af9033.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. struct af9033_state {
  23. struct i2c_adapter *i2c;
  24. struct dvb_frontend fe;
  25. struct af9033_config cfg;
  26. u32 frequency;
  27. u32 bandwidth_hz;
  28. bool ts_mode_parallel;
  29. bool ts_mode_serial;
  30. };
  31. /* write multiple registers */
  32. static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
  33. int len)
  34. {
  35. int ret;
  36. u8 buf[3 + len];
  37. struct i2c_msg msg[1] = {
  38. {
  39. .addr = state->cfg.i2c_addr,
  40. .flags = 0,
  41. .len = sizeof(buf),
  42. .buf = buf,
  43. }
  44. };
  45. buf[0] = (reg >> 16) & 0xff;
  46. buf[1] = (reg >> 8) & 0xff;
  47. buf[2] = (reg >> 0) & 0xff;
  48. memcpy(&buf[3], val, len);
  49. ret = i2c_transfer(state->i2c, msg, 1);
  50. if (ret == 1) {
  51. ret = 0;
  52. } else {
  53. printk(KERN_WARNING "%s: i2c wr failed=%d reg=%06x len=%d\n",
  54. __func__, ret, reg, len);
  55. ret = -EREMOTEIO;
  56. }
  57. return ret;
  58. }
  59. /* read multiple registers */
  60. static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
  61. {
  62. int ret;
  63. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  64. (reg >> 0) & 0xff };
  65. struct i2c_msg msg[2] = {
  66. {
  67. .addr = state->cfg.i2c_addr,
  68. .flags = 0,
  69. .len = sizeof(buf),
  70. .buf = buf
  71. }, {
  72. .addr = state->cfg.i2c_addr,
  73. .flags = I2C_M_RD,
  74. .len = len,
  75. .buf = val
  76. }
  77. };
  78. ret = i2c_transfer(state->i2c, msg, 2);
  79. if (ret == 2) {
  80. ret = 0;
  81. } else {
  82. printk(KERN_WARNING "%s: i2c rd failed=%d reg=%06x len=%d\n",
  83. __func__, ret, reg, len);
  84. ret = -EREMOTEIO;
  85. }
  86. return ret;
  87. }
  88. /* write single register */
  89. static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
  90. {
  91. return af9033_wr_regs(state, reg, &val, 1);
  92. }
  93. /* read single register */
  94. static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
  95. {
  96. return af9033_rd_regs(state, reg, val, 1);
  97. }
  98. /* write single register with mask */
  99. static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
  100. u8 mask)
  101. {
  102. int ret;
  103. u8 tmp;
  104. /* no need for read if whole reg is written */
  105. if (mask != 0xff) {
  106. ret = af9033_rd_regs(state, reg, &tmp, 1);
  107. if (ret)
  108. return ret;
  109. val &= mask;
  110. tmp &= ~mask;
  111. val |= tmp;
  112. }
  113. return af9033_wr_regs(state, reg, &val, 1);
  114. }
  115. /* read single register with mask */
  116. static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
  117. u8 mask)
  118. {
  119. int ret, i;
  120. u8 tmp;
  121. ret = af9033_rd_regs(state, reg, &tmp, 1);
  122. if (ret)
  123. return ret;
  124. tmp &= mask;
  125. /* find position of the first bit */
  126. for (i = 0; i < 8; i++) {
  127. if ((mask >> i) & 0x01)
  128. break;
  129. }
  130. *val = tmp >> i;
  131. return 0;
  132. }
  133. static u32 af9033_div(u32 a, u32 b, u32 x)
  134. {
  135. u32 r = 0, c = 0, i;
  136. pr_debug("%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  137. if (a > b) {
  138. c = a / b;
  139. a = a - c * b;
  140. }
  141. for (i = 0; i < x; i++) {
  142. if (a >= b) {
  143. r += 1;
  144. a -= b;
  145. }
  146. a <<= 1;
  147. r <<= 1;
  148. }
  149. r = (c << (u32)x) + r;
  150. pr_debug("%s: a=%d b=%d x=%d r=%d r=%x\n", __func__, a, b, x, r, r);
  151. return r;
  152. }
  153. static void af9033_release(struct dvb_frontend *fe)
  154. {
  155. struct af9033_state *state = fe->demodulator_priv;
  156. kfree(state);
  157. }
  158. static int af9033_init(struct dvb_frontend *fe)
