sh_eth.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517
  1. /*
  2. * SuperH Ethernet device driver
  3. *
  4. * Copyright (C) 2006-2008 Nobuhiro Iwamatsu
  5. * Copyright (C) 2008-2009 Renesas Solutions Corp.
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. *
  19. * The full GNU General Public License is included in this distribution in
  20. * the file called "COPYING".
  21. */
  22. #include <linux/init.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/delay.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/mdio-bitbang.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/phy.h>
  30. #include <linux/cache.h>
  31. #include <linux/io.h>
  32. #include "sh_eth.h"
  33. /* There is CPU dependent code */
  34. #if defined(CONFIG_CPU_SUBTYPE_SH7724)
  35. #define SH_ETH_RESET_DEFAULT 1
  36. static void sh_eth_set_duplex(struct net_device *ndev)
  37. {
  38. struct sh_eth_private *mdp = netdev_priv(ndev);
  39. u32 ioaddr = ndev->base_addr;
  40. if (mdp->duplex) /* Full */
  41. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
  42. else /* Half */
  43. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
  44. }
  45. static void sh_eth_set_rate(struct net_device *ndev)
  46. {
  47. struct sh_eth_private *mdp = netdev_priv(ndev);
  48. u32 ioaddr = ndev->base_addr;
  49. switch (mdp->speed) {
  50. case 10: /* 10BASE */
  51. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_RTM, ioaddr + ECMR);
  52. break;
  53. case 100:/* 100BASE */
  54. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_RTM, ioaddr + ECMR);
  55. break;
  56. default:
  57. break;
  58. }
  59. }
  60. /* SH7724 */
  61. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  62. .set_duplex = sh_eth_set_duplex,
  63. .set_rate = sh_eth_set_rate,
  64. .ecsr_value = ECSR_PSRTO | ECSR_LCHNG | ECSR_ICD,
  65. .ecsipr_value = ECSIPR_PSRTOIP | ECSIPR_LCHNGIP | ECSIPR_ICDIP,
  66. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x01ff009f,
  67. .tx_check = EESR_FTC | EESR_CND | EESR_DLC | EESR_CD | EESR_RTO,
  68. .eesr_err_check = EESR_TWB | EESR_TABT | EESR_RABT | EESR_RDE |
  69. EESR_RFRMER | EESR_TFE | EESR_TDE | EESR_ECI,
  70. .tx_error_check = EESR_TWB | EESR_TABT | EESR_TDE | EESR_TFE,
  71. .apr = 1,
  72. .mpr = 1,
  73. .tpauser = 1,
  74. .hw_swap = 1,
  75. };
  76. #elif defined(CONFIG_CPU_SUBTYPE_SH7763)
  77. #define SH_ETH_HAS_TSU 1
  78. static void sh_eth_chip_reset(struct net_device *ndev)
  79. {
  80. /* reset device */
  81. ctrl_outl(ARSTR_ARSTR, ARSTR);
  82. mdelay(1);
  83. }
  84. static void sh_eth_reset(struct net_device *ndev)
  85. {
  86. u32 ioaddr = ndev->base_addr;
  87. int cnt = 100;
  88. ctrl_outl(EDSR_ENALL, ioaddr + EDSR);
  89. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  90. while (cnt > 0) {
  91. if (!(ctrl_inl(ioaddr + EDMR) & 0x3))
  92. break;
  93. mdelay(1);
  94. cnt--;
  95. }
  96. if (cnt < 0)
  97. printk(KERN_ERR "Device reset fail\n");
  98. /* Table Init */
  99. ctrl_outl(0x0, ioaddr + TDLAR);
  100. ctrl_outl(0x0, ioaddr + TDFAR);
  101. ctrl_outl(0x0, ioaddr + TDFXR);
  102. ctrl_outl(0x0, ioaddr + TDFFR);
  103. ctrl_outl(0x0, ioaddr + RDLAR);
  104. ctrl_outl(0x0, ioaddr + RDFAR);
  105. ctrl_outl(0x0, ioaddr + RDFXR);
  106. ctrl_outl(0x0, ioaddr + RDFFR);
  107. }
  108. static void sh_eth_set_duplex(struct net_device *ndev)
  109. {
  110. struct sh_eth_private *mdp = netdev_priv(ndev);
  111. u32 ioaddr = ndev->base_addr;
  112. if (mdp->duplex) /* Full */
  113. ctrl_outl(ctrl_inl(ioaddr + ECMR) | ECMR_DM, ioaddr + ECMR);
  114. else /* Half */
  115. ctrl_outl(ctrl_inl(ioaddr + ECMR) & ~ECMR_DM, ioaddr + ECMR);
  116. }
  117. static void sh_eth_set_rate(struct net_device *ndev)
  118. {
  119. struct sh_eth_private *mdp = netdev_priv(ndev);
  120. u32 ioaddr = ndev->base_addr;
  121. switch (mdp->speed) {
  122. case 10: /* 10BASE */
  123. ctrl_outl(GECMR_10, ioaddr + GECMR);
  124. break;
  125. case 100:/* 100BASE */
  126. ctrl_outl(GECMR_100, ioaddr + GECMR);
  127. break;
  128. case 1000: /* 1000BASE */
  129. ctrl_outl(GECMR_1000, ioaddr + GECMR);
  130. break;
  131. default:
  132. break;
  133. }
  134. }
  135. /* sh7763 */
  136. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  137. .chip_reset = sh_eth_chip_reset,
  138. .set_duplex = sh_eth_set_duplex,
  139. .set_rate = sh_eth_set_rate,
  140. .ecsr_value = ECSR_ICD | ECSR_MPD,
  141. .ecsipr_value = ECSIPR_LCHNGIP | ECSIPR_ICDIP | ECSIPR_MPDIP,
  142. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  143. .tx_check = EESR_TC1 | EESR_FTC,
  144. .eesr_err_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_RABT | \
  145. EESR_RDE | EESR_RFRMER | EESR_TFE | EESR_TDE | \
  146. EESR_ECI,
  147. .tx_error_check = EESR_TWB1 | EESR_TWB | EESR_TABT | EESR_TDE | \
  148. EESR_TFE,
  149. .apr = 1,
  150. .mpr = 1,
  151. .tpauser = 1,
  152. .bculr = 1,
  153. .hw_swap = 1,
  154. .rpadir = 1,
  155. .no_trimd = 1,
  156. .no_ade = 1,
  157. };
  158. #elif defined(CONFIG_CPU_SUBTYPE_SH7619)
  159. #define SH_ETH_RESET_DEFAULT 1
  160. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  161. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  162. .apr = 1,
  163. .mpr = 1,
  164. .tpauser = 1,
  165. .hw_swap = 1,
  166. };
  167. #elif defined(CONFIG_CPU_SUBTYPE_SH7710) || defined(CONFIG_CPU_SUBTYPE_SH7712)
  168. #define SH_ETH_RESET_DEFAULT 1
  169. #define SH_ETH_HAS_TSU 1
  170. static struct sh_eth_cpu_data sh_eth_my_cpu_data = {
  171. .eesipr_value = DMAC_M_RFRMER | DMAC_M_ECI | 0x003fffff,
  172. };
  173. #endif
