fair.c 141 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <trace/events/sched.h>
  29. #include "sched.h"
  30. /*
  31. * Targeted preemption latency for CPU-bound tasks:
  32. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  33. *
  34. * NOTE: this latency value is not the same as the concept of
  35. * 'timeslice length' - timeslices in CFS are of variable length
  36. * and have no persistent notion like in traditional, time-slice
  37. * based scheduling concepts.
  38. *
  39. * (to see the precise effective timeslice length of your workload,
  40. * run vmstat and monitor the context-switches (cs) field)
  41. */
  42. unsigned int sysctl_sched_latency = 6000000ULL;
  43. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  44. /*
  45. * The initial- and re-scaling of tunables is configurable
  46. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  47. *
  48. * Options are:
  49. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  50. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  51. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  52. */
  53. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  54. = SCHED_TUNABLESCALING_LOG;
  55. /*
  56. * Minimal preemption granularity for CPU-bound tasks:
  57. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58. */
  59. unsigned int sysctl_sched_min_granularity = 750000ULL;
  60. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  61. /*
  62. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63. */
  64. static unsigned int sched_nr_latency = 8;
  65. /*
  66. * After fork, child runs first. If set to 0 (default) then
  67. * parent will (try to) run first.
  68. */
  69. unsigned int sysctl_sched_child_runs_first __read_mostly;
  70. /*
  71. * SCHED_OTHER wake-up granularity.
  72. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  73. *
  74. * This option delays the preemption effects of decoupled workloads
  75. * and reduces their over-scheduling. Synchronous workloads will still
  76. * have immediate wakeup/sleep latencies.
  77. */
  78. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  79. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  80. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  81. /*
  82. * The exponential sliding window over which load is averaged for shares
  83. * distribution.
  84. * (default: 10msec)
  85. */
  86. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  87. #ifdef CONFIG_CFS_BANDWIDTH
  88. /*
  89. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  90. * each time a cfs_rq requests quota.
  91. *
  92. * Note: in the case that the slice exceeds the runtime remaining (either due
  93. * to consumption or the quota being specified to be smaller than the slice)
  94. * we will always only issue the remaining available time.
  95. *
  96. * default: 5 msec, units: microseconds
  97. */
  98. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  99. #endif
  100. /*
  101. * Increase the granularity value when there are more CPUs,
  102. * because with more CPUs the 'effective latency' as visible
  103. * to users decreases. But the relationship is not linear,
  104. * so pick a second-best guess by going with the log2 of the
  105. * number of CPUs.
  106. *
  107. * This idea comes from the SD scheduler of Con Kolivas:
  108. */
  109. static int get_update_sysctl_factor(void)
  110. {
  111. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  112. unsigned int factor;
  113. switch (sysctl_sched_tunable_scaling) {
  114. case SCHED_TUNABLESCALING_NONE:
  115. factor = 1;
  116. break;
  117. case SCHED_TUNABLESCALING_LINEAR:
  118. factor = cpus;
  119. break;
  120. case SCHED_TUNABLESCALING_LOG:
  121. default:
  122. factor = 1 + ilog2(cpus);
  123. break;
  124. }
  125. return factor;
  126. }
  127. static void update_sysctl(void)
  128. {
  129. unsigned int factor = get_update_sysctl_factor();
  130. #define SET_SYSCTL(name) \
  131. (sysctl_##name = (factor) * normalized_sysctl_##name)
  132. SET_SYSCTL(sched_min_granularity);
  133. SET_SYSCTL(sched_latency);
  134. SET_SYSCTL(sched_wakeup_granularity);
  135. #undef SET_SYSCTL
  136. }
  137. void sched_init_granularity(void)
  138. {
  139. update_sysctl();
  140. }
  141. #if BITS_PER_LONG == 32
  142. # define WMULT_CONST (~0UL)
  143. #else
  144. # define WMULT_CONST (1UL << 32)
  145. #endif
  146. #define WMULT_SHIFT 32
  147. /*
  148. * Shift right and round:
  149. */
  150. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  151. /*
  152. * delta *= weight / lw
  153. */
  154. static unsigned long
  155. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  156. struct load_weight *lw)
  157. {
  158. u64 tmp;
  159. /*
  160. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  161. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  162. * 2^SCHED_LOAD_RESOLUTION.
  163. */
  164. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  165. tmp = (u64)delta_exec * scale_load_down(weight);
  166. else
  167. tmp = (u64)delta_exec;
  168. if (!lw->inv_weight) {
  169. unsigned long w = scale_load_down(lw->weight);
  170. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  171. lw->inv_weight = 1;
  172. else if (unlikely(!w))
  173. lw->inv_weight = WMULT_CONST;
  174. else
  175. lw->inv_weight = WMULT_CONST / w;
  176. }
  177. /*
  178. * Check whether we'd overflow the 64-bit multiplication:
  179. */
  180. if (unlikely(tmp > WMULT_CONST))
  181. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  182. WMULT_SHIFT/2);
  183. else
  184. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  185. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  186. }
  187. const struct sched_class fair_sched_class;
  188. /**************************************************************
  189. * CFS operations on generic schedulable entities:
  190. */
  191. #ifdef CONFIG_FAIR_GROUP_SCHED
  192. /* cpu runqueue to which this cfs_rq is attached */
  193. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  194. {
  195. return cfs_rq->rq;
  196. }
  197. /* An entity is a task if it doesn't "own" a runqueue */
  198. #define entity_is_task(se) (!se->my_q)
  199. static inline struct task_struct *task_of(struct sched_entity *se)
  200. {
  201. #ifdef CONFIG_SCHED_DEBUG
  202. WARN_ON_ONCE(!entity_is_task(se));
  203. #endif
  204. return container_of(se, struct task_struct, se);
  205. }
  206. /* Walk up scheduling entities hierarchy */
  207. #define for_each_sched_entity(se) \
  208. for (; se; se = se->parent)
  209. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  210. {
  211. return p->se.cfs_rq;
  212. }
  213. /* runqueue on which this entity is (to be) queued */
  214. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  215. {
  216. return se->cfs_rq;
  217. }
  218. /* runqueue "owned" by this group */
  219. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  220. {
  221. return grp->my_q;
  222. }
  223. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq);
  224. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  225. {
  226. if (!cfs_rq->on_list) {
  227. /*
  228. * Ensure we either appear before our parent (if already
  229. * enqueued) or force our parent to appear after us when it is
  230. * enqueued. The fact that we always enqueue bottom-up
  231. * reduces this to two cases.
  232. */
  233. if (cfs_rq->tg->parent &&
  234. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  235. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  236. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  237. } else {
  238. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  239. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  240. }
  241. cfs_rq->on_list = 1;
  242. /* We should have no load, but we need to update last_decay. */
  243. update_cfs_rq_blocked_load(cfs_rq);
  244. }
  245. }
  246. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  247. {
  248. if (cfs_rq->on_list) {
  249. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  250. cfs_rq->on_list = 0;
  251. }
  252. }
  253. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  254. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  255. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  256. /* Do the two (enqueued) entities belong to the same group ? */
  257. static inline int
  258. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  259. {
  260. if (se->cfs_rq == pse->cfs_rq)
  261. return 1;
  262. return 0;
  263. }
  264. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  265. {
  266. return se->parent;
  267. }
  268. /* return depth at which a sched entity is present in the hierarchy */
  269. static inline int depth_se(struct sched_entity *se)
  270. {
  271. int depth = 0;
  272. for_each_sched_entity(se)
  273. depth++;
  274. return depth;
  275. }
  276. static void
  277. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  278. {
  279. int se_depth, pse_depth;
  280. /*
  281. * preemption test can be made between sibling entities who are in the
  282. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  283. * both tasks until we find their ancestors who are siblings of common
  284. * parent.
  285. */
  286. /* First walk up until both entities are at same depth */
  287. se_depth = depth_se(*se);
  288. pse_depth = depth_se(*pse);
  289. while (se_depth > pse_depth) {
  290. se_depth--;
  291. *se = parent_entity(*se);
  292. }
  293. while (pse_depth > se_depth) {
  294. pse_depth--;
  295. *pse = parent_entity(*pse);
  296. }
  297. while (!is_same_group(*se, *pse)) {
  298. *se = parent_entity(*se);
  299. *pse = parent_entity(*pse);
  300. }
  301. }
  302. #else /* !CONFIG_FAIR_GROUP_SCHED */
  303. static inline struct task_struct *task_of(struct sched_entity *se)
  304. {
  305. return container_of(se, struct task_struct, se);
  306. }
  307. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  308. {
  309. return container_of(cfs_rq, struct rq, cfs);
  310. }
  311. #define entity_is_task(se) 1
  312. #define for_each_sched_entity(se) \
  313. for (; se; se = NULL)
  314. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  315. {
  316. return &task_rq(p)->cfs;
  317. }
  318. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  319. {
  320. struct task_struct *p = task_of(se);
  321. struct rq *rq = task_rq(p);
  322. return &rq->cfs;
  323. }
  324. /* runqueue "owned" by this group */
  325. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  326. {
  327. return NULL;
  328. }
  329. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  330. {
  331. }
  332. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  333. {
  334. }
  335. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  336. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  337. static inline int
  338. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  339. {
  340. return 1;
  341. }
  342. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  343. {
  344. return NULL;
  345. }
  346. static inline void
  347. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  348. {
  349. }
  350. #endif /* CONFIG_FAIR_GROUP_SCHED */
  351. static __always_inline
  352. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
  353. /**************************************************************
  354. * Scheduling class tree data structure manipulation methods:
  355. */
  356. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  357. {
  358. s64 delta = (s64)(vruntime - min_vruntime);
  359. if (delta > 0)
  360. min_vruntime = vruntime;
  361. return min_vruntime;
  362. }
  363. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  364. {
  365. s64 delta = (s64)(vruntime - min_vruntime);
  366. if (delta < 0)
  367. min_vruntime = vruntime;
  368. return min_vruntime;
  369. }
  370. static inline int entity_before(struct sched_entity *a,
  371. struct sched_entity *b)
  372. {
  373. return (s64)(a->vruntime - b->vruntime) < 0;
  374. }
  375. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  376. {
  377. u64 vruntime = cfs_rq->min_vruntime;
  378. if (cfs_rq->curr)
  379. vruntime = cfs_rq->curr->vruntime;
  380. if (cfs_rq->rb_leftmost) {
  381. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  382. struct sched_entity,
  383. run_node);
  384. if (!cfs_rq->curr)
  385. vruntime = se->vruntime;
  386. else
  387. vruntime = min_vruntime(vruntime, se->vruntime);
  388. }
  389. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  390. #ifndef CONFIG_64BIT
  391. smp_wmb();
  392. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  393. #endif
  394. }
  395. /*
  396. * Enqueue an entity into the rb-tree:
  397. */
  398. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  399. {
  400. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  401. struct rb_node *parent = NULL;
  402. struct sched_entity *entry;
  403. int leftmost = 1;
  404. /*
  405. * Find the right place in the rbtree:
  406. */
  407. while (*link) {
  408. parent = *link;
  409. entry = rb_entry(parent, struct sched_entity, run_node);
  410. /*
  411. * We dont care about collisions. Nodes with
  412. * the same key stay together.
  413. */
  414. if (entity_before(se, entry)) {
  415. link = &parent->rb_left;
  416. } else {
  417. link = &parent->rb_right;
  418. leftmost = 0;
  419. }
  420. }
  421. /*
  422. * Maintain a cache of leftmost tree entries (it is frequently
  423. * used):
  424. */
  425. if (leftmost)
  426. cfs_rq->rb_leftmost = &se->run_node;
  427. rb_link_node(&se->run_node, parent, link);
  428. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  429. }
  430. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  431. {
  432. if (cfs_rq->rb_leftmost == &se->run_node) {
  433. struct rb_node *next_node;
  434. next_node = rb_next(&se->run_node);
  435. cfs_rq->rb_leftmost = next_node;
  436. }
  437. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  438. }
  439. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  440. {
  441. struct rb_node *left = cfs_rq->rb_leftmost;
  442. if (!left)
  443. return NULL;
  444. return rb_entry(left, struct sched_entity, run_node);
  445. }
  446. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  447. {
  448. struct rb_node *next = rb_next(&se->run_node);
  449. if (!next)
  450. return NULL;
  451. return rb_entry(next, struct sched_entity, run_node);
  452. }
  453. #ifdef CONFIG_SCHED_DEBUG
  454. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  455. {
  456. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  457. if (!last)
  458. return NULL;
  459. return rb_entry(last, struct sched_entity, run_node);
  460. }
  461. /**************************************************************
  462. * Scheduling class statistics methods:
  463. */
  464. int sched_proc_update_handler(struct ctl_table *table, int write,
  465. void __user *buffer, size_t *lenp,
  466. loff_t *ppos)
  467. {
  468. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  469. int factor = get_update_sysctl_factor();
  470. if (ret || !write)
  471. return ret;
  472. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  473. sysctl_sched_min_granularity);
  474. #define WRT_SYSCTL(name) \
  475. (normalized_sysctl_##name = sysctl_##name / (factor))
  476. WRT_SYSCTL(sched_min_granularity);
  477. WRT_SYSCTL(sched_latency);
  478. WRT_SYSCTL(sched_wakeup_granularity);
  479. #undef WRT_SYSCTL
  480. return 0;
  481. }
  482. #endif
  483. /*
  484. * delta /= w
  485. */
  486. static inline unsigned long
  487. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  488. {
  489. if (unlikely(se->load.weight != NICE_0_LOAD))
  490. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  491. return delta;
  492. }
  493. /*
  494. * The idea is to set a period in which each task runs once.
  495. *
  496. * When there are too many tasks (sched_nr_latency) we have to stretch
  497. * this period because otherwise the slices get too small.
  498. *
  499. * p = (nr <= nl) ? l : l*nr/nl
  500. */
  501. static u64 __sched_period(unsigned long nr_running)
  502. {
  503. u64 period = sysctl_sched_latency;
  504. unsigned long nr_latency = sched_nr_latency;
  505. if (unlikely(nr_running > nr_latency)) {
  506. period = sysctl_sched_min_granularity;
  507. period *= nr_running;
  508. }
  509. return period;
  510. }
  511. /*
  512. * We calculate the wall-time slice from the period by taking a part
  513. * proportional to the weight.
  514. *
  515. * s = p*P[w/rw]
  516. */
  517. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  518. {
  519. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  520. for_each_sched_entity(se) {
  521. struct load_weight *load;
  522. struct load_weight lw;
  523. cfs_rq = cfs_rq_of(se);
  524. load = &cfs_rq->load;
  525. if (unlikely(!se->on_rq)) {
  526. lw = cfs_rq->load;
  527. update_load_add(&lw, se->load.weight);
  528. load = &lw;
  529. }
  530. slice = calc_delta_mine(slice, se->load.weight, load);
  531. }
  532. return slice;
  533. }
  534. /*
  535. * We calculate the vruntime slice of a to be inserted task
  536. *
  537. * vs = s/w
  538. */
  539. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  540. {
  541. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  542. }
  543. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  544. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  545. /*
  546. * Update the current task's runtime statistics. Skip current tasks that
  547. * are not in our scheduling class.
  548. */
  549. static inline void
  550. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  551. unsigned long delta_exec)
  552. {
  553. unsigned long delta_exec_weighted;
  554. schedstat_set(curr->statistics.exec_max,
  555. max((u64)delta_exec, curr->statistics.exec_max));
  556. curr->sum_exec_runtime += delta_exec;
  557. schedstat_add(cfs_rq, exec_clock, delta_exec);
  558. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  559. curr->vruntime += delta_exec_weighted;
  560. update_min_vruntime(cfs_rq);
  561. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  562. cfs_rq->load_unacc_exec_time += delta_exec;
  563. #endif
  564. }
  565. static void update_curr(struct cfs_rq *cfs_rq)
  566. {
  567. struct sched_entity *curr = cfs_rq->curr;
  568. u64 now = rq_of(cfs_rq)->clock_task;
  569. unsigned long delta_exec;
  570. if (unlikely(!curr))
  571. return;
  572. /*
  573. * Get the amount of time the current task was running
  574. * since the last time we changed load (this cannot
  575. * overflow on 32 bits):
  576. */
  577. delta_exec = (unsigned long)(now - curr->exec_start);
  578. if (!delta_exec)
  579. return;
  580. __update_curr(cfs_rq, curr, delta_exec);
  581. curr->exec_start = now;
  582. if (entity_is_task(curr)) {
  583. struct task_struct *curtask = task_of(curr);
  584. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  585. cpuacct_charge(curtask, delta_exec);
  586. account_group_exec_runtime(curtask, delta_exec);
  587. }
  588. account_cfs_rq_runtime(cfs_rq, delta_exec);
  589. }
  590. static inline void
  591. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  592. {
  593. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  594. }
  595. /*
  596. * Task is being enqueued - update stats:
  597. */
  598. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  599. {
  600. /*
  601. * Are we enqueueing a waiting task? (for current tasks
  602. * a dequeue/enqueue event is a NOP)
  603. */
  604. if (se != cfs_rq->curr)
  605. update_stats_wait_start(cfs_rq, se);
  606. }
  607. static void
  608. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  609. {
  610. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  611. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  612. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  613. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  614. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  615. #ifdef CONFIG_SCHEDSTATS
  616. if (entity_is_task(se)) {
  617. trace_sched_stat_wait(task_of(se),
  618. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  619. }
  620. #endif
  621. schedstat_set(se->statistics.wait_start, 0);
  622. }
  623. static inline void
  624. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  625. {
  626. /*
  627. * Mark the end of the wait period if dequeueing a
  628. * waiting task:
  629. */
  630. if (se != cfs_rq->curr)
  631. update_stats_wait_end(cfs_rq, se);
  632. }
  633. /*
  634. * We are picking a new current task - update its stats:
  635. */
  636. static inline void
  637. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  638. {
  639. /*
  640. * We are starting a new run period:
  641. */
  642. se->exec_start = rq_of(cfs_rq)->clock_task;
  643. }
  644. /**************************************************
  645. * Scheduling class queueing methods:
  646. */
  647. static void
  648. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  649. {
  650. update_load_add(&cfs_rq->load, se->load.weight);
  651. if (!parent_entity(se))
  652. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  653. #ifdef CONFIG_SMP
  654. if (entity_is_task(se))
  655. list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
  656. #endif
  657. cfs_rq->nr_running++;
  658. }
  659. static void
  660. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  661. {
  662. update_load_sub(&cfs_rq->load, se->load.weight);
  663. if (!parent_entity(se))
  664. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  665. if (entity_is_task(se))
  666. list_del_init(&se->group_node);
  667. cfs_rq->nr_running--;
  668. }
  669. #ifdef CONFIG_FAIR_GROUP_SCHED
  670. /* we need this in update_cfs_load and load-balance functions below */
  671. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  672. # ifdef CONFIG_SMP
  673. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  674. int global_update)
  675. {
  676. struct task_group *tg = cfs_rq->tg;
  677. long load_avg;
  678. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  679. load_avg -= cfs_rq->load_contribution;
  680. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  681. atomic_add(load_avg, &tg->load_weight);
  682. cfs_rq->load_contribution += load_avg;
  683. }
  684. }
  685. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  686. {
  687. u64 period = sysctl_sched_shares_window;
  688. u64 now, delta;
  689. unsigned long load = cfs_rq->load.weight;
  690. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  691. return;
  692. now = rq_of(cfs_rq)->clock_task;
  693. delta = now - cfs_rq->load_stamp;
  694. /* truncate load history at 4 idle periods */
  695. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  696. now - cfs_rq->load_last > 4 * period) {
  697. cfs_rq->load_period = 0;
  698. cfs_rq->load_avg = 0;
  699. delta = period - 1;
  700. }
  701. cfs_rq->load_stamp = now;
  702. cfs_rq->load_unacc_exec_time = 0;
  703. cfs_rq->load_period += delta;
  704. if (load) {
  705. cfs_rq->load_last = now;
  706. cfs_rq->load_avg += delta * load;
  707. }
  708. /* consider updating load contribution on each fold or truncate */
  709. if (global_update || cfs_rq->load_period > period
  710. || !cfs_rq->load_period)
  711. update_cfs_rq_load_contribution(cfs_rq, global_update);
  712. while (cfs_rq->load_period > period) {
  713. /*
  714. * Inline assembly required to prevent the compiler
  715. * optimising this loop into a divmod call.
  716. * See __iter_div_u64_rem() for another example of this.