  159. {
  160. struct af9033_state *state = fe->demodulator_priv;
  161. int ret, i, len;
  162. const struct reg_val *init;
  163. u8 buf[4];
  164. u32 adc_cw, clock_cw;
  165. struct reg_val_mask tab[] = {
  166. { 0x80fb24, 0x00, 0x08 },
  167. { 0x80004c, 0x00, 0xff },
  168. { 0x00f641, state->cfg.tuner, 0xff },
  169. { 0x80f5ca, 0x01, 0x01 },
  170. { 0x80f715, 0x01, 0x01 },
  171. { 0x00f41f, 0x04, 0x04 },
  172. { 0x00f41a, 0x01, 0x01 },
  173. { 0x80f731, 0x00, 0x01 },
  174. { 0x00d91e, 0x00, 0x01 },
  175. { 0x00d919, 0x00, 0x01 },
  176. { 0x80f732, 0x00, 0x01 },
  177. { 0x00d91f, 0x00, 0x01 },
  178. { 0x00d91a, 0x00, 0x01 },
  179. { 0x80f730, 0x00, 0x01 },
  180. { 0x80f778, 0x00, 0xff },
  181. { 0x80f73c, 0x01, 0x01 },
  182. { 0x80f776, 0x00, 0x01 },
  183. { 0x00d8fd, 0x01, 0xff },
  184. { 0x00d830, 0x01, 0xff },
  185. { 0x00d831, 0x00, 0xff },
  186. { 0x00d832, 0x00, 0xff },
  187. { 0x80f985, state->ts_mode_serial, 0x01 },
  188. { 0x80f986, state->ts_mode_parallel, 0x01 },
  189. { 0x00d827, 0x00, 0xff },
  190. { 0x00d829, 0x00, 0xff },
  191. };
  192. /* program clock control */
  193. clock_cw = af9033_div(state->cfg.clock, 1000000ul, 19ul);
  194. buf[0] = (clock_cw >> 0) & 0xff;
  195. buf[1] = (clock_cw >> 8) & 0xff;
  196. buf[2] = (clock_cw >> 16) & 0xff;
  197. buf[3] = (clock_cw >> 24) & 0xff;
  198. pr_debug("%s: clock=%d clock_cw=%08x\n", __func__, state->cfg.clock,
  199. clock_cw);
  200. ret = af9033_wr_regs(state, 0x800025, buf, 4);
  201. if (ret < 0)
  202. goto err;
  203. /* program ADC control */
  204. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  205. if (clock_adc_lut[i].clock == state->cfg.clock)
  206. break;
  207. }
  208. adc_cw = af9033_div(clock_adc_lut[i].adc, 1000000ul, 19ul);
  209. buf[0] = (adc_cw >> 0) & 0xff;
  210. buf[1] = (adc_cw >> 8) & 0xff;
  211. buf[2] = (adc_cw >> 16) & 0xff;
  212. pr_debug("%s: adc=%d adc_cw=%06x\n", __func__, clock_adc_lut[i].adc,
  213. adc_cw);
  214. ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
  215. if (ret < 0)
  216. goto err;
  217. /* program register table */
  218. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  219. ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
  220. tab[i].mask);
  221. if (ret < 0)
  222. goto err;
  223. }
  224. /* settings for TS interface */
  225. if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
  226. ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
  227. if (ret < 0)
  228. goto err;
  229. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
  230. if (ret < 0)
  231. goto err;
  232. } else {
  233. ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
  234. if (ret < 0)
  235. goto err;
  236. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
  237. if (ret < 0)
  238. goto err;
  239. }
  240. /* load OFSM settings */
  241. pr_debug("%s: load ofsm settings\n", __func__);
  242. len = ARRAY_SIZE(ofsm_init);
  243. init = ofsm_init;
  244. for (i = 0; i < len; i++) {
  245. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  246. if (ret < 0)
  247. goto err;
  248. }
  249. /* load tuner specific settings */
  250. pr_debug("%s: load tuner specific settings\n",
  251. __func__);
  252. switch (state->cfg.tuner) {
  253. case AF9033_TUNER_TUA9001:
  254. len = ARRAY_SIZE(tuner_init_tua9001);
  255. init = tuner_init_tua9001;
  256. break;
  257. case AF9033_TUNER_FC0011:
  258. len = ARRAY_SIZE(tuner_init_fc0011);
  259. init = tuner_init_fc0011;
  260. break;
  261. case AF9033_TUNER_MXL5007T:
  262. len = ARRAY_SIZE(tuner_init_mxl5007t);
  263. init = tuner_init_mxl5007t;
