i915_gem.c 105 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. #include <linux/dma-buf.h>
  38. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  40. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  41. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  42. unsigned alignment,
  43. bool map_and_fenceable);
  44. static int i915_gem_phys_pwrite(struct drm_device *dev,
  45. struct drm_i915_gem_object *obj,
  46. struct drm_i915_gem_pwrite *args,
  47. struct drm_file *file);
  48. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  49. struct drm_i915_gem_object *obj);
  50. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  51. struct drm_i915_fence_reg *fence,
  52. bool enable);
  53. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  54. struct shrink_control *sc);
  55. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  56. static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
  57. {
  58. if (obj->tiling_mode)
  59. i915_gem_release_mmap(obj);
  60. /* As we do not have an associated fence register, we will force
  61. * a tiling change if we ever need to acquire one.
  62. */
  63. obj->fence_dirty = false;
  64. obj->fence_reg = I915_FENCE_REG_NONE;
  65. }
  66. /* some bookkeeping */
  67. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  68. size_t size)
  69. {
  70. dev_priv->mm.object_count++;
  71. dev_priv->mm.object_memory += size;
  72. }
  73. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  74. size_t size)
  75. {
  76. dev_priv->mm.object_count--;
  77. dev_priv->mm.object_memory -= size;
  78. }
  79. static int
  80. i915_gem_wait_for_error(struct drm_device *dev)
  81. {
  82. struct drm_i915_private *dev_priv = dev->dev_private;
  83. struct completion *x = &dev_priv->error_completion;
  84. unsigned long flags;
  85. int ret;
  86. if (!atomic_read(&dev_priv->mm.wedged))
  87. return 0;
  88. /*
  89. * Only wait 10 seconds for the gpu reset to complete to avoid hanging
  90. * userspace. If it takes that long something really bad is going on and
  91. * we should simply try to bail out and fail as gracefully as possible.
  92. */
  93. ret = wait_for_completion_interruptible_timeout(x, 10*HZ);
  94. if (ret == 0) {
  95. DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
  96. return -EIO;
  97. } else if (ret < 0) {
  98. return ret;
  99. }
  100. if (atomic_read(&dev_priv->mm.wedged)) {
  101. /* GPU is hung, bump the completion count to account for
  102. * the token we just consumed so that we never hit zero and
  103. * end up waiting upon a subsequent completion event that
  104. * will never happen.
  105. */
  106. spin_lock_irqsave(&x->wait.lock, flags);
  107. x->done++;
  108. spin_unlock_irqrestore(&x->wait.lock, flags);
  109. }
  110. return 0;
  111. }
  112. int i915_mutex_lock_interruptible(struct drm_device *dev)
  113. {
  114. int ret;
  115. ret = i915_gem_wait_for_error(dev);
  116. if (ret)
  117. return ret;
  118. ret = mutex_lock_interruptible(&dev->struct_mutex);
  119. if (ret)
  120. return ret;
  121. WARN_ON(i915_verify_lists(dev));
  122. return 0;
  123. }
  124. static inline bool
  125. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  126. {
  127. return !obj->active;
  128. }
  129. int
  130. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  131. struct drm_file *file)
  132. {
  133. struct drm_i915_gem_init *args = data;
  134. if (drm_core_check_feature(dev, DRIVER_MODESET))
  135. return -ENODEV;
  136. if (args->gtt_start >= args->gtt_end ||
  137. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  138. return -EINVAL;
  139. /* GEM with user mode setting was never supported on ilk and later. */
  140. if (INTEL_INFO(dev)->gen >= 5)
  141. return -ENODEV;
  142. mutex_lock(&dev->struct_mutex);
  143. i915_gem_init_global_gtt(dev, args->gtt_start,
  144. args->gtt_end, args->gtt_end);
  145. mutex_unlock(&dev->struct_mutex);
  146. return 0;
  147. }
  148. int
  149. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  150. struct drm_file *file)
  151. {
  152. struct drm_i915_private *dev_priv = dev->dev_private;
  153. struct drm_i915_gem_get_aperture *args = data;
  154. struct drm_i915_gem_object *obj;
  155. size_t pinned;
  156. pinned = 0;
  157. mutex_lock(&dev->struct_mutex);
  158. list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list)
  159. if (obj->pin_count)
  160. pinned += obj->gtt_space->size;
  161. mutex_unlock(&dev->struct_mutex);
  162. args->aper_size = dev_priv->mm.gtt_total;
  163. args->aper_available_size = args->aper_size - pinned;
  164. return 0;
  165. }
  166. static int
  167. i915_gem_create(struct drm_file *file,
  168. struct drm_device *dev,
  169. uint64_t size,
  170. uint32_t *handle_p)
  171. {
  172. struct drm_i915_gem_object *obj;
  173. int ret;
  174. u32 handle;
  175. size = roundup(size, PAGE_SIZE);
  176. if (size == 0)
  177. return -EINVAL;
  178. /* Allocate the new object */
  179. obj = i915_gem_alloc_object(dev, size);
  180. if (obj == NULL)
  181. return -ENOMEM;
  182. ret = drm_gem_handle_create(file, &obj->base, &handle);
  183. if (ret) {
  184. drm_gem_object_release(&obj->base);
  185. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  186. kfree(obj);
  187. return ret;
  188. }
  189. /* drop reference from allocate - handle holds it now */
  190. drm_gem_object_unreference(&obj->base);
  191. trace_i915_gem_object_create(obj);
  192. *handle_p = handle;
  193. return 0;
  194. }
  195. int
  196. i915_gem_dumb_create(struct drm_file *file,
  197. struct drm_device *dev,
  198. struct drm_mode_create_dumb *args)
  199. {
  200. /* have to work out size/pitch and return them */
  201. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  202. args->size = args->pitch * args->height;
  203. return i915_gem_create(file, dev,
  204. args->size, &args->handle);
  205. }
  206. int i915_gem_dumb_destroy(struct drm_file *file,
  207. struct drm_device *dev,
  208. uint32_t handle)
  209. {
  210. return drm_gem_handle_delete(file, handle);
  211. }
  212. /**
  213. * Creates a new mm object and returns a handle to it.
  214. */
  215. int
  216. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  217. struct drm_file *file)
  218. {
  219. struct drm_i915_gem_create *args = data;
  220. return i915_gem_create(file, dev,
  221. args->size, &args->handle);
  222. }
  223. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  224. {
  225. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  226. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  227. obj->tiling_mode != I915_TILING_NONE;
  228. }
  229. static inline int
  230. __copy_to_user_swizzled(char __user *cpu_vaddr,
  231. const char *gpu_vaddr, int gpu_offset,
  232. int length)
  233. {
  234. int ret, cpu_offset = 0;
  235. while (length > 0) {
  236. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  237. int this_length = min(cacheline_end - gpu_offset, length);
  238. int swizzled_gpu_offset = gpu_offset ^ 64;
  239. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  240. gpu_vaddr + swizzled_gpu_offset,
  241. this_length);
  242. if (ret)
  243. return ret + length;
  244. cpu_offset += this_length;
  245. gpu_offset += this_length;
  246. length -= this_length;
  247. }
  248. return 0;
  249. }
  250. static inline int
  251. __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
  252. const char __user *cpu_vaddr,
  253. int length)
  254. {
  255. int ret, cpu_offset = 0;
  256. while (length > 0) {
  257. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  258. int this_length = min(cacheline_end - gpu_offset, length);
  259. int swizzled_gpu_offset = gpu_offset ^ 64;
  260. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  261. cpu_vaddr + cpu_offset,
  262. this_length);
  263. if (ret)
  264. return ret + length;
  265. cpu_offset += this_length;
  266. gpu_offset += this_length;
  267. length -= this_length;
  268. }
  269. return 0;
  270. }
  271. /* Per-page copy function for the shmem pread fastpath.
  272. * Flushes invalid cachelines before reading the target if
  273. * needs_clflush is set. */
  274. static int
  275. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  276. char __user *user_data,
  277. bool page_do_bit17_swizzling, bool needs_clflush)
  278. {
  279. char *vaddr;
  280. int ret;
  281. if (unlikely(page_do_bit17_swizzling))
  282. return -EINVAL;
  283. vaddr = kmap_atomic(page);
  284. if (needs_clflush)
  285. drm_clflush_virt_range(vaddr + shmem_page_offset,
  286. page_length);
  287. ret = __copy_to_user_inatomic(user_data,
  288. vaddr + shmem_page_offset,
  289. page_length);
  290. kunmap_atomic(vaddr);
  291. return ret;
  292. }
  293. static void
  294. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  295. bool swizzled)
  296. {
  297. if (unlikely(swizzled)) {
  298. unsigned long start = (unsigned long) addr;
  299. unsigned long end = (unsigned long) addr + length;
  300. /* For swizzling simply ensure that we always flush both
  301. * channels. Lame, but simple and it works. Swizzled
  302. * pwrite/pread is far from a hotpath - current userspace
  303. * doesn't use it at all. */
  304. start = round_down(start, 128);
  305. end = round_up(end, 128);
  306. drm_clflush_virt_range((void *)start, end - start);
  307. } else {
  308. drm_clflush_virt_range(addr, length);
  309. }
  310. }
  311. /* Only difference to the fast-path function is that this can handle bit17
  312. * and uses non-atomic copy and kmap functions. */
  313. static int
  314. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  315. char __user *user_data,
  316. bool page_do_bit17_swizzling, bool needs_clflush)
  317. {
  318. char *vaddr;
  319. int ret;
  320. vaddr = kmap(page);
  321. if (needs_clflush)
  322. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  323. page_length,
  324. page_do_bit17_swizzling);
  325. if (page_do_bit17_swizzling)
  326. ret = __copy_to_user_swizzled(user_data,
  327. vaddr, shmem_page_offset,
  328. page_length);
  329. else
  330. ret = __copy_to_user(user_data,
  331. vaddr + shmem_page_offset,
  332. page_length);
  333. kunmap(page);
  334. return ret;
  335. }
  336. static int
  337. i915_gem_shmem_pread(struct drm_device *dev,
  338. struct drm_i915_gem_object *obj,
  339. struct drm_i915_gem_pread *args,
  340. struct drm_file *file)
  341. {
  342. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  343. char __user *user_data;
  344. ssize_t remain;
  345. loff_t offset;
  346. int shmem_page_offset, page_length, ret = 0;
  347. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  348. int hit_slowpath = 0;
  349. int prefaulted = 0;
  350. int needs_clflush = 0;
  351. int release_page;
  352. user_data = (char __user *) (uintptr_t) args->data_ptr;
  353. remain = args->size;
  354. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  355. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  356. /* If we're not in the cpu read domain, set ourself into the gtt
  357. * read domain and manually flush cachelines (if required). This
  358. * optimizes for the case when the gpu will dirty the data
  359. * anyway again before the next pread happens. */
  360. if (obj->cache_level == I915_CACHE_NONE)
  361. needs_clflush = 1;
  362. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  363. if (ret)
  364. return ret;
  365. }
  366. offset = args->offset;
  367. while (remain > 0) {
  368. struct page *page;
  369. /* Operation in this page
  370. *
  371. * shmem_page_offset = offset within page in shmem file
  372. * page_length = bytes to copy for this page
  373. */
  374. shmem_page_offset = offset_in_page(offset);
  375. page_length = remain;
  376. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  377. page_length = PAGE_SIZE - shmem_page_offset;
  378. if (obj->pages) {
  379. page = obj->pages[offset >> PAGE_SHIFT];
  380. release_page = 0;
  381. } else {
  382. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  383. if (IS_ERR(page)) {
  384. ret = PTR_ERR(page);
  385. goto out;
  386. }
  387. release_page = 1;
  388. }
  389. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  390. (page_to_phys(page) & (1 << 17)) != 0;
  391. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  392. user_data, page_do_bit17_swizzling,
  393. needs_clflush);
  394. if (ret == 0)
  395. goto next_page;
  396. hit_slowpath = 1;
  397. page_cache_get(page);
  398. mutex_unlock(&dev->struct_mutex);
  399. if (!prefaulted) {
  400. ret = fault_in_multipages_writeable(user_data, remain);
  401. /* Userspace is tricking us, but we've already clobbered
  402. * its pages with the prefault and promised to write the
  403. * data up to the first fault. Hence ignore any errors
  404. * and just continue. */
  405. (void)ret;
  406. prefaulted = 1;
  407. }
  408. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  409. user_data, page_do_bit17_swizzling,
  410. needs_clflush);
  411. mutex_lock(&dev->struct_mutex);
  412. page_cache_release(page);
  413. next_page:
  414. mark_page_accessed(page);
  415. if (release_page)
  416. page_cache_release(page);
  417. if (ret) {
  418. ret = -EFAULT;
  419. goto out;
  420. }
  421. remain -= page_length;
  422. user_data += page_length;
  423. offset += page_length;
  424. }
  425. out:
  426. if (hit_slowpath) {
  427. /* Fixup: Kill any reinstated backing storage pages */
  428. if (obj->madv == __I915_MADV_PURGED)
  429. i915_gem_object_truncate(obj);
  430. }
  431. return ret;
  432. }
  433. /**
  434. * Reads data from the object referenced by handle.
  435. *
  436. * On error, the contents of *data are undefined.
  437. */
  438. int
  439. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  440. struct drm_file *file)
  441. {
  442. struct drm_i915_gem_pread *args = data;
  443. struct drm_i915_gem_object *obj;
  444. int ret = 0;
  445. if (args->size == 0)
  446. return 0;
  447. if (!access_ok(VERIFY_WRITE,
  448. (char __user *)(uintptr_t)args->data_ptr,
  449. args->size))
  450. return -EFAULT;
  451. ret = i915_mutex_lock_interruptible(dev);
  452. if (ret)
  453. return ret;
  454. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  455. if (&obj->base == NULL) {
  456. ret = -ENOENT;
  457. goto unlock;
  458. }
  459. /* Bounds check source. */
  460. if (args->offset > obj->base.size ||
  461. args->size > obj->base.size - args->offset) {
  462. ret = -EINVAL;
  463. goto out;
  464. }
  465. /* prime objects have no backing filp to GEM pread/pwrite
  466. * pages from.
  467. */
  468. if (!obj->base.filp) {
  469. ret = -EINVAL;
  470. goto out;
  471. }
  472. trace_i915_gem_object_pread(obj, args->offset, args->size);
  473. ret = i915_gem_shmem_pread(dev, obj, args, file);
  474. out:
  475. drm_gem_object_unreference(&obj->base);
  476. unlock:
  477. mutex_unlock(&dev->struct_mutex);
  478. return ret;
  479. }
  480. /* This is the fast write path which cannot handle
  481. * page faults in the source data
  482. */
  483. static inline int
  484. fast_user_write(struct io_mapping *mapping,
  485. loff_t page_base, int page_offset,
  486. char __user *user_data,
  487. int length)
  488. {
  489. void __iomem *vaddr_atomic;
  490. void *vaddr;
  491. unsigned long unwritten;
  492. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  493. /* We can use the cpu mem copy function because this is X86. */
  494. vaddr = (void __force*)vaddr_atomic + page_offset;
  495. unwritten = __copy_from_user_inatomic_nocache(vaddr,
  496. user_data, length);
  497. io_mapping_unmap_atomic(vaddr_atomic);
  498. return unwritten;
  499. }
  500. /**
  501. * This is the fast pwrite path, where we copy the data directly from the
  502. * user into the GTT, uncached.
