sky2.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663
  1. /*
  2. * New driver for Marvell Yukon 2 chipset.
  3. * Based on earlier sk98lin, and skge driver.
  4. *
  5. * This driver intentionally does not support all the features
  6. * of the original driver such as link fail-over and link management because
  7. * those should be done at higher levels.
  8. *
  9. * Copyright (C) 2005 Stephen Hemminger <shemminger@osdl.org>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/crc32.h>
  25. #include <linux/kernel.h>
  26. #include <linux/version.h>
  27. #include <linux/module.h>
  28. #include <linux/netdevice.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/ethtool.h>
  32. #include <linux/pci.h>
  33. #include <linux/ip.h>
  34. #include <linux/tcp.h>
  35. #include <linux/in.h>
  36. #include <linux/delay.h>
  37. #include <linux/workqueue.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/prefetch.h>
  40. #include <linux/mii.h>
  41. #include <asm/irq.h>
  42. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  43. #define SKY2_VLAN_TAG_USED 1
  44. #endif
  45. #include "sky2.h"
  46. #define DRV_NAME "sky2"
  47. #define DRV_VERSION "1.10"
  48. #define PFX DRV_NAME " "
  49. /*
  50. * The Yukon II chipset takes 64 bit command blocks (called list elements)
  51. * that are organized into three (receive, transmit, status) different rings
  52. * similar to Tigon3.
  53. */
  54. #define RX_LE_SIZE 1024
  55. #define RX_LE_BYTES (RX_LE_SIZE*sizeof(struct sky2_rx_le))
  56. #define RX_MAX_PENDING (RX_LE_SIZE/6 - 2)
  57. #define RX_DEF_PENDING RX_MAX_PENDING
  58. #define RX_SKB_ALIGN 8
  59. #define RX_BUF_WRITE 16
  60. #define TX_RING_SIZE 512
  61. #define TX_DEF_PENDING (TX_RING_SIZE - 1)
  62. #define TX_MIN_PENDING 64
  63. #define MAX_SKB_TX_LE (4 + (sizeof(dma_addr_t)/sizeof(u32))*MAX_SKB_FRAGS)
  64. #define STATUS_RING_SIZE 2048 /* 2 ports * (TX + 2*RX) */
  65. #define STATUS_LE_BYTES (STATUS_RING_SIZE*sizeof(struct sky2_status_le))
  66. #define TX_WATCHDOG (5 * HZ)
  67. #define NAPI_WEIGHT 64
  68. #define PHY_RETRIES 1000
  69. #define RING_NEXT(x,s) (((x)+1) & ((s)-1))
  70. static const u32 default_msg =
  71. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  72. | NETIF_MSG_TIMER | NETIF_MSG_TX_ERR | NETIF_MSG_RX_ERR
  73. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  74. static int debug = -1; /* defaults above */
  75. module_param(debug, int, 0);
  76. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  77. static int copybreak __read_mostly = 128;
  78. module_param(copybreak, int, 0);
  79. MODULE_PARM_DESC(copybreak, "Receive copy threshold");
  80. static int disable_msi = 0;
  81. module_param(disable_msi, int, 0);
  82. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  83. static int idle_timeout = 0;
  84. module_param(idle_timeout, int, 0);
  85. MODULE_PARM_DESC(idle_timeout, "Watchdog timer for lost interrupts (ms)");
  86. static const struct pci_device_id sky2_id_table[] = {
  87. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9000) }, /* SK-9Sxx */
  88. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */
  89. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b00) }, /* DGE-560T */
  90. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4001) }, /* DGE-550SX */
  91. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4B02) }, /* DGE-560SX */
  92. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4340) }, /* 88E8021 */
  93. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4341) }, /* 88E8022 */
  94. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4342) }, /* 88E8061 */
  95. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4343) }, /* 88E8062 */
  96. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4344) }, /* 88E8021 */
  97. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4345) }, /* 88E8022 */
  98. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4346) }, /* 88E8061 */
  99. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4347) }, /* 88E8062 */
  100. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4350) }, /* 88E8035 */
  101. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4351) }, /* 88E8036 */
  102. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4352) }, /* 88E8038 */
  103. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4353) }, /* 88E8039 */
  104. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4356) }, /* 88EC033 */
  105. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4360) }, /* 88E8052 */
  106. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4361) }, /* 88E8050 */
  107. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4362) }, /* 88E8053 */
  108. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4363) }, /* 88E8055 */
  109. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4364) }, /* 88E8056 */
  110. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4366) }, /* 88EC036 */
  111. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4367) }, /* 88EC032 */
  112. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4368) }, /* 88EC034 */
  113. { 0 }
  114. };
  115. MODULE_DEVICE_TABLE(pci, sky2_id_table);
  116. /* Avoid conditionals by using array */
  117. static const unsigned txqaddr[] = { Q_XA1, Q_XA2 };
  118. static const unsigned rxqaddr[] = { Q_R1, Q_R2 };
  119. static const u32 portirq_msk[] = { Y2_IS_PORT_1, Y2_IS_PORT_2 };
  120. /* This driver supports yukon2 chipset only */
  121. static const char *yukon2_name[] = {
  122. "XL", /* 0xb3 */
  123. "EC Ultra", /* 0xb4 */
  124. "UNKNOWN", /* 0xb5 */
  125. "EC", /* 0xb6 */
  126. "FE", /* 0xb7 */
  127. };
  128. /* Access to external PHY */
  129. static int gm_phy_write(struct sky2_hw *hw, unsigned port, u16 reg, u16 val)
  130. {
  131. int i;
  132. gma_write16(hw, port, GM_SMI_DATA, val);
  133. gma_write16(hw, port, GM_SMI_CTRL,
  134. GM_SMI_CT_PHY_AD(PHY_ADDR_MARV) | GM_SMI_CT_REG_AD(reg));
  135. for (i = 0; i < PHY_RETRIES; i++) {
  136. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  137. return 0;
  138. udelay(1);
  139. }
  140. printk(KERN_WARNING PFX "%s: phy write timeout\n", hw->dev[port]->name);
  141. return -ETIMEDOUT;
  142. }