  264. break;
  265. case AF9033_TUNER_TDA18218:
  266. len = ARRAY_SIZE(tuner_init_tda18218);
  267. init = tuner_init_tda18218;
  268. break;
  269. default:
  270. pr_debug("%s: unsupported tuner ID=%d\n", __func__,
  271. state->cfg.tuner);
  272. ret = -ENODEV;
  273. goto err;
  274. }
  275. for (i = 0; i < len; i++) {
  276. ret = af9033_wr_reg(state, init[i].reg, init[i].val);
  277. if (ret < 0)
  278. goto err;
  279. }
  280. state->bandwidth_hz = 0; /* force to program all parameters */
  281. return 0;
  282. err:
  283. pr_debug("%s: failed=%d\n", __func__, ret);
  284. return ret;
  285. }
  286. static int af9033_sleep(struct dvb_frontend *fe)
  287. {
  288. struct af9033_state *state = fe->demodulator_priv;
  289. int ret, i;
  290. u8 tmp;
  291. ret = af9033_wr_reg(state, 0x80004c, 1);
  292. if (ret < 0)
  293. goto err;
  294. ret = af9033_wr_reg(state, 0x800000, 0);
  295. if (ret < 0)
  296. goto err;
  297. for (i = 100, tmp = 1; i && tmp; i--) {
  298. ret = af9033_rd_reg(state, 0x80004c, &tmp);
  299. if (ret < 0)
  300. goto err;
  301. usleep_range(200, 10000);
  302. }
  303. pr_debug("%s: loop=%d\n", __func__, i);
  304. if (i == 0) {
  305. ret = -ETIMEDOUT;
  306. goto err;
  307. }
  308. ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
  309. if (ret < 0)
  310. goto err;
  311. /* prevent current leak (?) */
  312. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  313. /* enable parallel TS */
  314. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  315. if (ret < 0)
  316. goto err;
  317. ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
  318. if (ret < 0)
  319. goto err;
  320. }
  321. return 0;
  322. err:
  323. pr_debug("%s: failed=%d\n", __func__, ret);
  324. return ret;
  325. }
  326. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  327. struct dvb_frontend_tune_settings *fesettings)
  328. {
  329. fesettings->min_delay_ms = 800;
  330. fesettings->step_size = 0;
  331. fesettings->max_drift = 0;
  332. return 0;
  333. }
  334. static int af9033_set_frontend(struct dvb_frontend *fe)
  335. {
  336. struct af9033_state *state = fe->demodulator_priv;
  337. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  338. int ret, i, spec_inv;
  339. u8 tmp, buf[3], bandwidth_reg_val;
  340. u32 if_frequency, freq_cw, adc_freq;
  341. pr_debug("%s: frequency=%d bandwidth_hz=%d\n", __func__, c->frequency,
  342. c->bandwidth_hz);
  343. state->frequency = c->frequency;
  344. /* check bandwidth */
  345. switch (c->bandwidth_hz) {
  346. case 6000000:
  347. bandwidth_reg_val = 0x00;
  348. break;
  349. case 7000000:
  350. bandwidth_reg_val = 0x01;
  351. break;
  352. case 8000000:
  353. bandwidth_reg_val = 0x02;
  354. break;
  355. default:
  356. pr_debug("%s: invalid bandwidth_hz\n", __func__);
  357. ret = -EINVAL;
  358. goto err;
  359. }
  360. /* program tuner */
  361. if (fe->ops.tuner_ops.set_params)
  362. fe->ops.tuner_ops.set_params(fe);
  363. /* program CFOE coefficients */
  364. if (c->bandwidth_hz != state->bandwidth_hz) {
  365. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  366. if (coeff_lut[i].clock == state->cfg.clock &&
  367. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  368. break;
  369. }
  370. }
  371. ret = af9033_wr_regs(state, 0x800001,
  372. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  373. }
  374. /* program frequency control */
  375. if (c->bandwidth_hz != state->bandwidth_hz) {
  376. spec_inv = state->cfg.spec_inv ? -1 : 1;
  377. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  378. if (clock_adc_lut[i].clock == state->cfg.clock)
  379. break;
