pid.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_fs.h>
  39. #define pid_hashfn(nr, ns) \
  40. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  41. static struct hlist_head *pid_hash;
  42. static unsigned int pidhash_shift = 4;
  43. struct pid init_struct_pid = INIT_STRUCT_PID;
  44. int pid_max = PID_MAX_DEFAULT;
  45. #define RESERVED_PIDS 300
  46. int pid_max_min = RESERVED_PIDS + 1;
  47. int pid_max_max = PID_MAX_LIMIT;
  48. #define BITS_PER_PAGE (PAGE_SIZE*8)
  49. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  50. static inline int mk_pid(struct pid_namespace *pid_ns,
  51. struct pidmap *map, int off)
  52. {
  53. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  54. }
  55. #define find_next_offset(map, off) \
  56. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  57. /*
  58. * PID-map pages start out as NULL, they get allocated upon
  59. * first use and are never deallocated. This way a low pid_max
  60. * value does not cause lots of bitmaps to be allocated, but
  61. * the scheme scales to up to 4 million PIDs, runtime.
  62. */
  63. struct pid_namespace init_pid_ns = {
  64. .kref = {
  65. .refcount = ATOMIC_INIT(2),
  66. },
  67. .pidmap = {
  68. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  69. },
  70. .last_pid = 0,
  71. .level = 0,
  72. .child_reaper = &init_task,
  73. .user_ns = &init_user_ns,
  74. };
  75. EXPORT_SYMBOL_GPL(init_pid_ns);
  76. int is_container_init(struct task_struct *tsk)
  77. {
  78. int ret = 0;
  79. struct pid *pid;
  80. rcu_read_lock();
  81. pid = task_pid(tsk);
  82. if (pid != NULL && pid->numbers[pid->level].nr == 1)
  83. ret = 1;
  84. rcu_read_unlock();
  85. return ret;
  86. }
  87. EXPORT_SYMBOL(is_container_init);
  88. /*
  89. * Note: disable interrupts while the pidmap_lock is held as an
  90. * interrupt might come in and do read_lock(&tasklist_lock).
  91. *
  92. * If we don't disable interrupts there is a nasty deadlock between
  93. * detach_pid()->free_pid() and another cpu that does
  94. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  95. * read_lock(&tasklist_lock);
  96. *
  97. * After we clean up the tasklist_lock and know there are no
  98. * irq handlers that take it we can leave the interrupts enabled.
  99. * For now it is easier to be safe than to prove it can't happen.
  100. */
  101. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  102. static void free_pidmap(struct upid *upid)
  103. {
  104. int nr = upid->nr;
  105. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  106. int offset = nr & BITS_PER_PAGE_MASK;
  107. clear_bit(offset, map->page);
  108. atomic_inc(&map->nr_free);
  109. }
  110. /*
  111. * If we started walking pids at 'base', is 'a' seen before 'b'?
  112. */
  113. static int pid_before(int base, int a, int b)
  114. {
  115. /*
  116. * This is the same as saying
  117. *
  118. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  119. * and that mapping orders 'a' and 'b' with respect to 'base'.
  120. */
  121. return (unsigned)(a - base) < (unsigned)(b - base);
  122. }
  123. /*
  124. * We might be racing with someone else trying to set pid_ns->last_pid
  125. * at the pid allocation time (there's also a sysctl for this, but racing
  126. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  127. * We want the winner to have the "later" value, because if the
  128. * "earlier" value prevails, then a pid may get reused immediately.
  129. *
  130. * Since pids rollover, it is not sufficient to just pick the bigger
  131. * value. We have to consider where we started counting from.
  132. *
  133. * 'base' is the value of pid_ns->last_pid that we observed when
  134. * we started looking for a pid.
  135. *
  136. * 'pid' is the pid that we eventually found.