  143. static int __gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg, u16 *val)
  144. {
  145. int i;
  146. gma_write16(hw, port, GM_SMI_CTRL, GM_SMI_CT_PHY_AD(PHY_ADDR_MARV)
  147. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  148. for (i = 0; i < PHY_RETRIES; i++) {
  149. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL) {
  150. *val = gma_read16(hw, port, GM_SMI_DATA);
  151. return 0;
  152. }
  153. udelay(1);
  154. }
  155. return -ETIMEDOUT;
  156. }
  157. static u16 gm_phy_read(struct sky2_hw *hw, unsigned port, u16 reg)
  158. {
  159. u16 v;
  160. if (__gm_phy_read(hw, port, reg, &v) != 0)
  161. printk(KERN_WARNING PFX "%s: phy read timeout\n", hw->dev[port]->name);
  162. return v;
  163. }
  164. static void sky2_set_power_state(struct sky2_hw *hw, pci_power_t state)
  165. {
  166. u16 power_control;
  167. int vaux;
  168. pr_debug("sky2_set_power_state %d\n", state);
  169. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  170. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_PMC);
  171. vaux = (sky2_read16(hw, B0_CTST) & Y2_VAUX_AVAIL) &&
  172. (power_control & PCI_PM_CAP_PME_D3cold);
  173. power_control = sky2_pci_read16(hw, hw->pm_cap + PCI_PM_CTRL);
  174. power_control |= PCI_PM_CTRL_PME_STATUS;
  175. power_control &= ~(PCI_PM_CTRL_STATE_MASK);
  176. switch (state) {
  177. case PCI_D0:
  178. /* switch power to VCC (WA for VAUX problem) */
  179. sky2_write8(hw, B0_POWER_CTRL,
  180. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  181. /* disable Core Clock Division, */
  182. sky2_write32(hw, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
  183. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  184. /* enable bits are inverted */
  185. sky2_write8(hw, B2_Y2_CLK_GATE,
  186. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  187. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  188. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  189. else
  190. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  191. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  192. u32 reg1;
  193. sky2_pci_write32(hw, PCI_DEV_REG3, 0);
  194. reg1 = sky2_pci_read32(hw, PCI_DEV_REG4);
  195. reg1 &= P_ASPM_CONTROL_MSK;
  196. sky2_pci_write32(hw, PCI_DEV_REG4, reg1);
  197. sky2_pci_write32(hw, PCI_DEV_REG5, 0);
  198. }
  199. break;
  200. case PCI_D3hot:
  201. case PCI_D3cold:
  202. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  203. sky2_write8(hw, B2_Y2_CLK_GATE, 0);
  204. else
  205. /* enable bits are inverted */
  206. sky2_write8(hw, B2_Y2_CLK_GATE,
  207. Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
  208. Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
  209. Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS);
  210. /* switch power to VAUX */
  211. if (vaux && state != PCI_D3cold)
  212. sky2_write8(hw, B0_POWER_CTRL,
  213. (PC_VAUX_ENA | PC_VCC_ENA |
  214. PC_VAUX_ON | PC_VCC_OFF));
  215. break;
  216. default:
  217. printk(KERN_ERR PFX "Unknown power state %d\n", state);
  218. }
  219. sky2_pci_write16(hw, hw->pm_cap + PCI_PM_CTRL, power_control);
  220. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  221. }
  222. static void sky2_gmac_reset(struct sky2_hw *hw, unsigned port)
  223. {
  224. u16 reg;
  225. /* disable all GMAC IRQ's */
  226. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  227. /* disable PHY IRQs */
  228. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  229. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  230. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  231. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  232. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  233. reg = gma_read16(hw, port, GM_RX_CTRL);
  234. reg |= GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA;
  235. gma_write16(hw, port, GM_RX_CTRL, reg);
  236. }
  237. /* flow control to advertise bits */
  238. static const u16 copper_fc_adv[] = {
  239. [FC_NONE] = 0,
  240. [FC_TX] = PHY_M_AN_ASP,
  241. [FC_RX] = PHY_M_AN_PC,
  242. [FC_BOTH] = PHY_M_AN_PC | PHY_M_AN_ASP,
  243. };
  244. /* flow control to advertise bits when using 1000BaseX */
  245. static const u16 fiber_fc_adv[] = {
  246. [FC_BOTH] = PHY_M_P_BOTH_MD_X,
  247. [FC_TX] = PHY_M_P_ASYM_MD_X,
  248. [FC_RX] = PHY_M_P_SYM_MD_X,
  249. [FC_NONE] = PHY_M_P_NO_PAUSE_X,
  250. };
  251. /* flow control to GMA disable bits */
  252. static const u16 gm_fc_disable[] = {
  253. [FC_NONE] = GM_GPCR_FC_RX_DIS | GM_GPCR_FC_TX_DIS,
  254. [FC_TX] = GM_GPCR_FC_RX_DIS,
  255. [FC_RX] = GM_GPCR_FC_TX_DIS,
  256. [FC_BOTH] = 0,
  257. };
  258. static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
  259. {
  260. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  261. u16 ctrl, ct1000, adv, pg, ledctrl, ledover, reg;
  262. if (sky2->autoneg == AUTONEG_ENABLE &&
  263. !(hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  264. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  265. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  266. PHY_M_EC_MAC_S_MSK);
  267. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  268. if (hw->chip_id == CHIP_ID_YUKON_EC)
  269. ectrl |= PHY_M_EC_DSC_2(2) | PHY_M_EC_DOWN_S_ENA;
  270. else
  271. ectrl |= PHY_M_EC_M_DSC(2) | PHY_M_EC_S_DSC(3);
  272. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  273. }
  274. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  275. if (sky2_is_copper(hw)) {
  276. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  277. /* enable automatic crossover */
  278. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO) >> 1;
  279. } else {
  280. /* disable energy detect */
  281. ctrl &= ~PHY_M_PC_EN_DET_MSK;
  282. /* enable automatic crossover */
  283. ctrl |= PHY_M_PC_MDI_XMODE(PHY_M_PC_ENA_AUTO);
  284. if (sky2->autoneg == AUTONEG_ENABLE &&
  285. (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)) {
  286. ctrl &= ~PHY_M_PC_DSC_MSK;
  287. ctrl |= PHY_M_PC_DSC(2) | PHY_M_PC_DOWN_S_ENA;
  288. }
  289. }
  290. } else {
  291. /* workaround for deviation #4.88 (CRC errors) */
  292. /* disable Automatic Crossover */
  293. ctrl &= ~PHY_M_PC_MDIX_MSK;
  294. }
  295. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  296. /* special setup for PHY 88E1112 Fiber */