  380. }
  381. adc_freq = clock_adc_lut[i].adc;
  382. /* get used IF frequency */
  383. if (fe->ops.tuner_ops.get_if_frequency)
  384. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  385. else
  386. if_frequency = 0;
  387. while (if_frequency > (adc_freq / 2))
  388. if_frequency -= adc_freq;
  389. if (if_frequency >= 0)
  390. spec_inv *= -1;
  391. else
  392. if_frequency *= -1;
  393. freq_cw = af9033_div(if_frequency, adc_freq, 23ul);
  394. if (spec_inv == -1)
  395. freq_cw *= -1;
  396. /* get adc multiplies */
  397. ret = af9033_rd_reg(state, 0x800045, &tmp);
  398. if (ret < 0)
  399. goto err;
  400. if (tmp == 1)
  401. freq_cw /= 2;
  402. buf[0] = (freq_cw >> 0) & 0xff;
  403. buf[1] = (freq_cw >> 8) & 0xff;
  404. buf[2] = (freq_cw >> 16) & 0x7f;
  405. ret = af9033_wr_regs(state, 0x800029, buf, 3);
  406. if (ret < 0)
  407. goto err;
  408. state->bandwidth_hz = c->bandwidth_hz;
  409. }
  410. ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
  411. if (ret < 0)
  412. goto err;
  413. ret = af9033_wr_reg(state, 0x800040, 0x00);
  414. if (ret < 0)
  415. goto err;
  416. ret = af9033_wr_reg(state, 0x800047, 0x00);
  417. if (ret < 0)
  418. goto err;
  419. ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
  420. if (ret < 0)
  421. goto err;
  422. if (c->frequency <= 230000000)
  423. tmp = 0x00; /* VHF */
  424. else
  425. tmp = 0x01; /* UHF */
  426. ret = af9033_wr_reg(state, 0x80004b, tmp);
  427. if (ret < 0)
  428. goto err;
  429. ret = af9033_wr_reg(state, 0x800000, 0x00);
  430. if (ret < 0)
  431. goto err;
  432. return 0;
  433. err:
  434. pr_debug("%s: failed=%d\n", __func__, ret);
  435. return ret;
  436. }
  437. static int af9033_get_frontend(struct dvb_frontend *fe)
  438. {
  439. struct dtv_frontend_properties *p = &fe->dtv_property_cache;
  440. struct af9033_state *state = fe->demodulator_priv;
  441. int ret;
  442. u8 buf[8];
  443. pr_debug("%s\n", __func__);
  444. /* read all needed registers */
  445. ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
  446. if (ret)
  447. goto error;
  448. switch ((buf[0] >> 0) & 3) {
  449. case 0:
  450. p->transmission_mode = TRANSMISSION_MODE_2K;
  451. break;
  452. case 1:
  453. p->transmission_mode = TRANSMISSION_MODE_8K;
  454. break;
  455. }
  456. switch ((buf[1] >> 0) & 3) {
  457. case 0:
  458. p->guard_interval = GUARD_INTERVAL_1_32;
  459. break;
  460. case 1:
  461. p->guard_interval = GUARD_INTERVAL_1_16;
  462. break;
  463. case 2:
  464. p->guard_interval = GUARD_INTERVAL_1_8;
  465. break;
  466. case 3:
  467. p->guard_interval = GUARD_INTERVAL_1_4;
  468. break;
  469. }
  470. switch ((buf[2] >> 0) & 7) {
  471. case 0:
  472. p->hierarchy = HIERARCHY_NONE;
  473. break;
  474. case 1:
  475. p->hierarchy = HIERARCHY_1;
  476. break;
  477. case 2:
  478. p->hierarchy = HIERARCHY_2;
  479. break;
  480. case 3:
  481. p->hierarchy = HIERARCHY_4;
  482. break;
  483. }
  484. switch ((buf[3] >> 0) & 3) {
  485. case 0:
  486. p->modulation = QPSK;
  487. break;
  488. case 1:
  489. p->modulation = QAM_16;
  490. break;
  491. case 2:
  492. p->modulation = QAM_64;
  493. break;
  494. }
  495. switch ((buf[4] >> 0) & 3) {
  496. case 0:
  497. p->bandwidth_hz = 6000000;
  498. break;
  499. case 1:
  500. p->bandwidth_hz = 7000000;
  501. break;
  502. case 2:
  503. p->bandwidth_hz = 8000000;
  504. break;
  505. }
  506. switch ((buf[6] >> 0) & 7) {
  507. case 0:
  508. p->code_rate_HP = FEC_1_2;
  509. break;
  510. case 1:
  511. p->code_rate_HP = FEC_2_3;
  512. break;
  513. case 2:
  514. p->code_rate_HP = FEC_3_4;
  515. break;
