xfs_inode.c 116 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_trans_priv.h"
  26. #include "xfs_sb.h"
  27. #include "xfs_ag.h"
  28. #include "xfs_mount.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_attr_sf.h"
  33. #include "xfs_dinode.h"
  34. #include "xfs_inode.h"
  35. #include "xfs_buf_item.h"
  36. #include "xfs_inode_item.h"
  37. #include "xfs_btree.h"
  38. #include "xfs_alloc.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_bmap.h"
  41. #include "xfs_error.h"
  42. #include "xfs_utils.h"
  43. #include "xfs_quota.h"
  44. #include "xfs_filestream.h"
  45. #include "xfs_vnodeops.h"
  46. #include "xfs_cksum.h"
  47. #include "xfs_trace.h"
  48. #include "xfs_icache.h"
  49. kmem_zone_t *xfs_ifork_zone;
  50. kmem_zone_t *xfs_inode_zone;
  51. /*
  52. * Used in xfs_itruncate_extents(). This is the maximum number of extents
  53. * freed from a file in a single transaction.
  54. */
  55. #define XFS_ITRUNC_MAX_EXTENTS 2
  56. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  57. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  58. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  59. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  60. /*
  61. * helper function to extract extent size hint from inode
  62. */
  63. xfs_extlen_t
  64. xfs_get_extsz_hint(
  65. struct xfs_inode *ip)
  66. {
  67. if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  68. return ip->i_d.di_extsize;
  69. if (XFS_IS_REALTIME_INODE(ip))
  70. return ip->i_mount->m_sb.sb_rextsize;
  71. return 0;
  72. }
  73. /*
  74. * This is a wrapper routine around the xfs_ilock() routine used to centralize
  75. * some grungy code. It is used in places that wish to lock the inode solely
  76. * for reading the extents. The reason these places can't just call
  77. * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
  78. * extents from disk for a file in b-tree format. If the inode is in b-tree
  79. * format, then we need to lock the inode exclusively until the extents are read
  80. * in. Locking it exclusively all the time would limit our parallelism
  81. * unnecessarily, though. What we do instead is check to see if the extents
  82. * have been read in yet, and only lock the inode exclusively if they have not.
  83. *
  84. * The function returns a value which should be given to the corresponding
  85. * xfs_iunlock_map_shared(). This value is the mode in which the lock was
  86. * actually taken.
  87. */
  88. uint
  89. xfs_ilock_map_shared(
  90. xfs_inode_t *ip)
  91. {
  92. uint lock_mode;
  93. if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
  94. ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
  95. lock_mode = XFS_ILOCK_EXCL;
  96. } else {
  97. lock_mode = XFS_ILOCK_SHARED;
  98. }
  99. xfs_ilock(ip, lock_mode);
  100. return lock_mode;
  101. }
  102. /*
  103. * This is simply the unlock routine to go with xfs_ilock_map_shared().
  104. * All it does is call xfs_iunlock() with the given lock_mode.
  105. */
  106. void
  107. xfs_iunlock_map_shared(
  108. xfs_inode_t *ip,
  109. unsigned int lock_mode)
  110. {
  111. xfs_iunlock(ip, lock_mode);
  112. }
  113. /*
  114. * The xfs inode contains 2 locks: a multi-reader lock called the
  115. * i_iolock and a multi-reader lock called the i_lock. This routine
  116. * allows either or both of the locks to be obtained.
  117. *
  118. * The 2 locks should always be ordered so that the IO lock is
  119. * obtained first in order to prevent deadlock.
  120. *
  121. * ip -- the inode being locked
  122. * lock_flags -- this parameter indicates the inode's locks
  123. * to be locked. It can be:
  124. * XFS_IOLOCK_SHARED,
  125. * XFS_IOLOCK_EXCL,
  126. * XFS_ILOCK_SHARED,
  127. * XFS_ILOCK_EXCL,
  128. * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
  129. * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
  130. * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
  131. * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
  132. */
  133. void
  134. xfs_ilock(
  135. xfs_inode_t *ip,
  136. uint lock_flags)
  137. {
  138. trace_xfs_ilock(ip, lock_flags, _RET_IP_);
  139. /*
  140. * You can't set both SHARED and EXCL for the same lock,
  141. * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
  142. * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
  143. */
  144. ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
  145. (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
  146. ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
  147. (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
  148. ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
  149. if (lock_flags & XFS_IOLOCK_EXCL)
  150. mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
  151. else if (lock_flags & XFS_IOLOCK_SHARED)
  152. mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
  153. if (lock_flags & XFS_ILOCK_EXCL)
  154. mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
  155. else if (lock_flags & XFS_ILOCK_SHARED)
  156. mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
  157. }
  158. /*
  159. * This is just like xfs_ilock(), except that the caller
  160. * is guaranteed not to sleep. It returns 1 if it gets
  161. * the requested locks and 0 otherwise. If the IO lock is
  162. * obtained but the inode lock cannot be, then the IO lock
  163. * is dropped before returning.
  164. *
  165. * ip -- the inode being locked
  166. * lock_flags -- this parameter indicates the inode's locks to be
  167. * to be locked. See the comment for xfs_ilock() for a list
  168. * of valid values.
  169. */
  170. int
  171. xfs_ilock_nowait(
  172. xfs_inode_t *ip,
  173. uint lock_flags)
  174. {
  175. trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
  176. /*
  177. * You can't set both SHARED and EXCL for the same lock,
  178. * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
  179. * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
  180. */
  181. ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
  182. (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
  183. ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
  184. (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
  185. ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
  186. if (lock_flags & XFS_IOLOCK_EXCL) {
  187. if (!mrtryupdate(&ip->i_iolock))
  188. goto out;
  189. } else if (lock_flags & XFS_IOLOCK_SHARED) {
  190. if (!mrtryaccess(&ip->i_iolock))
  191. goto out;
  192. }
  193. if (lock_flags & XFS_ILOCK_EXCL) {
  194. if (!mrtryupdate(&ip->i_lock))
  195. goto out_undo_iolock;
  196. } else if (lock_flags & XFS_ILOCK_SHARED) {
  197. if (!mrtryaccess(&ip->i_lock))
  198. goto out_undo_iolock;
  199. }
  200. return 1;
  201. out_undo_iolock:
  202. if (lock_flags & XFS_IOLOCK_EXCL)
  203. mrunlock_excl(&ip->i_iolock);
  204. else if (lock_flags & XFS_IOLOCK_SHARED)
  205. mrunlock_shared(&ip->i_iolock);
  206. out:
  207. return 0;
  208. }
  209. /*
  210. * xfs_iunlock() is used to drop the inode locks acquired with
  211. * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
  212. * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
  213. * that we know which locks to drop.
  214. *
  215. * ip -- the inode being unlocked
  216. * lock_flags -- this parameter indicates the inode's locks to be
  217. * to be unlocked. See the comment for xfs_ilock() for a list
  218. * of valid values for this parameter.
  219. *
  220. */
  221. void
  222. xfs_iunlock(
  223. xfs_inode_t *ip,
  224. uint lock_flags)
  225. {
  226. /*
  227. * You can't set both SHARED and EXCL for the same lock,
  228. * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
  229. * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
  230. */
  231. ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
  232. (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
  233. ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
  234. (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
  235. ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
  236. ASSERT(lock_flags != 0);
  237. if (lock_flags & XFS_IOLOCK_EXCL)
  238. mrunlock_excl(&ip->i_iolock);
  239. else if (lock_flags & XFS_IOLOCK_SHARED)
  240. mrunlock_shared(&ip->i_iolock);
  241. if (lock_flags & XFS_ILOCK_EXCL)
  242. mrunlock_excl(&ip->i_lock);
  243. else if (lock_flags & XFS_ILOCK_SHARED)
  244. mrunlock_shared(&ip->i_lock);
  245. trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
  246. }
  247. /*
  248. * give up write locks. the i/o lock cannot be held nested
  249. * if it is being demoted.
  250. */
  251. void
  252. xfs_ilock_demote(
  253. xfs_inode_t *ip,
  254. uint lock_flags)
  255. {
  256. ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
  257. ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
  258. if (lock_flags & XFS_ILOCK_EXCL)
  259. mrdemote(&ip->i_lock);
  260. if (lock_flags & XFS_IOLOCK_EXCL)
  261. mrdemote(&ip->i_iolock);
  262. trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
  263. }
  264. #if defined(DEBUG) || defined(XFS_WARN)
  265. int
  266. xfs_isilocked(
  267. xfs_inode_t *ip,
  268. uint lock_flags)
  269. {
  270. if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
  271. if (!(lock_flags & XFS_ILOCK_SHARED))
  272. return !!ip->i_lock.mr_writer;
  273. return rwsem_is_locked(&ip->i_lock.mr_lock);
  274. }
  275. if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
  276. if (!(lock_flags & XFS_IOLOCK_SHARED))
  277. return !!ip->i_iolock.mr_writer;
  278. return rwsem_is_locked(&ip->i_iolock.mr_lock);
  279. }
  280. ASSERT(0);
  281. return 0;
  282. }
  283. #endif
  284. void
  285. __xfs_iflock(
  286. struct xfs_inode *ip)
  287. {
  288. wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
  289. DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
  290. do {
  291. prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
  292. if (xfs_isiflocked(ip))
  293. io_schedule();
  294. } while (!xfs_iflock_nowait(ip));
  295. finish_wait(wq, &wait.wait);
  296. }
  297. #ifdef DEBUG
  298. /*
  299. * Make sure that the extents in the given memory buffer
  300. * are valid.
  301. */
  302. STATIC void
  303. xfs_validate_extents(
  304. xfs_ifork_t *ifp,
  305. int nrecs,
  306. xfs_exntfmt_t fmt)
  307. {
  308. xfs_bmbt_irec_t irec;
  309. xfs_bmbt_rec_host_t rec;
  310. int i;
  311. for (i = 0; i < nrecs; i++) {
  312. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  313. rec.l0 = get_unaligned(&ep->l0);
  314. rec.l1 = get_unaligned(&ep->l1);
  315. xfs_bmbt_get_all(&rec, &irec);
  316. if (fmt == XFS_EXTFMT_NOSTATE)
  317. ASSERT(irec.br_state == XFS_EXT_NORM);
  318. }
  319. }
  320. #else /* DEBUG */
  321. #define xfs_validate_extents(ifp, nrecs, fmt)
  322. #endif /* DEBUG */
  323. /*
  324. * Check that none of the inode's in the buffer have a next
  325. * unlinked field of 0.
  326. */
  327. #if defined(DEBUG)
  328. void
  329. xfs_inobp_check(
  330. xfs_mount_t *mp,
  331. xfs_buf_t *bp)
  332. {
  333. int i;
  334. int j;
  335. xfs_dinode_t *dip;
  336. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  337. for (i = 0; i < j; i++) {
  338. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  339. i * mp->m_sb.sb_inodesize);
  340. if (!dip->di_next_unlinked) {
  341. xfs_alert(mp,
  342. "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
  343. bp);
  344. ASSERT(dip->di_next_unlinked);
  345. }
  346. }
  347. }
  348. #endif
  349. static void
  350. xfs_inode_buf_verify(
  351. struct xfs_buf *bp)
  352. {
  353. struct xfs_mount *mp = bp->b_target->bt_mount;
  354. int i;
  355. int ni;
  356. /*
  357. * Validate the magic number and version of every inode in the buffer
  358. */
  359. ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
  360. for (i = 0; i < ni; i++) {
  361. int di_ok;
  362. xfs_dinode_t *dip;
  363. dip = (struct xfs_dinode *)xfs_buf_offset(bp,
  364. (i << mp->m_sb.sb_inodelog));
  365. di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
  366. XFS_DINODE_GOOD_VERSION(dip->di_version);
  367. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  368. XFS_ERRTAG_ITOBP_INOTOBP,
  369. XFS_RANDOM_ITOBP_INOTOBP))) {
  370. xfs_buf_ioerror(bp, EFSCORRUPTED);
  371. XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
  372. mp, dip);
  373. #ifdef DEBUG
  374. xfs_emerg(mp,
  375. "bad inode magic/vsn daddr %lld #%d (magic=%x)",
  376. (unsigned long long)bp->b_bn, i,
  377. be16_to_cpu(dip->di_magic));
  378. ASSERT(0);
  379. #endif
  380. }
  381. }
  382. xfs_inobp_check(mp, bp);
  383. }
  384. static void
  385. xfs_inode_buf_read_verify(
  386. struct xfs_buf *bp)
  387. {
  388. xfs_inode_buf_verify(bp);
  389. }
  390. static void
  391. xfs_inode_buf_write_verify(
  392. struct xfs_buf *bp)
  393. {
  394. xfs_inode_buf_verify(bp);
  395. }
  396. const struct xfs_buf_ops xfs_inode_buf_ops = {
  397. .verify_read = xfs_inode_buf_read_verify,
  398. .verify_write = xfs_inode_buf_write_verify,
  399. };
  400. /*
  401. * This routine is called to map an inode to the buffer containing the on-disk
  402. * version of the inode. It returns a pointer to the buffer containing the
  403. * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
  404. * pointer to the on-disk inode within that buffer.
  405. *
  406. * If a non-zero error is returned, then the contents of bpp and dipp are
  407. * undefined.
  408. */
  409. int
  410. xfs_imap_to_bp(
  411. struct xfs_mount *mp,
  412. struct xfs_trans *tp,
  413. struct xfs_imap *imap,
  414. struct xfs_dinode **dipp,
  415. struct xfs_buf **bpp,
  416. uint buf_flags,
  417. uint iget_flags)
  418. {
  419. struct xfs_buf *bp;
  420. int error;
  421. buf_flags |= XBF_UNMAPPED;
  422. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  423. (int)imap->im_len, buf_flags, &bp,
  424. &xfs_inode_buf_ops);
  425. if (error) {
  426. if (error == EAGAIN) {
  427. ASSERT(buf_flags & XBF_TRYLOCK);
  428. return error;
  429. }
  430. if (error == EFSCORRUPTED &&
  431. (iget_flags & XFS_IGET_UNTRUSTED))
  432. return XFS_ERROR(EINVAL);
  433. xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
  434. __func__, error);
  435. return error;
  436. }
  437. *bpp = bp;
  438. *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
  439. return 0;
  440. }
  441. /*
  442. * Move inode type and inode format specific information from the
  443. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  444. * this means set if_rdev to the proper value. For files, directories,
  445. * and symlinks this means to bring in the in-line data or extent
  446. * pointers. For a file in B-tree format, only the root is immediately
  447. * brought in-core. The rest will be in-lined in if_extents when it
  448. * is first referenced (see xfs_iread_extents()).
