tcp_input.c 156 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #include <linux/mm.h>
  63. #include <linux/module.h>
  64. #include <linux/sysctl.h>
  65. #include <net/dst.h>
  66. #include <net/tcp.h>
  67. #include <net/inet_common.h>
  68. #include <linux/ipsec.h>
  69. #include <asm/unaligned.h>
  70. #include <net/netdma.h>
  71. int sysctl_tcp_timestamps __read_mostly = 1;
  72. int sysctl_tcp_window_scaling __read_mostly = 1;
  73. int sysctl_tcp_sack __read_mostly = 1;
  74. int sysctl_tcp_fack __read_mostly = 1;
  75. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  76. int sysctl_tcp_ecn __read_mostly;
  77. int sysctl_tcp_dsack __read_mostly = 1;
  78. int sysctl_tcp_app_win __read_mostly = 31;
  79. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  80. int sysctl_tcp_stdurg __read_mostly;
  81. int sysctl_tcp_rfc1337 __read_mostly;
  82. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  83. int sysctl_tcp_frto __read_mostly = 2;
  84. int sysctl_tcp_frto_response __read_mostly;
  85. int sysctl_tcp_nometrics_save __read_mostly;
  86. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  87. int sysctl_tcp_abc __read_mostly;
  88. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  89. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  90. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  91. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  92. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  93. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  94. #define FLAG_ECE 0x40 /* ECE in this ACK */
  95. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  96. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  97. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  98. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  99. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  100. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  101. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  102. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  103. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  104. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  105. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  106. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  107. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  108. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  109. /* Adapt the MSS value used to make delayed ack decision to the
  110. * real world.
  111. */
  112. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  113. {
  114. struct inet_connection_sock *icsk = inet_csk(sk);
  115. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  116. unsigned int len;
  117. icsk->icsk_ack.last_seg_size = 0;
  118. /* skb->len may jitter because of SACKs, even if peer
  119. * sends good full-sized frames.
  120. */
  121. len = skb_shinfo(skb)->gso_size ? : skb->len;
  122. if (len >= icsk->icsk_ack.rcv_mss) {
  123. icsk->icsk_ack.rcv_mss = len;
  124. } else {
  125. /* Otherwise, we make more careful check taking into account,
  126. * that SACKs block is variable.
  127. *
  128. * "len" is invariant segment length, including TCP header.
  129. */
  130. len += skb->data - skb_transport_header(skb);
  131. if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
  132. /* If PSH is not set, packet should be
  133. * full sized, provided peer TCP is not badly broken.
  134. * This observation (if it is correct 8)) allows
  135. * to handle super-low mtu links fairly.
  136. */
  137. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  138. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  139. /* Subtract also invariant (if peer is RFC compliant),
  140. * tcp header plus fixed timestamp option length.
  141. * Resulting "len" is MSS free of SACK jitter.
  142. */
  143. len -= tcp_sk(sk)->tcp_header_len;
  144. icsk->icsk_ack.last_seg_size = len;
  145. if (len == lss) {
  146. icsk->icsk_ack.rcv_mss = len;
  147. return;
  148. }
  149. }
  150. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  151. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  152. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  153. }
  154. }
  155. static void tcp_incr_quickack(struct sock *sk)
  156. {
  157. struct inet_connection_sock *icsk = inet_csk(sk);
  158. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  159. if (quickacks == 0)
  160. quickacks = 2;
  161. if (quickacks > icsk->icsk_ack.quick)
  162. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  163. }
  164. void tcp_enter_quickack_mode(struct sock *sk)
  165. {
  166. struct inet_connection_sock *icsk = inet_csk(sk);
  167. tcp_incr_quickack(sk);
  168. icsk->icsk_ack.pingpong = 0;
  169. icsk->icsk_ack.ato = TCP_ATO_MIN;
  170. }
  171. /* Send ACKs quickly, if "quick" count is not exhausted
  172. * and the session is not interactive.
  173. */
  174. static inline int tcp_in_quickack_mode(const struct sock *sk)
  175. {
  176. const struct inet_connection_sock *icsk = inet_csk(sk);
  177. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  178. }
  179. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  180. {
  181. if (tp->ecn_flags & TCP_ECN_OK)
  182. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  183. }
  184. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
  185. {
  186. if (tcp_hdr(skb)->cwr)
  187. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  188. }
  189. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  190. {
  191. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  192. }
  193. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
  194. {
  195. if (tp->ecn_flags & TCP_ECN_OK) {
  196. if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
  197. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  198. /* Funny extension: if ECT is not set on a segment,
  199. * it is surely retransmit. It is not in ECN RFC,
  200. * but Linux follows this rule. */
  201. else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
  202. tcp_enter_quickack_mode((struct sock *)tp);
  203. }
  204. }
  205. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
  206. {
  207. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  208. tp->ecn_flags &= ~TCP_ECN_OK;
  209. }
  210. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
  211. {
  212. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  213. tp->ecn_flags &= ~TCP_ECN_OK;
  214. }
  215. static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
  216. {
  217. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  218. return 1;
  219. return 0;
  220. }
  221. /* Buffer size and advertised window tuning.
  222. *
  223. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  224. */
  225. static void tcp_fixup_sndbuf(struct sock *sk)
  226. {
  227. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  228. sizeof(struct sk_buff);
  229. if (sk->sk_sndbuf < 3 * sndmem)
  230. sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
  231. }
  232. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  233. *
  234. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  235. * forward and advertised in receiver window (tp->rcv_wnd) and
  236. * "application buffer", required to isolate scheduling/application
  237. * latencies from network.
  238. * window_clamp is maximal advertised window. It can be less than
  239. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  240. * is reserved for "application" buffer. The less window_clamp is
  241. * the smoother our behaviour from viewpoint of network, but the lower
  242. * throughput and the higher sensitivity of the connection to losses. 8)
  243. *
  244. * rcv_ssthresh is more strict window_clamp used at "slow start"
  245. * phase to predict further behaviour of this connection.
  246. * It is used for two goals:
  247. * - to enforce header prediction at sender, even when application
  248. * requires some significant "application buffer". It is check #1.
  249. * - to prevent pruning of receive queue because of misprediction
  250. * of receiver window. Check #2.
  251. *
  252. * The scheme does not work when sender sends good segments opening
  253. * window and then starts to feed us spaghetti. But it should work
  254. * in common situations. Otherwise, we have to rely on queue collapsing.
  255. */
  256. /* Slow part of check#2. */
  257. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  258. {
  259. struct tcp_sock *tp = tcp_sk(sk);
  260. /* Optimize this! */
  261. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  262. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  263. while (tp->rcv_ssthresh <= window) {
  264. if (truesize <= skb->len)
  265. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  266. truesize >>= 1;
  267. window >>= 1;
  268. }
  269. return 0;
  270. }
  271. static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
  272. {
  273. struct tcp_sock *tp = tcp_sk(sk);
  274. /* Check #1 */
  275. if (tp->rcv_ssthresh < tp->window_clamp &&
  276. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  277. !tcp_memory_pressure) {
  278. int incr;
  279. /* Check #2. Increase window, if skb with such overhead
  280. * will fit to rcvbuf in future.
  281. */
  282. if (tcp_win_from_space(skb->truesize) <= skb->len)
  283. incr = 2 * tp->advmss;
  284. else
  285. incr = __tcp_grow_window(sk, skb);
  286. if (incr) {
  287. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  288. tp->window_clamp);
  289. inet_csk(sk)->icsk_ack.quick |= 1;
  290. }
  291. }
  292. }
  293. /* 3. Tuning rcvbuf, when connection enters established state. */
  294. static void tcp_fixup_rcvbuf(struct sock *sk)
  295. {
  296. struct tcp_sock *tp = tcp_sk(sk);
  297. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  298. /* Try to select rcvbuf so that 4 mss-sized segments
  299. * will fit to window and corresponding skbs will fit to our rcvbuf.
  300. * (was 3; 4 is minimum to allow fast retransmit to work.)
  301. */
  302. while (tcp_win_from_space(rcvmem) < tp->advmss)
  303. rcvmem += 128;
  304. if (sk->sk_rcvbuf < 4 * rcvmem)
  305. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  306. }
  307. /* 4. Try to fixup all. It is made immediately after connection enters
  308. * established state.
  309. */
  310. static void tcp_init_buffer_space(struct sock *sk)
  311. {
  312. struct tcp_sock *tp = tcp_sk(sk);
  313. int maxwin;
  314. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  315. tcp_fixup_rcvbuf(sk);
  316. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  317. tcp_fixup_sndbuf(sk);
  318. tp->rcvq_space.space = tp->rcv_wnd;
  319. maxwin = tcp_full_space(sk);
  320. if (tp->window_clamp >= maxwin) {
  321. tp->window_clamp = maxwin;
  322. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  323. tp->window_clamp = max(maxwin -
  324. (maxwin >> sysctl_tcp_app_win),
  325. 4 * tp->advmss);
  326. }
  327. /* Force reservation of one segment. */
  328. if (sysctl_tcp_app_win &&
  329. tp->window_clamp > 2 * tp->advmss &&
  330. tp->window_clamp + tp->advmss > maxwin)
  331. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  332. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  333. tp->snd_cwnd_stamp = tcp_time_stamp;
  334. }
  335. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  336. static void tcp_clamp_window(struct sock *sk)
  337. {
  338. struct tcp_sock *tp = tcp_sk(sk);
  339. struct inet_connection_sock *icsk = inet_csk(sk);
  340. icsk->icsk_ack.quick = 0;
  341. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  342. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  343. !tcp_memory_pressure &&
  344. atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  345. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  346. sysctl_tcp_rmem[2]);
  347. }
  348. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  349. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  350. }
  351. /* Initialize RCV_MSS value.
  352. * RCV_MSS is an our guess about MSS used by the peer.
  353. * We haven't any direct information about the MSS.
  354. * It's better to underestimate the RCV_MSS rather than overestimate.
  355. * Overestimations make us ACKing less frequently than needed.
  356. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  357. */
  358. void tcp_initialize_rcv_mss(struct sock *sk)
  359. {
  360. struct tcp_sock *tp = tcp_sk(sk);
  361. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  362. hint = min(hint, tp->rcv_wnd / 2);
  363. hint = min(hint, TCP_MIN_RCVMSS);
  364. hint = max(hint, TCP_MIN_MSS);
  365. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  366. }
  367. /* Receiver "autotuning" code.
  368. *
  369. * The algorithm for RTT estimation w/o timestamps is based on
  370. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  371. * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
  372. *
  373. * More detail on this code can be found at
  374. * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
  375. * though this reference is out of date. A new paper
  376. * is pending.
  377. */
  378. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  379. {
  380. u32 new_sample = tp->rcv_rtt_est.rtt;
  381. long m = sample;
  382. if (m == 0)
  383. m = 1;
  384. if (new_sample != 0) {
  385. /* If we sample in larger samples in the non-timestamp
  386. * case, we could grossly overestimate the RTT especially
  387. * with chatty applications or bulk transfer apps which
  388. * are stalled on filesystem I/O.
  389. *
  390. * Also, since we are only going for a minimum in the
  391. * non-timestamp case, we do not smooth things out
  392. * else with timestamps disabled convergence takes too
  393. * long.
  394. */
  395. if (!win_dep) {
  396. m -= (new_sample >> 3);
  397. new_sample += m;
  398. } else if (m < new_sample)
  399. new_sample = m << 3;
  400. } else {
  401. /* No previous measure. */
  402. new_sample = m << 3;
  403. }
  404. if (tp->rcv_rtt_est.rtt != new_sample)
  405. tp->rcv_rtt_est.rtt = new_sample;
  406. }
  407. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  408. {
  409. if (tp->rcv_rtt_est.time == 0)
  410. goto new_measure;
  411. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  412. return;
  413. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  414. new_measure:
  415. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  416. tp->rcv_rtt_est.time = tcp_time_stamp;
  417. }
  418. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  419. const struct sk_buff *skb)
  420. {
  421. struct tcp_sock *tp = tcp_sk(sk);
  422. if (tp->rx_opt.rcv_tsecr &&
  423. (TCP_SKB_CB(skb)->end_seq -
  424. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  425. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  426. }
  427. /*
  428. * This function should be called every time data is copied to user space.
  429. * It calculates the appropriate TCP receive buffer space.
  430. */
  431. void tcp_rcv_space_adjust(struct sock *sk)
  432. {
  433. struct tcp_sock *tp = tcp_sk(sk);
  434. int time;
  435. int space;
  436. if (tp->rcvq_space.time == 0)
  437. goto new_measure;
  438. time = tcp_time_stamp - tp->rcvq_space.time;
  439. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  440. return;
  441. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  442. space = max(tp->rcvq_space.space, space);
  443. if (tp->rcvq_space.space != space) {
  444. int rcvmem;
  445. tp->rcvq_space.space = space;
  446. if (sysctl_tcp_moderate_rcvbuf &&
  447. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  448. int new_clamp = space;
  449. /* Receive space grows, normalize in order to
  450. * take into account packet headers and sk_buff
  451. * structure overhead.
  452. */
  453. space /= tp->advmss;
  454. if (!space)
  455. space = 1;
  456. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  457. 16 + sizeof(struct sk_buff));
  458. while (tcp_win_from_space(rcvmem) < tp->advmss)
  459. rcvmem += 128;
  460. space *= rcvmem;
  461. space = min(space, sysctl_tcp_rmem[2]);
  462. if (space > sk->sk_rcvbuf) {
  463. sk->sk_rcvbuf = space;
  464. /* Make the window clamp follow along. */
  465. tp->window_clamp = new_clamp;
  466. }
  467. }
  468. }
  469. new_measure:
  470. tp->rcvq_space.seq = tp->copied_seq;
  471. tp->rcvq_space.time = tcp_time_stamp;
  472. }
  473. /* There is something which you must keep in mind when you analyze the
  474. * behavior of the tp->ato delayed ack timeout interval. When a
  475. * connection starts up, we want to ack as quickly as possible. The
  476. * problem is that "good" TCP's do slow start at the beginning of data
  477. * transmission. The means that until we send the first few ACK's the
  478. * sender will sit on his end and only queue most of his data, because
  479. * he can only send snd_cwnd unacked packets at any given time. For
  480. * each ACK we send, he increments snd_cwnd and transmits more of his
  481. * queue. -DaveM
  482. */
  483. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  484. {
  485. struct tcp_sock *tp = tcp_sk(sk);
  486. struct inet_connection_sock *icsk = inet_csk(sk);
  487. u32 now;
  488. inet_csk_schedule_ack(sk);
  489. tcp_measure_rcv_mss(sk, skb);
  490. tcp_rcv_rtt_measure(tp);
  491. now = tcp_time_stamp;
  492. if (!icsk->icsk_ack.ato) {
  493. /* The _first_ data packet received, initialize
  494. * delayed ACK engine.
  495. */
  496. tcp_incr_quickack(sk);
  497. icsk->icsk_ack.ato = TCP_ATO_MIN;
  498. } else {
  499. int m = now - icsk->icsk_ack.lrcvtime;
  500. if (m <= TCP_ATO_MIN / 2) {
  501. /* The fastest case is the first. */
  502. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  503. } else if (m < icsk->icsk_ack.ato) {
  504. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  505. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  506. icsk->icsk_ack.ato = icsk->icsk_rto;
  507. } else if (m > icsk->icsk_rto) {
  508. /* Too long gap. Apparently sender failed to
  509. * restart window, so that we send ACKs quickly.
  510. */
  511. tcp_incr_quickack(sk);
  512. sk_mem_reclaim(sk);
  513. }
  514. }
  515. icsk->icsk_ack.lrcvtime = now;
  516. TCP_ECN_check_ce(tp, skb);
  517. if (skb->len >= 128)
  518. tcp_grow_window(sk, skb);
  519. }
  520. static u32 tcp_rto_min(struct sock *sk)
  521. {
  522. struct dst_entry *dst = __sk_dst_get(sk);
  523. u32 rto_min = TCP_RTO_MIN;
  524. if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
  525. rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
  526. return rto_min;
  527. }
  528. /* Called to compute a smoothed rtt estimate. The data fed to this
  529. * routine either comes from timestamps, or from segments that were
  530. * known _not_ to have been retransmitted [see Karn/Partridge
  531. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  532. * piece by Van Jacobson.
  533. * NOTE: the next three routines used to be one big routine.
  534. * To save cycles in the RFC 1323 implementation it was better to break
  535. * it up into three procedures. -- erics
  536. */
  537. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  538. {
  539. struct tcp_sock *tp = tcp_sk(sk);
  540. long m = mrtt; /* RTT */
  541. /* The following amusing code comes from Jacobson's
  542. * article in SIGCOMM '88. Note that rtt and mdev
  543. * are scaled versions of rtt and mean deviation.
  544. * This is designed to be as fast as possible
  545. * m stands for "measurement".
  546. *
  547. * On a 1990 paper the rto value is changed to:
  548. * RTO = rtt + 4 * mdev
  549. *
  550. * Funny. This algorithm seems to be very broken.
  551. * These formulae increase RTO, when it should be decreased, increase
  552. * too slowly, when it should be increased quickly, decrease too quickly
  553. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  554. * does not matter how to _calculate_ it. Seems, it was trap
  555. * that VJ failed to avoid. 8)
  556. */
  557. if (m == 0)
  558. m = 1;
  559. if (tp->srtt != 0) {
  560. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  561. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  562. if (m < 0) {
  563. m = -m; /* m is now abs(error) */
  564. m -= (tp->mdev >> 2); /* similar update on mdev */
  565. /* This is similar to one of Eifel findings.
  566. * Eifel blocks mdev updates when rtt decreases.
  567. * This solution is a bit different: we use finer gain
  568. * for mdev in this case (alpha*beta).
  569. * Like Eifel it also prevents growth of rto,
  570. * but also it limits too fast rto decreases,
  571. * happening in pure Eifel.
  572. */
  573. if (m > 0)
  574. m >>= 3;
  575. } else {
  576. m -= (tp->mdev >> 2); /* similar update on mdev */
  577. }
  578. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  579. if (tp->mdev > tp->mdev_max) {
  580. tp->mdev_max = tp->mdev;
  581. if (tp->mdev_max > tp->rttvar)
  582. tp->rttvar = tp->mdev_max;
  583. }
  584. if (after(tp->snd_una, tp->rtt_seq)) {
  585. if (tp->mdev_max < tp->rttvar)
  586. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  587. tp->rtt_seq = tp->snd_nxt;
  588. tp->mdev_max = tcp_rto_min(sk);
  589. }
  590. } else {
  591. /* no previous measure. */
  592. tp->srtt = m << 3; /* take the measured time to be rtt */
  593. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  594. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  595. tp->rtt_seq = tp->snd_nxt;
  596. }
  597. }
  598. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  599. * routine referred to above.
  600. */
  601. static inline void tcp_set_rto(struct sock *sk)
  602. {
  603. const struct tcp_sock *tp = tcp_sk(sk);
  604. /* Old crap is replaced with new one. 8)
  605. *
  606. * More seriously:
  607. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  608. * It cannot be less due to utterly erratic ACK generation made
  609. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  610. * to do with delayed acks, because at cwnd>2 true delack timeout
  611. * is invisible. Actually, Linux-2.4 also generates erratic
  612. * ACKs in some circumstances.
  613. */
  614. inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
  615. /* 2. Fixups made earlier cannot be right.
  616. * If we do not estimate RTO correctly without them,
  617. * all the algo is pure shit and should be replaced
  618. * with correct one. It is exactly, which we pretend to do.
  619. */
  620. }
  621. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  622. * guarantees that rto is higher.
  623. */
  624. static inline void tcp_bound_rto(struct sock *sk)
  625. {
  626. if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
  627. inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
  628. }
  629. /* Save metrics learned by this TCP session.
  630. This function is called only, when TCP finishes successfully
  631. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  632. */
  633. void tcp_update_metrics(struct sock *sk)
  634. {
  635. struct tcp_sock *tp = tcp_sk(sk);
  636. struct dst_entry *dst = __sk_dst_get(sk);
  637. if (sysctl_tcp_nometrics_save)
  638. return;
  639. dst_confirm(dst);
  640. if (dst && (dst->flags & DST_HOST)) {
  641. const struct inet_connection_sock *icsk = inet_csk(sk);
  642. int m;
  643. unsigned long rtt;
  644. if (icsk->icsk_backoff || !tp->srtt) {
  645. /* This session failed to estimate rtt. Why?
  646. * Probably, no packets returned in time.
  647. * Reset our results.
  648. */
  649. if (!(dst_metric_locked(dst, RTAX_RTT)))
  650. dst->metrics[RTAX_RTT - 1] = 0;
  651. return;
  652. }
  653. rtt = dst_metric_rtt(dst, RTAX_RTT);
  654. m = rtt - tp->srtt;
  655. /* If newly calculated rtt larger than stored one,
  656. * store new one. Otherwise, use EWMA. Remember,
  657. * rtt overestimation is always better than underestimation.