  503. */
  504. static int
  505. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  506. struct drm_i915_gem_object *obj,
  507. struct drm_i915_gem_pwrite *args,
  508. struct drm_file *file)
  509. {
  510. drm_i915_private_t *dev_priv = dev->dev_private;
  511. ssize_t remain;
  512. loff_t offset, page_base;
  513. char __user *user_data;
  514. int page_offset, page_length, ret;
  515. ret = i915_gem_object_pin(obj, 0, true);
  516. if (ret)
  517. goto out;
  518. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  519. if (ret)
  520. goto out_unpin;
  521. ret = i915_gem_object_put_fence(obj);
  522. if (ret)
  523. goto out_unpin;
  524. user_data = (char __user *) (uintptr_t) args->data_ptr;
  525. remain = args->size;
  526. offset = obj->gtt_offset + args->offset;
  527. while (remain > 0) {
  528. /* Operation in this page
  529. *
  530. * page_base = page offset within aperture
  531. * page_offset = offset within page
  532. * page_length = bytes to copy for this page
  533. */
  534. page_base = offset & PAGE_MASK;
  535. page_offset = offset_in_page(offset);
  536. page_length = remain;
  537. if ((page_offset + remain) > PAGE_SIZE)
  538. page_length = PAGE_SIZE - page_offset;
  539. /* If we get a fault while copying data, then (presumably) our
  540. * source page isn't available. Return the error and we'll
  541. * retry in the slow path.
  542. */
  543. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  544. page_offset, user_data, page_length)) {
  545. ret = -EFAULT;
  546. goto out_unpin;
  547. }
  548. remain -= page_length;
  549. user_data += page_length;
  550. offset += page_length;
  551. }
  552. out_unpin:
  553. i915_gem_object_unpin(obj);
  554. out:
  555. return ret;
  556. }
  557. /* Per-page copy function for the shmem pwrite fastpath.
  558. * Flushes invalid cachelines before writing to the target if
  559. * needs_clflush_before is set and flushes out any written cachelines after
  560. * writing if needs_clflush is set. */
  561. static int
  562. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  563. char __user *user_data,
  564. bool page_do_bit17_swizzling,
  565. bool needs_clflush_before,
  566. bool needs_clflush_after)
  567. {
  568. char *vaddr;
  569. int ret;
  570. if (unlikely(page_do_bit17_swizzling))
  571. return -EINVAL;
  572. vaddr = kmap_atomic(page);
  573. if (needs_clflush_before)
  574. drm_clflush_virt_range(vaddr + shmem_page_offset,
  575. page_length);
  576. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  577. user_data,
  578. page_length);
  579. if (needs_clflush_after)
  580. drm_clflush_virt_range(vaddr + shmem_page_offset,
  581. page_length);
  582. kunmap_atomic(vaddr);
  583. return ret;
  584. }
  585. /* Only difference to the fast-path function is that this can handle bit17
  586. * and uses non-atomic copy and kmap functions. */
  587. static int
  588. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  589. char __user *user_data,
  590. bool page_do_bit17_swizzling,
  591. bool needs_clflush_before,
  592. bool needs_clflush_after)
  593. {
  594. char *vaddr;
  595. int ret;
  596. vaddr = kmap(page);
  597. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  598. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  599. page_length,
  600. page_do_bit17_swizzling);
  601. if (page_do_bit17_swizzling)
  602. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  603. user_data,
  604. page_length);
  605. else
  606. ret = __copy_from_user(vaddr + shmem_page_offset,
  607. user_data,
  608. page_length);
  609. if (needs_clflush_after)
  610. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  611. page_length,
  612. page_do_bit17_swizzling);
  613. kunmap(page);
  614. return ret;
  615. }
  616. static int
  617. i915_gem_shmem_pwrite(struct drm_device *dev,
  618. struct drm_i915_gem_object *obj,
  619. struct drm_i915_gem_pwrite *args,
  620. struct drm_file *file)
  621. {
  622. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  623. ssize_t remain;
  624. loff_t offset;
  625. char __user *user_data;
  626. int shmem_page_offset, page_length, ret = 0;
  627. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  628. int hit_slowpath = 0;
  629. int needs_clflush_after = 0;
  630. int needs_clflush_before = 0;
  631. int release_page;
  632. user_data = (char __user *) (uintptr_t) args->data_ptr;
  633. remain = args->size;
  634. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  635. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  636. /* If we're not in the cpu write domain, set ourself into the gtt
  637. * write domain and manually flush cachelines (if required). This
  638. * optimizes for the case when the gpu will use the data
  639. * right away and we therefore have to clflush anyway. */
  640. if (obj->cache_level == I915_CACHE_NONE)
  641. needs_clflush_after = 1;
  642. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  643. if (ret)
  644. return ret;
  645. }
  646. /* Same trick applies for invalidate partially written cachelines before
  647. * writing. */
  648. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  649. && obj->cache_level == I915_CACHE_NONE)
  650. needs_clflush_before = 1;
  651. offset = args->offset;
  652. obj->dirty = 1;
  653. while (remain > 0) {
  654. struct page *page;
  655. int partial_cacheline_write;
  656. /* Operation in this page
  657. *
  658. * shmem_page_offset = offset within page in shmem file
  659. * page_length = bytes to copy for this page
  660. */
  661. shmem_page_offset = offset_in_page(offset);
  662. page_length = remain;
  663. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  664. page_length = PAGE_SIZE - shmem_page_offset;
  665. /* If we don't overwrite a cacheline completely we need to be
  666. * careful to have up-to-date data by first clflushing. Don't
  667. * overcomplicate things and flush the entire patch. */
  668. partial_cacheline_write = needs_clflush_before &&
  669. ((shmem_page_offset | page_length)
  670. & (boot_cpu_data.x86_clflush_size - 1));
  671. if (obj->pages) {
  672. page = obj->pages[offset >> PAGE_SHIFT];
  673. release_page = 0;
  674. } else {
  675. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  676. if (IS_ERR(page)) {
  677. ret = PTR_ERR(page);
  678. goto out;
  679. }
  680. release_page = 1;
  681. }
  682. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  683. (page_to_phys(page) & (1 << 17)) != 0;
  684. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  685. user_data, page_do_bit17_swizzling,
  686. partial_cacheline_write,
  687. needs_clflush_after);
  688. if (ret == 0)
  689. goto next_page;
  690. hit_slowpath = 1;
  691. page_cache_get(page);
  692. mutex_unlock(&dev->struct_mutex);
  693. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  694. user_data, page_do_bit17_swizzling,
  695. partial_cacheline_write,
  696. needs_clflush_after);
  697. mutex_lock(&dev->struct_mutex);
  698. page_cache_release(page);
  699. next_page:
  700. set_page_dirty(page);
  701. mark_page_accessed(page);
  702. if (release_page)
  703. page_cache_release(page);
  704. if (ret) {
  705. ret = -EFAULT;
  706. goto out;
  707. }
  708. remain -= page_length;
  709. user_data += page_length;
  710. offset += page_length;
  711. }
  712. out:
  713. if (hit_slowpath) {
  714. /* Fixup: Kill any reinstated backing storage pages */
  715. if (obj->madv == __I915_MADV_PURGED)
  716. i915_gem_object_truncate(obj);
  717. /* and flush dirty cachelines in case the object isn't in the cpu write
  718. * domain anymore. */
  719. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  720. i915_gem_clflush_object(obj);
  721. intel_gtt_chipset_flush();
  722. }
  723. }
  724. if (needs_clflush_after)
  725. intel_gtt_chipset_flush();
  726. return ret;
  727. }
  728. /**
  729. * Writes data to the object referenced by handle.
  730. *
  731. * On error, the contents of the buffer that were to be modified are undefined.
  732. */
  733. int
  734. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  735. struct drm_file *file)
  736. {
  737. struct drm_i915_gem_pwrite *args = data;
  738. struct drm_i915_gem_object *obj;
  739. int ret;
  740. if (args->size == 0)
  741. return 0;
  742. if (!access_ok(VERIFY_READ,
  743. (char __user *)(uintptr_t)args->data_ptr,
  744. args->size))
  745. return -EFAULT;
  746. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  747. args->size);
  748. if (ret)
  749. return -EFAULT;
  750. ret = i915_mutex_lock_interruptible(dev);
  751. if (ret)
  752. return ret;
  753. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  754. if (&obj->base == NULL) {
  755. ret = -ENOENT;
  756. goto unlock;
  757. }
  758. /* Bounds check destination. */
  759. if (args->offset > obj->base.size ||
  760. args->size > obj->base.size - args->offset) {
  761. ret = -EINVAL;
  762. goto out;
  763. }
  764. /* prime objects have no backing filp to GEM pread/pwrite
  765. * pages from.
  766. */
  767. if (!obj->base.filp) {
  768. ret = -EINVAL;
  769. goto out;
  770. }
  771. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  772. ret = -EFAULT;
  773. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  774. * it would end up going through the fenced access, and we'll get
  775. * different detiling behavior between reading and writing.
  776. * pread/pwrite currently are reading and writing from the CPU
  777. * perspective, requiring manual detiling by the client.
  778. */
  779. if (obj->phys_obj) {
  780. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  781. goto out;
  782. }
  783. if (obj->gtt_space &&
  784. obj->cache_level == I915_CACHE_NONE &&
  785. obj->tiling_mode == I915_TILING_NONE &&
  786. obj->map_and_fenceable &&
  787. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  788. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  789. /* Note that the gtt paths might fail with non-page-backed user
  790. * pointers (e.g. gtt mappings when moving data between
  791. * textures). Fallback to the shmem path in that case. */
  792. }
  793. if (ret == -EFAULT)
  794. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  795. out:
  796. drm_gem_object_unreference(&obj->base);
  797. unlock:
  798. mutex_unlock(&dev->struct_mutex);
  799. return ret;
  800. }
  801. /**
  802. * Called when user space prepares to use an object with the CPU, either
  803. * through the mmap ioctl's mapping or a GTT mapping.
  804. */
  805. int
  806. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  807. struct drm_file *file)
  808. {
  809. struct drm_i915_gem_set_domain *args = data;
  810. struct drm_i915_gem_object *obj;
  811. uint32_t read_domains = args->read_domains;
  812. uint32_t write_domain = args->write_domain;
  813. int ret;
  814. /* Only handle setting domains to types used by the CPU. */
  815. if (write_domain & I915_GEM_GPU_DOMAINS)
  816. return -EINVAL;
  817. if (read_domains & I915_GEM_GPU_DOMAINS)
  818. return -EINVAL;
  819. /* Having something in the write domain implies it's in the read
  820. * domain, and only that read domain. Enforce that in the request.
  821. */
  822. if (write_domain != 0 && read_domains != write_domain)
  823. return -EINVAL;
  824. ret = i915_mutex_lock_interruptible(dev);
  825. if (ret)
  826. return ret;
  827. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  828. if (&obj->base == NULL) {
  829. ret = -ENOENT;
  830. goto unlock;
  831. }
  832. if (read_domains & I915_GEM_DOMAIN_GTT) {
  833. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  834. /* Silently promote "you're not bound, there was nothing to do"
  835. * to success, since the client was just asking us to
  836. * make sure everything was done.
  837. */
  838. if (ret == -EINVAL)
  839. ret = 0;
  840. } else {
  841. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  842. }
  843. drm_gem_object_unreference(&obj->base);
  844. unlock:
  845. mutex_unlock(&dev->struct_mutex);
  846. return ret;
  847. }
  848. /**
  849. * Called when user space has done writes to this buffer
  850. */
  851. int
  852. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  853. struct drm_file *file)
  854. {
  855. struct drm_i915_gem_sw_finish *args = data;
  856. struct drm_i915_gem_object *obj;
  857. int ret = 0;
  858. ret = i915_mutex_lock_interruptible(dev);
  859. if (ret)
  860. return ret;
  861. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  862. if (&obj->base == NULL) {
  863. ret = -ENOENT;
  864. goto unlock;
  865. }
  866. /* Pinned buffers may be scanout, so flush the cache */
  867. if (obj->pin_count)
  868. i915_gem_object_flush_cpu_write_domain(obj);
  869. drm_gem_object_unreference(&obj->base);
  870. unlock:
  871. mutex_unlock(&dev->struct_mutex);
  872. return ret;
  873. }
  874. /**
  875. * Maps the contents of an object, returning the address it is mapped
  876. * into.
  877. *
  878. * While the mapping holds a reference on the contents of the object, it doesn't
  879. * imply a ref on the object itself.
  880. */
  881. int
  882. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  883. struct drm_file *file)
  884. {
  885. struct drm_i915_gem_mmap *args = data;
  886. struct drm_gem_object *obj;
  887. unsigned long addr;
  888. obj = drm_gem_object_lookup(dev, file, args->handle);
  889. if (obj == NULL)
  890. return -ENOENT;
  891. /* prime objects have no backing filp to GEM mmap
  892. * pages from.
  893. */
  894. if (!obj->filp) {
  895. drm_gem_object_unreference_unlocked(obj);
  896. return -EINVAL;
  897. }
  898. addr = vm_mmap(obj->filp, 0, args->size,
  899. PROT_READ | PROT_WRITE, MAP_SHARED,
  900. args->offset);
  901. drm_gem_object_unreference_unlocked(obj);
  902. if (IS_ERR((void *)addr))
  903. return addr;
  904. args->addr_ptr = (uint64_t) addr;
  905. return 0;
  906. }
  907. /**
  908. * i915_gem_fault - fault a page into the GTT
  909. * vma: VMA in question
  910. * vmf: fault info
  911. *
  912. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  913. * from userspace. The fault handler takes care of binding the object to
  914. * the GTT (if needed), allocating and programming a fence register (again,
  915. * only if needed based on whether the old reg is still valid or the object
  916. * is tiled) and inserting a new PTE into the faulting process.
  917. *
  918. * Note that the faulting process may involve evicting existing objects
  919. * from the GTT and/or fence registers to make room. So performance may
  920. * suffer if the GTT working set is large or there are few fence registers
  921. * left.
  922. */
  923. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  924. {
  925. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  926. struct drm_device *dev = obj->base.dev;
  927. drm_i915_private_t *dev_priv = dev->dev_private;
  928. pgoff_t page_offset;
  929. unsigned long pfn;
  930. int ret = 0;
  931. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  932. /* We don't use vmf->pgoff since that has the fake offset */
  933. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  934. PAGE_SHIFT;
  935. ret = i915_mutex_lock_interruptible(dev);
  936. if (ret)
  937. goto out;
  938. trace_i915_gem_object_fault(obj, page_offset, true, write);
  939. /* Now bind it into the GTT if needed */
  940. if (!obj->map_and_fenceable) {
  941. ret = i915_gem_object_unbind(obj);
  942. if (ret)
  943. goto unlock;
  944. }
  945. if (!obj->gtt_space) {
  946. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  947. if (ret)
  948. goto unlock;
  949. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  950. if (ret)
  951. goto unlock;
  952. }
  953. if (!obj->has_global_gtt_mapping)
  954. i915_gem_gtt_bind_object(obj, obj->cache_level);
  955. ret = i915_gem_object_get_fence(obj);
  956. if (ret)
  957. goto unlock;
  958. if (i915_gem_object_is_inactive(obj))
  959. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  960. obj->fault_mappable = true;
  961. pfn = ((dev_priv->mm.gtt_base_addr + obj->gtt_offset) >> PAGE_SHIFT) +
  962. page_offset;
  963. /* Finally, remap it using the new GTT offset */
  964. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  965. unlock:
  966. mutex_unlock(&dev->struct_mutex);
  967. out:
  968. switch (ret) {
  969. case -EIO:
  970. case -EAGAIN:
  971. /* Give the error handler a chance to run and move the
  972. * objects off the GPU active list. Next time we service the
  973. * fault, we should be able to transition the page into the
  974. * GTT without touching the GPU (and so avoid further
  975. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  976. * with coherency, just lost writes.