  449. */
  450. STATIC int
  451. xfs_iformat(
  452. xfs_inode_t *ip,
  453. xfs_dinode_t *dip)
  454. {
  455. xfs_attr_shortform_t *atp;
  456. int size;
  457. int error = 0;
  458. xfs_fsize_t di_size;
  459. if (unlikely(be32_to_cpu(dip->di_nextents) +
  460. be16_to_cpu(dip->di_anextents) >
  461. be64_to_cpu(dip->di_nblocks))) {
  462. xfs_warn(ip->i_mount,
  463. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  464. (unsigned long long)ip->i_ino,
  465. (int)(be32_to_cpu(dip->di_nextents) +
  466. be16_to_cpu(dip->di_anextents)),
  467. (unsigned long long)
  468. be64_to_cpu(dip->di_nblocks));
  469. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  470. ip->i_mount, dip);
  471. return XFS_ERROR(EFSCORRUPTED);
  472. }
  473. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  474. xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
  475. (unsigned long long)ip->i_ino,
  476. dip->di_forkoff);
  477. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  478. ip->i_mount, dip);
  479. return XFS_ERROR(EFSCORRUPTED);
  480. }
  481. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  482. !ip->i_mount->m_rtdev_targp)) {
  483. xfs_warn(ip->i_mount,
  484. "corrupt dinode %Lu, has realtime flag set.",
  485. ip->i_ino);
  486. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  487. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  488. return XFS_ERROR(EFSCORRUPTED);
  489. }
  490. switch (ip->i_d.di_mode & S_IFMT) {
  491. case S_IFIFO:
  492. case S_IFCHR:
  493. case S_IFBLK:
  494. case S_IFSOCK:
  495. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  496. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  497. ip->i_mount, dip);
  498. return XFS_ERROR(EFSCORRUPTED);
  499. }
  500. ip->i_d.di_size = 0;
  501. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  502. break;
  503. case S_IFREG:
  504. case S_IFLNK:
  505. case S_IFDIR:
  506. switch (dip->di_format) {
  507. case XFS_DINODE_FMT_LOCAL:
  508. /*
  509. * no local regular files yet
  510. */
  511. if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
  512. xfs_warn(ip->i_mount,
  513. "corrupt inode %Lu (local format for regular file).",
  514. (unsigned long long) ip->i_ino);
  515. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  516. XFS_ERRLEVEL_LOW,
  517. ip->i_mount, dip);
  518. return XFS_ERROR(EFSCORRUPTED);
  519. }
  520. di_size = be64_to_cpu(dip->di_size);
  521. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  522. xfs_warn(ip->i_mount,
  523. "corrupt inode %Lu (bad size %Ld for local inode).",
  524. (unsigned long long) ip->i_ino,
  525. (long long) di_size);
  526. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  527. XFS_ERRLEVEL_LOW,
  528. ip->i_mount, dip);
  529. return XFS_ERROR(EFSCORRUPTED);
  530. }
  531. size = (int)di_size;
  532. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  533. break;
  534. case XFS_DINODE_FMT_EXTENTS:
  535. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  536. break;
  537. case XFS_DINODE_FMT_BTREE:
  538. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  539. break;
  540. default:
  541. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  542. ip->i_mount);
  543. return XFS_ERROR(EFSCORRUPTED);
  544. }
  545. break;
  546. default:
  547. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  548. return XFS_ERROR(EFSCORRUPTED);
  549. }
  550. if (error) {
  551. return error;
  552. }
  553. if (!XFS_DFORK_Q(dip))
  554. return 0;
  555. ASSERT(ip->i_afp == NULL);
  556. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  557. switch (dip->di_aformat) {
  558. case XFS_DINODE_FMT_LOCAL:
  559. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  560. size = be16_to_cpu(atp->hdr.totsize);
  561. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  562. xfs_warn(ip->i_mount,
  563. "corrupt inode %Lu (bad attr fork size %Ld).",
  564. (unsigned long long) ip->i_ino,
  565. (long long) size);
  566. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  567. XFS_ERRLEVEL_LOW,
  568. ip->i_mount, dip);
  569. return XFS_ERROR(EFSCORRUPTED);
  570. }
  571. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  572. break;
  573. case XFS_DINODE_FMT_EXTENTS:
  574. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  575. break;
  576. case XFS_DINODE_FMT_BTREE:
  577. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  578. break;
  579. default:
  580. error = XFS_ERROR(EFSCORRUPTED);
  581. break;
  582. }
  583. if (error) {
  584. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  585. ip->i_afp = NULL;
  586. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  587. }
  588. return error;
  589. }
  590. /*
  591. * The file is in-lined in the on-disk inode.
  592. * If it fits into if_inline_data, then copy
  593. * it there, otherwise allocate a buffer for it
  594. * and copy the data there. Either way, set
  595. * if_data to point at the data.
  596. * If we allocate a buffer for the data, make
  597. * sure that its size is a multiple of 4 and
  598. * record the real size in i_real_bytes.
  599. */
  600. STATIC int
  601. xfs_iformat_local(
  602. xfs_inode_t *ip,
  603. xfs_dinode_t *dip,
  604. int whichfork,
  605. int size)
  606. {
  607. xfs_ifork_t *ifp;
  608. int real_size;
  609. /*
  610. * If the size is unreasonable, then something
  611. * is wrong and we just bail out rather than crash in
  612. * kmem_alloc() or memcpy() below.
  613. */
  614. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  615. xfs_warn(ip->i_mount,
  616. "corrupt inode %Lu (bad size %d for local fork, size = %d).",
  617. (unsigned long long) ip->i_ino, size,
  618. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  619. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  620. ip->i_mount, dip);
  621. return XFS_ERROR(EFSCORRUPTED);
  622. }
  623. ifp = XFS_IFORK_PTR(ip, whichfork);
  624. real_size = 0;
  625. if (size == 0)
  626. ifp->if_u1.if_data = NULL;
  627. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  628. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  629. else {
  630. real_size = roundup(size, 4);
  631. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  632. }
  633. ifp->if_bytes = size;
  634. ifp->if_real_bytes = real_size;
  635. if (size)
  636. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  637. ifp->if_flags &= ~XFS_IFEXTENTS;
  638. ifp->if_flags |= XFS_IFINLINE;
  639. return 0;
  640. }
  641. /*
  642. * The file consists of a set of extents all
  643. * of which fit into the on-disk inode.
  644. * If there are few enough extents to fit into
  645. * the if_inline_ext, then copy them there.
  646. * Otherwise allocate a buffer for them and copy
  647. * them into it. Either way, set if_extents
  648. * to point at the extents.
  649. */
  650. STATIC int
  651. xfs_iformat_extents(
  652. xfs_inode_t *ip,
  653. xfs_dinode_t *dip,
  654. int whichfork)
  655. {
  656. xfs_bmbt_rec_t *dp;
  657. xfs_ifork_t *ifp;
  658. int nex;
  659. int size;
  660. int i;
  661. ifp = XFS_IFORK_PTR(ip, whichfork);
  662. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  663. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  664. /*
  665. * If the number of extents is unreasonable, then something
  666. * is wrong and we just bail out rather than crash in
  667. * kmem_alloc() or memcpy() below.
  668. */
  669. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  670. xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
  671. (unsigned long long) ip->i_ino, nex);
  672. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  673. ip->i_mount, dip);
  674. return XFS_ERROR(EFSCORRUPTED);
  675. }
  676. ifp->if_real_bytes = 0;
  677. if (nex == 0)
  678. ifp->if_u1.if_extents = NULL;
  679. else if (nex <= XFS_INLINE_EXTS)
  680. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  681. else
  682. xfs_iext_add(ifp, 0, nex);
  683. ifp->if_bytes = size;
  684. if (size) {
  685. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  686. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  687. for (i = 0; i < nex; i++, dp++) {
  688. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  689. ep->l0 = get_unaligned_be64(&dp->l0);
  690. ep->l1 = get_unaligned_be64(&dp->l1);
  691. }
  692. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  693. if (whichfork != XFS_DATA_FORK ||
  694. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  695. if (unlikely(xfs_check_nostate_extents(
  696. ifp, 0, nex))) {
  697. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  698. XFS_ERRLEVEL_LOW,
  699. ip->i_mount);
  700. return XFS_ERROR(EFSCORRUPTED);
  701. }
  702. }
  703. ifp->if_flags |= XFS_IFEXTENTS;
  704. return 0;
  705. }
  706. /*
  707. * The file has too many extents to fit into
  708. * the inode, so they are in B-tree format.
  709. * Allocate a buffer for the root of the B-tree
  710. * and copy the root into it. The i_extents
  711. * field will remain NULL until all of the
  712. * extents are read in (when they are needed).
  713. */
  714. STATIC int
  715. xfs_iformat_btree(
  716. xfs_inode_t *ip,
  717. xfs_dinode_t *dip,
  718. int whichfork)
  719. {
  720. struct xfs_mount *mp = ip->i_mount;
  721. xfs_bmdr_block_t *dfp;
  722. xfs_ifork_t *ifp;
  723. /* REFERENCED */
  724. int nrecs;
  725. int size;
  726. ifp = XFS_IFORK_PTR(ip, whichfork);
  727. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  728. size = XFS_BMAP_BROOT_SPACE(mp, dfp);
  729. nrecs = be16_to_cpu(dfp->bb_numrecs);
  730. /*
  731. * blow out if -- fork has less extents than can fit in
  732. * fork (fork shouldn't be a btree format), root btree
  733. * block has more records than can fit into the fork,
  734. * or the number of extents is greater than the number of
  735. * blocks.
  736. */
  737. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
  738. XFS_IFORK_MAXEXT(ip, whichfork) ||
  739. XFS_BMDR_SPACE_CALC(nrecs) >
  740. XFS_DFORK_SIZE(dip, mp, whichfork) ||
  741. XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  742. xfs_warn(mp, "corrupt inode %Lu (btree).",
  743. (unsigned long long) ip->i_ino);
  744. XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  745. mp, dip);
  746. return XFS_ERROR(EFSCORRUPTED);
  747. }
  748. ifp->if_broot_bytes = size;
  749. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  750. ASSERT(ifp->if_broot != NULL);
  751. /*
  752. * Copy and convert from the on-disk structure
  753. * to the in-memory structure.
  754. */
  755. xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  756. ifp->if_broot, size);
  757. ifp->if_flags &= ~XFS_IFEXTENTS;
  758. ifp->if_flags |= XFS_IFBROOT;
  759. return 0;
  760. }
  761. STATIC void
  762. xfs_dinode_from_disk(
  763. xfs_icdinode_t *to,
  764. xfs_dinode_t *from)
  765. {
  766. to->di_magic = be16_to_cpu(from->di_magic);
  767. to->di_mode = be16_to_cpu(from->di_mode);
  768. to->di_version = from ->di_version;
  769. to->di_format = from->di_format;
  770. to->di_onlink = be16_to_cpu(from->di_onlink);
  771. to->di_uid = be32_to_cpu(from->di_uid);
  772. to->di_gid = be32_to_cpu(from->di_gid);
  773. to->di_nlink = be32_to_cpu(from->di_nlink);
  774. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  775. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  776. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  777. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  778. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  779. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  780. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  781. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  782. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  783. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  784. to->di_size = be64_to_cpu(from->di_size);
  785. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  786. to->di_extsize = be32_to_cpu(from->di_extsize);
  787. to->di_nextents = be32_to_cpu(from->di_nextents);
  788. to->di_anextents = be16_to_cpu(from->di_anextents);
  789. to->di_forkoff = from->di_forkoff;
  790. to->di_aformat = from->di_aformat;
  791. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  792. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  793. to->di_flags = be16_to_cpu(from->di_flags);
  794. to->di_gen = be32_to_cpu(from->di_gen);
  795. if (to->di_version == 3) {
  796. to->di_changecount = be64_to_cpu(from->di_changecount);
  797. to->di_crtime.t_sec = be32_to_cpu(from->di_crtime.t_sec);
  798. to->di_crtime.t_nsec = be32_to_cpu(from->di_crtime.t_nsec);
  799. to->di_flags2 = be64_to_cpu(from->di_flags2);
  800. to->di_ino = be64_to_cpu(from->di_ino);
  801. to->di_lsn = be64_to_cpu(from->di_lsn);
  802. memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
  803. uuid_copy(&to->di_uuid, &from->di_uuid);
  804. }
  805. }
  806. void
  807. xfs_dinode_to_disk(
  808. xfs_dinode_t *to,
  809. xfs_icdinode_t *from)
  810. {
  811. to->di_magic = cpu_to_be16(from->di_magic);
  812. to->di_mode = cpu_to_be16(from->di_mode);
  813. to->di_version = from ->di_version;
  814. to->di_format = from->di_format;
  815. to->di_onlink = cpu_to_be16(from->di_onlink);
  816. to->di_uid = cpu_to_be32(from->di_uid);
  817. to->di_gid = cpu_to_be32(from->di_gid);
  818. to->di_nlink = cpu_to_be32(from->di_nlink);
  819. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  820. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  821. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  822. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  823. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  824. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  825. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  826. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  827. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  828. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  829. to->di_size = cpu_to_be64(from->di_size);
  830. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  831. to->di_extsize = cpu_to_be32(from->di_extsize);
  832. to->di_nextents = cpu_to_be32(from->di_nextents);
  833. to->di_anextents = cpu_to_be16(from->di_anextents);
  834. to->di_forkoff = from->di_forkoff;
  835. to->di_aformat = from->di_aformat;
  836. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  837. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  838. to->di_flags = cpu_to_be16(from->di_flags);
  839. to->di_gen = cpu_to_be32(from->di_gen);
  840. if (from->di_version == 3) {
  841. to->di_changecount = cpu_to_be64(from->di_changecount);
  842. to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
  843. to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
  844. to->di_flags2 = cpu_to_be64(from->di_flags2);
  845. to->di_ino = cpu_to_be64(from->di_ino);
  846. to->di_lsn = cpu_to_be64(from->di_lsn);
  847. memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
  848. uuid_copy(&to->di_uuid, &from->di_uuid);
  849. }
  850. }
  851. STATIC uint
  852. _xfs_dic2xflags(
  853. __uint16_t di_flags)
  854. {
  855. uint flags = 0;
  856. if (di_flags & XFS_DIFLAG_ANY) {
  857. if (di_flags & XFS_DIFLAG_REALTIME)
  858. flags |= XFS_XFLAG_REALTIME;
  859. if (di_flags & XFS_DIFLAG_PREALLOC)
  860. flags |= XFS_XFLAG_PREALLOC;
  861. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  862. flags |= XFS_XFLAG_IMMUTABLE;
  863. if (di_flags & XFS_DIFLAG_APPEND)
  864. flags |= XFS_XFLAG_APPEND;
  865. if (di_flags & XFS_DIFLAG_SYNC)
  866. flags |= XFS_XFLAG_SYNC;
  867. if (di_flags & XFS_DIFLAG_NOATIME)
  868. flags |= XFS_XFLAG_NOATIME;
  869. if (di_flags & XFS_DIFLAG_NODUMP)
  870. flags |= XFS_XFLAG_NODUMP;
  871. if (di_flags & XFS_DIFLAG_RTINHERIT)
  872. flags |= XFS_XFLAG_RTINHERIT;
  873. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  874. flags |= XFS_XFLAG_PROJINHERIT;
  875. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  876. flags |= XFS_XFLAG_NOSYMLINKS;
  877. if (di_flags & XFS_DIFLAG_EXTSIZE)
  878. flags |= XFS_XFLAG_EXTSIZE;
  879. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  880. flags |= XFS_XFLAG_EXTSZINHERIT;
  881. if (di_flags & XFS_DIFLAG_NODEFRAG)
  882. flags |= XFS_XFLAG_NODEFRAG;
  883. if (di_flags & XFS_DIFLAG_FILESTREAM)
  884. flags |= XFS_XFLAG_FILESTREAM;
  885. }
  886. return flags;
  887. }
  888. uint
  889. xfs_ip2xflags(
  890. xfs_inode_t *ip)
  891. {
  892. xfs_icdinode_t *dic = &ip->i_d;
  893. return _xfs_dic2xflags(dic->di_flags) |
  894. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  895. }
  896. uint
  897. xfs_dic2xflags(
  898. xfs_dinode_t *dip)
  899. {
  900. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  901. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  902. }
  903. static bool
  904. xfs_dinode_verify(
  905. struct xfs_mount *mp,
  906. struct xfs_inode *ip,
  907. struct xfs_dinode *dip)
  908. {
  909. if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))
  910. return false;
  911. /* only version 3 or greater inodes are extensively verified here */
  912. if (dip->di_version < 3)
  913. return true;
  914. if (!xfs_sb_version_hascrc(&mp->m_sb))
  915. return false;
  916. if (!xfs_verify_cksum((char *)dip, mp->m_sb.sb_inodesize,
  917. offsetof(struct xfs_dinode, di_crc)))
  918. return false;
  919. if (be64_to_cpu(dip->di_ino) != ip->i_ino)
  920. return false;
  921. if (!uuid_equal(&dip->di_uuid, &mp->m_sb.sb_uuid))
  922. return false;
  923. return true;
  924. }
  925. void
  926. xfs_dinode_calc_crc(
  927. struct xfs_mount *mp,
  928. struct xfs_dinode *dip)
  929. {
  930. __uint32_t crc;
  931. if (dip->di_version < 3)
  932. return;
  933. ASSERT(xfs_sb_version_hascrc(&mp->m_sb));
  934. crc = xfs_start_cksum((char *)dip, mp->m_sb.sb_inodesize,
  935. offsetof(struct xfs_dinode, di_crc));
  936. dip->di_crc = xfs_end_cksum(crc);
  937. }
  938. /*
  939. * Read the disk inode attributes into the in-core inode structure.
  940. */
  941. int
  942. xfs_iread(
  943. xfs_mount_t *mp,
  944. xfs_trans_t *tp,
  945. xfs_inode_t *ip,
  946. uint iget_flags)
  947. {
  948. xfs_buf_t *bp;
  949. xfs_dinode_t *dip;
  950. int error;
  951. /*
  952. * Fill in the location information in the in-core inode.
  953. */
  954. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  955. if (error)
  956. return error;
  957. /*
  958. * Get pointers to the on-disk inode and the buffer containing it.
  959. */
  960. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
  961. if (error)
  962. return error;
  963. /* even unallocated inodes are verified */
  964. if (!xfs_dinode_verify(mp, ip, dip)) {
  965. xfs_alert(mp, "%s: validation failed for inode %lld failed",
  966. __func__, ip->i_ino);
  967. XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, dip);
  968. error = XFS_ERROR(EFSCORRUPTED);
  969. goto out_brelse;
  970. }
  971. /*
  972. * If the on-disk inode is already linked to a directory
  973. * entry, copy all of the inode into the in-core inode.