  658. */
  659. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  660. if (m <= 0)
  661. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  662. else
  663. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  664. }
  665. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  666. unsigned long var;
  667. if (m < 0)
  668. m = -m;
  669. /* Scale deviation to rttvar fixed point */
  670. m >>= 1;
  671. if (m < tp->mdev)
  672. m = tp->mdev;
  673. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  674. if (m >= var)
  675. var = m;
  676. else
  677. var -= (var - m) >> 2;
  678. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  679. }
  680. if (tp->snd_ssthresh >= 0xFFFF) {
  681. /* Slow start still did not finish. */
  682. if (dst_metric(dst, RTAX_SSTHRESH) &&
  683. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  684. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  685. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
  686. if (!dst_metric_locked(dst, RTAX_CWND) &&
  687. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  688. dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
  689. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  690. icsk->icsk_ca_state == TCP_CA_Open) {
  691. /* Cong. avoidance phase, cwnd is reliable. */
  692. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  693. dst->metrics[RTAX_SSTHRESH-1] =
  694. max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
  695. if (!dst_metric_locked(dst, RTAX_CWND))
  696. dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
  697. } else {
  698. /* Else slow start did not finish, cwnd is non-sense,
  699. ssthresh may be also invalid.
  700. */
  701. if (!dst_metric_locked(dst, RTAX_CWND))
  702. dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
  703. if (dst_metric(dst, RTAX_SSTHRESH) &&
  704. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  705. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  706. dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
  707. }
  708. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  709. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  710. tp->reordering != sysctl_tcp_reordering)
  711. dst->metrics[RTAX_REORDERING-1] = tp->reordering;
  712. }
  713. }
  714. }
  715. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  716. {
  717. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  718. if (!cwnd)
  719. cwnd = rfc3390_bytes_to_packets(tp->mss_cache);
  720. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  721. }
  722. /* Set slow start threshold and cwnd not falling to slow start */
  723. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  724. {
  725. struct tcp_sock *tp = tcp_sk(sk);
  726. const struct inet_connection_sock *icsk = inet_csk(sk);
  727. tp->prior_ssthresh = 0;
  728. tp->bytes_acked = 0;
  729. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  730. tp->undo_marker = 0;
  731. if (set_ssthresh)
  732. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  733. tp->snd_cwnd = min(tp->snd_cwnd,
  734. tcp_packets_in_flight(tp) + 1U);
  735. tp->snd_cwnd_cnt = 0;
  736. tp->high_seq = tp->snd_nxt;
  737. tp->snd_cwnd_stamp = tcp_time_stamp;
  738. TCP_ECN_queue_cwr(tp);
  739. tcp_set_ca_state(sk, TCP_CA_CWR);
  740. }
  741. }
  742. /*
  743. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  744. * disables it when reordering is detected
  745. */
  746. static void tcp_disable_fack(struct tcp_sock *tp)
  747. {
  748. /* RFC3517 uses different metric in lost marker => reset on change */
  749. if (tcp_is_fack(tp))
  750. tp->lost_skb_hint = NULL;
  751. tp->rx_opt.sack_ok &= ~2;
  752. }
  753. /* Take a notice that peer is sending D-SACKs */
  754. static void tcp_dsack_seen(struct tcp_sock *tp)
  755. {
  756. tp->rx_opt.sack_ok |= 4;
  757. }
  758. /* Initialize metrics on socket. */
  759. static void tcp_init_metrics(struct sock *sk)
  760. {
  761. struct tcp_sock *tp = tcp_sk(sk);
  762. struct dst_entry *dst = __sk_dst_get(sk);
  763. if (dst == NULL)
  764. goto reset;
  765. dst_confirm(dst);
  766. if (dst_metric_locked(dst, RTAX_CWND))
  767. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  768. if (dst_metric(dst, RTAX_SSTHRESH)) {
  769. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  770. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  771. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  772. }
  773. if (dst_metric(dst, RTAX_REORDERING) &&
  774. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  775. tcp_disable_fack(tp);
  776. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  777. }
  778. if (dst_metric(dst, RTAX_RTT) == 0)
  779. goto reset;
  780. if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
  781. goto reset;
  782. /* Initial rtt is determined from SYN,SYN-ACK.
  783. * The segment is small and rtt may appear much
  784. * less than real one. Use per-dst memory
  785. * to make it more realistic.
  786. *
  787. * A bit of theory. RTT is time passed after "normal" sized packet
  788. * is sent until it is ACKed. In normal circumstances sending small
  789. * packets force peer to delay ACKs and calculation is correct too.
  790. * The algorithm is adaptive and, provided we follow specs, it
  791. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  792. * tricks sort of "quick acks" for time long enough to decrease RTT
  793. * to low value, and then abruptly stops to do it and starts to delay
  794. * ACKs, wait for troubles.
  795. */
  796. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  797. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  798. tp->rtt_seq = tp->snd_nxt;
  799. }
  800. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  801. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  802. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  803. }
  804. tcp_set_rto(sk);
  805. tcp_bound_rto(sk);
  806. if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
  807. goto reset;
  808. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  809. tp->snd_cwnd_stamp = tcp_time_stamp;
  810. return;
  811. reset:
  812. /* Play conservative. If timestamps are not
  813. * supported, TCP will fail to recalculate correct
  814. * rtt, if initial rto is too small. FORGET ALL AND RESET!
  815. */
  816. if (!tp->rx_opt.saw_tstamp && tp->srtt) {
  817. tp->srtt = 0;
  818. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
  819. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  820. }
  821. }
  822. static void tcp_update_reordering(struct sock *sk, const int metric,
  823. const int ts)
  824. {
  825. struct tcp_sock *tp = tcp_sk(sk);
  826. if (metric > tp->reordering) {
  827. int mib_idx;
  828. tp->reordering = min(TCP_MAX_REORDERING, metric);
  829. /* This exciting event is worth to be remembered. 8) */
  830. if (ts)
  831. mib_idx = LINUX_MIB_TCPTSREORDER;
  832. else if (tcp_is_reno(tp))
  833. mib_idx = LINUX_MIB_TCPRENOREORDER;
  834. else if (tcp_is_fack(tp))
  835. mib_idx = LINUX_MIB_TCPFACKREORDER;
  836. else
  837. mib_idx = LINUX_MIB_TCPSACKREORDER;
  838. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  839. #if FASTRETRANS_DEBUG > 1
  840. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  841. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  842. tp->reordering,
  843. tp->fackets_out,
  844. tp->sacked_out,
  845. tp->undo_marker ? tp->undo_retrans : 0);
  846. #endif
  847. tcp_disable_fack(tp);
  848. }
  849. }
  850. /* This procedure tags the retransmission queue when SACKs arrive.
  851. *
  852. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  853. * Packets in queue with these bits set are counted in variables
  854. * sacked_out, retrans_out and lost_out, correspondingly.
  855. *
  856. * Valid combinations are:
  857. * Tag InFlight Description
  858. * 0 1 - orig segment is in flight.
  859. * S 0 - nothing flies, orig reached receiver.
  860. * L 0 - nothing flies, orig lost by net.
  861. * R 2 - both orig and retransmit are in flight.
  862. * L|R 1 - orig is lost, retransmit is in flight.
  863. * S|R 1 - orig reached receiver, retrans is still in flight.
  864. * (L|S|R is logically valid, it could occur when L|R is sacked,
  865. * but it is equivalent to plain S and code short-curcuits it to S.
  866. * L|S is logically invalid, it would mean -1 packet in flight 8))
  867. *
  868. * These 6 states form finite state machine, controlled by the following events:
  869. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  870. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  871. * 3. Loss detection event of one of three flavors:
  872. * A. Scoreboard estimator decided the packet is lost.
  873. * A'. Reno "three dupacks" marks head of queue lost.
  874. * A''. Its FACK modfication, head until snd.fack is lost.
  875. * B. SACK arrives sacking data transmitted after never retransmitted
  876. * hole was sent out.
  877. * C. SACK arrives sacking SND.NXT at the moment, when the
  878. * segment was retransmitted.
  879. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  880. *
  881. * It is pleasant to note, that state diagram turns out to be commutative,
  882. * so that we are allowed not to be bothered by order of our actions,
  883. * when multiple events arrive simultaneously. (see the function below).
  884. *
  885. * Reordering detection.
  886. * --------------------
  887. * Reordering metric is maximal distance, which a packet can be displaced
  888. * in packet stream. With SACKs we can estimate it:
  889. *
  890. * 1. SACK fills old hole and the corresponding segment was not
  891. * ever retransmitted -> reordering. Alas, we cannot use it
  892. * when segment was retransmitted.
  893. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  894. * for retransmitted and already SACKed segment -> reordering..
  895. * Both of these heuristics are not used in Loss state, when we cannot
  896. * account for retransmits accurately.
  897. *
  898. * SACK block validation.
  899. * ----------------------
  900. *
  901. * SACK block range validation checks that the received SACK block fits to
  902. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  903. * Note that SND.UNA is not included to the range though being valid because
  904. * it means that the receiver is rather inconsistent with itself reporting
  905. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  906. * perfectly valid, however, in light of RFC2018 which explicitly states
  907. * that "SACK block MUST reflect the newest segment. Even if the newest
  908. * segment is going to be discarded ...", not that it looks very clever
  909. * in case of head skb. Due to potentional receiver driven attacks, we
  910. * choose to avoid immediate execution of a walk in write queue due to
  911. * reneging and defer head skb's loss recovery to standard loss recovery
  912. * procedure that will eventually trigger (nothing forbids us doing this).
  913. *
  914. * Implements also blockage to start_seq wrap-around. Problem lies in the
  915. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  916. * there's no guarantee that it will be before snd_nxt (n). The problem
  917. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  918. * wrap (s_w):
  919. *
  920. * <- outs wnd -> <- wrapzone ->
  921. * u e n u_w e_w s n_w
  922. * | | | | | | |
  923. * |<------------+------+----- TCP seqno space --------------+---------->|
  924. * ...-- <2^31 ->| |<--------...
  925. * ...---- >2^31 ------>| |<--------...
  926. *
  927. * Current code wouldn't be vulnerable but it's better still to discard such
  928. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  929. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  930. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  931. * equal to the ideal case (infinite seqno space without wrap caused issues).
  932. *
  933. * With D-SACK the lower bound is extended to cover sequence space below
  934. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  935. * again, D-SACK block must not to go across snd_una (for the same reason as
  936. * for the normal SACK blocks, explained above). But there all simplicity
  937. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  938. * fully below undo_marker they do not affect behavior in anyway and can
  939. * therefore be safely ignored. In rare cases (which are more or less
  940. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  941. * fragmentation and packet reordering past skb's retransmission. To consider
  942. * them correctly, the acceptable range must be extended even more though
  943. * the exact amount is rather hard to quantify. However, tp->max_window can
  944. * be used as an exaggerated estimate.
  945. */
  946. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  947. u32 start_seq, u32 end_seq)
  948. {
  949. /* Too far in future, or reversed (interpretation is ambiguous) */
  950. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  951. return 0;
  952. /* Nasty start_seq wrap-around check (see comments above) */
  953. if (!before(start_seq, tp->snd_nxt))
  954. return 0;
  955. /* In outstanding window? ...This is valid exit for D-SACKs too.
  956. * start_seq == snd_una is non-sensical (see comments above)
  957. */
  958. if (after(start_seq, tp->snd_una))
  959. return 1;
  960. if (!is_dsack || !tp->undo_marker)
  961. return 0;
  962. /* ...Then it's D-SACK, and must reside below snd_una completely */
  963. if (!after(end_seq, tp->snd_una))
  964. return 0;
  965. if (!before(start_seq, tp->undo_marker))
  966. return 1;
  967. /* Too old */
  968. if (!after(end_seq, tp->undo_marker))
  969. return 0;
  970. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  971. * start_seq < undo_marker and end_seq >= undo_marker.
  972. */
  973. return !before(start_seq, end_seq - tp->max_window);
  974. }
  975. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  976. * Event "C". Later note: FACK people cheated me again 8), we have to account
  977. * for reordering! Ugly, but should help.
  978. *
  979. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  980. * less than what is now known to be received by the other end (derived from
  981. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  982. * retransmitted skbs to avoid some costly processing per ACKs.
  983. */
  984. static void tcp_mark_lost_retrans(struct sock *sk)
  985. {
  986. const struct inet_connection_sock *icsk = inet_csk(sk);
  987. struct tcp_sock *tp = tcp_sk(sk);
  988. struct sk_buff *skb;
  989. int cnt = 0;
  990. u32 new_low_seq = tp->snd_nxt;
  991. u32 received_upto = tcp_highest_sack_seq(tp);
  992. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  993. !after(received_upto, tp->lost_retrans_low) ||
  994. icsk->icsk_ca_state != TCP_CA_Recovery)
  995. return;
  996. tcp_for_write_queue(skb, sk) {
  997. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  998. if (skb == tcp_send_head(sk))
  999. break;
  1000. if (cnt == tp->retrans_out)
  1001. break;
  1002. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1003. continue;
  1004. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1005. continue;
  1006. if (after(received_upto, ack_seq) &&
  1007. (tcp_is_fack(tp) ||
  1008. !before(received_upto,
  1009. ack_seq + tp->reordering * tp->mss_cache))) {
  1010. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1011. tp->retrans_out -= tcp_skb_pcount(skb);
  1012. /* clear lost hint */
  1013. tp->retransmit_skb_hint = NULL;
  1014. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  1015. tp->lost_out += tcp_skb_pcount(skb);
  1016. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1017. }
  1018. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1019. } else {
  1020. if (before(ack_seq, new_low_seq))
  1021. new_low_seq = ack_seq;
  1022. cnt += tcp_skb_pcount(skb);
  1023. }
  1024. }
  1025. if (tp->retrans_out)
  1026. tp->lost_retrans_low = new_low_seq;
  1027. }
  1028. static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
  1029. struct tcp_sack_block_wire *sp, int num_sacks,
  1030. u32 prior_snd_una)
  1031. {
  1032. struct tcp_sock *tp = tcp_sk(sk);
  1033. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1034. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1035. int dup_sack = 0;
  1036. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1037. dup_sack = 1;
  1038. tcp_dsack_seen(tp);
  1039. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1040. } else if (num_sacks > 1) {
  1041. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1042. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1043. if (!after(end_seq_0, end_seq_1) &&
  1044. !before(start_seq_0, start_seq_1)) {
  1045. dup_sack = 1;
  1046. tcp_dsack_seen(tp);
  1047. NET_INC_STATS_BH(sock_net(sk),
  1048. LINUX_MIB_TCPDSACKOFORECV);
  1049. }
  1050. }
  1051. /* D-SACK for already forgotten data... Do dumb counting. */
  1052. if (dup_sack &&
  1053. !after(end_seq_0, prior_snd_una) &&
  1054. after(end_seq_0, tp->undo_marker))
  1055. tp->undo_retrans--;
  1056. return dup_sack;
  1057. }
  1058. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1059. * the incoming SACK may not exactly match but we can find smaller MSS
  1060. * aligned portion of it that matches. Therefore we might need to fragment
  1061. * which may fail and creates some hassle (caller must handle error case
  1062. * returns).
  1063. */
  1064. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1065. u32 start_seq, u32 end_seq)
  1066. {
  1067. int in_sack, err;
  1068. unsigned int pkt_len;
  1069. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1070. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1071. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1072. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1073. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1074. if (!in_sack)
  1075. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1076. else
  1077. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1078. err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
  1079. if (err < 0)
  1080. return err;
  1081. }
  1082. return in_sack;
  1083. }
  1084. static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
  1085. int *reord, int dup_sack, int fack_count)
  1086. {
  1087. struct tcp_sock *tp = tcp_sk(sk);
  1088. u8 sacked = TCP_SKB_CB(skb)->sacked;
  1089. int flag = 0;
  1090. /* Account D-SACK for retransmitted packet. */
  1091. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1092. if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1093. tp->undo_retrans--;
  1094. if (sacked & TCPCB_SACKED_ACKED)
  1095. *reord = min(fack_count, *reord);
  1096. }
  1097. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1098. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1099. return flag;
  1100. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1101. if (sacked & TCPCB_SACKED_RETRANS) {
  1102. /* If the segment is not tagged as lost,
  1103. * we do not clear RETRANS, believing
  1104. * that retransmission is still in flight.
  1105. */
  1106. if (sacked & TCPCB_LOST) {
  1107. TCP_SKB_CB(skb)->sacked &=
  1108. ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1109. tp->lost_out -= tcp_skb_pcount(skb);
  1110. tp->retrans_out -= tcp_skb_pcount(skb);
  1111. /* clear lost hint */
  1112. tp->retransmit_skb_hint = NULL;
  1113. }
  1114. } else {
  1115. if (!(sacked & TCPCB_RETRANS)) {
  1116. /* New sack for not retransmitted frame,
  1117. * which was in hole. It is reordering.
  1118. */
  1119. if (before(TCP_SKB_CB(skb)->seq,
  1120. tcp_highest_sack_seq(tp)))
  1121. *reord = min(fack_count, *reord);
  1122. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1123. if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
  1124. flag |= FLAG_ONLY_ORIG_SACKED;
  1125. }
  1126. if (sacked & TCPCB_LOST) {
  1127. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1128. tp->lost_out -= tcp_skb_pcount(skb);
  1129. /* clear lost hint */
  1130. tp->retransmit_skb_hint = NULL;
  1131. }
  1132. }
  1133. TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
  1134. flag |= FLAG_DATA_SACKED;
  1135. tp->sacked_out += tcp_skb_pcount(skb);
  1136. fack_count += tcp_skb_pcount(skb);
  1137. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1138. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1139. before(TCP_SKB_CB(skb)->seq,
  1140. TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1141. tp->lost_cnt_hint += tcp_skb_pcount(skb);
  1142. if (fack_count > tp->fackets_out)
  1143. tp->fackets_out = fack_count;
  1144. if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
  1145. tcp_advance_highest_sack(sk, skb);
  1146. }
  1147. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1148. * frames and clear it. undo_retrans is decreased above, L|R frames
  1149. * are accounted above as well.
  1150. */
  1151. if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
  1152. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1153. tp->retrans_out -= tcp_skb_pcount(skb);
  1154. tp->retransmit_skb_hint = NULL;
  1155. }
  1156. return flag;
  1157. }
  1158. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1159. struct tcp_sack_block *next_dup,
  1160. u32 start_seq, u32 end_seq,
  1161. int dup_sack_in, int *fack_count,
  1162. int *reord, int *flag)
  1163. {
  1164. tcp_for_write_queue_from(skb, sk) {
  1165. int in_sack = 0;
  1166. int dup_sack = dup_sack_in;
  1167. if (skb == tcp_send_head(sk))
  1168. break;
  1169. /* queue is in-order => we can short-circuit the walk early */
  1170. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1171. break;
  1172. if ((next_dup != NULL) &&
  1173. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1174. in_sack = tcp_match_skb_to_sack(sk, skb,
  1175. next_dup->start_seq,
  1176. next_dup->end_seq);
  1177. if (in_sack > 0)
  1178. dup_sack = 1;
  1179. }
  1180. if (in_sack <= 0)
  1181. in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
  1182. end_seq);
  1183. if (unlikely(in_sack < 0))
  1184. break;
  1185. if (in_sack)
  1186. *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
  1187. *fack_count);
  1188. *fack_count += tcp_skb_pcount(skb);
  1189. }
  1190. return skb;
  1191. }
  1192. /* Avoid all extra work that is being done by sacktag while walking in
  1193. * a normal way
  1194. */
  1195. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1196. u32 skip_to_seq, int *fack_count)
  1197. {
  1198. tcp_for_write_queue_from(skb, sk) {
  1199. if (skb == tcp_send_head(sk))
  1200. break;
  1201. if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1202. break;
  1203. *fack_count += tcp_skb_pcount(skb);
  1204. }
  1205. return skb;
  1206. }
  1207. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1208. struct sock *sk,
  1209. struct tcp_sack_block *next_dup,
  1210. u32 skip_to_seq,
  1211. int *fack_count, int *reord,
  1212. int *flag)
  1213. {
  1214. if (next_dup == NULL)
  1215. return skb;
  1216. if (before(next_dup->start_seq, skip_to_seq)) {
  1217. skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
  1218. skb = tcp_sacktag_walk(skb, sk, NULL,
  1219. next_dup->start_seq, next_dup->end_seq,
  1220. 1, fack_count, reord, flag);
  1221. }
  1222. return skb;
  1223. }
  1224. static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
  1225. {
  1226. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1227. }
  1228. static int
  1229. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
  1230. u32 prior_snd_una)
  1231. {
  1232. const struct inet_connection_sock *icsk = inet_csk(sk);
  1233. struct tcp_sock *tp = tcp_sk(sk);
  1234. unsigned char *ptr = (skb_transport_header(ack_skb) +
  1235. TCP_SKB_CB(ack_skb)->sacked);
  1236. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1237. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1238. struct tcp_sack_block *cache;
  1239. struct sk_buff *skb;
  1240. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1241. int used_sacks;
  1242. int reord = tp->packets_out;
  1243. int flag = 0;
  1244. int found_dup_sack = 0;
  1245. int fack_count;
  1246. int i, j;
  1247. int first_sack_index;
  1248. if (!tp->sacked_out) {
  1249. if (WARN_ON(tp->fackets_out))
  1250. tp->fackets_out = 0;
  1251. tcp_highest_sack_reset(sk);
  1252. }
  1253. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1254. num_sacks, prior_snd_una);
  1255. if (found_dup_sack)
  1256. flag |= FLAG_DSACKING_ACK;
  1257. /* Eliminate too old ACKs, but take into
  1258. * account more or less fresh ones, they can
  1259. * contain valid SACK info.