  297. if (hw->chip_id == CHIP_ID_YUKON_XL && !sky2_is_copper(hw)) {
  298. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  299. /* Fiber: select 1000BASE-X only mode MAC Specific Ctrl Reg. */
  300. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 2);
  301. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  302. ctrl &= ~PHY_M_MAC_MD_MSK;
  303. ctrl |= PHY_M_MAC_MODE_SEL(PHY_M_MAC_MD_1000BX);
  304. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  305. if (hw->pmd_type == 'P') {
  306. /* select page 1 to access Fiber registers */
  307. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 1);
  308. /* for SFP-module set SIGDET polarity to low */
  309. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  310. ctrl |= PHY_M_FIB_SIGD_POL;
  311. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  312. }
  313. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  314. }
  315. ctrl = PHY_CT_RESET;
  316. ct1000 = 0;
  317. adv = PHY_AN_CSMA;
  318. reg = 0;
  319. if (sky2->autoneg == AUTONEG_ENABLE) {
  320. if (sky2_is_copper(hw)) {
  321. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  322. ct1000 |= PHY_M_1000C_AFD;
  323. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  324. ct1000 |= PHY_M_1000C_AHD;
  325. if (sky2->advertising & ADVERTISED_100baseT_Full)
  326. adv |= PHY_M_AN_100_FD;
  327. if (sky2->advertising & ADVERTISED_100baseT_Half)
  328. adv |= PHY_M_AN_100_HD;
  329. if (sky2->advertising & ADVERTISED_10baseT_Full)
  330. adv |= PHY_M_AN_10_FD;
  331. if (sky2->advertising & ADVERTISED_10baseT_Half)
  332. adv |= PHY_M_AN_10_HD;
  333. adv |= copper_fc_adv[sky2->flow_mode];
  334. } else { /* special defines for FIBER (88E1040S only) */
  335. if (sky2->advertising & ADVERTISED_1000baseT_Full)
  336. adv |= PHY_M_AN_1000X_AFD;
  337. if (sky2->advertising & ADVERTISED_1000baseT_Half)
  338. adv |= PHY_M_AN_1000X_AHD;
  339. adv |= fiber_fc_adv[sky2->flow_mode];
  340. }
  341. /* Restart Auto-negotiation */
  342. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  343. } else {
  344. /* forced speed/duplex settings */
  345. ct1000 = PHY_M_1000C_MSE;
  346. /* Disable auto update for duplex flow control and speed */
  347. reg |= GM_GPCR_AU_ALL_DIS;
  348. switch (sky2->speed) {
  349. case SPEED_1000:
  350. ctrl |= PHY_CT_SP1000;
  351. reg |= GM_GPCR_SPEED_1000;
  352. break;
  353. case SPEED_100:
  354. ctrl |= PHY_CT_SP100;
  355. reg |= GM_GPCR_SPEED_100;
  356. break;
  357. }
  358. if (sky2->duplex == DUPLEX_FULL) {
  359. reg |= GM_GPCR_DUP_FULL;
  360. ctrl |= PHY_CT_DUP_MD;
  361. } else if (sky2->speed < SPEED_1000)
  362. sky2->flow_mode = FC_NONE;
  363. reg |= gm_fc_disable[sky2->flow_mode];
  364. /* Forward pause packets to GMAC? */
  365. if (sky2->flow_mode & FC_RX)
  366. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  367. else
  368. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  369. }
  370. gma_write16(hw, port, GM_GP_CTRL, reg);
  371. if (hw->chip_id != CHIP_ID_YUKON_FE)
  372. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  373. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  374. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  375. /* Setup Phy LED's */
  376. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  377. ledover = 0;
  378. switch (hw->chip_id) {
  379. case CHIP_ID_YUKON_FE:
  380. /* on 88E3082 these bits are at 11..9 (shifted left) */
  381. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  382. ctrl = gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR);
  383. /* delete ACT LED control bits */
  384. ctrl &= ~PHY_M_FELP_LED1_MSK;
  385. /* change ACT LED control to blink mode */
  386. ctrl |= PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL);
  387. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR, ctrl);
  388. break;
  389. case CHIP_ID_YUKON_XL:
  390. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  391. /* select page 3 to access LED control register */
  392. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  393. /* set LED Function Control register */
  394. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  395. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  396. PHY_M_LEDC_INIT_CTRL(7) | /* 10 Mbps */
  397. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  398. PHY_M_LEDC_STA0_CTRL(7))); /* 1000 Mbps */
  399. /* set Polarity Control register */
  400. gm_phy_write(hw, port, PHY_MARV_PHY_STAT,
  401. (PHY_M_POLC_LS1_P_MIX(4) |
  402. PHY_M_POLC_IS0_P_MIX(4) |
  403. PHY_M_POLC_LOS_CTRL(2) |
  404. PHY_M_POLC_INIT_CTRL(2) |
  405. PHY_M_POLC_STA1_CTRL(2) |
  406. PHY_M_POLC_STA0_CTRL(2)));
  407. /* restore page register */
  408. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  409. break;
  410. case CHIP_ID_YUKON_EC_U:
  411. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  412. /* select page 3 to access LED control register */
  413. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  414. /* set LED Function Control register */
  415. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  416. (PHY_M_LEDC_LOS_CTRL(1) | /* LINK/ACT */
  417. PHY_M_LEDC_INIT_CTRL(8) | /* 10 Mbps */
  418. PHY_M_LEDC_STA1_CTRL(7) | /* 100 Mbps */
  419. PHY_M_LEDC_STA0_CTRL(7)));/* 1000 Mbps */
  420. /* set Blink Rate in LED Timer Control Register */
  421. gm_phy_write(hw, port, PHY_MARV_INT_MASK,
  422. ledctrl | PHY_M_LED_BLINK_RT(BLINK_84MS));
  423. /* restore page register */
  424. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  425. break;
  426. default:
  427. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  428. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  429. /* turn off the Rx LED (LED_RX) */
  430. ledover &= ~PHY_M_LED_MO_RX;
  431. }
  432. if (hw->chip_id == CHIP_ID_YUKON_EC_U && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  433. /* apply fixes in PHY AFE */
  434. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  435. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 255);
  436. /* increase differential signal amplitude in 10BASE-T */
  437. gm_phy_write(hw, port, 0x18, 0xaa99);
  438. gm_phy_write(hw, port, 0x17, 0x2011);
