == d->tg) {
  7199. period = d->rt_period;
  7200. runtime = d->rt_runtime;
  7201. }
  7202. sum += to_ratio(period, runtime);
  7203. }
  7204. if (sum > total)
  7205. return -EINVAL;
  7206. return 0;
  7207. }
  7208. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7209. {
  7210. struct rt_schedulable_data data = {
  7211. .tg = tg,
  7212. .rt_period = period,
  7213. .rt_runtime = runtime,
  7214. };
  7215. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7216. }
  7217. static int tg_set_bandwidth(struct task_group *tg,
  7218. u64 rt_period, u64 rt_runtime)
  7219. {
  7220. int i, err = 0;
  7221. mutex_lock(&rt_constraints_mutex);
  7222. read_lock(&tasklist_lock);
  7223. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7224. if (err)
  7225. goto unlock;
  7226. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7227. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7228. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7229. for_each_possible_cpu(i) {
  7230. struct rt_rq *rt_rq = tg->rt_rq[i];
  7231. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7232. rt_rq->rt_runtime = rt_runtime;
  7233. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7234. }
  7235. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7236. unlock:
  7237. read_unlock(&tasklist_lock);
  7238. mutex_unlock(&rt_constraints_mutex);
  7239. return err;
  7240. }
  7241. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7242. {
  7243. u64 rt_runtime, rt_period;
  7244. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7245. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7246. if (rt_runtime_us < 0)
  7247. rt_runtime = RUNTIME_INF;
  7248. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7249. }
  7250. long sched_group_rt_runtime(struct task_group *tg)
  7251. {
  7252. u64 rt_runtime_us;
  7253. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7254. return -1;
  7255. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7256. do_div(rt_runtime_us, NSEC_PER_USEC);
  7257. return rt_runtime_us;
  7258. }
  7259. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7260. {
  7261. u64 rt_runtime, rt_period;
  7262. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7263. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7264. if (rt_period == 0)
  7265. return -EINVAL;
  7266. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7267. }
  7268. long sched_group_rt_period(struct task_group *tg)
  7269. {
  7270. u64 rt_period_us;
  7271. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7272. do_div(rt_period_us, NSEC_PER_USEC);
  7273. return rt_period_us;
  7274. }
  7275. static int sched_rt_global_constraints(void)
  7276. {
  7277. u64 runtime, period;
  7278. int ret = 0;
  7279. if (sysctl_sched_rt_period <= 0)
  7280. return -EINVAL;
  7281. runtime = global_rt_runtime();
  7282. period = global_rt_period();
  7283. /*
  7284. * Sanity check on the sysctl variables.
  7285. */
  7286. if (runtime > period && runtime != RUNTIME_INF)
  7287. return -EINVAL;
  7288. mutex_lock(&rt_constraints_mutex);
  7289. read_lock(&tasklist_lock);
  7290. ret = __rt_schedulable(NULL, 0, 0);
  7291. read_unlock(&tasklist_lock);
  7292. mutex_unlock(&rt_constraints_mutex);
  7293. return ret;
  7294. }
  7295. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7296. {
  7297. /* Don't accept realtime tasks when there is no way for them to run */
  7298. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7299. return 0;
  7300. return 1;
  7301. }
  7302. #else /* !CONFIG_RT_GROUP_SCHED */
  7303. static int sched_rt_global_constraints(void)
  7304. {
  7305. unsigned long flags;
  7306. int i;
  7307. if (sysctl_sched_rt_period <= 0)
  7308. return -EINVAL;
  7309. /*
  7310. * There's always some RT tasks in the root group
  7311. * -- migration, kstopmachine etc..