  1260. */
  1261. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1262. return 0;
  1263. if (!tp->packets_out)
  1264. goto out;
  1265. used_sacks = 0;
  1266. first_sack_index = 0;
  1267. for (i = 0; i < num_sacks; i++) {
  1268. int dup_sack = !i && found_dup_sack;
  1269. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1270. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1271. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1272. sp[used_sacks].start_seq,
  1273. sp[used_sacks].end_seq)) {
  1274. int mib_idx;
  1275. if (dup_sack) {
  1276. if (!tp->undo_marker)
  1277. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1278. else
  1279. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1280. } else {
  1281. /* Don't count olds caused by ACK reordering */
  1282. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1283. !after(sp[used_sacks].end_seq, tp->snd_una))
  1284. continue;
  1285. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1286. }
  1287. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1288. if (i == 0)
  1289. first_sack_index = -1;
  1290. continue;
  1291. }
  1292. /* Ignore very old stuff early */
  1293. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1294. continue;
  1295. used_sacks++;
  1296. }
  1297. /* order SACK blocks to allow in order walk of the retrans queue */
  1298. for (i = used_sacks - 1; i > 0; i--) {
  1299. for (j = 0; j < i; j++) {
  1300. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1301. struct tcp_sack_block tmp;
  1302. tmp = sp[j];
  1303. sp[j] = sp[j + 1];
  1304. sp[j + 1] = tmp;
  1305. /* Track where the first SACK block goes to */
  1306. if (j == first_sack_index)
  1307. first_sack_index = j + 1;
  1308. }
  1309. }
  1310. }
  1311. skb = tcp_write_queue_head(sk);
  1312. fack_count = 0;
  1313. i = 0;
  1314. if (!tp->sacked_out) {
  1315. /* It's already past, so skip checking against it */
  1316. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1317. } else {
  1318. cache = tp->recv_sack_cache;
  1319. /* Skip empty blocks in at head of the cache */
  1320. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1321. !cache->end_seq)
  1322. cache++;
  1323. }
  1324. while (i < used_sacks) {
  1325. u32 start_seq = sp[i].start_seq;
  1326. u32 end_seq = sp[i].end_seq;
  1327. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1328. struct tcp_sack_block *next_dup = NULL;
  1329. if (found_dup_sack && ((i + 1) == first_sack_index))
  1330. next_dup = &sp[i + 1];
  1331. /* Event "B" in the comment above. */
  1332. if (after(end_seq, tp->high_seq))
  1333. flag |= FLAG_DATA_LOST;
  1334. /* Skip too early cached blocks */
  1335. while (tcp_sack_cache_ok(tp, cache) &&
  1336. !before(start_seq, cache->end_seq))
  1337. cache++;
  1338. /* Can skip some work by looking recv_sack_cache? */
  1339. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1340. after(end_seq, cache->start_seq)) {
  1341. /* Head todo? */
  1342. if (before(start_seq, cache->start_seq)) {
  1343. skb = tcp_sacktag_skip(skb, sk, start_seq,
  1344. &fack_count);
  1345. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1346. start_seq,
  1347. cache->start_seq,
  1348. dup_sack, &fack_count,
  1349. &reord, &flag);
  1350. }
  1351. /* Rest of the block already fully processed? */
  1352. if (!after(end_seq, cache->end_seq))
  1353. goto advance_sp;
  1354. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1355. cache->end_seq,
  1356. &fack_count, &reord,
  1357. &flag);
  1358. /* ...tail remains todo... */
  1359. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1360. /* ...but better entrypoint exists! */
  1361. skb = tcp_highest_sack(sk);
  1362. if (skb == NULL)
  1363. break;
  1364. fack_count = tp->fackets_out;
  1365. cache++;
  1366. goto walk;
  1367. }
  1368. skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
  1369. &fack_count);
  1370. /* Check overlap against next cached too (past this one already) */
  1371. cache++;
  1372. continue;
  1373. }
  1374. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1375. skb = tcp_highest_sack(sk);
  1376. if (skb == NULL)
  1377. break;
  1378. fack_count = tp->fackets_out;
  1379. }
  1380. skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
  1381. walk:
  1382. skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
  1383. dup_sack, &fack_count, &reord, &flag);
  1384. advance_sp:
  1385. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1386. * due to in-order walk
  1387. */
  1388. if (after(end_seq, tp->frto_highmark))
  1389. flag &= ~FLAG_ONLY_ORIG_SACKED;
  1390. i++;
  1391. }
  1392. /* Clear the head of the cache sack blocks so we can skip it next time */
  1393. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1394. tp->recv_sack_cache[i].start_seq = 0;
  1395. tp->recv_sack_cache[i].end_seq = 0;
  1396. }
  1397. for (j = 0; j < used_sacks; j++)
  1398. tp->recv_sack_cache[i++] = sp[j];
  1399. tcp_mark_lost_retrans(sk);
  1400. tcp_verify_left_out(tp);
  1401. if ((reord < tp->fackets_out) &&
  1402. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1403. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1404. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  1405. out:
  1406. #if FASTRETRANS_DEBUG > 0
  1407. WARN_ON((int)tp->sacked_out < 0);
  1408. WARN_ON((int)tp->lost_out < 0);
  1409. WARN_ON((int)tp->retrans_out < 0);
  1410. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1411. #endif
  1412. return flag;
  1413. }
  1414. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1415. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1416. */
  1417. int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1418. {
  1419. u32 holes;
  1420. holes = max(tp->lost_out, 1U);
  1421. holes = min(holes, tp->packets_out);
  1422. if ((tp->sacked_out + holes) > tp->packets_out) {
  1423. tp->sacked_out = tp->packets_out - holes;
  1424. return 1;
  1425. }
  1426. return 0;
  1427. }
  1428. /* If we receive more dupacks than we expected counting segments
  1429. * in assumption of absent reordering, interpret this as reordering.
  1430. * The only another reason could be bug in receiver TCP.
  1431. */
  1432. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1433. {
  1434. struct tcp_sock *tp = tcp_sk(sk);
  1435. if (tcp_limit_reno_sacked(tp))
  1436. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1437. }
  1438. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1439. static void tcp_add_reno_sack(struct sock *sk)
  1440. {
  1441. struct tcp_sock *tp = tcp_sk(sk);
  1442. tp->sacked_out++;
  1443. tcp_check_reno_reordering(sk, 0);
  1444. tcp_verify_left_out(tp);
  1445. }
  1446. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1447. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1448. {
  1449. struct tcp_sock *tp = tcp_sk(sk);
  1450. if (acked > 0) {
  1451. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1452. if (acked - 1 >= tp->sacked_out)
  1453. tp->sacked_out = 0;
  1454. else
  1455. tp->sacked_out -= acked - 1;
  1456. }
  1457. tcp_check_reno_reordering(sk, acked);
  1458. tcp_verify_left_out(tp);
  1459. }
  1460. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1461. {
  1462. tp->sacked_out = 0;
  1463. }
  1464. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1465. {
  1466. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1467. }
  1468. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1469. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1470. */
  1471. int tcp_use_frto(struct sock *sk)
  1472. {
  1473. const struct tcp_sock *tp = tcp_sk(sk);
  1474. const struct inet_connection_sock *icsk = inet_csk(sk);
  1475. struct sk_buff *skb;
  1476. if (!sysctl_tcp_frto)
  1477. return 0;
  1478. /* MTU probe and F-RTO won't really play nicely along currently */
  1479. if (icsk->icsk_mtup.probe_size)
  1480. return 0;
  1481. if (tcp_is_sackfrto(tp))
  1482. return 1;
  1483. /* Avoid expensive walking of rexmit queue if possible */
  1484. if (tp->retrans_out > 1)
  1485. return 0;
  1486. skb = tcp_write_queue_head(sk);
  1487. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1488. tcp_for_write_queue_from(skb, sk) {
  1489. if (skb == tcp_send_head(sk))
  1490. break;
  1491. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1492. return 0;
  1493. /* Short-circuit when first non-SACKed skb has been checked */
  1494. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1495. break;
  1496. }
  1497. return 1;
  1498. }
  1499. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1500. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1501. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1502. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1503. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1504. * bits are handled if the Loss state is really to be entered (in
  1505. * tcp_enter_frto_loss).
  1506. *
  1507. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1508. * does:
  1509. * "Reduce ssthresh if it has not yet been made inside this window."
  1510. */
  1511. void tcp_enter_frto(struct sock *sk)
  1512. {
  1513. const struct inet_connection_sock *icsk = inet_csk(sk);
  1514. struct tcp_sock *tp = tcp_sk(sk);
  1515. struct sk_buff *skb;
  1516. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1517. tp->snd_una == tp->high_seq ||
  1518. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1519. !icsk->icsk_retransmits)) {
  1520. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1521. /* Our state is too optimistic in ssthresh() call because cwnd
  1522. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1523. * recovery has not yet completed. Pattern would be this: RTO,
  1524. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1525. * up here twice).
  1526. * RFC4138 should be more specific on what to do, even though
  1527. * RTO is quite unlikely to occur after the first Cumulative ACK
  1528. * due to back-off and complexity of triggering events ...
  1529. */
  1530. if (tp->frto_counter) {
  1531. u32 stored_cwnd;
  1532. stored_cwnd = tp->snd_cwnd;
  1533. tp->snd_cwnd = 2;
  1534. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1535. tp->snd_cwnd = stored_cwnd;
  1536. } else {
  1537. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1538. }
  1539. /* ... in theory, cong.control module could do "any tricks" in
  1540. * ssthresh(), which means that ca_state, lost bits and lost_out
  1541. * counter would have to be faked before the call occurs. We
  1542. * consider that too expensive, unlikely and hacky, so modules
  1543. * using these in ssthresh() must deal these incompatibility
  1544. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1545. */
  1546. tcp_ca_event(sk, CA_EVENT_FRTO);
  1547. }
  1548. tp->undo_marker = tp->snd_una;
  1549. tp->undo_retrans = 0;
  1550. skb = tcp_write_queue_head(sk);
  1551. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1552. tp->undo_marker = 0;
  1553. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1554. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1555. tp->retrans_out -= tcp_skb_pcount(skb);
  1556. }
  1557. tcp_verify_left_out(tp);
  1558. /* Too bad if TCP was application limited */
  1559. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1560. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1561. * The last condition is necessary at least in tp->frto_counter case.
  1562. */
  1563. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1564. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1565. after(tp->high_seq, tp->snd_una)) {
  1566. tp->frto_highmark = tp->high_seq;
  1567. } else {
  1568. tp->frto_highmark = tp->snd_nxt;
  1569. }
  1570. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1571. tp->high_seq = tp->snd_nxt;
  1572. tp->frto_counter = 1;
  1573. }
  1574. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1575. * which indicates that we should follow the traditional RTO recovery,
  1576. * i.e. mark everything lost and do go-back-N retransmission.
  1577. */
  1578. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1579. {
  1580. struct tcp_sock *tp = tcp_sk(sk);
  1581. struct sk_buff *skb;
  1582. tp->lost_out = 0;
  1583. tp->retrans_out = 0;
  1584. if (tcp_is_reno(tp))
  1585. tcp_reset_reno_sack(tp);
  1586. tcp_for_write_queue(skb, sk) {
  1587. if (skb == tcp_send_head(sk))
  1588. break;
  1589. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1590. /*
  1591. * Count the retransmission made on RTO correctly (only when
  1592. * waiting for the first ACK and did not get it)...
  1593. */
  1594. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1595. /* For some reason this R-bit might get cleared? */
  1596. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1597. tp->retrans_out += tcp_skb_pcount(skb);
  1598. /* ...enter this if branch just for the first segment */
  1599. flag |= FLAG_DATA_ACKED;
  1600. } else {
  1601. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1602. tp->undo_marker = 0;
  1603. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1604. }
  1605. /* Marking forward transmissions that were made after RTO lost
  1606. * can cause unnecessary retransmissions in some scenarios,
  1607. * SACK blocks will mitigate that in some but not in all cases.
  1608. * We used to not mark them but it was causing break-ups with
  1609. * receivers that do only in-order receival.
  1610. *
  1611. * TODO: we could detect presence of such receiver and select
  1612. * different behavior per flow.
  1613. */
  1614. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1615. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1616. tp->lost_out += tcp_skb_pcount(skb);
  1617. }
  1618. }
  1619. tcp_verify_left_out(tp);
  1620. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1621. tp->snd_cwnd_cnt = 0;
  1622. tp->snd_cwnd_stamp = tcp_time_stamp;
  1623. tp->frto_counter = 0;
  1624. tp->bytes_acked = 0;
  1625. tp->reordering = min_t(unsigned int, tp->reordering,
  1626. sysctl_tcp_reordering);
  1627. tcp_set_ca_state(sk, TCP_CA_Loss);
  1628. tp->high_seq = tp->snd_nxt;
  1629. TCP_ECN_queue_cwr(tp);
  1630. tcp_clear_retrans_hints_partial(tp);
  1631. }
  1632. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1633. {
  1634. tp->retrans_out = 0;
  1635. tp->lost_out = 0;
  1636. tp->undo_marker = 0;
  1637. tp->undo_retrans = 0;
  1638. }
  1639. void tcp_clear_retrans(struct tcp_sock *tp)
  1640. {
  1641. tcp_clear_retrans_partial(tp);
  1642. tp->fackets_out = 0;
  1643. tp->sacked_out = 0;
  1644. }
  1645. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1646. * and reset tags completely, otherwise preserve SACKs. If receiver
  1647. * dropped its ofo queue, we will know this due to reneging detection.
  1648. */
  1649. void tcp_enter_loss(struct sock *sk, int how)
  1650. {
  1651. const struct inet_connection_sock *icsk = inet_csk(sk);
  1652. struct tcp_sock *tp = tcp_sk(sk);
  1653. struct sk_buff *skb;
  1654. /* Reduce ssthresh if it has not yet been made inside this window. */
  1655. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1656. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1657. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1658. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1659. tcp_ca_event(sk, CA_EVENT_LOSS);
  1660. }
  1661. tp->snd_cwnd = 1;
  1662. tp->snd_cwnd_cnt = 0;
  1663. tp->snd_cwnd_stamp = tcp_time_stamp;
  1664. tp->bytes_acked = 0;
  1665. tcp_clear_retrans_partial(tp);
  1666. if (tcp_is_reno(tp))
  1667. tcp_reset_reno_sack(tp);
  1668. if (!how) {
  1669. /* Push undo marker, if it was plain RTO and nothing
  1670. * was retransmitted. */
  1671. tp->undo_marker = tp->snd_una;
  1672. tcp_clear_retrans_hints_partial(tp);
  1673. } else {
  1674. tp->sacked_out = 0;
  1675. tp->fackets_out = 0;
  1676. tcp_clear_all_retrans_hints(tp);
  1677. }
  1678. tcp_for_write_queue(skb, sk) {
  1679. if (skb == tcp_send_head(sk))
  1680. break;
  1681. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1682. tp->undo_marker = 0;
  1683. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1684. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1685. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1686. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1687. tp->lost_out += tcp_skb_pcount(skb);
  1688. }
  1689. }
  1690. tcp_verify_left_out(tp);
  1691. tp->reordering = min_t(unsigned int, tp->reordering,
  1692. sysctl_tcp_reordering);
  1693. tcp_set_ca_state(sk, TCP_CA_Loss);
  1694. tp->high_seq = tp->snd_nxt;
  1695. TCP_ECN_queue_cwr(tp);
  1696. /* Abort F-RTO algorithm if one is in progress */
  1697. tp->frto_counter = 0;
  1698. }
  1699. /* If ACK arrived pointing to a remembered SACK, it means that our
  1700. * remembered SACKs do not reflect real state of receiver i.e.
  1701. * receiver _host_ is heavily congested (or buggy).
  1702. *
  1703. * Do processing similar to RTO timeout.
  1704. */
  1705. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1706. {
  1707. if (flag & FLAG_SACK_RENEGING) {
  1708. struct inet_connection_sock *icsk = inet_csk(sk);
  1709. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1710. tcp_enter_loss(sk, 1);
  1711. icsk->icsk_retransmits++;
  1712. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1713. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1714. icsk->icsk_rto, TCP_RTO_MAX);
  1715. return 1;
  1716. }
  1717. return 0;
  1718. }
  1719. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1720. {
  1721. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1722. }
  1723. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1724. * counter when SACK is enabled (without SACK, sacked_out is used for
  1725. * that purpose).
  1726. *
  1727. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1728. * segments up to the highest received SACK block so far and holes in
  1729. * between them.
  1730. *
  1731. * With reordering, holes may still be in flight, so RFC3517 recovery
  1732. * uses pure sacked_out (total number of SACKed segments) even though
  1733. * it violates the RFC that uses duplicate ACKs, often these are equal
  1734. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1735. * they differ. Since neither occurs due to loss, TCP should really
  1736. * ignore them.
  1737. */
  1738. static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
  1739. {
  1740. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1741. }
  1742. static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
  1743. {
  1744. return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
  1745. }
  1746. static inline int tcp_head_timedout(struct sock *sk)
  1747. {
  1748. struct tcp_sock *tp = tcp_sk(sk);
  1749. return tp->packets_out &&
  1750. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1751. }
  1752. /* Linux NewReno/SACK/FACK/ECN state machine.
  1753. * --------------------------------------
  1754. *
  1755. * "Open" Normal state, no dubious events, fast path.
  1756. * "Disorder" In all the respects it is "Open",
  1757. * but requires a bit more attention. It is entered when
  1758. * we see some SACKs or dupacks. It is split of "Open"
  1759. * mainly to move some processing from fast path to slow one.
  1760. * "CWR" CWND was reduced due to some Congestion Notification event.
  1761. * It can be ECN, ICMP source quench, local device congestion.
  1762. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1763. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1764. *
  1765. * tcp_fastretrans_alert() is entered:
  1766. * - each incoming ACK, if state is not "Open"
  1767. * - when arrived ACK is unusual, namely:
  1768. * * SACK
  1769. * * Duplicate ACK.
  1770. * * ECN ECE.
  1771. *
  1772. * Counting packets in flight is pretty simple.
  1773. *
  1774. * in_flight = packets_out - left_out + retrans_out
  1775. *
  1776. * packets_out is SND.NXT-SND.UNA counted in packets.
  1777. *
  1778. * retrans_out is number of retransmitted segments.
  1779. *
  1780. * left_out is number of segments left network, but not ACKed yet.
  1781. *
  1782. * left_out = sacked_out + lost_out
  1783. *
  1784. * sacked_out: Packets, which arrived to receiver out of order
  1785. * and hence not ACKed. With SACKs this number is simply
  1786. * amount of SACKed data. Even without SACKs
  1787. * it is easy to give pretty reliable estimate of this number,
  1788. * counting duplicate ACKs.
  1789. *
  1790. * lost_out: Packets lost by network. TCP has no explicit
  1791. * "loss notification" feedback from network (for now).
  1792. * It means that this number can be only _guessed_.
  1793. * Actually, it is the heuristics to predict lossage that
  1794. * distinguishes different algorithms.
  1795. *
  1796. * F.e. after RTO, when all the queue is considered as lost,
  1797. * lost_out = packets_out and in_flight = retrans_out.
  1798. *
  1799. * Essentially, we have now two algorithms counting
  1800. * lost packets.
  1801. *
  1802. * FACK: It is the simplest heuristics. As soon as we decided
  1803. * that something is lost, we decide that _all_ not SACKed
  1804. * packets until the most forward SACK are lost. I.e.
  1805. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1806. * It is absolutely correct estimate, if network does not reorder
  1807. * packets. And it loses any connection to reality when reordering
  1808. * takes place. We use FACK by default until reordering
  1809. * is suspected on the path to this destination.
  1810. *
  1811. * NewReno: when Recovery is entered, we assume that one segment
  1812. * is lost (classic Reno). While we are in Recovery and
  1813. * a partial ACK arrives, we assume that one more packet
  1814. * is lost (NewReno). This heuristics are the same in NewReno
  1815. * and SACK.
  1816. *
  1817. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1818. * deflation etc. CWND is real congestion window, never inflated, changes
  1819. * only according to classic VJ rules.
  1820. *
  1821. * Really tricky (and requiring careful tuning) part of algorithm
  1822. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1823. * The first determines the moment _when_ we should reduce CWND and,
  1824. * hence, slow down forward transmission. In fact, it determines the moment
  1825. * when we decide that hole is caused by loss, rather than by a reorder.
  1826. *
  1827. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1828. * holes, caused by lost packets.