  974. * xfs_iformat() handles copying in the inode format
  975. * specific information.
  976. * Otherwise, just get the truly permanent information.
  977. */
  978. if (dip->di_mode) {
  979. xfs_dinode_from_disk(&ip->i_d, dip);
  980. error = xfs_iformat(ip, dip);
  981. if (error) {
  982. #ifdef DEBUG
  983. xfs_alert(mp, "%s: xfs_iformat() returned error %d",
  984. __func__, error);
  985. #endif /* DEBUG */
  986. goto out_brelse;
  987. }
  988. } else {
  989. /*
  990. * Partial initialisation of the in-core inode. Just the bits
  991. * that xfs_ialloc won't overwrite or relies on being correct.
  992. */
  993. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  994. ip->i_d.di_version = dip->di_version;
  995. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  996. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  997. if (dip->di_version == 3) {
  998. ip->i_d.di_ino = be64_to_cpu(dip->di_ino);
  999. uuid_copy(&ip->i_d.di_uuid, &dip->di_uuid);
  1000. }
  1001. /*
  1002. * Make sure to pull in the mode here as well in
  1003. * case the inode is released without being used.
  1004. * This ensures that xfs_inactive() will see that
  1005. * the inode is already free and not try to mess
  1006. * with the uninitialized part of it.
  1007. */
  1008. ip->i_d.di_mode = 0;
  1009. }
  1010. /*
  1011. * The inode format changed when we moved the link count and
  1012. * made it 32 bits long. If this is an old format inode,
  1013. * convert it in memory to look like a new one. If it gets
  1014. * flushed to disk we will convert back before flushing or
  1015. * logging it. We zero out the new projid field and the old link
  1016. * count field. We'll handle clearing the pad field (the remains
  1017. * of the old uuid field) when we actually convert the inode to
  1018. * the new format. We don't change the version number so that we
  1019. * can distinguish this from a real new format inode.
  1020. */
  1021. if (ip->i_d.di_version == 1) {
  1022. ip->i_d.di_nlink = ip->i_d.di_onlink;
  1023. ip->i_d.di_onlink = 0;
  1024. xfs_set_projid(ip, 0);
  1025. }
  1026. ip->i_delayed_blks = 0;
  1027. /*
  1028. * Mark the buffer containing the inode as something to keep
  1029. * around for a while. This helps to keep recently accessed
  1030. * meta-data in-core longer.
  1031. */
  1032. xfs_buf_set_ref(bp, XFS_INO_REF);
  1033. /*
  1034. * Use xfs_trans_brelse() to release the buffer containing the
  1035. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  1036. * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal
  1037. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  1038. * will only release the buffer if it is not dirty within the
  1039. * transaction. It will be OK to release the buffer in this case,
  1040. * because inodes on disk are never destroyed and we will be
  1041. * locking the new in-core inode before putting it in the hash
  1042. * table where other processes can find it. Thus we don't have
  1043. * to worry about the inode being changed just because we released
  1044. * the buffer.
  1045. */
  1046. out_brelse:
  1047. xfs_trans_brelse(tp, bp);
  1048. return error;
  1049. }
  1050. /*
  1051. * Read in extents from a btree-format inode.
  1052. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  1053. */
  1054. int
  1055. xfs_iread_extents(
  1056. xfs_trans_t *tp,
  1057. xfs_inode_t *ip,
  1058. int whichfork)
  1059. {
  1060. int error;
  1061. xfs_ifork_t *ifp;
  1062. xfs_extnum_t nextents;
  1063. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  1064. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  1065. ip->i_mount);
  1066. return XFS_ERROR(EFSCORRUPTED);
  1067. }
  1068. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  1069. ifp = XFS_IFORK_PTR(ip, whichfork);
  1070. /*
  1071. * We know that the size is valid (it's checked in iformat_btree)
  1072. */
  1073. ifp->if_bytes = ifp->if_real_bytes = 0;
  1074. ifp->if_flags |= XFS_IFEXTENTS;
  1075. xfs_iext_add(ifp, 0, nextents);
  1076. error = xfs_bmap_read_extents(tp, ip, whichfork);
  1077. if (error) {
  1078. xfs_iext_destroy(ifp);
  1079. ifp->if_flags &= ~XFS_IFEXTENTS;
  1080. return error;
  1081. }
  1082. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  1083. return 0;
  1084. }
  1085. /*
  1086. * Allocate an inode on disk and return a copy of its in-core version.
  1087. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  1088. * appropriately within the inode. The uid and gid for the inode are
  1089. * set according to the contents of the given cred structure.
  1090. *
  1091. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  1092. * has a free inode available, call xfs_iget() to obtain the in-core
  1093. * version of the allocated inode. Finally, fill in the inode and
  1094. * log its initial contents. In this case, ialloc_context would be
  1095. * set to NULL.
  1096. *
  1097. * If xfs_dialloc() does not have an available inode, it will replenish
  1098. * its supply by doing an allocation. Since we can only do one
  1099. * allocation within a transaction without deadlocks, we must commit
  1100. * the current transaction before returning the inode itself.
  1101. * In this case, therefore, we will set ialloc_context and return.
  1102. * The caller should then commit the current transaction, start a new
  1103. * transaction, and call xfs_ialloc() again to actually get the inode.
  1104. *
  1105. * To ensure that some other process does not grab the inode that
  1106. * was allocated during the first call to xfs_ialloc(), this routine
  1107. * also returns the [locked] bp pointing to the head of the freelist
  1108. * as ialloc_context. The caller should hold this buffer across
  1109. * the commit and pass it back into this routine on the second call.
  1110. *
  1111. * If we are allocating quota inodes, we do not have a parent inode
  1112. * to attach to or associate with (i.e. pip == NULL) because they
  1113. * are not linked into the directory structure - they are attached
  1114. * directly to the superblock - and so have no parent.
  1115. */
  1116. int
  1117. xfs_ialloc(
  1118. xfs_trans_t *tp,
  1119. xfs_inode_t *pip,
  1120. umode_t mode,
  1121. xfs_nlink_t nlink,
  1122. xfs_dev_t rdev,
  1123. prid_t prid,
  1124. int okalloc,
  1125. xfs_buf_t **ialloc_context,
  1126. xfs_inode_t **ipp)
  1127. {
  1128. struct xfs_mount *mp = tp->t_mountp;
  1129. xfs_ino_t ino;
  1130. xfs_inode_t *ip;
  1131. uint flags;
  1132. int error;
  1133. timespec_t tv;
  1134. int filestreams = 0;
  1135. /*
  1136. * Call the space management code to pick
  1137. * the on-disk inode to be allocated.
  1138. */
  1139. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  1140. ialloc_context, &ino);
  1141. if (error)
  1142. return error;
  1143. if (*ialloc_context || ino == NULLFSINO) {
  1144. *ipp = NULL;
  1145. return 0;
  1146. }
  1147. ASSERT(*ialloc_context == NULL);
  1148. /*
  1149. * Get the in-core inode with the lock held exclusively.
  1150. * This is because we're setting fields here we need
  1151. * to prevent others from looking at until we're done.
  1152. */
  1153. error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
  1154. XFS_ILOCK_EXCL, &ip);
  1155. if (error)
  1156. return error;
  1157. ASSERT(ip != NULL);
  1158. ip->i_d.di_mode = mode;
  1159. ip->i_d.di_onlink = 0;
  1160. ip->i_d.di_nlink = nlink;
  1161. ASSERT(ip->i_d.di_nlink == nlink);
  1162. ip->i_d.di_uid = current_fsuid();
  1163. ip->i_d.di_gid = current_fsgid();
  1164. xfs_set_projid(ip, prid);
  1165. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1166. /*
  1167. * If the superblock version is up to where we support new format
  1168. * inodes and this is currently an old format inode, then change
  1169. * the inode version number now. This way we only do the conversion
  1170. * here rather than here and in the flush/logging code.
  1171. */
  1172. if (xfs_sb_version_hasnlink(&mp->m_sb) &&
  1173. ip->i_d.di_version == 1) {
  1174. ip->i_d.di_version = 2;
  1175. /*
  1176. * We've already zeroed the old link count, the projid field,
  1177. * and the pad field.
  1178. */
  1179. }
  1180. /*
  1181. * Project ids won't be stored on disk if we are using a version 1 inode.
  1182. */
  1183. if ((prid != 0) && (ip->i_d.di_version == 1))
  1184. xfs_bump_ino_vers2(tp, ip);
  1185. if (pip && XFS_INHERIT_GID(pip)) {
  1186. ip->i_d.di_gid = pip->i_d.di_gid;
  1187. if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
  1188. ip->i_d.di_mode |= S_ISGID;
  1189. }
  1190. }
  1191. /*
  1192. * If the group ID of the new file does not match the effective group
  1193. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1194. * (and only if the irix_sgid_inherit compatibility variable is set).
  1195. */
  1196. if ((irix_sgid_inherit) &&
  1197. (ip->i_d.di_mode & S_ISGID) &&
  1198. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1199. ip->i_d.di_mode &= ~S_ISGID;
  1200. }
  1201. ip->i_d.di_size = 0;
  1202. ip->i_d.di_nextents = 0;
  1203. ASSERT(ip->i_d.di_nblocks == 0);
  1204. nanotime(&tv);
  1205. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1206. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1207. ip->i_d.di_atime = ip->i_d.di_mtime;
  1208. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1209. /*
  1210. * di_gen will have been taken care of in xfs_iread.
  1211. */
  1212. ip->i_d.di_extsize = 0;
  1213. ip->i_d.di_dmevmask = 0;
  1214. ip->i_d.di_dmstate = 0;
  1215. ip->i_d.di_flags = 0;
  1216. if (ip->i_d.di_version == 3) {
  1217. ASSERT(ip->i_d.di_ino == ino);
  1218. ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
  1219. ip->i_d.di_crc = 0;
  1220. ip->i_d.di_changecount = 1;
  1221. ip->i_d.di_lsn = 0;
  1222. ip->i_d.di_flags2 = 0;
  1223. memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
  1224. ip->i_d.di_crtime = ip->i_d.di_mtime;
  1225. }
  1226. flags = XFS_ILOG_CORE;
  1227. switch (mode & S_IFMT) {
  1228. case S_IFIFO:
  1229. case S_IFCHR:
  1230. case S_IFBLK:
  1231. case S_IFSOCK:
  1232. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1233. ip->i_df.if_u2.if_rdev = rdev;
  1234. ip->i_df.if_flags = 0;
  1235. flags |= XFS_ILOG_DEV;
  1236. break;
  1237. case S_IFREG:
  1238. /*
  1239. * we can't set up filestreams until after the VFS inode
  1240. * is set up properly.
  1241. */
  1242. if (pip && xfs_inode_is_filestream(pip))
  1243. filestreams = 1;
  1244. /* fall through */
  1245. case S_IFDIR:
  1246. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1247. uint di_flags = 0;
  1248. if (S_ISDIR(mode)) {
  1249. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1250. di_flags |= XFS_DIFLAG_RTINHERIT;
  1251. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1252. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1253. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1254. }
  1255. } else if (S_ISREG(mode)) {
  1256. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1257. di_flags |= XFS_DIFLAG_REALTIME;
  1258. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1259. di_flags |= XFS_DIFLAG_EXTSIZE;
  1260. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1261. }
  1262. }
  1263. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1264. xfs_inherit_noatime)
  1265. di_flags |= XFS_DIFLAG_NOATIME;
  1266. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1267. xfs_inherit_nodump)
  1268. di_flags |= XFS_DIFLAG_NODUMP;
  1269. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1270. xfs_inherit_sync)
  1271. di_flags |= XFS_DIFLAG_SYNC;
  1272. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1273. xfs_inherit_nosymlinks)
  1274. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1275. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1276. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1277. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1278. xfs_inherit_nodefrag)
  1279. di_flags |= XFS_DIFLAG_NODEFRAG;
  1280. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1281. di_flags |= XFS_DIFLAG_FILESTREAM;
  1282. ip->i_d.di_flags |= di_flags;
  1283. }
  1284. /* FALLTHROUGH */
  1285. case S_IFLNK:
  1286. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1287. ip->i_df.if_flags = XFS_IFEXTENTS;
  1288. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1289. ip->i_df.if_u1.if_extents = NULL;
  1290. break;
  1291. default:
  1292. ASSERT(0);
  1293. }
  1294. /*
  1295. * Attribute fork settings for new inode.
  1296. */
  1297. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1298. ip->i_d.di_anextents = 0;
  1299. /*
  1300. * Log the new values stuffed into the inode.
  1301. */
  1302. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  1303. xfs_trans_log_inode(tp, ip, flags);
  1304. /* now that we have an i_mode we can setup inode ops and unlock */
  1305. xfs_setup_inode(ip);
  1306. /* now we have set up the vfs inode we can associate the filestream */
  1307. if (filestreams) {
  1308. error = xfs_filestream_associate(pip, ip);
  1309. if (error < 0)
  1310. return -error;
  1311. if (!error)
  1312. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1313. }
  1314. *ipp = ip;
  1315. return 0;
  1316. }
  1317. /*
  1318. * Free up the underlying blocks past new_size. The new size must be smaller
  1319. * than the current size. This routine can be used both for the attribute and
  1320. * data fork, and does not modify the inode size, which is left to the caller.
  1321. *
  1322. * The transaction passed to this routine must have made a permanent log
  1323. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1324. * given transaction and start new ones, so make sure everything involved in
  1325. * the transaction is tidy before calling here. Some transaction will be
  1326. * returned to the caller to be committed. The incoming transaction must
  1327. * already include the inode, and both inode locks must be held exclusively.
  1328. * The inode must also be "held" within the transaction. On return the inode
  1329. * will be "held" within the returned transaction. This routine does NOT
  1330. * require any disk space to be reserved for it within the transaction.
  1331. *
  1332. * If we get an error, we must return with the inode locked and linked into the
  1333. * current transaction. This keeps things simple for the higher level code,
  1334. * because it always knows that the inode is locked and held in the transaction
  1335. * that returns to it whether errors occur or not. We don't mark the inode
  1336. * dirty on error so that transactions can be easily aborted if possible.
  1337. */
  1338. int
  1339. xfs_itruncate_extents(
  1340. struct xfs_trans **tpp,
  1341. struct xfs_inode *ip,
  1342. int whichfork,
  1343. xfs_fsize_t new_size)
  1344. {
  1345. struct xfs_mount *mp = ip->i_mount;
  1346. struct xfs_trans *tp = *tpp;
  1347. struct xfs_trans *ntp;
  1348. xfs_bmap_free_t free_list;
  1349. xfs_fsblock_t first_block;
  1350. xfs_fileoff_t first_unmap_block;
  1351. xfs_fileoff_t last_block;
  1352. xfs_filblks_t unmap_len;
  1353. int committed;
  1354. int error = 0;
  1355. int done = 0;
  1356. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1357. ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
  1358. xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1359. ASSERT(new_size <= XFS_ISIZE(ip));
  1360. ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
  1361. ASSERT(ip->i_itemp != NULL);
  1362. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1363. ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
  1364. trace_xfs_itruncate_extents_start(ip, new_size);
  1365. /*
  1366. * Since it is possible for space to become allocated beyond
  1367. * the end of the file (in a crash where the space is allocated
  1368. * but the inode size is not yet updated), simply remove any
  1369. * blocks which show up between the new EOF and the maximum
  1370. * possible file size. If the first block to be removed is
  1371. * beyond the maximum file size (ie it is the same as last_block),
  1372. * then there is nothing to do.
  1373. */
  1374. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1375. last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
  1376. if (first_unmap_block == last_block)
  1377. return 0;
  1378. ASSERT(first_unmap_block < last_block);
  1379. unmap_len = last_block - first_unmap_block + 1;
  1380. while (!done) {
  1381. xfs_bmap_init(&free_list, &first_block);
  1382. error = xfs_bunmapi(tp, ip,
  1383. first_unmap_block, unmap_len,
  1384. xfs_bmapi_aflag(whichfork),
  1385. XFS_ITRUNC_MAX_EXTENTS,
  1386. &first_block, &free_list,
  1387. &done);
  1388. if (error)
  1389. goto out_bmap_cancel;
  1390. /*
  1391. * Duplicate the transaction that has the permanent
  1392. * reservation and commit the old transaction.