  174. static void sh_eth_set_default_cpu_data(struct sh_eth_cpu_data *cd)
  175. {
  176. if (!cd->ecsr_value)
  177. cd->ecsr_value = DEFAULT_ECSR_INIT;
  178. if (!cd->ecsipr_value)
  179. cd->ecsipr_value = DEFAULT_ECSIPR_INIT;
  180. if (!cd->fcftr_value)
  181. cd->fcftr_value = DEFAULT_FIFO_F_D_RFF | \
  182. DEFAULT_FIFO_F_D_RFD;
  183. if (!cd->fdr_value)
  184. cd->fdr_value = DEFAULT_FDR_INIT;
  185. if (!cd->rmcr_value)
  186. cd->rmcr_value = DEFAULT_RMCR_VALUE;
  187. if (!cd->tx_check)
  188. cd->tx_check = DEFAULT_TX_CHECK;
  189. if (!cd->eesr_err_check)
  190. cd->eesr_err_check = DEFAULT_EESR_ERR_CHECK;
  191. if (!cd->tx_error_check)
  192. cd->tx_error_check = DEFAULT_TX_ERROR_CHECK;
  193. }
  194. #if defined(SH_ETH_RESET_DEFAULT)
  195. /* Chip Reset */
  196. static void sh_eth_reset(struct net_device *ndev)
  197. {
  198. u32 ioaddr = ndev->base_addr;
  199. ctrl_outl(ctrl_inl(ioaddr + EDMR) | EDMR_SRST, ioaddr + EDMR);
  200. mdelay(3);
  201. ctrl_outl(ctrl_inl(ioaddr + EDMR) & ~EDMR_SRST, ioaddr + EDMR);
  202. }
  203. #endif
  204. #if defined(CONFIG_CPU_SH4)
  205. static void sh_eth_set_receive_align(struct sk_buff *skb)
  206. {
  207. int reserve;
  208. reserve = SH4_SKB_RX_ALIGN - ((u32)skb->data & (SH4_SKB_RX_ALIGN - 1));
  209. if (reserve)
  210. skb_reserve(skb, reserve);
  211. }
  212. #else
  213. static void sh_eth_set_receive_align(struct sk_buff *skb)
  214. {
  215. skb_reserve(skb, SH2_SH3_SKB_RX_ALIGN);
  216. }
  217. #endif
  218. /* CPU <-> EDMAC endian convert */
  219. static inline __u32 cpu_to_edmac(struct sh_eth_private *mdp, u32 x)
  220. {
  221. switch (mdp->edmac_endian) {
  222. case EDMAC_LITTLE_ENDIAN:
  223. return cpu_to_le32(x);
  224. case EDMAC_BIG_ENDIAN:
  225. return cpu_to_be32(x);
  226. }
  227. return x;
  228. }
  229. static inline __u32 edmac_to_cpu(struct sh_eth_private *mdp, u32 x)
  230. {
  231. switch (mdp->edmac_endian) {
  232. case EDMAC_LITTLE_ENDIAN:
  233. return le32_to_cpu(x);
  234. case EDMAC_BIG_ENDIAN:
  235. return be32_to_cpu(x);
  236. }
  237. return x;
  238. }
  239. /*
  240. * Program the hardware MAC address from dev->dev_addr.
  241. */
  242. static void update_mac_address(struct net_device *ndev)
  243. {
  244. u32 ioaddr = ndev->base_addr;
  245. ctrl_outl((ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
  246. (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]),
  247. ioaddr + MAHR);
  248. ctrl_outl((ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]),
  249. ioaddr + MALR);
  250. }
  251. /*
  252. * Get MAC address from SuperH MAC address register
  253. *
  254. * SuperH's Ethernet device doesn't have 'ROM' to MAC address.
  255. * This driver get MAC address that use by bootloader(U-boot or sh-ipl+g).
  256. * When you want use this device, you must set MAC address in bootloader.
  257. *
  258. */
  259. static void read_mac_address(struct net_device *ndev)
  260. {
  261. u32 ioaddr = ndev->base_addr;
  262. ndev->dev_addr[0] = (ctrl_inl(ioaddr + MAHR) >> 24);
  263. ndev->dev_addr[1] = (ctrl_inl(ioaddr + MAHR) >> 16) & 0xFF;
  264. ndev->dev_addr[2] = (ctrl_inl(ioaddr + MAHR) >> 8) & 0xFF;
  265. ndev->dev_addr[3] = (ctrl_inl(ioaddr + MAHR) & 0xFF);
  266. ndev->dev_addr[4] = (ctrl_inl(ioaddr + MALR) >> 8) & 0xFF;
  267. ndev->dev_addr[5] = (ctrl_inl(ioaddr + MALR) & 0xFF);
  268. }
  269. struct bb_info {
  270. struct mdiobb_ctrl ctrl;
  271. u32 addr;
  272. u32 mmd_msk;/* MMD */
  273. u32 mdo_msk;
  274. u32 mdi_msk;
  275. u32 mdc_msk;
  276. };
  277. /* PHY bit set */
  278. static void bb_set(u32 addr, u32 msk)
  279. {
  280. ctrl_outl(ctrl_inl(addr) | msk, addr);
  281. }
  282. /* PHY bit clear */
  283. static void bb_clr(u32 addr, u32 msk)
  284. {
  285. ctrl_outl((ctrl_inl(addr) & ~msk), addr);
  286. }
  287. /* PHY bit read */
  288. static int bb_read(u32 addr, u32 msk)
  289. {
  290. return (ctrl_inl(addr) & msk) != 0;
  291. }
  292. /* Data I/O pin control */
  293. static void sh_mmd_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  294. {
  295. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  296. if (bit)
  297. bb_set(bitbang->addr, bitbang->mmd_msk);
  298. else
  299. bb_clr(bitbang->addr, bitbang->mmd_msk);
  300. }
  301. /* Set bit data*/
  302. static void sh_set_mdio(struct mdiobb_ctrl *ctrl, int bit)
  303. {
  304. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  305. if (bit)
  306. bb_set(bitbang->addr, bitbang->mdo_msk);
  307. else
  308. bb_clr(bitbang->addr, bitbang->mdo_msk);
  309. }
  310. /* Get bit data*/
  311. static int sh_get_mdio(struct mdiobb_ctrl *ctrl)
  312. {
  313. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  314. return bb_read(bitbang->addr, bitbang->mdi_msk);
  315. }
  316. /* MDC pin control */
  317. static void sh_mdc_ctrl(struct mdiobb_ctrl *ctrl, int bit)
  318. {
  319. struct bb_info *bitbang = container_of(ctrl, struct bb_info, ctrl);
  320. if (bit)
  321. bb_set(bitbang->addr, bitbang->mdc_msk);
  322. else
  323. bb_clr(bitbang->addr, bitbang->mdc_msk);
  324. }
  325. /* mdio bus control struct */
  326. static struct mdiobb_ops bb_ops = {
  327. .owner = THIS_MODULE,
  328. .set_mdc = sh_mdc_ctrl,
  329. .set_mdio_dir = sh_mmd_ctrl,
  330. .set_mdio_data = sh_set_mdio,
  331. .get_mdio_data = sh_get_mdio,
  332. };
  333. /* free skb and descriptor buffer */
  334. static void sh_eth_ring_free(struct net_device *ndev)
  335. {
  336. struct sh_eth_private *mdp = netdev_priv(ndev);
  337. int i;
  338. /* Free Rx skb ringbuffer */
  339. if (mdp->rx_skbuff) {