  977. */
  978. set_need_resched();
  979. case 0:
  980. case -ERESTARTSYS:
  981. case -EINTR:
  982. return VM_FAULT_NOPAGE;
  983. case -ENOMEM:
  984. return VM_FAULT_OOM;
  985. default:
  986. return VM_FAULT_SIGBUS;
  987. }
  988. }
  989. /**
  990. * i915_gem_release_mmap - remove physical page mappings
  991. * @obj: obj in question
  992. *
  993. * Preserve the reservation of the mmapping with the DRM core code, but
  994. * relinquish ownership of the pages back to the system.
  995. *
  996. * It is vital that we remove the page mapping if we have mapped a tiled
  997. * object through the GTT and then lose the fence register due to
  998. * resource pressure. Similarly if the object has been moved out of the
  999. * aperture, than pages mapped into userspace must be revoked. Removing the
  1000. * mapping will then trigger a page fault on the next user access, allowing
  1001. * fixup by i915_gem_fault().
  1002. */
  1003. void
  1004. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  1005. {
  1006. if (!obj->fault_mappable)
  1007. return;
  1008. if (obj->base.dev->dev_mapping)
  1009. unmap_mapping_range(obj->base.dev->dev_mapping,
  1010. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  1011. obj->base.size, 1);
  1012. obj->fault_mappable = false;
  1013. }
  1014. static uint32_t
  1015. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  1016. {
  1017. uint32_t gtt_size;
  1018. if (INTEL_INFO(dev)->gen >= 4 ||
  1019. tiling_mode == I915_TILING_NONE)
  1020. return size;
  1021. /* Previous chips need a power-of-two fence region when tiling */
  1022. if (INTEL_INFO(dev)->gen == 3)
  1023. gtt_size = 1024*1024;
  1024. else
  1025. gtt_size = 512*1024;
  1026. while (gtt_size < size)
  1027. gtt_size <<= 1;
  1028. return gtt_size;
  1029. }
  1030. /**
  1031. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1032. * @obj: object to check
  1033. *
  1034. * Return the required GTT alignment for an object, taking into account
  1035. * potential fence register mapping.
  1036. */
  1037. static uint32_t
  1038. i915_gem_get_gtt_alignment(struct drm_device *dev,
  1039. uint32_t size,
  1040. int tiling_mode)
  1041. {
  1042. /*
  1043. * Minimum alignment is 4k (GTT page size), but might be greater
  1044. * if a fence register is needed for the object.
  1045. */
  1046. if (INTEL_INFO(dev)->gen >= 4 ||
  1047. tiling_mode == I915_TILING_NONE)
  1048. return 4096;
  1049. /*
  1050. * Previous chips need to be aligned to the size of the smallest
  1051. * fence register that can contain the object.
  1052. */
  1053. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1054. }
  1055. /**
  1056. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1057. * unfenced object
  1058. * @dev: the device
  1059. * @size: size of the object
  1060. * @tiling_mode: tiling mode of the object
  1061. *
  1062. * Return the required GTT alignment for an object, only taking into account
  1063. * unfenced tiled surface requirements.
  1064. */
  1065. uint32_t
  1066. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1067. uint32_t size,
  1068. int tiling_mode)
  1069. {
  1070. /*
  1071. * Minimum alignment is 4k (GTT page size) for sane hw.
  1072. */
  1073. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1074. tiling_mode == I915_TILING_NONE)
  1075. return 4096;
  1076. /* Previous hardware however needs to be aligned to a power-of-two
  1077. * tile height. The simplest method for determining this is to reuse
  1078. * the power-of-tile object size.
  1079. */
  1080. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1081. }
  1082. int
  1083. i915_gem_mmap_gtt(struct drm_file *file,
  1084. struct drm_device *dev,
  1085. uint32_t handle,
  1086. uint64_t *offset)
  1087. {
  1088. struct drm_i915_private *dev_priv = dev->dev_private;
  1089. struct drm_i915_gem_object *obj;
  1090. int ret;
  1091. ret = i915_mutex_lock_interruptible(dev);
  1092. if (ret)
  1093. return ret;
  1094. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1095. if (&obj->base == NULL) {
  1096. ret = -ENOENT;
  1097. goto unlock;
  1098. }
  1099. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1100. ret = -E2BIG;
  1101. goto out;
  1102. }
  1103. if (obj->madv != I915_MADV_WILLNEED) {
  1104. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1105. ret = -EINVAL;
  1106. goto out;
  1107. }
  1108. if (!obj->base.map_list.map) {
  1109. ret = drm_gem_create_mmap_offset(&obj->base);
  1110. if (ret)
  1111. goto out;
  1112. }
  1113. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1114. out:
  1115. drm_gem_object_unreference(&obj->base);
  1116. unlock:
  1117. mutex_unlock(&dev->struct_mutex);
  1118. return ret;
  1119. }
  1120. /**
  1121. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1122. * @dev: DRM device
  1123. * @data: GTT mapping ioctl data
  1124. * @file: GEM object info
  1125. *
  1126. * Simply returns the fake offset to userspace so it can mmap it.
  1127. * The mmap call will end up in drm_gem_mmap(), which will set things
  1128. * up so we can get faults in the handler above.
  1129. *
  1130. * The fault handler will take care of binding the object into the GTT
  1131. * (since it may have been evicted to make room for something), allocating
  1132. * a fence register, and mapping the appropriate aperture address into
  1133. * userspace.
  1134. */
  1135. int
  1136. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1137. struct drm_file *file)
  1138. {
  1139. struct drm_i915_gem_mmap_gtt *args = data;
  1140. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1141. }
  1142. int
  1143. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1144. gfp_t gfpmask)
  1145. {
  1146. int page_count, i;
  1147. struct address_space *mapping;
  1148. struct inode *inode;
  1149. struct page *page;
  1150. if (obj->pages || obj->sg_table)
  1151. return 0;
  1152. /* Get the list of pages out of our struct file. They'll be pinned
  1153. * at this point until we release them.
  1154. */
  1155. page_count = obj->base.size / PAGE_SIZE;
  1156. BUG_ON(obj->pages != NULL);
  1157. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1158. if (obj->pages == NULL)
  1159. return -ENOMEM;
  1160. inode = obj->base.filp->f_path.dentry->d_inode;
  1161. mapping = inode->i_mapping;
  1162. gfpmask |= mapping_gfp_mask(mapping);
  1163. for (i = 0; i < page_count; i++) {
  1164. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1165. if (IS_ERR(page))
  1166. goto err_pages;
  1167. obj->pages[i] = page;
  1168. }
  1169. if (i915_gem_object_needs_bit17_swizzle(obj))
  1170. i915_gem_object_do_bit_17_swizzle(obj);
  1171. return 0;
  1172. err_pages:
  1173. while (i--)
  1174. page_cache_release(obj->pages[i]);
  1175. drm_free_large(obj->pages);
  1176. obj->pages = NULL;
  1177. return PTR_ERR(page);
  1178. }
  1179. static void
  1180. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1181. {
  1182. int page_count = obj->base.size / PAGE_SIZE;
  1183. int i;
  1184. if (!obj->pages)
  1185. return;
  1186. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1187. if (i915_gem_object_needs_bit17_swizzle(obj))
  1188. i915_gem_object_save_bit_17_swizzle(obj);
  1189. if (obj->madv == I915_MADV_DONTNEED)
  1190. obj->dirty = 0;
  1191. for (i = 0; i < page_count; i++) {
  1192. if (obj->dirty)
  1193. set_page_dirty(obj->pages[i]);
  1194. if (obj->madv == I915_MADV_WILLNEED)
  1195. mark_page_accessed(obj->pages[i]);
  1196. page_cache_release(obj->pages[i]);
  1197. }
  1198. obj->dirty = 0;
  1199. drm_free_large(obj->pages);
  1200. obj->pages = NULL;
  1201. }
  1202. void
  1203. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1204. struct intel_ring_buffer *ring,
  1205. u32 seqno)
  1206. {
  1207. struct drm_device *dev = obj->base.dev;
  1208. struct drm_i915_private *dev_priv = dev->dev_private;
  1209. BUG_ON(ring == NULL);
  1210. obj->ring = ring;
  1211. /* Add a reference if we're newly entering the active list. */
  1212. if (!obj->active) {
  1213. drm_gem_object_reference(&obj->base);
  1214. obj->active = 1;
  1215. }
  1216. /* Move from whatever list we were on to the tail of execution. */
  1217. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1218. list_move_tail(&obj->ring_list, &ring->active_list);
  1219. obj->last_rendering_seqno = seqno;
  1220. if (obj->fenced_gpu_access) {
  1221. obj->last_fenced_seqno = seqno;
  1222. /* Bump MRU to take account of the delayed flush */
  1223. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1224. struct drm_i915_fence_reg *reg;
  1225. reg = &dev_priv->fence_regs[obj->fence_reg];
  1226. list_move_tail(&reg->lru_list,
  1227. &dev_priv->mm.fence_list);
  1228. }
  1229. }
  1230. }
  1231. static void
  1232. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1233. {
  1234. list_del_init(&obj->ring_list);
  1235. obj->last_rendering_seqno = 0;
  1236. obj->last_fenced_seqno = 0;
  1237. }
  1238. static void
  1239. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1240. {
  1241. struct drm_device *dev = obj->base.dev;
  1242. drm_i915_private_t *dev_priv = dev->dev_private;
  1243. BUG_ON(!obj->active);
  1244. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1245. i915_gem_object_move_off_active(obj);
  1246. }
  1247. static void
  1248. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1249. {
  1250. struct drm_device *dev = obj->base.dev;
  1251. struct drm_i915_private *dev_priv = dev->dev_private;
  1252. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1253. BUG_ON(!list_empty(&obj->gpu_write_list));
  1254. BUG_ON(!obj->active);
  1255. obj->ring = NULL;
  1256. i915_gem_object_move_off_active(obj);
  1257. obj->fenced_gpu_access = false;
  1258. obj->active = 0;
  1259. obj->pending_gpu_write = false;
  1260. drm_gem_object_unreference(&obj->base);
  1261. WARN_ON(i915_verify_lists(dev));
  1262. }
  1263. /* Immediately discard the backing storage */
  1264. static void
  1265. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1266. {
  1267. struct inode *inode;
  1268. /* Our goal here is to return as much of the memory as
  1269. * is possible back to the system as we are called from OOM.
  1270. * To do this we must instruct the shmfs to drop all of its
  1271. * backing pages, *now*.
  1272. */
  1273. inode = obj->base.filp->f_path.dentry->d_inode;
  1274. shmem_truncate_range(inode, 0, (loff_t)-1);
  1275. if (obj->base.map_list.map)
  1276. drm_gem_free_mmap_offset(&obj->base);
  1277. obj->madv = __I915_MADV_PURGED;
  1278. }
  1279. static inline int
  1280. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1281. {
  1282. return obj->madv == I915_MADV_DONTNEED;
  1283. }
  1284. static void
  1285. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1286. uint32_t flush_domains)
  1287. {
  1288. struct drm_i915_gem_object *obj, *next;
  1289. list_for_each_entry_safe(obj, next,
  1290. &ring->gpu_write_list,
  1291. gpu_write_list) {
  1292. if (obj->base.write_domain & flush_domains) {
  1293. uint32_t old_write_domain = obj->base.write_domain;
  1294. obj->base.write_domain = 0;
  1295. list_del_init(&obj->gpu_write_list);
  1296. i915_gem_object_move_to_active(obj, ring,
  1297. i915_gem_next_request_seqno(ring));
  1298. trace_i915_gem_object_change_domain(obj,
  1299. obj->base.read_domains,
  1300. old_write_domain);
  1301. }
  1302. }
  1303. }
  1304. static u32
  1305. i915_gem_get_seqno(struct drm_device *dev)
  1306. {
  1307. drm_i915_private_t *dev_priv = dev->dev_private;
  1308. u32 seqno = dev_priv->next_seqno;
  1309. /* reserve 0 for non-seqno */
  1310. if (++dev_priv->next_seqno == 0)
  1311. dev_priv->next_seqno = 1;
  1312. return seqno;
  1313. }
  1314. u32
  1315. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1316. {
  1317. if (ring->outstanding_lazy_request == 0)
  1318. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1319. return ring->outstanding_lazy_request;
  1320. }
  1321. int
  1322. i915_add_request(struct intel_ring_buffer *ring,
  1323. struct drm_file *file,
  1324. struct drm_i915_gem_request *request)
  1325. {
  1326. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1327. uint32_t seqno;
  1328. u32 request_ring_position;
  1329. int was_empty;
  1330. int ret;
  1331. /*
  1332. * Emit any outstanding flushes - execbuf can fail to emit the flush
  1333. * after having emitted the batchbuffer command. Hence we need to fix
  1334. * things up similar to emitting the lazy request. The difference here
  1335. * is that the flush _must_ happen before the next request, no matter
  1336. * what.
  1337. */
  1338. if (ring->gpu_caches_dirty) {
  1339. ret = i915_gem_flush_ring(ring, 0, I915_GEM_GPU_DOMAINS);
  1340. if (ret)
  1341. return ret;
  1342. ring->gpu_caches_dirty = false;
  1343. }
  1344. BUG_ON(request == NULL);
  1345. seqno = i915_gem_next_request_seqno(ring);
  1346. /* Record the position of the start of the request so that
  1347. * should we detect the updated seqno part-way through the
  1348. * GPU processing the request, we never over-estimate the
  1349. * position of the head.