  717. */
  718. asm("" : "+rm" (cfs_rq->load_period));
  719. cfs_rq->load_period /= 2;
  720. cfs_rq->load_avg /= 2;
  721. }
  722. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  723. list_del_leaf_cfs_rq(cfs_rq);
  724. }
  725. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  726. {
  727. long tg_weight;
  728. /*
  729. * Use this CPU's actual weight instead of the last load_contribution
  730. * to gain a more accurate current total weight. See
  731. * update_cfs_rq_load_contribution().
  732. */
  733. tg_weight = atomic_read(&tg->load_weight);
  734. tg_weight -= cfs_rq->load_contribution;
  735. tg_weight += cfs_rq->load.weight;
  736. return tg_weight;
  737. }
  738. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  739. {
  740. long tg_weight, load, shares;
  741. tg_weight = calc_tg_weight(tg, cfs_rq);
  742. load = cfs_rq->load.weight;
  743. shares = (tg->shares * load);
  744. if (tg_weight)
  745. shares /= tg_weight;
  746. if (shares < MIN_SHARES)
  747. shares = MIN_SHARES;
  748. if (shares > tg->shares)
  749. shares = tg->shares;
  750. return shares;
  751. }
  752. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  753. {
  754. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  755. update_cfs_load(cfs_rq, 0);
  756. update_cfs_shares(cfs_rq);
  757. }
  758. }
  759. # else /* CONFIG_SMP */
  760. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  761. {
  762. }
  763. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  764. {
  765. return tg->shares;
  766. }
  767. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  768. {
  769. }
  770. # endif /* CONFIG_SMP */
  771. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  772. unsigned long weight)
  773. {
  774. if (se->on_rq) {
  775. /* commit outstanding execution time */
  776. if (cfs_rq->curr == se)
  777. update_curr(cfs_rq);
  778. account_entity_dequeue(cfs_rq, se);
  779. }
  780. update_load_set(&se->load, weight);
  781. if (se->on_rq)
  782. account_entity_enqueue(cfs_rq, se);
  783. }
  784. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  785. {
  786. struct task_group *tg;
  787. struct sched_entity *se;
  788. long shares;
  789. tg = cfs_rq->tg;
  790. se = tg->se[cpu_of(rq_of(cfs_rq))];
  791. if (!se || throttled_hierarchy(cfs_rq))
  792. return;
  793. #ifndef CONFIG_SMP
  794. if (likely(se->load.weight == tg->shares))
  795. return;
  796. #endif
  797. shares = calc_cfs_shares(cfs_rq, tg);
  798. reweight_entity(cfs_rq_of(se), se, shares);
  799. }
  800. #else /* CONFIG_FAIR_GROUP_SCHED */
  801. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  802. {
  803. }
  804. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  805. {
  806. }
  807. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  808. {
  809. }
  810. #endif /* CONFIG_FAIR_GROUP_SCHED */
  811. #ifdef CONFIG_SMP
  812. /*
  813. * Approximate:
  814. * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
  815. */
  816. static __always_inline u64 decay_load(u64 val, u64 n)
  817. {
  818. for (; n && val; n--) {
  819. val *= 4008;
  820. val >>= 12;
  821. }
  822. return val;
  823. }
  824. /*
  825. * We can represent the historical contribution to runnable average as the
  826. * coefficients of a geometric series. To do this we sub-divide our runnable
  827. * history into segments of approximately 1ms (1024us); label the segment that
  828. * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
  829. *
  830. * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
  831. * p0 p1 p2
  832. * (now) (~1ms ago) (~2ms ago)
  833. *
  834. * Let u_i denote the fraction of p_i that the entity was runnable.
  835. *
  836. * We then designate the fractions u_i as our co-efficients, yielding the
  837. * following representation of historical load:
  838. * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
  839. *
  840. * We choose y based on the with of a reasonably scheduling period, fixing:
  841. * y^32 = 0.5
  842. *
  843. * This means that the contribution to load ~32ms ago (u_32) will be weighted
  844. * approximately half as much as the contribution to load within the last ms
  845. * (u_0).
  846. *
  847. * When a period "rolls over" and we have new u_0`, multiplying the previous
  848. * sum again by y is sufficient to update:
  849. * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
  850. * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
  851. */
  852. static __always_inline int __update_entity_runnable_avg(u64 now,
  853. struct sched_avg *sa,
  854. int runnable)
  855. {
  856. u64 delta;
  857. int delta_w, decayed = 0;
  858. delta = now - sa->last_runnable_update;
  859. /*
  860. * This should only happen when time goes backwards, which it
  861. * unfortunately does during sched clock init when we swap over to TSC.
  862. */
  863. if ((s64)delta < 0) {
  864. sa->last_runnable_update = now;
  865. return 0;
  866. }
  867. /*
  868. * Use 1024ns as the unit of measurement since it's a reasonable
  869. * approximation of 1us and fast to compute.
  870. */
  871. delta >>= 10;
  872. if (!delta)
  873. return 0;
  874. sa->last_runnable_update = now;
  875. /* delta_w is the amount already accumulated against our next period */
  876. delta_w = sa->runnable_avg_period % 1024;
  877. if (delta + delta_w >= 1024) {
  878. /* period roll-over */
  879. decayed = 1;
  880. /*
  881. * Now that we know we're crossing a period boundary, figure
  882. * out how much from delta we need to complete the current
  883. * period and accrue it.
  884. */
  885. delta_w = 1024 - delta_w;
  886. BUG_ON(delta_w > delta);
  887. do {
  888. if (runnable)
  889. sa->runnable_avg_sum += delta_w;
  890. sa->runnable_avg_period += delta_w;
  891. /*
  892. * Remainder of delta initiates a new period, roll over
  893. * the previous.
  894. */
  895. sa->runnable_avg_sum =
  896. decay_load(sa->runnable_avg_sum, 1);
  897. sa->runnable_avg_period =
  898. decay_load(sa->runnable_avg_period, 1);
  899. delta -= delta_w;
  900. /* New period is empty */
  901. delta_w = 1024;
  902. } while (delta >= 1024);
  903. }
  904. /* Remainder of delta accrued against u_0` */
  905. if (runnable)
  906. sa->runnable_avg_sum += delta;
  907. sa->runnable_avg_period += delta;
  908. return decayed;
  909. }
  910. /* Synchronize an entity's decay with its parenting cfs_rq.*/
  911. static inline void __synchronize_entity_decay(struct sched_entity *se)
  912. {
  913. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  914. u64 decays = atomic64_read(&cfs_rq->decay_counter);
  915. decays -= se->avg.decay_count;
  916. if (!decays)
  917. return;
  918. se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
  919. se->avg.decay_count = 0;
  920. }
  921. /* Compute the current contribution to load_avg by se, return any delta */
  922. static long __update_entity_load_avg_contrib(struct sched_entity *se)
  923. {
  924. long old_contrib = se->avg.load_avg_contrib;
  925. if (!entity_is_task(se))
  926. return 0;
  927. se->avg.load_avg_contrib = div64_u64(se->avg.runnable_avg_sum *
  928. se->load.weight,
  929. se->avg.runnable_avg_period + 1);
  930. return se->avg.load_avg_contrib - old_contrib;
  931. }
  932. static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
  933. long load_contrib)
  934. {
  935. if (likely(load_contrib < cfs_rq->blocked_load_avg))
  936. cfs_rq->blocked_load_avg -= load_contrib;
  937. else
  938. cfs_rq->blocked_load_avg = 0;
  939. }
  940. /* Update a sched_entity's runnable average */
  941. static inline void update_entity_load_avg(struct sched_entity *se,
  942. int update_cfs_rq)
  943. {
  944. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  945. long contrib_delta;
  946. if (!__update_entity_runnable_avg(rq_of(cfs_rq)->clock_task, &se->avg,
  947. se->on_rq))
  948. return;
  949. contrib_delta = __update_entity_load_avg_contrib(se);
  950. if (!update_cfs_rq)
  951. return;
  952. if (se->on_rq)
  953. cfs_rq->runnable_load_avg += contrib_delta;
  954. else
  955. subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
  956. }
  957. /*
  958. * Decay the load contributed by all blocked children and account this so that
  959. * their contribution may appropriately discounted when they wake up.
  960. */
  961. static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq)
  962. {
  963. u64 now = rq_of(cfs_rq)->clock_task >> 20;
  964. u64 decays;
  965. decays = now - cfs_rq->last_decay;
  966. if (!decays)
  967. return;
  968. cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
  969. decays);
  970. atomic64_add(decays, &cfs_rq->decay_counter);
  971. cfs_rq->last_decay = now;
  972. }
  973. static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
  974. {
  975. __update_entity_runnable_avg(rq->clock_task, &rq->avg, runnable);
  976. }
  977. /* Add the load generated by se into cfs_rq's child load-average */
  978. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  979. struct sched_entity *se,
  980. int wakeup)
  981. {
  982. /* we track migrations using entity decay_count == 0 */
  983. if (unlikely(!se->avg.decay_count)) {
  984. se->avg.last_runnable_update = rq_of(cfs_rq)->clock_task;
  985. wakeup = 0;
  986. } else {
  987. __synchronize_entity_decay(se);
  988. }
  989. if (wakeup)
  990. subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
  991. update_entity_load_avg(se, 0);
  992. cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
  993. update_cfs_rq_blocked_load(cfs_rq);
  994. }
  995. /*
  996. * Remove se's load from this cfs_rq child load-average, if the entity is
  997. * transitioning to a blocked state we track its projected decay using
  998. * blocked_load_avg.
  999. */
  1000. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1001. struct sched_entity *se,
  1002. int sleep)
  1003. {
  1004. update_entity_load_avg(se, 1);
  1005. cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
  1006. if (sleep) {
  1007. cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
  1008. se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
  1009. } /* migrations, e.g. sleep=0 leave decay_count == 0 */
  1010. }
  1011. #else
  1012. static inline void update_entity_load_avg(struct sched_entity *se,
  1013. int update_cfs_rq) {}
  1014. static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
  1015. static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
  1016. struct sched_entity *se,
  1017. int wakeup) {}
  1018. static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
  1019. struct sched_entity *se,
  1020. int sleep) {}
  1021. static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq) {}
  1022. #endif
  1023. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1024. {
  1025. #ifdef CONFIG_SCHEDSTATS
  1026. struct task_struct *tsk = NULL;
  1027. if (entity_is_task(se))
  1028. tsk = task_of(se);
  1029. if (se->statistics.sleep_start) {
  1030. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  1031. if ((s64)delta < 0)
  1032. delta = 0;
  1033. if (unlikely(delta > se->statistics.sleep_max))
  1034. se->statistics.sleep_max = delta;
  1035. se->statistics.sleep_start = 0;
  1036. se->statistics.sum_sleep_runtime += delta;
  1037. if (tsk) {
  1038. account_scheduler_latency(tsk, delta >> 10, 1);
  1039. trace_sched_stat_sleep(tsk, delta);
  1040. }
  1041. }
  1042. if (se->statistics.block_start) {
  1043. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  1044. if ((s64)delta < 0)
  1045. delta = 0;
  1046. if (unlikely(delta > se->statistics.block_max))
  1047. se->statistics.block_max = delta;
  1048. se->statistics.block_start = 0;
  1049. se->statistics.sum_sleep_runtime += delta;
  1050. if (tsk) {
  1051. if (tsk->in_iowait) {
  1052. se->statistics.iowait_sum += delta;
  1053. se->statistics.iowait_count++;
  1054. trace_sched_stat_iowait(tsk, delta);
  1055. }
  1056. trace_sched_stat_blocked(tsk, delta);
  1057. /*
  1058. * Blocking time is in units of nanosecs, so shift by
  1059. * 20 to get a milliseconds-range estimation of the
  1060. * amount of time that the task spent sleeping:
  1061. */
  1062. if (unlikely(prof_on == SLEEP_PROFILING)) {
  1063. profile_hits(SLEEP_PROFILING,
  1064. (void *)get_wchan(tsk),
  1065. delta >> 20);
  1066. }
  1067. account_scheduler_latency(tsk, delta >> 10, 0);
  1068. }
  1069. }
  1070. #endif
  1071. }
  1072. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1073. {
  1074. #ifdef CONFIG_SCHED_DEBUG
  1075. s64 d = se->vruntime - cfs_rq->min_vruntime;
  1076. if (d < 0)
  1077. d = -d;
  1078. if (d > 3*sysctl_sched_latency)
  1079. schedstat_inc(cfs_rq, nr_spread_over);
  1080. #endif
  1081. }
  1082. static void
  1083. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  1084. {
  1085. u64 vruntime = cfs_rq->min_vruntime;
  1086. /*
  1087. * The 'current' period is already promised to the current tasks,
  1088. * however the extra weight of the new task will slow them down a
  1089. * little, place the new task so that it fits in the slot that
  1090. * stays open at the end.
  1091. */
  1092. if (initial && sched_feat(START_DEBIT))
  1093. vruntime += sched_vslice(cfs_rq, se);
  1094. /* sleeps up to a single latency don't count. */
  1095. if (!initial) {
  1096. unsigned long thresh = sysctl_sched_latency;
  1097. /*
  1098. * Halve their sleep time's effect, to allow
  1099. * for a gentler effect of sleepers:
  1100. */
  1101. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  1102. thresh >>= 1;
  1103. vruntime -= thresh;
  1104. }
  1105. /* ensure we never gain time by being placed backwards. */
  1106. vruntime = max_vruntime(se->vruntime, vruntime);
  1107. se->vruntime = vruntime;
  1108. }
  1109. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  1110. static void
  1111. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  1112. {
  1113. /*
  1114. * Update the normalized vruntime before updating min_vruntime
  1115. * through callig update_curr().
  1116. */
  1117. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  1118. se->vruntime += cfs_rq->min_vruntime;
  1119. /*
  1120. * Update run-time statistics of the 'current'.
  1121. */
  1122. update_curr(cfs_rq);
  1123. update_cfs_load(cfs_rq, 0);
  1124. enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
  1125. account_entity_enqueue(cfs_rq, se);
  1126. update_cfs_shares(cfs_rq);
  1127. if (flags & ENQUEUE_WAKEUP) {
  1128. place_entity(cfs_rq, se, 0);
  1129. enqueue_sleeper(cfs_rq, se);
  1130. }
  1131. update_stats_enqueue(cfs_rq, se);
  1132. check_spread(cfs_rq, se);
  1133. if (se != cfs_rq->curr)
  1134. __enqueue_entity(cfs_rq, se);
  1135. se->on_rq = 1;
  1136. if (cfs_rq->nr_running == 1) {
  1137. list_add_leaf_cfs_rq(cfs_rq);
  1138. check_enqueue_throttle(cfs_rq);
  1139. }
  1140. }
  1141. static void __clear_buddies_last(struct sched_entity *se)
  1142. {
  1143. for_each_sched_entity(se) {
  1144. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1145. if (cfs_rq->last == se)
  1146. cfs_rq->last = NULL;
  1147. else
  1148. break;
  1149. }
  1150. }
  1151. static void __clear_buddies_next(struct sched_entity *se)
  1152. {
  1153. for_each_sched_entity(se) {
  1154. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1155. if (cfs_rq->next == se)
  1156. cfs_rq->next = NULL;
  1157. else
  1158. break;
  1159. }
  1160. }
  1161. static void __clear_buddies_skip(struct sched_entity *se)
  1162. {
  1163. for_each_sched_entity(se) {
  1164. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1165. if (cfs_rq->skip == se)
  1166. cfs_rq->skip = NULL;
  1167. else
  1168. break;
  1169. }
  1170. }
  1171. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1172. {
  1173. if (cfs_rq->last == se)
  1174. __clear_buddies_last(se);
  1175. if (cfs_rq->next == se)
  1176. __clear_buddies_next(se);
  1177. if (cfs_rq->skip == se)
  1178. __clear_buddies_skip(se);
  1179. }
  1180. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1181. static void
  1182. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  1183. {
  1184. /*
  1185. * Update run-time statistics of the 'current'.
  1186. */
  1187. update_curr(cfs_rq);
  1188. dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
  1189. update_stats_dequeue(cfs_rq, se);
  1190. if (flags & DEQUEUE_SLEEP) {
  1191. #ifdef CONFIG_SCHEDSTATS
  1192. if (entity_is_task(se)) {
  1193. struct task_struct *tsk = task_of(se);
  1194. if (tsk->state & TASK_INTERRUPTIBLE)
  1195. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  1196. if (tsk->state & TASK_UNINTERRUPTIBLE)
  1197. se->statistics.block_start = rq_of(cfs_rq)->clock;
  1198. }
  1199. #endif
  1200. }
  1201. clear_buddies(cfs_rq, se);
  1202. if (se != cfs_rq->curr)
  1203. __dequeue_entity(cfs_rq, se);
  1204. se->on_rq = 0;
  1205. update_cfs_load(cfs_rq, 0);
  1206. account_entity_dequeue(cfs_rq, se);
  1207. /*
  1208. * Normalize the entity after updating the min_vruntime because the
  1209. * update can refer to the ->curr item and we need to reflect this
  1210. * movement in our normalized position.
  1211. */
  1212. if (!(flags & DEQUEUE_SLEEP))
  1213. se->vruntime -= cfs_rq->min_vruntime;
  1214. /* return excess runtime on last dequeue */
  1215. return_cfs_rq_runtime(cfs_rq);
  1216. update_min_vruntime(cfs_rq);
  1217. update_cfs_shares(cfs_rq);
  1218. }
  1219. /*
  1220. * Preempt the current task with a newly woken task if needed:
  1221. */
  1222. static void
  1223. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1224. {
  1225. unsigned long ideal_runtime, delta_exec;
  1226. struct sched_entity *se;
  1227. s64 delta;
  1228. ideal_runtime = sched_slice(cfs_rq, curr);
  1229. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1230. if (delta_exec > ideal_runtime) {
  1231. resched_task(rq_of(cfs_rq)->curr);
  1232. /*
  1233. * The current task ran long enough, ensure it doesn't get
  1234. * re-elected due to buddy favours.
  1235. */
  1236. clear_buddies(cfs_rq, curr);
  1237. return;
  1238. }
  1239. /*
  1240. * Ensure that a task that missed wakeup preemption by a
  1241. * narrow margin doesn't have to wait for a full slice.
  1242. * This also mitigates buddy induced latencies under load.
  1243. */
  1244. if (delta_exec < sysctl_sched_min_granularity)
  1245. return;
  1246. se = __pick_first_entity(cfs_rq);
  1247. delta = curr->vruntime - se->vruntime;
  1248. if (delta < 0)
  1249. return;
  1250. if (delta > ideal_runtime)
  1251. resched_task(rq_of(cfs_rq)->curr);
  1252. }
  1253. static void
  1254. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1255. {
  1256. /* 'current' is not kept within the tree. */
  1257. if (se->on_rq) {
  1258. /*
  1259. * Any task has to be enqueued before it get to execute on
  1260. * a CPU. So account for the time it spent waiting on the
  1261. * runqueue.
  1262. */
  1263. update_stats_wait_end(cfs_rq, se);
  1264. __dequeue_entity(cfs_rq, se);
  1265. }
  1266. update_stats_curr_start(cfs_rq, se);
  1267. cfs_rq->curr = se;
  1268. #ifdef CONFIG_SCHEDSTATS
  1269. /*
  1270. * Track our maximum slice length, if the CPU's load is at
  1271. * least twice that of our own weight (i.e. dont track it
  1272. * when there are only lesser-weight tasks around):
  1273. */
  1274. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1275. se->statistics.slice_max = max(se->statistics.slice_max,
  1276. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1277. }
  1278. #endif
  1279. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1280. }
  1281. static int
  1282. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1283. /*
  1284. * Pick the next process, keeping these things in mind, in this order:
  1285. * 1) keep things fair between processes/task groups
  1286. * 2) pick the "next" process, since someone really wants that to run
  1287. * 3) pick the "last" process, for cache locality
  1288. * 4) do not run the "skip" process, if something else is available
  1289. */
  1290. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1291. {
  1292. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1293. struct sched_entity *left = se;
  1294. /*
  1295. * Avoid running the skip buddy, if running something else can
  1296. * be done without getting too unfair.
  1297. */
  1298. if (cfs_rq->skip == se) {
  1299. struct sched_entity *second = __pick_next_entity(se);
  1300. if (second && wakeup_preempt_entity(second, left) < 1)
  1301. se = second;
  1302. }
  1303. /*
  1304. * Prefer last buddy, try to return the CPU to a preempted task.
  1305. */
  1306. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1307. se = cfs_rq->last;
  1308. /*
  1309. * Someone really wants this to run. If it's not unfair, run it.