  1829. *
  1830. * And the most logically complicated part of algorithm is undo
  1831. * heuristics. We detect false retransmits due to both too early
  1832. * fast retransmit (reordering) and underestimated RTO, analyzing
  1833. * timestamps and D-SACKs. When we detect that some segments were
  1834. * retransmitted by mistake and CWND reduction was wrong, we undo
  1835. * window reduction and abort recovery phase. This logic is hidden
  1836. * inside several functions named tcp_try_undo_<something>.
  1837. */
  1838. /* This function decides, when we should leave Disordered state
  1839. * and enter Recovery phase, reducing congestion window.
  1840. *
  1841. * Main question: may we further continue forward transmission
  1842. * with the same cwnd?
  1843. */
  1844. static int tcp_time_to_recover(struct sock *sk)
  1845. {
  1846. struct tcp_sock *tp = tcp_sk(sk);
  1847. __u32 packets_out;
  1848. /* Do not perform any recovery during F-RTO algorithm */
  1849. if (tp->frto_counter)
  1850. return 0;
  1851. /* Trick#1: The loss is proven. */
  1852. if (tp->lost_out)
  1853. return 1;
  1854. /* Not-A-Trick#2 : Classic rule... */
  1855. if (tcp_dupack_heurestics(tp) > tp->reordering)
  1856. return 1;
  1857. /* Trick#3 : when we use RFC2988 timer restart, fast
  1858. * retransmit can be triggered by timeout of queue head.
  1859. */
  1860. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  1861. return 1;
  1862. /* Trick#4: It is still not OK... But will it be useful to delay
  1863. * recovery more?
  1864. */
  1865. packets_out = tp->packets_out;
  1866. if (packets_out <= tp->reordering &&
  1867. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1868. !tcp_may_send_now(sk)) {
  1869. /* We have nothing to send. This connection is limited
  1870. * either by receiver window or by application.
  1871. */
  1872. return 1;
  1873. }
  1874. return 0;
  1875. }
  1876. /* RFC: This is from the original, I doubt that this is necessary at all:
  1877. * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
  1878. * retransmitted past LOST markings in the first place? I'm not fully sure
  1879. * about undo and end of connection cases, which can cause R without L?
  1880. */
  1881. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  1882. {
  1883. if ((tp->retransmit_skb_hint != NULL) &&
  1884. before(TCP_SKB_CB(skb)->seq,
  1885. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  1886. tp->retransmit_skb_hint = NULL;
  1887. }
  1888. /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
  1889. * is against sacked "cnt", otherwise it's against facked "cnt"
  1890. */
  1891. static void tcp_mark_head_lost(struct sock *sk, int packets)
  1892. {
  1893. struct tcp_sock *tp = tcp_sk(sk);
  1894. struct sk_buff *skb;
  1895. int cnt, oldcnt;
  1896. int err;
  1897. unsigned int mss;
  1898. WARN_ON(packets > tp->packets_out);
  1899. if (tp->lost_skb_hint) {
  1900. skb = tp->lost_skb_hint;
  1901. cnt = tp->lost_cnt_hint;
  1902. } else {
  1903. skb = tcp_write_queue_head(sk);
  1904. cnt = 0;
  1905. }
  1906. tcp_for_write_queue_from(skb, sk) {
  1907. if (skb == tcp_send_head(sk))
  1908. break;
  1909. /* TODO: do this better */
  1910. /* this is not the most efficient way to do this... */
  1911. tp->lost_skb_hint = skb;
  1912. tp->lost_cnt_hint = cnt;
  1913. if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
  1914. break;
  1915. oldcnt = cnt;
  1916. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1917. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1918. cnt += tcp_skb_pcount(skb);
  1919. if (cnt > packets) {
  1920. if (tcp_is_sack(tp) || (oldcnt >= packets))
  1921. break;
  1922. mss = skb_shinfo(skb)->gso_size;
  1923. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  1924. if (err < 0)
  1925. break;
  1926. cnt = packets;
  1927. }
  1928. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
  1929. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1930. tp->lost_out += tcp_skb_pcount(skb);
  1931. tcp_verify_retransmit_hint(tp, skb);
  1932. }
  1933. }
  1934. tcp_verify_left_out(tp);
  1935. }
  1936. /* Account newly detected lost packet(s) */
  1937. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1938. {
  1939. struct tcp_sock *tp = tcp_sk(sk);
  1940. if (tcp_is_reno(tp)) {
  1941. tcp_mark_head_lost(sk, 1);
  1942. } else if (tcp_is_fack(tp)) {
  1943. int lost = tp->fackets_out - tp->reordering;
  1944. if (lost <= 0)
  1945. lost = 1;
  1946. tcp_mark_head_lost(sk, lost);
  1947. } else {
  1948. int sacked_upto = tp->sacked_out - tp->reordering;
  1949. if (sacked_upto < fast_rexmit)
  1950. sacked_upto = fast_rexmit;
  1951. tcp_mark_head_lost(sk, sacked_upto);
  1952. }
  1953. /* New heuristics: it is possible only after we switched
  1954. * to restart timer each time when something is ACKed.
  1955. * Hence, we can detect timed out packets during fast
  1956. * retransmit without falling to slow start.
  1957. */
  1958. if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
  1959. struct sk_buff *skb;
  1960. skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
  1961. : tcp_write_queue_head(sk);
  1962. tcp_for_write_queue_from(skb, sk) {
  1963. if (skb == tcp_send_head(sk))
  1964. break;
  1965. if (!tcp_skb_timedout(sk, skb))
  1966. break;
  1967. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
  1968. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1969. tp->lost_out += tcp_skb_pcount(skb);
  1970. tcp_verify_retransmit_hint(tp, skb);
  1971. }
  1972. }
  1973. tp->scoreboard_skb_hint = skb;
  1974. tcp_verify_left_out(tp);
  1975. }
  1976. }
  1977. /* CWND moderation, preventing bursts due to too big ACKs
  1978. * in dubious situations.
  1979. */
  1980. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1981. {
  1982. tp->snd_cwnd = min(tp->snd_cwnd,
  1983. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1984. tp->snd_cwnd_stamp = tcp_time_stamp;
  1985. }
  1986. /* Lower bound on congestion window is slow start threshold
  1987. * unless congestion avoidance choice decides to overide it.
  1988. */
  1989. static inline u32 tcp_cwnd_min(const struct sock *sk)
  1990. {
  1991. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  1992. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  1993. }
  1994. /* Decrease cwnd each second ack. */
  1995. static void tcp_cwnd_down(struct sock *sk, int flag)
  1996. {
  1997. struct tcp_sock *tp = tcp_sk(sk);
  1998. int decr = tp->snd_cwnd_cnt + 1;
  1999. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2000. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2001. tp->snd_cwnd_cnt = decr & 1;
  2002. decr >>= 1;
  2003. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2004. tp->snd_cwnd -= decr;
  2005. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2006. tp->snd_cwnd_stamp = tcp_time_stamp;
  2007. }
  2008. }
  2009. /* Nothing was retransmitted or returned timestamp is less
  2010. * than timestamp of the first retransmission.
  2011. */
  2012. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  2013. {
  2014. return !tp->retrans_stamp ||
  2015. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2016. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2017. }
  2018. /* Undo procedures. */
  2019. #if FASTRETRANS_DEBUG > 1
  2020. static void DBGUNDO(struct sock *sk, const char *msg)
  2021. {
  2022. struct tcp_sock *tp = tcp_sk(sk);
  2023. struct inet_sock *inet = inet_sk(sk);
  2024. if (sk->sk_family == AF_INET) {
  2025. printk(KERN_DEBUG "Undo %s " NIPQUAD_FMT "/%u c%u l%u ss%u/%u p%u\n",
  2026. msg,
  2027. NIPQUAD(inet->daddr), ntohs(inet->dport),
  2028. tp->snd_cwnd, tcp_left_out(tp),
  2029. tp->snd_ssthresh, tp->prior_ssthresh,
  2030. tp->packets_out);
  2031. }
  2032. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2033. else if (sk->sk_family == AF_INET6) {
  2034. struct ipv6_pinfo *np = inet6_sk(sk);
  2035. printk(KERN_DEBUG "Undo %s " NIP6_FMT "/%u c%u l%u ss%u/%u p%u\n",
  2036. msg,
  2037. NIP6(np->daddr), ntohs(inet->dport),
  2038. tp->snd_cwnd, tcp_left_out(tp),
  2039. tp->snd_ssthresh, tp->prior_ssthresh,
  2040. tp->packets_out);
  2041. }
  2042. #endif
  2043. }
  2044. #else
  2045. #define DBGUNDO(x...) do { } while (0)
  2046. #endif
  2047. static void tcp_undo_cwr(struct sock *sk, const int undo)
  2048. {
  2049. struct tcp_sock *tp = tcp_sk(sk);
  2050. if (tp->prior_ssthresh) {
  2051. const struct inet_connection_sock *icsk = inet_csk(sk);
  2052. if (icsk->icsk_ca_ops->undo_cwnd)
  2053. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2054. else
  2055. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2056. if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
  2057. tp->snd_ssthresh = tp->prior_ssthresh;
  2058. TCP_ECN_withdraw_cwr(tp);
  2059. }
  2060. } else {
  2061. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2062. }
  2063. tcp_moderate_cwnd(tp);
  2064. tp->snd_cwnd_stamp = tcp_time_stamp;
  2065. /* There is something screwy going on with the retrans hints after
  2066. an undo */
  2067. tcp_clear_all_retrans_hints(tp);
  2068. }
  2069. static inline int tcp_may_undo(struct tcp_sock *tp)
  2070. {
  2071. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2072. }
  2073. /* People celebrate: "We love our President!" */
  2074. static int tcp_try_undo_recovery(struct sock *sk)
  2075. {
  2076. struct tcp_sock *tp = tcp_sk(sk);
  2077. if (tcp_may_undo(tp)) {
  2078. int mib_idx;
  2079. /* Happy end! We did not retransmit anything
  2080. * or our original transmission succeeded.
  2081. */
  2082. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2083. tcp_undo_cwr(sk, 1);
  2084. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2085. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2086. else
  2087. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2088. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2089. tp->undo_marker = 0;
  2090. }
  2091. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2092. /* Hold old state until something *above* high_seq
  2093. * is ACKed. For Reno it is MUST to prevent false
  2094. * fast retransmits (RFC2582). SACK TCP is safe. */
  2095. tcp_moderate_cwnd(tp);
  2096. return 1;
  2097. }
  2098. tcp_set_ca_state(sk, TCP_CA_Open);
  2099. return 0;
  2100. }
  2101. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2102. static void tcp_try_undo_dsack(struct sock *sk)
  2103. {
  2104. struct tcp_sock *tp = tcp_sk(sk);
  2105. if (tp->undo_marker && !tp->undo_retrans) {
  2106. DBGUNDO(sk, "D-SACK");
  2107. tcp_undo_cwr(sk, 1);
  2108. tp->undo_marker = 0;
  2109. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2110. }
  2111. }
  2112. /* Undo during fast recovery after partial ACK. */
  2113. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2114. {
  2115. struct tcp_sock *tp = tcp_sk(sk);
  2116. /* Partial ACK arrived. Force Hoe's retransmit. */
  2117. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2118. if (tcp_may_undo(tp)) {
  2119. /* Plain luck! Hole if filled with delayed
  2120. * packet, rather than with a retransmit.
  2121. */
  2122. if (tp->retrans_out == 0)
  2123. tp->retrans_stamp = 0;
  2124. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2125. DBGUNDO(sk, "Hoe");
  2126. tcp_undo_cwr(sk, 0);
  2127. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2128. /* So... Do not make Hoe's retransmit yet.
  2129. * If the first packet was delayed, the rest
  2130. * ones are most probably delayed as well.
  2131. */
  2132. failed = 0;
  2133. }
  2134. return failed;
  2135. }
  2136. /* Undo during loss recovery after partial ACK. */
  2137. static int tcp_try_undo_loss(struct sock *sk)
  2138. {
  2139. struct tcp_sock *tp = tcp_sk(sk);
  2140. if (tcp_may_undo(tp)) {
  2141. struct sk_buff *skb;
  2142. tcp_for_write_queue(skb, sk) {
  2143. if (skb == tcp_send_head(sk))
  2144. break;
  2145. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2146. }
  2147. tcp_clear_all_retrans_hints(tp);
  2148. DBGUNDO(sk, "partial loss");
  2149. tp->lost_out = 0;
  2150. tcp_undo_cwr(sk, 1);
  2151. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2152. inet_csk(sk)->icsk_retransmits = 0;
  2153. tp->undo_marker = 0;
  2154. if (tcp_is_sack(tp))
  2155. tcp_set_ca_state(sk, TCP_CA_Open);
  2156. return 1;
  2157. }
  2158. return 0;
  2159. }
  2160. static inline void tcp_complete_cwr(struct sock *sk)
  2161. {
  2162. struct tcp_sock *tp = tcp_sk(sk);
  2163. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2164. tp->snd_cwnd_stamp = tcp_time_stamp;
  2165. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2166. }
  2167. static void tcp_try_keep_open(struct sock *sk)
  2168. {
  2169. struct tcp_sock *tp = tcp_sk(sk);
  2170. int state = TCP_CA_Open;
  2171. if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
  2172. state = TCP_CA_Disorder;
  2173. if (inet_csk(sk)->icsk_ca_state != state) {
  2174. tcp_set_ca_state(sk, state);
  2175. tp->high_seq = tp->snd_nxt;
  2176. }
  2177. }
  2178. static void tcp_try_to_open(struct sock *sk, int flag)
  2179. {
  2180. struct tcp_sock *tp = tcp_sk(sk);
  2181. tcp_verify_left_out(tp);
  2182. if (!tp->frto_counter && tp->retrans_out == 0)
  2183. tp->retrans_stamp = 0;
  2184. if (flag & FLAG_ECE)
  2185. tcp_enter_cwr(sk, 1);
  2186. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2187. tcp_try_keep_open(sk);
  2188. tcp_moderate_cwnd(tp);
  2189. } else {
  2190. tcp_cwnd_down(sk, flag);
  2191. }
  2192. }
  2193. static void tcp_mtup_probe_failed(struct sock *sk)
  2194. {
  2195. struct inet_connection_sock *icsk = inet_csk(sk);
  2196. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2197. icsk->icsk_mtup.probe_size = 0;
  2198. }
  2199. static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
  2200. {
  2201. struct tcp_sock *tp = tcp_sk(sk);
  2202. struct inet_connection_sock *icsk = inet_csk(sk);
  2203. /* FIXME: breaks with very large cwnd */
  2204. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2205. tp->snd_cwnd = tp->snd_cwnd *
  2206. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2207. icsk->icsk_mtup.probe_size;
  2208. tp->snd_cwnd_cnt = 0;
  2209. tp->snd_cwnd_stamp = tcp_time_stamp;
  2210. tp->rcv_ssthresh = tcp_current_ssthresh(sk);
  2211. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2212. icsk->icsk_mtup.probe_size = 0;
  2213. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2214. }
  2215. /* Process an event, which can update packets-in-flight not trivially.
  2216. * Main goal of this function is to calculate new estimate for left_out,
  2217. * taking into account both packets sitting in receiver's buffer and
  2218. * packets lost by network.
  2219. *
  2220. * Besides that it does CWND reduction, when packet loss is detected
  2221. * and changes state of machine.
  2222. *
  2223. * It does _not_ decide what to send, it is made in function
  2224. * tcp_xmit_retransmit_queue().
  2225. */
  2226. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
  2227. {
  2228. struct inet_connection_sock *icsk = inet_csk(sk);
  2229. struct tcp_sock *tp = tcp_sk(sk);
  2230. int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2231. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2232. (tcp_fackets_out(tp) > tp->reordering));
  2233. int fast_rexmit = 0, mib_idx;
  2234. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2235. tp->sacked_out = 0;
  2236. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2237. tp->fackets_out = 0;
  2238. /* Now state machine starts.
  2239. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2240. if (flag & FLAG_ECE)
  2241. tp->prior_ssthresh = 0;
  2242. /* B. In all the states check for reneging SACKs. */
  2243. if (tcp_check_sack_reneging(sk, flag))
  2244. return;
  2245. /* C. Process data loss notification, provided it is valid. */
  2246. if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
  2247. before(tp->snd_una, tp->high_seq) &&
  2248. icsk->icsk_ca_state != TCP_CA_Open &&
  2249. tp->fackets_out > tp->reordering) {
  2250. tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
  2251. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
  2252. }
  2253. /* D. Check consistency of the current state. */
  2254. tcp_verify_left_out(tp);
  2255. /* E. Check state exit conditions. State can be terminated
  2256. * when high_seq is ACKed. */
  2257. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2258. WARN_ON(tp->retrans_out != 0);
  2259. tp->retrans_stamp = 0;
  2260. } else if (!before(tp->snd_una, tp->high_seq)) {
  2261. switch (icsk->icsk_ca_state) {
  2262. case TCP_CA_Loss:
  2263. icsk->icsk_retransmits = 0;
  2264. if (tcp_try_undo_recovery(sk))
  2265. return;
  2266. break;
  2267. case TCP_CA_CWR:
  2268. /* CWR is to be held something *above* high_seq
  2269. * is ACKed for CWR bit to reach receiver. */
  2270. if (tp->snd_una != tp->high_seq) {
  2271. tcp_complete_cwr(sk);
  2272. tcp_set_ca_state(sk, TCP_CA_Open);
  2273. }
  2274. break;
  2275. case TCP_CA_Disorder:
  2276. tcp_try_undo_dsack(sk);
  2277. if (!tp->undo_marker ||
  2278. /* For SACK case do not Open to allow to undo
  2279. * catching for all duplicate ACKs. */
  2280. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2281. tp->undo_marker = 0;
  2282. tcp_set_ca_state(sk, TCP_CA_Open);
  2283. }
  2284. break;
  2285. case TCP_CA_Recovery:
  2286. if (tcp_is_reno(tp))
  2287. tcp_reset_reno_sack(tp);
  2288. if (tcp_try_undo_recovery(sk))
  2289. return;
  2290. tcp_complete_cwr(sk);
  2291. break;
  2292. }
  2293. }
  2294. /* F. Process state. */
  2295. switch (icsk->icsk_ca_state) {
  2296. case TCP_CA_Recovery:
  2297. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2298. if (tcp_is_reno(tp) && is_dupack)
  2299. tcp_add_reno_sack(sk);
  2300. } else
  2301. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2302. break;
  2303. case TCP_CA_Loss:
  2304. if (flag & FLAG_DATA_ACKED)
  2305. icsk->icsk_retransmits = 0;
  2306. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2307. tcp_reset_reno_sack(tp);
  2308. if (!tcp_try_undo_loss(sk)) {
  2309. tcp_moderate_cwnd(tp);
  2310. tcp_xmit_retransmit_queue(sk);
  2311. return;
  2312. }
  2313. if (icsk->icsk_ca_state != TCP_CA_Open)
  2314. return;
  2315. /* Loss is undone; fall through to processing in Open state. */
  2316. default:
  2317. if (tcp_is_reno(tp)) {
  2318. if (flag & FLAG_SND_UNA_ADVANCED)
  2319. tcp_reset_reno_sack(tp);
  2320. if (is_dupack)
  2321. tcp_add_reno_sack(sk);
  2322. }
  2323. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2324. tcp_try_undo_dsack(sk);
  2325. if (!tcp_time_to_recover(sk)) {
  2326. tcp_try_to_open(sk, flag);
  2327. return;
  2328. }
  2329. /* MTU probe failure: don't reduce cwnd */
  2330. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2331. icsk->icsk_mtup.probe_size &&
  2332. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2333. tcp_mtup_probe_failed(sk);
  2334. /* Restores the reduction we did in tcp_mtup_probe() */
  2335. tp->snd_cwnd++;
  2336. tcp_simple_retransmit(sk);
  2337. return;
  2338. }
  2339. /* Otherwise enter Recovery state */
  2340. if (tcp_is_reno(tp))
  2341. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2342. else
  2343. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2344. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2345. tp->high_seq = tp->snd_nxt;
  2346. tp->prior_ssthresh = 0;
  2347. tp->undo_marker = tp->snd_una;
  2348. tp->undo_retrans = tp->retrans_out;
  2349. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2350. if (!(flag & FLAG_ECE))
  2351. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2352. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2353. TCP_ECN_queue_cwr(tp);
  2354. }
  2355. tp->bytes_acked = 0;
  2356. tp->snd_cwnd_cnt = 0;
  2357. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2358. fast_rexmit = 1;
  2359. }
  2360. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2361. tcp_update_scoreboard(sk, fast_rexmit);
  2362. tcp_cwnd_down(sk, flag);
  2363. tcp_xmit_retransmit_queue(sk);
  2364. }
  2365. /* Read draft-ietf-tcplw-high-performance before mucking
  2366. * with this code. (Supersedes RFC1323)
  2367. */
  2368. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2369. {
  2370. /* RTTM Rule: A TSecr value received in a segment is used to
  2371. * update the averaged RTT measurement only if the segment
  2372. * acknowledges some new data, i.e., only if it advances the
  2373. * left edge of the send window.
  2374. *
  2375. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2376. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2377. *
  2378. * Changed: reset backoff as soon as we see the first valid sample.