  7312. */
  7313. if (sysctl_sched_rt_runtime == 0)
  7314. return -EBUSY;
  7315. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7316. for_each_possible_cpu(i) {
  7317. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7318. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7319. rt_rq->rt_runtime = global_rt_runtime();
  7320. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7321. }
  7322. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7323. return 0;
  7324. }
  7325. #endif /* CONFIG_RT_GROUP_SCHED */
  7326. int sched_rt_handler(struct ctl_table *table, int write,
  7327. void __user *buffer, size_t *lenp,
  7328. loff_t *ppos)
  7329. {
  7330. int ret;
  7331. int old_period, old_runtime;
  7332. static DEFINE_MUTEX(mutex);
  7333. mutex_lock(&mutex);
  7334. old_period = sysctl_sched_rt_period;
  7335. old_runtime = sysctl_sched_rt_runtime;
  7336. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7337. if (!ret && write) {
  7338. ret = sched_rt_global_constraints();
  7339. if (ret) {
  7340. sysctl_sched_rt_period = old_period;
  7341. sysctl_sched_rt_runtime = old_runtime;
  7342. } else {
  7343. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7344. def_rt_bandwidth.rt_period =
  7345. ns_to_ktime(global_rt_period());
  7346. }
  7347. }
  7348. mutex_unlock(&mutex);
  7349. return ret;
  7350. }
  7351. #ifdef CONFIG_CGROUP_SCHED
  7352. /* return corresponding task_group object of a cgroup */
  7353. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7354. {
  7355. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7356. struct task_group, css);
  7357. }
  7358. static struct cgroup_subsys_state *
  7359. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7360. {
  7361. struct task_group *tg, *parent;
  7362. if (!cgrp->parent) {
  7363. /* This is early initialization for the top cgroup */
  7364. return &init_task_group.css;
  7365. }
  7366. parent = cgroup_tg(cgrp->parent);
  7367. tg = sched_create_group(parent);
  7368. if (IS_ERR(tg))
  7369. return ERR_PTR(-ENOMEM);
  7370. return &tg->css;
  7371. }
  7372. static void
  7373. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7374. {
  7375. struct task_group *tg = cgroup_tg(cgrp);
  7376. sched_destroy_group(tg);
  7377. }
  7378. static int
  7379. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7380. {
  7381. #ifdef CONFIG_RT_GROUP_SCHED
  7382. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7383. return -EINVAL;
  7384. #else
  7385. /* We don't support RT-tasks being in separate groups */
  7386. if (tsk->sched_class != &fair_sched_class)
  7387. return -EINVAL;
  7388. #endif
  7389. return 0;
  7390. }
  7391. static int
  7392. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7393. struct task_struct *tsk, bool threadgroup)
  7394. {
  7395. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7396. if (retval)
  7397. return retval;
  7398. if (threadgroup) {
  7399. struct task_struct *c;
  7400. rcu_read_lock();
  7401. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7402. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7403. if (retval) {
  7404. rcu_read_unlock();
  7405. return retval;
  7406. }
  7407. }
  7408. rcu_read_unlock();
  7409. }
  7410. return 0;
  7411. }
  7412. static void
  7413. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7414. struct cgroup *old_cont, struct task_struct *tsk,
  7415. bool threadgroup)
  7416. {
  7417. sched_move_task(tsk);
  7418. if (threadgroup) {
  7419. struct task_struct *c;
  7420. rcu_read_lock();
  7421. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7422. sched_move_task(c);
  7423. }
  7424. rcu_read_unlock();
  7425. }
  7426. }
  7427. #ifdef CONFIG_FAIR_GROUP_SCHED
  7428. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7429. u64 shareval)
  7430. {
  7431. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7432. }
  7433. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7434. {
  7435. struct task_group *tg = cgroup_tg(cgrp);
  7436. return (u64) tg->shares;
  7437. }
  7438. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7439. #ifdef CONFIG_RT_GROUP_SCHED