  1393. */
  1394. error = xfs_bmap_finish(&tp, &free_list, &committed);
  1395. if (committed)
  1396. xfs_trans_ijoin(tp, ip, 0);
  1397. if (error)
  1398. goto out_bmap_cancel;
  1399. if (committed) {
  1400. /*
  1401. * Mark the inode dirty so it will be logged and
  1402. * moved forward in the log as part of every commit.
  1403. */
  1404. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1405. }
  1406. ntp = xfs_trans_dup(tp);
  1407. error = xfs_trans_commit(tp, 0);
  1408. tp = ntp;
  1409. xfs_trans_ijoin(tp, ip, 0);
  1410. if (error)
  1411. goto out;
  1412. /*
  1413. * Transaction commit worked ok so we can drop the extra ticket
  1414. * reference that we gained in xfs_trans_dup()
  1415. */
  1416. xfs_log_ticket_put(tp->t_ticket);
  1417. error = xfs_trans_reserve(tp, 0,
  1418. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1419. XFS_TRANS_PERM_LOG_RES,
  1420. XFS_ITRUNCATE_LOG_COUNT);
  1421. if (error)
  1422. goto out;
  1423. }
  1424. /*
  1425. * Always re-log the inode so that our permanent transaction can keep
  1426. * on rolling it forward in the log.
  1427. */
  1428. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1429. trace_xfs_itruncate_extents_end(ip, new_size);
  1430. out:
  1431. *tpp = tp;
  1432. return error;
  1433. out_bmap_cancel:
  1434. /*
  1435. * If the bunmapi call encounters an error, return to the caller where
  1436. * the transaction can be properly aborted. We just need to make sure
  1437. * we're not holding any resources that we were not when we came in.
  1438. */
  1439. xfs_bmap_cancel(&free_list);
  1440. goto out;
  1441. }
  1442. /*
  1443. * This is called when the inode's link count goes to 0.
  1444. * We place the on-disk inode on a list in the AGI. It
  1445. * will be pulled from this list when the inode is freed.
  1446. */
  1447. int
  1448. xfs_iunlink(
  1449. xfs_trans_t *tp,
  1450. xfs_inode_t *ip)
  1451. {
  1452. xfs_mount_t *mp;
  1453. xfs_agi_t *agi;
  1454. xfs_dinode_t *dip;
  1455. xfs_buf_t *agibp;
  1456. xfs_buf_t *ibp;
  1457. xfs_agino_t agino;
  1458. short bucket_index;
  1459. int offset;
  1460. int error;
  1461. ASSERT(ip->i_d.di_nlink == 0);
  1462. ASSERT(ip->i_d.di_mode != 0);
  1463. mp = tp->t_mountp;
  1464. /*
  1465. * Get the agi buffer first. It ensures lock ordering
  1466. * on the list.
  1467. */
  1468. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1469. if (error)
  1470. return error;
  1471. agi = XFS_BUF_TO_AGI(agibp);
  1472. /*
  1473. * Get the index into the agi hash table for the
  1474. * list this inode will go on.
  1475. */
  1476. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1477. ASSERT(agino != 0);
  1478. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1479. ASSERT(agi->agi_unlinked[bucket_index]);
  1480. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1481. if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
  1482. /*
  1483. * There is already another inode in the bucket we need
  1484. * to add ourselves to. Add us at the front of the list.
  1485. * Here we put the head pointer into our next pointer,
  1486. * and then we fall through to point the head at us.
  1487. */
  1488. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1489. 0, 0);
  1490. if (error)
  1491. return error;
  1492. ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
  1493. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1494. offset = ip->i_imap.im_boffset +
  1495. offsetof(xfs_dinode_t, di_next_unlinked);
  1496. /* need to recalc the inode CRC if appropriate */
  1497. xfs_dinode_calc_crc(mp, dip);
  1498. xfs_trans_inode_buf(tp, ibp);
  1499. xfs_trans_log_buf(tp, ibp, offset,
  1500. (offset + sizeof(xfs_agino_t) - 1));
  1501. xfs_inobp_check(mp, ibp);
  1502. }
  1503. /*
  1504. * Point the bucket head pointer at the inode being inserted.
  1505. */
  1506. ASSERT(agino != 0);
  1507. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1508. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1509. (sizeof(xfs_agino_t) * bucket_index);
  1510. xfs_trans_log_buf(tp, agibp, offset,
  1511. (offset + sizeof(xfs_agino_t) - 1));
  1512. return 0;
  1513. }
  1514. /*
  1515. * Pull the on-disk inode from the AGI unlinked list.
  1516. */
  1517. STATIC int
  1518. xfs_iunlink_remove(
  1519. xfs_trans_t *tp,
  1520. xfs_inode_t *ip)
  1521. {
  1522. xfs_ino_t next_ino;
  1523. xfs_mount_t *mp;
  1524. xfs_agi_t *agi;
  1525. xfs_dinode_t *dip;
  1526. xfs_buf_t *agibp;
  1527. xfs_buf_t *ibp;
  1528. xfs_agnumber_t agno;
  1529. xfs_agino_t agino;
  1530. xfs_agino_t next_agino;
  1531. xfs_buf_t *last_ibp;
  1532. xfs_dinode_t *last_dip = NULL;
  1533. short bucket_index;
  1534. int offset, last_offset = 0;
  1535. int error;
  1536. mp = tp->t_mountp;
  1537. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1538. /*
  1539. * Get the agi buffer first. It ensures lock ordering
  1540. * on the list.
  1541. */
  1542. error = xfs_read_agi(mp, tp, agno, &agibp);
  1543. if (error)
  1544. return error;
  1545. agi = XFS_BUF_TO_AGI(agibp);
  1546. /*
  1547. * Get the index into the agi hash table for the
  1548. * list this inode will go on.
  1549. */
  1550. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1551. ASSERT(agino != 0);
  1552. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1553. ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
  1554. ASSERT(agi->agi_unlinked[bucket_index]);
  1555. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1556. /*
  1557. * We're at the head of the list. Get the inode's on-disk
  1558. * buffer to see if there is anyone after us on the list.
  1559. * Only modify our next pointer if it is not already NULLAGINO.
  1560. * This saves us the overhead of dealing with the buffer when
  1561. * there is no need to change it.
  1562. */
  1563. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1564. 0, 0);
  1565. if (error) {
  1566. xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
  1567. __func__, error);
  1568. return error;
  1569. }
  1570. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1571. ASSERT(next_agino != 0);
  1572. if (next_agino != NULLAGINO) {
  1573. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1574. offset = ip->i_imap.im_boffset +
  1575. offsetof(xfs_dinode_t, di_next_unlinked);
  1576. /* need to recalc the inode CRC if appropriate */
  1577. xfs_dinode_calc_crc(mp, dip);
  1578. xfs_trans_inode_buf(tp, ibp);
  1579. xfs_trans_log_buf(tp, ibp, offset,
  1580. (offset + sizeof(xfs_agino_t) - 1));
  1581. xfs_inobp_check(mp, ibp);
  1582. } else {
  1583. xfs_trans_brelse(tp, ibp);
  1584. }
  1585. /*
  1586. * Point the bucket head pointer at the next inode.
  1587. */
  1588. ASSERT(next_agino != 0);
  1589. ASSERT(next_agino != agino);
  1590. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1591. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1592. (sizeof(xfs_agino_t) * bucket_index);
  1593. xfs_trans_log_buf(tp, agibp, offset,
  1594. (offset + sizeof(xfs_agino_t) - 1));
  1595. } else {
  1596. /*
  1597. * We need to search the list for the inode being freed.
  1598. */
  1599. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1600. last_ibp = NULL;
  1601. while (next_agino != agino) {
  1602. struct xfs_imap imap;
  1603. if (last_ibp)
  1604. xfs_trans_brelse(tp, last_ibp);
  1605. imap.im_blkno = 0;
  1606. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1607. error = xfs_imap(mp, tp, next_ino, &imap, 0);
  1608. if (error) {
  1609. xfs_warn(mp,
  1610. "%s: xfs_imap returned error %d.",
  1611. __func__, error);
  1612. return error;
  1613. }
  1614. error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
  1615. &last_ibp, 0, 0);
  1616. if (error) {
  1617. xfs_warn(mp,
  1618. "%s: xfs_imap_to_bp returned error %d.",
  1619. __func__, error);
  1620. return error;
  1621. }
  1622. last_offset = imap.im_boffset;
  1623. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1624. ASSERT(next_agino != NULLAGINO);
  1625. ASSERT(next_agino != 0);
  1626. }
  1627. /*
  1628. * Now last_ibp points to the buffer previous to us on the
  1629. * unlinked list. Pull us from the list.
  1630. */
  1631. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
  1632. 0, 0);
  1633. if (error) {
  1634. xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
  1635. __func__, error);
  1636. return error;
  1637. }
  1638. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1639. ASSERT(next_agino != 0);
  1640. ASSERT(next_agino != agino);
  1641. if (next_agino != NULLAGINO) {
  1642. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1643. offset = ip->i_imap.im_boffset +
  1644. offsetof(xfs_dinode_t, di_next_unlinked);
  1645. /* need to recalc the inode CRC if appropriate */
  1646. xfs_dinode_calc_crc(mp, dip);
  1647. xfs_trans_inode_buf(tp, ibp);
  1648. xfs_trans_log_buf(tp, ibp, offset,
  1649. (offset + sizeof(xfs_agino_t) - 1));
  1650. xfs_inobp_check(mp, ibp);
  1651. } else {
  1652. xfs_trans_brelse(tp, ibp);
  1653. }
  1654. /*
  1655. * Point the previous inode on the list to the next inode.
  1656. */
  1657. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1658. ASSERT(next_agino != 0);
  1659. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1660. /* need to recalc the inode CRC if appropriate */
  1661. xfs_dinode_calc_crc(mp, last_dip);
  1662. xfs_trans_inode_buf(tp, last_ibp);
  1663. xfs_trans_log_buf(tp, last_ibp, offset,
  1664. (offset + sizeof(xfs_agino_t) - 1));
  1665. xfs_inobp_check(mp, last_ibp);
  1666. }
  1667. return 0;
  1668. }
  1669. /*
  1670. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1671. * inodes that are in memory - they all must be marked stale and attached to
  1672. * the cluster buffer.
  1673. */
  1674. STATIC int
  1675. xfs_ifree_cluster(
  1676. xfs_inode_t *free_ip,
  1677. xfs_trans_t *tp,
  1678. xfs_ino_t inum)
  1679. {
  1680. xfs_mount_t *mp = free_ip->i_mount;
  1681. int blks_per_cluster;
  1682. int nbufs;
  1683. int ninodes;
  1684. int i, j;
  1685. xfs_daddr_t blkno;
  1686. xfs_buf_t *bp;
  1687. xfs_inode_t *ip;
  1688. xfs_inode_log_item_t *iip;
  1689. xfs_log_item_t *lip;
  1690. struct xfs_perag *pag;
  1691. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1692. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1693. blks_per_cluster = 1;
  1694. ninodes = mp->m_sb.sb_inopblock;
  1695. nbufs = XFS_IALLOC_BLOCKS(mp);
  1696. } else {
  1697. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1698. mp->m_sb.sb_blocksize;
  1699. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1700. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1701. }
  1702. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1703. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1704. XFS_INO_TO_AGBNO(mp, inum));
  1705. /*
  1706. * We obtain and lock the backing buffer first in the process
  1707. * here, as we have to ensure that any dirty inode that we
  1708. * can't get the flush lock on is attached to the buffer.
  1709. * If we scan the in-memory inodes first, then buffer IO can
  1710. * complete before we get a lock on it, and hence we may fail
  1711. * to mark all the active inodes on the buffer stale.
  1712. */
  1713. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1714. mp->m_bsize * blks_per_cluster,
  1715. XBF_UNMAPPED);
  1716. if (!bp)
  1717. return ENOMEM;
  1718. /*
  1719. * This buffer may not have been correctly initialised as we
  1720. * didn't read it from disk. That's not important because we are
  1721. * only using to mark the buffer as stale in the log, and to
  1722. * attach stale cached inodes on it. That means it will never be
  1723. * dispatched for IO. If it is, we want to know about it, and we
  1724. * want it to fail. We can acheive this by adding a write
  1725. * verifier to the buffer.
  1726. */
  1727. bp->b_ops = &xfs_inode_buf_ops;
  1728. /*
  1729. * Walk the inodes already attached to the buffer and mark them
  1730. * stale. These will all have the flush locks held, so an
  1731. * in-memory inode walk can't lock them. By marking them all
  1732. * stale first, we will not attempt to lock them in the loop
  1733. * below as the XFS_ISTALE flag will be set.
  1734. */
  1735. lip = bp->b_fspriv;
  1736. while (lip) {
  1737. if (lip->li_type == XFS_LI_INODE) {
  1738. iip = (xfs_inode_log_item_t *)lip;
  1739. ASSERT(iip->ili_logged == 1);
  1740. lip->li_cb = xfs_istale_done;
  1741. xfs_trans_ail_copy_lsn(mp->m_ail,
  1742. &iip->ili_flush_lsn,
  1743. &iip->ili_item.li_lsn);
  1744. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1745. }
  1746. lip = lip->li_bio_list;
  1747. }
  1748. /*
  1749. * For each inode in memory attempt to add it to the inode
  1750. * buffer and set it up for being staled on buffer IO
  1751. * completion. This is safe as we've locked out tail pushing
  1752. * and flushing by locking the buffer.
  1753. *
  1754. * We have already marked every inode that was part of a
  1755. * transaction stale above, which means there is no point in
  1756. * even trying to lock them.
  1757. */
  1758. for (i = 0; i < ninodes; i++) {
  1759. retry:
  1760. rcu_read_lock();
  1761. ip = radix_tree_lookup(&pag->pag_ici_root,
  1762. XFS_INO_TO_AGINO(mp, (inum + i)));
  1763. /* Inode not in memory, nothing to do */
  1764. if (!ip) {
  1765. rcu_read_unlock();
  1766. continue;
  1767. }
  1768. /*
  1769. * because this is an RCU protected lookup, we could
  1770. * find a recently freed or even reallocated inode
  1771. * during the lookup. We need to check under the
  1772. * i_flags_lock for a valid inode here. Skip it if it
  1773. * is not valid, the wrong inode or stale.
  1774. */
  1775. spin_lock(&ip->i_flags_lock);
  1776. if (ip->i_ino != inum + i ||
  1777. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1778. spin_unlock(&ip->i_flags_lock);
  1779. rcu_read_unlock();
  1780. continue;
  1781. }
  1782. spin_unlock(&ip->i_flags_lock);
  1783. /*
  1784. * Don't try to lock/unlock the current inode, but we
  1785. * _cannot_ skip the other inodes that we did not find
  1786. * in the list attached to the buffer and are not
  1787. * already marked stale. If we can't lock it, back off
  1788. * and retry.
  1789. */
  1790. if (ip != free_ip &&
  1791. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1792. rcu_read_unlock();
  1793. delay(1);
  1794. goto retry;
  1795. }
  1796. rcu_read_unlock();
  1797. xfs_iflock(ip);
  1798. xfs_iflags_set(ip, XFS_ISTALE);
  1799. /*
  1800. * we don't need to attach clean inodes or those only
  1801. * with unlogged changes (which we throw away, anyway).
  1802. */
  1803. iip = ip->i_itemp;
  1804. if (!iip || xfs_inode_clean(ip)) {
  1805. ASSERT(ip != free_ip);
  1806. xfs_ifunlock(ip);
  1807. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1808. continue;
  1809. }
  1810. iip->ili_last_fields = iip->ili_fields;
  1811. iip->ili_fields = 0;
  1812. iip->ili_logged = 1;
  1813. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1814. &iip->ili_item.li_lsn);
  1815. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1816. &iip->ili_item);
  1817. if (ip != free_ip)
  1818. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1819. }
  1820. xfs_trans_stale_inode_buf(tp, bp);
  1821. xfs_trans_binval(tp, bp);
  1822. }
  1823. xfs_perag_put(pag);
  1824. return 0;
  1825. }
  1826. /*
  1827. * This is called to return an inode to the inode free list.
  1828. * The inode should already be truncated to 0 length and have
  1829. * no pages associated with it. This routine also assumes that
  1830. * the inode is already a part of the transaction.
  1831. *
  1832. * The on-disk copy of the inode will have been added to the list
  1833. * of unlinked inodes in the AGI. We need to remove the inode from
  1834. * that list atomically with respect to freeing it here.