  340. for (i = 0; i < RX_RING_SIZE; i++) {
  341. if (mdp->rx_skbuff[i])
  342. dev_kfree_skb(mdp->rx_skbuff[i]);
  343. }
  344. }
  345. kfree(mdp->rx_skbuff);
  346. /* Free Tx skb ringbuffer */
  347. if (mdp->tx_skbuff) {
  348. for (i = 0; i < TX_RING_SIZE; i++) {
  349. if (mdp->tx_skbuff[i])
  350. dev_kfree_skb(mdp->tx_skbuff[i]);
  351. }
  352. }
  353. kfree(mdp->tx_skbuff);
  354. }
  355. /* format skb and descriptor buffer */
  356. static void sh_eth_ring_format(struct net_device *ndev)
  357. {
  358. u32 ioaddr = ndev->base_addr;
  359. struct sh_eth_private *mdp = netdev_priv(ndev);
  360. int i;
  361. struct sk_buff *skb;
  362. struct sh_eth_rxdesc *rxdesc = NULL;
  363. struct sh_eth_txdesc *txdesc = NULL;
  364. int rx_ringsize = sizeof(*rxdesc) * RX_RING_SIZE;
  365. int tx_ringsize = sizeof(*txdesc) * TX_RING_SIZE;
  366. mdp->cur_rx = mdp->cur_tx = 0;
  367. mdp->dirty_rx = mdp->dirty_tx = 0;
  368. memset(mdp->rx_ring, 0, rx_ringsize);
  369. /* build Rx ring buffer */
  370. for (i = 0; i < RX_RING_SIZE; i++) {
  371. /* skb */
  372. mdp->rx_skbuff[i] = NULL;
  373. skb = dev_alloc_skb(mdp->rx_buf_sz);
  374. mdp->rx_skbuff[i] = skb;
  375. if (skb == NULL)
  376. break;
  377. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  378. DMA_FROM_DEVICE);
  379. skb->dev = ndev; /* Mark as being used by this device. */
  380. sh_eth_set_receive_align(skb);
  381. /* RX descriptor */
  382. rxdesc = &mdp->rx_ring[i];
  383. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  384. rxdesc->status = cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  385. /* The size of the buffer is 16 byte boundary. */
  386. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  387. /* Rx descriptor address set */
  388. if (i == 0) {
  389. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDLAR);
  390. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  391. ctrl_outl(mdp->rx_desc_dma, ioaddr + RDFAR);
  392. #endif
  393. }
  394. }
  395. mdp->dirty_rx = (u32) (i - RX_RING_SIZE);
  396. /* Mark the last entry as wrapping the ring. */
  397. rxdesc->status |= cpu_to_edmac(mdp, RD_RDEL);
  398. memset(mdp->tx_ring, 0, tx_ringsize);
  399. /* build Tx ring buffer */
  400. for (i = 0; i < TX_RING_SIZE; i++) {
  401. mdp->tx_skbuff[i] = NULL;
  402. txdesc = &mdp->tx_ring[i];
  403. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  404. txdesc->buffer_length = 0;
  405. if (i == 0) {
  406. /* Tx descriptor address set */
  407. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDLAR);
  408. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  409. ctrl_outl(mdp->tx_desc_dma, ioaddr + TDFAR);
  410. #endif
  411. }
  412. }
  413. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  414. }
  415. /* Get skb and descriptor buffer */
  416. static int sh_eth_ring_init(struct net_device *ndev)
  417. {
  418. struct sh_eth_private *mdp = netdev_priv(ndev);
  419. int rx_ringsize, tx_ringsize, ret = 0;
  420. /*
  421. * +26 gets the maximum ethernet encapsulation, +7 & ~7 because the
  422. * card needs room to do 8 byte alignment, +2 so we can reserve
  423. * the first 2 bytes, and +16 gets room for the status word from the
  424. * card.
  425. */
  426. mdp->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ :
  427. (((ndev->mtu + 26 + 7) & ~7) + 2 + 16));
  428. /* Allocate RX and TX skb rings */
  429. mdp->rx_skbuff = kmalloc(sizeof(*mdp->rx_skbuff) * RX_RING_SIZE,
  430. GFP_KERNEL);
  431. if (!mdp->rx_skbuff) {
  432. dev_err(&ndev->dev, "Cannot allocate Rx skb\n");
  433. ret = -ENOMEM;
  434. return ret;
  435. }
  436. mdp->tx_skbuff = kmalloc(sizeof(*mdp->tx_skbuff) * TX_RING_SIZE,
  437. GFP_KERNEL);
  438. if (!mdp->tx_skbuff) {
  439. dev_err(&ndev->dev, "Cannot allocate Tx skb\n");
  440. ret = -ENOMEM;
  441. goto skb_ring_free;
  442. }
  443. /* Allocate all Rx descriptors. */
  444. rx_ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  445. mdp->rx_ring = dma_alloc_coherent(NULL, rx_ringsize, &mdp->rx_desc_dma,
  446. GFP_KERNEL);
  447. if (!mdp->rx_ring) {
  448. dev_err(&ndev->dev, "Cannot allocate Rx Ring (size %d bytes)\n",
  449. rx_ringsize);
  450. ret = -ENOMEM;
  451. goto desc_ring_free;
  452. }
  453. mdp->dirty_rx = 0;
  454. /* Allocate all Tx descriptors. */
  455. tx_ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  456. mdp->tx_ring = dma_alloc_coherent(NULL, tx_ringsize, &mdp->tx_desc_dma,
  457. GFP_KERNEL);
  458. if (!mdp->tx_ring) {
  459. dev_err(&ndev->dev, "Cannot allocate Tx Ring (size %d bytes)\n",
  460. tx_ringsize);
  461. ret = -ENOMEM;
  462. goto desc_ring_free;
  463. }
  464. return ret;
  465. desc_ring_free:
  466. /* free DMA buffer */
  467. dma_free_coherent(NULL, rx_ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  468. skb_ring_free:
  469. /* Free Rx and Tx skb ring buffer */
  470. sh_eth_ring_free(ndev);
  471. return ret;
  472. }
  473. static int sh_eth_dev_init(struct net_device *ndev)
  474. {
  475. int ret = 0;
  476. struct sh_eth_private *mdp = netdev_priv(ndev);
  477. u32 ioaddr = ndev->base_addr;
  478. u_int32_t rx_int_var, tx_int_var;
  479. u32 val;
  480. /* Soft Reset */
  481. sh_eth_reset(ndev);
  482. /* Descriptor format */
  483. sh_eth_ring_format(ndev);
  484. if (mdp->cd->rpadir)
  485. ctrl_outl(mdp->cd->rpadir_value, ioaddr + RPADIR);
  486. /* all sh_eth int mask */
  487. ctrl_outl(0, ioaddr + EESIPR);
  488. #if defined(__LITTLE_ENDIAN__)
  489. if (mdp->cd->hw_swap)
  490. ctrl_outl(EDMR_EL, ioaddr + EDMR);
  491. else
  492. #endif