  439. /* fix for IEEE A/B Symmetry failure in 1000BASE-T */
  440. gm_phy_write(hw, port, 0x18, 0xa204);
  441. gm_phy_write(hw, port, 0x17, 0x2002);
  442. /* set page register to 0 */
  443. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  444. } else {
  445. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  446. if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
  447. /* turn on 100 Mbps LED (LED_LINK100) */
  448. ledover |= PHY_M_LED_MO_100;
  449. }
  450. if (ledover)
  451. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  452. }
  453. /* Enable phy interrupt on auto-negotiation complete (or link up) */
  454. if (sky2->autoneg == AUTONEG_ENABLE)
  455. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  456. else
  457. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  458. }
  459. static void sky2_phy_power(struct sky2_hw *hw, unsigned port, int onoff)
  460. {
  461. u32 reg1;
  462. static const u32 phy_power[]
  463. = { PCI_Y2_PHY1_POWD, PCI_Y2_PHY2_POWD };
  464. /* looks like this XL is back asswards .. */
  465. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev > 1)
  466. onoff = !onoff;
  467. reg1 = sky2_pci_read32(hw, PCI_DEV_REG1);
  468. if (onoff)
  469. /* Turn off phy power saving */
  470. reg1 &= ~phy_power[port];
  471. else
  472. reg1 |= phy_power[port];
  473. sky2_pci_write32(hw, PCI_DEV_REG1, reg1);
  474. sky2_pci_read32(hw, PCI_DEV_REG1);
  475. udelay(100);
  476. }
  477. /* Force a renegotiation */
  478. static void sky2_phy_reinit(struct sky2_port *sky2)
  479. {
  480. spin_lock_bh(&sky2->phy_lock);
  481. sky2_phy_init(sky2->hw, sky2->port);
  482. spin_unlock_bh(&sky2->phy_lock);
  483. }
  484. static void sky2_mac_init(struct sky2_hw *hw, unsigned port)
  485. {
  486. struct sky2_port *sky2 = netdev_priv(hw->dev[port]);
  487. u16 reg;
  488. int i;
  489. const u8 *addr = hw->dev[port]->dev_addr;
  490. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  491. sky2_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_CLR|GPC_ENA_PAUSE);
  492. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
  493. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0 && port == 1) {
  494. /* WA DEV_472 -- looks like crossed wires on port 2 */
  495. /* clear GMAC 1 Control reset */
  496. sky2_write8(hw, SK_REG(0, GMAC_CTRL), GMC_RST_CLR);
  497. do {
  498. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_SET);
  499. sky2_write8(hw, SK_REG(1, GMAC_CTRL), GMC_RST_CLR);
  500. } while (gm_phy_read(hw, 1, PHY_MARV_ID0) != PHY_MARV_ID0_VAL ||
  501. gm_phy_read(hw, 1, PHY_MARV_ID1) != PHY_MARV_ID1_Y2 ||
  502. gm_phy_read(hw, 1, PHY_MARV_INT_MASK) != 0);
  503. }
  504. sky2_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  505. /* Enable Transmit FIFO Underrun */
  506. sky2_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  507. spin_lock_bh(&sky2->phy_lock);
  508. sky2_phy_init(hw, port);
  509. spin_unlock_bh(&sky2->phy_lock);
  510. /* MIB clear */
  511. reg = gma_read16(hw, port, GM_PHY_ADDR);
  512. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  513. for (i = GM_MIB_CNT_BASE; i <= GM_MIB_CNT_END; i += 4)
  514. gma_read16(hw, port, i);
  515. gma_write16(hw, port, GM_PHY_ADDR, reg);
  516. /* transmit control */
  517. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  518. /* receive control reg: unicast + multicast + no FCS */
  519. gma_write16(hw, port, GM_RX_CTRL,
  520. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  521. /* transmit flow control */
  522. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  523. /* transmit parameter */
  524. gma_write16(hw, port, GM_TX_PARAM,
  525. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  526. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  527. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) |
  528. TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
  529. /* serial mode register */
  530. reg = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  531. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  532. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  533. reg |= GM_SMOD_JUMBO_ENA;
  534. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  535. /* virtual address for data */
  536. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  537. /* physical address: used for pause frames */
  538. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  539. /* ignore counter overflows */
  540. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  541. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  542. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  543. /* Configure Rx MAC FIFO */
  544. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  545. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T),
  546. GMF_OPER_ON | GMF_RX_F_FL_ON);
  547. /* Flush Rx MAC FIFO on any flow control or error */
  548. sky2_write16(hw, SK_REG(port, RX_GMF_FL_MSK), GMR_FS_ANY_ERR);
  549. /* Set threshold to 0xa (64 bytes) + 1 to workaround pause bug */
  550. sky2_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  551. /* Configure Tx MAC FIFO */
  552. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  553. sky2_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  554. if (hw->chip_id == CHIP_ID_YUKON_EC_U) {
  555. sky2_write8(hw, SK_REG(port, RX_GMF_LP_THR), 768/8);
  556. sky2_write8(hw, SK_REG(port, RX_GMF_UP_THR), 1024/8);
  557. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  558. /* set Tx GMAC FIFO Almost Empty Threshold */
  559. sky2_write32(hw, SK_REG(port, TX_GMF_AE_THR), 0x180);
  560. /* Disable Store & Forward mode for TX */
  561. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_STFW_DIS);
  562. }
  563. }
  564. }
  565. /* Assign Ram Buffer allocation to queue */
  566. static void sky2_ramset(struct sky2_hw *hw, u16 q, u32 start, u32 space)
  567. {
  568. u32 end;
  569. /* convert from K bytes to qwords used for hw register */
  570. start *= 1024/8;
  571. space *= 1024/8;
  572. end = start + space - 1;
  573. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  574. sky2_write32(hw, RB_ADDR(q, RB_START), start);
  575. sky2_write32(hw, RB_ADDR(q, RB_END), end);