  137. */
  138. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  139. {
  140. int prev;
  141. int last_write = base;
  142. do {
  143. prev = last_write;
  144. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  145. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  146. }
  147. static int alloc_pidmap(struct pid_namespace *pid_ns)
  148. {
  149. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  150. struct pidmap *map;
  151. pid = last + 1;
  152. if (pid >= pid_max)
  153. pid = RESERVED_PIDS;
  154. offset = pid & BITS_PER_PAGE_MASK;
  155. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  156. /*
  157. * If last_pid points into the middle of the map->page we
  158. * want to scan this bitmap block twice, the second time
  159. * we start with offset == 0 (or RESERVED_PIDS).
  160. */
  161. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  162. for (i = 0; i <= max_scan; ++i) {
  163. if (unlikely(!map->page)) {
  164. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  165. /*
  166. * Free the page if someone raced with us
  167. * installing it:
  168. */
  169. spin_lock_irq(&pidmap_lock);
  170. if (!map->page) {
  171. map->page = page;
  172. page = NULL;
  173. }
  174. spin_unlock_irq(&pidmap_lock);
  175. kfree(page);
  176. if (unlikely(!map->page))
  177. break;
  178. }
  179. if (likely(atomic_read(&map->nr_free))) {
  180. do {
  181. if (!test_and_set_bit(offset, map->page)) {
  182. atomic_dec(&map->nr_free);
  183. set_last_pid(pid_ns, last, pid);
  184. return pid;
  185. }
  186. offset = find_next_offset(map, offset);
  187. pid = mk_pid(pid_ns, map, offset);
  188. } while (offset < BITS_PER_PAGE && pid < pid_max);
  189. }
  190. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  191. ++map;
  192. offset = 0;
  193. } else {
  194. map = &pid_ns->pidmap[0];
  195. offset = RESERVED_PIDS;
  196. if (unlikely(last == offset))
  197. break;
  198. }
  199. pid = mk_pid(pid_ns, map, offset);
  200. }
  201. return -1;
  202. }
  203. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  204. {
  205. int offset;
  206. struct pidmap *map, *end;
  207. if (last >= PID_MAX_LIMIT)
  208. return -1;
  209. offset = (last + 1) & BITS_PER_PAGE_MASK;
  210. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  211. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  212. for (; map < end; map++, offset = 0) {
  213. if (unlikely(!map->page))
  214. continue;
  215. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  216. if (offset < BITS_PER_PAGE)
  217. return mk_pid(pid_ns, map, offset);
  218. }
  219. return -1;
  220. }
  221. void put_pid(struct pid *pid)
  222. {
  223. struct pid_namespace *ns;
  224. if (!pid)
  225. return;
  226. ns = pid->numbers[pid->level].ns;
  227. if ((atomic_read(&pid->count) == 1) ||
  228. atomic_dec_and_test(&pid->count)) {
  229. kmem_cache_free(ns->pid_cachep, pid);
  230. put_pid_ns(ns);
  231. }
  232. }
  233. EXPORT_SYMBOL_GPL(put_pid);
  234. static void delayed_put_pid(struct rcu_head *rhp)
  235. {
  236. struct pid *pid = container_of(rhp, struct pid, rcu);
  237. put_pid(pid);
  238. }
  239. void free_pid(struct pid *pid)
  240. {
  241. /* We can be called with write_lock_irq(&tasklist_lock) held */
  242. int i;
  243. unsigned long flags;
  244. spin_lock_irqsave(&pidmap_lock, flags);
  245. for (i = 0; i <= pid->level; i++) {
  246. struct upid *upid = pid->numbers + i;
  247. hlist_del_rcu(&upid->pid_chain);
  248. if (--upid->ns->nr_hashed == 0)
  249. schedule_work(&upid->ns->proc_work);
  250. }
  251. spin_unlock_irqrestore(&pidmap_lock, flags);
  252. for (i = 0; i <= pid->level; i++)
  253. free_pidmap(pid->numbers + i);
  254. call_rcu(&pid->rcu, delayed_put_pid);