  2379. * If we do not, we get strongly overestimated rto. With timestamps
  2380. * samples are accepted even from very old segments: f.e., when rtt=1
  2381. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2382. * answer arrives rto becomes 120 seconds! If at least one of segments
  2383. * in window is lost... Voila. --ANK (010210)
  2384. */
  2385. struct tcp_sock *tp = tcp_sk(sk);
  2386. const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
  2387. tcp_rtt_estimator(sk, seq_rtt);
  2388. tcp_set_rto(sk);
  2389. inet_csk(sk)->icsk_backoff = 0;
  2390. tcp_bound_rto(sk);
  2391. }
  2392. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2393. {
  2394. /* We don't have a timestamp. Can only use
  2395. * packets that are not retransmitted to determine
  2396. * rtt estimates. Also, we must not reset the
  2397. * backoff for rto until we get a non-retransmitted
  2398. * packet. This allows us to deal with a situation
  2399. * where the network delay has increased suddenly.
  2400. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2401. */
  2402. if (flag & FLAG_RETRANS_DATA_ACKED)
  2403. return;
  2404. tcp_rtt_estimator(sk, seq_rtt);
  2405. tcp_set_rto(sk);
  2406. inet_csk(sk)->icsk_backoff = 0;
  2407. tcp_bound_rto(sk);
  2408. }
  2409. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2410. const s32 seq_rtt)
  2411. {
  2412. const struct tcp_sock *tp = tcp_sk(sk);
  2413. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2414. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2415. tcp_ack_saw_tstamp(sk, flag);
  2416. else if (seq_rtt >= 0)
  2417. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2418. }
  2419. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2420. {
  2421. const struct inet_connection_sock *icsk = inet_csk(sk);
  2422. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2423. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2424. }
  2425. /* Restart timer after forward progress on connection.
  2426. * RFC2988 recommends to restart timer to now+rto.
  2427. */
  2428. static void tcp_rearm_rto(struct sock *sk)
  2429. {
  2430. struct tcp_sock *tp = tcp_sk(sk);
  2431. if (!tp->packets_out) {
  2432. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2433. } else {
  2434. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2435. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2436. }
  2437. }
  2438. /* If we get here, the whole TSO packet has not been acked. */
  2439. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2440. {
  2441. struct tcp_sock *tp = tcp_sk(sk);
  2442. u32 packets_acked;
  2443. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2444. packets_acked = tcp_skb_pcount(skb);
  2445. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2446. return 0;
  2447. packets_acked -= tcp_skb_pcount(skb);
  2448. if (packets_acked) {
  2449. BUG_ON(tcp_skb_pcount(skb) == 0);
  2450. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2451. }
  2452. return packets_acked;
  2453. }
  2454. /* Remove acknowledged frames from the retransmission queue. If our packet
  2455. * is before the ack sequence we can discard it as it's confirmed to have
  2456. * arrived at the other end.
  2457. */
  2458. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
  2459. {
  2460. struct tcp_sock *tp = tcp_sk(sk);
  2461. const struct inet_connection_sock *icsk = inet_csk(sk);
  2462. struct sk_buff *skb;
  2463. u32 now = tcp_time_stamp;
  2464. int fully_acked = 1;
  2465. int flag = 0;
  2466. u32 pkts_acked = 0;
  2467. u32 reord = tp->packets_out;
  2468. s32 seq_rtt = -1;
  2469. s32 ca_seq_rtt = -1;
  2470. ktime_t last_ackt = net_invalid_timestamp();
  2471. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2472. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2473. u32 end_seq;
  2474. u32 acked_pcount;
  2475. u8 sacked = scb->sacked;
  2476. /* Determine how many packets and what bytes were acked, tso and else */
  2477. if (after(scb->end_seq, tp->snd_una)) {
  2478. if (tcp_skb_pcount(skb) == 1 ||
  2479. !after(tp->snd_una, scb->seq))
  2480. break;
  2481. acked_pcount = tcp_tso_acked(sk, skb);
  2482. if (!acked_pcount)
  2483. break;
  2484. fully_acked = 0;
  2485. end_seq = tp->snd_una;
  2486. } else {
  2487. acked_pcount = tcp_skb_pcount(skb);
  2488. end_seq = scb->end_seq;
  2489. }
  2490. /* MTU probing checks */
  2491. if (fully_acked && icsk->icsk_mtup.probe_size &&
  2492. !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
  2493. tcp_mtup_probe_success(sk, skb);
  2494. }
  2495. if (sacked & TCPCB_RETRANS) {
  2496. if (sacked & TCPCB_SACKED_RETRANS)
  2497. tp->retrans_out -= acked_pcount;
  2498. flag |= FLAG_RETRANS_DATA_ACKED;
  2499. ca_seq_rtt = -1;
  2500. seq_rtt = -1;
  2501. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2502. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2503. } else {
  2504. ca_seq_rtt = now - scb->when;
  2505. last_ackt = skb->tstamp;
  2506. if (seq_rtt < 0) {
  2507. seq_rtt = ca_seq_rtt;
  2508. }
  2509. if (!(sacked & TCPCB_SACKED_ACKED))
  2510. reord = min(pkts_acked, reord);
  2511. }
  2512. if (sacked & TCPCB_SACKED_ACKED)
  2513. tp->sacked_out -= acked_pcount;
  2514. if (sacked & TCPCB_LOST)
  2515. tp->lost_out -= acked_pcount;
  2516. if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
  2517. tp->urg_mode = 0;
  2518. tp->packets_out -= acked_pcount;
  2519. pkts_acked += acked_pcount;
  2520. /* Initial outgoing SYN's get put onto the write_queue
  2521. * just like anything else we transmit. It is not
  2522. * true data, and if we misinform our callers that
  2523. * this ACK acks real data, we will erroneously exit
  2524. * connection startup slow start one packet too
  2525. * quickly. This is severely frowned upon behavior.
  2526. */
  2527. if (!(scb->flags & TCPCB_FLAG_SYN)) {
  2528. flag |= FLAG_DATA_ACKED;
  2529. } else {
  2530. flag |= FLAG_SYN_ACKED;
  2531. tp->retrans_stamp = 0;
  2532. }
  2533. if (!fully_acked)
  2534. break;
  2535. tcp_unlink_write_queue(skb, sk);
  2536. sk_wmem_free_skb(sk, skb);
  2537. tcp_clear_all_retrans_hints(tp);
  2538. }
  2539. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2540. flag |= FLAG_SACK_RENEGING;
  2541. if (flag & FLAG_ACKED) {
  2542. const struct tcp_congestion_ops *ca_ops
  2543. = inet_csk(sk)->icsk_ca_ops;
  2544. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2545. tcp_rearm_rto(sk);
  2546. if (tcp_is_reno(tp)) {
  2547. tcp_remove_reno_sacks(sk, pkts_acked);
  2548. } else {
  2549. /* Non-retransmitted hole got filled? That's reordering */
  2550. if (reord < prior_fackets)
  2551. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2552. }
  2553. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2554. if (ca_ops->pkts_acked) {
  2555. s32 rtt_us = -1;
  2556. /* Is the ACK triggering packet unambiguous? */
  2557. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2558. /* High resolution needed and available? */
  2559. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2560. !ktime_equal(last_ackt,
  2561. net_invalid_timestamp()))
  2562. rtt_us = ktime_us_delta(ktime_get_real(),
  2563. last_ackt);
  2564. else if (ca_seq_rtt > 0)
  2565. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2566. }
  2567. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2568. }
  2569. }
  2570. #if FASTRETRANS_DEBUG > 0
  2571. WARN_ON((int)tp->sacked_out < 0);
  2572. WARN_ON((int)tp->lost_out < 0);
  2573. WARN_ON((int)tp->retrans_out < 0);
  2574. if (!tp->packets_out && tcp_is_sack(tp)) {
  2575. icsk = inet_csk(sk);
  2576. if (tp->lost_out) {
  2577. printk(KERN_DEBUG "Leak l=%u %d\n",
  2578. tp->lost_out, icsk->icsk_ca_state);
  2579. tp->lost_out = 0;
  2580. }
  2581. if (tp->sacked_out) {
  2582. printk(KERN_DEBUG "Leak s=%u %d\n",
  2583. tp->sacked_out, icsk->icsk_ca_state);
  2584. tp->sacked_out = 0;
  2585. }
  2586. if (tp->retrans_out) {
  2587. printk(KERN_DEBUG "Leak r=%u %d\n",
  2588. tp->retrans_out, icsk->icsk_ca_state);
  2589. tp->retrans_out = 0;
  2590. }
  2591. }
  2592. #endif
  2593. return flag;
  2594. }
  2595. static void tcp_ack_probe(struct sock *sk)
  2596. {
  2597. const struct tcp_sock *tp = tcp_sk(sk);
  2598. struct inet_connection_sock *icsk = inet_csk(sk);
  2599. /* Was it a usable window open? */
  2600. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2601. icsk->icsk_backoff = 0;
  2602. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2603. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2604. * This function is not for random using!
  2605. */
  2606. } else {
  2607. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2608. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2609. TCP_RTO_MAX);
  2610. }
  2611. }
  2612. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2613. {
  2614. return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2615. inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
  2616. }
  2617. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2618. {
  2619. const struct tcp_sock *tp = tcp_sk(sk);
  2620. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2621. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  2622. }
  2623. /* Check that window update is acceptable.
  2624. * The function assumes that snd_una<=ack<=snd_next.
  2625. */
  2626. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  2627. const u32 ack, const u32 ack_seq,
  2628. const u32 nwin)
  2629. {
  2630. return (after(ack, tp->snd_una) ||
  2631. after(ack_seq, tp->snd_wl1) ||
  2632. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
  2633. }
  2634. /* Update our send window.
  2635. *
  2636. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2637. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2638. */
  2639. static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
  2640. u32 ack_seq)
  2641. {
  2642. struct tcp_sock *tp = tcp_sk(sk);
  2643. int flag = 0;
  2644. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2645. if (likely(!tcp_hdr(skb)->syn))
  2646. nwin <<= tp->rx_opt.snd_wscale;
  2647. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2648. flag |= FLAG_WIN_UPDATE;
  2649. tcp_update_wl(tp, ack, ack_seq);
  2650. if (tp->snd_wnd != nwin) {
  2651. tp->snd_wnd = nwin;
  2652. /* Note, it is the only place, where
  2653. * fast path is recovered for sending TCP.
  2654. */
  2655. tp->pred_flags = 0;
  2656. tcp_fast_path_check(sk);
  2657. if (nwin > tp->max_window) {
  2658. tp->max_window = nwin;
  2659. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2660. }
  2661. }
  2662. }
  2663. tp->snd_una = ack;
  2664. return flag;
  2665. }
  2666. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2667. * continue in congestion avoidance.
  2668. */
  2669. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2670. {
  2671. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2672. tp->snd_cwnd_cnt = 0;
  2673. tp->bytes_acked = 0;
  2674. TCP_ECN_queue_cwr(tp);
  2675. tcp_moderate_cwnd(tp);
  2676. }
  2677. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2678. * rate halving and continue in congestion avoidance.
  2679. */
  2680. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  2681. {
  2682. tcp_enter_cwr(sk, 0);
  2683. }
  2684. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2685. {
  2686. if (flag & FLAG_ECE)
  2687. tcp_ratehalving_spur_to_response(sk);
  2688. else
  2689. tcp_undo_cwr(sk, 1);
  2690. }
  2691. /* F-RTO spurious RTO detection algorithm (RFC4138)
  2692. *
  2693. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  2694. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  2695. * window (but not to or beyond highest sequence sent before RTO):
  2696. * On First ACK, send two new segments out.
  2697. * On Second ACK, RTO was likely spurious. Do spurious response (response
  2698. * algorithm is not part of the F-RTO detection algorithm
  2699. * given in RFC4138 but can be selected separately).
  2700. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  2701. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  2702. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  2703. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  2704. *
  2705. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  2706. * original window even after we transmit two new data segments.
  2707. *
  2708. * SACK version:
  2709. * on first step, wait until first cumulative ACK arrives, then move to
  2710. * the second step. In second step, the next ACK decides.
  2711. *
  2712. * F-RTO is implemented (mainly) in four functions:
  2713. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  2714. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  2715. * called when tcp_use_frto() showed green light
  2716. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  2717. * - tcp_enter_frto_loss() is called if there is not enough evidence
  2718. * to prove that the RTO is indeed spurious. It transfers the control
  2719. * from F-RTO to the conventional RTO recovery
  2720. */
  2721. static int tcp_process_frto(struct sock *sk, int flag)
  2722. {
  2723. struct tcp_sock *tp = tcp_sk(sk);
  2724. tcp_verify_left_out(tp);
  2725. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  2726. if (flag & FLAG_DATA_ACKED)
  2727. inet_csk(sk)->icsk_retransmits = 0;
  2728. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  2729. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  2730. tp->undo_marker = 0;
  2731. if (!before(tp->snd_una, tp->frto_highmark)) {
  2732. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  2733. return 1;
  2734. }
  2735. if (!tcp_is_sackfrto(tp)) {
  2736. /* RFC4138 shortcoming in step 2; should also have case c):
  2737. * ACK isn't duplicate nor advances window, e.g., opposite dir
  2738. * data, winupdate
  2739. */
  2740. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  2741. return 1;
  2742. if (!(flag & FLAG_DATA_ACKED)) {
  2743. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  2744. flag);
  2745. return 1;
  2746. }
  2747. } else {
  2748. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  2749. /* Prevent sending of new data. */
  2750. tp->snd_cwnd = min(tp->snd_cwnd,
  2751. tcp_packets_in_flight(tp));
  2752. return 1;
  2753. }
  2754. if ((tp->frto_counter >= 2) &&
  2755. (!(flag & FLAG_FORWARD_PROGRESS) ||
  2756. ((flag & FLAG_DATA_SACKED) &&
  2757. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  2758. /* RFC4138 shortcoming (see comment above) */
  2759. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  2760. (flag & FLAG_NOT_DUP))
  2761. return 1;
  2762. tcp_enter_frto_loss(sk, 3, flag);
  2763. return 1;
  2764. }
  2765. }
  2766. if (tp->frto_counter == 1) {
  2767. /* tcp_may_send_now needs to see updated state */
  2768. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  2769. tp->frto_counter = 2;
  2770. if (!tcp_may_send_now(sk))
  2771. tcp_enter_frto_loss(sk, 2, flag);
  2772. return 1;
  2773. } else {
  2774. switch (sysctl_tcp_frto_response) {
  2775. case 2:
  2776. tcp_undo_spur_to_response(sk, flag);
  2777. break;
  2778. case 1:
  2779. tcp_conservative_spur_to_response(tp);
  2780. break;
  2781. default:
  2782. tcp_ratehalving_spur_to_response(sk);
  2783. break;
  2784. }
  2785. tp->frto_counter = 0;
  2786. tp->undo_marker = 0;
  2787. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  2788. }
  2789. return 0;
  2790. }
  2791. /* This routine deals with incoming acks, but not outgoing ones. */
  2792. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  2793. {
  2794. struct inet_connection_sock *icsk = inet_csk(sk);
  2795. struct tcp_sock *tp = tcp_sk(sk);
  2796. u32 prior_snd_una = tp->snd_una;
  2797. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2798. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2799. u32 prior_in_flight;
  2800. u32 prior_fackets;
  2801. int prior_packets;
  2802. int frto_cwnd = 0;
  2803. /* If the ack is newer than sent or older than previous acks
  2804. * then we can probably ignore it.
  2805. */
  2806. if (after(ack, tp->snd_nxt))
  2807. goto uninteresting_ack;
  2808. if (before(ack, prior_snd_una))
  2809. goto old_ack;
  2810. if (after(ack, prior_snd_una))
  2811. flag |= FLAG_SND_UNA_ADVANCED;
  2812. if (sysctl_tcp_abc) {
  2813. if (icsk->icsk_ca_state < TCP_CA_CWR)
  2814. tp->bytes_acked += ack - prior_snd_una;
  2815. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  2816. /* we assume just one segment left network */
  2817. tp->bytes_acked += min(ack - prior_snd_una,
  2818. tp->mss_cache);
  2819. }
  2820. prior_fackets = tp->fackets_out;
  2821. prior_in_flight = tcp_packets_in_flight(tp);
  2822. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2823. /* Window is constant, pure forward advance.
  2824. * No more checks are required.
  2825. * Note, we use the fact that SND.UNA>=SND.WL2.
  2826. */
  2827. tcp_update_wl(tp, ack, ack_seq);
  2828. tp->snd_una = ack;
  2829. flag |= FLAG_WIN_UPDATE;
  2830. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2831. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2832. } else {
  2833. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2834. flag |= FLAG_DATA;
  2835. else
  2836. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2837. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2838. if (TCP_SKB_CB(skb)->sacked)
  2839. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2840. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2841. flag |= FLAG_ECE;
  2842. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2843. }
  2844. /* We passed data and got it acked, remove any soft error
  2845. * log. Something worked...
  2846. */
  2847. sk->sk_err_soft = 0;
  2848. icsk->icsk_probes_out = 0;
  2849. tp->rcv_tstamp = tcp_time_stamp;
  2850. prior_packets = tp->packets_out;
  2851. if (!prior_packets)
  2852. goto no_queue;
  2853. /* See if we can take anything off of the retransmit queue. */
  2854. flag |= tcp_clean_rtx_queue(sk, prior_fackets);
  2855. if (tp->frto_counter)
  2856. frto_cwnd = tcp_process_frto(sk, flag);
  2857. /* Guarantee sacktag reordering detection against wrap-arounds */
  2858. if (before(tp->frto_highmark, tp->snd_una))
  2859. tp->frto_highmark = 0;
  2860. if (tcp_ack_is_dubious(sk, flag)) {
  2861. /* Advance CWND, if state allows this. */
  2862. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  2863. tcp_may_raise_cwnd(sk, flag))
  2864. tcp_cong_avoid(sk, ack, prior_in_flight);
  2865. tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
  2866. flag);
  2867. } else {
  2868. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  2869. tcp_cong_avoid(sk, ack, prior_in_flight);
  2870. }
  2871. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  2872. dst_confirm(sk->sk_dst_cache);
  2873. return 1;
  2874. no_queue:
  2875. /* If this ack opens up a zero window, clear backoff. It was
  2876. * being used to time the probes, and is probably far higher than
  2877. * it needs to be for normal retransmission.
  2878. */
  2879. if (tcp_send_head(sk))
  2880. tcp_ack_probe(sk);
  2881. return 1;
  2882. old_ack:
  2883. if (TCP_SKB_CB(skb)->sacked) {
  2884. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  2885. if (icsk->icsk_ca_state == TCP_CA_Open)
  2886. tcp_try_keep_open(sk);
  2887. }
  2888. uninteresting_ack:
  2889. SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  2890. return 0;
  2891. }
  2892. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  2893. * But, this can also be called on packets in the established flow when
  2894. * the fast version below fails.
  2895. */
  2896. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
  2897. int estab)
  2898. {
  2899. unsigned char *ptr;
  2900. struct tcphdr *th = tcp_hdr(skb);
  2901. int length = (th->doff * 4) - sizeof(struct tcphdr);
  2902. ptr = (unsigned char *)(th + 1);
  2903. opt_rx->saw_tstamp = 0;
  2904. while (length > 0) {
  2905. int opcode = *ptr++;
  2906. int opsize;
  2907. switch (opcode) {
  2908. case TCPOPT_EOL:
  2909. return;
  2910. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  2911. length--;
  2912. continue;
  2913. default:
  2914. opsize = *ptr++;
  2915. if (opsize < 2) /* "silly options" */
  2916. return;
  2917. if (opsize > length)
  2918. return; /* don't parse partial options */
  2919. switch (opcode) {
  2920. case TCPOPT_MSS:
  2921. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  2922. u16 in_mss = get_unaligned_be16(ptr);
  2923. if (in_mss) {
  2924. if (opt_rx->user_mss &&
  2925. opt_rx->user_mss < in_mss)
  2926. in_mss = opt_rx->user_mss;
  2927. opt_rx->mss_clamp = in_mss;
  2928. }
  2929. }
  2930. break;
  2931. case TCPOPT_WINDOW:
  2932. if (opsize == TCPOLEN_WINDOW && th->syn &&
  2933. !estab && sysctl_tcp_window_scaling) {
  2934. __u8 snd_wscale = *(__u8 *)ptr;
  2935. opt_rx->wscale_ok = 1;
  2936. if (snd_wscale > 14) {
  2937. if (net_ratelimit())
  2938. printk(KERN_INFO "tcp_parse_options: Illegal window "
  2939. "scaling value %d >14 received.\n",
  2940. snd_wscale);
  2941. snd_wscale = 14;
  2942. }
  2943. opt_rx->snd_wscale = snd_wscale;
  2944. }
  2945. break;
  2946. case TCPOPT_TIMESTAMP:
  2947. if ((opsize == TCPOLEN_TIMESTAMP) &&
  2948. ((estab && opt_rx->tstamp_ok) ||
  2949. (!estab && sysctl_tcp_timestamps))) {
  2950. opt_rx->saw_tstamp = 1;
  2951. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  2952. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  2953. }
  2954. break;
  2955. case TCPOPT_SACK_PERM:
  2956. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  2957. !estab && sysctl_tcp_sack) {
  2958. opt_rx->sack_ok = 1;
  2959. tcp_sack_reset(opt_rx);
  2960. }
  2961. break;
  2962. case TCPOPT_SACK:
  2963. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  2964. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  2965. opt_rx->sack_ok) {
  2966. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  2967. }
  2968. break;
  2969. #ifdef CONFIG_TCP_MD5SIG
  2970. case TCPOPT_MD5SIG:
  2971. /*
  2972. * The MD5 Hash has already been
  2973. * checked (see tcp_v{4,6}_do_rcv()).
