af9033.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. struct af9033_state {
  23. struct i2c_adapter *i2c;
  24. struct dvb_frontend fe;
  25. struct af9033_config cfg;
  26. u32 bandwidth_hz;
  27. bool ts_mode_parallel;
  28. bool ts_mode_serial;
  29. u32 ber;
  30. u32 ucb;
  31. unsigned long last_stat_check;
  32. };
  33. /* write multiple registers */
  34. static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
  35. int len)
  36. {
  37. int ret;
  38. u8 buf[3 + len];
  39. struct i2c_msg msg[1] = {
  40. {
  41. .addr = state->cfg.i2c_addr,
  42. .flags = 0,
  43. .len = sizeof(buf),
  44. .buf = buf,
  45. }
  46. };
  47. buf[0] = (reg >> 16) & 0xff;
  48. buf[1] = (reg >> 8) & 0xff;
  49. buf[2] = (reg >> 0) & 0xff;
  50. memcpy(&buf[3], val, len);
  51. ret = i2c_transfer(state->i2c, msg, 1);
  52. if (ret == 1) {
  53. ret = 0;
  54. } else {
  55. dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
  56. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  57. ret = -EREMOTEIO;
  58. }
  59. return ret;
  60. }
  61. /* read multiple registers */
  62. static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
  63. {
  64. int ret;
  65. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  66. (reg >> 0) & 0xff };
  67. struct i2c_msg msg[2] = {
  68. {
  69. .addr = state->cfg.i2c_addr,
  70. .flags = 0,
  71. .len = sizeof(buf),
  72. .buf = buf
  73. }, {
  74. .addr = state->cfg.i2c_addr,
  75. .flags = I2C_M_RD,
  76. .len = len,
  77. .buf = val
  78. }
  79. };
  80. ret = i2c_transfer(state->i2c, msg, 2);
  81. if (ret == 2) {
  82. ret = 0;
  83. } else {
  84. dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
  85. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  86. ret = -EREMOTEIO;
  87. }
  88. return ret;
  89. }
  90. /* write single register */
  91. static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
  92. {
  93. return af9033_wr_regs(state, reg, &val, 1);
  94. }
  95. /* read single register */
  96. static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
  97. {
  98. return af9033_rd_regs(state, reg, val, 1);
  99. }
  100. /* write single register with mask */
  101. static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
  102. u8 mask)
  103. {
  104. int ret;
  105. u8 tmp;
  106. /* no need for read if whole reg is written */
  107. if (mask != 0xff) {
  108. ret = af9033_rd_regs(state, reg, &tmp, 1);
  109. if (ret)
  110. return ret;
  111. val &= mask;
  112. tmp &= ~mask;
  113. val |= tmp;
  114. }
  115. return af9033_wr_regs(state, reg, &val, 1);
  116. }
  117. /* read single register with mask */
  118. static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
  119. u8 mask)
  120. {
  121. int ret, i;
  122. u8 tmp;
  123. ret = af9033_rd_regs(state, reg, &tmp, 1);
  124. if (ret)
  125. return ret;
  126. tmp &= mask;
  127. /* find position of the first bit */
  128. for (i = 0; i < 8; i++) {
  129. if ((mask >> i) & 0x01)
  130. break;
  131. }
  132. *val = tmp >> i;
  133. return 0;
  134. }
  135. static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
  136. {
  137. u32 r = 0, c = 0, i;
  138. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  139. if (a > b) {
  140. c = a / b;
  141. a = a - c * b;
  142. }
  143. for (i = 0; i < x; i++) {
  144. if (a >= b) {
  145. r += 1;
  146. a -= b;
  147. }
  148. a <<= 1;
  149. r <<= 1;
  150. }
  151. r = (c << (u32)x) + r;
  152. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
  153. __func__, a, b, x, r, r);
  154. return r;
  155. }
  156. static void af9033_release(struct dvb_frontend *fe)
  157. {
  158. struct af9033_state *state = fe->demodulator_priv;
  159. kfree(state);
  160. }
  161. static int af9033_init(struct dvb_frontend *fe)
  162. {
  163. struct af9033_state *state = fe->demodulator_priv;
  164. int ret, i, len;
  165. const struct reg_val *init;
  166. u8 buf[4];
  167. u32 adc_cw, clock_cw;