  7440. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7441. s64 val)
  7442. {
  7443. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7444. }
  7445. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7446. {
  7447. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7448. }
  7449. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7450. u64 rt_period_us)
  7451. {
  7452. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7453. }
  7454. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7455. {
  7456. return sched_group_rt_period(cgroup_tg(cgrp));
  7457. }
  7458. #endif /* CONFIG_RT_GROUP_SCHED */
  7459. static struct cftype cpu_files[] = {
  7460. #ifdef CONFIG_FAIR_GROUP_SCHED
  7461. {
  7462. .name = "shares",
  7463. .read_u64 = cpu_shares_read_u64,
  7464. .write_u64 = cpu_shares_write_u64,
  7465. },
  7466. #endif
  7467. #ifdef CONFIG_RT_GROUP_SCHED
  7468. {
  7469. .name = "rt_runtime_us",
  7470. .read_s64 = cpu_rt_runtime_read,
  7471. .write_s64 = cpu_rt_runtime_write,
  7472. },
  7473. {
  7474. .name = "rt_period_us",
  7475. .read_u64 = cpu_rt_period_read_uint,
  7476. .write_u64 = cpu_rt_period_write_uint,
  7477. },
  7478. #endif
  7479. };
  7480. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7481. {
  7482. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7483. }
  7484. struct cgroup_subsys cpu_cgroup_subsys = {
  7485. .name = "cpu",
  7486. .create = cpu_cgroup_create,
  7487. .destroy = cpu_cgroup_destroy,
  7488. .can_attach = cpu_cgroup_can_attach,
  7489. .attach = cpu_cgroup_attach,
  7490. .populate = cpu_cgroup_populate,
  7491. .subsys_id = cpu_cgroup_subsys_id,
  7492. .early_init = 1,
  7493. };
  7494. #endif /* CONFIG_CGROUP_SCHED */
  7495. #ifdef CONFIG_CGROUP_CPUACCT
  7496. /*
  7497. * CPU accounting code for task groups.
  7498. *
  7499. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7500. * (balbir@in.ibm.com).
  7501. */
  7502. /* track cpu usage of a group of tasks and its child groups */
  7503. struct cpuacct {
  7504. struct cgroup_subsys_state css;
  7505. /* cpuusage holds pointer to a u64-type object on every cpu */
  7506. u64 __percpu *cpuusage;
  7507. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7508. struct cpuacct *parent;
  7509. };
  7510. struct cgroup_subsys cpuacct_subsys;
  7511. /* return cpu accounting group corresponding to this container */
  7512. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7513. {
  7514. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7515. struct cpuacct, css);
  7516. }
  7517. /* return cpu accounting group to which this task belongs */
  7518. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7519. {
  7520. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7521. struct cpuacct, css);
  7522. }
  7523. /* create a new cpu accounting group */
  7524. static struct cgroup_subsys_state *cpuacct_create(
  7525. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7526. {
  7527. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7528. int i;
  7529. if (!ca)
  7530. goto out;
  7531. ca->cpuusage = alloc_percpu(u64);
  7532. if (!ca->cpuusage)
  7533. goto out_free_ca;
  7534. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7535. if (percpu_counter_init(&ca->cpustat[i], 0))
  7536. goto out_free_counters;
  7537. if (cgrp->parent)
  7538. ca->parent = cgroup_ca(cgrp->parent);
  7539. return &ca->css;
  7540. out_free_counters:
  7541. while (--i >= 0)
  7542. percpu_counter_destroy(&ca->cpustat[i]);
  7543. free_percpu(ca->cpuusage);
  7544. out_free_ca:
  7545. kfree(ca);
  7546. out:
  7547. return ERR_PTR(-ENOMEM);
  7548. }
  7549. /* destroy an existing cpu accounting group */
  7550. static void
  7551. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7552. {
  7553. struct cpuacct *ca = cgroup_ca(cgrp);
  7554. int i;
  7555. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7556. percpu_counter_destroy(&ca->cpustat[i]);
  7557. free_percpu(ca->cpuusage);
  7558. kfree(ca);
  7559. }
  7560. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7561. {
  7562. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7563. u64 data;
  7564. #ifndef CONFIG_64BIT
  7565. /*