  493. ctrl_outl(0, ioaddr + EDMR);
  494. /* FIFO size set */
  495. ctrl_outl(mdp->cd->fdr_value, ioaddr + FDR);
  496. ctrl_outl(0, ioaddr + TFTR);
  497. /* Frame recv control */
  498. ctrl_outl(mdp->cd->rmcr_value, ioaddr + RMCR);
  499. rx_int_var = mdp->rx_int_var = DESC_I_RINT8 | DESC_I_RINT5;
  500. tx_int_var = mdp->tx_int_var = DESC_I_TINT2;
  501. ctrl_outl(rx_int_var | tx_int_var, ioaddr + TRSCER);
  502. if (mdp->cd->bculr)
  503. ctrl_outl(0x800, ioaddr + BCULR); /* Burst sycle set */
  504. ctrl_outl(mdp->cd->fcftr_value, ioaddr + FCFTR);
  505. if (!mdp->cd->no_trimd)
  506. ctrl_outl(0, ioaddr + TRIMD);
  507. /* Recv frame limit set register */
  508. ctrl_outl(RFLR_VALUE, ioaddr + RFLR);
  509. ctrl_outl(ctrl_inl(ioaddr + EESR), ioaddr + EESR);
  510. ctrl_outl(mdp->cd->eesipr_value, ioaddr + EESIPR);
  511. /* PAUSE Prohibition */
  512. val = (ctrl_inl(ioaddr + ECMR) & ECMR_DM) |
  513. ECMR_ZPF | (mdp->duplex ? ECMR_DM : 0) | ECMR_TE | ECMR_RE;
  514. ctrl_outl(val, ioaddr + ECMR);
  515. if (mdp->cd->set_rate)
  516. mdp->cd->set_rate(ndev);
  517. /* E-MAC Status Register clear */
  518. ctrl_outl(mdp->cd->ecsr_value, ioaddr + ECSR);
  519. /* E-MAC Interrupt Enable register */
  520. ctrl_outl(mdp->cd->ecsipr_value, ioaddr + ECSIPR);
  521. /* Set MAC address */
  522. update_mac_address(ndev);
  523. /* mask reset */
  524. if (mdp->cd->apr)
  525. ctrl_outl(APR_AP, ioaddr + APR);
  526. if (mdp->cd->mpr)
  527. ctrl_outl(MPR_MP, ioaddr + MPR);
  528. if (mdp->cd->tpauser)
  529. ctrl_outl(TPAUSER_UNLIMITED, ioaddr + TPAUSER);
  530. /* Setting the Rx mode will start the Rx process. */
  531. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  532. netif_start_queue(ndev);
  533. return ret;
  534. }
  535. /* free Tx skb function */
  536. static int sh_eth_txfree(struct net_device *ndev)
  537. {
  538. struct sh_eth_private *mdp = netdev_priv(ndev);
  539. struct sh_eth_txdesc *txdesc;
  540. int freeNum = 0;
  541. int entry = 0;
  542. for (; mdp->cur_tx - mdp->dirty_tx > 0; mdp->dirty_tx++) {
  543. entry = mdp->dirty_tx % TX_RING_SIZE;
  544. txdesc = &mdp->tx_ring[entry];
  545. if (txdesc->status & cpu_to_edmac(mdp, TD_TACT))
  546. break;
  547. /* Free the original skb. */
  548. if (mdp->tx_skbuff[entry]) {
  549. dev_kfree_skb_irq(mdp->tx_skbuff[entry]);
  550. mdp->tx_skbuff[entry] = NULL;
  551. freeNum++;
  552. }
  553. txdesc->status = cpu_to_edmac(mdp, TD_TFP);
  554. if (entry >= TX_RING_SIZE - 1)
  555. txdesc->status |= cpu_to_edmac(mdp, TD_TDLE);
  556. mdp->stats.tx_packets++;
  557. mdp->stats.tx_bytes += txdesc->buffer_length;
  558. }
  559. return freeNum;
  560. }
  561. /* Packet receive function */
  562. static int sh_eth_rx(struct net_device *ndev)
  563. {
  564. struct sh_eth_private *mdp = netdev_priv(ndev);
  565. struct sh_eth_rxdesc *rxdesc;
  566. int entry = mdp->cur_rx % RX_RING_SIZE;
  567. int boguscnt = (mdp->dirty_rx + RX_RING_SIZE) - mdp->cur_rx;
  568. struct sk_buff *skb;
  569. u16 pkt_len = 0;
  570. u32 desc_status;
  571. rxdesc = &mdp->rx_ring[entry];
  572. while (!(rxdesc->status & cpu_to_edmac(mdp, RD_RACT))) {
  573. desc_status = edmac_to_cpu(mdp, rxdesc->status);
  574. pkt_len = rxdesc->frame_length;
  575. if (--boguscnt < 0)
  576. break;
  577. if (!(desc_status & RDFEND))
  578. mdp->stats.rx_length_errors++;
  579. if (desc_status & (RD_RFS1 | RD_RFS2 | RD_RFS3 | RD_RFS4 |
  580. RD_RFS5 | RD_RFS6 | RD_RFS10)) {
  581. mdp->stats.rx_errors++;
  582. if (desc_status & RD_RFS1)
  583. mdp->stats.rx_crc_errors++;
  584. if (desc_status & RD_RFS2)
  585. mdp->stats.rx_frame_errors++;
  586. if (desc_status & RD_RFS3)
  587. mdp->stats.rx_length_errors++;
  588. if (desc_status & RD_RFS4)
  589. mdp->stats.rx_length_errors++;
  590. if (desc_status & RD_RFS6)
  591. mdp->stats.rx_missed_errors++;
  592. if (desc_status & RD_RFS10)
  593. mdp->stats.rx_over_errors++;
  594. } else {
  595. if (!mdp->cd->hw_swap)
  596. sh_eth_soft_swap(
  597. phys_to_virt(ALIGN(rxdesc->addr, 4)),
  598. pkt_len + 2);
  599. skb = mdp->rx_skbuff[entry];
  600. mdp->rx_skbuff[entry] = NULL;
  601. skb_put(skb, pkt_len);
  602. skb->protocol = eth_type_trans(skb, ndev);
  603. netif_rx(skb);
  604. mdp->stats.rx_packets++;
  605. mdp->stats.rx_bytes += pkt_len;
  606. }
  607. rxdesc->status |= cpu_to_edmac(mdp, RD_RACT);
  608. entry = (++mdp->cur_rx) % RX_RING_SIZE;
  609. rxdesc = &mdp->rx_ring[entry];
  610. }
  611. /* Refill the Rx ring buffers. */
  612. for (; mdp->cur_rx - mdp->dirty_rx > 0; mdp->dirty_rx++) {
  613. entry = mdp->dirty_rx % RX_RING_SIZE;
  614. rxdesc = &mdp->rx_ring[entry];
  615. /* The size of the buffer is 16 byte boundary. */
  616. rxdesc->buffer_length = ALIGN(mdp->rx_buf_sz, 16);
  617. if (mdp->rx_skbuff[entry] == NULL) {
  618. skb = dev_alloc_skb(mdp->rx_buf_sz);
  619. mdp->rx_skbuff[entry] = skb;
  620. if (skb == NULL)
  621. break; /* Better luck next round. */
  622. dma_map_single(&ndev->dev, skb->tail, mdp->rx_buf_sz,
  623. DMA_FROM_DEVICE);
  624. skb->dev = ndev;
  625. sh_eth_set_receive_align(skb);
  626. skb->ip_summed = CHECKSUM_NONE;
  627. rxdesc->addr = virt_to_phys(PTR_ALIGN(skb->data, 4));
  628. }
  629. if (entry >= RX_RING_SIZE - 1)
  630. rxdesc->status |=
  631. cpu_to_edmac(mdp, RD_RACT | RD_RFP | RD_RDEL);
  632. else
  633. rxdesc->status |=
  634. cpu_to_edmac(mdp, RD_RACT | RD_RFP);
  635. }
  636. /* Restart Rx engine if stopped. */
  637. /* If we don't need to check status, don't. -KDU */
  638. if (!(ctrl_inl(ndev->base_addr + EDRRR) & EDRRR_R))