  1835. */
  1836. int
  1837. xfs_ifree(
  1838. xfs_trans_t *tp,
  1839. xfs_inode_t *ip,
  1840. xfs_bmap_free_t *flist)
  1841. {
  1842. int error;
  1843. int delete;
  1844. xfs_ino_t first_ino;
  1845. xfs_dinode_t *dip;
  1846. xfs_buf_t *ibp;
  1847. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1848. ASSERT(ip->i_d.di_nlink == 0);
  1849. ASSERT(ip->i_d.di_nextents == 0);
  1850. ASSERT(ip->i_d.di_anextents == 0);
  1851. ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
  1852. ASSERT(ip->i_d.di_nblocks == 0);
  1853. /*
  1854. * Pull the on-disk inode from the AGI unlinked list.
  1855. */
  1856. error = xfs_iunlink_remove(tp, ip);
  1857. if (error != 0) {
  1858. return error;
  1859. }
  1860. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1861. if (error != 0) {
  1862. return error;
  1863. }
  1864. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1865. ip->i_d.di_flags = 0;
  1866. ip->i_d.di_dmevmask = 0;
  1867. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1868. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1869. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1870. /*
  1871. * Bump the generation count so no one will be confused
  1872. * by reincarnations of this inode.
  1873. */
  1874. ip->i_d.di_gen++;
  1875. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1876. error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp,
  1877. 0, 0);
  1878. if (error)
  1879. return error;
  1880. /*
  1881. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1882. * from picking up this inode when it is reclaimed (its incore state
  1883. * initialzed but not flushed to disk yet). The in-core di_mode is
  1884. * already cleared and a corresponding transaction logged.
  1885. * The hack here just synchronizes the in-core to on-disk
  1886. * di_mode value in advance before the actual inode sync to disk.
  1887. * This is OK because the inode is already unlinked and would never
  1888. * change its di_mode again for this inode generation.
  1889. * This is a temporary hack that would require a proper fix
  1890. * in the future.
  1891. */
  1892. dip->di_mode = 0;
  1893. if (delete) {
  1894. error = xfs_ifree_cluster(ip, tp, first_ino);
  1895. }
  1896. return error;
  1897. }
  1898. /*
  1899. * Reallocate the space for if_broot based on the number of records
  1900. * being added or deleted as indicated in rec_diff. Move the records
  1901. * and pointers in if_broot to fit the new size. When shrinking this
  1902. * will eliminate holes between the records and pointers created by
  1903. * the caller. When growing this will create holes to be filled in
  1904. * by the caller.
  1905. *
  1906. * The caller must not request to add more records than would fit in
  1907. * the on-disk inode root. If the if_broot is currently NULL, then
  1908. * if we adding records one will be allocated. The caller must also
  1909. * not request that the number of records go below zero, although
  1910. * it can go to zero.
  1911. *
  1912. * ip -- the inode whose if_broot area is changing
  1913. * ext_diff -- the change in the number of records, positive or negative,
  1914. * requested for the if_broot array.
  1915. */
  1916. void
  1917. xfs_iroot_realloc(
  1918. xfs_inode_t *ip,
  1919. int rec_diff,
  1920. int whichfork)
  1921. {
  1922. struct xfs_mount *mp = ip->i_mount;
  1923. int cur_max;
  1924. xfs_ifork_t *ifp;
  1925. struct xfs_btree_block *new_broot;
  1926. int new_max;
  1927. size_t new_size;
  1928. char *np;
  1929. char *op;
  1930. /*
  1931. * Handle the degenerate case quietly.
  1932. */
  1933. if (rec_diff == 0) {
  1934. return;
  1935. }
  1936. ifp = XFS_IFORK_PTR(ip, whichfork);
  1937. if (rec_diff > 0) {
  1938. /*
  1939. * If there wasn't any memory allocated before, just
  1940. * allocate it now and get out.
  1941. */
  1942. if (ifp->if_broot_bytes == 0) {
  1943. new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
  1944. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1945. ifp->if_broot_bytes = (int)new_size;
  1946. return;
  1947. }
  1948. /*
  1949. * If there is already an existing if_broot, then we need
  1950. * to realloc() it and shift the pointers to their new
  1951. * location. The records don't change location because
  1952. * they are kept butted up against the btree block header.
  1953. */
  1954. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1955. new_max = cur_max + rec_diff;
  1956. new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
  1957. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  1958. XFS_BMAP_BROOT_SPACE_CALC(mp, cur_max),
  1959. KM_SLEEP | KM_NOFS);
  1960. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1961. ifp->if_broot_bytes);
  1962. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1963. (int)new_size);
  1964. ifp->if_broot_bytes = (int)new_size;
  1965. ASSERT(ifp->if_broot_bytes <=
  1966. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip));
  1967. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  1968. return;
  1969. }
  1970. /*
  1971. * rec_diff is less than 0. In this case, we are shrinking the
  1972. * if_broot buffer. It must already exist. If we go to zero
  1973. * records, just get rid of the root and clear the status bit.
  1974. */
  1975. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  1976. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1977. new_max = cur_max + rec_diff;
  1978. ASSERT(new_max >= 0);
  1979. if (new_max > 0)
  1980. new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
  1981. else
  1982. new_size = 0;
  1983. if (new_size > 0) {
  1984. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1985. /*
  1986. * First copy over the btree block header.
  1987. */
  1988. memcpy(new_broot, ifp->if_broot,
  1989. XFS_BMBT_BLOCK_LEN(ip->i_mount));
  1990. } else {
  1991. new_broot = NULL;
  1992. ifp->if_flags &= ~XFS_IFBROOT;
  1993. }
  1994. /*
  1995. * Only copy the records and pointers if there are any.
  1996. */
  1997. if (new_max > 0) {
  1998. /*
  1999. * First copy the records.
  2000. */
  2001. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2002. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2003. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2004. /*
  2005. * Then copy the pointers.
  2006. */
  2007. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2008. ifp->if_broot_bytes);
  2009. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2010. (int)new_size);
  2011. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2012. }
  2013. kmem_free(ifp->if_broot);
  2014. ifp->if_broot = new_broot;
  2015. ifp->if_broot_bytes = (int)new_size;
  2016. ASSERT(ifp->if_broot_bytes <=
  2017. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ(ip));
  2018. return;
  2019. }
  2020. /*
  2021. * This is called when the amount of space needed for if_data
  2022. * is increased or decreased. The change in size is indicated by
  2023. * the number of bytes that need to be added or deleted in the
  2024. * byte_diff parameter.
  2025. *
  2026. * If the amount of space needed has decreased below the size of the
  2027. * inline buffer, then switch to using the inline buffer. Otherwise,
  2028. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2029. * to what is needed.
  2030. *
  2031. * ip -- the inode whose if_data area is changing
  2032. * byte_diff -- the change in the number of bytes, positive or negative,
  2033. * requested for the if_data array.
  2034. */
  2035. void
  2036. xfs_idata_realloc(
  2037. xfs_inode_t *ip,
  2038. int byte_diff,
  2039. int whichfork)
  2040. {
  2041. xfs_ifork_t *ifp;
  2042. int new_size;
  2043. int real_size;
  2044. if (byte_diff == 0) {
  2045. return;
  2046. }
  2047. ifp = XFS_IFORK_PTR(ip, whichfork);
  2048. new_size = (int)ifp->if_bytes + byte_diff;
  2049. ASSERT(new_size >= 0);
  2050. if (new_size == 0) {
  2051. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2052. kmem_free(ifp->if_u1.if_data);
  2053. }
  2054. ifp->if_u1.if_data = NULL;
  2055. real_size = 0;
  2056. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2057. /*
  2058. * If the valid extents/data can fit in if_inline_ext/data,
  2059. * copy them from the malloc'd vector and free it.
  2060. */
  2061. if (ifp->if_u1.if_data == NULL) {
  2062. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2063. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2064. ASSERT(ifp->if_real_bytes != 0);
  2065. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2066. new_size);
  2067. kmem_free(ifp->if_u1.if_data);
  2068. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2069. }
  2070. real_size = 0;
  2071. } else {
  2072. /*
  2073. * Stuck with malloc/realloc.
  2074. * For inline data, the underlying buffer must be
  2075. * a multiple of 4 bytes in size so that it can be
  2076. * logged and stay on word boundaries. We enforce
  2077. * that here.
  2078. */
  2079. real_size = roundup(new_size, 4);
  2080. if (ifp->if_u1.if_data == NULL) {
  2081. ASSERT(ifp->if_real_bytes == 0);
  2082. ifp->if_u1.if_data = kmem_alloc(real_size,
  2083. KM_SLEEP | KM_NOFS);
  2084. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2085. /*
  2086. * Only do the realloc if the underlying size
  2087. * is really changing.
  2088. */
  2089. if (ifp->if_real_bytes != real_size) {
  2090. ifp->if_u1.if_data =
  2091. kmem_realloc(ifp->if_u1.if_data,
  2092. real_size,
  2093. ifp->if_real_bytes,
  2094. KM_SLEEP | KM_NOFS);
  2095. }
  2096. } else {
  2097. ASSERT(ifp->if_real_bytes == 0);
  2098. ifp->if_u1.if_data = kmem_alloc(real_size,
  2099. KM_SLEEP | KM_NOFS);
  2100. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2101. ifp->if_bytes);
  2102. }
  2103. }
  2104. ifp->if_real_bytes = real_size;
  2105. ifp->if_bytes = new_size;
  2106. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2107. }
  2108. void
  2109. xfs_idestroy_fork(
  2110. xfs_inode_t *ip,
  2111. int whichfork)
  2112. {
  2113. xfs_ifork_t *ifp;
  2114. ifp = XFS_IFORK_PTR(ip, whichfork);
  2115. if (ifp->if_broot != NULL) {
  2116. kmem_free(ifp->if_broot);
  2117. ifp->if_broot = NULL;
  2118. }
  2119. /*
  2120. * If the format is local, then we can't have an extents
  2121. * array so just look for an inline data array. If we're
  2122. * not local then we may or may not have an extents list,
  2123. * so check and free it up if we do.
  2124. */
  2125. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2126. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2127. (ifp->if_u1.if_data != NULL)) {
  2128. ASSERT(ifp->if_real_bytes != 0);
  2129. kmem_free(ifp->if_u1.if_data);
  2130. ifp->if_u1.if_data = NULL;
  2131. ifp->if_real_bytes = 0;
  2132. }
  2133. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2134. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2135. ((ifp->if_u1.if_extents != NULL) &&
  2136. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2137. ASSERT(ifp->if_real_bytes != 0);
  2138. xfs_iext_destroy(ifp);
  2139. }
  2140. ASSERT(ifp->if_u1.if_extents == NULL ||
  2141. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2142. ASSERT(ifp->if_real_bytes == 0);
  2143. if (whichfork == XFS_ATTR_FORK) {
  2144. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2145. ip->i_afp = NULL;
  2146. }
  2147. }
  2148. /*
  2149. * This is called to unpin an inode. The caller must have the inode locked
  2150. * in at least shared mode so that the buffer cannot be subsequently pinned
  2151. * once someone is waiting for it to be unpinned.
  2152. */
  2153. static void
  2154. xfs_iunpin(
  2155. struct xfs_inode *ip)
  2156. {
  2157. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2158. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  2159. /* Give the log a push to start the unpinning I/O */
  2160. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  2161. }
  2162. static void
  2163. __xfs_iunpin_wait(
  2164. struct xfs_inode *ip)
  2165. {
  2166. wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
  2167. DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
  2168. xfs_iunpin(ip);
  2169. do {
  2170. prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
  2171. if (xfs_ipincount(ip))
  2172. io_schedule();
  2173. } while (xfs_ipincount(ip));
  2174. finish_wait(wq, &wait.wait);
  2175. }
  2176. void
  2177. xfs_iunpin_wait(
  2178. struct xfs_inode *ip)
  2179. {
  2180. if (xfs_ipincount(ip))
  2181. __xfs_iunpin_wait(ip);
  2182. }
  2183. /*
  2184. * xfs_iextents_copy()
  2185. *
  2186. * This is called to copy the REAL extents (as opposed to the delayed
  2187. * allocation extents) from the inode into the given buffer. It
  2188. * returns the number of bytes copied into the buffer.
  2189. *
  2190. * If there are no delayed allocation extents, then we can just
  2191. * memcpy() the extents into the buffer. Otherwise, we need to
  2192. * examine each extent in turn and skip those which are delayed.
  2193. */
  2194. int
  2195. xfs_iextents_copy(
  2196. xfs_inode_t *ip,
  2197. xfs_bmbt_rec_t *dp,
  2198. int whichfork)
  2199. {
  2200. int copied;
  2201. int i;
  2202. xfs_ifork_t *ifp;
  2203. int nrecs;
  2204. xfs_fsblock_t start_block;
  2205. ifp = XFS_IFORK_PTR(ip, whichfork);
  2206. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2207. ASSERT(ifp->if_bytes > 0);
  2208. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2209. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2210. ASSERT(nrecs > 0);
  2211. /*
  2212. * There are some delayed allocation extents in the
  2213. * inode, so copy the extents one at a time and skip
  2214. * the delayed ones. There must be at least one
  2215. * non-delayed extent.
  2216. */
  2217. copied = 0;
  2218. for (i = 0; i < nrecs; i++) {
  2219. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2220. start_block = xfs_bmbt_get_startblock(ep);
  2221. if (isnullstartblock(start_block)) {
  2222. /*
  2223. * It's a delayed allocation extent, so skip it.
  2224. */
  2225. continue;
  2226. }
  2227. /* Translate to on disk format */
  2228. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2229. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2230. dp++;
  2231. copied++;
  2232. }
  2233. ASSERT(copied != 0);
  2234. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2235. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2236. }
  2237. /*
  2238. * Each of the following cases stores data into the same region
  2239. * of the on-disk inode, so only one of them can be valid at
  2240. * any given time. While it is possible to have conflicting formats
  2241. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2242. * in EXTENTS format, this can only happen when the fork has
  2243. * changed formats after being modified but before being flushed.
  2244. * In these cases, the format always takes precedence, because the
  2245. * format indicates the current state of the fork.
  2246. */
  2247. /*ARGSUSED*/
  2248. STATIC void
  2249. xfs_iflush_fork(
  2250. xfs_inode_t *ip,
  2251. xfs_dinode_t *dip,
  2252. xfs_inode_log_item_t *iip,
  2253. int whichfork,
  2254. xfs_buf_t *bp)
  2255. {
  2256. char *cp;
  2257. xfs_ifork_t *ifp;
  2258. xfs_mount_t *mp;
  2259. static const short brootflag[2] =
  2260. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2261. static const short dataflag[2] =
  2262. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2263. static const short extflag[2] =
  2264. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2265. if (!iip)
  2266. return;
  2267. ifp = XFS_IFORK_PTR(ip, whichfork);
  2268. /*
  2269. * This can happen if we gave up in iformat in an error path,
  2270. * for the attribute fork.
  2271. */
  2272. if (!ifp) {
  2273. ASSERT(whichfork == XFS_ATTR_FORK);
  2274. return;
  2275. }
  2276. cp = XFS_DFORK_PTR(dip, whichfork);
  2277. mp = ip->i_mount;
  2278. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2279. case XFS_DINODE_FMT_LOCAL:
  2280. if ((iip->ili_fields & dataflag[whichfork]) &&
  2281. (ifp->if_bytes > 0)) {
  2282. ASSERT(ifp->if_u1.if_data != NULL);
  2283. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2284. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2285. }
  2286. break;
  2287. case XFS_DINODE_FMT_EXTENTS:
  2288. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2289. !(iip->ili_fields & extflag[whichfork]));
  2290. if ((iip->ili_fields & extflag[whichfork]) &&
  2291. (ifp->if_bytes > 0)) {
  2292. ASSERT(xfs_iext_get_ext(ifp, 0));
  2293. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2294. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2295. whichfork);
  2296. }
  2297. break;
  2298. case XFS_DINODE_FMT_BTREE:
  2299. if ((iip->ili_fields & brootflag[whichfork]) &&
  2300. (ifp->if_broot_bytes > 0)) {
  2301. ASSERT(ifp->if_broot != NULL);
  2302. ASSERT(ifp->if_broot_bytes <=
  2303. (XFS_IFORK_SIZE(ip, whichfork) +
  2304. XFS_BROOT_SIZE_ADJ(ip)));
  2305. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2306. (xfs_bmdr_block_t *)cp,
  2307. XFS_DFORK_SIZE(dip, mp, whichfork));
  2308. }
  2309. break;
  2310. case XFS_DINODE_FMT_DEV:
  2311. if (iip->ili_fields & XFS_ILOG_DEV) {
  2312. ASSERT(whichfork == XFS_DATA_FORK);
  2313. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2314. }
  2315. break;
  2316. case XFS_DINODE_FMT_UUID:
  2317. if (iip->ili_fields & XFS_ILOG_UUID) {
  2318. ASSERT(whichfork == XFS_DATA_FORK);
  2319. memcpy(XFS_DFORK_DPTR(dip),
  2320. &ip->i_df.if_u2.if_uuid,
  2321. sizeof(uuid_t));
  2322. }
  2323. break;
  2324. default:
  2325. ASSERT(0);
  2326. break;
  2327. }
  2328. }
  2329. STATIC int
  2330. xfs_iflush_cluster(
  2331. xfs_inode_t *ip,
  2332. xfs_buf_t *bp)
  2333. {
  2334. xfs_mount_t *mp = ip->i_mount;
  2335. struct xfs_perag *pag;
  2336. unsigned long first_index, mask;
  2337. unsigned long inodes_per_cluster;
  2338. int ilist_size;
  2339. xfs_inode_t **ilist;
  2340. xfs_inode_t *iq;
  2341. int nr_found;
  2342. int clcount = 0;
  2343. int bufwasdelwri;
  2344. int i;
  2345. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2346. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2347. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2348. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2349. if (!ilist)
  2350. goto out_put;
  2351. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2352. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2353. rcu_read_lock();
  2354. /* really need a gang lookup range call here */
  2355. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2356. first_index, inodes_per_cluster);
  2357. if (nr_found == 0)
  2358. goto out_free;
  2359. for (i = 0; i < nr_found; i++) {
  2360. iq = ilist[i];
  2361. if (iq == ip)
  2362. continue;
  2363. /*
  2364. * because this is an RCU protected lookup, we could find a
  2365. * recently freed or even reallocated inode during the lookup.
