sched_debug.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457
  1. /*
  2. * kernel/time/sched_debug.c
  3. *
  4. * Print the CFS rbtree
  5. *
  6. * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/proc_fs.h>
  13. #include <linux/sched.h>
  14. #include <linux/seq_file.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/utsname.h>
  17. /*
  18. * This allows printing both to /proc/sched_debug and
  19. * to the console
  20. */
  21. #define SEQ_printf(m, x...) \
  22. do { \
  23. if (m) \
  24. seq_printf(m, x); \
  25. else \
  26. printk(x); \
  27. } while (0)
  28. /*
  29. * Ease the printing of nsec fields:
  30. */
  31. static long long nsec_high(unsigned long long nsec)
  32. {
  33. if ((long long)nsec < 0) {
  34. nsec = -nsec;
  35. do_div(nsec, 1000000);
  36. return -nsec;
  37. }
  38. do_div(nsec, 1000000);
  39. return nsec;
  40. }
  41. static unsigned long nsec_low(unsigned long long nsec)
  42. {
  43. if ((long long)nsec < 0)
  44. nsec = -nsec;
  45. return do_div(nsec, 1000000);
  46. }
  47. #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
  48. static void
  49. print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
  50. {
  51. if (rq->curr == p)
  52. SEQ_printf(m, "R");
  53. else
  54. SEQ_printf(m, " ");
  55. SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
  56. p->comm, p->pid,
  57. SPLIT_NS(p->se.vruntime),
  58. (long long)(p->nvcsw + p->nivcsw),
  59. p->prio);
  60. #ifdef CONFIG_SCHEDSTATS
  61. SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
  62. SPLIT_NS(p->se.vruntime),
  63. SPLIT_NS(p->se.sum_exec_runtime),
  64. SPLIT_NS(p->se.sum_sleep_runtime));
  65. #else
  66. SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
  67. 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
  68. #endif
  69. #ifdef CONFIG_CGROUP_SCHED
  70. {
  71. char path[64];
  72. cgroup_path(task_group(p)->css.cgroup, path, sizeof(path));
  73. SEQ_printf(m, " %s", path);
  74. }
  75. #endif
  76. SEQ_printf(m, "\n");
  77. }
  78. static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
  79. {
  80. struct task_struct *g, *p;
  81. unsigned long flags;
  82. SEQ_printf(m,
  83. "\nrunnable tasks:\n"
  84. " task PID tree-key switches prio"
  85. " exec-runtime sum-exec sum-sleep\n"
  86. "------------------------------------------------------"
  87. "----------------------------------------------------\n");
  88. read_lock_irqsave(&tasklist_lock, flags);
  89. do_each_thread(g, p) {
  90. if (!p->se.on_rq || task_cpu(p) != rq_cpu)
  91. continue;
  92. print_task(m, rq, p);
  93. } while_each_thread(g, p);
  94. read_unlock_irqrestore(&tasklist_lock, flags);
  95. }
  96. void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
  97. {
  98. s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
  99. spread, rq0_min_vruntime, spread0;
  100. struct rq *rq = &per_cpu(runqueues, cpu);
  101. struct sched_entity *last;
  102. unsigned long flags;
  103. #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
  104. char path[128] = "";
  105. struct task_group *tg = cfs_rq->tg;
  106. cgroup_path(tg->css.cgroup, path, sizeof(path));
  107. SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
  108. #else
  109. SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
  110. #endif
  111. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
  112. SPLIT_NS(cfs_rq->exec_clock));
  113. spin_lock_irqsave(&rq->lock, flags);
  114. if (cfs_rq->rb_leftmost)
  115. MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
  116. last = __pick_last_entity(cfs_rq);
  117. if (last)
  118. max_vruntime = last->vruntime;
  119. min_vruntime = rq->cfs.min_vruntime;
  120. rq0_min_vruntime = per_cpu(runqueues, 0).cfs.min_vruntime;
  121. spin_unlock_irqrestore(&rq->lock, flags);
  122. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
  123. SPLIT_NS(MIN_vruntime));
  124. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
  125. SPLIT_NS(min_vruntime));
  126. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
  127. SPLIT_NS(max_vruntime));
  128. spread = max_vruntime - MIN_vruntime;