  516. case 3:
  517. p->code_rate_HP = FEC_5_6;
  518. break;
  519. case 4:
  520. p->code_rate_HP = FEC_7_8;
  521. break;
  522. case 5:
  523. p->code_rate_HP = FEC_NONE;
  524. break;
  525. }
  526. switch ((buf[7] >> 0) & 7) {
  527. case 0:
  528. p->code_rate_LP = FEC_1_2;
  529. break;
  530. case 1:
  531. p->code_rate_LP = FEC_2_3;
  532. break;
  533. case 2:
  534. p->code_rate_LP = FEC_3_4;
  535. break;
  536. case 3:
  537. p->code_rate_LP = FEC_5_6;
  538. break;
  539. case 4:
  540. p->code_rate_LP = FEC_7_8;
  541. break;
  542. case 5:
  543. p->code_rate_LP = FEC_NONE;
  544. break;
  545. }
  546. p->inversion = INVERSION_AUTO;
  547. p->frequency = state->frequency;
  548. error:
  549. if (ret)
  550. pr_debug("%s: failed:%d\n", __func__, ret);
  551. return ret;
  552. }
  553. static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
  554. {
  555. struct af9033_state *state = fe->demodulator_priv;
  556. int ret;
  557. u8 tmp;
  558. *status = 0;
  559. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  560. ret = af9033_rd_reg(state, 0x800047, &tmp);
  561. if (ret < 0)
  562. goto err;
  563. /* has signal */
  564. if (tmp == 0x01)
  565. *status |= FE_HAS_SIGNAL;
  566. if (tmp != 0x02) {
  567. /* TPS lock */
  568. ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
  569. if (ret < 0)
  570. goto err;
  571. if (tmp)
  572. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  573. FE_HAS_VITERBI;
  574. /* full lock */
  575. ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
  576. if (ret < 0)
  577. goto err;
  578. if (tmp)
  579. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  580. FE_HAS_VITERBI | FE_HAS_SYNC |
  581. FE_HAS_LOCK;
  582. }
  583. return 0;
  584. err:
  585. pr_debug("%s: failed=%d\n", __func__, ret);
  586. return ret;
  587. }
  588. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  589. {
  590. struct af9033_state *state = fe->demodulator_priv;
  591. int ret, i, len;
  592. u8 buf[3], tmp;
  593. u32 snr_val;
  594. const struct val_snr *uninitialized_var(snr_lut);
  595. /* read value */
  596. ret = af9033_rd_regs(state, 0x80002c, buf, 3);
  597. if (ret < 0)
  598. goto err;
  599. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  600. /* read current modulation */
  601. ret = af9033_rd_reg(state, 0x80f903, &tmp);
  602. if (ret < 0)
  603. goto err;
  604. switch ((tmp >> 0) & 3) {
  605. case 0:
  606. len = ARRAY_SIZE(qpsk_snr_lut);
  607. snr_lut = qpsk_snr_lut;
  608. break;
  609. case 1:
  610. len = ARRAY_SIZE(qam16_snr_lut);
  611. snr_lut = qam16_snr_lut;
  612. break;
  613. case 2:
  614. len = ARRAY_SIZE(qam64_snr_lut);
  615. snr_lut = qam64_snr_lut;
  616. break;
  617. default:
  618. goto err;
  619. }
  620. for (i = 0; i < len; i++) {
  621. tmp = snr_lut[i].snr;
  622. if (snr_val < snr_lut[i].val)
  623. break;
  624. }
  625. *snr = tmp * 10; /* dB/10 */
  626. return 0;
  627. err:
  628. pr_debug("%s: failed=%d\n", __func__, ret);
  629. return ret;
  630. }
  631. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  632. {
  633. struct af9033_state *state = fe->demodulator_priv;
  634. int ret;
  635. u8 strength2;
  636. /* read signal strength of 0-100 scale */
  637. ret = af9033_rd_reg(state, 0x800048, &strength2);
  638. if (ret < 0)
  639. goto err;
  640. /* scale value to 0x0000-0xffff */
  641. *strength = strength2 * 0xffff / 100;
  642. return 0;
  643. err:
  644. pr_debug("%s: failed=%d\n", __func__, ret);
  645. return ret;
  646. }
  647. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  648. {
  649. *ber = 0;
  650. return 0;
  651. }