  2974. */
  2975. break;
  2976. #endif
  2977. }
  2978. ptr += opsize-2;
  2979. length -= opsize;
  2980. }
  2981. }
  2982. }
  2983. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
  2984. {
  2985. __be32 *ptr = (__be32 *)(th + 1);
  2986. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  2987. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  2988. tp->rx_opt.saw_tstamp = 1;
  2989. ++ptr;
  2990. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  2991. ++ptr;
  2992. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  2993. return 1;
  2994. }
  2995. return 0;
  2996. }
  2997. /* Fast parse options. This hopes to only see timestamps.
  2998. * If it is wrong it falls back on tcp_parse_options().
  2999. */
  3000. static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  3001. struct tcp_sock *tp)
  3002. {
  3003. if (th->doff == sizeof(struct tcphdr) >> 2) {
  3004. tp->rx_opt.saw_tstamp = 0;
  3005. return 0;
  3006. } else if (tp->rx_opt.tstamp_ok &&
  3007. th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
  3008. if (tcp_parse_aligned_timestamp(tp, th))
  3009. return 1;
  3010. }
  3011. tcp_parse_options(skb, &tp->rx_opt, 1);
  3012. return 1;
  3013. }
  3014. #ifdef CONFIG_TCP_MD5SIG
  3015. /*
  3016. * Parse MD5 Signature option
  3017. */
  3018. u8 *tcp_parse_md5sig_option(struct tcphdr *th)
  3019. {
  3020. int length = (th->doff << 2) - sizeof (*th);
  3021. u8 *ptr = (u8*)(th + 1);
  3022. /* If the TCP option is too short, we can short cut */
  3023. if (length < TCPOLEN_MD5SIG)
  3024. return NULL;
  3025. while (length > 0) {
  3026. int opcode = *ptr++;
  3027. int opsize;
  3028. switch(opcode) {
  3029. case TCPOPT_EOL:
  3030. return NULL;
  3031. case TCPOPT_NOP:
  3032. length--;
  3033. continue;
  3034. default:
  3035. opsize = *ptr++;
  3036. if (opsize < 2 || opsize > length)
  3037. return NULL;
  3038. if (opcode == TCPOPT_MD5SIG)
  3039. return ptr;
  3040. }
  3041. ptr += opsize - 2;
  3042. length -= opsize;
  3043. }
  3044. return NULL;
  3045. }
  3046. #endif
  3047. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3048. {
  3049. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3050. tp->rx_opt.ts_recent_stamp = get_seconds();
  3051. }
  3052. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3053. {
  3054. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3055. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3056. * extra check below makes sure this can only happen
  3057. * for pure ACK frames. -DaveM
  3058. *
  3059. * Not only, also it occurs for expired timestamps.
  3060. */
  3061. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
  3062. get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
  3063. tcp_store_ts_recent(tp);
  3064. }
  3065. }
  3066. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3067. *
  3068. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3069. * it can pass through stack. So, the following predicate verifies that
  3070. * this segment is not used for anything but congestion avoidance or
  3071. * fast retransmit. Moreover, we even are able to eliminate most of such
  3072. * second order effects, if we apply some small "replay" window (~RTO)
  3073. * to timestamp space.
  3074. *
  3075. * All these measures still do not guarantee that we reject wrapped ACKs
  3076. * on networks with high bandwidth, when sequence space is recycled fastly,
  3077. * but it guarantees that such events will be very rare and do not affect
  3078. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3079. * buggy extension.
  3080. *
  3081. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3082. * states that events when retransmit arrives after original data are rare.
  3083. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3084. * the biggest problem on large power networks even with minor reordering.
  3085. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3086. * up to bandwidth of 18Gigabit/sec. 8) ]
  3087. */
  3088. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3089. {
  3090. struct tcp_sock *tp = tcp_sk(sk);
  3091. struct tcphdr *th = tcp_hdr(skb);
  3092. u32 seq = TCP_SKB_CB(skb)->seq;
  3093. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3094. return (/* 1. Pure ACK with correct sequence number. */
  3095. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3096. /* 2. ... and duplicate ACK. */
  3097. ack == tp->snd_una &&
  3098. /* 3. ... and does not update window. */
  3099. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3100. /* 4. ... and sits in replay window. */
  3101. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3102. }
  3103. static inline int tcp_paws_discard(const struct sock *sk,
  3104. const struct sk_buff *skb)
  3105. {
  3106. const struct tcp_sock *tp = tcp_sk(sk);
  3107. return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
  3108. get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
  3109. !tcp_disordered_ack(sk, skb));
  3110. }
  3111. /* Check segment sequence number for validity.
  3112. *
  3113. * Segment controls are considered valid, if the segment
  3114. * fits to the window after truncation to the window. Acceptability
  3115. * of data (and SYN, FIN, of course) is checked separately.
  3116. * See tcp_data_queue(), for example.
  3117. *
  3118. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3119. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3120. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3121. * (borrowed from freebsd)
  3122. */
  3123. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3124. {
  3125. return !before(end_seq, tp->rcv_wup) &&
  3126. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3127. }
  3128. /* When we get a reset we do this. */
  3129. static void tcp_reset(struct sock *sk)
  3130. {
  3131. /* We want the right error as BSD sees it (and indeed as we do). */
  3132. switch (sk->sk_state) {
  3133. case TCP_SYN_SENT:
  3134. sk->sk_err = ECONNREFUSED;
  3135. break;
  3136. case TCP_CLOSE_WAIT:
  3137. sk->sk_err = EPIPE;
  3138. break;
  3139. case TCP_CLOSE:
  3140. return;
  3141. default:
  3142. sk->sk_err = ECONNRESET;
  3143. }
  3144. if (!sock_flag(sk, SOCK_DEAD))
  3145. sk->sk_error_report(sk);
  3146. tcp_done(sk);
  3147. }
  3148. /*
  3149. * Process the FIN bit. This now behaves as it is supposed to work
  3150. * and the FIN takes effect when it is validly part of sequence
  3151. * space. Not before when we get holes.
  3152. *
  3153. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3154. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3155. * TIME-WAIT)
  3156. *
  3157. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3158. * close and we go into CLOSING (and later onto TIME-WAIT)
  3159. *
  3160. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3161. */
  3162. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  3163. {
  3164. struct tcp_sock *tp = tcp_sk(sk);
  3165. inet_csk_schedule_ack(sk);
  3166. sk->sk_shutdown |= RCV_SHUTDOWN;
  3167. sock_set_flag(sk, SOCK_DONE);
  3168. switch (sk->sk_state) {
  3169. case TCP_SYN_RECV:
  3170. case TCP_ESTABLISHED:
  3171. /* Move to CLOSE_WAIT */
  3172. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3173. inet_csk(sk)->icsk_ack.pingpong = 1;
  3174. break;
  3175. case TCP_CLOSE_WAIT:
  3176. case TCP_CLOSING:
  3177. /* Received a retransmission of the FIN, do
  3178. * nothing.
  3179. */
  3180. break;
  3181. case TCP_LAST_ACK:
  3182. /* RFC793: Remain in the LAST-ACK state. */
  3183. break;
  3184. case TCP_FIN_WAIT1:
  3185. /* This case occurs when a simultaneous close
  3186. * happens, we must ack the received FIN and
  3187. * enter the CLOSING state.
  3188. */
  3189. tcp_send_ack(sk);
  3190. tcp_set_state(sk, TCP_CLOSING);
  3191. break;
  3192. case TCP_FIN_WAIT2:
  3193. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3194. tcp_send_ack(sk);
  3195. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3196. break;
  3197. default:
  3198. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3199. * cases we should never reach this piece of code.
  3200. */
  3201. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3202. __func__, sk->sk_state);
  3203. break;
  3204. }
  3205. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3206. * Probably, we should reset in this case. For now drop them.
  3207. */
  3208. __skb_queue_purge(&tp->out_of_order_queue);
  3209. if (tcp_is_sack(tp))
  3210. tcp_sack_reset(&tp->rx_opt);
  3211. sk_mem_reclaim(sk);
  3212. if (!sock_flag(sk, SOCK_DEAD)) {
  3213. sk->sk_state_change(sk);
  3214. /* Do not send POLL_HUP for half duplex close. */
  3215. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3216. sk->sk_state == TCP_CLOSE)
  3217. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3218. else
  3219. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3220. }
  3221. }
  3222. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3223. u32 end_seq)
  3224. {
  3225. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3226. if (before(seq, sp->start_seq))
  3227. sp->start_seq = seq;
  3228. if (after(end_seq, sp->end_seq))
  3229. sp->end_seq = end_seq;
  3230. return 1;
  3231. }
  3232. return 0;
  3233. }
  3234. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3235. {
  3236. struct tcp_sock *tp = tcp_sk(sk);
  3237. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3238. int mib_idx;
  3239. if (before(seq, tp->rcv_nxt))
  3240. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3241. else
  3242. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3243. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3244. tp->rx_opt.dsack = 1;
  3245. tp->duplicate_sack[0].start_seq = seq;
  3246. tp->duplicate_sack[0].end_seq = end_seq;
  3247. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + 1;
  3248. }
  3249. }
  3250. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3251. {
  3252. struct tcp_sock *tp = tcp_sk(sk);
  3253. if (!tp->rx_opt.dsack)
  3254. tcp_dsack_set(sk, seq, end_seq);
  3255. else
  3256. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3257. }
  3258. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  3259. {
  3260. struct tcp_sock *tp = tcp_sk(sk);
  3261. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3262. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3263. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3264. tcp_enter_quickack_mode(sk);
  3265. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3266. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3267. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3268. end_seq = tp->rcv_nxt;
  3269. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3270. }
  3271. }
  3272. tcp_send_ack(sk);
  3273. }
  3274. /* These routines update the SACK block as out-of-order packets arrive or
  3275. * in-order packets close up the sequence space.
  3276. */
  3277. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3278. {
  3279. int this_sack;
  3280. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3281. struct tcp_sack_block *swalk = sp + 1;
  3282. /* See if the recent change to the first SACK eats into
  3283. * or hits the sequence space of other SACK blocks, if so coalesce.
  3284. */
  3285. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3286. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3287. int i;
  3288. /* Zap SWALK, by moving every further SACK up by one slot.
  3289. * Decrease num_sacks.
  3290. */
  3291. tp->rx_opt.num_sacks--;
  3292. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
  3293. tp->rx_opt.dsack;
  3294. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3295. sp[i] = sp[i + 1];
  3296. continue;
  3297. }
  3298. this_sack++, swalk++;
  3299. }
  3300. }
  3301. static inline void tcp_sack_swap(struct tcp_sack_block *sack1,
  3302. struct tcp_sack_block *sack2)
  3303. {
  3304. __u32 tmp;
  3305. tmp = sack1->start_seq;
  3306. sack1->start_seq = sack2->start_seq;
  3307. sack2->start_seq = tmp;
  3308. tmp = sack1->end_seq;
  3309. sack1->end_seq = sack2->end_seq;
  3310. sack2->end_seq = tmp;
  3311. }
  3312. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3313. {
  3314. struct tcp_sock *tp = tcp_sk(sk);
  3315. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3316. int cur_sacks = tp->rx_opt.num_sacks;
  3317. int this_sack;
  3318. if (!cur_sacks)
  3319. goto new_sack;
  3320. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3321. if (tcp_sack_extend(sp, seq, end_seq)) {
  3322. /* Rotate this_sack to the first one. */
  3323. for (; this_sack > 0; this_sack--, sp--)
  3324. tcp_sack_swap(sp, sp - 1);
  3325. if (cur_sacks > 1)
  3326. tcp_sack_maybe_coalesce(tp);
  3327. return;
  3328. }
  3329. }
  3330. /* Could not find an adjacent existing SACK, build a new one,
  3331. * put it at the front, and shift everyone else down. We
  3332. * always know there is at least one SACK present already here.
  3333. *
  3334. * If the sack array is full, forget about the last one.
  3335. */
  3336. if (this_sack >= TCP_NUM_SACKS) {
  3337. this_sack--;
  3338. tp->rx_opt.num_sacks--;
  3339. sp--;
  3340. }
  3341. for (; this_sack > 0; this_sack--, sp--)
  3342. *sp = *(sp - 1);
  3343. new_sack:
  3344. /* Build the new head SACK, and we're done. */
  3345. sp->start_seq = seq;
  3346. sp->end_seq = end_seq;
  3347. tp->rx_opt.num_sacks++;
  3348. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
  3349. }
  3350. /* RCV.NXT advances, some SACKs should be eaten. */
  3351. static void tcp_sack_remove(struct tcp_sock *tp)
  3352. {
  3353. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3354. int num_sacks = tp->rx_opt.num_sacks;
  3355. int this_sack;
  3356. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3357. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3358. tp->rx_opt.num_sacks = 0;
  3359. tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
  3360. return;
  3361. }
  3362. for (this_sack = 0; this_sack < num_sacks;) {
  3363. /* Check if the start of the sack is covered by RCV.NXT. */
  3364. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3365. int i;
  3366. /* RCV.NXT must cover all the block! */
  3367. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3368. /* Zap this SACK, by moving forward any other SACKS. */
  3369. for (i=this_sack+1; i < num_sacks; i++)
  3370. tp->selective_acks[i-1] = tp->selective_acks[i];
  3371. num_sacks--;
  3372. continue;
  3373. }
  3374. this_sack++;
  3375. sp++;
  3376. }
  3377. if (num_sacks != tp->rx_opt.num_sacks) {
  3378. tp->rx_opt.num_sacks = num_sacks;
  3379. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks +
  3380. tp->rx_opt.dsack;
  3381. }
  3382. }
  3383. /* This one checks to see if we can put data from the
  3384. * out_of_order queue into the receive_queue.
  3385. */
  3386. static void tcp_ofo_queue(struct sock *sk)
  3387. {
  3388. struct tcp_sock *tp = tcp_sk(sk);
  3389. __u32 dsack_high = tp->rcv_nxt;
  3390. struct sk_buff *skb;
  3391. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3392. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3393. break;
  3394. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3395. __u32 dsack = dsack_high;
  3396. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3397. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3398. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3399. }
  3400. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3401. SOCK_DEBUG(sk, "ofo packet was already received \n");
  3402. __skb_unlink(skb, &tp->out_of_order_queue);
  3403. __kfree_skb(skb);
  3404. continue;
  3405. }
  3406. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3407. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3408. TCP_SKB_CB(skb)->end_seq);
  3409. __skb_unlink(skb, &tp->out_of_order_queue);
  3410. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3411. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3412. if (tcp_hdr(skb)->fin)
  3413. tcp_fin(skb, sk, tcp_hdr(skb));
  3414. }
  3415. }
  3416. static int tcp_prune_ofo_queue(struct sock *sk);
  3417. static int tcp_prune_queue(struct sock *sk);
  3418. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3419. {
  3420. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3421. !sk_rmem_schedule(sk, size)) {
  3422. if (tcp_prune_queue(sk) < 0)
  3423. return -1;
  3424. if (!sk_rmem_schedule(sk, size)) {
  3425. if (!tcp_prune_ofo_queue(sk))
  3426. return -1;
  3427. if (!sk_rmem_schedule(sk, size))
  3428. return -1;
  3429. }
  3430. }
  3431. return 0;
  3432. }
  3433. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3434. {
  3435. struct tcphdr *th = tcp_hdr(skb);
  3436. struct tcp_sock *tp = tcp_sk(sk);
  3437. int eaten = -1;
  3438. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3439. goto drop;
  3440. __skb_pull(skb, th->doff * 4);
  3441. TCP_ECN_accept_cwr(tp, skb);
  3442. if (tp->rx_opt.dsack) {
  3443. tp->rx_opt.dsack = 0;
  3444. tp->rx_opt.eff_sacks = tp->rx_opt.num_sacks;
  3445. }
  3446. /* Queue data for delivery to the user.
  3447. * Packets in sequence go to the receive queue.
  3448. * Out of sequence packets to the out_of_order_queue.
  3449. */
  3450. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3451. if (tcp_receive_window(tp) == 0)
  3452. goto out_of_window;
  3453. /* Ok. In sequence. In window. */
  3454. if (tp->ucopy.task == current &&
  3455. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3456. sock_owned_by_user(sk) && !tp->urg_data) {
  3457. int chunk = min_t(unsigned int, skb->len,
  3458. tp->ucopy.len);
  3459. __set_current_state(TASK_RUNNING);
  3460. local_bh_enable();
  3461. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3462. tp->ucopy.len -= chunk;
  3463. tp->copied_seq += chunk;
  3464. eaten = (chunk == skb->len && !th->fin);
  3465. tcp_rcv_space_adjust(sk);
  3466. }
  3467. local_bh_disable();
  3468. }
  3469. if (eaten <= 0) {
  3470. queue_and_out:
  3471. if (eaten < 0 &&
  3472. tcp_try_rmem_schedule(sk, skb->truesize))
  3473. goto drop;
  3474. skb_set_owner_r(skb, sk);
  3475. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3476. }
  3477. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3478. if (skb->len)
  3479. tcp_event_data_recv(sk, skb);
  3480. if (th->fin)
  3481. tcp_fin(skb, sk, th);
  3482. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3483. tcp_ofo_queue(sk);
  3484. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3485. * gap in queue is filled.
  3486. */
  3487. if (skb_queue_empty(&tp->out_of_order_queue))
  3488. inet_csk(sk)->icsk_ack.pingpong = 0;
  3489. }
  3490. if (tp->rx_opt.num_sacks)
  3491. tcp_sack_remove(tp);
  3492. tcp_fast_path_check(sk);
  3493. if (eaten > 0)
  3494. __kfree_skb(skb);
  3495. else if (!sock_flag(sk, SOCK_DEAD))
  3496. sk->sk_data_ready(sk, 0);
  3497. return;
  3498. }
  3499. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3500. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3501. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3502. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3503. out_of_window:
  3504. tcp_enter_quickack_mode(sk);
  3505. inet_csk_schedule_ack(sk);
  3506. drop:
  3507. __kfree_skb(skb);
  3508. return;
  3509. }
  3510. /* Out of window. F.e. zero window probe. */
  3511. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3512. goto out_of_window;
  3513. tcp_enter_quickack_mode(sk);
  3514. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3515. /* Partial packet, seq < rcv_next < end_seq */
  3516. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3517. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3518. TCP_SKB_CB(skb)->end_seq);
  3519. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3520. /* If window is closed, drop tail of packet. But after
  3521. * remembering D-SACK for its head made in previous line.
  3522. */
  3523. if (!tcp_receive_window(tp))
  3524. goto out_of_window;
  3525. goto queue_and_out;
  3526. }
  3527. TCP_ECN_check_ce(tp, skb);
  3528. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3529. goto drop;
  3530. /* Disable header prediction. */
  3531. tp->pred_flags = 0;
  3532. inet_csk_schedule_ack(sk);
  3533. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3534. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3535. skb_set_owner_r(skb, sk);
  3536. if (!skb_peek(&tp->out_of_order_queue)) {
  3537. /* Initial out of order segment, build 1 SACK. */
  3538. if (tcp_is_sack(tp)) {
  3539. tp->rx_opt.num_sacks = 1;
  3540. tp->rx_opt.dsack = 0;
  3541. tp->rx_opt.eff_sacks = 1;
  3542. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3543. tp->selective_acks[0].end_seq =
  3544. TCP_SKB_CB(skb)->end_seq;
  3545. }
  3546. __skb_queue_head(&tp->out_of_order_queue, skb);
  3547. } else {
  3548. struct sk_buff *skb1 = tp->out_of_order_queue.prev;
  3549. u32 seq = TCP_SKB_CB(skb)->seq;
  3550. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3551. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3552. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3553. if (!tp->rx_opt.num_sacks ||
  3554. tp->selective_acks[0].end_seq != seq)
  3555. goto add_sack;
  3556. /* Common case: data arrive in order after hole. */
  3557. tp->selective_acks[0].end_seq = end_seq;
  3558. return;
  3559. }
  3560. /* Find place to insert this segment. */
  3561. do {
  3562. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3563. break;
  3564. } while ((skb1 = skb1->prev) !=
  3565. (struct sk_buff *)&tp->out_of_order_queue);
  3566. /* Do skb overlap to previous one? */
  3567. if (skb1 != (struct sk_buff *)&tp->out_of_order_queue &&
  3568. before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3569. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3570. /* All the bits are present. Drop. */
  3571. __kfree_skb(skb);
  3572. tcp_dsack_set(sk, seq, end_seq);
  3573. goto add_sack;
  3574. }
  3575. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3576. /* Partial overlap. */
  3577. tcp_dsack_set(sk, seq,
  3578. TCP_SKB_CB(skb1)->end_seq);
  3579. } else {
  3580. skb1 = skb1->prev;
  3581. }
  3582. }
  3583. __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
  3584. /* And clean segments covered by new one as whole. */
  3585. while ((skb1 = skb->next) !=
  3586. (struct sk_buff *)&tp->out_of_order_queue &&
  3587. after(end_seq, TCP_SKB_CB(skb1)->seq)) {
  3588. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3589. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3590. end_seq);
  3591. break;
  3592. }
  3593. __skb_unlink(skb1, &tp->out_of_order_queue);
  3594. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3595. TCP_SKB_CB(skb1)->end_seq);
  3596. __kfree_skb(skb1);
  3597. }
  3598. add_sack:
  3599. if (tcp_is_sack(tp))
  3600. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3601. }
  3602. }
  3603. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3604. struct sk_buff_head *list)
  3605. {
  3606. struct sk_buff *next = skb->next;
  3607. __skb_unlink(skb, list);
  3608. __kfree_skb(skb);
  3609. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3610. return next;
  3611. }
  3612. /* Collapse contiguous sequence of skbs head..tail with
  3613. * sequence numbers start..end.