  1310. */
  1311. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1312. se = cfs_rq->next;
  1313. clear_buddies(cfs_rq, se);
  1314. return se;
  1315. }
  1316. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1317. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1318. {
  1319. /*
  1320. * If still on the runqueue then deactivate_task()
  1321. * was not called and update_curr() has to be done:
  1322. */
  1323. if (prev->on_rq)
  1324. update_curr(cfs_rq);
  1325. /* throttle cfs_rqs exceeding runtime */
  1326. check_cfs_rq_runtime(cfs_rq);
  1327. check_spread(cfs_rq, prev);
  1328. if (prev->on_rq) {
  1329. update_stats_wait_start(cfs_rq, prev);
  1330. /* Put 'current' back into the tree. */
  1331. __enqueue_entity(cfs_rq, prev);
  1332. /* in !on_rq case, update occurred at dequeue */
  1333. update_entity_load_avg(prev, 1);
  1334. }
  1335. cfs_rq->curr = NULL;
  1336. }
  1337. static void
  1338. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1339. {
  1340. /*
  1341. * Update run-time statistics of the 'current'.
  1342. */
  1343. update_curr(cfs_rq);
  1344. /*
  1345. * Ensure that runnable average is periodically updated.
  1346. */
  1347. update_entity_load_avg(curr, 1);
  1348. update_cfs_rq_blocked_load(cfs_rq);
  1349. /*
  1350. * Update share accounting for long-running entities.
  1351. */
  1352. update_entity_shares_tick(cfs_rq);
  1353. #ifdef CONFIG_SCHED_HRTICK
  1354. /*
  1355. * queued ticks are scheduled to match the slice, so don't bother
  1356. * validating it and just reschedule.
  1357. */
  1358. if (queued) {
  1359. resched_task(rq_of(cfs_rq)->curr);
  1360. return;
  1361. }
  1362. /*
  1363. * don't let the period tick interfere with the hrtick preemption
  1364. */
  1365. if (!sched_feat(DOUBLE_TICK) &&
  1366. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1367. return;
  1368. #endif
  1369. if (cfs_rq->nr_running > 1)
  1370. check_preempt_tick(cfs_rq, curr);
  1371. }
  1372. /**************************************************
  1373. * CFS bandwidth control machinery
  1374. */
  1375. #ifdef CONFIG_CFS_BANDWIDTH
  1376. #ifdef HAVE_JUMP_LABEL
  1377. static struct static_key __cfs_bandwidth_used;
  1378. static inline bool cfs_bandwidth_used(void)
  1379. {
  1380. return static_key_false(&__cfs_bandwidth_used);
  1381. }
  1382. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1383. {
  1384. /* only need to count groups transitioning between enabled/!enabled */
  1385. if (enabled && !was_enabled)
  1386. static_key_slow_inc(&__cfs_bandwidth_used);
  1387. else if (!enabled && was_enabled)
  1388. static_key_slow_dec(&__cfs_bandwidth_used);
  1389. }
  1390. #else /* HAVE_JUMP_LABEL */
  1391. static bool cfs_bandwidth_used(void)
  1392. {
  1393. return true;
  1394. }
  1395. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1396. #endif /* HAVE_JUMP_LABEL */
  1397. /*
  1398. * default period for cfs group bandwidth.
  1399. * default: 0.1s, units: nanoseconds
  1400. */
  1401. static inline u64 default_cfs_period(void)
  1402. {
  1403. return 100000000ULL;
  1404. }
  1405. static inline u64 sched_cfs_bandwidth_slice(void)
  1406. {
  1407. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1408. }
  1409. /*
  1410. * Replenish runtime according to assigned quota and update expiration time.
  1411. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1412. * additional synchronization around rq->lock.
  1413. *
  1414. * requires cfs_b->lock
  1415. */
  1416. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1417. {
  1418. u64 now;
  1419. if (cfs_b->quota == RUNTIME_INF)
  1420. return;
  1421. now = sched_clock_cpu(smp_processor_id());
  1422. cfs_b->runtime = cfs_b->quota;
  1423. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1424. }
  1425. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1426. {
  1427. return &tg->cfs_bandwidth;
  1428. }
  1429. /* returns 0 on failure to allocate runtime */
  1430. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1431. {
  1432. struct task_group *tg = cfs_rq->tg;
  1433. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1434. u64 amount = 0, min_amount, expires;
  1435. /* note: this is a positive sum as runtime_remaining <= 0 */
  1436. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1437. raw_spin_lock(&cfs_b->lock);
  1438. if (cfs_b->quota == RUNTIME_INF)
  1439. amount = min_amount;
  1440. else {
  1441. /*
  1442. * If the bandwidth pool has become inactive, then at least one
  1443. * period must have elapsed since the last consumption.
  1444. * Refresh the global state and ensure bandwidth timer becomes
  1445. * active.
  1446. */
  1447. if (!cfs_b->timer_active) {
  1448. __refill_cfs_bandwidth_runtime(cfs_b);
  1449. __start_cfs_bandwidth(cfs_b);
  1450. }
  1451. if (cfs_b->runtime > 0) {
  1452. amount = min(cfs_b->runtime, min_amount);
  1453. cfs_b->runtime -= amount;
  1454. cfs_b->idle = 0;
  1455. }
  1456. }
  1457. expires = cfs_b->runtime_expires;
  1458. raw_spin_unlock(&cfs_b->lock);
  1459. cfs_rq->runtime_remaining += amount;
  1460. /*
  1461. * we may have advanced our local expiration to account for allowed
  1462. * spread between our sched_clock and the one on which runtime was
  1463. * issued.
  1464. */
  1465. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1466. cfs_rq->runtime_expires = expires;
  1467. return cfs_rq->runtime_remaining > 0;
  1468. }
  1469. /*
  1470. * Note: This depends on the synchronization provided by sched_clock and the
  1471. * fact that rq->clock snapshots this value.
  1472. */
  1473. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1474. {
  1475. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1476. struct rq *rq = rq_of(cfs_rq);
  1477. /* if the deadline is ahead of our clock, nothing to do */
  1478. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1479. return;
  1480. if (cfs_rq->runtime_remaining < 0)
  1481. return;
  1482. /*
  1483. * If the local deadline has passed we have to consider the
  1484. * possibility that our sched_clock is 'fast' and the global deadline
  1485. * has not truly expired.
  1486. *
  1487. * Fortunately we can check determine whether this the case by checking
  1488. * whether the global deadline has advanced.
  1489. */
  1490. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1491. /* extend local deadline, drift is bounded above by 2 ticks */
  1492. cfs_rq->runtime_expires += TICK_NSEC;
  1493. } else {
  1494. /* global deadline is ahead, expiration has passed */
  1495. cfs_rq->runtime_remaining = 0;
  1496. }
  1497. }
  1498. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1499. unsigned long delta_exec)
  1500. {
  1501. /* dock delta_exec before expiring quota (as it could span periods) */
  1502. cfs_rq->runtime_remaining -= delta_exec;
  1503. expire_cfs_rq_runtime(cfs_rq);
  1504. if (likely(cfs_rq->runtime_remaining > 0))
  1505. return;
  1506. /*
  1507. * if we're unable to extend our runtime we resched so that the active
  1508. * hierarchy can be throttled
  1509. */
  1510. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1511. resched_task(rq_of(cfs_rq)->curr);
  1512. }
  1513. static __always_inline
  1514. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
  1515. {
  1516. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1517. return;
  1518. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1519. }
  1520. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1521. {
  1522. return cfs_bandwidth_used() && cfs_rq->throttled;
  1523. }
  1524. /* check whether cfs_rq, or any parent, is throttled */
  1525. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1526. {
  1527. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1528. }
  1529. /*
  1530. * Ensure that neither of the group entities corresponding to src_cpu or
  1531. * dest_cpu are members of a throttled hierarchy when performing group
  1532. * load-balance operations.
  1533. */
  1534. static inline int throttled_lb_pair(struct task_group *tg,
  1535. int src_cpu, int dest_cpu)
  1536. {
  1537. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1538. src_cfs_rq = tg->cfs_rq[src_cpu];
  1539. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1540. return throttled_hierarchy(src_cfs_rq) ||
  1541. throttled_hierarchy(dest_cfs_rq);
  1542. }
  1543. /* updated child weight may affect parent so we have to do this bottom up */
  1544. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1545. {
  1546. struct rq *rq = data;
  1547. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1548. cfs_rq->throttle_count--;
  1549. #ifdef CONFIG_SMP
  1550. if (!cfs_rq->throttle_count) {
  1551. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1552. /* leaving throttled state, advance shares averaging windows */
  1553. cfs_rq->load_stamp += delta;
  1554. cfs_rq->load_last += delta;
  1555. /* update entity weight now that we are on_rq again */
  1556. update_cfs_shares(cfs_rq);
  1557. }
  1558. #endif
  1559. return 0;
  1560. }
  1561. static int tg_throttle_down(struct task_group *tg, void *data)
  1562. {
  1563. struct rq *rq = data;
  1564. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1565. /* group is entering throttled state, record last load */
  1566. if (!cfs_rq->throttle_count)
  1567. update_cfs_load(cfs_rq, 0);
  1568. cfs_rq->throttle_count++;
  1569. return 0;
  1570. }
  1571. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1572. {
  1573. struct rq *rq = rq_of(cfs_rq);
  1574. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1575. struct sched_entity *se;
  1576. long task_delta, dequeue = 1;
  1577. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1578. /* account load preceding throttle */
  1579. rcu_read_lock();
  1580. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1581. rcu_read_unlock();
  1582. task_delta = cfs_rq->h_nr_running;
  1583. for_each_sched_entity(se) {
  1584. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1585. /* throttled entity or throttle-on-deactivate */
  1586. if (!se->on_rq)
  1587. break;
  1588. if (dequeue)
  1589. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1590. qcfs_rq->h_nr_running -= task_delta;
  1591. if (qcfs_rq->load.weight)
  1592. dequeue = 0;
  1593. }
  1594. if (!se)
  1595. rq->nr_running -= task_delta;
  1596. cfs_rq->throttled = 1;
  1597. cfs_rq->throttled_timestamp = rq->clock;
  1598. raw_spin_lock(&cfs_b->lock);
  1599. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1600. raw_spin_unlock(&cfs_b->lock);
  1601. }
  1602. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1603. {
  1604. struct rq *rq = rq_of(cfs_rq);
  1605. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1606. struct sched_entity *se;
  1607. int enqueue = 1;
  1608. long task_delta;
  1609. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1610. cfs_rq->throttled = 0;
  1611. raw_spin_lock(&cfs_b->lock);
  1612. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1613. list_del_rcu(&cfs_rq->throttled_list);
  1614. raw_spin_unlock(&cfs_b->lock);
  1615. cfs_rq->throttled_timestamp = 0;
  1616. update_rq_clock(rq);
  1617. /* update hierarchical throttle state */
  1618. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1619. if (!cfs_rq->load.weight)
  1620. return;
  1621. task_delta = cfs_rq->h_nr_running;
  1622. for_each_sched_entity(se) {
  1623. if (se->on_rq)
  1624. enqueue = 0;
  1625. cfs_rq = cfs_rq_of(se);
  1626. if (enqueue)
  1627. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1628. cfs_rq->h_nr_running += task_delta;
  1629. if (cfs_rq_throttled(cfs_rq))
  1630. break;
  1631. }
  1632. if (!se)
  1633. rq->nr_running += task_delta;
  1634. /* determine whether we need to wake up potentially idle cpu */
  1635. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1636. resched_task(rq->curr);
  1637. }
  1638. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1639. u64 remaining, u64 expires)
  1640. {
  1641. struct cfs_rq *cfs_rq;
  1642. u64 runtime = remaining;
  1643. rcu_read_lock();
  1644. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1645. throttled_list) {
  1646. struct rq *rq = rq_of(cfs_rq);
  1647. raw_spin_lock(&rq->lock);
  1648. if (!cfs_rq_throttled(cfs_rq))
  1649. goto next;
  1650. runtime = -cfs_rq->runtime_remaining + 1;
  1651. if (runtime > remaining)
  1652. runtime = remaining;
  1653. remaining -= runtime;
  1654. cfs_rq->runtime_remaining += runtime;
  1655. cfs_rq->runtime_expires = expires;
  1656. /* we check whether we're throttled above */
  1657. if (cfs_rq->runtime_remaining > 0)
  1658. unthrottle_cfs_rq(cfs_rq);
  1659. next:
  1660. raw_spin_unlock(&rq->lock);
  1661. if (!remaining)
  1662. break;
  1663. }
  1664. rcu_read_unlock();
  1665. return remaining;
  1666. }
  1667. /*
  1668. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1669. * cfs_rqs as appropriate. If there has been no activity within the last
  1670. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1671. * used to track this state.
  1672. */
  1673. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1674. {
  1675. u64 runtime, runtime_expires;
  1676. int idle = 1, throttled;
  1677. raw_spin_lock(&cfs_b->lock);
  1678. /* no need to continue the timer with no bandwidth constraint */
  1679. if (cfs_b->quota == RUNTIME_INF)
  1680. goto out_unlock;
  1681. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1682. /* idle depends on !throttled (for the case of a large deficit) */
  1683. idle = cfs_b->idle && !throttled;
  1684. cfs_b->nr_periods += overrun;
  1685. /* if we're going inactive then everything else can be deferred */
  1686. if (idle)
  1687. goto out_unlock;
  1688. __refill_cfs_bandwidth_runtime(cfs_b);
  1689. if (!throttled) {
  1690. /* mark as potentially idle for the upcoming period */
  1691. cfs_b->idle = 1;
  1692. goto out_unlock;
  1693. }
  1694. /* account preceding periods in which throttling occurred */
  1695. cfs_b->nr_throttled += overrun;
  1696. /*
  1697. * There are throttled entities so we must first use the new bandwidth
  1698. * to unthrottle them before making it generally available. This
  1699. * ensures that all existing debts will be paid before a new cfs_rq is
  1700. * allowed to run.
  1701. */
  1702. runtime = cfs_b->runtime;
  1703. runtime_expires = cfs_b->runtime_expires;
  1704. cfs_b->runtime = 0;
  1705. /*
  1706. * This check is repeated as we are holding onto the new bandwidth
  1707. * while we unthrottle. This can potentially race with an unthrottled
  1708. * group trying to acquire new bandwidth from the global pool.
  1709. */
  1710. while (throttled && runtime > 0) {
  1711. raw_spin_unlock(&cfs_b->lock);
  1712. /* we can't nest cfs_b->lock while distributing bandwidth */
  1713. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1714. runtime_expires);
  1715. raw_spin_lock(&cfs_b->lock);
  1716. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1717. }
  1718. /* return (any) remaining runtime */
  1719. cfs_b->runtime = runtime;
  1720. /*
  1721. * While we are ensured activity in the period following an
  1722. * unthrottle, this also covers the case in which the new bandwidth is
  1723. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1724. * timer to remain active while there are any throttled entities.)
  1725. */
  1726. cfs_b->idle = 0;
  1727. out_unlock:
  1728. if (idle)
  1729. cfs_b->timer_active = 0;
  1730. raw_spin_unlock(&cfs_b->lock);
  1731. return idle;
  1732. }
  1733. /* a cfs_rq won't donate quota below this amount */
  1734. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1735. /* minimum remaining period time to redistribute slack quota */
  1736. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1737. /* how long we wait to gather additional slack before distributing */
  1738. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1739. /* are we near the end of the current quota period? */
  1740. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1741. {
  1742. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1743. u64 remaining;
  1744. /* if the call-back is running a quota refresh is already occurring */
  1745. if (hrtimer_callback_running(refresh_timer))
  1746. return 1;
  1747. /* is a quota refresh about to occur? */
  1748. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1749. if (remaining < min_expire)
  1750. return 1;
  1751. return 0;
  1752. }
  1753. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1754. {
  1755. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1756. /* if there's a quota refresh soon don't bother with slack */
  1757. if (runtime_refresh_within(cfs_b, min_left))
  1758. return;
  1759. start_bandwidth_timer(&cfs_b->slack_timer,
  1760. ns_to_ktime(cfs_bandwidth_slack_period));
  1761. }
  1762. /* we know any runtime found here is valid as update_curr() precedes return */
  1763. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1764. {
  1765. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1766. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1767. if (slack_runtime <= 0)
  1768. return;
  1769. raw_spin_lock(&cfs_b->lock);
  1770. if (cfs_b->quota != RUNTIME_INF &&
  1771. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1772. cfs_b->runtime += slack_runtime;
  1773. /* we are under rq->lock, defer unthrottling using a timer */
  1774. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1775. !list_empty(&cfs_b->throttled_cfs_rq))
  1776. start_cfs_slack_bandwidth(cfs_b);
  1777. }
  1778. raw_spin_unlock(&cfs_b->lock);
  1779. /* even if it's not valid for return we don't want to try again */
  1780. cfs_rq->runtime_remaining -= slack_runtime;
  1781. }
  1782. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1783. {
  1784. if (!cfs_bandwidth_used())
  1785. return;
  1786. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1787. return;
  1788. __return_cfs_rq_runtime(cfs_rq);
  1789. }
  1790. /*
  1791. * This is done with a timer (instead of inline with bandwidth return) since
  1792. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1793. */
  1794. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1795. {
  1796. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1797. u64 expires;
  1798. /* confirm we're still not at a refresh boundary */
  1799. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  1800. return;
  1801. raw_spin_lock(&cfs_b->lock);
  1802. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1803. runtime = cfs_b->runtime;
  1804. cfs_b->runtime = 0;
  1805. }
  1806. expires = cfs_b->runtime_expires;
  1807. raw_spin_unlock(&cfs_b->lock);
  1808. if (!runtime)
  1809. return;
  1810. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1811. raw_spin_lock(&cfs_b->lock);
  1812. if (expires == cfs_b->runtime_expires)
  1813. cfs_b->runtime = runtime;
  1814. raw_spin_unlock(&cfs_b->lock);
  1815. }
  1816. /*
  1817. * When a group wakes up we want to make sure that its quota is not already
  1818. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1819. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1820. */
  1821. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1822. {
  1823. if (!cfs_bandwidth_used())
  1824. return;
  1825. /* an active group must be handled by the update_curr()->put() path */
  1826. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1827. return;
  1828. /* ensure the group is not already throttled */
  1829. if (cfs_rq_throttled(cfs_rq))
  1830. return;
  1831. /* update runtime allocation */
  1832. account_cfs_rq_runtime(cfs_rq, 0);
  1833. if (cfs_rq->runtime_remaining <= 0)
  1834. throttle_cfs_rq(cfs_rq);
  1835. }
  1836. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1837. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1838. {
  1839. if (!cfs_bandwidth_used())
  1840. return;
  1841. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1842. return;
  1843. /*
  1844. * it's possible for a throttled entity to be forced into a running
  1845. * state (e.g. set_curr_task), in this case we're finished.