  576. sky2_write32(hw, RB_ADDR(q, RB_WP), start);
  577. sky2_write32(hw, RB_ADDR(q, RB_RP), start);
  578. if (q == Q_R1 || q == Q_R2) {
  579. u32 tp = space - space/4;
  580. /* On receive queue's set the thresholds
  581. * give receiver priority when > 3/4 full
  582. * send pause when down to 2K
  583. */
  584. sky2_write32(hw, RB_ADDR(q, RB_RX_UTHP), tp);
  585. sky2_write32(hw, RB_ADDR(q, RB_RX_LTHP), space/2);
  586. tp = space - 2048/8;
  587. sky2_write32(hw, RB_ADDR(q, RB_RX_UTPP), tp);
  588. sky2_write32(hw, RB_ADDR(q, RB_RX_LTPP), space/4);
  589. } else {
  590. /* Enable store & forward on Tx queue's because
  591. * Tx FIFO is only 1K on Yukon
  592. */
  593. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  594. }
  595. sky2_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  596. sky2_read8(hw, RB_ADDR(q, RB_CTRL));
  597. }
  598. /* Setup Bus Memory Interface */
  599. static void sky2_qset(struct sky2_hw *hw, u16 q)
  600. {
  601. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_CLR_RESET);
  602. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_OPER_INIT);
  603. sky2_write32(hw, Q_ADDR(q, Q_CSR), BMU_FIFO_OP_ON);
  604. sky2_write32(hw, Q_ADDR(q, Q_WM), BMU_WM_DEFAULT);
  605. }
  606. /* Setup prefetch unit registers. This is the interface between
  607. * hardware and driver list elements
  608. */
  609. static void sky2_prefetch_init(struct sky2_hw *hw, u32 qaddr,
  610. u64 addr, u32 last)
  611. {
  612. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  613. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_RST_CLR);
  614. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_HI), addr >> 32);
  615. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_ADDR_LO), (u32) addr);
  616. sky2_write16(hw, Y2_QADDR(qaddr, PREF_UNIT_LAST_IDX), last);
  617. sky2_write32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL), PREF_UNIT_OP_ON);
  618. sky2_read32(hw, Y2_QADDR(qaddr, PREF_UNIT_CTRL));
  619. }
  620. static inline struct sky2_tx_le *get_tx_le(struct sky2_port *sky2)
  621. {
  622. struct sky2_tx_le *le = sky2->tx_le + sky2->tx_prod;
  623. sky2->tx_prod = RING_NEXT(sky2->tx_prod, TX_RING_SIZE);
  624. le->ctrl = 0;
  625. return le;
  626. }
  627. static inline struct tx_ring_info *tx_le_re(struct sky2_port *sky2,
  628. struct sky2_tx_le *le)
  629. {
  630. return sky2->tx_ring + (le - sky2->tx_le);
  631. }
  632. /* Update chip's next pointer */
  633. static inline void sky2_put_idx(struct sky2_hw *hw, unsigned q, u16 idx)
  634. {
  635. q = Y2_QADDR(q, PREF_UNIT_PUT_IDX);
  636. wmb();
  637. sky2_write16(hw, q, idx);
  638. sky2_read16(hw, q);
  639. }
  640. static inline struct sky2_rx_le *sky2_next_rx(struct sky2_port *sky2)
  641. {
  642. struct sky2_rx_le *le = sky2->rx_le + sky2->rx_put;
  643. sky2->rx_put = RING_NEXT(sky2->rx_put, RX_LE_SIZE);
  644. le->ctrl = 0;
  645. return le;
  646. }
  647. /* Return high part of DMA address (could be 32 or 64 bit) */
  648. static inline u32 high32(dma_addr_t a)
  649. {
  650. return sizeof(a) > sizeof(u32) ? (a >> 16) >> 16 : 0;
  651. }
  652. /* Build description to hardware for one receive segment */
  653. static void sky2_rx_add(struct sky2_port *sky2, u8 op,
  654. dma_addr_t map, unsigned len)
  655. {
  656. struct sky2_rx_le *le;
  657. u32 hi = high32(map);
  658. if (sky2->rx_addr64 != hi) {
  659. le = sky2_next_rx(sky2);
  660. le->addr = cpu_to_le32(hi);
  661. le->opcode = OP_ADDR64 | HW_OWNER;
  662. sky2->rx_addr64 = high32(map + len);
  663. }
  664. le = sky2_next_rx(sky2);
  665. le->addr = cpu_to_le32((u32) map);
  666. le->length = cpu_to_le16(len);
  667. le->opcode = op | HW_OWNER;
  668. }
  669. /* Build description to hardware for one possibly fragmented skb */
  670. static void sky2_rx_submit(struct sky2_port *sky2,
  671. const struct rx_ring_info *re)
  672. {
  673. int i;
  674. sky2_rx_add(sky2, OP_PACKET, re->data_addr, sky2->rx_data_size);
  675. for (i = 0; i < skb_shinfo(re->skb)->nr_frags; i++)
  676. sky2_rx_add(sky2, OP_BUFFER, re->frag_addr[i], PAGE_SIZE);
  677. }
  678. static void sky2_rx_map_skb(struct pci_dev *pdev, struct rx_ring_info *re,
  679. unsigned size)
  680. {
  681. struct sk_buff *skb = re->skb;
  682. int i;
  683. re->data_addr = pci_map_single(pdev, skb->data, size, PCI_DMA_FROMDEVICE);
  684. pci_unmap_len_set(re, data_size, size);
  685. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  686. re->frag_addr[i] = pci_map_page(pdev,
  687. skb_shinfo(skb)->frags[i].page,
  688. skb_shinfo(skb)->frags[i].page_offset,
  689. skb_shinfo(skb)->frags[i].size,
  690. PCI_DMA_FROMDEVICE);
  691. }
  692. static void sky2_rx_unmap_skb(struct pci_dev *pdev, struct rx_ring_info *re)
  693. {
  694. struct sk_buff *skb = re->skb;
  695. int i;
  696. pci_unmap_single(pdev, re->data_addr, pci_unmap_len(re, data_size),
  697. PCI_DMA_FROMDEVICE);
  698. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
  699. pci_unmap_page(pdev, re->frag_addr[i],
  700. skb_shinfo(skb)->frags[i].size,
  701. PCI_DMA_FROMDEVICE);
  702. }
  703. /* Tell chip where to start receive checksum.
  704. * Actually has two checksums, but set both same to avoid possible byte
  705. * order problems.
  706. */
  707. static void rx_set_checksum(struct sky2_port *sky2)
  708. {
  709. struct sky2_rx_le *le;
  710. le = sky2_next_rx(sky2);
  711. le->addr = cpu_to_le32((ETH_HLEN << 16) | ETH_HLEN);
  712. le->ctrl = 0;
  713. le->opcode = OP_TCPSTART | HW_OWNER;
  714. sky2_write32(sky2->hw,
  715. Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  716. sky2->rx_csum ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  717. }
  718. /*
  719. * The RX Stop command will not work for Yukon-2 if the BMU does not
  720. * reach the end of packet and since we can't make sure that we have
  721. * incoming data, we must reset the BMU while it is not doing a DMA
  722. * transfer. Since it is possible that the RX path is still active,
  723. * the RX RAM buffer will be stopped first, so any possible incoming
  724. * data will not trigger a DMA. After the RAM buffer is stopped, the
  725. * BMU is polled until any DMA in progress is ended and only then it
  726. * will be reset.