  3614. * Segments with FIN/SYN are not collapsed (only because this
  3615. * simplifies code)
  3616. */
  3617. static void
  3618. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3619. struct sk_buff *head, struct sk_buff *tail,
  3620. u32 start, u32 end)
  3621. {
  3622. struct sk_buff *skb;
  3623. /* First, check that queue is collapsible and find
  3624. * the point where collapsing can be useful. */
  3625. for (skb = head; skb != tail;) {
  3626. /* No new bits? It is possible on ofo queue. */
  3627. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3628. skb = tcp_collapse_one(sk, skb, list);
  3629. continue;
  3630. }
  3631. /* The first skb to collapse is:
  3632. * - not SYN/FIN and
  3633. * - bloated or contains data before "start" or
  3634. * overlaps to the next one.
  3635. */
  3636. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3637. (tcp_win_from_space(skb->truesize) > skb->len ||
  3638. before(TCP_SKB_CB(skb)->seq, start) ||
  3639. (skb->next != tail &&
  3640. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
  3641. break;
  3642. /* Decided to skip this, advance start seq. */
  3643. start = TCP_SKB_CB(skb)->end_seq;
  3644. skb = skb->next;
  3645. }
  3646. if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3647. return;
  3648. while (before(start, end)) {
  3649. struct sk_buff *nskb;
  3650. unsigned int header = skb_headroom(skb);
  3651. int copy = SKB_MAX_ORDER(header, 0);
  3652. /* Too big header? This can happen with IPv6. */
  3653. if (copy < 0)
  3654. return;
  3655. if (end - start < copy)
  3656. copy = end - start;
  3657. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3658. if (!nskb)
  3659. return;
  3660. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3661. skb_set_network_header(nskb, (skb_network_header(skb) -
  3662. skb->head));
  3663. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3664. skb->head));
  3665. skb_reserve(nskb, header);
  3666. memcpy(nskb->head, skb->head, header);
  3667. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3668. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3669. __skb_insert(nskb, skb->prev, skb, list);
  3670. skb_set_owner_r(nskb, sk);
  3671. /* Copy data, releasing collapsed skbs. */
  3672. while (copy > 0) {
  3673. int offset = start - TCP_SKB_CB(skb)->seq;
  3674. int size = TCP_SKB_CB(skb)->end_seq - start;
  3675. BUG_ON(offset < 0);
  3676. if (size > 0) {
  3677. size = min(copy, size);
  3678. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3679. BUG();
  3680. TCP_SKB_CB(nskb)->end_seq += size;
  3681. copy -= size;
  3682. start += size;
  3683. }
  3684. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3685. skb = tcp_collapse_one(sk, skb, list);
  3686. if (skb == tail ||
  3687. tcp_hdr(skb)->syn ||
  3688. tcp_hdr(skb)->fin)
  3689. return;
  3690. }
  3691. }
  3692. }
  3693. }
  3694. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3695. * and tcp_collapse() them until all the queue is collapsed.
  3696. */
  3697. static void tcp_collapse_ofo_queue(struct sock *sk)
  3698. {
  3699. struct tcp_sock *tp = tcp_sk(sk);
  3700. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3701. struct sk_buff *head;
  3702. u32 start, end;
  3703. if (skb == NULL)
  3704. return;
  3705. start = TCP_SKB_CB(skb)->seq;
  3706. end = TCP_SKB_CB(skb)->end_seq;
  3707. head = skb;
  3708. for (;;) {
  3709. skb = skb->next;
  3710. /* Segment is terminated when we see gap or when
  3711. * we are at the end of all the queue. */
  3712. if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
  3713. after(TCP_SKB_CB(skb)->seq, end) ||
  3714. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3715. tcp_collapse(sk, &tp->out_of_order_queue,
  3716. head, skb, start, end);
  3717. head = skb;
  3718. if (skb == (struct sk_buff *)&tp->out_of_order_queue)
  3719. break;
  3720. /* Start new segment */
  3721. start = TCP_SKB_CB(skb)->seq;
  3722. end = TCP_SKB_CB(skb)->end_seq;
  3723. } else {
  3724. if (before(TCP_SKB_CB(skb)->seq, start))
  3725. start = TCP_SKB_CB(skb)->seq;
  3726. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3727. end = TCP_SKB_CB(skb)->end_seq;
  3728. }
  3729. }
  3730. }
  3731. /*
  3732. * Purge the out-of-order queue.
  3733. * Return true if queue was pruned.
  3734. */
  3735. static int tcp_prune_ofo_queue(struct sock *sk)
  3736. {
  3737. struct tcp_sock *tp = tcp_sk(sk);
  3738. int res = 0;
  3739. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3740. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  3741. __skb_queue_purge(&tp->out_of_order_queue);
  3742. /* Reset SACK state. A conforming SACK implementation will
  3743. * do the same at a timeout based retransmit. When a connection
  3744. * is in a sad state like this, we care only about integrity
  3745. * of the connection not performance.
  3746. */
  3747. if (tp->rx_opt.sack_ok)
  3748. tcp_sack_reset(&tp->rx_opt);
  3749. sk_mem_reclaim(sk);
  3750. res = 1;
  3751. }
  3752. return res;
  3753. }
  3754. /* Reduce allocated memory if we can, trying to get
  3755. * the socket within its memory limits again.
  3756. *
  3757. * Return less than zero if we should start dropping frames
  3758. * until the socket owning process reads some of the data
  3759. * to stabilize the situation.
  3760. */
  3761. static int tcp_prune_queue(struct sock *sk)
  3762. {
  3763. struct tcp_sock *tp = tcp_sk(sk);
  3764. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  3765. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  3766. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  3767. tcp_clamp_window(sk);
  3768. else if (tcp_memory_pressure)
  3769. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  3770. tcp_collapse_ofo_queue(sk);
  3771. tcp_collapse(sk, &sk->sk_receive_queue,
  3772. sk->sk_receive_queue.next,
  3773. (struct sk_buff *)&sk->sk_receive_queue,
  3774. tp->copied_seq, tp->rcv_nxt);
  3775. sk_mem_reclaim(sk);
  3776. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3777. return 0;
  3778. /* Collapsing did not help, destructive actions follow.
  3779. * This must not ever occur. */
  3780. tcp_prune_ofo_queue(sk);
  3781. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3782. return 0;
  3783. /* If we are really being abused, tell the caller to silently
  3784. * drop receive data on the floor. It will get retransmitted
  3785. * and hopefully then we'll have sufficient space.
  3786. */
  3787. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  3788. /* Massive buffer overcommit. */
  3789. tp->pred_flags = 0;
  3790. return -1;
  3791. }
  3792. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  3793. * As additional protections, we do not touch cwnd in retransmission phases,
  3794. * and if application hit its sndbuf limit recently.
  3795. */
  3796. void tcp_cwnd_application_limited(struct sock *sk)
  3797. {
  3798. struct tcp_sock *tp = tcp_sk(sk);
  3799. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  3800. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  3801. /* Limited by application or receiver window. */
  3802. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  3803. u32 win_used = max(tp->snd_cwnd_used, init_win);
  3804. if (win_used < tp->snd_cwnd) {
  3805. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  3806. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  3807. }
  3808. tp->snd_cwnd_used = 0;
  3809. }
  3810. tp->snd_cwnd_stamp = tcp_time_stamp;
  3811. }
  3812. static int tcp_should_expand_sndbuf(struct sock *sk)
  3813. {
  3814. struct tcp_sock *tp = tcp_sk(sk);
  3815. /* If the user specified a specific send buffer setting, do
  3816. * not modify it.
  3817. */
  3818. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  3819. return 0;
  3820. /* If we are under global TCP memory pressure, do not expand. */
  3821. if (tcp_memory_pressure)
  3822. return 0;
  3823. /* If we are under soft global TCP memory pressure, do not expand. */
  3824. if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  3825. return 0;
  3826. /* If we filled the congestion window, do not expand. */
  3827. if (tp->packets_out >= tp->snd_cwnd)
  3828. return 0;
  3829. return 1;
  3830. }
  3831. /* When incoming ACK allowed to free some skb from write_queue,
  3832. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  3833. * on the exit from tcp input handler.
  3834. *
  3835. * PROBLEM: sndbuf expansion does not work well with largesend.
  3836. */
  3837. static void tcp_new_space(struct sock *sk)
  3838. {
  3839. struct tcp_sock *tp = tcp_sk(sk);
  3840. if (tcp_should_expand_sndbuf(sk)) {
  3841. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  3842. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
  3843. demanded = max_t(unsigned int, tp->snd_cwnd,
  3844. tp->reordering + 1);
  3845. sndmem *= 2 * demanded;
  3846. if (sndmem > sk->sk_sndbuf)
  3847. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  3848. tp->snd_cwnd_stamp = tcp_time_stamp;
  3849. }
  3850. sk->sk_write_space(sk);
  3851. }
  3852. static void tcp_check_space(struct sock *sk)
  3853. {
  3854. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  3855. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  3856. if (sk->sk_socket &&
  3857. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  3858. tcp_new_space(sk);
  3859. }
  3860. }
  3861. static inline void tcp_data_snd_check(struct sock *sk)
  3862. {
  3863. tcp_push_pending_frames(sk);
  3864. tcp_check_space(sk);
  3865. }
  3866. /*
  3867. * Check if sending an ack is needed.
  3868. */
  3869. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  3870. {
  3871. struct tcp_sock *tp = tcp_sk(sk);
  3872. /* More than one full frame received... */
  3873. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
  3874. /* ... and right edge of window advances far enough.
  3875. * (tcp_recvmsg() will send ACK otherwise). Or...
  3876. */
  3877. && __tcp_select_window(sk) >= tp->rcv_wnd) ||
  3878. /* We ACK each frame or... */
  3879. tcp_in_quickack_mode(sk) ||
  3880. /* We have out of order data. */
  3881. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  3882. /* Then ack it now */
  3883. tcp_send_ack(sk);
  3884. } else {
  3885. /* Else, send delayed ack. */
  3886. tcp_send_delayed_ack(sk);
  3887. }
  3888. }
  3889. static inline void tcp_ack_snd_check(struct sock *sk)
  3890. {
  3891. if (!inet_csk_ack_scheduled(sk)) {
  3892. /* We sent a data segment already. */
  3893. return;
  3894. }
  3895. __tcp_ack_snd_check(sk, 1);
  3896. }
  3897. /*
  3898. * This routine is only called when we have urgent data
  3899. * signaled. Its the 'slow' part of tcp_urg. It could be
  3900. * moved inline now as tcp_urg is only called from one
  3901. * place. We handle URGent data wrong. We have to - as
  3902. * BSD still doesn't use the correction from RFC961.
  3903. * For 1003.1g we should support a new option TCP_STDURG to permit
  3904. * either form (or just set the sysctl tcp_stdurg).
  3905. */
  3906. static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
  3907. {
  3908. struct tcp_sock *tp = tcp_sk(sk);
  3909. u32 ptr = ntohs(th->urg_ptr);
  3910. if (ptr && !sysctl_tcp_stdurg)
  3911. ptr--;
  3912. ptr += ntohl(th->seq);
  3913. /* Ignore urgent data that we've already seen and read. */
  3914. if (after(tp->copied_seq, ptr))
  3915. return;
  3916. /* Do not replay urg ptr.
  3917. *
  3918. * NOTE: interesting situation not covered by specs.
  3919. * Misbehaving sender may send urg ptr, pointing to segment,
  3920. * which we already have in ofo queue. We are not able to fetch
  3921. * such data and will stay in TCP_URG_NOTYET until will be eaten
  3922. * by recvmsg(). Seems, we are not obliged to handle such wicked
  3923. * situations. But it is worth to think about possibility of some
  3924. * DoSes using some hypothetical application level deadlock.
  3925. */
  3926. if (before(ptr, tp->rcv_nxt))
  3927. return;
  3928. /* Do we already have a newer (or duplicate) urgent pointer? */
  3929. if (tp->urg_data && !after(ptr, tp->urg_seq))
  3930. return;
  3931. /* Tell the world about our new urgent pointer. */
  3932. sk_send_sigurg(sk);
  3933. /* We may be adding urgent data when the last byte read was
  3934. * urgent. To do this requires some care. We cannot just ignore
  3935. * tp->copied_seq since we would read the last urgent byte again
  3936. * as data, nor can we alter copied_seq until this data arrives
  3937. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  3938. *
  3939. * NOTE. Double Dutch. Rendering to plain English: author of comment
  3940. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  3941. * and expect that both A and B disappear from stream. This is _wrong_.
  3942. * Though this happens in BSD with high probability, this is occasional.
  3943. * Any application relying on this is buggy. Note also, that fix "works"
  3944. * only in this artificial test. Insert some normal data between A and B and we will
  3945. * decline of BSD again. Verdict: it is better to remove to trap
  3946. * buggy users.
  3947. */
  3948. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  3949. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  3950. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  3951. tp->copied_seq++;
  3952. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  3953. __skb_unlink(skb, &sk->sk_receive_queue);
  3954. __kfree_skb(skb);
  3955. }
  3956. }
  3957. tp->urg_data = TCP_URG_NOTYET;
  3958. tp->urg_seq = ptr;
  3959. /* Disable header prediction. */
  3960. tp->pred_flags = 0;
  3961. }
  3962. /* This is the 'fast' part of urgent handling. */
  3963. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  3964. {
  3965. struct tcp_sock *tp = tcp_sk(sk);
  3966. /* Check if we get a new urgent pointer - normally not. */
  3967. if (th->urg)
  3968. tcp_check_urg(sk, th);
  3969. /* Do we wait for any urgent data? - normally not... */
  3970. if (tp->urg_data == TCP_URG_NOTYET) {
  3971. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  3972. th->syn;
  3973. /* Is the urgent pointer pointing into this packet? */
  3974. if (ptr < skb->len) {
  3975. u8 tmp;
  3976. if (skb_copy_bits(skb, ptr, &tmp, 1))
  3977. BUG();
  3978. tp->urg_data = TCP_URG_VALID | tmp;
  3979. if (!sock_flag(sk, SOCK_DEAD))
  3980. sk->sk_data_ready(sk, 0);
  3981. }
  3982. }
  3983. }
  3984. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  3985. {
  3986. struct tcp_sock *tp = tcp_sk(sk);
  3987. int chunk = skb->len - hlen;
  3988. int err;
  3989. local_bh_enable();
  3990. if (skb_csum_unnecessary(skb))
  3991. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  3992. else
  3993. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  3994. tp->ucopy.iov);
  3995. if (!err) {
  3996. tp->ucopy.len -= chunk;
  3997. tp->copied_seq += chunk;
  3998. tcp_rcv_space_adjust(sk);
  3999. }
  4000. local_bh_disable();
  4001. return err;
  4002. }
  4003. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4004. struct sk_buff *skb)
  4005. {
  4006. __sum16 result;
  4007. if (sock_owned_by_user(sk)) {
  4008. local_bh_enable();
  4009. result = __tcp_checksum_complete(skb);
  4010. local_bh_disable();
  4011. } else {
  4012. result = __tcp_checksum_complete(skb);
  4013. }
  4014. return result;
  4015. }
  4016. static inline int tcp_checksum_complete_user(struct sock *sk,
  4017. struct sk_buff *skb)
  4018. {
  4019. return !skb_csum_unnecessary(skb) &&
  4020. __tcp_checksum_complete_user(sk, skb);
  4021. }
  4022. #ifdef CONFIG_NET_DMA
  4023. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4024. int hlen)
  4025. {
  4026. struct tcp_sock *tp = tcp_sk(sk);
  4027. int chunk = skb->len - hlen;
  4028. int dma_cookie;
  4029. int copied_early = 0;
  4030. if (tp->ucopy.wakeup)
  4031. return 0;
  4032. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4033. tp->ucopy.dma_chan = get_softnet_dma();
  4034. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4035. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4036. skb, hlen,
  4037. tp->ucopy.iov, chunk,
  4038. tp->ucopy.pinned_list);
  4039. if (dma_cookie < 0)
  4040. goto out;
  4041. tp->ucopy.dma_cookie = dma_cookie;
  4042. copied_early = 1;
  4043. tp->ucopy.len -= chunk;
  4044. tp->copied_seq += chunk;
  4045. tcp_rcv_space_adjust(sk);
  4046. if ((tp->ucopy.len == 0) ||
  4047. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4048. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4049. tp->ucopy.wakeup = 1;
  4050. sk->sk_data_ready(sk, 0);
  4051. }
  4052. } else if (chunk > 0) {
  4053. tp->ucopy.wakeup = 1;
  4054. sk->sk_data_ready(sk, 0);
  4055. }
  4056. out:
  4057. return copied_early;
  4058. }
  4059. #endif /* CONFIG_NET_DMA */
  4060. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4061. * play significant role here.
  4062. */
  4063. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4064. struct tcphdr *th, int syn_inerr)
  4065. {
  4066. struct tcp_sock *tp = tcp_sk(sk);
  4067. /* RFC1323: H1. Apply PAWS check first. */
  4068. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4069. tcp_paws_discard(sk, skb)) {
  4070. if (!th->rst) {
  4071. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4072. tcp_send_dupack(sk, skb);
  4073. goto discard;
  4074. }
  4075. /* Reset is accepted even if it did not pass PAWS. */
  4076. }
  4077. /* Step 1: check sequence number */
  4078. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4079. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4080. * (RST) segments are validated by checking their SEQ-fields."
  4081. * And page 69: "If an incoming segment is not acceptable,
  4082. * an acknowledgment should be sent in reply (unless the RST
  4083. * bit is set, if so drop the segment and return)".
  4084. */
  4085. if (!th->rst)
  4086. tcp_send_dupack(sk, skb);
  4087. goto discard;
  4088. }
  4089. /* Step 2: check RST bit */
  4090. if (th->rst) {
  4091. tcp_reset(sk);
  4092. goto discard;
  4093. }
  4094. /* ts_recent update must be made after we are sure that the packet
  4095. * is in window.
  4096. */
  4097. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4098. /* step 3: check security and precedence [ignored] */
  4099. /* step 4: Check for a SYN in window. */
  4100. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4101. if (syn_inerr)
  4102. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4103. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4104. tcp_reset(sk);
  4105. return -1;
  4106. }
  4107. return 1;
  4108. discard:
  4109. __kfree_skb(skb);
  4110. return 0;
  4111. }
  4112. /*
  4113. * TCP receive function for the ESTABLISHED state.
  4114. *
  4115. * It is split into a fast path and a slow path. The fast path is
  4116. * disabled when:
  4117. * - A zero window was announced from us - zero window probing
  4118. * is only handled properly in the slow path.
  4119. * - Out of order segments arrived.
  4120. * - Urgent data is expected.
  4121. * - There is no buffer space left
  4122. * - Unexpected TCP flags/window values/header lengths are received
  4123. * (detected by checking the TCP header against pred_flags)
  4124. * - Data is sent in both directions. Fast path only supports pure senders
  4125. * or pure receivers (this means either the sequence number or the ack
  4126. * value must stay constant)
  4127. * - Unexpected TCP option.
  4128. *
  4129. * When these conditions are not satisfied it drops into a standard
  4130. * receive procedure patterned after RFC793 to handle all cases.
  4131. * The first three cases are guaranteed by proper pred_flags setting,
  4132. * the rest is checked inline. Fast processing is turned on in
  4133. * tcp_data_queue when everything is OK.
  4134. */
  4135. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4136. struct tcphdr *th, unsigned len)
  4137. {
  4138. struct tcp_sock *tp = tcp_sk(sk);
  4139. int res;
  4140. /*
  4141. * Header prediction.
  4142. * The code loosely follows the one in the famous
  4143. * "30 instruction TCP receive" Van Jacobson mail.