  1846. */
  1847. if (cfs_rq_throttled(cfs_rq))
  1848. return;
  1849. throttle_cfs_rq(cfs_rq);
  1850. }
  1851. static inline u64 default_cfs_period(void);
  1852. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  1853. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  1854. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  1855. {
  1856. struct cfs_bandwidth *cfs_b =
  1857. container_of(timer, struct cfs_bandwidth, slack_timer);
  1858. do_sched_cfs_slack_timer(cfs_b);
  1859. return HRTIMER_NORESTART;
  1860. }
  1861. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  1862. {
  1863. struct cfs_bandwidth *cfs_b =
  1864. container_of(timer, struct cfs_bandwidth, period_timer);
  1865. ktime_t now;
  1866. int overrun;
  1867. int idle = 0;
  1868. for (;;) {
  1869. now = hrtimer_cb_get_time(timer);
  1870. overrun = hrtimer_forward(timer, now, cfs_b->period);
  1871. if (!overrun)
  1872. break;
  1873. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  1874. }
  1875. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  1876. }
  1877. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1878. {
  1879. raw_spin_lock_init(&cfs_b->lock);
  1880. cfs_b->runtime = 0;
  1881. cfs_b->quota = RUNTIME_INF;
  1882. cfs_b->period = ns_to_ktime(default_cfs_period());
  1883. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  1884. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1885. cfs_b->period_timer.function = sched_cfs_period_timer;
  1886. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1887. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  1888. }
  1889. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1890. {
  1891. cfs_rq->runtime_enabled = 0;
  1892. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  1893. }
  1894. /* requires cfs_b->lock, may release to reprogram timer */
  1895. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1896. {
  1897. /*
  1898. * The timer may be active because we're trying to set a new bandwidth
  1899. * period or because we're racing with the tear-down path
  1900. * (timer_active==0 becomes visible before the hrtimer call-back
  1901. * terminates). In either case we ensure that it's re-programmed
  1902. */
  1903. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  1904. raw_spin_unlock(&cfs_b->lock);
  1905. /* ensure cfs_b->lock is available while we wait */
  1906. hrtimer_cancel(&cfs_b->period_timer);
  1907. raw_spin_lock(&cfs_b->lock);
  1908. /* if someone else restarted the timer then we're done */
  1909. if (cfs_b->timer_active)
  1910. return;
  1911. }
  1912. cfs_b->timer_active = 1;
  1913. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  1914. }
  1915. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1916. {
  1917. hrtimer_cancel(&cfs_b->period_timer);
  1918. hrtimer_cancel(&cfs_b->slack_timer);
  1919. }
  1920. static void unthrottle_offline_cfs_rqs(struct rq *rq)
  1921. {
  1922. struct cfs_rq *cfs_rq;
  1923. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1924. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1925. if (!cfs_rq->runtime_enabled)
  1926. continue;
  1927. /*
  1928. * clock_task is not advancing so we just need to make sure
  1929. * there's some valid quota amount
  1930. */
  1931. cfs_rq->runtime_remaining = cfs_b->quota;
  1932. if (cfs_rq_throttled(cfs_rq))
  1933. unthrottle_cfs_rq(cfs_rq);
  1934. }
  1935. }
  1936. #else /* CONFIG_CFS_BANDWIDTH */
  1937. static __always_inline
  1938. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
  1939. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1940. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1941. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1942. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1943. {
  1944. return 0;
  1945. }
  1946. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1947. {
  1948. return 0;
  1949. }
  1950. static inline int throttled_lb_pair(struct task_group *tg,
  1951. int src_cpu, int dest_cpu)
  1952. {
  1953. return 0;
  1954. }
  1955. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1956. #ifdef CONFIG_FAIR_GROUP_SCHED
  1957. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1958. #endif
  1959. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1960. {
  1961. return NULL;
  1962. }
  1963. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1964. static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  1965. #endif /* CONFIG_CFS_BANDWIDTH */
  1966. /**************************************************
  1967. * CFS operations on tasks:
  1968. */
  1969. #ifdef CONFIG_SCHED_HRTICK
  1970. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1971. {
  1972. struct sched_entity *se = &p->se;
  1973. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1974. WARN_ON(task_rq(p) != rq);
  1975. if (cfs_rq->nr_running > 1) {
  1976. u64 slice = sched_slice(cfs_rq, se);
  1977. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1978. s64 delta = slice - ran;
  1979. if (delta < 0) {
  1980. if (rq->curr == p)
  1981. resched_task(p);
  1982. return;
  1983. }
  1984. /*
  1985. * Don't schedule slices shorter than 10000ns, that just
  1986. * doesn't make sense. Rely on vruntime for fairness.
  1987. */
  1988. if (rq->curr != p)
  1989. delta = max_t(s64, 10000LL, delta);
  1990. hrtick_start(rq, delta);
  1991. }
  1992. }
  1993. /*
  1994. * called from enqueue/dequeue and updates the hrtick when the
  1995. * current task is from our class and nr_running is low enough
  1996. * to matter.
  1997. */
  1998. static void hrtick_update(struct rq *rq)
  1999. {
  2000. struct task_struct *curr = rq->curr;
  2001. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  2002. return;
  2003. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  2004. hrtick_start_fair(rq, curr);
  2005. }
  2006. #else /* !CONFIG_SCHED_HRTICK */
  2007. static inline void
  2008. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  2009. {
  2010. }
  2011. static inline void hrtick_update(struct rq *rq)
  2012. {
  2013. }
  2014. #endif
  2015. /*
  2016. * The enqueue_task method is called before nr_running is
  2017. * increased. Here we update the fair scheduling stats and
  2018. * then put the task into the rbtree:
  2019. */
  2020. static void
  2021. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  2022. {
  2023. struct cfs_rq *cfs_rq;
  2024. struct sched_entity *se = &p->se;
  2025. for_each_sched_entity(se) {
  2026. if (se->on_rq)
  2027. break;
  2028. cfs_rq = cfs_rq_of(se);
  2029. enqueue_entity(cfs_rq, se, flags);
  2030. /*
  2031. * end evaluation on encountering a throttled cfs_rq
  2032. *
  2033. * note: in the case of encountering a throttled cfs_rq we will
  2034. * post the final h_nr_running increment below.
  2035. */
  2036. if (cfs_rq_throttled(cfs_rq))
  2037. break;
  2038. cfs_rq->h_nr_running++;
  2039. flags = ENQUEUE_WAKEUP;
  2040. }
  2041. for_each_sched_entity(se) {
  2042. cfs_rq = cfs_rq_of(se);
  2043. cfs_rq->h_nr_running++;
  2044. if (cfs_rq_throttled(cfs_rq))
  2045. break;
  2046. update_cfs_load(cfs_rq, 0);
  2047. update_cfs_shares(cfs_rq);
  2048. update_entity_load_avg(se, 1);
  2049. }
  2050. if (!se) {
  2051. update_rq_runnable_avg(rq, rq->nr_running);
  2052. inc_nr_running(rq);
  2053. }
  2054. hrtick_update(rq);
  2055. }
  2056. static void set_next_buddy(struct sched_entity *se);
  2057. /*
  2058. * The dequeue_task method is called before nr_running is
  2059. * decreased. We remove the task from the rbtree and
  2060. * update the fair scheduling stats:
  2061. */
  2062. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  2063. {
  2064. struct cfs_rq *cfs_rq;
  2065. struct sched_entity *se = &p->se;
  2066. int task_sleep = flags & DEQUEUE_SLEEP;
  2067. for_each_sched_entity(se) {
  2068. cfs_rq = cfs_rq_of(se);
  2069. dequeue_entity(cfs_rq, se, flags);
  2070. /*
  2071. * end evaluation on encountering a throttled cfs_rq
  2072. *
  2073. * note: in the case of encountering a throttled cfs_rq we will
  2074. * post the final h_nr_running decrement below.
  2075. */
  2076. if (cfs_rq_throttled(cfs_rq))
  2077. break;
  2078. cfs_rq->h_nr_running--;
  2079. /* Don't dequeue parent if it has other entities besides us */
  2080. if (cfs_rq->load.weight) {
  2081. /*
  2082. * Bias pick_next to pick a task from this cfs_rq, as
  2083. * p is sleeping when it is within its sched_slice.
  2084. */
  2085. if (task_sleep && parent_entity(se))
  2086. set_next_buddy(parent_entity(se));
  2087. /* avoid re-evaluating load for this entity */
  2088. se = parent_entity(se);
  2089. break;
  2090. }
  2091. flags |= DEQUEUE_SLEEP;
  2092. }
  2093. for_each_sched_entity(se) {
  2094. cfs_rq = cfs_rq_of(se);
  2095. cfs_rq->h_nr_running--;
  2096. if (cfs_rq_throttled(cfs_rq))
  2097. break;
  2098. update_cfs_load(cfs_rq, 0);
  2099. update_cfs_shares(cfs_rq);
  2100. update_entity_load_avg(se, 1);
  2101. }
  2102. if (!se) {
  2103. dec_nr_running(rq);
  2104. update_rq_runnable_avg(rq, 1);
  2105. }
  2106. hrtick_update(rq);
  2107. }
  2108. #ifdef CONFIG_SMP
  2109. /* Used instead of source_load when we know the type == 0 */
  2110. static unsigned long weighted_cpuload(const int cpu)
  2111. {
  2112. return cpu_rq(cpu)->load.weight;
  2113. }
  2114. /*
  2115. * Return a low guess at the load of a migration-source cpu weighted
  2116. * according to the scheduling class and "nice" value.
  2117. *
  2118. * We want to under-estimate the load of migration sources, to
  2119. * balance conservatively.
  2120. */
  2121. static unsigned long source_load(int cpu, int type)
  2122. {
  2123. struct rq *rq = cpu_rq(cpu);
  2124. unsigned long total = weighted_cpuload(cpu);
  2125. if (type == 0 || !sched_feat(LB_BIAS))
  2126. return total;
  2127. return min(rq->cpu_load[type-1], total);
  2128. }
  2129. /*
  2130. * Return a high guess at the load of a migration-target cpu weighted
  2131. * according to the scheduling class and "nice" value.
  2132. */
  2133. static unsigned long target_load(int cpu, int type)
  2134. {
  2135. struct rq *rq = cpu_rq(cpu);
  2136. unsigned long total = weighted_cpuload(cpu);
  2137. if (type == 0 || !sched_feat(LB_BIAS))
  2138. return total;
  2139. return max(rq->cpu_load[type-1], total);
  2140. }
  2141. static unsigned long power_of(int cpu)
  2142. {
  2143. return cpu_rq(cpu)->cpu_power;
  2144. }
  2145. static unsigned long cpu_avg_load_per_task(int cpu)
  2146. {
  2147. struct rq *rq = cpu_rq(cpu);
  2148. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  2149. if (nr_running)
  2150. return rq->load.weight / nr_running;
  2151. return 0;
  2152. }
  2153. static void task_waking_fair(struct task_struct *p)
  2154. {
  2155. struct sched_entity *se = &p->se;
  2156. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  2157. u64 min_vruntime;
  2158. #ifndef CONFIG_64BIT
  2159. u64 min_vruntime_copy;
  2160. do {
  2161. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  2162. smp_rmb();
  2163. min_vruntime = cfs_rq->min_vruntime;
  2164. } while (min_vruntime != min_vruntime_copy);
  2165. #else
  2166. min_vruntime = cfs_rq->min_vruntime;
  2167. #endif
  2168. se->vruntime -= min_vruntime;
  2169. }
  2170. #ifdef CONFIG_FAIR_GROUP_SCHED
  2171. /*
  2172. * effective_load() calculates the load change as seen from the root_task_group
  2173. *
  2174. * Adding load to a group doesn't make a group heavier, but can cause movement
  2175. * of group shares between cpus. Assuming the shares were perfectly aligned one
  2176. * can calculate the shift in shares.
  2177. *
  2178. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  2179. * on this @cpu and results in a total addition (subtraction) of @wg to the
  2180. * total group weight.
  2181. *
  2182. * Given a runqueue weight distribution (rw_i) we can compute a shares
  2183. * distribution (s_i) using:
  2184. *
  2185. * s_i = rw_i / \Sum rw_j (1)
  2186. *
  2187. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  2188. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  2189. * shares distribution (s_i):
  2190. *
  2191. * rw_i = { 2, 4, 1, 0 }
  2192. * s_i = { 2/7, 4/7, 1/7, 0 }
  2193. *
  2194. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  2195. * task used to run on and the CPU the waker is running on), we need to
  2196. * compute the effect of waking a task on either CPU and, in case of a sync
  2197. * wakeup, compute the effect of the current task going to sleep.
  2198. *
  2199. * So for a change of @wl to the local @cpu with an overall group weight change
  2200. * of @wl we can compute the new shares distribution (s'_i) using:
  2201. *
  2202. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  2203. *
  2204. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  2205. * differences in waking a task to CPU 0. The additional task changes the
  2206. * weight and shares distributions like:
  2207. *
  2208. * rw'_i = { 3, 4, 1, 0 }
  2209. * s'_i = { 3/8, 4/8, 1/8, 0 }
  2210. *
  2211. * We can then compute the difference in effective weight by using:
  2212. *
  2213. * dw_i = S * (s'_i - s_i) (3)
  2214. *
  2215. * Where 'S' is the group weight as seen by its parent.
  2216. *
  2217. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  2218. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  2219. * 4/7) times the weight of the group.
  2220. */
  2221. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2222. {
  2223. struct sched_entity *se = tg->se[cpu];
  2224. if (!tg->parent) /* the trivial, non-cgroup case */
  2225. return wl;
  2226. for_each_sched_entity(se) {
  2227. long w, W;
  2228. tg = se->my_q->tg;
  2229. /*
  2230. * W = @wg + \Sum rw_j
  2231. */
  2232. W = wg + calc_tg_weight(tg, se->my_q);
  2233. /*
  2234. * w = rw_i + @wl
  2235. */
  2236. w = se->my_q->load.weight + wl;
  2237. /*
  2238. * wl = S * s'_i; see (2)
  2239. */
  2240. if (W > 0 && w < W)
  2241. wl = (w * tg->shares) / W;
  2242. else
  2243. wl = tg->shares;
  2244. /*
  2245. * Per the above, wl is the new se->load.weight value; since
  2246. * those are clipped to [MIN_SHARES, ...) do so now. See
  2247. * calc_cfs_shares().
  2248. */
  2249. if (wl < MIN_SHARES)
  2250. wl = MIN_SHARES;
  2251. /*
  2252. * wl = dw_i = S * (s'_i - s_i); see (3)
  2253. */
  2254. wl -= se->load.weight;
  2255. /*
  2256. * Recursively apply this logic to all parent groups to compute
  2257. * the final effective load change on the root group. Since
  2258. * only the @tg group gets extra weight, all parent groups can
  2259. * only redistribute existing shares. @wl is the shift in shares
  2260. * resulting from this level per the above.
  2261. */
  2262. wg = 0;
  2263. }
  2264. return wl;
  2265. }
  2266. #else
  2267. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2268. unsigned long wl, unsigned long wg)
  2269. {
  2270. return wl;
  2271. }
  2272. #endif
  2273. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2274. {
  2275. s64 this_load, load;
  2276. int idx, this_cpu, prev_cpu;
  2277. unsigned long tl_per_task;
  2278. struct task_group *tg;
  2279. unsigned long weight;
  2280. int balanced;
  2281. idx = sd->wake_idx;
  2282. this_cpu = smp_processor_id();
  2283. prev_cpu = task_cpu(p);
  2284. load = source_load(prev_cpu, idx);
  2285. this_load = target_load(this_cpu, idx);
  2286. /*
  2287. * If sync wakeup then subtract the (maximum possible)
  2288. * effect of the currently running task from the load
  2289. * of the current CPU:
  2290. */
  2291. if (sync) {
  2292. tg = task_group(current);
  2293. weight = current->se.load.weight;
  2294. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2295. load += effective_load(tg, prev_cpu, 0, -weight);
  2296. }
  2297. tg = task_group(p);
  2298. weight = p->se.load.weight;
  2299. /*
  2300. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2301. * due to the sync cause above having dropped this_load to 0, we'll
  2302. * always have an imbalance, but there's really nothing you can do
  2303. * about that, so that's good too.
  2304. *
  2305. * Otherwise check if either cpus are near enough in load to allow this
  2306. * task to be woken on this_cpu.
  2307. */
  2308. if (this_load > 0) {
  2309. s64 this_eff_load, prev_eff_load;
  2310. this_eff_load = 100;
  2311. this_eff_load *= power_of(prev_cpu);
  2312. this_eff_load *= this_load +
  2313. effective_load(tg, this_cpu, weight, weight);
  2314. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2315. prev_eff_load *= power_of(this_cpu);
  2316. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2317. balanced = this_eff_load <= prev_eff_load;
  2318. } else
  2319. balanced = true;
  2320. /*
  2321. * If the currently running task will sleep within
  2322. * a reasonable amount of time then attract this newly
  2323. * woken task:
  2324. */
  2325. if (sync && balanced)
  2326. return 1;
  2327. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2328. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2329. if (balanced ||
  2330. (this_load <= load &&
  2331. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2332. /*
  2333. * This domain has SD_WAKE_AFFINE and
  2334. * p is cache cold in this domain, and
  2335. * there is no bad imbalance.
  2336. */
  2337. schedstat_inc(sd, ttwu_move_affine);
  2338. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2339. return 1;
  2340. }
  2341. return 0;
  2342. }
  2343. /*
  2344. * find_idlest_group finds and returns the least busy CPU group within the
  2345. * domain.
  2346. */
  2347. static struct sched_group *
  2348. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2349. int this_cpu, int load_idx)
  2350. {
  2351. struct sched_group *idlest = NULL, *group = sd->groups;
  2352. unsigned long min_load = ULONG_MAX, this_load = 0;
  2353. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2354. do {
  2355. unsigned long load, avg_load;
  2356. int local_group;
  2357. int i;
  2358. /* Skip over this group if it has no CPUs allowed */
  2359. if (!cpumask_intersects(sched_group_cpus(group),
  2360. tsk_cpus_allowed(p)))
  2361. continue;
  2362. local_group = cpumask_test_cpu(this_cpu,
  2363. sched_group_cpus(group));
  2364. /* Tally up the load of all CPUs in the group */
  2365. avg_load = 0;
  2366. for_each_cpu(i, sched_group_cpus(group)) {
  2367. /* Bias balancing toward cpus of our domain */
  2368. if (local_group)
  2369. load = source_load(i, load_idx);
  2370. else
  2371. load = target_load(i, load_idx);
  2372. avg_load += load;
  2373. }
  2374. /* Adjust by relative CPU power of the group */
  2375. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2376. if (local_group) {
  2377. this_load = avg_load;
  2378. } else if (avg_load < min_load) {
  2379. min_load = avg_load;
  2380. idlest = group;
  2381. }
  2382. } while (group = group->next, group != sd->groups);
  2383. if (!idlest || 100*this_load < imbalance*min_load)
  2384. return NULL;
  2385. return idlest;
  2386. }
  2387. /*
  2388. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2389. */
  2390. static int
  2391. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2392. {
  2393. unsigned long load, min_load = ULONG_MAX;
  2394. int idlest = -1;
  2395. int i;
  2396. /* Traverse only the allowed CPUs */
  2397. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2398. load = weighted_cpuload(i);
  2399. if (load < min_load || (load == min_load && i == this_cpu)) {
  2400. min_load = load;
  2401. idlest = i;
  2402. }
  2403. }
  2404. return idlest;
  2405. }
  2406. /*
  2407. * Try and locate an idle CPU in the sched_domain.
  2408. */
  2409. static int select_idle_sibling(struct task_struct *p, int target)
  2410. {
  2411. int cpu = smp_processor_id();
  2412. int prev_cpu = task_cpu(p);
  2413. struct sched_domain *sd;
  2414. struct sched_group *sg;
  2415. int i;
  2416. /*
  2417. * If the task is going to be woken-up on this cpu and if it is
  2418. * already idle, then it is the right target.
  2419. */
  2420. if (target == cpu && idle_cpu(cpu))
  2421. return cpu;
  2422. /*
  2423. * If the task is going to be woken-up on the cpu where it previously
  2424. * ran and if it is currently idle, then it the right target.
  2425. */
  2426. if (target == prev_cpu && idle_cpu(prev_cpu))
  2427. return prev_cpu;
  2428. /*
  2429. * Otherwise, iterate the domains and find an elegible idle cpu.
  2430. */
  2431. sd = rcu_dereference(per_cpu(sd_llc, target));
  2432. for_each_lower_domain(sd) {
  2433. sg = sd->groups;
  2434. do {
  2435. if (!cpumask_intersects(sched_group_cpus(sg),
  2436. tsk_cpus_allowed(p)))
  2437. goto next;
  2438. for_each_cpu(i, sched_group_cpus(sg)) {
  2439. if (!idle_cpu(i))
  2440. goto next;
  2441. }
  2442. target = cpumask_first_and(sched_group_cpus(sg),
  2443. tsk_cpus_allowed(p));
  2444. goto done;
  2445. next:
  2446. sg = sg->next;
  2447. } while (sg != sd->groups);
  2448. }
  2449. done:
  2450. return target;
  2451. }
  2452. /*
  2453. * sched_balance_self: balance the current task (running on cpu) in domains
  2454. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2455. * SD_BALANCE_EXEC.
  2456. *
  2457. * Balance, ie. select the least loaded group.
  2458. *
  2459. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2460. *
  2461. * preempt must be disabled.
  2462. */
  2463. static int
  2464. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2465. {
  2466. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2467. int cpu = smp_processor_id();
  2468. int prev_cpu = task_cpu(p);
  2469. int new_cpu = cpu;
  2470. int want_affine = 0;
  2471. int sync = wake_flags & WF_SYNC;
  2472. if (p->nr_cpus_allowed == 1)
  2473. return prev_cpu;
  2474. if (sd_flag & SD_BALANCE_WAKE) {
  2475. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2476. want_affine = 1;
  2477. new_cpu = prev_cpu;
  2478. }
  2479. rcu_read_lock();
  2480. for_each_domain(cpu, tmp) {
  2481. if (!(tmp->flags & SD_LOAD_BALANCE))
  2482. continue;
  2483. /*
  2484. * If both cpu and prev_cpu are part of this domain,
  2485. * cpu is a valid SD_WAKE_AFFINE target.