  727. */
  728. static void sky2_rx_stop(struct sky2_port *sky2)
  729. {
  730. struct sky2_hw *hw = sky2->hw;
  731. unsigned rxq = rxqaddr[sky2->port];
  732. int i;
  733. /* disable the RAM Buffer receive queue */
  734. sky2_write8(hw, RB_ADDR(rxq, RB_CTRL), RB_DIS_OP_MD);
  735. for (i = 0; i < 0xffff; i++)
  736. if (sky2_read8(hw, RB_ADDR(rxq, Q_RSL))
  737. == sky2_read8(hw, RB_ADDR(rxq, Q_RL)))
  738. goto stopped;
  739. printk(KERN_WARNING PFX "%s: receiver stop failed\n",
  740. sky2->netdev->name);
  741. stopped:
  742. sky2_write32(hw, Q_ADDR(rxq, Q_CSR), BMU_RST_SET | BMU_FIFO_RST);
  743. /* reset the Rx prefetch unit */
  744. sky2_write32(hw, Y2_QADDR(rxq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  745. }
  746. /* Clean out receive buffer area, assumes receiver hardware stopped */
  747. static void sky2_rx_clean(struct sky2_port *sky2)
  748. {
  749. unsigned i;
  750. memset(sky2->rx_le, 0, RX_LE_BYTES);
  751. for (i = 0; i < sky2->rx_pending; i++) {
  752. struct rx_ring_info *re = sky2->rx_ring + i;
  753. if (re->skb) {
  754. sky2_rx_unmap_skb(sky2->hw->pdev, re);
  755. kfree_skb(re->skb);
  756. re->skb = NULL;
  757. }
  758. }
  759. }
  760. /* Basic MII support */
  761. static int sky2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  762. {
  763. struct mii_ioctl_data *data = if_mii(ifr);
  764. struct sky2_port *sky2 = netdev_priv(dev);
  765. struct sky2_hw *hw = sky2->hw;
  766. int err = -EOPNOTSUPP;
  767. if (!netif_running(dev))
  768. return -ENODEV; /* Phy still in reset */
  769. switch (cmd) {
  770. case SIOCGMIIPHY:
  771. data->phy_id = PHY_ADDR_MARV;
  772. /* fallthru */
  773. case SIOCGMIIREG: {
  774. u16 val = 0;
  775. spin_lock_bh(&sky2->phy_lock);
  776. err = __gm_phy_read(hw, sky2->port, data->reg_num & 0x1f, &val);
  777. spin_unlock_bh(&sky2->phy_lock);
  778. data->val_out = val;
  779. break;
  780. }
  781. case SIOCSMIIREG:
  782. if (!capable(CAP_NET_ADMIN))
  783. return -EPERM;
  784. spin_lock_bh(&sky2->phy_lock);
  785. err = gm_phy_write(hw, sky2->port, data->reg_num & 0x1f,
  786. data->val_in);
  787. spin_unlock_bh(&sky2->phy_lock);
  788. break;
  789. }
  790. return err;
  791. }
  792. #ifdef SKY2_VLAN_TAG_USED
  793. static void sky2_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  794. {
  795. struct sky2_port *sky2 = netdev_priv(dev);
  796. struct sky2_hw *hw = sky2->hw;
  797. u16 port = sky2->port;
  798. netif_tx_lock_bh(dev);
  799. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_ON);
  800. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_ON);
  801. sky2->vlgrp = grp;
  802. netif_tx_unlock_bh(dev);
  803. }
  804. static void sky2_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  805. {
  806. struct sky2_port *sky2 = netdev_priv(dev);
  807. struct sky2_hw *hw = sky2->hw;
  808. u16 port = sky2->port;
  809. netif_tx_lock_bh(dev);
  810. sky2_write32(hw, SK_REG(port, RX_GMF_CTRL_T), RX_VLAN_STRIP_OFF);
  811. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T), TX_VLAN_TAG_OFF);
  812. if (sky2->vlgrp)
  813. sky2->vlgrp->vlan_devices[vid] = NULL;
  814. netif_tx_unlock_bh(dev);
  815. }
  816. #endif
  817. /*
  818. * Allocate an skb for receiving. If the MTU is large enough
  819. * make the skb non-linear with a fragment list of pages.
  820. *
  821. * It appears the hardware has a bug in the FIFO logic that
  822. * cause it to hang if the FIFO gets overrun and the receive buffer
  823. * is not 64 byte aligned. The buffer returned from netdev_alloc_skb is
  824. * aligned except if slab debugging is enabled.
  825. */
  826. static struct sk_buff *sky2_rx_alloc(struct sky2_port *sky2)
  827. {
  828. struct sk_buff *skb;
  829. unsigned long p;
  830. int i;
  831. skb = netdev_alloc_skb(sky2->netdev, sky2->rx_data_size + RX_SKB_ALIGN);
  832. if (!skb)
  833. goto nomem;
  834. p = (unsigned long) skb->data;
  835. skb_reserve(skb, ALIGN(p, RX_SKB_ALIGN) - p);
  836. for (i = 0; i < sky2->rx_nfrags; i++) {
  837. struct page *page = alloc_page(GFP_ATOMIC);
  838. if (!page)
  839. goto free_partial;
  840. skb_fill_page_desc(skb, i, page, 0, PAGE_SIZE);
  841. }
  842. return skb;
  843. free_partial:
  844. kfree_skb(skb);
  845. nomem:
  846. return NULL;
  847. }
  848. /*
  849. * Allocate and setup receiver buffer pool.
  850. * Normal case this ends up creating one list element for skb
  851. * in the receive ring. Worst case if using large MTU and each
  852. * allocation falls on a different 64 bit region, that results
  853. * in 6 list elements per ring entry.
  854. * One element is used for checksum enable/disable, and one
  855. * extra to avoid wrap.
  856. */
  857. static int sky2_rx_start(struct sky2_port *sky2)
  858. {
  859. struct sky2_hw *hw = sky2->hw;
  860. struct rx_ring_info *re;
  861. unsigned rxq = rxqaddr[sky2->port];
  862. unsigned i, size, space, thresh;
  863. sky2->rx_put = sky2->rx_next = 0;
  864. sky2_qset(hw, rxq);
  865. /* On PCI express lowering the watermark gives better performance */
  866. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
  867. sky2_write32(hw, Q_ADDR(rxq, Q_WM), BMU_WM_PEX);
  868. /* These chips have no ram buffer?
  869. * MAC Rx RAM Read is controlled by hardware */
  870. if (hw->chip_id == CHIP_ID_YUKON_EC_U &&
  871. (hw->chip_rev == CHIP_REV_YU_EC_U_A1
  872. || hw->chip_rev == CHIP_REV_YU_EC_U_B0))
  873. sky2_write32(hw, Q_ADDR(rxq, Q_F), F_M_RX_RAM_DIS);
  874. sky2_prefetch_init(hw, rxq, sky2->rx_le_map, RX_LE_SIZE - 1);
  875. rx_set_checksum(sky2);
  876. /* Space needed for frame data + headers rounded up */
  877. size = ALIGN(sky2->netdev->mtu + ETH_HLEN + VLAN_HLEN, 8)
  878. + 8;
  879. /* Stopping point for hardware truncation */
  880. thresh = (size - 8) / sizeof(u32);
  881. /* Account for overhead of skb - to avoid order > 0 allocation */
  882. space = SKB_DATA_ALIGN(size) + NET_SKB_PAD
  883. + sizeof(struct skb_shared_info);
  884. sky2->rx_nfrags = space >> PAGE_SHIFT;
  885. BUG_ON(sky2->rx_nfrags > ARRAY_SIZE(re->frag_addr));
  886. if (sky2->rx_nfrags != 0) {
  887. /* Compute residue after pages */
  888. space = sky2->rx_nfrags << PAGE_SHIFT;
  889. if (space < size)
  890. size -= space;
  891. else
  892. size = 0;
  893. /* Optimize to handle small packets and headers */
  894. if (size < copybreak)
  895. size = copybreak;
  896. if (size < ETH_HLEN)
  897. size = ETH_HLEN;
  898. }
  899. sky2->rx_data_size = size;
  900. /* Fill Rx ring */
  901. for (i = 0; i < sky2->rx_pending; i++) {
  902. re = sky2->rx_ring + i;
  903. re->skb = sky2_rx_alloc(sky2);
  904. if (!re->skb)
  905. goto nomem;
  906. sky2_rx_map_skb(hw->pdev, re, sky2->rx_data_size);
  907. sky2_rx_submit(sky2, re);
  908. }
  909. /*
  910. * The receiver hangs if it receives frames larger than the
  911. * packet buffer. As a workaround, truncate oversize frames, but
  912. * the register is limited to 9 bits, so if you do frames > 2052
  913. * you better get the MTU right!