  4144. *
  4145. * Van's trick is to deposit buffers into socket queue
  4146. * on a device interrupt, to call tcp_recv function
  4147. * on the receive process context and checksum and copy
  4148. * the buffer to user space. smart...
  4149. *
  4150. * Our current scheme is not silly either but we take the
  4151. * extra cost of the net_bh soft interrupt processing...
  4152. * We do checksum and copy also but from device to kernel.
  4153. */
  4154. tp->rx_opt.saw_tstamp = 0;
  4155. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4156. * if header_prediction is to be made
  4157. * 'S' will always be tp->tcp_header_len >> 2
  4158. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4159. * turn it off (when there are holes in the receive
  4160. * space for instance)
  4161. * PSH flag is ignored.
  4162. */
  4163. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4164. TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4165. int tcp_header_len = tp->tcp_header_len;
  4166. /* Timestamp header prediction: tcp_header_len
  4167. * is automatically equal to th->doff*4 due to pred_flags
  4168. * match.
  4169. */
  4170. /* Check timestamp */
  4171. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4172. /* No? Slow path! */
  4173. if (!tcp_parse_aligned_timestamp(tp, th))
  4174. goto slow_path;
  4175. /* If PAWS failed, check it more carefully in slow path */
  4176. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4177. goto slow_path;
  4178. /* DO NOT update ts_recent here, if checksum fails
  4179. * and timestamp was corrupted part, it will result
  4180. * in a hung connection since we will drop all
  4181. * future packets due to the PAWS test.
  4182. */
  4183. }
  4184. if (len <= tcp_header_len) {
  4185. /* Bulk data transfer: sender */
  4186. if (len == tcp_header_len) {
  4187. /* Predicted packet is in window by definition.
  4188. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4189. * Hence, check seq<=rcv_wup reduces to:
  4190. */
  4191. if (tcp_header_len ==
  4192. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4193. tp->rcv_nxt == tp->rcv_wup)
  4194. tcp_store_ts_recent(tp);
  4195. /* We know that such packets are checksummed
  4196. * on entry.
  4197. */
  4198. tcp_ack(sk, skb, 0);
  4199. __kfree_skb(skb);
  4200. tcp_data_snd_check(sk);
  4201. return 0;
  4202. } else { /* Header too small */
  4203. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4204. goto discard;
  4205. }
  4206. } else {
  4207. int eaten = 0;
  4208. int copied_early = 0;
  4209. if (tp->copied_seq == tp->rcv_nxt &&
  4210. len - tcp_header_len <= tp->ucopy.len) {
  4211. #ifdef CONFIG_NET_DMA
  4212. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4213. copied_early = 1;
  4214. eaten = 1;
  4215. }
  4216. #endif
  4217. if (tp->ucopy.task == current &&
  4218. sock_owned_by_user(sk) && !copied_early) {
  4219. __set_current_state(TASK_RUNNING);
  4220. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4221. eaten = 1;
  4222. }
  4223. if (eaten) {
  4224. /* Predicted packet is in window by definition.
  4225. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4226. * Hence, check seq<=rcv_wup reduces to:
  4227. */
  4228. if (tcp_header_len ==
  4229. (sizeof(struct tcphdr) +
  4230. TCPOLEN_TSTAMP_ALIGNED) &&
  4231. tp->rcv_nxt == tp->rcv_wup)
  4232. tcp_store_ts_recent(tp);
  4233. tcp_rcv_rtt_measure_ts(sk, skb);
  4234. __skb_pull(skb, tcp_header_len);
  4235. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4236. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4237. }
  4238. if (copied_early)
  4239. tcp_cleanup_rbuf(sk, skb->len);
  4240. }
  4241. if (!eaten) {
  4242. if (tcp_checksum_complete_user(sk, skb))
  4243. goto csum_error;
  4244. /* Predicted packet is in window by definition.
  4245. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4246. * Hence, check seq<=rcv_wup reduces to:
  4247. */
  4248. if (tcp_header_len ==
  4249. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4250. tp->rcv_nxt == tp->rcv_wup)
  4251. tcp_store_ts_recent(tp);
  4252. tcp_rcv_rtt_measure_ts(sk, skb);
  4253. if ((int)skb->truesize > sk->sk_forward_alloc)
  4254. goto step5;
  4255. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4256. /* Bulk data transfer: receiver */
  4257. __skb_pull(skb, tcp_header_len);
  4258. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4259. skb_set_owner_r(skb, sk);
  4260. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4261. }
  4262. tcp_event_data_recv(sk, skb);
  4263. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4264. /* Well, only one small jumplet in fast path... */
  4265. tcp_ack(sk, skb, FLAG_DATA);
  4266. tcp_data_snd_check(sk);
  4267. if (!inet_csk_ack_scheduled(sk))
  4268. goto no_ack;
  4269. }
  4270. __tcp_ack_snd_check(sk, 0);
  4271. no_ack:
  4272. #ifdef CONFIG_NET_DMA
  4273. if (copied_early)
  4274. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4275. else
  4276. #endif
  4277. if (eaten)
  4278. __kfree_skb(skb);
  4279. else
  4280. sk->sk_data_ready(sk, 0);
  4281. return 0;
  4282. }
  4283. }
  4284. slow_path:
  4285. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4286. goto csum_error;
  4287. /*
  4288. * Standard slow path.
  4289. */
  4290. res = tcp_validate_incoming(sk, skb, th, 1);
  4291. if (res <= 0)
  4292. return -res;
  4293. step5:
  4294. if (th->ack)
  4295. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4296. tcp_rcv_rtt_measure_ts(sk, skb);
  4297. /* Process urgent data. */
  4298. tcp_urg(sk, skb, th);
  4299. /* step 7: process the segment text */
  4300. tcp_data_queue(sk, skb);
  4301. tcp_data_snd_check(sk);
  4302. tcp_ack_snd_check(sk);
  4303. return 0;
  4304. csum_error:
  4305. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4306. discard:
  4307. __kfree_skb(skb);
  4308. return 0;
  4309. }
  4310. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4311. struct tcphdr *th, unsigned len)
  4312. {
  4313. struct tcp_sock *tp = tcp_sk(sk);
  4314. struct inet_connection_sock *icsk = inet_csk(sk);
  4315. int saved_clamp = tp->rx_opt.mss_clamp;
  4316. tcp_parse_options(skb, &tp->rx_opt, 0);
  4317. if (th->ack) {
  4318. /* rfc793:
  4319. * "If the state is SYN-SENT then
  4320. * first check the ACK bit
  4321. * If the ACK bit is set
  4322. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4323. * a reset (unless the RST bit is set, if so drop
  4324. * the segment and return)"
  4325. *
  4326. * We do not send data with SYN, so that RFC-correct
  4327. * test reduces to:
  4328. */
  4329. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4330. goto reset_and_undo;
  4331. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4332. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4333. tcp_time_stamp)) {
  4334. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4335. goto reset_and_undo;
  4336. }
  4337. /* Now ACK is acceptable.
  4338. *
  4339. * "If the RST bit is set
  4340. * If the ACK was acceptable then signal the user "error:
  4341. * connection reset", drop the segment, enter CLOSED state,
  4342. * delete TCB, and return."
  4343. */
  4344. if (th->rst) {
  4345. tcp_reset(sk);
  4346. goto discard;
  4347. }
  4348. /* rfc793:
  4349. * "fifth, if neither of the SYN or RST bits is set then
  4350. * drop the segment and return."
  4351. *
  4352. * See note below!
  4353. * --ANK(990513)
  4354. */
  4355. if (!th->syn)
  4356. goto discard_and_undo;
  4357. /* rfc793:
  4358. * "If the SYN bit is on ...
  4359. * are acceptable then ...
  4360. * (our SYN has been ACKed), change the connection
  4361. * state to ESTABLISHED..."
  4362. */
  4363. TCP_ECN_rcv_synack(tp, th);
  4364. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4365. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4366. /* Ok.. it's good. Set up sequence numbers and
  4367. * move to established.
  4368. */
  4369. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4370. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4371. /* RFC1323: The window in SYN & SYN/ACK segments is
  4372. * never scaled.
  4373. */
  4374. tp->snd_wnd = ntohs(th->window);
  4375. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
  4376. if (!tp->rx_opt.wscale_ok) {
  4377. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4378. tp->window_clamp = min(tp->window_clamp, 65535U);
  4379. }
  4380. if (tp->rx_opt.saw_tstamp) {
  4381. tp->rx_opt.tstamp_ok = 1;
  4382. tp->tcp_header_len =
  4383. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4384. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4385. tcp_store_ts_recent(tp);
  4386. } else {
  4387. tp->tcp_header_len = sizeof(struct tcphdr);
  4388. }
  4389. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4390. tcp_enable_fack(tp);
  4391. tcp_mtup_init(sk);
  4392. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4393. tcp_initialize_rcv_mss(sk);
  4394. /* Remember, tcp_poll() does not lock socket!
  4395. * Change state from SYN-SENT only after copied_seq
  4396. * is initialized. */
  4397. tp->copied_seq = tp->rcv_nxt;
  4398. smp_mb();
  4399. tcp_set_state(sk, TCP_ESTABLISHED);
  4400. security_inet_conn_established(sk, skb);
  4401. /* Make sure socket is routed, for correct metrics. */
  4402. icsk->icsk_af_ops->rebuild_header(sk);
  4403. tcp_init_metrics(sk);
  4404. tcp_init_congestion_control(sk);
  4405. /* Prevent spurious tcp_cwnd_restart() on first data
  4406. * packet.
  4407. */
  4408. tp->lsndtime = tcp_time_stamp;
  4409. tcp_init_buffer_space(sk);
  4410. if (sock_flag(sk, SOCK_KEEPOPEN))
  4411. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4412. if (!tp->rx_opt.snd_wscale)
  4413. __tcp_fast_path_on(tp, tp->snd_wnd);
  4414. else
  4415. tp->pred_flags = 0;
  4416. if (!sock_flag(sk, SOCK_DEAD)) {
  4417. sk->sk_state_change(sk);
  4418. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4419. }
  4420. if (sk->sk_write_pending ||
  4421. icsk->icsk_accept_queue.rskq_defer_accept ||
  4422. icsk->icsk_ack.pingpong) {
  4423. /* Save one ACK. Data will be ready after
  4424. * several ticks, if write_pending is set.
  4425. *
  4426. * It may be deleted, but with this feature tcpdumps
  4427. * look so _wonderfully_ clever, that I was not able
  4428. * to stand against the temptation 8) --ANK
  4429. */
  4430. inet_csk_schedule_ack(sk);
  4431. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4432. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4433. tcp_incr_quickack(sk);
  4434. tcp_enter_quickack_mode(sk);
  4435. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4436. TCP_DELACK_MAX, TCP_RTO_MAX);
  4437. discard:
  4438. __kfree_skb(skb);
  4439. return 0;
  4440. } else {
  4441. tcp_send_ack(sk);
  4442. }
  4443. return -1;
  4444. }
  4445. /* No ACK in the segment */
  4446. if (th->rst) {
  4447. /* rfc793:
  4448. * "If the RST bit is set
  4449. *
  4450. * Otherwise (no ACK) drop the segment and return."
  4451. */
  4452. goto discard_and_undo;
  4453. }
  4454. /* PAWS check. */
  4455. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4456. tcp_paws_check(&tp->rx_opt, 0))
  4457. goto discard_and_undo;
  4458. if (th->syn) {
  4459. /* We see SYN without ACK. It is attempt of
  4460. * simultaneous connect with crossed SYNs.
  4461. * Particularly, it can be connect to self.
  4462. */
  4463. tcp_set_state(sk, TCP_SYN_RECV);
  4464. if (tp->rx_opt.saw_tstamp) {
  4465. tp->rx_opt.tstamp_ok = 1;
  4466. tcp_store_ts_recent(tp);
  4467. tp->tcp_header_len =
  4468. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4469. } else {
  4470. tp->tcp_header_len = sizeof(struct tcphdr);
  4471. }
  4472. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4473. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4474. /* RFC1323: The window in SYN & SYN/ACK segments is
  4475. * never scaled.
  4476. */
  4477. tp->snd_wnd = ntohs(th->window);
  4478. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4479. tp->max_window = tp->snd_wnd;
  4480. TCP_ECN_rcv_syn(tp, th);
  4481. tcp_mtup_init(sk);
  4482. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4483. tcp_initialize_rcv_mss(sk);
  4484. tcp_send_synack(sk);
  4485. #if 0
  4486. /* Note, we could accept data and URG from this segment.
  4487. * There are no obstacles to make this.
  4488. *
  4489. * However, if we ignore data in ACKless segments sometimes,
  4490. * we have no reasons to accept it sometimes.
  4491. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4492. * is not flawless. So, discard packet for sanity.
  4493. * Uncomment this return to process the data.
  4494. */
  4495. return -1;
  4496. #else
  4497. goto discard;
  4498. #endif
  4499. }
  4500. /* "fifth, if neither of the SYN or RST bits is set then
  4501. * drop the segment and return."
  4502. */
  4503. discard_and_undo:
  4504. tcp_clear_options(&tp->rx_opt);
  4505. tp->rx_opt.mss_clamp = saved_clamp;
  4506. goto discard;
  4507. reset_and_undo:
  4508. tcp_clear_options(&tp->rx_opt);
  4509. tp->rx_opt.mss_clamp = saved_clamp;
  4510. return 1;
  4511. }
  4512. /*
  4513. * This function implements the receiving procedure of RFC 793 for
  4514. * all states except ESTABLISHED and TIME_WAIT.
  4515. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4516. * address independent.
  4517. */
  4518. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4519. struct tcphdr *th, unsigned len)
  4520. {
  4521. struct tcp_sock *tp = tcp_sk(sk);
  4522. struct inet_connection_sock *icsk = inet_csk(sk);
  4523. int queued = 0;
  4524. int res;
  4525. tp->rx_opt.saw_tstamp = 0;
  4526. switch (sk->sk_state) {
  4527. case TCP_CLOSE:
  4528. goto discard;
  4529. case TCP_LISTEN:
  4530. if (th->ack)
  4531. return 1;
  4532. if (th->rst)
  4533. goto discard;
  4534. if (th->syn) {
  4535. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4536. return 1;
  4537. /* Now we have several options: In theory there is
  4538. * nothing else in the frame. KA9Q has an option to
  4539. * send data with the syn, BSD accepts data with the
  4540. * syn up to the [to be] advertised window and
  4541. * Solaris 2.1 gives you a protocol error. For now
  4542. * we just ignore it, that fits the spec precisely
  4543. * and avoids incompatibilities. It would be nice in
  4544. * future to drop through and process the data.
  4545. *
  4546. * Now that TTCP is starting to be used we ought to
  4547. * queue this data.
  4548. * But, this leaves one open to an easy denial of
  4549. * service attack, and SYN cookies can't defend
  4550. * against this problem. So, we drop the data
  4551. * in the interest of security over speed unless
  4552. * it's still in use.
  4553. */
  4554. kfree_skb(skb);
  4555. return 0;
  4556. }
  4557. goto discard;
  4558. case TCP_SYN_SENT:
  4559. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4560. if (queued >= 0)
  4561. return queued;
  4562. /* Do step6 onward by hand. */
  4563. tcp_urg(sk, skb, th);
  4564. __kfree_skb(skb);
  4565. tcp_data_snd_check(sk);
  4566. return 0;
  4567. }
  4568. res = tcp_validate_incoming(sk, skb, th, 0);
  4569. if (res <= 0)
  4570. return -res;
  4571. /* step 5: check the ACK field */
  4572. if (th->ack) {
  4573. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
  4574. switch (sk->sk_state) {
  4575. case TCP_SYN_RECV:
  4576. if (acceptable) {
  4577. tp->copied_seq = tp->rcv_nxt;
  4578. smp_mb();
  4579. tcp_set_state(sk, TCP_ESTABLISHED);
  4580. sk->sk_state_change(sk);
  4581. /* Note, that this wakeup is only for marginal
  4582. * crossed SYN case. Passively open sockets
  4583. * are not waked up, because sk->sk_sleep ==
  4584. * NULL and sk->sk_socket == NULL.
  4585. */
  4586. if (sk->sk_socket)
  4587. sk_wake_async(sk,
  4588. SOCK_WAKE_IO, POLL_OUT);
  4589. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4590. tp->snd_wnd = ntohs(th->window) <<
  4591. tp->rx_opt.snd_wscale;
  4592. tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
  4593. TCP_SKB_CB(skb)->seq);
  4594. /* tcp_ack considers this ACK as duplicate
  4595. * and does not calculate rtt.
  4596. * Fix it at least with timestamps.
  4597. */
  4598. if (tp->rx_opt.saw_tstamp &&
  4599. tp->rx_opt.rcv_tsecr && !tp->srtt)
  4600. tcp_ack_saw_tstamp(sk, 0);
  4601. if (tp->rx_opt.tstamp_ok)
  4602. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4603. /* Make sure socket is routed, for
  4604. * correct metrics.
  4605. */
  4606. icsk->icsk_af_ops->rebuild_header(sk);
  4607. tcp_init_metrics(sk);
  4608. tcp_init_congestion_control(sk);
  4609. /* Prevent spurious tcp_cwnd_restart() on
  4610. * first data packet.
  4611. */
  4612. tp->lsndtime = tcp_time_stamp;
  4613. tcp_mtup_init(sk);
  4614. tcp_initialize_rcv_mss(sk);
  4615. tcp_init_buffer_space(sk);
  4616. tcp_fast_path_on(tp);
  4617. } else {
  4618. return 1;
  4619. }
  4620. break;
  4621. case TCP_FIN_WAIT1:
  4622. if (tp->snd_una == tp->write_seq) {
  4623. tcp_set_state(sk, TCP_FIN_WAIT2);
  4624. sk->sk_shutdown |= SEND_SHUTDOWN;
  4625. dst_confirm(sk->sk_dst_cache);
  4626. if (!sock_flag(sk, SOCK_DEAD))
  4627. /* Wake up lingering close() */
  4628. sk->sk_state_change(sk);
  4629. else {
  4630. int tmo;
  4631. if (tp->linger2 < 0 ||
  4632. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4633. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4634. tcp_done(sk);
  4635. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4636. return 1;
  4637. }
  4638. tmo = tcp_fin_time(sk);
  4639. if (tmo > TCP_TIMEWAIT_LEN) {
  4640. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4641. } else if (th->fin || sock_owned_by_user(sk)) {
  4642. /* Bad case. We could lose such FIN otherwise.
  4643. * It is not a big problem, but it looks confusing
  4644. * and not so rare event. We still can lose it now,
  4645. * if it spins in bh_lock_sock(), but it is really
  4646. * marginal case.
  4647. */
  4648. inet_csk_reset_keepalive_timer(sk, tmo);
  4649. } else {
  4650. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  4651. goto discard;
  4652. }
  4653. }
  4654. }
  4655. break;
  4656. case TCP_CLOSING:
  4657. if (tp->snd_una == tp->write_seq) {
  4658. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  4659. goto discard;
  4660. }
  4661. break;
  4662. case TCP_LAST_ACK:
  4663. if (tp->snd_una == tp->write_seq) {
  4664. tcp_update_metrics(sk);
  4665. tcp_done(sk);
  4666. goto discard;
  4667. }
  4668. break;
  4669. }
  4670. } else
  4671. goto discard;
  4672. /* step 6: check the URG bit */
  4673. tcp_urg(sk, skb, th);
  4674. /* step 7: process the segment text */
  4675. switch (sk->sk_state) {
  4676. case TCP_CLOSE_WAIT:
  4677. case TCP_CLOSING:
  4678. case TCP_LAST_ACK:
  4679. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  4680. break;
  4681. case TCP_FIN_WAIT1:
  4682. case TCP_FIN_WAIT2:
  4683. /* RFC 793 says to queue data in these states,
  4684. * RFC 1122 says we MUST send a reset.
  4685. * BSD 4.4 also does reset.
  4686. */
  4687. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  4688. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4689. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  4690. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4691. tcp_reset(sk);
  4692. return 1;
  4693. }
  4694. }
  4695. /* Fall through */
  4696. case TCP_ESTABLISHED:
  4697. tcp_data_queue(sk, skb);
  4698. queued = 1;
  4699. break;
  4700. }
  4701. /* tcp_data could move socket to TIME-WAIT */
  4702. if (sk->sk_state != TCP_CLOSE) {
  4703. tcp_data_snd_check(sk);
  4704. tcp_ack_snd_check(sk);
  4705. }
  4706. if (!queued) {
  4707. discard:
  4708. __kfree_skb(skb);
  4709. }
  4710. return 0;
  4711. }
  4712. EXPORT_SYMBOL(sysctl_tcp_ecn);
  4713. EXPORT_SYMBOL(sysctl_tcp_reordering);
  4714. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  4715. EXPORT_SYMBOL(tcp_parse_options);
  4716. #ifdef CONFIG_TCP_MD5SIG
  4717. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  4718. #endif
  4719. EXPORT_SYMBOL(tcp_rcv_established);
  4720. EXPORT_SYMBOL(tcp_rcv_state_process);
  4721. EXPORT_SYMBOL(tcp_initialize_rcv_mss);