  2486. */
  2487. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2488. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2489. affine_sd = tmp;
  2490. break;
  2491. }
  2492. if (tmp->flags & sd_flag)
  2493. sd = tmp;
  2494. }
  2495. if (affine_sd) {
  2496. if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
  2497. prev_cpu = cpu;
  2498. new_cpu = select_idle_sibling(p, prev_cpu);
  2499. goto unlock;
  2500. }
  2501. while (sd) {
  2502. int load_idx = sd->forkexec_idx;
  2503. struct sched_group *group;
  2504. int weight;
  2505. if (!(sd->flags & sd_flag)) {
  2506. sd = sd->child;
  2507. continue;
  2508. }
  2509. if (sd_flag & SD_BALANCE_WAKE)
  2510. load_idx = sd->wake_idx;
  2511. group = find_idlest_group(sd, p, cpu, load_idx);
  2512. if (!group) {
  2513. sd = sd->child;
  2514. continue;
  2515. }
  2516. new_cpu = find_idlest_cpu(group, p, cpu);
  2517. if (new_cpu == -1 || new_cpu == cpu) {
  2518. /* Now try balancing at a lower domain level of cpu */
  2519. sd = sd->child;
  2520. continue;
  2521. }
  2522. /* Now try balancing at a lower domain level of new_cpu */
  2523. cpu = new_cpu;
  2524. weight = sd->span_weight;
  2525. sd = NULL;
  2526. for_each_domain(cpu, tmp) {
  2527. if (weight <= tmp->span_weight)
  2528. break;
  2529. if (tmp->flags & sd_flag)
  2530. sd = tmp;
  2531. }
  2532. /* while loop will break here if sd == NULL */
  2533. }
  2534. unlock:
  2535. rcu_read_unlock();
  2536. return new_cpu;
  2537. }
  2538. /*
  2539. * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
  2540. * cfs_rq_of(p) references at time of call are still valid and identify the
  2541. * previous cpu. However, the caller only guarantees p->pi_lock is held; no
  2542. * other assumptions, including the state of rq->lock, should be made.
  2543. */
  2544. static void
  2545. migrate_task_rq_fair(struct task_struct *p, int next_cpu)
  2546. {
  2547. }
  2548. #endif /* CONFIG_SMP */
  2549. static unsigned long
  2550. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2551. {
  2552. unsigned long gran = sysctl_sched_wakeup_granularity;
  2553. /*
  2554. * Since its curr running now, convert the gran from real-time
  2555. * to virtual-time in his units.
  2556. *
  2557. * By using 'se' instead of 'curr' we penalize light tasks, so
  2558. * they get preempted easier. That is, if 'se' < 'curr' then
  2559. * the resulting gran will be larger, therefore penalizing the
  2560. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2561. * be smaller, again penalizing the lighter task.
  2562. *
  2563. * This is especially important for buddies when the leftmost
  2564. * task is higher priority than the buddy.
  2565. */
  2566. return calc_delta_fair(gran, se);
  2567. }
  2568. /*
  2569. * Should 'se' preempt 'curr'.
  2570. *
  2571. * |s1
  2572. * |s2
  2573. * |s3
  2574. * g
  2575. * |<--->|c
  2576. *
  2577. * w(c, s1) = -1
  2578. * w(c, s2) = 0
  2579. * w(c, s3) = 1
  2580. *
  2581. */
  2582. static int
  2583. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2584. {
  2585. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2586. if (vdiff <= 0)
  2587. return -1;
  2588. gran = wakeup_gran(curr, se);
  2589. if (vdiff > gran)
  2590. return 1;
  2591. return 0;
  2592. }
  2593. static void set_last_buddy(struct sched_entity *se)
  2594. {
  2595. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2596. return;
  2597. for_each_sched_entity(se)
  2598. cfs_rq_of(se)->last = se;
  2599. }
  2600. static void set_next_buddy(struct sched_entity *se)
  2601. {
  2602. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2603. return;
  2604. for_each_sched_entity(se)
  2605. cfs_rq_of(se)->next = se;
  2606. }
  2607. static void set_skip_buddy(struct sched_entity *se)
  2608. {
  2609. for_each_sched_entity(se)
  2610. cfs_rq_of(se)->skip = se;
  2611. }
  2612. /*
  2613. * Preempt the current task with a newly woken task if needed:
  2614. */
  2615. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2616. {
  2617. struct task_struct *curr = rq->curr;
  2618. struct sched_entity *se = &curr->se, *pse = &p->se;
  2619. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2620. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2621. int next_buddy_marked = 0;
  2622. if (unlikely(se == pse))
  2623. return;
  2624. /*
  2625. * This is possible from callers such as move_task(), in which we
  2626. * unconditionally check_prempt_curr() after an enqueue (which may have
  2627. * lead to a throttle). This both saves work and prevents false
  2628. * next-buddy nomination below.
  2629. */
  2630. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2631. return;
  2632. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2633. set_next_buddy(pse);
  2634. next_buddy_marked = 1;
  2635. }
  2636. /*
  2637. * We can come here with TIF_NEED_RESCHED already set from new task
  2638. * wake up path.
  2639. *
  2640. * Note: this also catches the edge-case of curr being in a throttled
  2641. * group (e.g. via set_curr_task), since update_curr() (in the
  2642. * enqueue of curr) will have resulted in resched being set. This
  2643. * prevents us from potentially nominating it as a false LAST_BUDDY
  2644. * below.
  2645. */
  2646. if (test_tsk_need_resched(curr))
  2647. return;
  2648. /* Idle tasks are by definition preempted by non-idle tasks. */
  2649. if (unlikely(curr->policy == SCHED_IDLE) &&
  2650. likely(p->policy != SCHED_IDLE))
  2651. goto preempt;
  2652. /*
  2653. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2654. * is driven by the tick):
  2655. */
  2656. if (unlikely(p->policy != SCHED_NORMAL))
  2657. return;
  2658. find_matching_se(&se, &pse);
  2659. update_curr(cfs_rq_of(se));
  2660. BUG_ON(!pse);
  2661. if (wakeup_preempt_entity(se, pse) == 1) {
  2662. /*
  2663. * Bias pick_next to pick the sched entity that is
  2664. * triggering this preemption.
  2665. */
  2666. if (!next_buddy_marked)
  2667. set_next_buddy(pse);
  2668. goto preempt;
  2669. }
  2670. return;
  2671. preempt:
  2672. resched_task(curr);
  2673. /*
  2674. * Only set the backward buddy when the current task is still
  2675. * on the rq. This can happen when a wakeup gets interleaved
  2676. * with schedule on the ->pre_schedule() or idle_balance()
  2677. * point, either of which can * drop the rq lock.
  2678. *
  2679. * Also, during early boot the idle thread is in the fair class,
  2680. * for obvious reasons its a bad idea to schedule back to it.
  2681. */
  2682. if (unlikely(!se->on_rq || curr == rq->idle))
  2683. return;
  2684. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2685. set_last_buddy(se);
  2686. }
  2687. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2688. {
  2689. struct task_struct *p;
  2690. struct cfs_rq *cfs_rq = &rq->cfs;
  2691. struct sched_entity *se;
  2692. if (!cfs_rq->nr_running)
  2693. return NULL;
  2694. do {
  2695. se = pick_next_entity(cfs_rq);
  2696. set_next_entity(cfs_rq, se);
  2697. cfs_rq = group_cfs_rq(se);
  2698. } while (cfs_rq);
  2699. p = task_of(se);
  2700. if (hrtick_enabled(rq))
  2701. hrtick_start_fair(rq, p);
  2702. return p;
  2703. }
  2704. /*
  2705. * Account for a descheduled task:
  2706. */
  2707. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2708. {
  2709. struct sched_entity *se = &prev->se;
  2710. struct cfs_rq *cfs_rq;
  2711. for_each_sched_entity(se) {
  2712. cfs_rq = cfs_rq_of(se);
  2713. put_prev_entity(cfs_rq, se);
  2714. }
  2715. }
  2716. /*
  2717. * sched_yield() is very simple
  2718. *
  2719. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2720. */
  2721. static void yield_task_fair(struct rq *rq)
  2722. {
  2723. struct task_struct *curr = rq->curr;
  2724. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2725. struct sched_entity *se = &curr->se;
  2726. /*
  2727. * Are we the only task in the tree?
  2728. */
  2729. if (unlikely(rq->nr_running == 1))
  2730. return;
  2731. clear_buddies(cfs_rq, se);
  2732. if (curr->policy != SCHED_BATCH) {
  2733. update_rq_clock(rq);
  2734. /*
  2735. * Update run-time statistics of the 'current'.
  2736. */
  2737. update_curr(cfs_rq);
  2738. /*
  2739. * Tell update_rq_clock() that we've just updated,
  2740. * so we don't do microscopic update in schedule()
  2741. * and double the fastpath cost.
  2742. */
  2743. rq->skip_clock_update = 1;
  2744. }
  2745. set_skip_buddy(se);
  2746. }
  2747. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2748. {
  2749. struct sched_entity *se = &p->se;
  2750. /* throttled hierarchies are not runnable */
  2751. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2752. return false;
  2753. /* Tell the scheduler that we'd really like pse to run next. */
  2754. set_next_buddy(se);
  2755. yield_task_fair(rq);
  2756. return true;
  2757. }
  2758. #ifdef CONFIG_SMP
  2759. /**************************************************
  2760. * Fair scheduling class load-balancing methods:
  2761. */
  2762. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  2763. #define LBF_ALL_PINNED 0x01
  2764. #define LBF_NEED_BREAK 0x02
  2765. #define LBF_SOME_PINNED 0x04
  2766. struct lb_env {
  2767. struct sched_domain *sd;
  2768. struct rq *src_rq;
  2769. int src_cpu;
  2770. int dst_cpu;
  2771. struct rq *dst_rq;
  2772. struct cpumask *dst_grpmask;
  2773. int new_dst_cpu;
  2774. enum cpu_idle_type idle;
  2775. long imbalance;
  2776. /* The set of CPUs under consideration for load-balancing */
  2777. struct cpumask *cpus;
  2778. unsigned int flags;
  2779. unsigned int loop;
  2780. unsigned int loop_break;
  2781. unsigned int loop_max;
  2782. };
  2783. /*
  2784. * move_task - move a task from one runqueue to another runqueue.
  2785. * Both runqueues must be locked.
  2786. */
  2787. static void move_task(struct task_struct *p, struct lb_env *env)
  2788. {
  2789. deactivate_task(env->src_rq, p, 0);
  2790. set_task_cpu(p, env->dst_cpu);
  2791. activate_task(env->dst_rq, p, 0);
  2792. check_preempt_curr(env->dst_rq, p, 0);
  2793. }
  2794. /*
  2795. * Is this task likely cache-hot:
  2796. */
  2797. static int
  2798. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  2799. {
  2800. s64 delta;
  2801. if (p->sched_class != &fair_sched_class)
  2802. return 0;
  2803. if (unlikely(p->policy == SCHED_IDLE))
  2804. return 0;
  2805. /*
  2806. * Buddy candidates are cache hot:
  2807. */
  2808. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  2809. (&p->se == cfs_rq_of(&p->se)->next ||
  2810. &p->se == cfs_rq_of(&p->se)->last))
  2811. return 1;
  2812. if (sysctl_sched_migration_cost == -1)
  2813. return 1;
  2814. if (sysctl_sched_migration_cost == 0)
  2815. return 0;
  2816. delta = now - p->se.exec_start;
  2817. return delta < (s64)sysctl_sched_migration_cost;
  2818. }
  2819. /*
  2820. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2821. */
  2822. static
  2823. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  2824. {
  2825. int tsk_cache_hot = 0;
  2826. /*
  2827. * We do not migrate tasks that are:
  2828. * 1) running (obviously), or
  2829. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2830. * 3) are cache-hot on their current CPU.
  2831. */
  2832. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  2833. int new_dst_cpu;
  2834. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2835. /*
  2836. * Remember if this task can be migrated to any other cpu in
  2837. * our sched_group. We may want to revisit it if we couldn't
  2838. * meet load balance goals by pulling other tasks on src_cpu.
  2839. *
  2840. * Also avoid computing new_dst_cpu if we have already computed
  2841. * one in current iteration.
  2842. */
  2843. if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
  2844. return 0;
  2845. new_dst_cpu = cpumask_first_and(env->dst_grpmask,
  2846. tsk_cpus_allowed(p));
  2847. if (new_dst_cpu < nr_cpu_ids) {
  2848. env->flags |= LBF_SOME_PINNED;
  2849. env->new_dst_cpu = new_dst_cpu;
  2850. }
  2851. return 0;
  2852. }
  2853. /* Record that we found atleast one task that could run on dst_cpu */
  2854. env->flags &= ~LBF_ALL_PINNED;
  2855. if (task_running(env->src_rq, p)) {
  2856. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2857. return 0;
  2858. }
  2859. /*
  2860. * Aggressive migration if:
  2861. * 1) task is cache cold, or
  2862. * 2) too many balance attempts have failed.
  2863. */
  2864. tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
  2865. if (!tsk_cache_hot ||
  2866. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  2867. #ifdef CONFIG_SCHEDSTATS
  2868. if (tsk_cache_hot) {
  2869. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  2870. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2871. }
  2872. #endif
  2873. return 1;
  2874. }
  2875. if (tsk_cache_hot) {
  2876. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2877. return 0;
  2878. }
  2879. return 1;
  2880. }
  2881. /*
  2882. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2883. * part of active balancing operations within "domain".
  2884. * Returns 1 if successful and 0 otherwise.
  2885. *
  2886. * Called with both runqueues locked.
  2887. */
  2888. static int move_one_task(struct lb_env *env)
  2889. {
  2890. struct task_struct *p, *n;
  2891. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  2892. if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
  2893. continue;
  2894. if (!can_migrate_task(p, env))
  2895. continue;
  2896. move_task(p, env);
  2897. /*
  2898. * Right now, this is only the second place move_task()
  2899. * is called, so we can safely collect move_task()
  2900. * stats here rather than inside move_task().
  2901. */
  2902. schedstat_inc(env->sd, lb_gained[env->idle]);
  2903. return 1;
  2904. }
  2905. return 0;
  2906. }
  2907. static unsigned long task_h_load(struct task_struct *p);
  2908. static const unsigned int sched_nr_migrate_break = 32;
  2909. /*
  2910. * move_tasks tries to move up to imbalance weighted load from busiest to
  2911. * this_rq, as part of a balancing operation within domain "sd".
  2912. * Returns 1 if successful and 0 otherwise.
  2913. *
  2914. * Called with both runqueues locked.
  2915. */
  2916. static int move_tasks(struct lb_env *env)
  2917. {
  2918. struct list_head *tasks = &env->src_rq->cfs_tasks;
  2919. struct task_struct *p;
  2920. unsigned long load;
  2921. int pulled = 0;
  2922. if (env->imbalance <= 0)
  2923. return 0;
  2924. while (!list_empty(tasks)) {
  2925. p = list_first_entry(tasks, struct task_struct, se.group_node);
  2926. env->loop++;
  2927. /* We've more or less seen every task there is, call it quits */
  2928. if (env->loop > env->loop_max)
  2929. break;
  2930. /* take a breather every nr_migrate tasks */
  2931. if (env->loop > env->loop_break) {
  2932. env->loop_break += sched_nr_migrate_break;
  2933. env->flags |= LBF_NEED_BREAK;
  2934. break;
  2935. }
  2936. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  2937. goto next;
  2938. load = task_h_load(p);
  2939. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  2940. goto next;
  2941. if ((load / 2) > env->imbalance)
  2942. goto next;
  2943. if (!can_migrate_task(p, env))
  2944. goto next;
  2945. move_task(p, env);
  2946. pulled++;
  2947. env->imbalance -= load;
  2948. #ifdef CONFIG_PREEMPT
  2949. /*
  2950. * NEWIDLE balancing is a source of latency, so preemptible
  2951. * kernels will stop after the first task is pulled to minimize
  2952. * the critical section.
  2953. */
  2954. if (env->idle == CPU_NEWLY_IDLE)
  2955. break;
  2956. #endif
  2957. /*
  2958. * We only want to steal up to the prescribed amount of
  2959. * weighted load.
  2960. */
  2961. if (env->imbalance <= 0)
  2962. break;
  2963. continue;
  2964. next:
  2965. list_move_tail(&p->se.group_node, tasks);
  2966. }
  2967. /*
  2968. * Right now, this is one of only two places move_task() is called,
  2969. * so we can safely collect move_task() stats here rather than
  2970. * inside move_task().
  2971. */
  2972. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  2973. return pulled;
  2974. }
  2975. #ifdef CONFIG_FAIR_GROUP_SCHED
  2976. /*
  2977. * update tg->load_weight by folding this cpu's load_avg
  2978. */
  2979. static int update_shares_cpu(struct task_group *tg, int cpu)
  2980. {
  2981. struct cfs_rq *cfs_rq;
  2982. unsigned long flags;
  2983. struct rq *rq;
  2984. if (!tg->se[cpu])
  2985. return 0;
  2986. rq = cpu_rq(cpu);
  2987. cfs_rq = tg->cfs_rq[cpu];
  2988. raw_spin_lock_irqsave(&rq->lock, flags);
  2989. update_rq_clock(rq);
  2990. update_cfs_load(cfs_rq, 1);
  2991. update_cfs_rq_blocked_load(cfs_rq);
  2992. /*
  2993. * We need to update shares after updating tg->load_weight in
  2994. * order to adjust the weight of groups with long running tasks.
  2995. */
  2996. update_cfs_shares(cfs_rq);
  2997. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2998. return 0;
  2999. }
  3000. static void update_shares(int cpu)
  3001. {
  3002. struct cfs_rq *cfs_rq;
  3003. struct rq *rq = cpu_rq(cpu);
  3004. rcu_read_lock();
  3005. /*
  3006. * Iterates the task_group tree in a bottom up fashion, see
  3007. * list_add_leaf_cfs_rq() for details.
  3008. */
  3009. for_each_leaf_cfs_rq(rq, cfs_rq) {
  3010. /* throttled entities do not contribute to load */
  3011. if (throttled_hierarchy(cfs_rq))
  3012. continue;
  3013. update_shares_cpu(cfs_rq->tg, cpu);
  3014. }
  3015. rcu_read_unlock();
  3016. }
  3017. /*
  3018. * Compute the cpu's hierarchical load factor for each task group.
  3019. * This needs to be done in a top-down fashion because the load of a child
  3020. * group is a fraction of its parents load.
  3021. */
  3022. static int tg_load_down(struct task_group *tg, void *data)
  3023. {
  3024. unsigned long load;
  3025. long cpu = (long)data;
  3026. if (!tg->parent) {
  3027. load = cpu_rq(cpu)->load.weight;
  3028. } else {
  3029. load = tg->parent->cfs_rq[cpu]->h_load;
  3030. load *= tg->se[cpu]->load.weight;
  3031. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  3032. }
  3033. tg->cfs_rq[cpu]->h_load = load;
  3034. return 0;
  3035. }
  3036. static void update_h_load(long cpu)
  3037. {
  3038. struct rq *rq = cpu_rq(cpu);
  3039. unsigned long now = jiffies;
  3040. if (rq->h_load_throttle == now)
  3041. return;
  3042. rq->h_load_throttle = now;
  3043. rcu_read_lock();
  3044. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  3045. rcu_read_unlock();
  3046. }
  3047. static unsigned long task_h_load(struct task_struct *p)
  3048. {
  3049. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  3050. unsigned long load;
  3051. load = p->se.load.weight;
  3052. load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
  3053. return load;
  3054. }
  3055. #else
  3056. static inline void update_shares(int cpu)
  3057. {
  3058. }
  3059. static inline void update_h_load(long cpu)
  3060. {
  3061. }
  3062. static unsigned long task_h_load(struct task_struct *p)
  3063. {
  3064. return p->se.load.weight;
  3065. }
  3066. #endif
  3067. /********** Helpers for find_busiest_group ************************/
  3068. /*
  3069. * sd_lb_stats - Structure to store the statistics of a sched_domain
  3070. * during load balancing.