  639. ctrl_outl(EDRRR_R, ndev->base_addr + EDRRR);
  640. return 0;
  641. }
  642. /* error control function */
  643. static void sh_eth_error(struct net_device *ndev, int intr_status)
  644. {
  645. struct sh_eth_private *mdp = netdev_priv(ndev);
  646. u32 ioaddr = ndev->base_addr;
  647. u32 felic_stat;
  648. u32 link_stat;
  649. u32 mask;
  650. if (intr_status & EESR_ECI) {
  651. felic_stat = ctrl_inl(ioaddr + ECSR);
  652. ctrl_outl(felic_stat, ioaddr + ECSR); /* clear int */
  653. if (felic_stat & ECSR_ICD)
  654. mdp->stats.tx_carrier_errors++;
  655. if (felic_stat & ECSR_LCHNG) {
  656. /* Link Changed */
  657. if (mdp->cd->no_psr) {
  658. if (mdp->link == PHY_DOWN)
  659. link_stat = 0;
  660. else
  661. link_stat = PHY_ST_LINK;
  662. } else {
  663. link_stat = (ctrl_inl(ioaddr + PSR));
  664. }
  665. if (!(link_stat & PHY_ST_LINK)) {
  666. /* Link Down : disable tx and rx */
  667. ctrl_outl(ctrl_inl(ioaddr + ECMR) &
  668. ~(ECMR_RE | ECMR_TE), ioaddr + ECMR);
  669. } else {
  670. /* Link Up */
  671. ctrl_outl(ctrl_inl(ioaddr + EESIPR) &
  672. ~DMAC_M_ECI, ioaddr + EESIPR);
  673. /*clear int */
  674. ctrl_outl(ctrl_inl(ioaddr + ECSR),
  675. ioaddr + ECSR);
  676. ctrl_outl(ctrl_inl(ioaddr + EESIPR) |
  677. DMAC_M_ECI, ioaddr + EESIPR);
  678. /* enable tx and rx */
  679. ctrl_outl(ctrl_inl(ioaddr + ECMR) |
  680. (ECMR_RE | ECMR_TE), ioaddr + ECMR);
  681. }
  682. }
  683. }
  684. if (intr_status & EESR_TWB) {
  685. /* Write buck end. unused write back interrupt */
  686. if (intr_status & EESR_TABT) /* Transmit Abort int */
  687. mdp->stats.tx_aborted_errors++;
  688. }
  689. if (intr_status & EESR_RABT) {
  690. /* Receive Abort int */
  691. if (intr_status & EESR_RFRMER) {
  692. /* Receive Frame Overflow int */
  693. mdp->stats.rx_frame_errors++;
  694. dev_err(&ndev->dev, "Receive Frame Overflow\n");
  695. }
  696. }
  697. if (!mdp->cd->no_ade) {
  698. if (intr_status & EESR_ADE && intr_status & EESR_TDE &&
  699. intr_status & EESR_TFE)
  700. mdp->stats.tx_fifo_errors++;
  701. }
  702. if (intr_status & EESR_RDE) {
  703. /* Receive Descriptor Empty int */
  704. mdp->stats.rx_over_errors++;
  705. if (ctrl_inl(ioaddr + EDRRR) ^ EDRRR_R)
  706. ctrl_outl(EDRRR_R, ioaddr + EDRRR);
  707. dev_err(&ndev->dev, "Receive Descriptor Empty\n");
  708. }
  709. if (intr_status & EESR_RFE) {
  710. /* Receive FIFO Overflow int */
  711. mdp->stats.rx_fifo_errors++;
  712. dev_err(&ndev->dev, "Receive FIFO Overflow\n");
  713. }
  714. mask = EESR_TWB | EESR_TABT | EESR_ADE | EESR_TDE | EESR_TFE;
  715. if (mdp->cd->no_ade)
  716. mask &= ~EESR_ADE;
  717. if (intr_status & mask) {
  718. /* Tx error */
  719. u32 edtrr = ctrl_inl(ndev->base_addr + EDTRR);
  720. /* dmesg */
  721. dev_err(&ndev->dev, "TX error. status=%8.8x cur_tx=%8.8x ",
  722. intr_status, mdp->cur_tx);
  723. dev_err(&ndev->dev, "dirty_tx=%8.8x state=%8.8x EDTRR=%8.8x.\n",
  724. mdp->dirty_tx, (u32) ndev->state, edtrr);
  725. /* dirty buffer free */
  726. sh_eth_txfree(ndev);
  727. /* SH7712 BUG */
  728. if (edtrr ^ EDTRR_TRNS) {
  729. /* tx dma start */
  730. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  731. }
  732. /* wakeup */
  733. netif_wake_queue(ndev);
  734. }
  735. }
  736. static irqreturn_t sh_eth_interrupt(int irq, void *netdev)
  737. {
  738. struct net_device *ndev = netdev;
  739. struct sh_eth_private *mdp = netdev_priv(ndev);
  740. struct sh_eth_cpu_data *cd = mdp->cd;
  741. irqreturn_t ret = IRQ_NONE;
  742. u32 ioaddr, boguscnt = RX_RING_SIZE;
  743. u32 intr_status = 0;
  744. ioaddr = ndev->base_addr;
  745. spin_lock(&mdp->lock);
  746. /* Get interrpt stat */
  747. intr_status = ctrl_inl(ioaddr + EESR);
  748. /* Clear interrupt */
  749. if (intr_status & (EESR_FRC | EESR_RMAF | EESR_RRF |
  750. EESR_RTLF | EESR_RTSF | EESR_PRE | EESR_CERF |
  751. cd->tx_check | cd->eesr_err_check)) {
  752. ctrl_outl(intr_status, ioaddr + EESR);
  753. ret = IRQ_HANDLED;
  754. } else
  755. goto other_irq;
  756. if (intr_status & (EESR_FRC | /* Frame recv*/
  757. EESR_RMAF | /* Multi cast address recv*/
  758. EESR_RRF | /* Bit frame recv */
  759. EESR_RTLF | /* Long frame recv*/
  760. EESR_RTSF | /* short frame recv */
  761. EESR_PRE | /* PHY-LSI recv error */
  762. EESR_CERF)){ /* recv frame CRC error */
  763. sh_eth_rx(ndev);
  764. }
  765. /* Tx Check */
  766. if (intr_status & cd->tx_check) {
  767. sh_eth_txfree(ndev);
  768. netif_wake_queue(ndev);
  769. }
  770. if (intr_status & cd->eesr_err_check)
  771. sh_eth_error(ndev, intr_status);
  772. if (--boguscnt < 0) {
  773. printk(KERN_WARNING
  774. "%s: Too much work at interrupt, status=0x%4.4x.\n",
  775. ndev->name, intr_status);
  776. }
  777. other_irq:
  778. spin_unlock(&mdp->lock);
  779. return ret;
  780. }
  781. static void sh_eth_timer(unsigned long data)
  782. {
  783. struct net_device *ndev = (struct net_device *)data;
  784. struct sh_eth_private *mdp = netdev_priv(ndev);
  785. mod_timer(&mdp->timer, jiffies + (10 * HZ));
  786. }
  787. /* PHY state control function */
  788. static void sh_eth_adjust_link(struct net_device *ndev)
  789. {
  790. struct sh_eth_private *mdp = netdev_priv(ndev);
  791. struct phy_device *phydev = mdp->phydev;
  792. u32 ioaddr = ndev->base_addr;
  793. int new_state = 0;
  794. if (phydev->link != PHY_DOWN) {
  795. if (phydev->duplex != mdp->duplex) {
  796. new_state = 1;
  797. mdp->duplex = phydev->duplex;
  798. if (mdp->cd->set_duplex)
  799. mdp->cd->set_duplex(ndev);
  800. }
  801. if (phydev->speed != mdp->speed) {
  802. new_state = 1;