  7566. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7567. */
  7568. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7569. data = *cpuusage;
  7570. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7571. #else
  7572. data = *cpuusage;
  7573. #endif
  7574. return data;
  7575. }
  7576. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7577. {
  7578. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7579. #ifndef CONFIG_64BIT
  7580. /*
  7581. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7582. */
  7583. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7584. *cpuusage = val;
  7585. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7586. #else
  7587. *cpuusage = val;
  7588. #endif
  7589. }
  7590. /* return total cpu usage (in nanoseconds) of a group */
  7591. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7592. {
  7593. struct cpuacct *ca = cgroup_ca(cgrp);
  7594. u64 totalcpuusage = 0;
  7595. int i;
  7596. for_each_present_cpu(i)
  7597. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7598. return totalcpuusage;
  7599. }
  7600. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7601. u64 reset)
  7602. {
  7603. struct cpuacct *ca = cgroup_ca(cgrp);
  7604. int err = 0;
  7605. int i;
  7606. if (reset) {
  7607. err = -EINVAL;
  7608. goto out;
  7609. }
  7610. for_each_present_cpu(i)
  7611. cpuacct_cpuusage_write(ca, i, 0);
  7612. out:
  7613. return err;
  7614. }
  7615. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7616. struct seq_file *m)
  7617. {
  7618. struct cpuacct *ca = cgroup_ca(cgroup);
  7619. u64 percpu;
  7620. int i;
  7621. for_each_present_cpu(i) {
  7622. percpu = cpuacct_cpuusage_read(ca, i);
  7623. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7624. }
  7625. seq_printf(m, "\n");
  7626. return 0;
  7627. }
  7628. static const char *cpuacct_stat_desc[] = {
  7629. [CPUACCT_STAT_USER] = "user",
  7630. [CPUACCT_STAT_SYSTEM] = "system",
  7631. };
  7632. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7633. struct cgroup_map_cb *cb)
  7634. {
  7635. struct cpuacct *ca = cgroup_ca(cgrp);
  7636. int i;
  7637. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7638. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7639. val = cputime64_to_clock_t(val);
  7640. cb->fill(cb, cpuacct_stat_desc[i], val);
  7641. }
  7642. return 0;
  7643. }
  7644. static struct cftype files[] = {
  7645. {
  7646. .name = "usage",
  7647. .read_u64 = cpuusage_read,
  7648. .write_u64 = cpuusage_write,
  7649. },
  7650. {
  7651. .name = "usage_percpu",
  7652. .read_seq_string = cpuacct_percpu_seq_read,
  7653. },
  7654. {
  7655. .name = "stat",
  7656. .read_map = cpuacct_stats_show,
  7657. },
  7658. };
  7659. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7660. {
  7661. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7662. }
  7663. /*
  7664. * charge this task's execution time to its accounting group.
  7665. *
  7666. * called with rq->lock held.
  7667. */
  7668. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7669. {
  7670. struct cpuacct *ca;
  7671. int cpu;
  7672. if (unlikely(!cpuacct_subsys.active))
  7673. return;
  7674. cpu = task_cpu(tsk);
  7675. rcu_read_lock();
  7676. ca = task_ca(tsk);
  7677. for (; ca; ca = ca->parent) {
  7678. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7679. *cpuusage += cputime;
  7680. }
  7681. rcu_read_unlock();
  7682. }
  7683. /*
  7684. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7685. * in cputime_t units. As a result, cpuacct_update_stats calls
  7686. * percpu_counter_add with values large enough to always overflow the
  7687. * per cpu batch limit causing bad SMP scalability.
  7688. *
  7689. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7690. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7691. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7692. */
  7693. #ifdef CONFIG_SMP
  7694. #define CPUACCT_BATCH \
  7695. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7696. #else
  7697. #define CPUACCT_BATCH 0
  7698. #endif
  7699. /*
  7700. * Charge the system/user time to the task's accounting group.