  1350. */
  1351. request_ring_position = intel_ring_get_tail(ring);
  1352. ret = ring->add_request(ring, &seqno);
  1353. if (ret)
  1354. return ret;
  1355. trace_i915_gem_request_add(ring, seqno);
  1356. request->seqno = seqno;
  1357. request->ring = ring;
  1358. request->tail = request_ring_position;
  1359. request->emitted_jiffies = jiffies;
  1360. was_empty = list_empty(&ring->request_list);
  1361. list_add_tail(&request->list, &ring->request_list);
  1362. if (file) {
  1363. struct drm_i915_file_private *file_priv = file->driver_priv;
  1364. spin_lock(&file_priv->mm.lock);
  1365. request->file_priv = file_priv;
  1366. list_add_tail(&request->client_list,
  1367. &file_priv->mm.request_list);
  1368. spin_unlock(&file_priv->mm.lock);
  1369. }
  1370. ring->outstanding_lazy_request = 0;
  1371. if (!dev_priv->mm.suspended) {
  1372. if (i915_enable_hangcheck) {
  1373. mod_timer(&dev_priv->hangcheck_timer,
  1374. jiffies +
  1375. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1376. }
  1377. if (was_empty)
  1378. queue_delayed_work(dev_priv->wq,
  1379. &dev_priv->mm.retire_work, HZ);
  1380. }
  1381. WARN_ON(!list_empty(&ring->gpu_write_list));
  1382. return 0;
  1383. }
  1384. static inline void
  1385. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1386. {
  1387. struct drm_i915_file_private *file_priv = request->file_priv;
  1388. if (!file_priv)
  1389. return;
  1390. spin_lock(&file_priv->mm.lock);
  1391. if (request->file_priv) {
  1392. list_del(&request->client_list);
  1393. request->file_priv = NULL;
  1394. }
  1395. spin_unlock(&file_priv->mm.lock);
  1396. }
  1397. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1398. struct intel_ring_buffer *ring)
  1399. {
  1400. while (!list_empty(&ring->request_list)) {
  1401. struct drm_i915_gem_request *request;
  1402. request = list_first_entry(&ring->request_list,
  1403. struct drm_i915_gem_request,
  1404. list);
  1405. list_del(&request->list);
  1406. i915_gem_request_remove_from_client(request);
  1407. kfree(request);
  1408. }
  1409. while (!list_empty(&ring->active_list)) {
  1410. struct drm_i915_gem_object *obj;
  1411. obj = list_first_entry(&ring->active_list,
  1412. struct drm_i915_gem_object,
  1413. ring_list);
  1414. obj->base.write_domain = 0;
  1415. list_del_init(&obj->gpu_write_list);
  1416. i915_gem_object_move_to_inactive(obj);
  1417. }
  1418. }
  1419. static void i915_gem_reset_fences(struct drm_device *dev)
  1420. {
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. int i;
  1423. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1424. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1425. i915_gem_write_fence(dev, i, NULL);
  1426. if (reg->obj)
  1427. i915_gem_object_fence_lost(reg->obj);
  1428. reg->pin_count = 0;
  1429. reg->obj = NULL;
  1430. INIT_LIST_HEAD(&reg->lru_list);
  1431. }
  1432. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  1433. }
  1434. void i915_gem_reset(struct drm_device *dev)
  1435. {
  1436. struct drm_i915_private *dev_priv = dev->dev_private;
  1437. struct drm_i915_gem_object *obj;
  1438. struct intel_ring_buffer *ring;
  1439. int i;
  1440. for_each_ring(ring, dev_priv, i)
  1441. i915_gem_reset_ring_lists(dev_priv, ring);
  1442. /* Remove anything from the flushing lists. The GPU cache is likely
  1443. * to be lost on reset along with the data, so simply move the
  1444. * lost bo to the inactive list.
  1445. */
  1446. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1447. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1448. struct drm_i915_gem_object,
  1449. mm_list);
  1450. obj->base.write_domain = 0;
  1451. list_del_init(&obj->gpu_write_list);
  1452. i915_gem_object_move_to_inactive(obj);
  1453. }
  1454. /* Move everything out of the GPU domains to ensure we do any
  1455. * necessary invalidation upon reuse.
  1456. */
  1457. list_for_each_entry(obj,
  1458. &dev_priv->mm.inactive_list,
  1459. mm_list)
  1460. {
  1461. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1462. }
  1463. /* The fence registers are invalidated so clear them out */
  1464. i915_gem_reset_fences(dev);
  1465. }
  1466. /**
  1467. * This function clears the request list as sequence numbers are passed.
  1468. */
  1469. void
  1470. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1471. {
  1472. uint32_t seqno;
  1473. int i;
  1474. if (list_empty(&ring->request_list))
  1475. return;
  1476. WARN_ON(i915_verify_lists(ring->dev));
  1477. seqno = ring->get_seqno(ring);
  1478. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1479. if (seqno >= ring->sync_seqno[i])
  1480. ring->sync_seqno[i] = 0;
  1481. while (!list_empty(&ring->request_list)) {
  1482. struct drm_i915_gem_request *request;
  1483. request = list_first_entry(&ring->request_list,
  1484. struct drm_i915_gem_request,
  1485. list);
  1486. if (!i915_seqno_passed(seqno, request->seqno))
  1487. break;
  1488. trace_i915_gem_request_retire(ring, request->seqno);
  1489. /* We know the GPU must have read the request to have
  1490. * sent us the seqno + interrupt, so use the position
  1491. * of tail of the request to update the last known position
  1492. * of the GPU head.
  1493. */
  1494. ring->last_retired_head = request->tail;
  1495. list_del(&request->list);
  1496. i915_gem_request_remove_from_client(request);
  1497. kfree(request);
  1498. }
  1499. /* Move any buffers on the active list that are no longer referenced
  1500. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1501. */
  1502. while (!list_empty(&ring->active_list)) {
  1503. struct drm_i915_gem_object *obj;
  1504. obj = list_first_entry(&ring->active_list,
  1505. struct drm_i915_gem_object,
  1506. ring_list);
  1507. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1508. break;
  1509. if (obj->base.write_domain != 0)
  1510. i915_gem_object_move_to_flushing(obj);
  1511. else
  1512. i915_gem_object_move_to_inactive(obj);
  1513. }
  1514. if (unlikely(ring->trace_irq_seqno &&
  1515. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1516. ring->irq_put(ring);
  1517. ring->trace_irq_seqno = 0;
  1518. }
  1519. WARN_ON(i915_verify_lists(ring->dev));
  1520. }
  1521. void
  1522. i915_gem_retire_requests(struct drm_device *dev)
  1523. {
  1524. drm_i915_private_t *dev_priv = dev->dev_private;
  1525. struct intel_ring_buffer *ring;
  1526. int i;
  1527. for_each_ring(ring, dev_priv, i)
  1528. i915_gem_retire_requests_ring(ring);
  1529. }
  1530. static void
  1531. i915_gem_retire_work_handler(struct work_struct *work)
  1532. {
  1533. drm_i915_private_t *dev_priv;
  1534. struct drm_device *dev;
  1535. struct intel_ring_buffer *ring;
  1536. bool idle;
  1537. int i;
  1538. dev_priv = container_of(work, drm_i915_private_t,
  1539. mm.retire_work.work);
  1540. dev = dev_priv->dev;
  1541. /* Come back later if the device is busy... */
  1542. if (!mutex_trylock(&dev->struct_mutex)) {
  1543. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1544. return;
  1545. }
  1546. i915_gem_retire_requests(dev);
  1547. /* Send a periodic flush down the ring so we don't hold onto GEM
  1548. * objects indefinitely.
  1549. */
  1550. idle = true;
  1551. for_each_ring(ring, dev_priv, i) {
  1552. if (ring->gpu_caches_dirty) {
  1553. struct drm_i915_gem_request *request;
  1554. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1555. if (request == NULL ||
  1556. i915_add_request(ring, NULL, request))
  1557. kfree(request);
  1558. }
  1559. idle &= list_empty(&ring->request_list);
  1560. }
  1561. if (!dev_priv->mm.suspended && !idle)
  1562. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1563. mutex_unlock(&dev->struct_mutex);
  1564. }
  1565. int
  1566. i915_gem_check_wedge(struct drm_i915_private *dev_priv,
  1567. bool interruptible)
  1568. {
  1569. if (atomic_read(&dev_priv->mm.wedged)) {
  1570. struct completion *x = &dev_priv->error_completion;
  1571. bool recovery_complete;
  1572. unsigned long flags;
  1573. /* Give the error handler a chance to run. */
  1574. spin_lock_irqsave(&x->wait.lock, flags);
  1575. recovery_complete = x->done > 0;
  1576. spin_unlock_irqrestore(&x->wait.lock, flags);
  1577. /* Non-interruptible callers can't handle -EAGAIN, hence return
  1578. * -EIO unconditionally for these. */
  1579. if (!interruptible)
  1580. return -EIO;
  1581. /* Recovery complete, but still wedged means reset failure. */
  1582. if (recovery_complete)
  1583. return -EIO;
  1584. return -EAGAIN;
  1585. }
  1586. return 0;
  1587. }
  1588. /*
  1589. * Compare seqno against outstanding lazy request. Emit a request if they are
  1590. * equal.
  1591. */
  1592. static int
  1593. i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
  1594. {
  1595. int ret = 0;
  1596. BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
  1597. if (seqno == ring->outstanding_lazy_request) {
  1598. struct drm_i915_gem_request *request;
  1599. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1600. if (request == NULL)
  1601. return -ENOMEM;
  1602. ret = i915_add_request(ring, NULL, request);
  1603. if (ret) {
  1604. kfree(request);
  1605. return ret;
  1606. }
  1607. BUG_ON(seqno != request->seqno);
  1608. }
  1609. return ret;
  1610. }
  1611. /**
  1612. * __wait_seqno - wait until execution of seqno has finished
  1613. * @ring: the ring expected to report seqno
  1614. * @seqno: duh!
  1615. * @interruptible: do an interruptible wait (normally yes)
  1616. * @timeout: in - how long to wait (NULL forever); out - how much time remaining
  1617. *
  1618. * Returns 0 if the seqno was found within the alloted time. Else returns the
  1619. * errno with remaining time filled in timeout argument.
  1620. */
  1621. static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
  1622. bool interruptible, struct timespec *timeout)
  1623. {
  1624. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1625. struct timespec before, now, wait_time={1,0};
  1626. unsigned long timeout_jiffies;
  1627. long end;
  1628. bool wait_forever = true;
  1629. int ret;
  1630. if (i915_seqno_passed(ring->get_seqno(ring), seqno))
  1631. return 0;
  1632. trace_i915_gem_request_wait_begin(ring, seqno);
  1633. if (timeout != NULL) {
  1634. wait_time = *timeout;
  1635. wait_forever = false;
  1636. }
  1637. timeout_jiffies = timespec_to_jiffies(&wait_time);
  1638. if (WARN_ON(!ring->irq_get(ring)))
  1639. return -ENODEV;
  1640. /* Record current time in case interrupted by signal, or wedged * */
  1641. getrawmonotonic(&before);
  1642. #define EXIT_COND \
  1643. (i915_seqno_passed(ring->get_seqno(ring), seqno) || \
  1644. atomic_read(&dev_priv->mm.wedged))
  1645. do {
  1646. if (interruptible)
  1647. end = wait_event_interruptible_timeout(ring->irq_queue,
  1648. EXIT_COND,
  1649. timeout_jiffies);
  1650. else
  1651. end = wait_event_timeout(ring->irq_queue, EXIT_COND,
  1652. timeout_jiffies);
  1653. ret = i915_gem_check_wedge(dev_priv, interruptible);
  1654. if (ret)
  1655. end = ret;
  1656. } while (end == 0 && wait_forever);
  1657. getrawmonotonic(&now);
  1658. ring->irq_put(ring);
  1659. trace_i915_gem_request_wait_end(ring, seqno);
  1660. #undef EXIT_COND
  1661. if (timeout) {
  1662. struct timespec sleep_time = timespec_sub(now, before);
  1663. *timeout = timespec_sub(*timeout, sleep_time);
  1664. }
  1665. switch (end) {
  1666. case -EAGAIN: /* Wedged */
  1667. case -ERESTARTSYS: /* Signal */
  1668. return (int)end;
  1669. case 0: /* Timeout */
  1670. if (timeout)
  1671. set_normalized_timespec(timeout, 0, 0);
  1672. return -ETIME;
  1673. default: /* Completed */
  1674. WARN_ON(end < 0); /* We're not aware of other errors */
  1675. return 0;
  1676. }
  1677. }
  1678. /**
  1679. * Waits for a sequence number to be signaled, and cleans up the
  1680. * request and object lists appropriately for that event.
  1681. */
  1682. int
  1683. i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
  1684. {
  1685. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1686. int ret = 0;
  1687. BUG_ON(seqno == 0);
  1688. ret = i915_gem_check_wedge(dev_priv, dev_priv->mm.interruptible);
  1689. if (ret)
  1690. return ret;
  1691. ret = i915_gem_check_olr(ring, seqno);
  1692. if (ret)
  1693. return ret;
  1694. ret = __wait_seqno(ring, seqno, dev_priv->mm.interruptible, NULL);
  1695. return ret;
  1696. }
  1697. /**
  1698. * Ensures that all rendering to the object has completed and the object is
  1699. * safe to unbind from the GTT or access from the CPU.
  1700. */
  1701. int
  1702. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1703. {
  1704. int ret;
  1705. /* This function only exists to support waiting for existing rendering,
  1706. * not for emitting required flushes.
  1707. */
  1708. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1709. /* If there is rendering queued on the buffer being evicted, wait for
  1710. * it.
  1711. */
  1712. if (obj->active) {
  1713. ret = i915_wait_seqno(obj->ring, obj->last_rendering_seqno);
  1714. if (ret)
  1715. return ret;
  1716. i915_gem_retire_requests_ring(obj->ring);
  1717. }
  1718. return 0;
  1719. }
  1720. /**
  1721. * Ensures that an object will eventually get non-busy by flushing any required
  1722. * write domains, emitting any outstanding lazy request and retiring and
  1723. * completed requests.
  1724. */
  1725. static int
  1726. i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
  1727. {
  1728. int ret;
  1729. if (obj->active) {
  1730. ret = i915_gem_object_flush_gpu_write_domain(obj);
  1731. if (ret)
  1732. return ret;
  1733. ret = i915_gem_check_olr(obj->ring,
  1734. obj->last_rendering_seqno);
  1735. if (ret)
  1736. return ret;
  1737. i915_gem_retire_requests_ring(obj->ring);
  1738. }
  1739. return 0;
  1740. }
  1741. /**
  1742. * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
  1743. * @DRM_IOCTL_ARGS: standard ioctl arguments
  1744. *
  1745. * Returns 0 if successful, else an error is returned with the remaining time in
  1746. * the timeout parameter.
  1747. * -ETIME: object is still busy after timeout
  1748. * -ERESTARTSYS: signal interrupted the wait
  1749. * -ENONENT: object doesn't exist
  1750. * Also possible, but rare:
  1751. * -EAGAIN: GPU wedged
  1752. * -ENOMEM: damn
  1753. * -ENODEV: Internal IRQ fail
  1754. * -E?: The add request failed
  1755. *
  1756. * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
  1757. * non-zero timeout parameter the wait ioctl will wait for the given number of
  1758. * nanoseconds on an object becoming unbusy. Since the wait itself does so
  1759. * without holding struct_mutex the object may become re-busied before this
  1760. * function completes. A similar but shorter * race condition exists in the busy
  1761. * ioctl
  1762. */
  1763. int
  1764. i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
  1765. {
  1766. struct drm_i915_gem_wait *args = data;
  1767. struct drm_i915_gem_object *obj;
  1768. struct intel_ring_buffer *ring = NULL;
  1769. struct timespec timeout_stack, *timeout = NULL;
  1770. u32 seqno = 0;
  1771. int ret = 0;
  1772. if (args->timeout_ns >= 0) {
  1773. timeout_stack = ns_to_timespec(args->timeout_ns);
  1774. timeout = &timeout_stack;
  1775. }
  1776. ret = i915_mutex_lock_interruptible(dev);
  1777. if (ret)
  1778. return ret;
  1779. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
  1780. if (&obj->base == NULL) {
  1781. mutex_unlock(&dev->struct_mutex);
  1782. return -ENOENT;
  1783. }
  1784. /* Need to make sure the object gets inactive eventually. */
  1785. ret = i915_gem_object_flush_active(obj);
  1786. if (ret)
  1787. goto out;
  1788. if (obj->active) {
  1789. seqno = obj->last_rendering_seqno;
  1790. ring = obj->ring;
  1791. }
  1792. if (seqno == 0)
  1793. goto out;
  1794. /* Do this after OLR check to make sure we make forward progress polling
  1795. * on this IOCTL with a 0 timeout (like busy ioctl)
  1796. */
  1797. if (!args->timeout_ns) {
  1798. ret = -ETIME;
  1799. goto out;
  1800. }
  1801. drm_gem_object_unreference(&obj->base);
  1802. mutex_unlock(&dev->struct_mutex);
  1803. ret = __wait_seqno(ring, seqno, true, timeout);
  1804. if (timeout) {
  1805. WARN_ON(!timespec_valid(timeout));
  1806. args->timeout_ns = timespec_to_ns(timeout);
  1807. }
  1808. return ret;
  1809. out:
  1810. drm_gem_object_unreference(&obj->base);
  1811. mutex_unlock(&dev->struct_mutex);
  1812. return ret;
  1813. }
  1814. /**
  1815. * i915_gem_object_sync - sync an object to a ring.