  129. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
  130. SPLIT_NS(spread));
  131. spread0 = min_vruntime - rq0_min_vruntime;
  132. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
  133. SPLIT_NS(spread0));
  134. SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
  135. SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
  136. #ifdef CONFIG_SCHEDSTATS
  137. #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
  138. P(yld_exp_empty);
  139. P(yld_act_empty);
  140. P(yld_both_empty);
  141. P(yld_count);
  142. P(sched_switch);
  143. P(sched_count);
  144. P(sched_goidle);
  145. P(ttwu_count);
  146. P(ttwu_local);
  147. P(bkl_count);
  148. #undef P
  149. #endif
  150. SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over",
  151. cfs_rq->nr_spread_over);
  152. #ifdef CONFIG_FAIR_GROUP_SCHED
  153. #ifdef CONFIG_SMP
  154. SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares);
  155. #endif
  156. #endif
  157. }
  158. void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
  159. {
  160. #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_RT_GROUP_SCHED)
  161. char path[128] = "";
  162. struct task_group *tg = rt_rq->tg;
  163. cgroup_path(tg->css.cgroup, path, sizeof(path));
  164. SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, path);
  165. #else
  166. SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
  167. #endif
  168. #define P(x) \
  169. SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
  170. #define PN(x) \
  171. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
  172. P(rt_nr_running);
  173. P(rt_throttled);
  174. PN(rt_time);
  175. PN(rt_runtime);
  176. #undef PN
  177. #undef P
  178. }
  179. static void print_cpu(struct seq_file *m, int cpu)
  180. {
  181. struct rq *rq = &per_cpu(runqueues, cpu);
  182. #ifdef CONFIG_X86
  183. {
  184. unsigned int freq = cpu_khz ? : 1;
  185. SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
  186. cpu, freq / 1000, (freq % 1000));
  187. }
  188. #else
  189. SEQ_printf(m, "\ncpu#%d\n", cpu);
  190. #endif
  191. #define P(x) \
  192. SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
  193. #define PN(x) \
  194. SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
  195. P(nr_running);
  196. SEQ_printf(m, " .%-30s: %lu\n", "load",
  197. rq->load.weight);
  198. P(nr_switches);
  199. P(nr_load_updates);
  200. P(nr_uninterruptible);
  201. SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
  202. PN(next_balance);
  203. P(curr->pid);
  204. PN(clock);
  205. P(cpu_load[0]);
  206. P(cpu_load[1]);
  207. P(cpu_load[2]);
  208. P(cpu_load[3]);
  209. P(cpu_load[4]);
  210. #undef P
  211. #undef PN
  212. print_cfs_stats(m, cpu);
  213. print_rt_stats(m, cpu);
  214. print_rq(m, rq, cpu);
  215. }
  216. static int sched_debug_show(struct seq_file *m, void *v)
  217. {
  218. u64 now = ktime_to_ns(ktime_get());
  219. int cpu;
  220. SEQ_printf(m, "Sched Debug Version: v0.07, %s %.*s\n",
  221. init_utsname()->release,
  222. (int)strcspn(init_utsname()->version, " "),
  223. init_utsname()->version);
  224. SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
  225. #define P(x) \
  226. SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
  227. #define PN(x) \
  228. SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
  229. PN(sysctl_sched_latency);
  230. PN(sysctl_sched_min_granularity);
  231. PN(sysctl_sched_wakeup_granularity);
  232. PN(sysctl_sched_child_runs_first);
  233. P(sysctl_sched_features);
  234. #undef PN
  235. #undef P
  236. for_each_online_cpu(cpu)
  237. print_cpu(m, cpu);
  238. SEQ_printf(m, "\n");
  239. return 0;
  240. }
  241. static void sysrq_sched_debug_show(void)
  242. {
  243. sched_debug_show(NULL, NULL);
  244. }
  245. static int sched_debug_open(struct inode *inode, struct file *filp)
  246. {
  247. return single_open(filp, sched_debug_show, NULL);
  248. }
  249. static const struct file_operations sched_debug_fops = {
  250. .open = sched_debug_open,
  251. .read = seq_read,
  252. .llseek = seq_lseek,
  253. .release = single_release,
  254. };
  255. static int __init init_sched_debug_procfs(void)