  803. mdp->speed = phydev->speed;
  804. if (mdp->cd->set_rate)
  805. mdp->cd->set_rate(ndev);
  806. }
  807. if (mdp->link == PHY_DOWN) {
  808. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_TXF)
  809. | ECMR_DM, ioaddr + ECMR);
  810. new_state = 1;
  811. mdp->link = phydev->link;
  812. }
  813. } else if (mdp->link) {
  814. new_state = 1;
  815. mdp->link = PHY_DOWN;
  816. mdp->speed = 0;
  817. mdp->duplex = -1;
  818. }
  819. if (new_state)
  820. phy_print_status(phydev);
  821. }
  822. /* PHY init function */
  823. static int sh_eth_phy_init(struct net_device *ndev)
  824. {
  825. struct sh_eth_private *mdp = netdev_priv(ndev);
  826. char phy_id[MII_BUS_ID_SIZE + 3];
  827. struct phy_device *phydev = NULL;
  828. snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
  829. mdp->mii_bus->id , mdp->phy_id);
  830. mdp->link = PHY_DOWN;
  831. mdp->speed = 0;
  832. mdp->duplex = -1;
  833. /* Try connect to PHY */
  834. phydev = phy_connect(ndev, phy_id, &sh_eth_adjust_link,
  835. 0, PHY_INTERFACE_MODE_MII);
  836. if (IS_ERR(phydev)) {
  837. dev_err(&ndev->dev, "phy_connect failed\n");
  838. return PTR_ERR(phydev);
  839. }
  840. dev_info(&ndev->dev, "attached phy %i to driver %s\n",
  841. phydev->addr, phydev->drv->name);
  842. mdp->phydev = phydev;
  843. return 0;
  844. }
  845. /* PHY control start function */
  846. static int sh_eth_phy_start(struct net_device *ndev)
  847. {
  848. struct sh_eth_private *mdp = netdev_priv(ndev);
  849. int ret;
  850. ret = sh_eth_phy_init(ndev);
  851. if (ret)
  852. return ret;
  853. /* reset phy - this also wakes it from PDOWN */
  854. phy_write(mdp->phydev, MII_BMCR, BMCR_RESET);
  855. phy_start(mdp->phydev);
  856. return 0;
  857. }
  858. /* network device open function */
  859. static int sh_eth_open(struct net_device *ndev)
  860. {
  861. int ret = 0;
  862. struct sh_eth_private *mdp = netdev_priv(ndev);
  863. ret = request_irq(ndev->irq, &sh_eth_interrupt,
  864. #if defined(CONFIG_CPU_SUBTYPE_SH7763) || defined(CONFIG_CPU_SUBTYPE_SH7764)
  865. IRQF_SHARED,
  866. #else
  867. 0,
  868. #endif
  869. ndev->name, ndev);
  870. if (ret) {
  871. dev_err(&ndev->dev, "Can not assign IRQ number\n");
  872. return ret;
  873. }
  874. /* Descriptor set */
  875. ret = sh_eth_ring_init(ndev);
  876. if (ret)
  877. goto out_free_irq;
  878. /* device init */
  879. ret = sh_eth_dev_init(ndev);
  880. if (ret)
  881. goto out_free_irq;
  882. /* PHY control start*/
  883. ret = sh_eth_phy_start(ndev);
  884. if (ret)
  885. goto out_free_irq;
  886. /* Set the timer to check for link beat. */
  887. init_timer(&mdp->timer);
  888. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  889. setup_timer(&mdp->timer, sh_eth_timer, (unsigned long)ndev);
  890. return ret;
  891. out_free_irq:
  892. free_irq(ndev->irq, ndev);
  893. return ret;
  894. }
  895. /* Timeout function */
  896. static void sh_eth_tx_timeout(struct net_device *ndev)
  897. {
  898. struct sh_eth_private *mdp = netdev_priv(ndev);
  899. u32 ioaddr = ndev->base_addr;
  900. struct sh_eth_rxdesc *rxdesc;
  901. int i;
  902. netif_stop_queue(ndev);
  903. /* worning message out. */
  904. printk(KERN_WARNING "%s: transmit timed out, status %8.8x,"
  905. " resetting...\n", ndev->name, (int)ctrl_inl(ioaddr + EESR));
  906. /* tx_errors count up */
  907. mdp->stats.tx_errors++;
  908. /* timer off */
  909. del_timer_sync(&mdp->timer);
  910. /* Free all the skbuffs in the Rx queue. */
  911. for (i = 0; i < RX_RING_SIZE; i++) {
  912. rxdesc = &mdp->rx_ring[i];
  913. rxdesc->status = 0;
  914. rxdesc->addr = 0xBADF00D0;
  915. if (mdp->rx_skbuff[i])
  916. dev_kfree_skb(mdp->rx_skbuff[i]);
  917. mdp->rx_skbuff[i] = NULL;
  918. }
  919. for (i = 0; i < TX_RING_SIZE; i++) {
  920. if (mdp->tx_skbuff[i])
  921. dev_kfree_skb(mdp->tx_skbuff[i]);
  922. mdp->tx_skbuff[i] = NULL;
  923. }
  924. /* device init */
  925. sh_eth_dev_init(ndev);
  926. /* timer on */
  927. mdp->timer.expires = (jiffies + (24 * HZ)) / 10;/* 2.4 sec. */
  928. add_timer(&mdp->timer);
  929. }
  930. /* Packet transmit function */
  931. static int sh_eth_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  932. {
  933. struct sh_eth_private *mdp = netdev_priv(ndev);
  934. struct sh_eth_txdesc *txdesc;
  935. u32 entry;
  936. unsigned long flags;
  937. spin_lock_irqsave(&mdp->lock, flags);
  938. if ((mdp->cur_tx - mdp->dirty_tx) >= (TX_RING_SIZE - 4)) {
  939. if (!sh_eth_txfree(ndev)) {
  940. netif_stop_queue(ndev);
  941. spin_unlock_irqrestore(&mdp->lock, flags);
  942. return 1;
  943. }
  944. }
  945. spin_unlock_irqrestore(&mdp->lock, flags);
  946. entry = mdp->cur_tx % TX_RING_SIZE;
  947. mdp->tx_skbuff[entry] = skb;
  948. txdesc = &mdp->tx_ring[entry];
  949. txdesc->addr = virt_to_phys(skb->data);
  950. /* soft swap. */
  951. if (!mdp->cd->hw_swap)
  952. sh_eth_soft_swap(phys_to_virt(ALIGN(txdesc->addr, 4)),
  953. skb->len + 2);
  954. /* write back */
  955. __flush_purge_region(skb->data, skb->len);
  956. if (skb->len < ETHERSMALL)
  957. txdesc->buffer_length = ETHERSMALL;
  958. else
  959. txdesc->buffer_length = skb->len;
  960. if (entry >= TX_RING_SIZE - 1)
  961. txdesc->status |= cpu_to_edmac(mdp, TD_TACT | TD_TDLE);
  962. else
  963. txdesc->status |= cpu_to_edmac(mdp, TD_TACT);
  964. mdp->cur_tx++;
  965. if (!(ctrl_inl(ndev->base_addr + EDTRR) & EDTRR_TRNS))
  966. ctrl_outl(EDTRR_TRNS, ndev->base_addr + EDTRR);
  967. ndev->trans_start = jiffies;
  968. return 0;
  969. }
  970. /* device close function */