  7701. */
  7702. static void cpuacct_update_stats(struct task_struct *tsk,
  7703. enum cpuacct_stat_index idx, cputime_t val)
  7704. {
  7705. struct cpuacct *ca;
  7706. int batch = CPUACCT_BATCH;
  7707. if (unlikely(!cpuacct_subsys.active))
  7708. return;
  7709. rcu_read_lock();
  7710. ca = task_ca(tsk);
  7711. do {
  7712. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7713. ca = ca->parent;
  7714. } while (ca);
  7715. rcu_read_unlock();
  7716. }
  7717. struct cgroup_subsys cpuacct_subsys = {
  7718. .name = "cpuacct",
  7719. .create = cpuacct_create,
  7720. .destroy = cpuacct_destroy,
  7721. .populate = cpuacct_populate,
  7722. .subsys_id = cpuacct_subsys_id,
  7723. };
  7724. #endif /* CONFIG_CGROUP_CPUACCT */
  7725. #ifndef CONFIG_SMP
  7726. int rcu_expedited_torture_stats(char *page)
  7727. {
  7728. return 0;
  7729. }
  7730. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7731. void synchronize_sched_expedited(void)
  7732. {
  7733. }
  7734. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7735. #else /* #ifndef CONFIG_SMP */
  7736. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  7737. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  7738. #define RCU_EXPEDITED_STATE_POST -2
  7739. #define RCU_EXPEDITED_STATE_IDLE -1
  7740. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7741. int rcu_expedited_torture_stats(char *page)
  7742. {
  7743. int cnt = 0;
  7744. int cpu;
  7745. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  7746. for_each_online_cpu(cpu) {
  7747. cnt += sprintf(&page[cnt], " %d:%d",
  7748. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  7749. }
  7750. cnt += sprintf(&page[cnt], "\n");
  7751. return cnt;
  7752. }
  7753. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7754. static long synchronize_sched_expedited_count;
  7755. /*
  7756. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7757. * approach to force grace period to end quickly. This consumes
  7758. * significant time on all CPUs, and is thus not recommended for
  7759. * any sort of common-case code.
  7760. *
  7761. * Note that it is illegal to call this function while holding any
  7762. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7763. * observe this restriction will result in deadlock.
  7764. */
  7765. void synchronize_sched_expedited(void)
  7766. {
  7767. int cpu;
  7768. unsigned long flags;
  7769. bool need_full_sync = 0;
  7770. struct rq *rq;
  7771. struct migration_req *req;
  7772. long snap;
  7773. int trycount = 0;
  7774. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7775. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  7776. get_online_cpus();
  7777. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  7778. put_online_cpus();
  7779. if (trycount++ < 10)
  7780. udelay(trycount * num_online_cpus());
  7781. else {
  7782. synchronize_sched();
  7783. return;
  7784. }
  7785. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  7786. smp_mb(); /* ensure test happens before caller kfree */
  7787. return;
  7788. }
  7789. get_online_cpus();
  7790. }
  7791. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  7792. for_each_online_cpu(cpu) {
  7793. rq = cpu_rq(cpu);
  7794. req = &per_cpu(rcu_migration_req, cpu);
  7795. init_completion(&req->done);
  7796. req->task = NULL;
  7797. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  7798. raw_spin_lock_irqsave(&rq->lock, flags);
  7799. list_add(&req->list, &rq->migration_queue);
  7800. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7801. wake_up_process(rq->migration_thread);
  7802. }
  7803. for_each_online_cpu(cpu) {
  7804. rcu_expedited_state = cpu;
  7805. req = &per_cpu(rcu_migration_req, cpu);
  7806. rq = cpu_rq(cpu);
  7807. wait_for_completion(&req->done);
  7808. raw_spin_lock_irqsave(&rq->lock, flags);
  7809. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  7810. need_full_sync = 1;
  7811. req->dest_cpu = RCU_MIGRATION_IDLE;
  7812. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7813. }
  7814. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7815. synchronize_sched_expedited_count++;
  7816. mutex_unlock(&rcu_sched_expedited_mutex);
  7817. put_online_cpus();
  7818. if (need_full_sync)
  7819. synchronize_sched();
  7820. }
  7821. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7822. #endif /* #else #ifndef CONFIG_SMP */