  2366. * We need to check under the i_flags_lock for a valid inode
  2367. * here. Skip it if it is not valid or the wrong inode.
  2368. */
  2369. spin_lock(&ip->i_flags_lock);
  2370. if (!ip->i_ino ||
  2371. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2372. spin_unlock(&ip->i_flags_lock);
  2373. continue;
  2374. }
  2375. spin_unlock(&ip->i_flags_lock);
  2376. /*
  2377. * Do an un-protected check to see if the inode is dirty and
  2378. * is a candidate for flushing. These checks will be repeated
  2379. * later after the appropriate locks are acquired.
  2380. */
  2381. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2382. continue;
  2383. /*
  2384. * Try to get locks. If any are unavailable or it is pinned,
  2385. * then this inode cannot be flushed and is skipped.
  2386. */
  2387. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2388. continue;
  2389. if (!xfs_iflock_nowait(iq)) {
  2390. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2391. continue;
  2392. }
  2393. if (xfs_ipincount(iq)) {
  2394. xfs_ifunlock(iq);
  2395. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2396. continue;
  2397. }
  2398. /*
  2399. * arriving here means that this inode can be flushed. First
  2400. * re-check that it's dirty before flushing.
  2401. */
  2402. if (!xfs_inode_clean(iq)) {
  2403. int error;
  2404. error = xfs_iflush_int(iq, bp);
  2405. if (error) {
  2406. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2407. goto cluster_corrupt_out;
  2408. }
  2409. clcount++;
  2410. } else {
  2411. xfs_ifunlock(iq);
  2412. }
  2413. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2414. }
  2415. if (clcount) {
  2416. XFS_STATS_INC(xs_icluster_flushcnt);
  2417. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2418. }
  2419. out_free:
  2420. rcu_read_unlock();
  2421. kmem_free(ilist);
  2422. out_put:
  2423. xfs_perag_put(pag);
  2424. return 0;
  2425. cluster_corrupt_out:
  2426. /*
  2427. * Corruption detected in the clustering loop. Invalidate the
  2428. * inode buffer and shut down the filesystem.
  2429. */
  2430. rcu_read_unlock();
  2431. /*
  2432. * Clean up the buffer. If it was delwri, just release it --
  2433. * brelse can handle it with no problems. If not, shut down the
  2434. * filesystem before releasing the buffer.
  2435. */
  2436. bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
  2437. if (bufwasdelwri)
  2438. xfs_buf_relse(bp);
  2439. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2440. if (!bufwasdelwri) {
  2441. /*
  2442. * Just like incore_relse: if we have b_iodone functions,
  2443. * mark the buffer as an error and call them. Otherwise
  2444. * mark it as stale and brelse.
  2445. */
  2446. if (bp->b_iodone) {
  2447. XFS_BUF_UNDONE(bp);
  2448. xfs_buf_stale(bp);
  2449. xfs_buf_ioerror(bp, EIO);
  2450. xfs_buf_ioend(bp, 0);
  2451. } else {
  2452. xfs_buf_stale(bp);
  2453. xfs_buf_relse(bp);
  2454. }
  2455. }
  2456. /*
  2457. * Unlocks the flush lock
  2458. */
  2459. xfs_iflush_abort(iq, false);
  2460. kmem_free(ilist);
  2461. xfs_perag_put(pag);
  2462. return XFS_ERROR(EFSCORRUPTED);
  2463. }
  2464. /*
  2465. * Flush dirty inode metadata into the backing buffer.
  2466. *
  2467. * The caller must have the inode lock and the inode flush lock held. The
  2468. * inode lock will still be held upon return to the caller, and the inode
  2469. * flush lock will be released after the inode has reached the disk.
  2470. *
  2471. * The caller must write out the buffer returned in *bpp and release it.
  2472. */
  2473. int
  2474. xfs_iflush(
  2475. struct xfs_inode *ip,
  2476. struct xfs_buf **bpp)
  2477. {
  2478. struct xfs_mount *mp = ip->i_mount;
  2479. struct xfs_buf *bp;
  2480. struct xfs_dinode *dip;
  2481. int error;
  2482. XFS_STATS_INC(xs_iflush_count);
  2483. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2484. ASSERT(xfs_isiflocked(ip));
  2485. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2486. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  2487. *bpp = NULL;
  2488. xfs_iunpin_wait(ip);
  2489. /*
  2490. * For stale inodes we cannot rely on the backing buffer remaining
  2491. * stale in cache for the remaining life of the stale inode and so
  2492. * xfs_imap_to_bp() below may give us a buffer that no longer contains
  2493. * inodes below. We have to check this after ensuring the inode is
  2494. * unpinned so that it is safe to reclaim the stale inode after the
  2495. * flush call.
  2496. */
  2497. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2498. xfs_ifunlock(ip);
  2499. return 0;
  2500. }
  2501. /*
  2502. * This may have been unpinned because the filesystem is shutting
  2503. * down forcibly. If that's the case we must not write this inode
  2504. * to disk, because the log record didn't make it to disk.
  2505. *
  2506. * We also have to remove the log item from the AIL in this case,
  2507. * as we wait for an empty AIL as part of the unmount process.
  2508. */
  2509. if (XFS_FORCED_SHUTDOWN(mp)) {
  2510. error = XFS_ERROR(EIO);
  2511. goto abort_out;
  2512. }
  2513. /*
  2514. * Get the buffer containing the on-disk inode.
  2515. */
  2516. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
  2517. 0);
  2518. if (error || !bp) {
  2519. xfs_ifunlock(ip);
  2520. return error;
  2521. }
  2522. /*
  2523. * First flush out the inode that xfs_iflush was called with.
  2524. */
  2525. error = xfs_iflush_int(ip, bp);
  2526. if (error)
  2527. goto corrupt_out;
  2528. /*
  2529. * If the buffer is pinned then push on the log now so we won't
  2530. * get stuck waiting in the write for too long.
  2531. */
  2532. if (xfs_buf_ispinned(bp))
  2533. xfs_log_force(mp, 0);
  2534. /*
  2535. * inode clustering:
  2536. * see if other inodes can be gathered into this write
  2537. */
  2538. error = xfs_iflush_cluster(ip, bp);
  2539. if (error)
  2540. goto cluster_corrupt_out;
  2541. *bpp = bp;
  2542. return 0;
  2543. corrupt_out:
  2544. xfs_buf_relse(bp);
  2545. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2546. cluster_corrupt_out:
  2547. error = XFS_ERROR(EFSCORRUPTED);
  2548. abort_out:
  2549. /*
  2550. * Unlocks the flush lock
  2551. */
  2552. xfs_iflush_abort(ip, false);
  2553. return error;
  2554. }
  2555. STATIC int
  2556. xfs_iflush_int(
  2557. struct xfs_inode *ip,
  2558. struct xfs_buf *bp)
  2559. {
  2560. struct xfs_inode_log_item *iip = ip->i_itemp;
  2561. struct xfs_dinode *dip;
  2562. struct xfs_mount *mp = ip->i_mount;
  2563. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2564. ASSERT(xfs_isiflocked(ip));
  2565. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2566. ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
  2567. ASSERT(iip != NULL && iip->ili_fields != 0);
  2568. /* set *dip = inode's place in the buffer */
  2569. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2570. if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
  2571. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2572. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2573. "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2574. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2575. goto corrupt_out;
  2576. }
  2577. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2578. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2579. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2580. "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2581. __func__, ip->i_ino, ip, ip->i_d.di_magic);
  2582. goto corrupt_out;
  2583. }
  2584. if (S_ISREG(ip->i_d.di_mode)) {
  2585. if (XFS_TEST_ERROR(
  2586. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2587. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2588. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2589. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2590. "%s: Bad regular inode %Lu, ptr 0x%p",
  2591. __func__, ip->i_ino, ip);
  2592. goto corrupt_out;
  2593. }
  2594. } else if (S_ISDIR(ip->i_d.di_mode)) {
  2595. if (XFS_TEST_ERROR(
  2596. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2597. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2598. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2599. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2600. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2601. "%s: Bad directory inode %Lu, ptr 0x%p",
  2602. __func__, ip->i_ino, ip);
  2603. goto corrupt_out;
  2604. }
  2605. }
  2606. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2607. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2608. XFS_RANDOM_IFLUSH_5)) {
  2609. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2610. "%s: detected corrupt incore inode %Lu, "
  2611. "total extents = %d, nblocks = %Ld, ptr 0x%p",
  2612. __func__, ip->i_ino,
  2613. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2614. ip->i_d.di_nblocks, ip);
  2615. goto corrupt_out;
  2616. }
  2617. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2618. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2619. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2620. "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2621. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  2622. goto corrupt_out;
  2623. }
  2624. /*
  2625. * bump the flush iteration count, used to detect flushes which
  2626. * postdate a log record during recovery. This is redundant as we now
  2627. * log every change and hence this can't happen. Still, it doesn't hurt.
  2628. */
  2629. ip->i_d.di_flushiter++;
  2630. /*
  2631. * Copy the dirty parts of the inode into the on-disk
  2632. * inode. We always copy out the core of the inode,
  2633. * because if the inode is dirty at all the core must
  2634. * be.
  2635. */
  2636. xfs_dinode_to_disk(dip, &ip->i_d);
  2637. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2638. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2639. ip->i_d.di_flushiter = 0;
  2640. /*
  2641. * If this is really an old format inode and the superblock version
  2642. * has not been updated to support only new format inodes, then
  2643. * convert back to the old inode format. If the superblock version
  2644. * has been updated, then make the conversion permanent.
  2645. */
  2646. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2647. if (ip->i_d.di_version == 1) {
  2648. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2649. /*
  2650. * Convert it back.
  2651. */
  2652. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2653. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2654. } else {
  2655. /*
  2656. * The superblock version has already been bumped,
  2657. * so just make the conversion to the new inode
  2658. * format permanent.
  2659. */
  2660. ip->i_d.di_version = 2;
  2661. dip->di_version = 2;
  2662. ip->i_d.di_onlink = 0;
  2663. dip->di_onlink = 0;
  2664. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2665. memset(&(dip->di_pad[0]), 0,
  2666. sizeof(dip->di_pad));
  2667. ASSERT(xfs_get_projid(ip) == 0);
  2668. }
  2669. }
  2670. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2671. if (XFS_IFORK_Q(ip))
  2672. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2673. xfs_inobp_check(mp, bp);
  2674. /*
  2675. * We've recorded everything logged in the inode, so we'd like to clear
  2676. * the ili_fields bits so we don't log and flush things unnecessarily.
  2677. * However, we can't stop logging all this information until the data
  2678. * we've copied into the disk buffer is written to disk. If we did we
  2679. * might overwrite the copy of the inode in the log with all the data
  2680. * after re-logging only part of it, and in the face of a crash we
  2681. * wouldn't have all the data we need to recover.
  2682. *
  2683. * What we do is move the bits to the ili_last_fields field. When
  2684. * logging the inode, these bits are moved back to the ili_fields field.
  2685. * In the xfs_iflush_done() routine we clear ili_last_fields, since we
  2686. * know that the information those bits represent is permanently on
  2687. * disk. As long as the flush completes before the inode is logged
  2688. * again, then both ili_fields and ili_last_fields will be cleared.
  2689. *
  2690. * We can play with the ili_fields bits here, because the inode lock
  2691. * must be held exclusively in order to set bits there and the flush
  2692. * lock protects the ili_last_fields bits. Set ili_logged so the flush
  2693. * done routine can tell whether or not to look in the AIL. Also, store
  2694. * the current LSN of the inode so that we can tell whether the item has
  2695. * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
  2696. * need the AIL lock, because it is a 64 bit value that cannot be read
  2697. * atomically.
  2698. */
  2699. iip->ili_last_fields = iip->ili_fields;
  2700. iip->ili_fields = 0;
  2701. iip->ili_logged = 1;
  2702. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2703. &iip->ili_item.li_lsn);
  2704. /*
  2705. * Attach the function xfs_iflush_done to the inode's
  2706. * buffer. This will remove the inode from the AIL
  2707. * and unlock the inode's flush lock when the inode is
  2708. * completely written to disk.
  2709. */
  2710. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2711. /* update the lsn in the on disk inode if required */
  2712. if (ip->i_d.di_version == 3)
  2713. dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
  2714. /* generate the checksum. */
  2715. xfs_dinode_calc_crc(mp, dip);
  2716. ASSERT(bp->b_fspriv != NULL);
  2717. ASSERT(bp->b_iodone != NULL);
  2718. return 0;
  2719. corrupt_out:
  2720. return XFS_ERROR(EFSCORRUPTED);
  2721. }
  2722. /*
  2723. * Return a pointer to the extent record at file index idx.
  2724. */
  2725. xfs_bmbt_rec_host_t *
  2726. xfs_iext_get_ext(
  2727. xfs_ifork_t *ifp, /* inode fork pointer */
  2728. xfs_extnum_t idx) /* index of target extent */
  2729. {
  2730. ASSERT(idx >= 0);
  2731. ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  2732. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2733. return ifp->if_u1.if_ext_irec->er_extbuf;
  2734. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2735. xfs_ext_irec_t *erp; /* irec pointer */
  2736. int erp_idx = 0; /* irec index */
  2737. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2738. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2739. return &erp->er_extbuf[page_idx];
  2740. } else if (ifp->if_bytes) {
  2741. return &ifp->if_u1.if_extents[idx];
  2742. } else {
  2743. return NULL;
  2744. }
  2745. }
  2746. /*
  2747. * Insert new item(s) into the extent records for incore inode
  2748. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2749. */
  2750. void
  2751. xfs_iext_insert(
  2752. xfs_inode_t *ip, /* incore inode pointer */
  2753. xfs_extnum_t idx, /* starting index of new items */
  2754. xfs_extnum_t count, /* number of inserted items */
  2755. xfs_bmbt_irec_t *new, /* items to insert */
  2756. int state) /* type of extent conversion */
  2757. {
  2758. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2759. xfs_extnum_t i; /* extent record index */
  2760. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2761. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2762. xfs_iext_add(ifp, idx, count);
  2763. for (i = idx; i < idx + count; i++, new++)
  2764. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2765. }
  2766. /*
  2767. * This is called when the amount of space required for incore file
  2768. * extents needs to be increased. The ext_diff parameter stores the
  2769. * number of new extents being added and the idx parameter contains
  2770. * the extent index where the new extents will be added. If the new
  2771. * extents are being appended, then we just need to (re)allocate and
  2772. * initialize the space. Otherwise, if the new extents are being
  2773. * inserted into the middle of the existing entries, a bit more work
  2774. * is required to make room for the new extents to be inserted. The
  2775. * caller is responsible for filling in the new extent entries upon
  2776. * return.