  3071. */
  3072. struct sd_lb_stats {
  3073. struct sched_group *busiest; /* Busiest group in this sd */
  3074. struct sched_group *this; /* Local group in this sd */
  3075. unsigned long total_load; /* Total load of all groups in sd */
  3076. unsigned long total_pwr; /* Total power of all groups in sd */
  3077. unsigned long avg_load; /* Average load across all groups in sd */
  3078. /** Statistics of this group */
  3079. unsigned long this_load;
  3080. unsigned long this_load_per_task;
  3081. unsigned long this_nr_running;
  3082. unsigned long this_has_capacity;
  3083. unsigned int this_idle_cpus;
  3084. /* Statistics of the busiest group */
  3085. unsigned int busiest_idle_cpus;
  3086. unsigned long max_load;
  3087. unsigned long busiest_load_per_task;
  3088. unsigned long busiest_nr_running;
  3089. unsigned long busiest_group_capacity;
  3090. unsigned long busiest_has_capacity;
  3091. unsigned int busiest_group_weight;
  3092. int group_imb; /* Is there imbalance in this sd */
  3093. };
  3094. /*
  3095. * sg_lb_stats - stats of a sched_group required for load_balancing
  3096. */
  3097. struct sg_lb_stats {
  3098. unsigned long avg_load; /*Avg load across the CPUs of the group */
  3099. unsigned long group_load; /* Total load over the CPUs of the group */
  3100. unsigned long sum_nr_running; /* Nr tasks running in the group */
  3101. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  3102. unsigned long group_capacity;
  3103. unsigned long idle_cpus;
  3104. unsigned long group_weight;
  3105. int group_imb; /* Is there an imbalance in the group ? */
  3106. int group_has_capacity; /* Is there extra capacity in the group? */
  3107. };
  3108. /**
  3109. * get_sd_load_idx - Obtain the load index for a given sched domain.
  3110. * @sd: The sched_domain whose load_idx is to be obtained.
  3111. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  3112. */
  3113. static inline int get_sd_load_idx(struct sched_domain *sd,
  3114. enum cpu_idle_type idle)
  3115. {
  3116. int load_idx;
  3117. switch (idle) {
  3118. case CPU_NOT_IDLE:
  3119. load_idx = sd->busy_idx;
  3120. break;
  3121. case CPU_NEWLY_IDLE:
  3122. load_idx = sd->newidle_idx;
  3123. break;
  3124. default:
  3125. load_idx = sd->idle_idx;
  3126. break;
  3127. }
  3128. return load_idx;
  3129. }
  3130. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3131. {
  3132. return SCHED_POWER_SCALE;
  3133. }
  3134. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3135. {
  3136. return default_scale_freq_power(sd, cpu);
  3137. }
  3138. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3139. {
  3140. unsigned long weight = sd->span_weight;
  3141. unsigned long smt_gain = sd->smt_gain;
  3142. smt_gain /= weight;
  3143. return smt_gain;
  3144. }
  3145. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3146. {
  3147. return default_scale_smt_power(sd, cpu);
  3148. }
  3149. unsigned long scale_rt_power(int cpu)
  3150. {
  3151. struct rq *rq = cpu_rq(cpu);
  3152. u64 total, available, age_stamp, avg;
  3153. /*
  3154. * Since we're reading these variables without serialization make sure
  3155. * we read them once before doing sanity checks on them.
  3156. */
  3157. age_stamp = ACCESS_ONCE(rq->age_stamp);
  3158. avg = ACCESS_ONCE(rq->rt_avg);
  3159. total = sched_avg_period() + (rq->clock - age_stamp);
  3160. if (unlikely(total < avg)) {
  3161. /* Ensures that power won't end up being negative */
  3162. available = 0;
  3163. } else {
  3164. available = total - avg;
  3165. }
  3166. if (unlikely((s64)total < SCHED_POWER_SCALE))
  3167. total = SCHED_POWER_SCALE;
  3168. total >>= SCHED_POWER_SHIFT;
  3169. return div_u64(available, total);
  3170. }
  3171. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3172. {
  3173. unsigned long weight = sd->span_weight;
  3174. unsigned long power = SCHED_POWER_SCALE;
  3175. struct sched_group *sdg = sd->groups;
  3176. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3177. if (sched_feat(ARCH_POWER))
  3178. power *= arch_scale_smt_power(sd, cpu);
  3179. else
  3180. power *= default_scale_smt_power(sd, cpu);
  3181. power >>= SCHED_POWER_SHIFT;
  3182. }
  3183. sdg->sgp->power_orig = power;
  3184. if (sched_feat(ARCH_POWER))
  3185. power *= arch_scale_freq_power(sd, cpu);
  3186. else
  3187. power *= default_scale_freq_power(sd, cpu);
  3188. power >>= SCHED_POWER_SHIFT;
  3189. power *= scale_rt_power(cpu);
  3190. power >>= SCHED_POWER_SHIFT;
  3191. if (!power)
  3192. power = 1;
  3193. cpu_rq(cpu)->cpu_power = power;
  3194. sdg->sgp->power = power;
  3195. }
  3196. void update_group_power(struct sched_domain *sd, int cpu)
  3197. {
  3198. struct sched_domain *child = sd->child;
  3199. struct sched_group *group, *sdg = sd->groups;
  3200. unsigned long power;
  3201. unsigned long interval;
  3202. interval = msecs_to_jiffies(sd->balance_interval);
  3203. interval = clamp(interval, 1UL, max_load_balance_interval);
  3204. sdg->sgp->next_update = jiffies + interval;
  3205. if (!child) {
  3206. update_cpu_power(sd, cpu);
  3207. return;
  3208. }
  3209. power = 0;
  3210. if (child->flags & SD_OVERLAP) {
  3211. /*
  3212. * SD_OVERLAP domains cannot assume that child groups
  3213. * span the current group.
  3214. */
  3215. for_each_cpu(cpu, sched_group_cpus(sdg))
  3216. power += power_of(cpu);
  3217. } else {
  3218. /*
  3219. * !SD_OVERLAP domains can assume that child groups
  3220. * span the current group.
  3221. */
  3222. group = child->groups;
  3223. do {
  3224. power += group->sgp->power;
  3225. group = group->next;
  3226. } while (group != child->groups);
  3227. }
  3228. sdg->sgp->power_orig = sdg->sgp->power = power;
  3229. }
  3230. /*
  3231. * Try and fix up capacity for tiny siblings, this is needed when
  3232. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  3233. * which on its own isn't powerful enough.
  3234. *
  3235. * See update_sd_pick_busiest() and check_asym_packing().
  3236. */
  3237. static inline int
  3238. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  3239. {
  3240. /*
  3241. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3242. */
  3243. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3244. return 0;
  3245. /*
  3246. * If ~90% of the cpu_power is still there, we're good.
  3247. */
  3248. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3249. return 1;
  3250. return 0;
  3251. }
  3252. /**
  3253. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3254. * @env: The load balancing environment.
  3255. * @group: sched_group whose statistics are to be updated.
  3256. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3257. * @local_group: Does group contain this_cpu.
  3258. * @balance: Should we balance.
  3259. * @sgs: variable to hold the statistics for this group.
  3260. */
  3261. static inline void update_sg_lb_stats(struct lb_env *env,
  3262. struct sched_group *group, int load_idx,
  3263. int local_group, int *balance, struct sg_lb_stats *sgs)
  3264. {
  3265. unsigned long nr_running, max_nr_running, min_nr_running;
  3266. unsigned long load, max_cpu_load, min_cpu_load;
  3267. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3268. unsigned long avg_load_per_task = 0;
  3269. int i;
  3270. if (local_group)
  3271. balance_cpu = group_balance_cpu(group);
  3272. /* Tally up the load of all CPUs in the group */
  3273. max_cpu_load = 0;
  3274. min_cpu_load = ~0UL;
  3275. max_nr_running = 0;
  3276. min_nr_running = ~0UL;
  3277. for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
  3278. struct rq *rq = cpu_rq(i);
  3279. nr_running = rq->nr_running;
  3280. /* Bias balancing toward cpus of our domain */
  3281. if (local_group) {
  3282. if (idle_cpu(i) && !first_idle_cpu &&
  3283. cpumask_test_cpu(i, sched_group_mask(group))) {
  3284. first_idle_cpu = 1;
  3285. balance_cpu = i;
  3286. }
  3287. load = target_load(i, load_idx);
  3288. } else {
  3289. load = source_load(i, load_idx);
  3290. if (load > max_cpu_load)
  3291. max_cpu_load = load;
  3292. if (min_cpu_load > load)
  3293. min_cpu_load = load;
  3294. if (nr_running > max_nr_running)
  3295. max_nr_running = nr_running;
  3296. if (min_nr_running > nr_running)
  3297. min_nr_running = nr_running;
  3298. }
  3299. sgs->group_load += load;
  3300. sgs->sum_nr_running += nr_running;
  3301. sgs->sum_weighted_load += weighted_cpuload(i);
  3302. if (idle_cpu(i))
  3303. sgs->idle_cpus++;
  3304. }
  3305. /*
  3306. * First idle cpu or the first cpu(busiest) in this sched group
  3307. * is eligible for doing load balancing at this and above
  3308. * domains. In the newly idle case, we will allow all the cpu's
  3309. * to do the newly idle load balance.
  3310. */
  3311. if (local_group) {
  3312. if (env->idle != CPU_NEWLY_IDLE) {
  3313. if (balance_cpu != env->dst_cpu) {
  3314. *balance = 0;
  3315. return;
  3316. }
  3317. update_group_power(env->sd, env->dst_cpu);
  3318. } else if (time_after_eq(jiffies, group->sgp->next_update))
  3319. update_group_power(env->sd, env->dst_cpu);
  3320. }
  3321. /* Adjust by relative CPU power of the group */
  3322. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3323. /*
  3324. * Consider the group unbalanced when the imbalance is larger
  3325. * than the average weight of a task.
  3326. *
  3327. * APZ: with cgroup the avg task weight can vary wildly and
  3328. * might not be a suitable number - should we keep a
  3329. * normalized nr_running number somewhere that negates
  3330. * the hierarchy?
  3331. */
  3332. if (sgs->sum_nr_running)
  3333. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3334. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
  3335. (max_nr_running - min_nr_running) > 1)
  3336. sgs->group_imb = 1;
  3337. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3338. SCHED_POWER_SCALE);
  3339. if (!sgs->group_capacity)
  3340. sgs->group_capacity = fix_small_capacity(env->sd, group);
  3341. sgs->group_weight = group->group_weight;
  3342. if (sgs->group_capacity > sgs->sum_nr_running)
  3343. sgs->group_has_capacity = 1;
  3344. }
  3345. /**
  3346. * update_sd_pick_busiest - return 1 on busiest group
  3347. * @env: The load balancing environment.
  3348. * @sds: sched_domain statistics
  3349. * @sg: sched_group candidate to be checked for being the busiest
  3350. * @sgs: sched_group statistics
  3351. *
  3352. * Determine if @sg is a busier group than the previously selected
  3353. * busiest group.
  3354. */
  3355. static bool update_sd_pick_busiest(struct lb_env *env,
  3356. struct sd_lb_stats *sds,
  3357. struct sched_group *sg,
  3358. struct sg_lb_stats *sgs)
  3359. {
  3360. if (sgs->avg_load <= sds->max_load)
  3361. return false;
  3362. if (sgs->sum_nr_running > sgs->group_capacity)
  3363. return true;
  3364. if (sgs->group_imb)
  3365. return true;
  3366. /*
  3367. * ASYM_PACKING needs to move all the work to the lowest
  3368. * numbered CPUs in the group, therefore mark all groups
  3369. * higher than ourself as busy.
  3370. */
  3371. if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3372. env->dst_cpu < group_first_cpu(sg)) {
  3373. if (!sds->busiest)
  3374. return true;
  3375. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3376. return true;
  3377. }
  3378. return false;
  3379. }
  3380. /**
  3381. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3382. * @env: The load balancing environment.
  3383. * @balance: Should we balance.
  3384. * @sds: variable to hold the statistics for this sched_domain.
  3385. */
  3386. static inline void update_sd_lb_stats(struct lb_env *env,
  3387. int *balance, struct sd_lb_stats *sds)
  3388. {
  3389. struct sched_domain *child = env->sd->child;
  3390. struct sched_group *sg = env->sd->groups;
  3391. struct sg_lb_stats sgs;
  3392. int load_idx, prefer_sibling = 0;
  3393. if (child && child->flags & SD_PREFER_SIBLING)
  3394. prefer_sibling = 1;
  3395. load_idx = get_sd_load_idx(env->sd, env->idle);
  3396. do {
  3397. int local_group;
  3398. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  3399. memset(&sgs, 0, sizeof(sgs));
  3400. update_sg_lb_stats(env, sg, load_idx, local_group, balance, &sgs);
  3401. if (local_group && !(*balance))
  3402. return;
  3403. sds->total_load += sgs.group_load;
  3404. sds->total_pwr += sg->sgp->power;
  3405. /*
  3406. * In case the child domain prefers tasks go to siblings
  3407. * first, lower the sg capacity to one so that we'll try
  3408. * and move all the excess tasks away. We lower the capacity
  3409. * of a group only if the local group has the capacity to fit
  3410. * these excess tasks, i.e. nr_running < group_capacity. The
  3411. * extra check prevents the case where you always pull from the
  3412. * heaviest group when it is already under-utilized (possible
  3413. * with a large weight task outweighs the tasks on the system).
  3414. */
  3415. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3416. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3417. if (local_group) {
  3418. sds->this_load = sgs.avg_load;
  3419. sds->this = sg;
  3420. sds->this_nr_running = sgs.sum_nr_running;
  3421. sds->this_load_per_task = sgs.sum_weighted_load;
  3422. sds->this_has_capacity = sgs.group_has_capacity;
  3423. sds->this_idle_cpus = sgs.idle_cpus;
  3424. } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
  3425. sds->max_load = sgs.avg_load;
  3426. sds->busiest = sg;
  3427. sds->busiest_nr_running = sgs.sum_nr_running;
  3428. sds->busiest_idle_cpus = sgs.idle_cpus;
  3429. sds->busiest_group_capacity = sgs.group_capacity;
  3430. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3431. sds->busiest_has_capacity = sgs.group_has_capacity;
  3432. sds->busiest_group_weight = sgs.group_weight;
  3433. sds->group_imb = sgs.group_imb;
  3434. }
  3435. sg = sg->next;
  3436. } while (sg != env->sd->groups);
  3437. }
  3438. /**
  3439. * check_asym_packing - Check to see if the group is packed into the
  3440. * sched doman.
  3441. *
  3442. * This is primarily intended to used at the sibling level. Some
  3443. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3444. * case of POWER7, it can move to lower SMT modes only when higher
  3445. * threads are idle. When in lower SMT modes, the threads will
  3446. * perform better since they share less core resources. Hence when we
  3447. * have idle threads, we want them to be the higher ones.
  3448. *
  3449. * This packing function is run on idle threads. It checks to see if
  3450. * the busiest CPU in this domain (core in the P7 case) has a higher
  3451. * CPU number than the packing function is being run on. Here we are
  3452. * assuming lower CPU number will be equivalent to lower a SMT thread
  3453. * number.
  3454. *
  3455. * Returns 1 when packing is required and a task should be moved to
  3456. * this CPU. The amount of the imbalance is returned in *imbalance.
  3457. *
  3458. * @env: The load balancing environment.
  3459. * @sds: Statistics of the sched_domain which is to be packed
  3460. */
  3461. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  3462. {
  3463. int busiest_cpu;
  3464. if (!(env->sd->flags & SD_ASYM_PACKING))
  3465. return 0;
  3466. if (!sds->busiest)
  3467. return 0;
  3468. busiest_cpu = group_first_cpu(sds->busiest);
  3469. if (env->dst_cpu > busiest_cpu)
  3470. return 0;
  3471. env->imbalance = DIV_ROUND_CLOSEST(
  3472. sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
  3473. return 1;
  3474. }
  3475. /**
  3476. * fix_small_imbalance - Calculate the minor imbalance that exists
  3477. * amongst the groups of a sched_domain, during
  3478. * load balancing.
  3479. * @env: The load balancing environment.
  3480. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3481. */
  3482. static inline
  3483. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3484. {
  3485. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3486. unsigned int imbn = 2;
  3487. unsigned long scaled_busy_load_per_task;
  3488. if (sds->this_nr_running) {
  3489. sds->this_load_per_task /= sds->this_nr_running;
  3490. if (sds->busiest_load_per_task >
  3491. sds->this_load_per_task)
  3492. imbn = 1;
  3493. } else {
  3494. sds->this_load_per_task =
  3495. cpu_avg_load_per_task(env->dst_cpu);
  3496. }
  3497. scaled_busy_load_per_task = sds->busiest_load_per_task
  3498. * SCHED_POWER_SCALE;
  3499. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3500. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3501. (scaled_busy_load_per_task * imbn)) {
  3502. env->imbalance = sds->busiest_load_per_task;
  3503. return;
  3504. }
  3505. /*
  3506. * OK, we don't have enough imbalance to justify moving tasks,
  3507. * however we may be able to increase total CPU power used by
  3508. * moving them.
  3509. */
  3510. pwr_now += sds->busiest->sgp->power *
  3511. min(sds->busiest_load_per_task, sds->max_load);
  3512. pwr_now += sds->this->sgp->power *
  3513. min(sds->this_load_per_task, sds->this_load);
  3514. pwr_now /= SCHED_POWER_SCALE;
  3515. /* Amount of load we'd subtract */
  3516. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3517. sds->busiest->sgp->power;
  3518. if (sds->max_load > tmp)
  3519. pwr_move += sds->busiest->sgp->power *
  3520. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3521. /* Amount of load we'd add */
  3522. if (sds->max_load * sds->busiest->sgp->power <
  3523. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3524. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3525. sds->this->sgp->power;
  3526. else
  3527. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3528. sds->this->sgp->power;
  3529. pwr_move += sds->this->sgp->power *
  3530. min(sds->this_load_per_task, sds->this_load + tmp);
  3531. pwr_move /= SCHED_POWER_SCALE;
  3532. /* Move if we gain throughput */
  3533. if (pwr_move > pwr_now)
  3534. env->imbalance = sds->busiest_load_per_task;
  3535. }
  3536. /**
  3537. * calculate_imbalance - Calculate the amount of imbalance present within the
  3538. * groups of a given sched_domain during load balance.
  3539. * @env: load balance environment
  3540. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3541. */
  3542. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3543. {
  3544. unsigned long max_pull, load_above_capacity = ~0UL;
  3545. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3546. if (sds->group_imb) {
  3547. sds->busiest_load_per_task =
  3548. min(sds->busiest_load_per_task, sds->avg_load);
  3549. }
  3550. /*
  3551. * In the presence of smp nice balancing, certain scenarios can have
  3552. * max load less than avg load(as we skip the groups at or below
  3553. * its cpu_power, while calculating max_load..)
  3554. */
  3555. if (sds->max_load < sds->avg_load) {
  3556. env->imbalance = 0;
  3557. return fix_small_imbalance(env, sds);
  3558. }
  3559. if (!sds->group_imb) {
  3560. /*
  3561. * Don't want to pull so many tasks that a group would go idle.
  3562. */
  3563. load_above_capacity = (sds->busiest_nr_running -
  3564. sds->busiest_group_capacity);
  3565. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3566. load_above_capacity /= sds->busiest->sgp->power;
  3567. }
  3568. /*
  3569. * We're trying to get all the cpus to the average_load, so we don't
  3570. * want to push ourselves above the average load, nor do we wish to
  3571. * reduce the max loaded cpu below the average load. At the same time,
  3572. * we also don't want to reduce the group load below the group capacity
  3573. * (so that we can implement power-savings policies etc). Thus we look
  3574. * for the minimum possible imbalance.
  3575. * Be careful of negative numbers as they'll appear as very large values
  3576. * with unsigned longs.
  3577. */
  3578. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3579. /* How much load to actually move to equalise the imbalance */
  3580. env->imbalance = min(max_pull * sds->busiest->sgp->power,
  3581. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3582. / SCHED_POWER_SCALE;
  3583. /*
  3584. * if *imbalance is less than the average load per runnable task
  3585. * there is no guarantee that any tasks will be moved so we'll have
  3586. * a think about bumping its value to force at least one task to be
  3587. * moved
  3588. */
  3589. if (env->imbalance < sds->busiest_load_per_task)
  3590. return fix_small_imbalance(env, sds);
  3591. }
  3592. /******* find_busiest_group() helpers end here *********************/
  3593. /**
  3594. * find_busiest_group - Returns the busiest group within the sched_domain
  3595. * if there is an imbalance. If there isn't an imbalance, and
  3596. * the user has opted for power-savings, it returns a group whose
  3597. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3598. * such a group exists.
  3599. *
  3600. * Also calculates the amount of weighted load which should be moved
  3601. * to restore balance.