  1816. *
  1817. * @obj: object which may be in use on another ring.
  1818. * @to: ring we wish to use the object on. May be NULL.
  1819. *
  1820. * This code is meant to abstract object synchronization with the GPU.
  1821. * Calling with NULL implies synchronizing the object with the CPU
  1822. * rather than a particular GPU ring.
  1823. *
  1824. * Returns 0 if successful, else propagates up the lower layer error.
  1825. */
  1826. int
  1827. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1828. struct intel_ring_buffer *to)
  1829. {
  1830. struct intel_ring_buffer *from = obj->ring;
  1831. u32 seqno;
  1832. int ret, idx;
  1833. if (from == NULL || to == from)
  1834. return 0;
  1835. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1836. return i915_gem_object_wait_rendering(obj);
  1837. idx = intel_ring_sync_index(from, to);
  1838. seqno = obj->last_rendering_seqno;
  1839. if (seqno <= from->sync_seqno[idx])
  1840. return 0;
  1841. ret = i915_gem_check_olr(obj->ring, seqno);
  1842. if (ret)
  1843. return ret;
  1844. ret = to->sync_to(to, from, seqno);
  1845. if (!ret)
  1846. from->sync_seqno[idx] = seqno;
  1847. return ret;
  1848. }
  1849. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1850. {
  1851. u32 old_write_domain, old_read_domains;
  1852. /* Act a barrier for all accesses through the GTT */
  1853. mb();
  1854. /* Force a pagefault for domain tracking on next user access */
  1855. i915_gem_release_mmap(obj);
  1856. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1857. return;
  1858. old_read_domains = obj->base.read_domains;
  1859. old_write_domain = obj->base.write_domain;
  1860. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1861. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1862. trace_i915_gem_object_change_domain(obj,
  1863. old_read_domains,
  1864. old_write_domain);
  1865. }
  1866. /**
  1867. * Unbinds an object from the GTT aperture.
  1868. */
  1869. int
  1870. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1871. {
  1872. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1873. int ret = 0;
  1874. if (obj->gtt_space == NULL)
  1875. return 0;
  1876. if (obj->pin_count)
  1877. return -EBUSY;
  1878. ret = i915_gem_object_finish_gpu(obj);
  1879. if (ret)
  1880. return ret;
  1881. /* Continue on if we fail due to EIO, the GPU is hung so we
  1882. * should be safe and we need to cleanup or else we might
  1883. * cause memory corruption through use-after-free.
  1884. */
  1885. i915_gem_object_finish_gtt(obj);
  1886. /* Move the object to the CPU domain to ensure that
  1887. * any possible CPU writes while it's not in the GTT
  1888. * are flushed when we go to remap it.
  1889. */
  1890. if (ret == 0)
  1891. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1892. if (ret == -ERESTARTSYS)
  1893. return ret;
  1894. if (ret) {
  1895. /* In the event of a disaster, abandon all caches and
  1896. * hope for the best.
  1897. */
  1898. i915_gem_clflush_object(obj);
  1899. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1900. }
  1901. /* release the fence reg _after_ flushing */
  1902. ret = i915_gem_object_put_fence(obj);
  1903. if (ret)
  1904. return ret;
  1905. trace_i915_gem_object_unbind(obj);
  1906. if (obj->has_global_gtt_mapping)
  1907. i915_gem_gtt_unbind_object(obj);
  1908. if (obj->has_aliasing_ppgtt_mapping) {
  1909. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1910. obj->has_aliasing_ppgtt_mapping = 0;
  1911. }
  1912. i915_gem_gtt_finish_object(obj);
  1913. i915_gem_object_put_pages_gtt(obj);
  1914. list_del_init(&obj->gtt_list);
  1915. list_del_init(&obj->mm_list);
  1916. /* Avoid an unnecessary call to unbind on rebind. */
  1917. obj->map_and_fenceable = true;
  1918. drm_mm_put_block(obj->gtt_space);
  1919. obj->gtt_space = NULL;
  1920. obj->gtt_offset = 0;
  1921. if (i915_gem_object_is_purgeable(obj))
  1922. i915_gem_object_truncate(obj);
  1923. return ret;
  1924. }
  1925. int
  1926. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1927. uint32_t invalidate_domains,
  1928. uint32_t flush_domains)
  1929. {
  1930. int ret;
  1931. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1932. return 0;
  1933. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1934. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1935. if (ret)
  1936. return ret;
  1937. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1938. i915_gem_process_flushing_list(ring, flush_domains);
  1939. return 0;
  1940. }
  1941. static int i915_ring_idle(struct intel_ring_buffer *ring)
  1942. {
  1943. int ret;
  1944. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1945. return 0;
  1946. if (!list_empty(&ring->gpu_write_list)) {
  1947. ret = i915_gem_flush_ring(ring,
  1948. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1949. if (ret)
  1950. return ret;
  1951. }
  1952. return i915_wait_seqno(ring, i915_gem_next_request_seqno(ring));
  1953. }
  1954. int i915_gpu_idle(struct drm_device *dev)
  1955. {
  1956. drm_i915_private_t *dev_priv = dev->dev_private;
  1957. struct intel_ring_buffer *ring;
  1958. int ret, i;
  1959. /* Flush everything onto the inactive list. */
  1960. for_each_ring(ring, dev_priv, i) {
  1961. ret = i915_ring_idle(ring);
  1962. if (ret)
  1963. return ret;
  1964. /* Is the device fubar? */
  1965. if (WARN_ON(!list_empty(&ring->gpu_write_list)))
  1966. return -EBUSY;
  1967. ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
  1968. if (ret)
  1969. return ret;
  1970. }
  1971. return 0;
  1972. }
  1973. static void sandybridge_write_fence_reg(struct drm_device *dev, int reg,
  1974. struct drm_i915_gem_object *obj)
  1975. {
  1976. drm_i915_private_t *dev_priv = dev->dev_private;
  1977. uint64_t val;
  1978. if (obj) {
  1979. u32 size = obj->gtt_space->size;
  1980. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1981. 0xfffff000) << 32;
  1982. val |= obj->gtt_offset & 0xfffff000;
  1983. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1984. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1985. if (obj->tiling_mode == I915_TILING_Y)
  1986. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1987. val |= I965_FENCE_REG_VALID;
  1988. } else
  1989. val = 0;
  1990. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + reg * 8, val);
  1991. POSTING_READ(FENCE_REG_SANDYBRIDGE_0 + reg * 8);
  1992. }
  1993. static void i965_write_fence_reg(struct drm_device *dev, int reg,
  1994. struct drm_i915_gem_object *obj)
  1995. {
  1996. drm_i915_private_t *dev_priv = dev->dev_private;
  1997. uint64_t val;
  1998. if (obj) {
  1999. u32 size = obj->gtt_space->size;
  2000. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  2001. 0xfffff000) << 32;
  2002. val |= obj->gtt_offset & 0xfffff000;
  2003. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  2004. if (obj->tiling_mode == I915_TILING_Y)
  2005. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  2006. val |= I965_FENCE_REG_VALID;
  2007. } else
  2008. val = 0;
  2009. I915_WRITE64(FENCE_REG_965_0 + reg * 8, val);
  2010. POSTING_READ(FENCE_REG_965_0 + reg * 8);
  2011. }
  2012. static void i915_write_fence_reg(struct drm_device *dev, int reg,
  2013. struct drm_i915_gem_object *obj)
  2014. {
  2015. drm_i915_private_t *dev_priv = dev->dev_private;
  2016. u32 val;
  2017. if (obj) {
  2018. u32 size = obj->gtt_space->size;
  2019. int pitch_val;
  2020. int tile_width;
  2021. WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  2022. (size & -size) != size ||
  2023. (obj->gtt_offset & (size - 1)),
  2024. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  2025. obj->gtt_offset, obj->map_and_fenceable, size);
  2026. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  2027. tile_width = 128;
  2028. else
  2029. tile_width = 512;
  2030. /* Note: pitch better be a power of two tile widths */
  2031. pitch_val = obj->stride / tile_width;
  2032. pitch_val = ffs(pitch_val) - 1;
  2033. val = obj->gtt_offset;
  2034. if (obj->tiling_mode == I915_TILING_Y)
  2035. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2036. val |= I915_FENCE_SIZE_BITS(size);
  2037. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2038. val |= I830_FENCE_REG_VALID;
  2039. } else
  2040. val = 0;
  2041. if (reg < 8)
  2042. reg = FENCE_REG_830_0 + reg * 4;
  2043. else
  2044. reg = FENCE_REG_945_8 + (reg - 8) * 4;
  2045. I915_WRITE(reg, val);
  2046. POSTING_READ(reg);
  2047. }
  2048. static void i830_write_fence_reg(struct drm_device *dev, int reg,
  2049. struct drm_i915_gem_object *obj)
  2050. {
  2051. drm_i915_private_t *dev_priv = dev->dev_private;
  2052. uint32_t val;
  2053. if (obj) {
  2054. u32 size = obj->gtt_space->size;
  2055. uint32_t pitch_val;
  2056. WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  2057. (size & -size) != size ||
  2058. (obj->gtt_offset & (size - 1)),
  2059. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  2060. obj->gtt_offset, size);
  2061. pitch_val = obj->stride / 128;
  2062. pitch_val = ffs(pitch_val) - 1;
  2063. val = obj->gtt_offset;
  2064. if (obj->tiling_mode == I915_TILING_Y)
  2065. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2066. val |= I830_FENCE_SIZE_BITS(size);
  2067. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2068. val |= I830_FENCE_REG_VALID;
  2069. } else
  2070. val = 0;
  2071. I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
  2072. POSTING_READ(FENCE_REG_830_0 + reg * 4);
  2073. }
  2074. static void i915_gem_write_fence(struct drm_device *dev, int reg,
  2075. struct drm_i915_gem_object *obj)
  2076. {
  2077. switch (INTEL_INFO(dev)->gen) {
  2078. case 7:
  2079. case 6: sandybridge_write_fence_reg(dev, reg, obj); break;
  2080. case 5:
  2081. case 4: i965_write_fence_reg(dev, reg, obj); break;
  2082. case 3: i915_write_fence_reg(dev, reg, obj); break;
  2083. case 2: i830_write_fence_reg(dev, reg, obj); break;
  2084. default: break;
  2085. }
  2086. }
  2087. static inline int fence_number(struct drm_i915_private *dev_priv,
  2088. struct drm_i915_fence_reg *fence)
  2089. {
  2090. return fence - dev_priv->fence_regs;
  2091. }
  2092. static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
  2093. struct drm_i915_fence_reg *fence,
  2094. bool enable)
  2095. {
  2096. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2097. int reg = fence_number(dev_priv, fence);
  2098. i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
  2099. if (enable) {
  2100. obj->fence_reg = reg;
  2101. fence->obj = obj;
  2102. list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
  2103. } else {
  2104. obj->fence_reg = I915_FENCE_REG_NONE;
  2105. fence->obj = NULL;
  2106. list_del_init(&fence->lru_list);
  2107. }
  2108. }
  2109. static int
  2110. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj)
  2111. {
  2112. int ret;
  2113. if (obj->fenced_gpu_access) {
  2114. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2115. ret = i915_gem_flush_ring(obj->ring,
  2116. 0, obj->base.write_domain);
  2117. if (ret)
  2118. return ret;
  2119. }
  2120. obj->fenced_gpu_access = false;
  2121. }
  2122. if (obj->last_fenced_seqno) {
  2123. ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
  2124. if (ret)
  2125. return ret;
  2126. obj->last_fenced_seqno = 0;
  2127. }
  2128. /* Ensure that all CPU reads are completed before installing a fence
  2129. * and all writes before removing the fence.
  2130. */
  2131. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  2132. mb();
  2133. return 0;
  2134. }
  2135. int
  2136. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  2137. {
  2138. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  2139. int ret;
  2140. ret = i915_gem_object_flush_fence(obj);
  2141. if (ret)
  2142. return ret;
  2143. if (obj->fence_reg == I915_FENCE_REG_NONE)
  2144. return 0;
  2145. i915_gem_object_update_fence(obj,
  2146. &dev_priv->fence_regs[obj->fence_reg],
  2147. false);
  2148. i915_gem_object_fence_lost(obj);
  2149. return 0;
  2150. }
  2151. static struct drm_i915_fence_reg *
  2152. i915_find_fence_reg(struct drm_device *dev)
  2153. {
  2154. struct drm_i915_private *dev_priv = dev->dev_private;
  2155. struct drm_i915_fence_reg *reg, *avail;
  2156. int i;
  2157. /* First try to find a free reg */
  2158. avail = NULL;
  2159. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2160. reg = &dev_priv->fence_regs[i];
  2161. if (!reg->obj)
  2162. return reg;
  2163. if (!reg->pin_count)
  2164. avail = reg;
  2165. }
  2166. if (avail == NULL)
  2167. return NULL;
  2168. /* None available, try to steal one or wait for a user to finish */
  2169. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2170. if (reg->pin_count)
  2171. continue;
  2172. return reg;
  2173. }
  2174. return NULL;
  2175. }
  2176. /**
  2177. * i915_gem_object_get_fence - set up fencing for an object
  2178. * @obj: object to map through a fence reg
  2179. *
  2180. * When mapping objects through the GTT, userspace wants to be able to write
  2181. * to them without having to worry about swizzling if the object is tiled.
  2182. * This function walks the fence regs looking for a free one for @obj,
  2183. * stealing one if it can't find any.
  2184. *
  2185. * It then sets up the reg based on the object's properties: address, pitch
  2186. * and tiling format.
  2187. *
  2188. * For an untiled surface, this removes any existing fence.
  2189. */
  2190. int
  2191. i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
  2192. {
  2193. struct drm_device *dev = obj->base.dev;
  2194. struct drm_i915_private *dev_priv = dev->dev_private;
  2195. bool enable = obj->tiling_mode != I915_TILING_NONE;
  2196. struct drm_i915_fence_reg *reg;
  2197. int ret;
  2198. /* Have we updated the tiling parameters upon the object and so
  2199. * will need to serialise the write to the associated fence register?