  914. */
  915. if (thresh > 0x1ff)
  916. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_OFF);
  917. else {
  918. sky2_write16(hw, SK_REG(sky2->port, RX_GMF_TR_THR), thresh);
  919. sky2_write32(hw, SK_REG(sky2->port, RX_GMF_CTRL_T), RX_TRUNC_ON);
  920. }
  921. /* Tell chip about available buffers */
  922. sky2_write16(hw, Y2_QADDR(rxq, PREF_UNIT_PUT_IDX), sky2->rx_put);
  923. return 0;
  924. nomem:
  925. sky2_rx_clean(sky2);
  926. return -ENOMEM;
  927. }
  928. /* Bring up network interface. */
  929. static int sky2_up(struct net_device *dev)
  930. {
  931. struct sky2_port *sky2 = netdev_priv(dev);
  932. struct sky2_hw *hw = sky2->hw;
  933. unsigned port = sky2->port;
  934. u32 ramsize, imask;
  935. int cap, err = -ENOMEM;
  936. struct net_device *otherdev = hw->dev[sky2->port^1];
  937. /*
  938. * On dual port PCI-X card, there is an problem where status
  939. * can be received out of order due to split transactions
  940. */
  941. if (otherdev && netif_running(otherdev) &&
  942. (cap = pci_find_capability(hw->pdev, PCI_CAP_ID_PCIX))) {
  943. struct sky2_port *osky2 = netdev_priv(otherdev);
  944. u16 cmd;
  945. cmd = sky2_pci_read16(hw, cap + PCI_X_CMD);
  946. cmd &= ~PCI_X_CMD_MAX_SPLIT;
  947. sky2_pci_write16(hw, cap + PCI_X_CMD, cmd);
  948. sky2->rx_csum = 0;
  949. osky2->rx_csum = 0;
  950. }
  951. if (netif_msg_ifup(sky2))
  952. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  953. /* must be power of 2 */
  954. sky2->tx_le = pci_alloc_consistent(hw->pdev,
  955. TX_RING_SIZE *
  956. sizeof(struct sky2_tx_le),
  957. &sky2->tx_le_map);
  958. if (!sky2->tx_le)
  959. goto err_out;
  960. sky2->tx_ring = kcalloc(TX_RING_SIZE, sizeof(struct tx_ring_info),
  961. GFP_KERNEL);
  962. if (!sky2->tx_ring)
  963. goto err_out;
  964. sky2->tx_prod = sky2->tx_cons = 0;
  965. sky2->rx_le = pci_alloc_consistent(hw->pdev, RX_LE_BYTES,
  966. &sky2->rx_le_map);
  967. if (!sky2->rx_le)
  968. goto err_out;
  969. memset(sky2->rx_le, 0, RX_LE_BYTES);
  970. sky2->rx_ring = kcalloc(sky2->rx_pending, sizeof(struct rx_ring_info),
  971. GFP_KERNEL);
  972. if (!sky2->rx_ring)
  973. goto err_out;
  974. sky2_phy_power(hw, port, 1);
  975. sky2_mac_init(hw, port);
  976. /* Register is number of 4K blocks on internal RAM buffer. */
  977. ramsize = sky2_read8(hw, B2_E_0) * 4;
  978. printk(KERN_INFO PFX "%s: ram buffer %dK\n", dev->name, ramsize);
  979. if (ramsize > 0) {
  980. u32 rxspace;
  981. if (ramsize < 16)
  982. rxspace = ramsize / 2;
  983. else
  984. rxspace = 8 + (2*(ramsize - 16))/3;
  985. sky2_ramset(hw, rxqaddr[port], 0, rxspace);
  986. sky2_ramset(hw, txqaddr[port], rxspace, ramsize - rxspace);
  987. /* Make sure SyncQ is disabled */
  988. sky2_write8(hw, RB_ADDR(port == 0 ? Q_XS1 : Q_XS2, RB_CTRL),
  989. RB_RST_SET);
  990. }
  991. sky2_qset(hw, txqaddr[port]);
  992. /* Set almost empty threshold */
  993. if (hw->chip_id == CHIP_ID_YUKON_EC_U
  994. && hw->chip_rev == CHIP_REV_YU_EC_U_A0)
  995. sky2_write16(hw, Q_ADDR(txqaddr[port], Q_AL), 0x1a0);
  996. sky2_prefetch_init(hw, txqaddr[port], sky2->tx_le_map,
  997. TX_RING_SIZE - 1);
  998. err = sky2_rx_start(sky2);
  999. if (err)
  1000. goto err_out;
  1001. /* Enable interrupts from phy/mac for port */
  1002. imask = sky2_read32(hw, B0_IMSK);
  1003. imask |= portirq_msk[port];
  1004. sky2_write32(hw, B0_IMSK, imask);
  1005. return 0;
  1006. err_out:
  1007. if (sky2->rx_le) {
  1008. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1009. sky2->rx_le, sky2->rx_le_map);
  1010. sky2->rx_le = NULL;
  1011. }
  1012. if (sky2->tx_le) {
  1013. pci_free_consistent(hw->pdev,
  1014. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1015. sky2->tx_le, sky2->tx_le_map);
  1016. sky2->tx_le = NULL;
  1017. }
  1018. kfree(sky2->tx_ring);
  1019. kfree(sky2->rx_ring);
  1020. sky2->tx_ring = NULL;
  1021. sky2->rx_ring = NULL;
  1022. return err;
  1023. }
  1024. /* Modular subtraction in ring */
  1025. static inline int tx_dist(unsigned tail, unsigned head)
  1026. {
  1027. return (head - tail) & (TX_RING_SIZE - 1);
  1028. }
  1029. /* Number of list elements available for next tx */
  1030. static inline int tx_avail(const struct sky2_port *sky2)
  1031. {
  1032. return sky2->tx_pending - tx_dist(sky2->tx_cons, sky2->tx_prod);
  1033. }
  1034. /* Estimate of number of transmit list elements required */
  1035. static unsigned tx_le_req(const struct sk_buff *skb)
  1036. {
  1037. unsigned count;
  1038. count = sizeof(dma_addr_t) / sizeof(u32);
  1039. count += skb_shinfo(skb)->nr_frags * count;
  1040. if (skb_is_gso(skb))
  1041. ++count;
  1042. if (skb->ip_summed == CHECKSUM_PARTIAL)
  1043. ++count;
  1044. return count;
  1045. }
  1046. /*
  1047. * Put one packet in ring for transmit.
  1048. * A single packet can generate multiple list elements, and
  1049. * the number of ring elements will probably be less than the number
  1050. * of list elements used.