  3602. *
  3603. * @env: The load balancing environment.
  3604. * @balance: Pointer to a variable indicating if this_cpu
  3605. * is the appropriate cpu to perform load balancing at this_level.
  3606. *
  3607. * Returns: - the busiest group if imbalance exists.
  3608. * - If no imbalance and user has opted for power-savings balance,
  3609. * return the least loaded group whose CPUs can be
  3610. * put to idle by rebalancing its tasks onto our group.
  3611. */
  3612. static struct sched_group *
  3613. find_busiest_group(struct lb_env *env, int *balance)
  3614. {
  3615. struct sd_lb_stats sds;
  3616. memset(&sds, 0, sizeof(sds));
  3617. /*
  3618. * Compute the various statistics relavent for load balancing at
  3619. * this level.
  3620. */
  3621. update_sd_lb_stats(env, balance, &sds);
  3622. /*
  3623. * this_cpu is not the appropriate cpu to perform load balancing at
  3624. * this level.
  3625. */
  3626. if (!(*balance))
  3627. goto ret;
  3628. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  3629. check_asym_packing(env, &sds))
  3630. return sds.busiest;
  3631. /* There is no busy sibling group to pull tasks from */
  3632. if (!sds.busiest || sds.busiest_nr_running == 0)
  3633. goto out_balanced;
  3634. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3635. /*
  3636. * If the busiest group is imbalanced the below checks don't
  3637. * work because they assumes all things are equal, which typically
  3638. * isn't true due to cpus_allowed constraints and the like.
  3639. */
  3640. if (sds.group_imb)
  3641. goto force_balance;
  3642. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3643. if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3644. !sds.busiest_has_capacity)
  3645. goto force_balance;
  3646. /*
  3647. * If the local group is more busy than the selected busiest group
  3648. * don't try and pull any tasks.
  3649. */
  3650. if (sds.this_load >= sds.max_load)
  3651. goto out_balanced;
  3652. /*
  3653. * Don't pull any tasks if this group is already above the domain
  3654. * average load.
  3655. */
  3656. if (sds.this_load >= sds.avg_load)
  3657. goto out_balanced;
  3658. if (env->idle == CPU_IDLE) {
  3659. /*
  3660. * This cpu is idle. If the busiest group load doesn't
  3661. * have more tasks than the number of available cpu's and
  3662. * there is no imbalance between this and busiest group
  3663. * wrt to idle cpu's, it is balanced.
  3664. */
  3665. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3666. sds.busiest_nr_running <= sds.busiest_group_weight)
  3667. goto out_balanced;
  3668. } else {
  3669. /*
  3670. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3671. * imbalance_pct to be conservative.
  3672. */
  3673. if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
  3674. goto out_balanced;
  3675. }
  3676. force_balance:
  3677. /* Looks like there is an imbalance. Compute it */
  3678. calculate_imbalance(env, &sds);
  3679. return sds.busiest;
  3680. out_balanced:
  3681. ret:
  3682. env->imbalance = 0;
  3683. return NULL;
  3684. }
  3685. /*
  3686. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3687. */
  3688. static struct rq *find_busiest_queue(struct lb_env *env,
  3689. struct sched_group *group)
  3690. {
  3691. struct rq *busiest = NULL, *rq;
  3692. unsigned long max_load = 0;
  3693. int i;
  3694. for_each_cpu(i, sched_group_cpus(group)) {
  3695. unsigned long power = power_of(i);
  3696. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3697. SCHED_POWER_SCALE);
  3698. unsigned long wl;
  3699. if (!capacity)
  3700. capacity = fix_small_capacity(env->sd, group);
  3701. if (!cpumask_test_cpu(i, env->cpus))
  3702. continue;
  3703. rq = cpu_rq(i);
  3704. wl = weighted_cpuload(i);
  3705. /*
  3706. * When comparing with imbalance, use weighted_cpuload()
  3707. * which is not scaled with the cpu power.
  3708. */
  3709. if (capacity && rq->nr_running == 1 && wl > env->imbalance)
  3710. continue;
  3711. /*
  3712. * For the load comparisons with the other cpu's, consider
  3713. * the weighted_cpuload() scaled with the cpu power, so that
  3714. * the load can be moved away from the cpu that is potentially
  3715. * running at a lower capacity.
  3716. */
  3717. wl = (wl * SCHED_POWER_SCALE) / power;
  3718. if (wl > max_load) {
  3719. max_load = wl;
  3720. busiest = rq;
  3721. }
  3722. }
  3723. return busiest;
  3724. }
  3725. /*
  3726. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3727. * so long as it is large enough.
  3728. */
  3729. #define MAX_PINNED_INTERVAL 512
  3730. /* Working cpumask for load_balance and load_balance_newidle. */
  3731. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3732. static int need_active_balance(struct lb_env *env)
  3733. {
  3734. struct sched_domain *sd = env->sd;
  3735. if (env->idle == CPU_NEWLY_IDLE) {
  3736. /*
  3737. * ASYM_PACKING needs to force migrate tasks from busy but
  3738. * higher numbered CPUs in order to pack all tasks in the
  3739. * lowest numbered CPUs.
  3740. */
  3741. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  3742. return 1;
  3743. }
  3744. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3745. }
  3746. static int active_load_balance_cpu_stop(void *data);
  3747. /*
  3748. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3749. * tasks if there is an imbalance.
  3750. */
  3751. static int load_balance(int this_cpu, struct rq *this_rq,
  3752. struct sched_domain *sd, enum cpu_idle_type idle,
  3753. int *balance)
  3754. {
  3755. int ld_moved, cur_ld_moved, active_balance = 0;
  3756. int lb_iterations, max_lb_iterations;
  3757. struct sched_group *group;
  3758. struct rq *busiest;
  3759. unsigned long flags;
  3760. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3761. struct lb_env env = {
  3762. .sd = sd,
  3763. .dst_cpu = this_cpu,
  3764. .dst_rq = this_rq,
  3765. .dst_grpmask = sched_group_cpus(sd->groups),
  3766. .idle = idle,
  3767. .loop_break = sched_nr_migrate_break,
  3768. .cpus = cpus,
  3769. };
  3770. cpumask_copy(cpus, cpu_active_mask);
  3771. max_lb_iterations = cpumask_weight(env.dst_grpmask);
  3772. schedstat_inc(sd, lb_count[idle]);
  3773. redo:
  3774. group = find_busiest_group(&env, balance);
  3775. if (*balance == 0)
  3776. goto out_balanced;
  3777. if (!group) {
  3778. schedstat_inc(sd, lb_nobusyg[idle]);
  3779. goto out_balanced;
  3780. }
  3781. busiest = find_busiest_queue(&env, group);
  3782. if (!busiest) {
  3783. schedstat_inc(sd, lb_nobusyq[idle]);
  3784. goto out_balanced;
  3785. }
  3786. BUG_ON(busiest == env.dst_rq);
  3787. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  3788. ld_moved = 0;
  3789. lb_iterations = 1;
  3790. if (busiest->nr_running > 1) {
  3791. /*
  3792. * Attempt to move tasks. If find_busiest_group has found
  3793. * an imbalance but busiest->nr_running <= 1, the group is
  3794. * still unbalanced. ld_moved simply stays zero, so it is
  3795. * correctly treated as an imbalance.
  3796. */
  3797. env.flags |= LBF_ALL_PINNED;
  3798. env.src_cpu = busiest->cpu;
  3799. env.src_rq = busiest;
  3800. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  3801. update_h_load(env.src_cpu);
  3802. more_balance:
  3803. local_irq_save(flags);
  3804. double_rq_lock(env.dst_rq, busiest);
  3805. /*
  3806. * cur_ld_moved - load moved in current iteration
  3807. * ld_moved - cumulative load moved across iterations
  3808. */
  3809. cur_ld_moved = move_tasks(&env);
  3810. ld_moved += cur_ld_moved;
  3811. double_rq_unlock(env.dst_rq, busiest);
  3812. local_irq_restore(flags);
  3813. if (env.flags & LBF_NEED_BREAK) {
  3814. env.flags &= ~LBF_NEED_BREAK;
  3815. goto more_balance;
  3816. }
  3817. /*
  3818. * some other cpu did the load balance for us.
  3819. */
  3820. if (cur_ld_moved && env.dst_cpu != smp_processor_id())
  3821. resched_cpu(env.dst_cpu);
  3822. /*
  3823. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  3824. * us and move them to an alternate dst_cpu in our sched_group
  3825. * where they can run. The upper limit on how many times we
  3826. * iterate on same src_cpu is dependent on number of cpus in our
  3827. * sched_group.
  3828. *
  3829. * This changes load balance semantics a bit on who can move
  3830. * load to a given_cpu. In addition to the given_cpu itself
  3831. * (or a ilb_cpu acting on its behalf where given_cpu is
  3832. * nohz-idle), we now have balance_cpu in a position to move
  3833. * load to given_cpu. In rare situations, this may cause
  3834. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  3835. * _independently_ and at _same_ time to move some load to
  3836. * given_cpu) causing exceess load to be moved to given_cpu.
  3837. * This however should not happen so much in practice and
  3838. * moreover subsequent load balance cycles should correct the
  3839. * excess load moved.
  3840. */
  3841. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
  3842. lb_iterations++ < max_lb_iterations) {
  3843. env.dst_rq = cpu_rq(env.new_dst_cpu);
  3844. env.dst_cpu = env.new_dst_cpu;
  3845. env.flags &= ~LBF_SOME_PINNED;
  3846. env.loop = 0;
  3847. env.loop_break = sched_nr_migrate_break;
  3848. /*
  3849. * Go back to "more_balance" rather than "redo" since we
  3850. * need to continue with same src_cpu.
  3851. */
  3852. goto more_balance;
  3853. }
  3854. /* All tasks on this runqueue were pinned by CPU affinity */
  3855. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  3856. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3857. if (!cpumask_empty(cpus)) {
  3858. env.loop = 0;
  3859. env.loop_break = sched_nr_migrate_break;
  3860. goto redo;
  3861. }
  3862. goto out_balanced;
  3863. }
  3864. }
  3865. if (!ld_moved) {
  3866. schedstat_inc(sd, lb_failed[idle]);
  3867. /*
  3868. * Increment the failure counter only on periodic balance.
  3869. * We do not want newidle balance, which can be very
  3870. * frequent, pollute the failure counter causing
  3871. * excessive cache_hot migrations and active balances.
  3872. */
  3873. if (idle != CPU_NEWLY_IDLE)
  3874. sd->nr_balance_failed++;
  3875. if (need_active_balance(&env)) {
  3876. raw_spin_lock_irqsave(&busiest->lock, flags);
  3877. /* don't kick the active_load_balance_cpu_stop,
  3878. * if the curr task on busiest cpu can't be
  3879. * moved to this_cpu
  3880. */
  3881. if (!cpumask_test_cpu(this_cpu,
  3882. tsk_cpus_allowed(busiest->curr))) {
  3883. raw_spin_unlock_irqrestore(&busiest->lock,
  3884. flags);
  3885. env.flags |= LBF_ALL_PINNED;
  3886. goto out_one_pinned;
  3887. }
  3888. /*
  3889. * ->active_balance synchronizes accesses to
  3890. * ->active_balance_work. Once set, it's cleared
  3891. * only after active load balance is finished.
  3892. */
  3893. if (!busiest->active_balance) {
  3894. busiest->active_balance = 1;
  3895. busiest->push_cpu = this_cpu;
  3896. active_balance = 1;
  3897. }
  3898. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3899. if (active_balance) {
  3900. stop_one_cpu_nowait(cpu_of(busiest),
  3901. active_load_balance_cpu_stop, busiest,
  3902. &busiest->active_balance_work);
  3903. }
  3904. /*
  3905. * We've kicked active balancing, reset the failure
  3906. * counter.
  3907. */
  3908. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3909. }
  3910. } else
  3911. sd->nr_balance_failed = 0;
  3912. if (likely(!active_balance)) {
  3913. /* We were unbalanced, so reset the balancing interval */
  3914. sd->balance_interval = sd->min_interval;
  3915. } else {
  3916. /*
  3917. * If we've begun active balancing, start to back off. This
  3918. * case may not be covered by the all_pinned logic if there
  3919. * is only 1 task on the busy runqueue (because we don't call
  3920. * move_tasks).
  3921. */
  3922. if (sd->balance_interval < sd->max_interval)
  3923. sd->balance_interval *= 2;
  3924. }
  3925. goto out;
  3926. out_balanced:
  3927. schedstat_inc(sd, lb_balanced[idle]);
  3928. sd->nr_balance_failed = 0;
  3929. out_one_pinned:
  3930. /* tune up the balancing interval */
  3931. if (((env.flags & LBF_ALL_PINNED) &&
  3932. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3933. (sd->balance_interval < sd->max_interval))
  3934. sd->balance_interval *= 2;
  3935. ld_moved = 0;
  3936. out:
  3937. return ld_moved;
  3938. }
  3939. /*
  3940. * idle_balance is called by schedule() if this_cpu is about to become
  3941. * idle. Attempts to pull tasks from other CPUs.
  3942. */
  3943. void idle_balance(int this_cpu, struct rq *this_rq)
  3944. {
  3945. struct sched_domain *sd;
  3946. int pulled_task = 0;
  3947. unsigned long next_balance = jiffies + HZ;
  3948. this_rq->idle_stamp = this_rq->clock;
  3949. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3950. return;
  3951. update_rq_runnable_avg(this_rq, 1);
  3952. /*
  3953. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3954. */
  3955. raw_spin_unlock(&this_rq->lock);
  3956. update_shares(this_cpu);
  3957. rcu_read_lock();
  3958. for_each_domain(this_cpu, sd) {
  3959. unsigned long interval;
  3960. int balance = 1;
  3961. if (!(sd->flags & SD_LOAD_BALANCE))
  3962. continue;
  3963. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3964. /* If we've pulled tasks over stop searching: */
  3965. pulled_task = load_balance(this_cpu, this_rq,
  3966. sd, CPU_NEWLY_IDLE, &balance);
  3967. }
  3968. interval = msecs_to_jiffies(sd->balance_interval);
  3969. if (time_after(next_balance, sd->last_balance + interval))
  3970. next_balance = sd->last_balance + interval;
  3971. if (pulled_task) {
  3972. this_rq->idle_stamp = 0;
  3973. break;
  3974. }
  3975. }
  3976. rcu_read_unlock();
  3977. raw_spin_lock(&this_rq->lock);
  3978. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3979. /*
  3980. * We are going idle. next_balance may be set based on
  3981. * a busy processor. So reset next_balance.
  3982. */
  3983. this_rq->next_balance = next_balance;
  3984. }
  3985. }
  3986. /*
  3987. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3988. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3989. * least 1 task to be running on each physical CPU where possible, and
  3990. * avoids physical / logical imbalances.
  3991. */
  3992. static int active_load_balance_cpu_stop(void *data)
  3993. {
  3994. struct rq *busiest_rq = data;
  3995. int busiest_cpu = cpu_of(busiest_rq);
  3996. int target_cpu = busiest_rq->push_cpu;
  3997. struct rq *target_rq = cpu_rq(target_cpu);
  3998. struct sched_domain *sd;
  3999. raw_spin_lock_irq(&busiest_rq->lock);
  4000. /* make sure the requested cpu hasn't gone down in the meantime */
  4001. if (unlikely(busiest_cpu != smp_processor_id() ||
  4002. !busiest_rq->active_balance))
  4003. goto out_unlock;
  4004. /* Is there any task to move? */
  4005. if (busiest_rq->nr_running <= 1)
  4006. goto out_unlock;
  4007. /*
  4008. * This condition is "impossible", if it occurs
  4009. * we need to fix it. Originally reported by
  4010. * Bjorn Helgaas on a 128-cpu setup.
  4011. */
  4012. BUG_ON(busiest_rq == target_rq);
  4013. /* move a task from busiest_rq to target_rq */
  4014. double_lock_balance(busiest_rq, target_rq);
  4015. /* Search for an sd spanning us and the target CPU. */
  4016. rcu_read_lock();
  4017. for_each_domain(target_cpu, sd) {
  4018. if ((sd->flags & SD_LOAD_BALANCE) &&
  4019. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  4020. break;
  4021. }
  4022. if (likely(sd)) {
  4023. struct lb_env env = {
  4024. .sd = sd,
  4025. .dst_cpu = target_cpu,
  4026. .dst_rq = target_rq,
  4027. .src_cpu = busiest_rq->cpu,
  4028. .src_rq = busiest_rq,
  4029. .idle = CPU_IDLE,
  4030. };
  4031. schedstat_inc(sd, alb_count);
  4032. if (move_one_task(&env))
  4033. schedstat_inc(sd, alb_pushed);
  4034. else
  4035. schedstat_inc(sd, alb_failed);
  4036. }
  4037. rcu_read_unlock();
  4038. double_unlock_balance(busiest_rq, target_rq);
  4039. out_unlock:
  4040. busiest_rq->active_balance = 0;
  4041. raw_spin_unlock_irq(&busiest_rq->lock);
  4042. return 0;
  4043. }
  4044. #ifdef CONFIG_NO_HZ
  4045. /*
  4046. * idle load balancing details
  4047. * - When one of the busy CPUs notice that there may be an idle rebalancing
  4048. * needed, they will kick the idle load balancer, which then does idle
  4049. * load balancing for all the idle CPUs.
  4050. */
  4051. static struct {
  4052. cpumask_var_t idle_cpus_mask;
  4053. atomic_t nr_cpus;
  4054. unsigned long next_balance; /* in jiffy units */
  4055. } nohz ____cacheline_aligned;
  4056. static inline int find_new_ilb(int call_cpu)
  4057. {
  4058. int ilb = cpumask_first(nohz.idle_cpus_mask);
  4059. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  4060. return ilb;
  4061. return nr_cpu_ids;
  4062. }
  4063. /*
  4064. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  4065. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  4066. * CPU (if there is one).
  4067. */
  4068. static void nohz_balancer_kick(int cpu)
  4069. {
  4070. int ilb_cpu;
  4071. nohz.next_balance++;
  4072. ilb_cpu = find_new_ilb(cpu);
  4073. if (ilb_cpu >= nr_cpu_ids)
  4074. return;
  4075. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  4076. return;
  4077. /*
  4078. * Use smp_send_reschedule() instead of resched_cpu().
  4079. * This way we generate a sched IPI on the target cpu which
  4080. * is idle. And the softirq performing nohz idle load balance
  4081. * will be run before returning from the IPI.
  4082. */
  4083. smp_send_reschedule(ilb_cpu);
  4084. return;
  4085. }
  4086. static inline void nohz_balance_exit_idle(int cpu)
  4087. {
  4088. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  4089. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  4090. atomic_dec(&nohz.nr_cpus);
  4091. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4092. }
  4093. }
  4094. static inline void set_cpu_sd_state_busy(void)
  4095. {
  4096. struct sched_domain *sd;
  4097. int cpu = smp_processor_id();
  4098. if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4099. return;
  4100. clear_bit(NOHZ_IDLE, nohz_flags(cpu));
  4101. rcu_read_lock();
  4102. for_each_domain(cpu, sd)
  4103. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  4104. rcu_read_unlock();
  4105. }
  4106. void set_cpu_sd_state_idle(void)
  4107. {
  4108. struct sched_domain *sd;
  4109. int cpu = smp_processor_id();
  4110. if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4111. return;
  4112. set_bit(NOHZ_IDLE, nohz_flags(cpu));
  4113. rcu_read_lock();
  4114. for_each_domain(cpu, sd)
  4115. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  4116. rcu_read_unlock();
  4117. }
  4118. /*
  4119. * This routine will record that the cpu is going idle with tick stopped.
  4120. * This info will be used in performing idle load balancing in the future.
  4121. */
  4122. void nohz_balance_enter_idle(int cpu)
  4123. {
  4124. /*
  4125. * If this cpu is going down, then nothing needs to be done.
  4126. */
  4127. if (!cpu_active(cpu))
  4128. return;
  4129. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  4130. return;
  4131. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  4132. atomic_inc(&nohz.nr_cpus);
  4133. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4134. }
  4135. static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
  4136. unsigned long action, void *hcpu)
  4137. {
  4138. switch (action & ~CPU_TASKS_FROZEN) {
  4139. case CPU_DYING:
  4140. nohz_balance_exit_idle(smp_processor_id());
  4141. return NOTIFY_OK;
  4142. default:
  4143. return NOTIFY_DONE;
  4144. }
  4145. }
  4146. #endif
  4147. static DEFINE_SPINLOCK(balancing);
  4148. /*
  4149. * Scale the max load_balance interval with the number of CPUs in the system.