  2200. */
  2201. if (obj->fence_dirty) {
  2202. ret = i915_gem_object_flush_fence(obj);
  2203. if (ret)
  2204. return ret;
  2205. }
  2206. /* Just update our place in the LRU if our fence is getting reused. */
  2207. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2208. reg = &dev_priv->fence_regs[obj->fence_reg];
  2209. if (!obj->fence_dirty) {
  2210. list_move_tail(&reg->lru_list,
  2211. &dev_priv->mm.fence_list);
  2212. return 0;
  2213. }
  2214. } else if (enable) {
  2215. reg = i915_find_fence_reg(dev);
  2216. if (reg == NULL)
  2217. return -EDEADLK;
  2218. if (reg->obj) {
  2219. struct drm_i915_gem_object *old = reg->obj;
  2220. ret = i915_gem_object_flush_fence(old);
  2221. if (ret)
  2222. return ret;
  2223. i915_gem_object_fence_lost(old);
  2224. }
  2225. } else
  2226. return 0;
  2227. i915_gem_object_update_fence(obj, reg, enable);
  2228. obj->fence_dirty = false;
  2229. return 0;
  2230. }
  2231. /**
  2232. * Finds free space in the GTT aperture and binds the object there.
  2233. */
  2234. static int
  2235. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2236. unsigned alignment,
  2237. bool map_and_fenceable)
  2238. {
  2239. struct drm_device *dev = obj->base.dev;
  2240. drm_i915_private_t *dev_priv = dev->dev_private;
  2241. struct drm_mm_node *free_space;
  2242. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2243. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2244. bool mappable, fenceable;
  2245. int ret;
  2246. if (obj->madv != I915_MADV_WILLNEED) {
  2247. DRM_ERROR("Attempting to bind a purgeable object\n");
  2248. return -EINVAL;
  2249. }
  2250. fence_size = i915_gem_get_gtt_size(dev,
  2251. obj->base.size,
  2252. obj->tiling_mode);
  2253. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2254. obj->base.size,
  2255. obj->tiling_mode);
  2256. unfenced_alignment =
  2257. i915_gem_get_unfenced_gtt_alignment(dev,
  2258. obj->base.size,
  2259. obj->tiling_mode);
  2260. if (alignment == 0)
  2261. alignment = map_and_fenceable ? fence_alignment :
  2262. unfenced_alignment;
  2263. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2264. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2265. return -EINVAL;
  2266. }
  2267. size = map_and_fenceable ? fence_size : obj->base.size;
  2268. /* If the object is bigger than the entire aperture, reject it early
  2269. * before evicting everything in a vain attempt to find space.
  2270. */
  2271. if (obj->base.size >
  2272. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2273. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2274. return -E2BIG;
  2275. }
  2276. search_free:
  2277. if (map_and_fenceable)
  2278. free_space =
  2279. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2280. size, alignment, 0,
  2281. dev_priv->mm.gtt_mappable_end,
  2282. 0);
  2283. else
  2284. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2285. size, alignment, 0);
  2286. if (free_space != NULL) {
  2287. if (map_and_fenceable)
  2288. obj->gtt_space =
  2289. drm_mm_get_block_range_generic(free_space,
  2290. size, alignment, 0,
  2291. dev_priv->mm.gtt_mappable_end,
  2292. 0);
  2293. else
  2294. obj->gtt_space =
  2295. drm_mm_get_block(free_space, size, alignment);
  2296. }
  2297. if (obj->gtt_space == NULL) {
  2298. /* If the gtt is empty and we're still having trouble
  2299. * fitting our object in, we're out of memory.
  2300. */
  2301. ret = i915_gem_evict_something(dev, size, alignment,
  2302. map_and_fenceable);
  2303. if (ret)
  2304. return ret;
  2305. goto search_free;
  2306. }
  2307. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2308. if (ret) {
  2309. drm_mm_put_block(obj->gtt_space);
  2310. obj->gtt_space = NULL;
  2311. if (ret == -ENOMEM) {
  2312. /* first try to reclaim some memory by clearing the GTT */
  2313. ret = i915_gem_evict_everything(dev, false);
  2314. if (ret) {
  2315. /* now try to shrink everyone else */
  2316. if (gfpmask) {
  2317. gfpmask = 0;
  2318. goto search_free;
  2319. }
  2320. return -ENOMEM;
  2321. }
  2322. goto search_free;
  2323. }
  2324. return ret;
  2325. }
  2326. ret = i915_gem_gtt_prepare_object(obj);
  2327. if (ret) {
  2328. i915_gem_object_put_pages_gtt(obj);
  2329. drm_mm_put_block(obj->gtt_space);
  2330. obj->gtt_space = NULL;
  2331. if (i915_gem_evict_everything(dev, false))
  2332. return ret;
  2333. goto search_free;
  2334. }
  2335. if (!dev_priv->mm.aliasing_ppgtt)
  2336. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2337. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2338. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2339. /* Assert that the object is not currently in any GPU domain. As it
  2340. * wasn't in the GTT, there shouldn't be any way it could have been in
  2341. * a GPU cache
  2342. */
  2343. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2344. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2345. obj->gtt_offset = obj->gtt_space->start;
  2346. fenceable =
  2347. obj->gtt_space->size == fence_size &&
  2348. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2349. mappable =
  2350. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2351. obj->map_and_fenceable = mappable && fenceable;
  2352. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2353. return 0;
  2354. }
  2355. void
  2356. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2357. {
  2358. /* If we don't have a page list set up, then we're not pinned
  2359. * to GPU, and we can ignore the cache flush because it'll happen
  2360. * again at bind time.
  2361. */
  2362. if (obj->pages == NULL)
  2363. return;
  2364. /* If the GPU is snooping the contents of the CPU cache,
  2365. * we do not need to manually clear the CPU cache lines. However,
  2366. * the caches are only snooped when the render cache is
  2367. * flushed/invalidated. As we always have to emit invalidations
  2368. * and flushes when moving into and out of the RENDER domain, correct
  2369. * snooping behaviour occurs naturally as the result of our domain
  2370. * tracking.
  2371. */
  2372. if (obj->cache_level != I915_CACHE_NONE)
  2373. return;
  2374. trace_i915_gem_object_clflush(obj);
  2375. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2376. }
  2377. /** Flushes any GPU write domain for the object if it's dirty. */
  2378. static int
  2379. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2380. {
  2381. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2382. return 0;
  2383. /* Queue the GPU write cache flushing we need. */
  2384. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2385. }
  2386. /** Flushes the GTT write domain for the object if it's dirty. */
  2387. static void
  2388. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2389. {
  2390. uint32_t old_write_domain;
  2391. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2392. return;
  2393. /* No actual flushing is required for the GTT write domain. Writes
  2394. * to it immediately go to main memory as far as we know, so there's
  2395. * no chipset flush. It also doesn't land in render cache.
  2396. *
  2397. * However, we do have to enforce the order so that all writes through
  2398. * the GTT land before any writes to the device, such as updates to
  2399. * the GATT itself.
  2400. */
  2401. wmb();
  2402. old_write_domain = obj->base.write_domain;
  2403. obj->base.write_domain = 0;
  2404. trace_i915_gem_object_change_domain(obj,
  2405. obj->base.read_domains,
  2406. old_write_domain);
  2407. }
  2408. /** Flushes the CPU write domain for the object if it's dirty. */
  2409. static void
  2410. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2411. {
  2412. uint32_t old_write_domain;
  2413. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2414. return;
  2415. i915_gem_clflush_object(obj);
  2416. intel_gtt_chipset_flush();
  2417. old_write_domain = obj->base.write_domain;
  2418. obj->base.write_domain = 0;
  2419. trace_i915_gem_object_change_domain(obj,
  2420. obj->base.read_domains,
  2421. old_write_domain);
  2422. }
  2423. /**
  2424. * Moves a single object to the GTT read, and possibly write domain.
  2425. *
  2426. * This function returns when the move is complete, including waiting on
  2427. * flushes to occur.
  2428. */
  2429. int
  2430. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2431. {
  2432. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  2433. uint32_t old_write_domain, old_read_domains;
  2434. int ret;
  2435. /* Not valid to be called on unbound objects. */
  2436. if (obj->gtt_space == NULL)
  2437. return -EINVAL;
  2438. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2439. return 0;
  2440. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2441. if (ret)
  2442. return ret;
  2443. if (obj->pending_gpu_write || write) {
  2444. ret = i915_gem_object_wait_rendering(obj);
  2445. if (ret)
  2446. return ret;
  2447. }
  2448. i915_gem_object_flush_cpu_write_domain(obj);
  2449. old_write_domain = obj->base.write_domain;
  2450. old_read_domains = obj->base.read_domains;
  2451. /* It should now be out of any other write domains, and we can update
  2452. * the domain values for our changes.
  2453. */
  2454. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2455. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2456. if (write) {
  2457. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2458. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2459. obj->dirty = 1;
  2460. }
  2461. trace_i915_gem_object_change_domain(obj,
  2462. old_read_domains,
  2463. old_write_domain);
  2464. /* And bump the LRU for this access */
  2465. if (i915_gem_object_is_inactive(obj))
  2466. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2467. return 0;
  2468. }
  2469. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2470. enum i915_cache_level cache_level)
  2471. {
  2472. struct drm_device *dev = obj->base.dev;
  2473. drm_i915_private_t *dev_priv = dev->dev_private;
  2474. int ret;
  2475. if (obj->cache_level == cache_level)
  2476. return 0;
  2477. if (obj->pin_count) {
  2478. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2479. return -EBUSY;
  2480. }
  2481. if (obj->gtt_space) {
  2482. ret = i915_gem_object_finish_gpu(obj);
  2483. if (ret)
  2484. return ret;
  2485. i915_gem_object_finish_gtt(obj);
  2486. /* Before SandyBridge, you could not use tiling or fence
  2487. * registers with snooped memory, so relinquish any fences
  2488. * currently pointing to our region in the aperture.
  2489. */
  2490. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2491. ret = i915_gem_object_put_fence(obj);
  2492. if (ret)
  2493. return ret;
  2494. }
  2495. if (obj->has_global_gtt_mapping)
  2496. i915_gem_gtt_bind_object(obj, cache_level);
  2497. if (obj->has_aliasing_ppgtt_mapping)
  2498. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2499. obj, cache_level);
  2500. }
  2501. if (cache_level == I915_CACHE_NONE) {
  2502. u32 old_read_domains, old_write_domain;
  2503. /* If we're coming from LLC cached, then we haven't
  2504. * actually been tracking whether the data is in the
  2505. * CPU cache or not, since we only allow one bit set
  2506. * in obj->write_domain and have been skipping the clflushes.
  2507. * Just set it to the CPU cache for now.
  2508. */
  2509. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2510. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2511. old_read_domains = obj->base.read_domains;
  2512. old_write_domain = obj->base.write_domain;
  2513. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2514. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2515. trace_i915_gem_object_change_domain(obj,
  2516. old_read_domains,
  2517. old_write_domain);
  2518. }
  2519. obj->cache_level = cache_level;
  2520. return 0;
  2521. }
  2522. /*
  2523. * Prepare buffer for display plane (scanout, cursors, etc).
  2524. * Can be called from an uninterruptible phase (modesetting) and allows
  2525. * any flushes to be pipelined (for pageflips).
  2526. */
  2527. int
  2528. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2529. u32 alignment,
  2530. struct intel_ring_buffer *pipelined)
  2531. {
  2532. u32 old_read_domains, old_write_domain;
  2533. int ret;
  2534. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2535. if (ret)
  2536. return ret;
  2537. if (pipelined != obj->ring) {
  2538. ret = i915_gem_object_sync(obj, pipelined);
  2539. if (ret)
  2540. return ret;
  2541. }
  2542. /* The display engine is not coherent with the LLC cache on gen6. As
  2543. * a result, we make sure that the pinning that is about to occur is
  2544. * done with uncached PTEs. This is lowest common denominator for all
  2545. * chipsets.
  2546. *
  2547. * However for gen6+, we could do better by using the GFDT bit instead
  2548. * of uncaching, which would allow us to flush all the LLC-cached data
  2549. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2550. */
  2551. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2552. if (ret)
  2553. return ret;
  2554. /* As the user may map the buffer once pinned in the display plane
  2555. * (e.g. libkms for the bootup splash), we have to ensure that we
  2556. * always use map_and_fenceable for all scanout buffers.
  2557. */
  2558. ret = i915_gem_object_pin(obj, alignment, true);
  2559. if (ret)
  2560. return ret;
  2561. i915_gem_object_flush_cpu_write_domain(obj);
  2562. old_write_domain = obj->base.write_domain;
  2563. old_read_domains = obj->base.read_domains;
  2564. /* It should now be out of any other write domains, and we can update
  2565. * the domain values for our changes.
  2566. */
  2567. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2568. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2569. trace_i915_gem_object_change_domain(obj,
  2570. old_read_domains,
  2571. old_write_domain);
  2572. return 0;
  2573. }
  2574. int
  2575. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2576. {
  2577. int ret;
  2578. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2579. return 0;
  2580. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2581. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2582. if (ret)
  2583. return ret;
  2584. }
  2585. ret = i915_gem_object_wait_rendering(obj);
  2586. if (ret)
  2587. return ret;
  2588. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2589. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2590. return 0;
  2591. }
  2592. /**
  2593. * Moves a single object to the CPU read, and possibly write domain.
  2594. *
  2595. * This function returns when the move is complete, including waiting on
  2596. * flushes to occur.
  2597. */
  2598. int
  2599. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2600. {
  2601. uint32_t old_write_domain, old_read_domains;
  2602. int ret;
  2603. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2604. return 0;
  2605. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2606. if (ret)
  2607. return ret;
  2608. if (write || obj->pending_gpu_write) {
  2609. ret = i915_gem_object_wait_rendering(obj);
  2610. if (ret)
  2611. return ret;
  2612. }
  2613. i915_gem_object_flush_gtt_write_domain(obj);
  2614. old_write_domain = obj->base.write_domain;
  2615. old_read_domains = obj->base.read_domains;
  2616. /* Flush the CPU cache if it's still invalid. */
  2617. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2618. i915_gem_clflush_object(obj);
  2619. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2620. }
  2621. /* It should now be out of any other write domains, and we can update
  2622. * the domain values for our changes.
  2623. */
  2624. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2625. /* If we're writing through the CPU, then the GPU read domains will
  2626. * need to be invalidated at next use.
  2627. */
  2628. if (write) {
  2629. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2630. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2631. }
  2632. trace_i915_gem_object_change_domain(obj,
  2633. old_read_domains,
  2634. old_write_domain);
  2635. return 0;
  2636. }
  2637. /* Throttle our rendering by waiting until the ring has completed our requests
  2638. * emitted over 20 msec ago.
  2639. *
  2640. * Note that if we were to use the current jiffies each time around the loop,
  2641. * we wouldn't escape the function with any frames outstanding if the time to
  2642. * render a frame was over 20ms.
  2643. *
  2644. * This should get us reasonable parallelism between CPU and GPU but also
  2645. * relatively low latency when blocking on a particular request to finish.