  255. }
  256. struct pid *alloc_pid(struct pid_namespace *ns)
  257. {
  258. struct pid *pid;
  259. enum pid_type type;
  260. int i, nr;
  261. struct pid_namespace *tmp;
  262. struct upid *upid;
  263. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  264. if (!pid)
  265. goto out;
  266. tmp = ns;
  267. pid->level = ns->level;
  268. for (i = ns->level; i >= 0; i--) {
  269. nr = alloc_pidmap(tmp);
  270. if (nr < 0)
  271. goto out_free;
  272. pid->numbers[i].nr = nr;
  273. pid->numbers[i].ns = tmp;
  274. tmp = tmp->parent;
  275. }
  276. if (unlikely(is_child_reaper(pid))) {
  277. if (pid_ns_prepare_proc(ns))
  278. goto out_free;
  279. }
  280. get_pid_ns(ns);
  281. atomic_set(&pid->count, 1);
  282. for (type = 0; type < PIDTYPE_MAX; ++type)
  283. INIT_HLIST_HEAD(&pid->tasks[type]);
  284. upid = pid->numbers + ns->level;
  285. spin_lock_irq(&pidmap_lock);
  286. for ( ; upid >= pid->numbers; --upid) {
  287. hlist_add_head_rcu(&upid->pid_chain,
  288. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  289. upid->ns->nr_hashed++;
  290. }
  291. spin_unlock_irq(&pidmap_lock);
  292. out:
  293. return pid;
  294. out_free:
  295. while (++i <= ns->level)
  296. free_pidmap(pid->numbers + i);
  297. kmem_cache_free(ns->pid_cachep, pid);
  298. pid = NULL;
  299. goto out;
  300. }
  301. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  302. {
  303. struct hlist_node *elem;
  304. struct upid *pnr;
  305. hlist_for_each_entry_rcu(pnr, elem,
  306. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  307. if (pnr->nr == nr && pnr->ns == ns)
  308. return container_of(pnr, struct pid,
  309. numbers[ns->level]);
  310. return NULL;
  311. }
  312. EXPORT_SYMBOL_GPL(find_pid_ns);
  313. struct pid *find_vpid(int nr)
  314. {
  315. return find_pid_ns(nr, task_active_pid_ns(current));
  316. }
  317. EXPORT_SYMBOL_GPL(find_vpid);
  318. /*
  319. * attach_pid() must be called with the tasklist_lock write-held.
  320. */
  321. void attach_pid(struct task_struct *task, enum pid_type type,
  322. struct pid *pid)
  323. {
  324. struct pid_link *link;
  325. link = &task->pids[type];
  326. link->pid = pid;
  327. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  328. }
  329. static void __change_pid(struct task_struct *task, enum pid_type type,
  330. struct pid *new)
  331. {
  332. struct pid_link *link;
  333. struct pid *pid;
  334. int tmp;
  335. link = &task->pids[type];
  336. pid = link->pid;
  337. hlist_del_rcu(&link->node);
  338. link->pid = new;
  339. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  340. if (!hlist_empty(&pid->tasks[tmp]))
  341. return;
  342. free_pid(pid);
  343. }
  344. void detach_pid(struct task_struct *task, enum pid_type type)
  345. {
  346. __change_pid(task, type, NULL);
  347. }
  348. void change_pid(struct task_struct *task, enum pid_type type,
  349. struct pid *pid)
  350. {
  351. __change_pid(task, type, pid);
  352. attach_pid(task, type, pid);
  353. }
  354. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  355. void transfer_pid(struct task_struct *old, struct task_struct *new,
  356. enum pid_type type)
  357. {
  358. new->pids[type].pid = old->pids[type].pid;
  359. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  360. }
  361. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  362. {
  363. struct task_struct *result = NULL;
  364. if (pid) {
  365. struct hlist_node *first;
  366. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  367. lockdep_tasklist_lock_is_held());
  368. if (first)
  369. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  370. }
  371. return result;
  372. }
  373. EXPORT_SYMBOL(pid_task);
  374. /*
  375. * Must be called under rcu_read_lock().