  256. {
  257. struct proc_dir_entry *pe;
  258. pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
  259. if (!pe)
  260. return -ENOMEM;
  261. return 0;
  262. }
  263. __initcall(init_sched_debug_procfs);
  264. void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
  265. {
  266. unsigned long nr_switches;
  267. unsigned long flags;
  268. int num_threads = 1;
  269. if (lock_task_sighand(p, &flags)) {
  270. num_threads = atomic_read(&p->signal->count);
  271. unlock_task_sighand(p, &flags);
  272. }
  273. SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
  274. SEQ_printf(m,
  275. "---------------------------------------------------------\n");
  276. #define __P(F) \
  277. SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
  278. #define P(F) \
  279. SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
  280. #define __PN(F) \
  281. SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
  282. #define PN(F) \
  283. SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
  284. PN(se.exec_start);
  285. PN(se.vruntime);
  286. PN(se.sum_exec_runtime);
  287. PN(se.avg_overlap);
  288. nr_switches = p->nvcsw + p->nivcsw;
  289. #ifdef CONFIG_SCHEDSTATS
  290. PN(se.wait_start);
  291. PN(se.sleep_start);
  292. PN(se.block_start);
  293. PN(se.sleep_max);
  294. PN(se.block_max);
  295. PN(se.exec_max);
  296. PN(se.slice_max);
  297. PN(se.wait_max);
  298. PN(se.wait_sum);
  299. P(se.wait_count);
  300. P(sched_info.bkl_count);
  301. P(se.nr_migrations);
  302. P(se.nr_migrations_cold);
  303. P(se.nr_failed_migrations_affine);
  304. P(se.nr_failed_migrations_running);
  305. P(se.nr_failed_migrations_hot);
  306. P(se.nr_forced_migrations);
  307. P(se.nr_forced2_migrations);
  308. P(se.nr_wakeups);
  309. P(se.nr_wakeups_sync);
  310. P(se.nr_wakeups_migrate);
  311. P(se.nr_wakeups_local);
  312. P(se.nr_wakeups_remote);
  313. P(se.nr_wakeups_affine);
  314. P(se.nr_wakeups_affine_attempts);
  315. P(se.nr_wakeups_passive);
  316. P(se.nr_wakeups_idle);
  317. {
  318. u64 avg_atom, avg_per_cpu;
  319. avg_atom = p->se.sum_exec_runtime;
  320. if (nr_switches)
  321. do_div(avg_atom, nr_switches);
  322. else
  323. avg_atom = -1LL;
  324. avg_per_cpu = p->se.sum_exec_runtime;
  325. if (p->se.nr_migrations) {
  326. avg_per_cpu = div64_u64(avg_per_cpu,
  327. p->se.nr_migrations);
  328. } else {
  329. avg_per_cpu = -1LL;
  330. }
  331. __PN(avg_atom);
  332. __PN(avg_per_cpu);
  333. }
  334. #endif
  335. __P(nr_switches);
  336. SEQ_printf(m, "%-35s:%21Ld\n",
  337. "nr_voluntary_switches", (long long)p->nvcsw);
  338. SEQ_printf(m, "%-35s:%21Ld\n",
  339. "nr_involuntary_switches", (long long)p->nivcsw);
  340. P(se.load.weight);
  341. P(policy);
  342. P(prio);
  343. #undef PN
  344. #undef __PN
  345. #undef P
  346. #undef __P
  347. {
  348. u64 t0, t1;
  349. t0 = sched_clock();
  350. t1 = sched_clock();
  351. SEQ_printf(m, "%-35s:%21Ld\n",
  352. "clock-delta", (long long)(t1-t0));
  353. }
  354. }
  355. void proc_sched_set_task(struct task_struct *p)
  356. {
  357. #ifdef CONFIG_SCHEDSTATS
  358. p->se.wait_max = 0;
  359. p->se.wait_sum = 0;
  360. p->se.wait_count = 0;
  361. p->se.sleep_max = 0;
  362. p->se.sum_sleep_runtime = 0;
  363. p->se.block_max = 0;
  364. p->se.exec_max = 0;
  365. p->se.slice_max = 0;
  366. p->se.nr_migrations = 0;
  367. p->se.nr_migrations_cold = 0;
  368. p->se.nr_failed_migrations_affine = 0;
  369. p->se.nr_failed_migrations_running = 0;
  370. p->se.nr_failed_migrations_hot = 0;
  371. p->se.nr_forced_migrations = 0;
  372. p->se.nr_forced2_migrations = 0;
  373. p->se.nr_wakeups = 0;
  374. p->se.nr_wakeups_sync = 0;
  375. p->se.nr_wakeups_migrate = 0;
  376. p->se.nr_wakeups_local = 0;
  377. p->se.nr_wakeups_remote = 0;
  378. p->se.nr_wakeups_affine = 0;
  379. p->se.nr_wakeups_affine_attempts = 0;
  380. p->se.nr_wakeups_passive = 0;
  381. p->se.nr_wakeups_idle = 0;
  382. p->sched_info.bkl_count = 0;
  383. #endif
  384. p->se.sum_exec_runtime = 0;
  385. p->se.prev_sum_exec_runtime = 0;
  386. p->nvcsw = 0;
  387. p->nivcsw = 0;
  388. }