  2646. */
  2647. static int
  2648. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2649. {
  2650. struct drm_i915_private *dev_priv = dev->dev_private;
  2651. struct drm_i915_file_private *file_priv = file->driver_priv;
  2652. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2653. struct drm_i915_gem_request *request;
  2654. struct intel_ring_buffer *ring = NULL;
  2655. u32 seqno = 0;
  2656. int ret;
  2657. if (atomic_read(&dev_priv->mm.wedged))
  2658. return -EIO;
  2659. spin_lock(&file_priv->mm.lock);
  2660. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2661. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2662. break;
  2663. ring = request->ring;
  2664. seqno = request->seqno;
  2665. }
  2666. spin_unlock(&file_priv->mm.lock);
  2667. if (seqno == 0)
  2668. return 0;
  2669. ret = __wait_seqno(ring, seqno, true, NULL);
  2670. if (ret == 0)
  2671. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2672. return ret;
  2673. }
  2674. int
  2675. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2676. uint32_t alignment,
  2677. bool map_and_fenceable)
  2678. {
  2679. int ret;
  2680. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2681. if (obj->gtt_space != NULL) {
  2682. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2683. (map_and_fenceable && !obj->map_and_fenceable)) {
  2684. WARN(obj->pin_count,
  2685. "bo is already pinned with incorrect alignment:"
  2686. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2687. " obj->map_and_fenceable=%d\n",
  2688. obj->gtt_offset, alignment,
  2689. map_and_fenceable,
  2690. obj->map_and_fenceable);
  2691. ret = i915_gem_object_unbind(obj);
  2692. if (ret)
  2693. return ret;
  2694. }
  2695. }
  2696. if (obj->gtt_space == NULL) {
  2697. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2698. map_and_fenceable);
  2699. if (ret)
  2700. return ret;
  2701. }
  2702. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2703. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2704. obj->pin_count++;
  2705. obj->pin_mappable |= map_and_fenceable;
  2706. return 0;
  2707. }
  2708. void
  2709. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2710. {
  2711. BUG_ON(obj->pin_count == 0);
  2712. BUG_ON(obj->gtt_space == NULL);
  2713. if (--obj->pin_count == 0)
  2714. obj->pin_mappable = false;
  2715. }
  2716. int
  2717. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2718. struct drm_file *file)
  2719. {
  2720. struct drm_i915_gem_pin *args = data;
  2721. struct drm_i915_gem_object *obj;
  2722. int ret;
  2723. ret = i915_mutex_lock_interruptible(dev);
  2724. if (ret)
  2725. return ret;
  2726. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2727. if (&obj->base == NULL) {
  2728. ret = -ENOENT;
  2729. goto unlock;
  2730. }
  2731. if (obj->madv != I915_MADV_WILLNEED) {
  2732. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2733. ret = -EINVAL;
  2734. goto out;
  2735. }
  2736. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2737. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2738. args->handle);
  2739. ret = -EINVAL;
  2740. goto out;
  2741. }
  2742. obj->user_pin_count++;
  2743. obj->pin_filp = file;
  2744. if (obj->user_pin_count == 1) {
  2745. ret = i915_gem_object_pin(obj, args->alignment, true);
  2746. if (ret)
  2747. goto out;
  2748. }
  2749. /* XXX - flush the CPU caches for pinned objects
  2750. * as the X server doesn't manage domains yet
  2751. */
  2752. i915_gem_object_flush_cpu_write_domain(obj);
  2753. args->offset = obj->gtt_offset;
  2754. out:
  2755. drm_gem_object_unreference(&obj->base);
  2756. unlock:
  2757. mutex_unlock(&dev->struct_mutex);
  2758. return ret;
  2759. }
  2760. int
  2761. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2762. struct drm_file *file)
  2763. {
  2764. struct drm_i915_gem_pin *args = data;
  2765. struct drm_i915_gem_object *obj;
  2766. int ret;
  2767. ret = i915_mutex_lock_interruptible(dev);
  2768. if (ret)
  2769. return ret;
  2770. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2771. if (&obj->base == NULL) {
  2772. ret = -ENOENT;
  2773. goto unlock;
  2774. }
  2775. if (obj->pin_filp != file) {
  2776. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2777. args->handle);
  2778. ret = -EINVAL;
  2779. goto out;
  2780. }
  2781. obj->user_pin_count--;
  2782. if (obj->user_pin_count == 0) {
  2783. obj->pin_filp = NULL;
  2784. i915_gem_object_unpin(obj);
  2785. }
  2786. out:
  2787. drm_gem_object_unreference(&obj->base);
  2788. unlock:
  2789. mutex_unlock(&dev->struct_mutex);
  2790. return ret;
  2791. }
  2792. int
  2793. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2794. struct drm_file *file)
  2795. {
  2796. struct drm_i915_gem_busy *args = data;
  2797. struct drm_i915_gem_object *obj;
  2798. int ret;
  2799. ret = i915_mutex_lock_interruptible(dev);
  2800. if (ret)
  2801. return ret;
  2802. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2803. if (&obj->base == NULL) {
  2804. ret = -ENOENT;
  2805. goto unlock;
  2806. }
  2807. /* Count all active objects as busy, even if they are currently not used
  2808. * by the gpu. Users of this interface expect objects to eventually
  2809. * become non-busy without any further actions, therefore emit any
  2810. * necessary flushes here.
  2811. */
  2812. ret = i915_gem_object_flush_active(obj);
  2813. args->busy = obj->active;
  2814. drm_gem_object_unreference(&obj->base);
  2815. unlock:
  2816. mutex_unlock(&dev->struct_mutex);
  2817. return ret;
  2818. }
  2819. int
  2820. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2821. struct drm_file *file_priv)
  2822. {
  2823. return i915_gem_ring_throttle(dev, file_priv);
  2824. }
  2825. int
  2826. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2827. struct drm_file *file_priv)
  2828. {
  2829. struct drm_i915_gem_madvise *args = data;
  2830. struct drm_i915_gem_object *obj;
  2831. int ret;
  2832. switch (args->madv) {
  2833. case I915_MADV_DONTNEED:
  2834. case I915_MADV_WILLNEED:
  2835. break;
  2836. default:
  2837. return -EINVAL;
  2838. }
  2839. ret = i915_mutex_lock_interruptible(dev);
  2840. if (ret)
  2841. return ret;
  2842. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2843. if (&obj->base == NULL) {
  2844. ret = -ENOENT;
  2845. goto unlock;
  2846. }
  2847. if (obj->pin_count) {
  2848. ret = -EINVAL;
  2849. goto out;
  2850. }
  2851. if (obj->madv != __I915_MADV_PURGED)
  2852. obj->madv = args->madv;
  2853. /* if the object is no longer bound, discard its backing storage */
  2854. if (i915_gem_object_is_purgeable(obj) &&
  2855. obj->gtt_space == NULL)
  2856. i915_gem_object_truncate(obj);
  2857. args->retained = obj->madv != __I915_MADV_PURGED;
  2858. out:
  2859. drm_gem_object_unreference(&obj->base);
  2860. unlock:
  2861. mutex_unlock(&dev->struct_mutex);
  2862. return ret;
  2863. }
  2864. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2865. size_t size)
  2866. {
  2867. struct drm_i915_private *dev_priv = dev->dev_private;
  2868. struct drm_i915_gem_object *obj;
  2869. struct address_space *mapping;
  2870. u32 mask;
  2871. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2872. if (obj == NULL)
  2873. return NULL;
  2874. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2875. kfree(obj);
  2876. return NULL;
  2877. }
  2878. mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
  2879. if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
  2880. /* 965gm cannot relocate objects above 4GiB. */
  2881. mask &= ~__GFP_HIGHMEM;
  2882. mask |= __GFP_DMA32;
  2883. }
  2884. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2885. mapping_set_gfp_mask(mapping, mask);
  2886. i915_gem_info_add_obj(dev_priv, size);
  2887. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2888. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2889. if (HAS_LLC(dev)) {
  2890. /* On some devices, we can have the GPU use the LLC (the CPU
  2891. * cache) for about a 10% performance improvement
  2892. * compared to uncached. Graphics requests other than
  2893. * display scanout are coherent with the CPU in
  2894. * accessing this cache. This means in this mode we
  2895. * don't need to clflush on the CPU side, and on the
  2896. * GPU side we only need to flush internal caches to
  2897. * get data visible to the CPU.
  2898. *
  2899. * However, we maintain the display planes as UC, and so
  2900. * need to rebind when first used as such.
  2901. */
  2902. obj->cache_level = I915_CACHE_LLC;
  2903. } else
  2904. obj->cache_level = I915_CACHE_NONE;
  2905. obj->base.driver_private = NULL;
  2906. obj->fence_reg = I915_FENCE_REG_NONE;
  2907. INIT_LIST_HEAD(&obj->mm_list);
  2908. INIT_LIST_HEAD(&obj->gtt_list);
  2909. INIT_LIST_HEAD(&obj->ring_list);
  2910. INIT_LIST_HEAD(&obj->exec_list);
  2911. INIT_LIST_HEAD(&obj->gpu_write_list);
  2912. obj->madv = I915_MADV_WILLNEED;
  2913. /* Avoid an unnecessary call to unbind on the first bind. */
  2914. obj->map_and_fenceable = true;
  2915. return obj;
  2916. }
  2917. int i915_gem_init_object(struct drm_gem_object *obj)
  2918. {
  2919. BUG();
  2920. return 0;
  2921. }
  2922. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2923. {
  2924. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2925. struct drm_device *dev = obj->base.dev;
  2926. drm_i915_private_t *dev_priv = dev->dev_private;
  2927. trace_i915_gem_object_destroy(obj);
  2928. if (gem_obj->import_attach)
  2929. drm_prime_gem_destroy(gem_obj, obj->sg_table);
  2930. if (obj->phys_obj)
  2931. i915_gem_detach_phys_object(dev, obj);
  2932. obj->pin_count = 0;
  2933. if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
  2934. bool was_interruptible;
  2935. was_interruptible = dev_priv->mm.interruptible;
  2936. dev_priv->mm.interruptible = false;
  2937. WARN_ON(i915_gem_object_unbind(obj));
  2938. dev_priv->mm.interruptible = was_interruptible;
  2939. }
  2940. if (obj->base.map_list.map)
  2941. drm_gem_free_mmap_offset(&obj->base);
  2942. drm_gem_object_release(&obj->base);
  2943. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2944. kfree(obj->bit_17);
  2945. kfree(obj);
  2946. }
  2947. int
  2948. i915_gem_idle(struct drm_device *dev)
  2949. {
  2950. drm_i915_private_t *dev_priv = dev->dev_private;
  2951. int ret;
  2952. mutex_lock(&dev->struct_mutex);
  2953. if (dev_priv->mm.suspended) {
  2954. mutex_unlock(&dev->struct_mutex);
  2955. return 0;
  2956. }
  2957. ret = i915_gpu_idle(dev);
  2958. if (ret) {
  2959. mutex_unlock(&dev->struct_mutex);
  2960. return ret;
  2961. }
  2962. i915_gem_retire_requests(dev);
  2963. /* Under UMS, be paranoid and evict. */
  2964. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  2965. i915_gem_evict_everything(dev, false);
  2966. i915_gem_reset_fences(dev);
  2967. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2968. * We need to replace this with a semaphore, or something.
  2969. * And not confound mm.suspended!
  2970. */
  2971. dev_priv->mm.suspended = 1;
  2972. del_timer_sync(&dev_priv->hangcheck_timer);
  2973. i915_kernel_lost_context(dev);
  2974. i915_gem_cleanup_ringbuffer(dev);
  2975. mutex_unlock(&dev->struct_mutex);
  2976. /* Cancel the retire work handler, which should be idle now. */
  2977. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2978. return 0;
  2979. }
  2980. void i915_gem_l3_remap(struct drm_device *dev)
  2981. {
  2982. drm_i915_private_t *dev_priv = dev->dev_private;
  2983. u32 misccpctl;
  2984. int i;
  2985. if (!IS_IVYBRIDGE(dev))
  2986. return;
  2987. if (!dev_priv->mm.l3_remap_info)
  2988. return;
  2989. misccpctl = I915_READ(GEN7_MISCCPCTL);
  2990. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  2991. POSTING_READ(GEN7_MISCCPCTL);
  2992. for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
  2993. u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
  2994. if (remap && remap != dev_priv->mm.l3_remap_info[i/4])
  2995. DRM_DEBUG("0x%x was already programmed to %x\n",
  2996. GEN7_L3LOG_BASE + i, remap);
  2997. if (remap && !dev_priv->mm.l3_remap_info[i/4])
  2998. DRM_DEBUG_DRIVER("Clearing remapped register\n");
  2999. I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->mm.l3_remap_info[i/4]);
  3000. }
  3001. /* Make sure all the writes land before disabling dop clock gating */
  3002. POSTING_READ(GEN7_L3LOG_BASE);
  3003. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  3004. }
  3005. void i915_gem_init_swizzling(struct drm_device *dev)
  3006. {
  3007. drm_i915_private_t *dev_priv = dev->dev_private;
  3008. if (INTEL_INFO(dev)->gen < 5 ||
  3009. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  3010. return;
  3011. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  3012. DISP_TILE_SURFACE_SWIZZLING);
  3013. if (IS_GEN5(dev))
  3014. return;
  3015. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3016. if (IS_GEN6(dev))
  3017. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3018. else
  3019. I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3020. }
  3021. void i915_gem_init_ppgtt(struct drm_device *dev)
  3022. {
  3023. drm_i915_private_t *dev_priv = dev->dev_private;
  3024. uint32_t pd_offset;
  3025. struct intel_ring_buffer *ring;
  3026. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  3027. uint32_t __iomem *pd_addr;
  3028. uint32_t pd_entry;
  3029. int i;
  3030. if (!dev_priv->mm.aliasing_ppgtt)
  3031. return;
  3032. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3033. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3034. dma_addr_t pt_addr;
  3035. if (dev_priv->mm.gtt->needs_dmar)
  3036. pt_addr = ppgtt->pt_dma_addr[i];
  3037. else
  3038. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3039. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3040. pd_entry |= GEN6_PDE_VALID;
  3041. writel(pd_entry, pd_addr + i);
  3042. }
  3043. readl(pd_addr);
  3044. pd_offset = ppgtt->pd_offset;
  3045. pd_offset /= 64; /* in cachelines, */
  3046. pd_offset <<= 16;
  3047. if (INTEL_INFO(dev)->gen == 6) {
  3048. uint32_t ecochk, gab_ctl, ecobits;
  3049. ecobits = I915_READ(GAC_ECO_BITS);
  3050. I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
  3051. gab_ctl = I915_READ(GAB_CTL);
  3052. I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
  3053. ecochk = I915_READ(GAM_ECOCHK);
  3054. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3055. ECOCHK_PPGTT_CACHE64B);
  3056. I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3057. } else if (INTEL_INFO(dev)->gen >= 7) {
  3058. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3059. /* GFX_MODE is per-ring on gen7+ */
  3060. }
  3061. for_each_ring(ring, dev_priv, i) {
  3062. if (INTEL_INFO(dev)->gen >= 7)
  3063. I915_WRITE(RING_MODE_GEN7(ring),
  3064. _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
  3065. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3066. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3067. }
  3068. }
  3069. int
  3070. i915_gem_init_hw(struct drm_device *dev)
  3071. {
  3072. drm_i915_private_t *dev_priv = dev->dev_private;
  3073. int ret;
  3074. if (!intel_enable_gtt())
  3075. return -EIO;
  3076. i915_gem_l3_remap(dev);
  3077. i915_gem_init_swizzling(dev);
  3078. ret = intel_init_render_ring_buffer(dev);
  3079. if (ret)
  3080. return ret;
  3081. if (HAS_BSD(dev)) {
  3082. ret = intel_init_bsd_ring_buffer(dev);
  3083. if (ret)
  3084. goto cleanup_render_ring;
  3085. }
  3086. if (HAS_BLT(dev)) {
  3087. ret = intel_init_blt_ring_buffer(dev);
  3088. if (ret)
  3089. goto cleanup_bsd_ring;
  3090. }
  3091. dev_priv->next_seqno = 1;
  3092. /*
  3093. * XXX: There was some w/a described somewhere suggesting loading
  3094. * contexts before PPGTT.