  2777. */
  2778. void
  2779. xfs_iext_add(
  2780. xfs_ifork_t *ifp, /* inode fork pointer */
  2781. xfs_extnum_t idx, /* index to begin adding exts */
  2782. int ext_diff) /* number of extents to add */
  2783. {
  2784. int byte_diff; /* new bytes being added */
  2785. int new_size; /* size of extents after adding */
  2786. xfs_extnum_t nextents; /* number of extents in file */
  2787. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2788. ASSERT((idx >= 0) && (idx <= nextents));
  2789. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2790. new_size = ifp->if_bytes + byte_diff;
  2791. /*
  2792. * If the new number of extents (nextents + ext_diff)
  2793. * fits inside the inode, then continue to use the inline
  2794. * extent buffer.
  2795. */
  2796. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2797. if (idx < nextents) {
  2798. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2799. &ifp->if_u2.if_inline_ext[idx],
  2800. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2801. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2802. }
  2803. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2804. ifp->if_real_bytes = 0;
  2805. }
  2806. /*
  2807. * Otherwise use a linear (direct) extent list.
  2808. * If the extents are currently inside the inode,
  2809. * xfs_iext_realloc_direct will switch us from
  2810. * inline to direct extent allocation mode.
  2811. */
  2812. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2813. xfs_iext_realloc_direct(ifp, new_size);
  2814. if (idx < nextents) {
  2815. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2816. &ifp->if_u1.if_extents[idx],
  2817. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2818. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2819. }
  2820. }
  2821. /* Indirection array */
  2822. else {
  2823. xfs_ext_irec_t *erp;
  2824. int erp_idx = 0;
  2825. int page_idx = idx;
  2826. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2827. if (ifp->if_flags & XFS_IFEXTIREC) {
  2828. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2829. } else {
  2830. xfs_iext_irec_init(ifp);
  2831. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2832. erp = ifp->if_u1.if_ext_irec;
  2833. }
  2834. /* Extents fit in target extent page */
  2835. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2836. if (page_idx < erp->er_extcount) {
  2837. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2838. &erp->er_extbuf[page_idx],
  2839. (erp->er_extcount - page_idx) *
  2840. sizeof(xfs_bmbt_rec_t));
  2841. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2842. }
  2843. erp->er_extcount += ext_diff;
  2844. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2845. }
  2846. /* Insert a new extent page */
  2847. else if (erp) {
  2848. xfs_iext_add_indirect_multi(ifp,
  2849. erp_idx, page_idx, ext_diff);
  2850. }
  2851. /*
  2852. * If extent(s) are being appended to the last page in
  2853. * the indirection array and the new extent(s) don't fit
  2854. * in the page, then erp is NULL and erp_idx is set to
  2855. * the next index needed in the indirection array.
  2856. */
  2857. else {
  2858. int count = ext_diff;
  2859. while (count) {
  2860. erp = xfs_iext_irec_new(ifp, erp_idx);
  2861. erp->er_extcount = count;
  2862. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2863. if (count) {
  2864. erp_idx++;
  2865. }
  2866. }
  2867. }
  2868. }
  2869. ifp->if_bytes = new_size;
  2870. }
  2871. /*
  2872. * This is called when incore extents are being added to the indirection
  2873. * array and the new extents do not fit in the target extent list. The
  2874. * erp_idx parameter contains the irec index for the target extent list
  2875. * in the indirection array, and the idx parameter contains the extent
  2876. * index within the list. The number of extents being added is stored
  2877. * in the count parameter.
  2878. *
  2879. * |-------| |-------|
  2880. * | | | | idx - number of extents before idx
  2881. * | idx | | count |
  2882. * | | | | count - number of extents being inserted at idx
  2883. * |-------| |-------|
  2884. * | count | | nex2 | nex2 - number of extents after idx + count
  2885. * |-------| |-------|
  2886. */
  2887. void
  2888. xfs_iext_add_indirect_multi(
  2889. xfs_ifork_t *ifp, /* inode fork pointer */
  2890. int erp_idx, /* target extent irec index */
  2891. xfs_extnum_t idx, /* index within target list */
  2892. int count) /* new extents being added */
  2893. {
  2894. int byte_diff; /* new bytes being added */
  2895. xfs_ext_irec_t *erp; /* pointer to irec entry */
  2896. xfs_extnum_t ext_diff; /* number of extents to add */
  2897. xfs_extnum_t ext_cnt; /* new extents still needed */
  2898. xfs_extnum_t nex2; /* extents after idx + count */
  2899. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  2900. int nlists; /* number of irec's (lists) */
  2901. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2902. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2903. nex2 = erp->er_extcount - idx;
  2904. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  2905. /*
  2906. * Save second part of target extent list
  2907. * (all extents past */
  2908. if (nex2) {
  2909. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2910. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  2911. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  2912. erp->er_extcount -= nex2;
  2913. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  2914. memset(&erp->er_extbuf[idx], 0, byte_diff);
  2915. }
  2916. /*
  2917. * Add the new extents to the end of the target
  2918. * list, then allocate new irec record(s) and
  2919. * extent buffer(s) as needed to store the rest
  2920. * of the new extents.
  2921. */
  2922. ext_cnt = count;
  2923. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  2924. if (ext_diff) {
  2925. erp->er_extcount += ext_diff;
  2926. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2927. ext_cnt -= ext_diff;
  2928. }
  2929. while (ext_cnt) {
  2930. erp_idx++;
  2931. erp = xfs_iext_irec_new(ifp, erp_idx);
  2932. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  2933. erp->er_extcount = ext_diff;
  2934. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2935. ext_cnt -= ext_diff;
  2936. }
  2937. /* Add nex2 extents back to indirection array */
  2938. if (nex2) {
  2939. xfs_extnum_t ext_avail;
  2940. int i;
  2941. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2942. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  2943. i = 0;
  2944. /*
  2945. * If nex2 extents fit in the current page, append
  2946. * nex2_ep after the new extents.
  2947. */
  2948. if (nex2 <= ext_avail) {
  2949. i = erp->er_extcount;
  2950. }
  2951. /*
  2952. * Otherwise, check if space is available in the
  2953. * next page.
  2954. */
  2955. else if ((erp_idx < nlists - 1) &&
  2956. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  2957. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  2958. erp_idx++;
  2959. erp++;
  2960. /* Create a hole for nex2 extents */
  2961. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  2962. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  2963. }
  2964. /*
  2965. * Final choice, create a new extent page for
  2966. * nex2 extents.
  2967. */
  2968. else {
  2969. erp_idx++;
  2970. erp = xfs_iext_irec_new(ifp, erp_idx);
  2971. }
  2972. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  2973. kmem_free(nex2_ep);
  2974. erp->er_extcount += nex2;
  2975. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  2976. }
  2977. }
  2978. /*
  2979. * This is called when the amount of space required for incore file
  2980. * extents needs to be decreased. The ext_diff parameter stores the
  2981. * number of extents to be removed and the idx parameter contains
  2982. * the extent index where the extents will be removed from.
  2983. *
  2984. * If the amount of space needed has decreased below the linear
  2985. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  2986. * extent array. Otherwise, use kmem_realloc() to adjust the
  2987. * size to what is needed.
  2988. */
  2989. void
  2990. xfs_iext_remove(
  2991. xfs_inode_t *ip, /* incore inode pointer */
  2992. xfs_extnum_t idx, /* index to begin removing exts */
  2993. int ext_diff, /* number of extents to remove */
  2994. int state) /* type of extent conversion */
  2995. {
  2996. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2997. xfs_extnum_t nextents; /* number of extents in file */
  2998. int new_size; /* size of extents after removal */
  2999. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3000. ASSERT(ext_diff > 0);
  3001. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3002. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3003. if (new_size == 0) {
  3004. xfs_iext_destroy(ifp);
  3005. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3006. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3007. } else if (ifp->if_real_bytes) {
  3008. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3009. } else {
  3010. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3011. }
  3012. ifp->if_bytes = new_size;
  3013. }
  3014. /*
  3015. * This removes ext_diff extents from the inline buffer, beginning
  3016. * at extent index idx.
  3017. */
  3018. void
  3019. xfs_iext_remove_inline(
  3020. xfs_ifork_t *ifp, /* inode fork pointer */
  3021. xfs_extnum_t idx, /* index to begin removing exts */
  3022. int ext_diff) /* number of extents to remove */
  3023. {
  3024. int nextents; /* number of extents in file */
  3025. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3026. ASSERT(idx < XFS_INLINE_EXTS);
  3027. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3028. ASSERT(((nextents - ext_diff) > 0) &&
  3029. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3030. if (idx + ext_diff < nextents) {
  3031. memmove(&ifp->if_u2.if_inline_ext[idx],
  3032. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3033. (nextents - (idx + ext_diff)) *
  3034. sizeof(xfs_bmbt_rec_t));
  3035. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3036. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3037. } else {
  3038. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3039. ext_diff * sizeof(xfs_bmbt_rec_t));
  3040. }
  3041. }
  3042. /*
  3043. * This removes ext_diff extents from a linear (direct) extent list,
  3044. * beginning at extent index idx. If the extents are being removed
  3045. * from the end of the list (ie. truncate) then we just need to re-
  3046. * allocate the list to remove the extra space. Otherwise, if the
  3047. * extents are being removed from the middle of the existing extent
  3048. * entries, then we first need to move the extent records beginning
  3049. * at idx + ext_diff up in the list to overwrite the records being
  3050. * removed, then remove the extra space via kmem_realloc.
  3051. */
  3052. void
  3053. xfs_iext_remove_direct(
  3054. xfs_ifork_t *ifp, /* inode fork pointer */
  3055. xfs_extnum_t idx, /* index to begin removing exts */
  3056. int ext_diff) /* number of extents to remove */
  3057. {
  3058. xfs_extnum_t nextents; /* number of extents in file */
  3059. int new_size; /* size of extents after removal */
  3060. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3061. new_size = ifp->if_bytes -
  3062. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3063. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3064. if (new_size == 0) {
  3065. xfs_iext_destroy(ifp);
  3066. return;
  3067. }
  3068. /* Move extents up in the list (if needed) */
  3069. if (idx + ext_diff < nextents) {
  3070. memmove(&ifp->if_u1.if_extents[idx],
  3071. &ifp->if_u1.if_extents[idx + ext_diff],
  3072. (nextents - (idx + ext_diff)) *
  3073. sizeof(xfs_bmbt_rec_t));
  3074. }
  3075. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3076. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3077. /*
  3078. * Reallocate the direct extent list. If the extents
  3079. * will fit inside the inode then xfs_iext_realloc_direct
  3080. * will switch from direct to inline extent allocation
  3081. * mode for us.
  3082. */
  3083. xfs_iext_realloc_direct(ifp, new_size);
  3084. ifp->if_bytes = new_size;
  3085. }
  3086. /*
  3087. * This is called when incore extents are being removed from the
  3088. * indirection array and the extents being removed span multiple extent
  3089. * buffers. The idx parameter contains the file extent index where we
  3090. * want to begin removing extents, and the count parameter contains
  3091. * how many extents need to be removed.
  3092. *
  3093. * |-------| |-------|
  3094. * | nex1 | | | nex1 - number of extents before idx
  3095. * |-------| | count |
  3096. * | | | | count - number of extents being removed at idx
  3097. * | count | |-------|
  3098. * | | | nex2 | nex2 - number of extents after idx + count
  3099. * |-------| |-------|
  3100. */
  3101. void
  3102. xfs_iext_remove_indirect(
  3103. xfs_ifork_t *ifp, /* inode fork pointer */
  3104. xfs_extnum_t idx, /* index to begin removing extents */
  3105. int count) /* number of extents to remove */
  3106. {
  3107. xfs_ext_irec_t *erp; /* indirection array pointer */
  3108. int erp_idx = 0; /* indirection array index */
  3109. xfs_extnum_t ext_cnt; /* extents left to remove */
  3110. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3111. xfs_extnum_t nex1; /* number of extents before idx */
  3112. xfs_extnum_t nex2; /* extents after idx + count */
  3113. int page_idx = idx; /* index in target extent list */
  3114. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3115. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3116. ASSERT(erp != NULL);
  3117. nex1 = page_idx;
  3118. ext_cnt = count;
  3119. while (ext_cnt) {
  3120. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3121. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3122. /*
  3123. * Check for deletion of entire list;
  3124. * xfs_iext_irec_remove() updates extent offsets.
  3125. */
  3126. if (ext_diff == erp->er_extcount) {
  3127. xfs_iext_irec_remove(ifp, erp_idx);
  3128. ext_cnt -= ext_diff;
  3129. nex1 = 0;
  3130. if (ext_cnt) {
  3131. ASSERT(erp_idx < ifp->if_real_bytes /
  3132. XFS_IEXT_BUFSZ);
  3133. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3134. nex1 = 0;
  3135. continue;
  3136. } else {
  3137. break;
  3138. }
  3139. }
  3140. /* Move extents up (if needed) */
  3141. if (nex2) {
  3142. memmove(&erp->er_extbuf[nex1],
  3143. &erp->er_extbuf[nex1 + ext_diff],
  3144. nex2 * sizeof(xfs_bmbt_rec_t));
  3145. }
  3146. /* Zero out rest of page */
  3147. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3148. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3149. /* Update remaining counters */
  3150. erp->er_extcount -= ext_diff;
  3151. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3152. ext_cnt -= ext_diff;
  3153. nex1 = 0;
  3154. erp_idx++;
  3155. erp++;
  3156. }
  3157. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3158. xfs_iext_irec_compact(ifp);
  3159. }
  3160. /*
  3161. * Create, destroy, or resize a linear (direct) block of extents.
  3162. */
  3163. void
  3164. xfs_iext_realloc_direct(
  3165. xfs_ifork_t *ifp, /* inode fork pointer */
  3166. int new_size) /* new size of extents */
  3167. {
  3168. int rnew_size; /* real new size of extents */
  3169. rnew_size = new_size;
  3170. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3171. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3172. (new_size != ifp->if_real_bytes)));
  3173. /* Free extent records */
  3174. if (new_size == 0) {
  3175. xfs_iext_destroy(ifp);
  3176. }
  3177. /* Resize direct extent list and zero any new bytes */
  3178. else if (ifp->if_real_bytes) {
  3179. /* Check if extents will fit inside the inode */
  3180. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3181. xfs_iext_direct_to_inline(ifp, new_size /
  3182. (uint)sizeof(xfs_bmbt_rec_t));
  3183. ifp->if_bytes = new_size;
  3184. return;
  3185. }
  3186. if (!is_power_of_2(new_size)){
  3187. rnew_size = roundup_pow_of_two(new_size);
  3188. }
  3189. if (rnew_size != ifp->if_real_bytes) {
  3190. ifp->if_u1.if_extents =
  3191. kmem_realloc(ifp->if_u1.if_extents,
  3192. rnew_size,
  3193. ifp->if_real_bytes, KM_NOFS);
  3194. }
  3195. if (rnew_size > ifp->if_real_bytes) {
  3196. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3197. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3198. rnew_size - ifp->if_real_bytes);
  3199. }
  3200. }
  3201. /*
  3202. * Switch from the inline extent buffer to a direct
  3203. * extent list. Be sure to include the inline extent
  3204. * bytes in new_size.
  3205. */
  3206. else {
  3207. new_size += ifp->if_bytes;
  3208. if (!is_power_of_2(new_size)) {
  3209. rnew_size = roundup_pow_of_two(new_size);
  3210. }
  3211. xfs_iext_inline_to_direct(ifp, rnew_size);
  3212. }
  3213. ifp->if_real_bytes = rnew_size;
  3214. ifp->if_bytes = new_size;
  3215. }
  3216. /*
  3217. * Switch from linear (direct) extent records to inline buffer.
  3218. */
  3219. void
  3220. xfs_iext_direct_to_inline(
  3221. xfs_ifork_t *ifp, /* inode fork pointer */
  3222. xfs_extnum_t nextents) /* number of extents in file */
  3223. {
  3224. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3225. ASSERT(nextents <= XFS_INLINE_EXTS);
  3226. /*
  3227. * The inline buffer was zeroed when we switched
  3228. * from inline to direct extent allocation mode,
  3229. * so we don't need to clear it here.
  3230. */
  3231. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3232. nextents * sizeof(xfs_bmbt_rec_t));
  3233. kmem_free(ifp->if_u1.if_extents);
  3234. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3235. ifp->if_real_bytes = 0;
  3236. }
  3237. /*
  3238. * Switch from inline buffer to linear (direct) extent records.
  3239. * new_size should already be rounded up to the next power of 2
  3240. * by the caller (when appropriate), so use new_size as it is.
  3241. * However, since new_size may be rounded up, we can't update
  3242. * if_bytes here. It is the caller's responsibility to update
  3243. * if_bytes upon return.