  168. struct reg_val_mask tab[] = {
  169. { 0x80fb24, 0x00, 0x08 },
  170. { 0x80004c, 0x00, 0xff },
  171. { 0x00f641, state->cfg.tuner, 0xff },
  172. { 0x80f5ca, 0x01, 0x01 },
  173. { 0x80f715, 0x01, 0x01 },
  174. { 0x00f41f, 0x04, 0x04 },
  175. { 0x00f41a, 0x01, 0x01 },
  176. { 0x80f731, 0x00, 0x01 },
  177. { 0x00d91e, 0x00, 0x01 },
  178. { 0x00d919, 0x00, 0x01 },
  179. { 0x80f732, 0x00, 0x01 },
  180. { 0x00d91f, 0x00, 0x01 },
  181. { 0x00d91a, 0x00, 0x01 },
  182. { 0x80f730, 0x00, 0x01 },
  183. { 0x80f778, 0x00, 0xff },
  184. { 0x80f73c, 0x01, 0x01 },
  185. { 0x80f776, 0x00, 0x01 },
  186. { 0x00d8fd, 0x01, 0xff },
  187. { 0x00d830, 0x01, 0xff },
  188. { 0x00d831, 0x00, 0xff },
  189. { 0x00d832, 0x00, 0xff },
  190. { 0x80f985, state->ts_mode_serial, 0x01 },
  191. { 0x80f986, state->ts_mode_parallel, 0x01 },
  192. { 0x00d827, 0x00, 0xff },
  193. { 0x00d829, 0x00, 0xff },
  194. };
  195. /* program clock control */
  196. clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
  197. buf[0] = (clock_cw >> 0) & 0xff;
  198. buf[1] = (clock_cw >> 8) & 0xff;
  199. buf[2] = (clock_cw >> 16) & 0xff;
  200. buf[3] = (clock_cw >> 24) & 0xff;
  201. dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
  202. __func__, state->cfg.clock, clock_cw);
  203. ret = af9033_wr_regs(state, 0x800025, buf, 4);
  204. if (ret < 0)
  205. goto err;
  206. /* program ADC control */
  207. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  208. if (clock_adc_lut[i].clock == state->cfg.clock)
  209. break;
  210. }
  211. adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
  212. buf[0] = (adc_cw >> 0) & 0xff;
  213. buf[1] = (adc_cw >> 8) & 0xff;
  214. buf[2] = (adc_cw >> 16) & 0xff;
  215. dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
  216. __func__, clock_adc_lut[i].adc, adc_cw);
  217. ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
  218. if (ret < 0)
  219. goto err;
  220. /* program register table */
  221. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  222. ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
  223. tab[i].mask);
  224. if (ret < 0)
  225. goto err;
  226. }
  227. /* settings for TS interface */
  228. if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
  229. ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
  230. if (ret < 0)
  231. goto err;
  232. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
  233. if (ret < 0)
  234. goto err;
  235. } else {
  236. ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
  237. if (ret < 0)
  238. goto err;
  239. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
  240. if (ret < 0)
  241. goto err;
  242. }
  243. /* load OFSM settings */
  244. dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
  245. len = ARRAY_SIZE(ofsm_init);
  246. init = ofsm_init;
  247. for (i = 0; i < len; i++) {
  248. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  249. if (ret < 0)
  250. goto err;
  251. }
  252. /* load tuner specific settings */
  253. dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
  254. __func__);
  255. switch (state->cfg.tuner) {
  256. case AF9033_TUNER_TUA9001:
  257. len = ARRAY_SIZE(tuner_init_tua9001);
  258. init = tuner_init_tua9001;
  259. break;
  260. case AF9033_TUNER_FC0011:
  261. len = ARRAY_SIZE(tuner_init_fc0011);
  262. init = tuner_init_fc0011;
  263. break;
  264. case AF9033_TUNER_MXL5007T:
  265. len = ARRAY_SIZE(tuner_init_mxl5007t);
  266. init = tuner_init_mxl5007t;
  267. break;
  268. case AF9033_TUNER_TDA18218:
  269. len = ARRAY_SIZE(tuner_init_tda18218);
  270. init = tuner_init_tda18218;
  271. break;
  272. default:
  273. dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
  274. __func__, state->cfg.tuner);
  275. ret = -ENODEV;
  276. goto err;
  277. }
  278. for (i = 0; i < len; i++) {
  279. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  280. if (ret < 0)
  281. goto err;
  282. }