  971. static int sh_eth_close(struct net_device *ndev)
  972. {
  973. struct sh_eth_private *mdp = netdev_priv(ndev);
  974. u32 ioaddr = ndev->base_addr;
  975. int ringsize;
  976. netif_stop_queue(ndev);
  977. /* Disable interrupts by clearing the interrupt mask. */
  978. ctrl_outl(0x0000, ioaddr + EESIPR);
  979. /* Stop the chip's Tx and Rx processes. */
  980. ctrl_outl(0, ioaddr + EDTRR);
  981. ctrl_outl(0, ioaddr + EDRRR);
  982. /* PHY Disconnect */
  983. if (mdp->phydev) {
  984. phy_stop(mdp->phydev);
  985. phy_disconnect(mdp->phydev);
  986. }
  987. free_irq(ndev->irq, ndev);
  988. del_timer_sync(&mdp->timer);
  989. /* Free all the skbuffs in the Rx queue. */
  990. sh_eth_ring_free(ndev);
  991. /* free DMA buffer */
  992. ringsize = sizeof(struct sh_eth_rxdesc) * RX_RING_SIZE;
  993. dma_free_coherent(NULL, ringsize, mdp->rx_ring, mdp->rx_desc_dma);
  994. /* free DMA buffer */
  995. ringsize = sizeof(struct sh_eth_txdesc) * TX_RING_SIZE;
  996. dma_free_coherent(NULL, ringsize, mdp->tx_ring, mdp->tx_desc_dma);
  997. return 0;
  998. }
  999. static struct net_device_stats *sh_eth_get_stats(struct net_device *ndev)
  1000. {
  1001. struct sh_eth_private *mdp = netdev_priv(ndev);
  1002. u32 ioaddr = ndev->base_addr;
  1003. mdp->stats.tx_dropped += ctrl_inl(ioaddr + TROCR);
  1004. ctrl_outl(0, ioaddr + TROCR); /* (write clear) */
  1005. mdp->stats.collisions += ctrl_inl(ioaddr + CDCR);
  1006. ctrl_outl(0, ioaddr + CDCR); /* (write clear) */
  1007. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + LCCR);
  1008. ctrl_outl(0, ioaddr + LCCR); /* (write clear) */
  1009. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1010. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CERCR);/* CERCR */
  1011. ctrl_outl(0, ioaddr + CERCR); /* (write clear) */
  1012. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CEECR);/* CEECR */
  1013. ctrl_outl(0, ioaddr + CEECR); /* (write clear) */
  1014. #else
  1015. mdp->stats.tx_carrier_errors += ctrl_inl(ioaddr + CNDCR);
  1016. ctrl_outl(0, ioaddr + CNDCR); /* (write clear) */
  1017. #endif
  1018. return &mdp->stats;
  1019. }
  1020. /* ioctl to device funciotn*/
  1021. static int sh_eth_do_ioctl(struct net_device *ndev, struct ifreq *rq,
  1022. int cmd)
  1023. {
  1024. struct sh_eth_private *mdp = netdev_priv(ndev);
  1025. struct phy_device *phydev = mdp->phydev;
  1026. if (!netif_running(ndev))
  1027. return -EINVAL;
  1028. if (!phydev)
  1029. return -ENODEV;
  1030. return phy_mii_ioctl(phydev, if_mii(rq), cmd);
  1031. }
  1032. #if defined(SH_ETH_HAS_TSU)
  1033. /* Multicast reception directions set */
  1034. static void sh_eth_set_multicast_list(struct net_device *ndev)
  1035. {
  1036. u32 ioaddr = ndev->base_addr;
  1037. if (ndev->flags & IFF_PROMISC) {
  1038. /* Set promiscuous. */
  1039. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_MCT) | ECMR_PRM,
  1040. ioaddr + ECMR);
  1041. } else {
  1042. /* Normal, unicast/broadcast-only mode. */
  1043. ctrl_outl((ctrl_inl(ioaddr + ECMR) & ~ECMR_PRM) | ECMR_MCT,
  1044. ioaddr + ECMR);
  1045. }
  1046. }
  1047. /* SuperH's TSU register init function */
  1048. static void sh_eth_tsu_init(u32 ioaddr)
  1049. {
  1050. ctrl_outl(0, ioaddr + TSU_FWEN0); /* Disable forward(0->1) */
  1051. ctrl_outl(0, ioaddr + TSU_FWEN1); /* Disable forward(1->0) */
  1052. ctrl_outl(0, ioaddr + TSU_FCM); /* forward fifo 3k-3k */
  1053. ctrl_outl(0xc, ioaddr + TSU_BSYSL0);
  1054. ctrl_outl(0xc, ioaddr + TSU_BSYSL1);
  1055. ctrl_outl(0, ioaddr + TSU_PRISL0);
  1056. ctrl_outl(0, ioaddr + TSU_PRISL1);
  1057. ctrl_outl(0, ioaddr + TSU_FWSL0);
  1058. ctrl_outl(0, ioaddr + TSU_FWSL1);
  1059. ctrl_outl(TSU_FWSLC_POSTENU | TSU_FWSLC_POSTENL, ioaddr + TSU_FWSLC);
  1060. #if defined(CONFIG_CPU_SUBTYPE_SH7763)
  1061. ctrl_outl(0, ioaddr + TSU_QTAG0); /* Disable QTAG(0->1) */
  1062. ctrl_outl(0, ioaddr + TSU_QTAG1); /* Disable QTAG(1->0) */
  1063. #else
  1064. ctrl_outl(0, ioaddr + TSU_QTAGM0); /* Disable QTAG(0->1) */
  1065. ctrl_outl(0, ioaddr + TSU_QTAGM1); /* Disable QTAG(1->0) */
  1066. #endif
  1067. ctrl_outl(0, ioaddr + TSU_FWSR); /* all interrupt status clear */
  1068. ctrl_outl(0, ioaddr + TSU_FWINMK); /* Disable all interrupt */
  1069. ctrl_outl(0, ioaddr + TSU_TEN); /* Disable all CAM entry */
  1070. ctrl_outl(0, ioaddr + TSU_POST1); /* Disable CAM entry [ 0- 7] */
  1071. ctrl_outl(0, ioaddr + TSU_POST2); /* Disable CAM entry [ 8-15] */
  1072. ctrl_outl(0, ioaddr + TSU_POST3); /* Disable CAM entry [16-23] */
  1073. ctrl_outl(0, ioaddr + TSU_POST4); /* Disable CAM entry [24-31] */
  1074. }
  1075. #endif /* SH_ETH_HAS_TSU */
  1076. /* MDIO bus release function */
  1077. static int sh_mdio_release(struct net_device *ndev)
  1078. {
  1079. struct mii_bus *bus = dev_get_drvdata(&ndev->dev);
  1080. /* unregister mdio bus */
  1081. mdiobus_unregister(bus);
  1082. /* remove mdio bus info from net_device */
  1083. dev_set_drvdata(&ndev->dev, NULL);
  1084. /* free bitbang info */
  1085. free_mdio_bitbang(bus);
  1086. return 0;
  1087. }
  1088. /* MDIO bus init function */
  1089. static int sh_mdio_init(struct net_device *ndev, int id)
  1090. {
  1091. int ret, i;
  1092. struct bb_info *bitbang;
  1093. struct sh_eth_private *mdp = netdev_priv(ndev);
  1094. /* create bit control struct for PHY */
  1095. bitbang = kzalloc(sizeof(struct bb_info), GFP_KERNEL);
  1096. if (!bitbang) {
  1097. ret = -ENOMEM;
  1098. goto out;
  1099. }
  1100. /* bitbang init */
  1101. bitbang->addr = ndev->base_addr + PIR;
  1102. bitbang->mdi_msk = 0x08;