  4150. * This trades load-balance latency on larger machines for less cross talk.
  4151. */
  4152. void update_max_interval(void)
  4153. {
  4154. max_load_balance_interval = HZ*num_online_cpus()/10;
  4155. }
  4156. /*
  4157. * It checks each scheduling domain to see if it is due to be balanced,
  4158. * and initiates a balancing operation if so.
  4159. *
  4160. * Balancing parameters are set up in arch_init_sched_domains.
  4161. */
  4162. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4163. {
  4164. int balance = 1;
  4165. struct rq *rq = cpu_rq(cpu);
  4166. unsigned long interval;
  4167. struct sched_domain *sd;
  4168. /* Earliest time when we have to do rebalance again */
  4169. unsigned long next_balance = jiffies + 60*HZ;
  4170. int update_next_balance = 0;
  4171. int need_serialize;
  4172. update_shares(cpu);
  4173. rcu_read_lock();
  4174. for_each_domain(cpu, sd) {
  4175. if (!(sd->flags & SD_LOAD_BALANCE))
  4176. continue;
  4177. interval = sd->balance_interval;
  4178. if (idle != CPU_IDLE)
  4179. interval *= sd->busy_factor;
  4180. /* scale ms to jiffies */
  4181. interval = msecs_to_jiffies(interval);
  4182. interval = clamp(interval, 1UL, max_load_balance_interval);
  4183. need_serialize = sd->flags & SD_SERIALIZE;
  4184. if (need_serialize) {
  4185. if (!spin_trylock(&balancing))
  4186. goto out;
  4187. }
  4188. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4189. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4190. /*
  4191. * We've pulled tasks over so either we're no
  4192. * longer idle.
  4193. */
  4194. idle = CPU_NOT_IDLE;
  4195. }
  4196. sd->last_balance = jiffies;
  4197. }
  4198. if (need_serialize)
  4199. spin_unlock(&balancing);
  4200. out:
  4201. if (time_after(next_balance, sd->last_balance + interval)) {
  4202. next_balance = sd->last_balance + interval;
  4203. update_next_balance = 1;
  4204. }
  4205. /*
  4206. * Stop the load balance at this level. There is another
  4207. * CPU in our sched group which is doing load balancing more
  4208. * actively.
  4209. */
  4210. if (!balance)
  4211. break;
  4212. }
  4213. rcu_read_unlock();
  4214. /*
  4215. * next_balance will be updated only when there is a need.
  4216. * When the cpu is attached to null domain for ex, it will not be
  4217. * updated.
  4218. */
  4219. if (likely(update_next_balance))
  4220. rq->next_balance = next_balance;
  4221. }
  4222. #ifdef CONFIG_NO_HZ
  4223. /*
  4224. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  4225. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4226. */
  4227. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  4228. {
  4229. struct rq *this_rq = cpu_rq(this_cpu);
  4230. struct rq *rq;
  4231. int balance_cpu;
  4232. if (idle != CPU_IDLE ||
  4233. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  4234. goto end;
  4235. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4236. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  4237. continue;
  4238. /*
  4239. * If this cpu gets work to do, stop the load balancing
  4240. * work being done for other cpus. Next load
  4241. * balancing owner will pick it up.
  4242. */
  4243. if (need_resched())
  4244. break;
  4245. rq = cpu_rq(balance_cpu);
  4246. raw_spin_lock_irq(&rq->lock);
  4247. update_rq_clock(rq);
  4248. update_idle_cpu_load(rq);
  4249. raw_spin_unlock_irq(&rq->lock);
  4250. rebalance_domains(balance_cpu, CPU_IDLE);
  4251. if (time_after(this_rq->next_balance, rq->next_balance))
  4252. this_rq->next_balance = rq->next_balance;
  4253. }
  4254. nohz.next_balance = this_rq->next_balance;
  4255. end:
  4256. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  4257. }
  4258. /*
  4259. * Current heuristic for kicking the idle load balancer in the presence
  4260. * of an idle cpu is the system.
  4261. * - This rq has more than one task.
  4262. * - At any scheduler domain level, this cpu's scheduler group has multiple
  4263. * busy cpu's exceeding the group's power.
  4264. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  4265. * domain span are idle.
  4266. */
  4267. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4268. {
  4269. unsigned long now = jiffies;
  4270. struct sched_domain *sd;
  4271. if (unlikely(idle_cpu(cpu)))
  4272. return 0;
  4273. /*
  4274. * We may be recently in ticked or tickless idle mode. At the first
  4275. * busy tick after returning from idle, we will update the busy stats.
  4276. */
  4277. set_cpu_sd_state_busy();
  4278. nohz_balance_exit_idle(cpu);
  4279. /*
  4280. * None are in tickless mode and hence no need for NOHZ idle load
  4281. * balancing.
  4282. */
  4283. if (likely(!atomic_read(&nohz.nr_cpus)))
  4284. return 0;
  4285. if (time_before(now, nohz.next_balance))
  4286. return 0;
  4287. if (rq->nr_running >= 2)
  4288. goto need_kick;
  4289. rcu_read_lock();
  4290. for_each_domain(cpu, sd) {
  4291. struct sched_group *sg = sd->groups;
  4292. struct sched_group_power *sgp = sg->sgp;
  4293. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4294. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4295. goto need_kick_unlock;
  4296. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4297. && (cpumask_first_and(nohz.idle_cpus_mask,
  4298. sched_domain_span(sd)) < cpu))
  4299. goto need_kick_unlock;
  4300. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4301. break;
  4302. }
  4303. rcu_read_unlock();
  4304. return 0;
  4305. need_kick_unlock:
  4306. rcu_read_unlock();
  4307. need_kick:
  4308. return 1;
  4309. }
  4310. #else
  4311. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4312. #endif
  4313. /*
  4314. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4315. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4316. */
  4317. static void run_rebalance_domains(struct softirq_action *h)
  4318. {
  4319. int this_cpu = smp_processor_id();
  4320. struct rq *this_rq = cpu_rq(this_cpu);
  4321. enum cpu_idle_type idle = this_rq->idle_balance ?
  4322. CPU_IDLE : CPU_NOT_IDLE;
  4323. rebalance_domains(this_cpu, idle);
  4324. /*
  4325. * If this cpu has a pending nohz_balance_kick, then do the
  4326. * balancing on behalf of the other idle cpus whose ticks are
  4327. * stopped.
  4328. */
  4329. nohz_idle_balance(this_cpu, idle);
  4330. }
  4331. static inline int on_null_domain(int cpu)
  4332. {
  4333. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4334. }
  4335. /*
  4336. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4337. */
  4338. void trigger_load_balance(struct rq *rq, int cpu)
  4339. {
  4340. /* Don't need to rebalance while attached to NULL domain */
  4341. if (time_after_eq(jiffies, rq->next_balance) &&
  4342. likely(!on_null_domain(cpu)))
  4343. raise_softirq(SCHED_SOFTIRQ);
  4344. #ifdef CONFIG_NO_HZ
  4345. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4346. nohz_balancer_kick(cpu);
  4347. #endif
  4348. }
  4349. static void rq_online_fair(struct rq *rq)
  4350. {
  4351. update_sysctl();
  4352. }
  4353. static void rq_offline_fair(struct rq *rq)
  4354. {
  4355. update_sysctl();
  4356. /* Ensure any throttled groups are reachable by pick_next_task */
  4357. unthrottle_offline_cfs_rqs(rq);
  4358. }
  4359. #endif /* CONFIG_SMP */
  4360. /*
  4361. * scheduler tick hitting a task of our scheduling class:
  4362. */
  4363. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4364. {
  4365. struct cfs_rq *cfs_rq;
  4366. struct sched_entity *se = &curr->se;
  4367. for_each_sched_entity(se) {
  4368. cfs_rq = cfs_rq_of(se);
  4369. entity_tick(cfs_rq, se, queued);
  4370. }
  4371. update_rq_runnable_avg(rq, 1);
  4372. }
  4373. /*
  4374. * called on fork with the child task as argument from the parent's context
  4375. * - child not yet on the tasklist
  4376. * - preemption disabled
  4377. */
  4378. static void task_fork_fair(struct task_struct *p)
  4379. {
  4380. struct cfs_rq *cfs_rq;
  4381. struct sched_entity *se = &p->se, *curr;
  4382. int this_cpu = smp_processor_id();
  4383. struct rq *rq = this_rq();
  4384. unsigned long flags;
  4385. raw_spin_lock_irqsave(&rq->lock, flags);
  4386. update_rq_clock(rq);
  4387. cfs_rq = task_cfs_rq(current);
  4388. curr = cfs_rq->curr;
  4389. if (unlikely(task_cpu(p) != this_cpu)) {
  4390. rcu_read_lock();
  4391. __set_task_cpu(p, this_cpu);
  4392. rcu_read_unlock();
  4393. }
  4394. update_curr(cfs_rq);
  4395. if (curr)
  4396. se->vruntime = curr->vruntime;
  4397. place_entity(cfs_rq, se, 1);
  4398. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4399. /*
  4400. * Upon rescheduling, sched_class::put_prev_task() will place
  4401. * 'current' within the tree based on its new key value.
  4402. */
  4403. swap(curr->vruntime, se->vruntime);
  4404. resched_task(rq->curr);
  4405. }
  4406. se->vruntime -= cfs_rq->min_vruntime;
  4407. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4408. }
  4409. /*
  4410. * Priority of the task has changed. Check to see if we preempt
  4411. * the current task.
  4412. */
  4413. static void
  4414. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4415. {
  4416. if (!p->se.on_rq)
  4417. return;
  4418. /*
  4419. * Reschedule if we are currently running on this runqueue and
  4420. * our priority decreased, or if we are not currently running on
  4421. * this runqueue and our priority is higher than the current's
  4422. */
  4423. if (rq->curr == p) {
  4424. if (p->prio > oldprio)
  4425. resched_task(rq->curr);
  4426. } else
  4427. check_preempt_curr(rq, p, 0);
  4428. }
  4429. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4430. {
  4431. struct sched_entity *se = &p->se;
  4432. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4433. /*
  4434. * Ensure the task's vruntime is normalized, so that when its
  4435. * switched back to the fair class the enqueue_entity(.flags=0) will
  4436. * do the right thing.
  4437. *
  4438. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4439. * have normalized the vruntime, if it was !on_rq, then only when
  4440. * the task is sleeping will it still have non-normalized vruntime.
  4441. */
  4442. if (!se->on_rq && p->state != TASK_RUNNING) {
  4443. /*
  4444. * Fix up our vruntime so that the current sleep doesn't
  4445. * cause 'unlimited' sleep bonus.
  4446. */
  4447. place_entity(cfs_rq, se, 0);
  4448. se->vruntime -= cfs_rq->min_vruntime;
  4449. }
  4450. #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
  4451. /*
  4452. * Remove our load from contribution when we leave sched_fair
  4453. * and ensure we don't carry in an old decay_count if we
  4454. * switch back.
  4455. */
  4456. if (p->se.avg.decay_count) {
  4457. struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
  4458. __synchronize_entity_decay(&p->se);
  4459. subtract_blocked_load_contrib(cfs_rq,
  4460. p->se.avg.load_avg_contrib);
  4461. }
  4462. #endif
  4463. }
  4464. /*
  4465. * We switched to the sched_fair class.
  4466. */
  4467. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4468. {
  4469. if (!p->se.on_rq)
  4470. return;
  4471. /*
  4472. * We were most likely switched from sched_rt, so
  4473. * kick off the schedule if running, otherwise just see
  4474. * if we can still preempt the current task.
  4475. */
  4476. if (rq->curr == p)
  4477. resched_task(rq->curr);
  4478. else
  4479. check_preempt_curr(rq, p, 0);
  4480. }
  4481. /* Account for a task changing its policy or group.
  4482. *
  4483. * This routine is mostly called to set cfs_rq->curr field when a task
  4484. * migrates between groups/classes.
  4485. */
  4486. static void set_curr_task_fair(struct rq *rq)
  4487. {
  4488. struct sched_entity *se = &rq->curr->se;
  4489. for_each_sched_entity(se) {
  4490. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4491. set_next_entity(cfs_rq, se);
  4492. /* ensure bandwidth has been allocated on our new cfs_rq */
  4493. account_cfs_rq_runtime(cfs_rq, 0);
  4494. }
  4495. }
  4496. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4497. {
  4498. cfs_rq->tasks_timeline = RB_ROOT;
  4499. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4500. #ifndef CONFIG_64BIT
  4501. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4502. #endif
  4503. #if defined(CONFIG_FAIR_GROUP_SCHED) && defined(CONFIG_SMP)
  4504. atomic64_set(&cfs_rq->decay_counter, 1);
  4505. #endif
  4506. }
  4507. #ifdef CONFIG_FAIR_GROUP_SCHED
  4508. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4509. {
  4510. /*
  4511. * If the task was not on the rq at the time of this cgroup movement
  4512. * it must have been asleep, sleeping tasks keep their ->vruntime
  4513. * absolute on their old rq until wakeup (needed for the fair sleeper
  4514. * bonus in place_entity()).
  4515. *
  4516. * If it was on the rq, we've just 'preempted' it, which does convert
  4517. * ->vruntime to a relative base.
  4518. *
  4519. * Make sure both cases convert their relative position when migrating
  4520. * to another cgroup's rq. This does somewhat interfere with the
  4521. * fair sleeper stuff for the first placement, but who cares.
  4522. */
  4523. /*
  4524. * When !on_rq, vruntime of the task has usually NOT been normalized.
  4525. * But there are some cases where it has already been normalized:
  4526. *
  4527. * - Moving a forked child which is waiting for being woken up by
  4528. * wake_up_new_task().
  4529. * - Moving a task which has been woken up by try_to_wake_up() and
  4530. * waiting for actually being woken up by sched_ttwu_pending().
  4531. *
  4532. * To prevent boost or penalty in the new cfs_rq caused by delta
  4533. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  4534. */
  4535. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  4536. on_rq = 1;
  4537. if (!on_rq)
  4538. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4539. set_task_rq(p, task_cpu(p));
  4540. if (!on_rq)
  4541. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4542. }
  4543. void free_fair_sched_group(struct task_group *tg)
  4544. {
  4545. int i;
  4546. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4547. for_each_possible_cpu(i) {
  4548. if (tg->cfs_rq)
  4549. kfree(tg->cfs_rq[i]);
  4550. if (tg->se)
  4551. kfree(tg->se[i]);
  4552. }
  4553. kfree(tg->cfs_rq);
  4554. kfree(tg->se);
  4555. }
  4556. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4557. {
  4558. struct cfs_rq *cfs_rq;
  4559. struct sched_entity *se;
  4560. int i;
  4561. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  4562. if (!tg->cfs_rq)
  4563. goto err;
  4564. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  4565. if (!tg->se)
  4566. goto err;
  4567. tg->shares = NICE_0_LOAD;
  4568. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4569. for_each_possible_cpu(i) {
  4570. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  4571. GFP_KERNEL, cpu_to_node(i));
  4572. if (!cfs_rq)
  4573. goto err;
  4574. se = kzalloc_node(sizeof(struct sched_entity),
  4575. GFP_KERNEL, cpu_to_node(i));
  4576. if (!se)
  4577. goto err_free_rq;
  4578. init_cfs_rq(cfs_rq);
  4579. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  4580. }
  4581. return 1;
  4582. err_free_rq:
  4583. kfree(cfs_rq);
  4584. err:
  4585. return 0;
  4586. }
  4587. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  4588. {
  4589. struct rq *rq = cpu_rq(cpu);
  4590. unsigned long flags;
  4591. /*
  4592. * Only empty task groups can be destroyed; so we can speculatively
  4593. * check on_list without danger of it being re-added.
  4594. */
  4595. if (!tg->cfs_rq[cpu]->on_list)
  4596. return;
  4597. raw_spin_lock_irqsave(&rq->lock, flags);
  4598. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  4599. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4600. }
  4601. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  4602. struct sched_entity *se, int cpu,
  4603. struct sched_entity *parent)
  4604. {
  4605. struct rq *rq = cpu_rq(cpu);
  4606. cfs_rq->tg = tg;
  4607. cfs_rq->rq = rq;
  4608. #ifdef CONFIG_SMP
  4609. /* allow initial update_cfs_load() to truncate */
  4610. cfs_rq->load_stamp = 1;
  4611. #endif
  4612. init_cfs_rq_runtime(cfs_rq);
  4613. tg->cfs_rq[cpu] = cfs_rq;
  4614. tg->se[cpu] = se;
  4615. /* se could be NULL for root_task_group */
  4616. if (!se)
  4617. return;
  4618. if (!parent)
  4619. se->cfs_rq = &rq->cfs;
  4620. else
  4621. se->cfs_rq = parent->my_q;
  4622. se->my_q = cfs_rq;
  4623. update_load_set(&se->load, 0);
  4624. se->parent = parent;
  4625. }
  4626. static DEFINE_MUTEX(shares_mutex);
  4627. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  4628. {
  4629. int i;
  4630. unsigned long flags;
  4631. /*
  4632. * We can't change the weight of the root cgroup.
  4633. */
  4634. if (!tg->se[0])
  4635. return -EINVAL;
  4636. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  4637. mutex_lock(&shares_mutex);
  4638. if (tg->shares == shares)
  4639. goto done;
  4640. tg->shares = shares;
  4641. for_each_possible_cpu(i) {
  4642. struct rq *rq = cpu_rq(i);
  4643. struct sched_entity *se;
  4644. se = tg->se[i];
  4645. /* Propagate contribution to hierarchy */
  4646. raw_spin_lock_irqsave(&rq->lock, flags);
  4647. for_each_sched_entity(se)
  4648. update_cfs_shares(group_cfs_rq(se));
  4649. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4650. }
  4651. done:
  4652. mutex_unlock(&shares_mutex);
  4653. return 0;
  4654. }
  4655. #else /* CONFIG_FAIR_GROUP_SCHED */
  4656. void free_fair_sched_group(struct task_group *tg) { }
  4657. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4658. {
  4659. return 1;
  4660. }
  4661. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  4662. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4663. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4664. {
  4665. struct sched_entity *se = &task->se;
  4666. unsigned int rr_interval = 0;
  4667. /*
  4668. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4669. * idle runqueue:
  4670. */
  4671. if (rq->cfs.load.weight)
  4672. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4673. return rr_interval;
  4674. }
  4675. /*
  4676. * All the scheduling class methods:
  4677. */
  4678. const struct sched_class fair_sched_class = {
  4679. .next = &idle_sched_class,
  4680. .enqueue_task = enqueue_task_fair,
  4681. .dequeue_task = dequeue_task_fair,
  4682. .yield_task = yield_task_fair,
  4683. .yield_to_task = yield_to_task_fair,
  4684. .check_preempt_curr = check_preempt_wakeup,
  4685. .pick_next_task = pick_next_task_fair,
  4686. .put_prev_task = put_prev_task_fair,
  4687. #ifdef CONFIG_SMP
  4688. .select_task_rq = select_task_rq_fair,
  4689. .migrate_task_rq = migrate_task_rq_fair,
  4690. .rq_online = rq_online_fair,
  4691. .rq_offline = rq_offline_fair,
  4692. .task_waking = task_waking_fair,
  4693. #endif
  4694. .set_curr_task = set_curr_task_fair,
  4695. .task_tick = task_tick_fair,
  4696. .task_fork = task_fork_fair,
  4697. .prio_changed = prio_changed_fair,
  4698. .switched_from = switched_from_fair,
  4699. .switched_to = switched_to_fair,
  4700. .get_rr_interval = get_rr_interval_fair,
  4701. #ifdef CONFIG_FAIR_GROUP_SCHED
  4702. .task_move_group = task_move_group_fair,
  4703. #endif
  4704. };
  4705. #ifdef CONFIG_SCHED_DEBUG
  4706. void print_cfs_stats(struct seq_file *m, int cpu)
  4707. {
  4708. struct cfs_rq *cfs_rq;
  4709. rcu_read_lock();
  4710. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4711. print_cfs_rq(m, cpu, cfs_rq);
  4712. rcu_read_unlock();
  4713. }
  4714. #endif
  4715. __init void init_sched_fair_class(void)
  4716. {
  4717. #ifdef CONFIG_SMP
  4718. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  4719. #ifdef CONFIG_NO_HZ
  4720. nohz.next_balance = jiffies;
  4721. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  4722. cpu_notifier(sched_ilb_notifier, 0);
  4723. #endif
  4724. #endif /* SMP */
  4725. }