  283. state->bandwidth_hz = 0; /* force to program all parameters */
  284. return 0;
  285. err:
  286. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  287. return ret;
  288. }
  289. static int af9033_sleep(struct dvb_frontend *fe)
  290. {
  291. struct af9033_state *state = fe->demodulator_priv;
  292. int ret, i;
  293. u8 tmp;
  294. ret = af9033_wr_reg(state, 0x80004c, 1);
  295. if (ret < 0)
  296. goto err;
  297. ret = af9033_wr_reg(state, 0x800000, 0);
  298. if (ret < 0)
  299. goto err;
  300. for (i = 100, tmp = 1; i && tmp; i--) {
  301. ret = af9033_rd_reg(state, 0x80004c, &tmp);
  302. if (ret < 0)
  303. goto err;
  304. usleep_range(200, 10000);
  305. }
  306. dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
  307. if (i == 0) {
  308. ret = -ETIMEDOUT;
  309. goto err;
  310. }
  311. ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
  312. if (ret < 0)
  313. goto err;
  314. /* prevent current leak (?) */
  315. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  316. /* enable parallel TS */
  317. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  318. if (ret < 0)
  319. goto err;
  320. ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
  321. if (ret < 0)
  322. goto err;
  323. }
  324. return 0;
  325. err:
  326. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  327. return ret;
  328. }
  329. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  330. struct dvb_frontend_tune_settings *fesettings)
  331. {
  332. fesettings->min_delay_ms = 800;
  333. fesettings->step_size = 0;
  334. fesettings->max_drift = 0;
  335. return 0;
  336. }
  337. static int af9033_set_frontend(struct dvb_frontend *fe)
  338. {
  339. struct af9033_state *state = fe->demodulator_priv;
  340. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  341. int ret, i, spec_inv;
  342. u8 tmp, buf[3], bandwidth_reg_val;
  343. u32 if_frequency, freq_cw, adc_freq;
  344. dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
  345. __func__, c->frequency, c->bandwidth_hz);
  346. /* check bandwidth */
  347. switch (c->bandwidth_hz) {
  348. case 6000000:
  349. bandwidth_reg_val = 0x00;
  350. break;
  351. case 7000000:
  352. bandwidth_reg_val = 0x01;
  353. break;
  354. case 8000000:
  355. bandwidth_reg_val = 0x02;
  356. break;
  357. default:
  358. dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
  359. __func__);
  360. ret = -EINVAL;
  361. goto err;
  362. }
  363. /* program tuner */
  364. if (fe->ops.tuner_ops.set_params)
  365. fe->ops.tuner_ops.set_params(fe);
  366. /* program CFOE coefficients */
  367. if (c->bandwidth_hz != state->bandwidth_hz) {
  368. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  369. if (coeff_lut[i].clock == state->cfg.clock &&
  370. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  371. break;
  372. }
  373. }
  374. ret = af9033_wr_regs(state, 0x800001,
  375. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  376. }
  377. /* program frequency control */
  378. if (c->bandwidth_hz != state->bandwidth_hz) {
  379. spec_inv = state->cfg.spec_inv ? -1 : 1;
  380. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  381. if (clock_adc_lut[i].clock == state->cfg.clock)
  382. break;
  383. }
  384. adc_freq = clock_adc_lut[i].adc;
  385. /* get used IF frequency */
  386. if (fe->ops.tuner_ops.get_if_frequency)
  387. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  388. else
  389. if_frequency = 0;
  390. while (if_frequency > (adc_freq / 2))
  391. if_frequency -= adc_freq;
  392. if (if_frequency >= 0)
  393. spec_inv *= -1;
  394. else
  395. if_frequency *= -1;
  396. freq_cw = af9033_div(state, if_frequency, adc_freq, 23ul);
  397. if (spec_inv == -1)
  398. freq_cw *= -1;
  399. /* get adc multiplies */
  400. ret = af9033_rd_reg(state, 0x800045, &tmp);
  401. if (ret < 0)
  402. goto err;
  403. if (tmp == 1)
  404. freq_cw /= 2;
  405. buf[0] = (freq_cw >> 0) & 0xff;