  1103. bitbang->mdo_msk = 0x04;
  1104. bitbang->mmd_msk = 0x02;/* MMD */
  1105. bitbang->mdc_msk = 0x01;
  1106. bitbang->ctrl.ops = &bb_ops;
  1107. /* MII contorller setting */
  1108. mdp->mii_bus = alloc_mdio_bitbang(&bitbang->ctrl);
  1109. if (!mdp->mii_bus) {
  1110. ret = -ENOMEM;
  1111. goto out_free_bitbang;
  1112. }
  1113. /* Hook up MII support for ethtool */
  1114. mdp->mii_bus->name = "sh_mii";
  1115. mdp->mii_bus->parent = &ndev->dev;
  1116. snprintf(mdp->mii_bus->id, MII_BUS_ID_SIZE, "%x", id);
  1117. /* PHY IRQ */
  1118. mdp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
  1119. if (!mdp->mii_bus->irq) {
  1120. ret = -ENOMEM;
  1121. goto out_free_bus;
  1122. }
  1123. for (i = 0; i < PHY_MAX_ADDR; i++)
  1124. mdp->mii_bus->irq[i] = PHY_POLL;
  1125. /* regist mdio bus */
  1126. ret = mdiobus_register(mdp->mii_bus);
  1127. if (ret)
  1128. goto out_free_irq;
  1129. dev_set_drvdata(&ndev->dev, mdp->mii_bus);
  1130. return 0;
  1131. out_free_irq:
  1132. kfree(mdp->mii_bus->irq);
  1133. out_free_bus:
  1134. free_mdio_bitbang(mdp->mii_bus);
  1135. out_free_bitbang:
  1136. kfree(bitbang);
  1137. out:
  1138. return ret;
  1139. }
  1140. static const struct net_device_ops sh_eth_netdev_ops = {
  1141. .ndo_open = sh_eth_open,
  1142. .ndo_stop = sh_eth_close,
  1143. .ndo_start_xmit = sh_eth_start_xmit,
  1144. .ndo_get_stats = sh_eth_get_stats,
  1145. #if defined(SH_ETH_HAS_TSU)
  1146. .ndo_set_multicast_list = sh_eth_set_multicast_list,
  1147. #endif
  1148. .ndo_tx_timeout = sh_eth_tx_timeout,
  1149. .ndo_do_ioctl = sh_eth_do_ioctl,
  1150. .ndo_validate_addr = eth_validate_addr,
  1151. .ndo_set_mac_address = eth_mac_addr,
  1152. .ndo_change_mtu = eth_change_mtu,
  1153. };
  1154. static int sh_eth_drv_probe(struct platform_device *pdev)
  1155. {
  1156. int ret, i, devno = 0;
  1157. struct resource *res;
  1158. struct net_device *ndev = NULL;
  1159. struct sh_eth_private *mdp;
  1160. struct sh_eth_plat_data *pd;
  1161. /* get base addr */
  1162. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1163. if (unlikely(res == NULL)) {
  1164. dev_err(&pdev->dev, "invalid resource\n");
  1165. ret = -EINVAL;
  1166. goto out;
  1167. }
  1168. ndev = alloc_etherdev(sizeof(struct sh_eth_private));
  1169. if (!ndev) {
  1170. dev_err(&pdev->dev, "Could not allocate device.\n");
  1171. ret = -ENOMEM;
  1172. goto out;
  1173. }
  1174. /* The sh Ether-specific entries in the device structure. */
  1175. ndev->base_addr = res->start;
  1176. devno = pdev->id;
  1177. if (devno < 0)
  1178. devno = 0;
  1179. ndev->dma = -1;
  1180. ret = platform_get_irq(pdev, 0);
  1181. if (ret < 0) {
  1182. ret = -ENODEV;
  1183. goto out_release;
  1184. }
  1185. ndev->irq = ret;
  1186. SET_NETDEV_DEV(ndev, &pdev->dev);
  1187. /* Fill in the fields of the device structure with ethernet values. */
  1188. ether_setup(ndev);
  1189. mdp = netdev_priv(ndev);
  1190. spin_lock_init(&mdp->lock);
  1191. pd = (struct sh_eth_plat_data *)(pdev->dev.platform_data);
  1192. /* get PHY ID */
  1193. mdp->phy_id = pd->phy;
  1194. /* EDMAC endian */
  1195. mdp->edmac_endian = pd->edmac_endian;
  1196. /* set cpu data */
  1197. mdp->cd = &sh_eth_my_cpu_data;
  1198. sh_eth_set_default_cpu_data(mdp->cd);
  1199. /* set function */
  1200. ndev->netdev_ops = &sh_eth_netdev_ops;
  1201. ndev->watchdog_timeo = TX_TIMEOUT;
  1202. mdp->post_rx = POST_RX >> (devno << 1);
  1203. mdp->post_fw = POST_FW >> (devno << 1);
  1204. /* read and set MAC address */
  1205. read_mac_address(ndev);
  1206. /* First device only init */
  1207. if (!devno) {
  1208. if (mdp->cd->chip_reset)
  1209. mdp->cd->chip_reset(ndev);
  1210. #if defined(SH_ETH_HAS_TSU)
  1211. /* TSU init (Init only)*/
  1212. sh_eth_tsu_init(SH_TSU_ADDR);
  1213. #endif
  1214. }
  1215. /* network device register */
  1216. ret = register_netdev(ndev);
  1217. if (ret)
  1218. goto out_release;
  1219. /* mdio bus init */
  1220. ret = sh_mdio_init(ndev, pdev->id);
  1221. if (ret)
  1222. goto out_unregister;
  1223. /* pritnt device infomation */
  1224. pr_info("Base address at 0x%x, ",
  1225. (u32)ndev->base_addr);
  1226. for (i = 0; i < 5; i++)
  1227. printk("%02X:", ndev->dev_addr[i]);
  1228. printk("%02X, IRQ %d.\n", ndev->dev_addr[i], ndev->irq);
  1229. platform_set_drvdata(pdev, ndev);
  1230. return ret;
  1231. out_unregister:
  1232. unregister_netdev(ndev);
  1233. out_release:
  1234. /* net_dev free */
  1235. if (ndev)
  1236. free_netdev(ndev);
  1237. out:
  1238. return ret;
  1239. }
  1240. static int sh_eth_drv_remove(struct platform_device *pdev)
  1241. {
  1242. struct net_device *ndev = platform_get_drvdata(pdev);
  1243. sh_mdio_release(ndev);
  1244. unregister_netdev(ndev);
  1245. flush_scheduled_work();
  1246. free_netdev(ndev);
  1247. platform_set_drvdata(pdev, NULL);
  1248. return 0;
  1249. }
  1250. static struct platform_driver sh_eth_driver = {
  1251. .probe = sh_eth_drv_probe,
  1252. .remove = sh_eth_drv_remove,
  1253. .driver = {
  1254. .name = CARDNAME,
  1255. },
  1256. };
  1257. static int __init sh_eth_init(void)
  1258. {
  1259. return platform_driver_register(&sh_eth_driver);
  1260. }
  1261. static void __exit sh_eth_cleanup(void)
  1262. {
  1263. platform_driver_unregister(&sh_eth_driver);
  1264. }
  1265. module_init(sh_eth_init);
  1266. module_exit(sh_eth_cleanup);
  1267. MODULE_AUTHOR("Nobuhiro Iwamatsu, Yoshihiro Shimoda");
  1268. MODULE_DESCRIPTION("Renesas SuperH Ethernet driver");
  1269. MODULE_LICENSE("GPL v2");