  3095. */
  3096. i915_gem_context_init(dev);
  3097. i915_gem_init_ppgtt(dev);
  3098. return 0;
  3099. cleanup_bsd_ring:
  3100. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3101. cleanup_render_ring:
  3102. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3103. return ret;
  3104. }
  3105. static bool
  3106. intel_enable_ppgtt(struct drm_device *dev)
  3107. {
  3108. if (i915_enable_ppgtt >= 0)
  3109. return i915_enable_ppgtt;
  3110. #ifdef CONFIG_INTEL_IOMMU
  3111. /* Disable ppgtt on SNB if VT-d is on. */
  3112. if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
  3113. return false;
  3114. #endif
  3115. return true;
  3116. }
  3117. int i915_gem_init(struct drm_device *dev)
  3118. {
  3119. struct drm_i915_private *dev_priv = dev->dev_private;
  3120. unsigned long gtt_size, mappable_size;
  3121. int ret;
  3122. gtt_size = dev_priv->mm.gtt->gtt_total_entries << PAGE_SHIFT;
  3123. mappable_size = dev_priv->mm.gtt->gtt_mappable_entries << PAGE_SHIFT;
  3124. mutex_lock(&dev->struct_mutex);
  3125. if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
  3126. /* PPGTT pdes are stolen from global gtt ptes, so shrink the
  3127. * aperture accordingly when using aliasing ppgtt. */
  3128. gtt_size -= I915_PPGTT_PD_ENTRIES*PAGE_SIZE;
  3129. i915_gem_init_global_gtt(dev, 0, mappable_size, gtt_size);
  3130. ret = i915_gem_init_aliasing_ppgtt(dev);
  3131. if (ret) {
  3132. mutex_unlock(&dev->struct_mutex);
  3133. return ret;
  3134. }
  3135. } else {
  3136. /* Let GEM Manage all of the aperture.
  3137. *
  3138. * However, leave one page at the end still bound to the scratch
  3139. * page. There are a number of places where the hardware
  3140. * apparently prefetches past the end of the object, and we've
  3141. * seen multiple hangs with the GPU head pointer stuck in a
  3142. * batchbuffer bound at the last page of the aperture. One page
  3143. * should be enough to keep any prefetching inside of the
  3144. * aperture.
  3145. */
  3146. i915_gem_init_global_gtt(dev, 0, mappable_size,
  3147. gtt_size);
  3148. }
  3149. ret = i915_gem_init_hw(dev);
  3150. mutex_unlock(&dev->struct_mutex);
  3151. if (ret) {
  3152. i915_gem_cleanup_aliasing_ppgtt(dev);
  3153. return ret;
  3154. }
  3155. /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
  3156. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3157. dev_priv->dri1.allow_batchbuffer = 1;
  3158. return 0;
  3159. }
  3160. void
  3161. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3162. {
  3163. drm_i915_private_t *dev_priv = dev->dev_private;
  3164. struct intel_ring_buffer *ring;
  3165. int i;
  3166. for_each_ring(ring, dev_priv, i)
  3167. intel_cleanup_ring_buffer(ring);
  3168. }
  3169. int
  3170. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3171. struct drm_file *file_priv)
  3172. {
  3173. drm_i915_private_t *dev_priv = dev->dev_private;
  3174. int ret;
  3175. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3176. return 0;
  3177. if (atomic_read(&dev_priv->mm.wedged)) {
  3178. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3179. atomic_set(&dev_priv->mm.wedged, 0);
  3180. }
  3181. mutex_lock(&dev->struct_mutex);
  3182. dev_priv->mm.suspended = 0;
  3183. ret = i915_gem_init_hw(dev);
  3184. if (ret != 0) {
  3185. mutex_unlock(&dev->struct_mutex);
  3186. return ret;
  3187. }
  3188. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3189. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3190. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3191. mutex_unlock(&dev->struct_mutex);
  3192. ret = drm_irq_install(dev);
  3193. if (ret)
  3194. goto cleanup_ringbuffer;
  3195. return 0;
  3196. cleanup_ringbuffer:
  3197. mutex_lock(&dev->struct_mutex);
  3198. i915_gem_cleanup_ringbuffer(dev);
  3199. dev_priv->mm.suspended = 1;
  3200. mutex_unlock(&dev->struct_mutex);
  3201. return ret;
  3202. }
  3203. int
  3204. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3205. struct drm_file *file_priv)
  3206. {
  3207. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3208. return 0;
  3209. drm_irq_uninstall(dev);
  3210. return i915_gem_idle(dev);
  3211. }
  3212. void
  3213. i915_gem_lastclose(struct drm_device *dev)
  3214. {
  3215. int ret;
  3216. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3217. return;
  3218. ret = i915_gem_idle(dev);
  3219. if (ret)
  3220. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3221. }
  3222. static void
  3223. init_ring_lists(struct intel_ring_buffer *ring)
  3224. {
  3225. INIT_LIST_HEAD(&ring->active_list);
  3226. INIT_LIST_HEAD(&ring->request_list);
  3227. INIT_LIST_HEAD(&ring->gpu_write_list);
  3228. }
  3229. void
  3230. i915_gem_load(struct drm_device *dev)
  3231. {
  3232. int i;
  3233. drm_i915_private_t *dev_priv = dev->dev_private;
  3234. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3235. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3236. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3237. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3238. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3239. for (i = 0; i < I915_NUM_RINGS; i++)
  3240. init_ring_lists(&dev_priv->ring[i]);
  3241. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3242. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3243. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3244. i915_gem_retire_work_handler);
  3245. init_completion(&dev_priv->error_completion);
  3246. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3247. if (IS_GEN3(dev)) {
  3248. I915_WRITE(MI_ARB_STATE,
  3249. _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  3250. }
  3251. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3252. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3253. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3254. dev_priv->fence_reg_start = 3;
  3255. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3256. dev_priv->num_fence_regs = 16;
  3257. else
  3258. dev_priv->num_fence_regs = 8;
  3259. /* Initialize fence registers to zero */
  3260. i915_gem_reset_fences(dev);
  3261. i915_gem_detect_bit_6_swizzle(dev);
  3262. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3263. dev_priv->mm.interruptible = true;
  3264. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3265. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3266. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3267. }
  3268. /*
  3269. * Create a physically contiguous memory object for this object
  3270. * e.g. for cursor + overlay regs
  3271. */
  3272. static int i915_gem_init_phys_object(struct drm_device *dev,
  3273. int id, int size, int align)
  3274. {
  3275. drm_i915_private_t *dev_priv = dev->dev_private;
  3276. struct drm_i915_gem_phys_object *phys_obj;
  3277. int ret;
  3278. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3279. return 0;
  3280. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3281. if (!phys_obj)
  3282. return -ENOMEM;
  3283. phys_obj->id = id;
  3284. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3285. if (!phys_obj->handle) {
  3286. ret = -ENOMEM;
  3287. goto kfree_obj;
  3288. }
  3289. #ifdef CONFIG_X86
  3290. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3291. #endif
  3292. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3293. return 0;
  3294. kfree_obj:
  3295. kfree(phys_obj);
  3296. return ret;
  3297. }
  3298. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3299. {
  3300. drm_i915_private_t *dev_priv = dev->dev_private;
  3301. struct drm_i915_gem_phys_object *phys_obj;
  3302. if (!dev_priv->mm.phys_objs[id - 1])
  3303. return;
  3304. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3305. if (phys_obj->cur_obj) {
  3306. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3307. }
  3308. #ifdef CONFIG_X86
  3309. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3310. #endif
  3311. drm_pci_free(dev, phys_obj->handle);
  3312. kfree(phys_obj);
  3313. dev_priv->mm.phys_objs[id - 1] = NULL;
  3314. }
  3315. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3316. {
  3317. int i;
  3318. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3319. i915_gem_free_phys_object(dev, i);
  3320. }
  3321. void i915_gem_detach_phys_object(struct drm_device *dev,
  3322. struct drm_i915_gem_object *obj)
  3323. {
  3324. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3325. char *vaddr;
  3326. int i;
  3327. int page_count;
  3328. if (!obj->phys_obj)
  3329. return;
  3330. vaddr = obj->phys_obj->handle->vaddr;
  3331. page_count = obj->base.size / PAGE_SIZE;
  3332. for (i = 0; i < page_count; i++) {
  3333. struct page *page = shmem_read_mapping_page(mapping, i);
  3334. if (!IS_ERR(page)) {
  3335. char *dst = kmap_atomic(page);
  3336. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3337. kunmap_atomic(dst);
  3338. drm_clflush_pages(&page, 1);
  3339. set_page_dirty(page);
  3340. mark_page_accessed(page);
  3341. page_cache_release(page);
  3342. }
  3343. }
  3344. intel_gtt_chipset_flush();
  3345. obj->phys_obj->cur_obj = NULL;
  3346. obj->phys_obj = NULL;
  3347. }
  3348. int
  3349. i915_gem_attach_phys_object(struct drm_device *dev,
  3350. struct drm_i915_gem_object *obj,
  3351. int id,
  3352. int align)
  3353. {
  3354. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3355. drm_i915_private_t *dev_priv = dev->dev_private;
  3356. int ret = 0;
  3357. int page_count;
  3358. int i;
  3359. if (id > I915_MAX_PHYS_OBJECT)
  3360. return -EINVAL;
  3361. if (obj->phys_obj) {
  3362. if (obj->phys_obj->id == id)
  3363. return 0;
  3364. i915_gem_detach_phys_object(dev, obj);
  3365. }
  3366. /* create a new object */
  3367. if (!dev_priv->mm.phys_objs[id - 1]) {
  3368. ret = i915_gem_init_phys_object(dev, id,
  3369. obj->base.size, align);
  3370. if (ret) {
  3371. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3372. id, obj->base.size);
  3373. return ret;
  3374. }
  3375. }
  3376. /* bind to the object */
  3377. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3378. obj->phys_obj->cur_obj = obj;
  3379. page_count = obj->base.size / PAGE_SIZE;
  3380. for (i = 0; i < page_count; i++) {
  3381. struct page *page;
  3382. char *dst, *src;
  3383. page = shmem_read_mapping_page(mapping, i);
  3384. if (IS_ERR(page))
  3385. return PTR_ERR(page);
  3386. src = kmap_atomic(page);
  3387. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3388. memcpy(dst, src, PAGE_SIZE);
  3389. kunmap_atomic(src);
  3390. mark_page_accessed(page);
  3391. page_cache_release(page);
  3392. }
  3393. return 0;
  3394. }
  3395. static int
  3396. i915_gem_phys_pwrite(struct drm_device *dev,
  3397. struct drm_i915_gem_object *obj,
  3398. struct drm_i915_gem_pwrite *args,
  3399. struct drm_file *file_priv)
  3400. {
  3401. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3402. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3403. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3404. unsigned long unwritten;
  3405. /* The physical object once assigned is fixed for the lifetime
  3406. * of the obj, so we can safely drop the lock and continue
  3407. * to access vaddr.
  3408. */
  3409. mutex_unlock(&dev->struct_mutex);
  3410. unwritten = copy_from_user(vaddr, user_data, args->size);
  3411. mutex_lock(&dev->struct_mutex);
  3412. if (unwritten)
  3413. return -EFAULT;
  3414. }
  3415. intel_gtt_chipset_flush();
  3416. return 0;
  3417. }
  3418. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3419. {
  3420. struct drm_i915_file_private *file_priv = file->driver_priv;
  3421. /* Clean up our request list when the client is going away, so that
  3422. * later retire_requests won't dereference our soon-to-be-gone
  3423. * file_priv.
  3424. */
  3425. spin_lock(&file_priv->mm.lock);
  3426. while (!list_empty(&file_priv->mm.request_list)) {
  3427. struct drm_i915_gem_request *request;
  3428. request = list_first_entry(&file_priv->mm.request_list,
  3429. struct drm_i915_gem_request,
  3430. client_list);
  3431. list_del(&request->client_list);
  3432. request->file_priv = NULL;
  3433. }
  3434. spin_unlock(&file_priv->mm.lock);
  3435. }
  3436. static int
  3437. i915_gpu_is_active(struct drm_device *dev)
  3438. {
  3439. drm_i915_private_t *dev_priv = dev->dev_private;
  3440. int lists_empty;
  3441. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3442. list_empty(&dev_priv->mm.active_list);
  3443. return !lists_empty;
  3444. }
  3445. static int
  3446. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3447. {
  3448. struct drm_i915_private *dev_priv =
  3449. container_of(shrinker,
  3450. struct drm_i915_private,
  3451. mm.inactive_shrinker);
  3452. struct drm_device *dev = dev_priv->dev;
  3453. struct drm_i915_gem_object *obj, *next;
  3454. int nr_to_scan = sc->nr_to_scan;
  3455. int cnt;
  3456. if (!mutex_trylock(&dev->struct_mutex))
  3457. return 0;
  3458. /* "fast-path" to count number of available objects */
  3459. if (nr_to_scan == 0) {
  3460. cnt = 0;
  3461. list_for_each_entry(obj,
  3462. &dev_priv->mm.inactive_list,
  3463. mm_list)
  3464. cnt++;
  3465. mutex_unlock(&dev->struct_mutex);
  3466. return cnt / 100 * sysctl_vfs_cache_pressure;
  3467. }
  3468. rescan:
  3469. /* first scan for clean buffers */
  3470. i915_gem_retire_requests(dev);
  3471. list_for_each_entry_safe(obj, next,
  3472. &dev_priv->mm.inactive_list,
  3473. mm_list) {
  3474. if (i915_gem_object_is_purgeable(obj)) {
  3475. if (i915_gem_object_unbind(obj) == 0 &&
  3476. --nr_to_scan == 0)
  3477. break;
  3478. }
  3479. }
  3480. /* second pass, evict/count anything still on the inactive list */
  3481. cnt = 0;
  3482. list_for_each_entry_safe(obj, next,
  3483. &dev_priv->mm.inactive_list,
  3484. mm_list) {
  3485. if (nr_to_scan &&
  3486. i915_gem_object_unbind(obj) == 0)
  3487. nr_to_scan--;
  3488. else
  3489. cnt++;
  3490. }
  3491. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3492. /*
  3493. * We are desperate for pages, so as a last resort, wait
  3494. * for the GPU to finish and discard whatever we can.
  3495. * This has a dramatic impact to reduce the number of
  3496. * OOM-killer events whilst running the GPU aggressively.
  3497. */
  3498. if (i915_gpu_idle(dev) == 0)
  3499. goto rescan;
  3500. }
  3501. mutex_unlock(&dev->struct_mutex);
  3502. return cnt / 100 * sysctl_vfs_cache_pressure;
  3503. }