  3244. */
  3245. void
  3246. xfs_iext_inline_to_direct(
  3247. xfs_ifork_t *ifp, /* inode fork pointer */
  3248. int new_size) /* number of extents in file */
  3249. {
  3250. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3251. memset(ifp->if_u1.if_extents, 0, new_size);
  3252. if (ifp->if_bytes) {
  3253. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3254. ifp->if_bytes);
  3255. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3256. sizeof(xfs_bmbt_rec_t));
  3257. }
  3258. ifp->if_real_bytes = new_size;
  3259. }
  3260. /*
  3261. * Resize an extent indirection array to new_size bytes.
  3262. */
  3263. STATIC void
  3264. xfs_iext_realloc_indirect(
  3265. xfs_ifork_t *ifp, /* inode fork pointer */
  3266. int new_size) /* new indirection array size */
  3267. {
  3268. int nlists; /* number of irec's (ex lists) */
  3269. int size; /* current indirection array size */
  3270. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3271. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3272. size = nlists * sizeof(xfs_ext_irec_t);
  3273. ASSERT(ifp->if_real_bytes);
  3274. ASSERT((new_size >= 0) && (new_size != size));
  3275. if (new_size == 0) {
  3276. xfs_iext_destroy(ifp);
  3277. } else {
  3278. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3279. kmem_realloc(ifp->if_u1.if_ext_irec,
  3280. new_size, size, KM_NOFS);
  3281. }
  3282. }
  3283. /*
  3284. * Switch from indirection array to linear (direct) extent allocations.
  3285. */
  3286. STATIC void
  3287. xfs_iext_indirect_to_direct(
  3288. xfs_ifork_t *ifp) /* inode fork pointer */
  3289. {
  3290. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3291. xfs_extnum_t nextents; /* number of extents in file */
  3292. int size; /* size of file extents */
  3293. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3294. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3295. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3296. size = nextents * sizeof(xfs_bmbt_rec_t);
  3297. xfs_iext_irec_compact_pages(ifp);
  3298. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3299. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3300. kmem_free(ifp->if_u1.if_ext_irec);
  3301. ifp->if_flags &= ~XFS_IFEXTIREC;
  3302. ifp->if_u1.if_extents = ep;
  3303. ifp->if_bytes = size;
  3304. if (nextents < XFS_LINEAR_EXTS) {
  3305. xfs_iext_realloc_direct(ifp, size);
  3306. }
  3307. }
  3308. /*
  3309. * Free incore file extents.
  3310. */
  3311. void
  3312. xfs_iext_destroy(
  3313. xfs_ifork_t *ifp) /* inode fork pointer */
  3314. {
  3315. if (ifp->if_flags & XFS_IFEXTIREC) {
  3316. int erp_idx;
  3317. int nlists;
  3318. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3319. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3320. xfs_iext_irec_remove(ifp, erp_idx);
  3321. }
  3322. ifp->if_flags &= ~XFS_IFEXTIREC;
  3323. } else if (ifp->if_real_bytes) {
  3324. kmem_free(ifp->if_u1.if_extents);
  3325. } else if (ifp->if_bytes) {
  3326. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3327. sizeof(xfs_bmbt_rec_t));
  3328. }
  3329. ifp->if_u1.if_extents = NULL;
  3330. ifp->if_real_bytes = 0;
  3331. ifp->if_bytes = 0;
  3332. }
  3333. /*
  3334. * Return a pointer to the extent record for file system block bno.
  3335. */
  3336. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3337. xfs_iext_bno_to_ext(
  3338. xfs_ifork_t *ifp, /* inode fork pointer */
  3339. xfs_fileoff_t bno, /* block number to search for */
  3340. xfs_extnum_t *idxp) /* index of target extent */
  3341. {
  3342. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3343. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3344. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3345. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3346. int high; /* upper boundary in search */
  3347. xfs_extnum_t idx = 0; /* index of target extent */
  3348. int low; /* lower boundary in search */
  3349. xfs_extnum_t nextents; /* number of file extents */
  3350. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3351. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3352. if (nextents == 0) {
  3353. *idxp = 0;
  3354. return NULL;
  3355. }
  3356. low = 0;
  3357. if (ifp->if_flags & XFS_IFEXTIREC) {
  3358. /* Find target extent list */
  3359. int erp_idx = 0;
  3360. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3361. base = erp->er_extbuf;
  3362. high = erp->er_extcount - 1;
  3363. } else {
  3364. base = ifp->if_u1.if_extents;
  3365. high = nextents - 1;
  3366. }
  3367. /* Binary search extent records */
  3368. while (low <= high) {
  3369. idx = (low + high) >> 1;
  3370. ep = base + idx;
  3371. startoff = xfs_bmbt_get_startoff(ep);
  3372. blockcount = xfs_bmbt_get_blockcount(ep);
  3373. if (bno < startoff) {
  3374. high = idx - 1;
  3375. } else if (bno >= startoff + blockcount) {
  3376. low = idx + 1;
  3377. } else {
  3378. /* Convert back to file-based extent index */
  3379. if (ifp->if_flags & XFS_IFEXTIREC) {
  3380. idx += erp->er_extoff;
  3381. }
  3382. *idxp = idx;
  3383. return ep;
  3384. }
  3385. }
  3386. /* Convert back to file-based extent index */
  3387. if (ifp->if_flags & XFS_IFEXTIREC) {
  3388. idx += erp->er_extoff;
  3389. }
  3390. if (bno >= startoff + blockcount) {
  3391. if (++idx == nextents) {
  3392. ep = NULL;
  3393. } else {
  3394. ep = xfs_iext_get_ext(ifp, idx);
  3395. }
  3396. }
  3397. *idxp = idx;
  3398. return ep;
  3399. }
  3400. /*
  3401. * Return a pointer to the indirection array entry containing the
  3402. * extent record for filesystem block bno. Store the index of the
  3403. * target irec in *erp_idxp.
  3404. */
  3405. xfs_ext_irec_t * /* pointer to found extent record */
  3406. xfs_iext_bno_to_irec(
  3407. xfs_ifork_t *ifp, /* inode fork pointer */
  3408. xfs_fileoff_t bno, /* block number to search for */
  3409. int *erp_idxp) /* irec index of target ext list */
  3410. {
  3411. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3412. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3413. int erp_idx; /* indirection array index */
  3414. int nlists; /* number of extent irec's (lists) */
  3415. int high; /* binary search upper limit */
  3416. int low; /* binary search lower limit */
  3417. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3418. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3419. erp_idx = 0;
  3420. low = 0;
  3421. high = nlists - 1;
  3422. while (low <= high) {
  3423. erp_idx = (low + high) >> 1;
  3424. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3425. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3426. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3427. high = erp_idx - 1;
  3428. } else if (erp_next && bno >=
  3429. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3430. low = erp_idx + 1;
  3431. } else {
  3432. break;
  3433. }
  3434. }
  3435. *erp_idxp = erp_idx;
  3436. return erp;
  3437. }
  3438. /*
  3439. * Return a pointer to the indirection array entry containing the
  3440. * extent record at file extent index *idxp. Store the index of the
  3441. * target irec in *erp_idxp and store the page index of the target
  3442. * extent record in *idxp.
  3443. */
  3444. xfs_ext_irec_t *
  3445. xfs_iext_idx_to_irec(
  3446. xfs_ifork_t *ifp, /* inode fork pointer */
  3447. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3448. int *erp_idxp, /* pointer to target irec */
  3449. int realloc) /* new bytes were just added */
  3450. {
  3451. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3452. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3453. int erp_idx; /* indirection array index */
  3454. int nlists; /* number of irec's (ex lists) */
  3455. int high; /* binary search upper limit */
  3456. int low; /* binary search lower limit */
  3457. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3458. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3459. ASSERT(page_idx >= 0);
  3460. ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  3461. ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
  3462. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3463. erp_idx = 0;
  3464. low = 0;
  3465. high = nlists - 1;
  3466. /* Binary search extent irec's */
  3467. while (low <= high) {
  3468. erp_idx = (low + high) >> 1;
  3469. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3470. prev = erp_idx > 0 ? erp - 1 : NULL;
  3471. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3472. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3473. high = erp_idx - 1;
  3474. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3475. (page_idx == erp->er_extoff + erp->er_extcount &&
  3476. !realloc)) {
  3477. low = erp_idx + 1;
  3478. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3479. erp->er_extcount == XFS_LINEAR_EXTS) {
  3480. ASSERT(realloc);
  3481. page_idx = 0;
  3482. erp_idx++;
  3483. erp = erp_idx < nlists ? erp + 1 : NULL;
  3484. break;
  3485. } else {
  3486. page_idx -= erp->er_extoff;
  3487. break;
  3488. }
  3489. }
  3490. *idxp = page_idx;
  3491. *erp_idxp = erp_idx;
  3492. return(erp);
  3493. }
  3494. /*
  3495. * Allocate and initialize an indirection array once the space needed
  3496. * for incore extents increases above XFS_IEXT_BUFSZ.
  3497. */
  3498. void
  3499. xfs_iext_irec_init(
  3500. xfs_ifork_t *ifp) /* inode fork pointer */
  3501. {
  3502. xfs_ext_irec_t *erp; /* indirection array pointer */
  3503. xfs_extnum_t nextents; /* number of extents in file */
  3504. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3505. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3506. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3507. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3508. if (nextents == 0) {
  3509. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3510. } else if (!ifp->if_real_bytes) {
  3511. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3512. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3513. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3514. }
  3515. erp->er_extbuf = ifp->if_u1.if_extents;
  3516. erp->er_extcount = nextents;
  3517. erp->er_extoff = 0;
  3518. ifp->if_flags |= XFS_IFEXTIREC;
  3519. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3520. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3521. ifp->if_u1.if_ext_irec = erp;
  3522. return;
  3523. }
  3524. /*
  3525. * Allocate and initialize a new entry in the indirection array.
  3526. */
  3527. xfs_ext_irec_t *
  3528. xfs_iext_irec_new(
  3529. xfs_ifork_t *ifp, /* inode fork pointer */
  3530. int erp_idx) /* index for new irec */
  3531. {
  3532. xfs_ext_irec_t *erp; /* indirection array pointer */
  3533. int i; /* loop counter */
  3534. int nlists; /* number of irec's (ex lists) */
  3535. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3536. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3537. /* Resize indirection array */
  3538. xfs_iext_realloc_indirect(ifp, ++nlists *
  3539. sizeof(xfs_ext_irec_t));
  3540. /*
  3541. * Move records down in the array so the
  3542. * new page can use erp_idx.
  3543. */
  3544. erp = ifp->if_u1.if_ext_irec;
  3545. for (i = nlists - 1; i > erp_idx; i--) {
  3546. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3547. }
  3548. ASSERT(i == erp_idx);
  3549. /* Initialize new extent record */
  3550. erp = ifp->if_u1.if_ext_irec;
  3551. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3552. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3553. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3554. erp[erp_idx].er_extcount = 0;
  3555. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3556. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3557. return (&erp[erp_idx]);
  3558. }
  3559. /*
  3560. * Remove a record from the indirection array.
  3561. */
  3562. void
  3563. xfs_iext_irec_remove(
  3564. xfs_ifork_t *ifp, /* inode fork pointer */
  3565. int erp_idx) /* irec index to remove */
  3566. {
  3567. xfs_ext_irec_t *erp; /* indirection array pointer */
  3568. int i; /* loop counter */
  3569. int nlists; /* number of irec's (ex lists) */
  3570. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3571. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3572. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3573. if (erp->er_extbuf) {
  3574. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3575. -erp->er_extcount);
  3576. kmem_free(erp->er_extbuf);
  3577. }
  3578. /* Compact extent records */
  3579. erp = ifp->if_u1.if_ext_irec;
  3580. for (i = erp_idx; i < nlists - 1; i++) {
  3581. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3582. }
  3583. /*
  3584. * Manually free the last extent record from the indirection
  3585. * array. A call to xfs_iext_realloc_indirect() with a size
  3586. * of zero would result in a call to xfs_iext_destroy() which
  3587. * would in turn call this function again, creating a nasty
  3588. * infinite loop.
  3589. */
  3590. if (--nlists) {
  3591. xfs_iext_realloc_indirect(ifp,
  3592. nlists * sizeof(xfs_ext_irec_t));
  3593. } else {
  3594. kmem_free(ifp->if_u1.if_ext_irec);
  3595. }
  3596. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3597. }
  3598. /*
  3599. * This is called to clean up large amounts of unused memory allocated
  3600. * by the indirection array. Before compacting anything though, verify
  3601. * that the indirection array is still needed and switch back to the
  3602. * linear extent list (or even the inline buffer) if possible. The
  3603. * compaction policy is as follows:
  3604. *
  3605. * Full Compaction: Extents fit into a single page (or inline buffer)
  3606. * Partial Compaction: Extents occupy less than 50% of allocated space
  3607. * No Compaction: Extents occupy at least 50% of allocated space
  3608. */
  3609. void
  3610. xfs_iext_irec_compact(
  3611. xfs_ifork_t *ifp) /* inode fork pointer */
  3612. {
  3613. xfs_extnum_t nextents; /* number of extents in file */
  3614. int nlists; /* number of irec's (ex lists) */
  3615. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3616. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3617. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3618. if (nextents == 0) {
  3619. xfs_iext_destroy(ifp);
  3620. } else if (nextents <= XFS_INLINE_EXTS) {
  3621. xfs_iext_indirect_to_direct(ifp);
  3622. xfs_iext_direct_to_inline(ifp, nextents);
  3623. } else if (nextents <= XFS_LINEAR_EXTS) {
  3624. xfs_iext_indirect_to_direct(ifp);
  3625. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3626. xfs_iext_irec_compact_pages(ifp);
  3627. }
  3628. }
  3629. /*
  3630. * Combine extents from neighboring extent pages.
  3631. */
  3632. void
  3633. xfs_iext_irec_compact_pages(
  3634. xfs_ifork_t *ifp) /* inode fork pointer */
  3635. {
  3636. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3637. int erp_idx = 0; /* indirection array index */
  3638. int nlists; /* number of irec's (ex lists) */
  3639. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3640. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3641. while (erp_idx < nlists - 1) {
  3642. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3643. erp_next = erp + 1;
  3644. if (erp_next->er_extcount <=
  3645. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3646. memcpy(&erp->er_extbuf[erp->er_extcount],
  3647. erp_next->er_extbuf, erp_next->er_extcount *
  3648. sizeof(xfs_bmbt_rec_t));
  3649. erp->er_extcount += erp_next->er_extcount;
  3650. /*
  3651. * Free page before removing extent record
  3652. * so er_extoffs don't get modified in
  3653. * xfs_iext_irec_remove.
  3654. */
  3655. kmem_free(erp_next->er_extbuf);
  3656. erp_next->er_extbuf = NULL;
  3657. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3658. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3659. } else {
  3660. erp_idx++;
  3661. }
  3662. }
  3663. }
  3664. /*
  3665. * This is called to update the er_extoff field in the indirection
  3666. * array when extents have been added or removed from one of the
  3667. * extent lists. erp_idx contains the irec index to begin updating
  3668. * at and ext_diff contains the number of extents that were added
  3669. * or removed.
  3670. */
  3671. void
  3672. xfs_iext_irec_update_extoffs(
  3673. xfs_ifork_t *ifp, /* inode fork pointer */
  3674. int erp_idx, /* irec index to update */
  3675. int ext_diff) /* number of new extents */
  3676. {
  3677. int i; /* loop counter */
  3678. int nlists; /* number of irec's (ex lists */
  3679. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3680. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3681. for (i = erp_idx; i < nlists; i++) {
  3682. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3683. }
  3684. }
  3685. /*
  3686. * Test whether it is appropriate to check an inode for and free post EOF
  3687. * blocks. The 'force' parameter determines whether we should also consider
  3688. * regular files that are marked preallocated or append-only.
  3689. */
  3690. bool
  3691. xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
  3692. {
  3693. /* prealloc/delalloc exists only on regular files */
  3694. if (!S_ISREG(ip->i_d.di_mode))
  3695. return false;
  3696. /*
  3697. * Zero sized files with no cached pages and delalloc blocks will not
  3698. * have speculative prealloc/delalloc blocks to remove.
  3699. */
  3700. if (VFS_I(ip)->i_size == 0 &&
  3701. VN_CACHED(VFS_I(ip)) == 0 &&
  3702. ip->i_delayed_blks == 0)
  3703. return false;
  3704. /* If we haven't read in the extent list, then don't do it now. */
  3705. if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
  3706. return false;
  3707. /*
  3708. * Do not free real preallocated or append-only files unless the file
  3709. * has delalloc blocks and we are forced to remove them.
  3710. */
  3711. if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
  3712. if (!force || ip->i_delayed_blks == 0)
  3713. return false;
  3714. return true;
  3715. }