  376. */
  377. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  378. {
  379. rcu_lockdep_assert(rcu_read_lock_held(),
  380. "find_task_by_pid_ns() needs rcu_read_lock()"
  381. " protection");
  382. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  383. }
  384. struct task_struct *find_task_by_vpid(pid_t vnr)
  385. {
  386. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  387. }
  388. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  389. {
  390. struct pid *pid;
  391. rcu_read_lock();
  392. if (type != PIDTYPE_PID)
  393. task = task->group_leader;
  394. pid = get_pid(task->pids[type].pid);
  395. rcu_read_unlock();
  396. return pid;
  397. }
  398. EXPORT_SYMBOL_GPL(get_task_pid);
  399. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  400. {
  401. struct task_struct *result;
  402. rcu_read_lock();
  403. result = pid_task(pid, type);
  404. if (result)
  405. get_task_struct(result);
  406. rcu_read_unlock();
  407. return result;
  408. }
  409. EXPORT_SYMBOL_GPL(get_pid_task);
  410. struct pid *find_get_pid(pid_t nr)
  411. {
  412. struct pid *pid;
  413. rcu_read_lock();
  414. pid = get_pid(find_vpid(nr));
  415. rcu_read_unlock();
  416. return pid;
  417. }
  418. EXPORT_SYMBOL_GPL(find_get_pid);
  419. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  420. {
  421. struct upid *upid;
  422. pid_t nr = 0;
  423. if (pid && ns->level <= pid->level) {
  424. upid = &pid->numbers[ns->level];
  425. if (upid->ns == ns)
  426. nr = upid->nr;
  427. }
  428. return nr;
  429. }
  430. EXPORT_SYMBOL_GPL(pid_nr_ns);
  431. pid_t pid_vnr(struct pid *pid)
  432. {
  433. return pid_nr_ns(pid, task_active_pid_ns(current));
  434. }
  435. EXPORT_SYMBOL_GPL(pid_vnr);
  436. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  437. struct pid_namespace *ns)
  438. {
  439. pid_t nr = 0;
  440. rcu_read_lock();
  441. if (!ns)
  442. ns = task_active_pid_ns(current);
  443. if (likely(pid_alive(task))) {
  444. if (type != PIDTYPE_PID)
  445. task = task->group_leader;
  446. nr = pid_nr_ns(task->pids[type].pid, ns);
  447. }
  448. rcu_read_unlock();
  449. return nr;
  450. }
  451. EXPORT_SYMBOL(__task_pid_nr_ns);
  452. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  453. {
  454. return pid_nr_ns(task_tgid(tsk), ns);
  455. }
  456. EXPORT_SYMBOL(task_tgid_nr_ns);
  457. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  458. {
  459. return ns_of_pid(task_pid(tsk));
  460. }
  461. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  462. /*
  463. * Used by proc to find the first pid that is greater than or equal to nr.
  464. *
  465. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  466. */
  467. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  468. {
  469. struct pid *pid;
  470. do {
  471. pid = find_pid_ns(nr, ns);
  472. if (pid)
  473. break;
  474. nr = next_pidmap(ns, nr);
  475. } while (nr > 0);
  476. return pid;
  477. }
  478. /*
  479. * The pid hash table is scaled according to the amount of memory in the
  480. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  481. * more.
  482. */
  483. void __init pidhash_init(void)
  484. {
  485. unsigned int i, pidhash_size;
  486. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  487. HASH_EARLY | HASH_SMALL,
  488. &pidhash_shift, NULL,
  489. 0, 4096);
  490. pidhash_size = 1U << pidhash_shift;
  491. for (i = 0; i < pidhash_size; i++)
  492. INIT_HLIST_HEAD(&pid_hash[i]);
  493. }
  494. void __init pidmap_init(void)
  495. {
  496. /* bump default and minimum pid_max based on number of cpus */
  497. pid_max = min(pid_max_max, max_t(int, pid_max,
  498. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  499. pid_max_min = max_t(int, pid_max_min,
  500. PIDS_PER_CPU_MIN * num_possible_cpus());
  501. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  502. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  503. /* Reserve PID 0. We never call free_pidmap(0) */
  504. set_bit(0, init_pid_ns.pidmap[0].page);
  505. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  506. init_pid_ns.nr_hashed = 1;
  507. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  508. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  509. }