  406. buf[1] = (freq_cw >> 8) & 0xff;
  407. buf[2] = (freq_cw >> 16) & 0x7f;
  408. ret = af9033_wr_regs(state, 0x800029, buf, 3);
  409. if (ret < 0)
  410. goto err;
  411. state->bandwidth_hz = c->bandwidth_hz;
  412. }
  413. ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
  414. if (ret < 0)
  415. goto err;
  416. ret = af9033_wr_reg(state, 0x800040, 0x00);
  417. if (ret < 0)
  418. goto err;
  419. ret = af9033_wr_reg(state, 0x800047, 0x00);
  420. if (ret < 0)
  421. goto err;
  422. ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
  423. if (ret < 0)
  424. goto err;
  425. if (c->frequency <= 230000000)
  426. tmp = 0x00; /* VHF */
  427. else
  428. tmp = 0x01; /* UHF */
  429. ret = af9033_wr_reg(state, 0x80004b, tmp);
  430. if (ret < 0)
  431. goto err;
  432. ret = af9033_wr_reg(state, 0x800000, 0x00);
  433. if (ret < 0)
  434. goto err;
  435. return 0;
  436. err:
  437. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  438. return ret;
  439. }
  440. static int af9033_get_frontend(struct dvb_frontend *fe)
  441. {
  442. struct af9033_state *state = fe->demodulator_priv;
  443. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  444. int ret;
  445. u8 buf[8];
  446. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  447. /* read all needed registers */
  448. ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
  449. if (ret < 0)
  450. goto err;
  451. switch ((buf[0] >> 0) & 3) {
  452. case 0:
  453. c->transmission_mode = TRANSMISSION_MODE_2K;
  454. break;
  455. case 1:
  456. c->transmission_mode = TRANSMISSION_MODE_8K;
  457. break;
  458. }
  459. switch ((buf[1] >> 0) & 3) {
  460. case 0:
  461. c->guard_interval = GUARD_INTERVAL_1_32;
  462. break;
  463. case 1:
  464. c->guard_interval = GUARD_INTERVAL_1_16;
  465. break;
  466. case 2:
  467. c->guard_interval = GUARD_INTERVAL_1_8;
  468. break;
  469. case 3:
  470. c->guard_interval = GUARD_INTERVAL_1_4;
  471. break;
  472. }
  473. switch ((buf[2] >> 0) & 7) {
  474. case 0:
  475. c->hierarchy = HIERARCHY_NONE;
  476. break;
  477. case 1:
  478. c->hierarchy = HIERARCHY_1;
  479. break;
  480. case 2:
  481. c->hierarchy = HIERARCHY_2;
  482. break;
  483. case 3:
  484. c->hierarchy = HIERARCHY_4;
  485. break;
  486. }
  487. switch ((buf[3] >> 0) & 3) {
  488. case 0:
  489. c->modulation = QPSK;
  490. break;
  491. case 1:
  492. c->modulation = QAM_16;
  493. break;
  494. case 2:
  495. c->modulation = QAM_64;
  496. break;
  497. }
  498. switch ((buf[4] >> 0) & 3) {
  499. case 0:
  500. c->bandwidth_hz = 6000000;
  501. break;
  502. case 1:
  503. c->bandwidth_hz = 7000000;
  504. break;
  505. case 2:
  506. c->bandwidth_hz = 8000000;
  507. break;
  508. }
  509. switch ((buf[6] >> 0) & 7) {
  510. case 0:
  511. c->code_rate_HP = FEC_1_2;
  512. break;
  513. case 1:
  514. c->code_rate_HP = FEC_2_3;
  515. break;
  516. case 2:
  517. c->code_rate_HP = FEC_3_4;
  518. break;
  519. case 3:
  520. c->code_rate_HP = FEC_5_6;
  521. break;
  522. case 4:
  523. c->code_rate_HP = FEC_7_8;
  524. break;
  525. case 5:
  526. c->code_rate_HP = FEC_NONE;
  527. break;
  528. }
  529. switch ((buf[7] >> 0) & 7) {
  530. case 0:
  531. c->code_rate_LP = FEC_1_2;
  532. break;
  533. case 1:
  534. c->code_rate_LP = FEC_2_3;
  535. break;
  536. case 2:
  537. c->code_rate_LP = FEC_3_4;
  538. break;
  539. case 3:
  540. c->code_rate_LP = FEC_5_6;
  541. break;
  542. case 4:
  543. c->code_rate_LP = FEC_7_8;
  544. break;
  545. case 5:
  546. c->code_rate_LP = FEC_NONE;
  547. break;
  548. }
  549. return 0;
  550. err:
  551. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  552. return ret;
  553. }
  554. static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
  555. {
  556. struct af9033_state *state = fe->demodulator_priv;
  557. int ret;
  558. u8 tmp;
  559. *status = 0;
  560. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  561. ret = af9033_rd_reg(state, 0x800047, &tmp);