  652. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  653. {
  654. *ucblocks = 0;
  655. return 0;
  656. }
  657. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  658. {
  659. struct af9033_state *state = fe->demodulator_priv;
  660. int ret;
  661. pr_debug("%s: enable=%d\n", __func__, enable);
  662. ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
  663. if (ret < 0)
  664. goto err;
  665. return 0;
  666. err:
  667. pr_debug("%s: failed=%d\n", __func__, ret);
  668. return ret;
  669. }
  670. static struct dvb_frontend_ops af9033_ops;
  671. struct dvb_frontend *af9033_attach(const struct af9033_config *config,
  672. struct i2c_adapter *i2c)
  673. {
  674. int ret;
  675. struct af9033_state *state;
  676. u8 buf[8];
  677. pr_debug("%s:\n", __func__);
  678. /* allocate memory for the internal state */
  679. state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
  680. if (state == NULL)
  681. goto err;
  682. /* setup the state */
  683. state->i2c = i2c;
  684. memcpy(&state->cfg, config, sizeof(struct af9033_config));
  685. if (state->cfg.clock != 12000000) {
  686. printk(KERN_INFO "af9033: unsupported clock=%d, only " \
  687. "12000000 Hz is supported currently\n",
  688. state->cfg.clock);
  689. goto err;
  690. }
  691. /* firmware version */
  692. ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
  693. if (ret < 0)
  694. goto err;
  695. ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
  696. if (ret < 0)
  697. goto err;
  698. printk(KERN_INFO "af9033: firmware version: LINK=%d.%d.%d.%d " \
  699. "OFDM=%d.%d.%d.%d\n", buf[0], buf[1], buf[2], buf[3],
  700. buf[4], buf[5], buf[6], buf[7]);
  701. /* configure internal TS mode */
  702. switch (state->cfg.ts_mode) {
  703. case AF9033_TS_MODE_PARALLEL:
  704. state->ts_mode_parallel = true;
  705. break;
  706. case AF9033_TS_MODE_SERIAL:
  707. state->ts_mode_serial = true;
  708. break;
  709. case AF9033_TS_MODE_USB:
  710. /* usb mode for AF9035 */
  711. default:
  712. break;
  713. }
  714. /* create dvb_frontend */
  715. memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  716. state->fe.demodulator_priv = state;
  717. return &state->fe;
  718. err:
  719. kfree(state);
  720. return NULL;
  721. }
  722. EXPORT_SYMBOL(af9033_attach);
  723. static struct dvb_frontend_ops af9033_ops = {
  724. .delsys = { SYS_DVBT },
  725. .info = {
  726. .name = "Afatech AF9033 (DVB-T)",
  727. .frequency_min = 174000000,
  728. .frequency_max = 862000000,
  729. .frequency_stepsize = 250000,
  730. .frequency_tolerance = 0,
  731. .caps = FE_CAN_FEC_1_2 |
  732. FE_CAN_FEC_2_3 |
  733. FE_CAN_FEC_3_4 |
  734. FE_CAN_FEC_5_6 |
  735. FE_CAN_FEC_7_8 |
  736. FE_CAN_FEC_AUTO |
  737. FE_CAN_QPSK |
  738. FE_CAN_QAM_16 |
  739. FE_CAN_QAM_64 |
  740. FE_CAN_QAM_AUTO |
  741. FE_CAN_TRANSMISSION_MODE_AUTO |
  742. FE_CAN_GUARD_INTERVAL_AUTO |
  743. FE_CAN_HIERARCHY_AUTO |
  744. FE_CAN_RECOVER |
  745. FE_CAN_MUTE_TS
  746. },
  747. .release = af9033_release,
  748. .init = af9033_init,
  749. .sleep = af9033_sleep,
  750. .get_tune_settings = af9033_get_tune_settings,
  751. .set_frontend = af9033_set_frontend,
  752. .get_frontend = af9033_get_frontend,
  753. .read_status = af9033_read_status,
  754. .read_snr = af9033_read_snr,
  755. .read_signal_strength = af9033_read_signal_strength,
  756. .read_ber = af9033_read_ber,
  757. .read_ucblocks = af9033_read_ucblocks,
  758. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  759. };
  760. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  761. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  762. MODULE_LICENSE("GPL");