  562. if (ret < 0)
  563. goto err;
  564. /* has signal */
  565. if (tmp == 0x01)
  566. *status |= FE_HAS_SIGNAL;
  567. if (tmp != 0x02) {
  568. /* TPS lock */
  569. ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
  570. if (ret < 0)
  571. goto err;
  572. if (tmp)
  573. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  574. FE_HAS_VITERBI;
  575. /* full lock */
  576. ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
  577. if (ret < 0)
  578. goto err;
  579. if (tmp)
  580. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  581. FE_HAS_VITERBI | FE_HAS_SYNC |
  582. FE_HAS_LOCK;
  583. }
  584. return 0;
  585. err:
  586. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  587. return ret;
  588. }
  589. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  590. {
  591. struct af9033_state *state = fe->demodulator_priv;
  592. int ret, i, len;
  593. u8 buf[3], tmp;
  594. u32 snr_val;
  595. const struct val_snr *uninitialized_var(snr_lut);
  596. /* read value */
  597. ret = af9033_rd_regs(state, 0x80002c, buf, 3);
  598. if (ret < 0)
  599. goto err;
  600. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  601. /* read current modulation */
  602. ret = af9033_rd_reg(state, 0x80f903, &tmp);
  603. if (ret < 0)
  604. goto err;
  605. switch ((tmp >> 0) & 3) {
  606. case 0:
  607. len = ARRAY_SIZE(qpsk_snr_lut);
  608. snr_lut = qpsk_snr_lut;
  609. break;
  610. case 1:
  611. len = ARRAY_SIZE(qam16_snr_lut);
  612. snr_lut = qam16_snr_lut;
  613. break;
  614. case 2:
  615. len = ARRAY_SIZE(qam64_snr_lut);
  616. snr_lut = qam64_snr_lut;
  617. break;
  618. default:
  619. goto err;
  620. }
  621. for (i = 0; i < len; i++) {
  622. tmp = snr_lut[i].snr;
  623. if (snr_val < snr_lut[i].val)
  624. break;
  625. }
  626. *snr = tmp * 10; /* dB/10 */
  627. return 0;
  628. err:
  629. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  630. return ret;
  631. }
  632. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  633. {
  634. struct af9033_state *state = fe->demodulator_priv;
  635. int ret;
  636. u8 strength2;
  637. /* read signal strength of 0-100 scale */
  638. ret = af9033_rd_reg(state, 0x800048, &strength2);
  639. if (ret < 0)
  640. goto err;
  641. /* scale value to 0x0000-0xffff */
  642. *strength = strength2 * 0xffff / 100;
  643. return 0;
  644. err:
  645. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  646. return ret;
  647. }
  648. static int af9033_update_ch_stat(struct af9033_state *state)
  649. {
  650. int ret = 0;
  651. u32 err_cnt, bit_cnt;
  652. u16 abort_cnt;
  653. u8 buf[7];
  654. /* only update data every half second */
  655. if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
  656. ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
  657. if (ret < 0)
  658. goto err;
  659. /* in 8 byte packets? */
  660. abort_cnt = (buf[1] << 8) + buf[0];
  661. /* in bits */
  662. err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
  663. /* in 8 byte packets? always(?) 0x2710 = 10000 */
  664. bit_cnt = (buf[6] << 8) + buf[5];
  665. if (bit_cnt < abort_cnt) {
  666. abort_cnt = 1000;
  667. state->ber = 0xffffffff;
  668. } else {
  669. /* 8 byte packets, that have not been rejected already */
  670. bit_cnt -= (u32)abort_cnt;
  671. if (bit_cnt == 0) {
  672. state->ber = 0xffffffff;
  673. } else {
  674. err_cnt -= (u32)abort_cnt * 8 * 8;
  675. bit_cnt *= 8 * 8;
  676. state->ber = err_cnt * (0xffffffff / bit_cnt);
  677. }
  678. }
  679. state->ucb += abort_cnt;
  680. state->last_stat_check = jiffies;
  681. }
  682. return 0;
  683. err:
  684. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  685. return ret;
  686. }
  687. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  688. {
  689. struct af9033_state *state = fe->demodulator_priv;
  690. int ret;
  691. ret = af9033_update_ch_stat(state);
  692. if (ret < 0)
  693. return ret;
  694. *ber = state->ber;
  695. return 0;
  696. }
  697. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  698. {
  699. struct af9033_state *state = fe->demodulator_priv;
  700. int ret;
  701. ret = af9033_update_ch_stat(state);
  702. if (ret < 0)
  703. return ret;
  704. *ucblocks = state->ucb;
  705. return 0;
  706. }
  707. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  708. {
  709. struct af9033_state *state = fe->demodulator_priv;
  710. int ret;
  711. dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
  712. ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
  713. if (ret < 0)
  714. goto err;
  715. return 0;
  716. err:
  717. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  718. return ret;
  719. }
  720. static struct dvb_frontend_ops af9033_ops;
  721. struct dvb_frontend *af9033_attach(const struct af9033_config *config,
  722. struct i2c_adapter *i2c)
  723. {
  724. int ret;
  725. struct af9033_state *state;
  726. u8 buf[8];
  727. dev_dbg(&i2c->dev, "%s:\n", __func__);
  728. /* allocate memory for the internal state */
  729. state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
  730. if (state == NULL)
  731. goto err;
  732. /* setup the state */
  733. state->i2c = i2c;
  734. memcpy(&state->cfg, config, sizeof(struct af9033_config));
  735. if (state->cfg.clock != 12000000) {
  736. dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
  737. "only 12000000 Hz is supported currently\n",
  738. KBUILD_MODNAME, state->cfg.clock);
  739. goto err;
  740. }
  741. /* firmware version */
  742. ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
  743. if (ret < 0)
  744. goto err;
  745. ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
  746. if (ret < 0)
  747. goto err;
  748. dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
  749. "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
  750. buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
  751. /* configure internal TS mode */
  752. switch (state->cfg.ts_mode) {
  753. case AF9033_TS_MODE_PARALLEL:
  754. state->ts_mode_parallel = true;
  755. break;
  756. case AF9033_TS_MODE_SERIAL:
  757. state->ts_mode_serial = true;
  758. break;
  759. case AF9033_TS_MODE_USB:
  760. /* usb mode for AF9035 */
  761. default:
  762. break;
  763. }
  764. /* create dvb_frontend */
  765. memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  766. state->fe.demodulator_priv = state;
  767. return &state->fe;
  768. err:
  769. kfree(state);
  770. return NULL;
  771. }
  772. EXPORT_SYMBOL(af9033_attach);
  773. static struct dvb_frontend_ops af9033_ops = {
  774. .delsys = { SYS_DVBT },
  775. .info = {
  776. .name = "Afatech AF9033 (DVB-T)",
  777. .frequency_min = 174000000,
  778. .frequency_max = 862000000,
  779. .frequency_stepsize = 250000,
  780. .frequency_tolerance = 0,
  781. .caps = FE_CAN_FEC_1_2 |
  782. FE_CAN_FEC_2_3 |
  783. FE_CAN_FEC_3_4 |
  784. FE_CAN_FEC_5_6 |
  785. FE_CAN_FEC_7_8 |
  786. FE_CAN_FEC_AUTO |
  787. FE_CAN_QPSK |
  788. FE_CAN_QAM_16 |
  789. FE_CAN_QAM_64 |
  790. FE_CAN_QAM_AUTO |
  791. FE_CAN_TRANSMISSION_MODE_AUTO |
  792. FE_CAN_GUARD_INTERVAL_AUTO |
  793. FE_CAN_HIERARCHY_AUTO |
  794. FE_CAN_RECOVER |
  795. FE_CAN_MUTE_TS
  796. },
  797. .release = af9033_release,
  798. .init = af9033_init,
  799. .sleep = af9033_sleep,
  800. .get_tune_settings = af9033_get_tune_settings,
  801. .set_frontend = af9033_set_frontend,
  802. .get_frontend = af9033_get_frontend,
  803. .read_status = af9033_read_status,
  804. .read_snr = af9033_read_snr,
  805. .read_signal_strength = af9033_read_signal_strength,
  806. .read_ber = af9033_read_ber,
  807. .read_ucblocks = af9033_read_ucblocks,
  808. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  809. };
  810. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  811. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  812. MODULE_LICENSE("GPL");