  1051. */
  1052. static int sky2_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1053. {
  1054. struct sky2_port *sky2 = netdev_priv(dev);
  1055. struct sky2_hw *hw = sky2->hw;
  1056. struct sky2_tx_le *le = NULL;
  1057. struct tx_ring_info *re;
  1058. unsigned i, len;
  1059. dma_addr_t mapping;
  1060. u32 addr64;
  1061. u16 mss;
  1062. u8 ctrl;
  1063. if (unlikely(tx_avail(sky2) < tx_le_req(skb)))
  1064. return NETDEV_TX_BUSY;
  1065. if (unlikely(netif_msg_tx_queued(sky2)))
  1066. printk(KERN_DEBUG "%s: tx queued, slot %u, len %d\n",
  1067. dev->name, sky2->tx_prod, skb->len);
  1068. len = skb_headlen(skb);
  1069. mapping = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1070. addr64 = high32(mapping);
  1071. /* Send high bits if changed or crosses boundary */
  1072. if (addr64 != sky2->tx_addr64 || high32(mapping + len) != sky2->tx_addr64) {
  1073. le = get_tx_le(sky2);
  1074. le->addr = cpu_to_le32(addr64);
  1075. le->opcode = OP_ADDR64 | HW_OWNER;
  1076. sky2->tx_addr64 = high32(mapping + len);
  1077. }
  1078. /* Check for TCP Segmentation Offload */
  1079. mss = skb_shinfo(skb)->gso_size;
  1080. if (mss != 0) {
  1081. mss += ((skb->h.th->doff - 5) * 4); /* TCP options */
  1082. mss += (skb->nh.iph->ihl * 4) + sizeof(struct tcphdr);
  1083. mss += ETH_HLEN;
  1084. if (mss != sky2->tx_last_mss) {
  1085. le = get_tx_le(sky2);
  1086. le->addr = cpu_to_le32(mss);
  1087. le->opcode = OP_LRGLEN | HW_OWNER;
  1088. sky2->tx_last_mss = mss;
  1089. }
  1090. }
  1091. ctrl = 0;
  1092. #ifdef SKY2_VLAN_TAG_USED
  1093. /* Add VLAN tag, can piggyback on LRGLEN or ADDR64 */
  1094. if (sky2->vlgrp && vlan_tx_tag_present(skb)) {
  1095. if (!le) {
  1096. le = get_tx_le(sky2);
  1097. le->addr = 0;
  1098. le->opcode = OP_VLAN|HW_OWNER;
  1099. } else
  1100. le->opcode |= OP_VLAN;
  1101. le->length = cpu_to_be16(vlan_tx_tag_get(skb));
  1102. ctrl |= INS_VLAN;
  1103. }
  1104. #endif
  1105. /* Handle TCP checksum offload */
  1106. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1107. unsigned offset = skb->h.raw - skb->data;
  1108. u32 tcpsum;
  1109. tcpsum = offset << 16; /* sum start */
  1110. tcpsum |= offset + skb->csum_offset; /* sum write */
  1111. ctrl = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
  1112. if (skb->nh.iph->protocol == IPPROTO_UDP)
  1113. ctrl |= UDPTCP;
  1114. if (tcpsum != sky2->tx_tcpsum) {
  1115. sky2->tx_tcpsum = tcpsum;
  1116. le = get_tx_le(sky2);
  1117. le->addr = cpu_to_le32(tcpsum);
  1118. le->length = 0; /* initial checksum value */
  1119. le->ctrl = 1; /* one packet */
  1120. le->opcode = OP_TCPLISW | HW_OWNER;
  1121. }
  1122. }
  1123. le = get_tx_le(sky2);
  1124. le->addr = cpu_to_le32((u32) mapping);
  1125. le->length = cpu_to_le16(len);
  1126. le->ctrl = ctrl;
  1127. le->opcode = mss ? (OP_LARGESEND | HW_OWNER) : (OP_PACKET | HW_OWNER);
  1128. re = tx_le_re(sky2, le);
  1129. re->skb = skb;
  1130. pci_unmap_addr_set(re, mapaddr, mapping);
  1131. pci_unmap_len_set(re, maplen, len);
  1132. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1133. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1134. mapping = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1135. frag->size, PCI_DMA_TODEVICE);
  1136. addr64 = high32(mapping);
  1137. if (addr64 != sky2->tx_addr64) {
  1138. le = get_tx_le(sky2);
  1139. le->addr = cpu_to_le32(addr64);
  1140. le->ctrl = 0;
  1141. le->opcode = OP_ADDR64 | HW_OWNER;
  1142. sky2->tx_addr64 = addr64;
  1143. }
  1144. le = get_tx_le(sky2);
  1145. le->addr = cpu_to_le32((u32) mapping);
  1146. le->length = cpu_to_le16(frag->size);
  1147. le->ctrl = ctrl;
  1148. le->opcode = OP_BUFFER | HW_OWNER;
  1149. re = tx_le_re(sky2, le);
  1150. re->skb = skb;
  1151. pci_unmap_addr_set(re, mapaddr, mapping);
  1152. pci_unmap_len_set(re, maplen, frag->size);
  1153. }
  1154. le->ctrl |= EOP;
  1155. if (tx_avail(sky2) <= MAX_SKB_TX_LE)
  1156. netif_stop_queue(dev);
  1157. sky2_put_idx(hw, txqaddr[sky2->port], sky2->tx_prod);
  1158. dev->trans_start = jiffies;
  1159. return NETDEV_TX_OK;
  1160. }
  1161. /*
  1162. * Free ring elements from starting at tx_cons until "done"
  1163. *
  1164. * NB: the hardware will tell us about partial completion of multi-part
  1165. * buffers so make sure not to free skb to early.
  1166. */
  1167. static void sky2_tx_complete(struct sky2_port *sky2, u16 done)
  1168. {
  1169. struct net_device *dev = sky2->netdev;
  1170. struct pci_dev *pdev = sky2->hw->pdev;
  1171. unsigned idx;
  1172. BUG_ON(done >= TX_RING_SIZE);
  1173. for (idx = sky2->tx_cons; idx != done;
  1174. idx = RING_NEXT(idx, TX_RING_SIZE)) {
  1175. struct sky2_tx_le *le = sky2->tx_le + idx;
  1176. struct tx_ring_info *re = sky2->tx_ring + idx;
  1177. switch(le->opcode & ~HW_OWNER) {
  1178. case OP_LARGESEND:
  1179. case OP_PACKET:
  1180. pci_unmap_single(pdev,
  1181. pci_unmap_addr(re, mapaddr),
  1182. pci_unmap_len(re, maplen),
  1183. PCI_DMA_TODEVICE);
  1184. break;
  1185. case OP_BUFFER:
  1186. pci_unmap_page(pdev, pci_unmap_addr(re, mapaddr),
  1187. pci_unmap_len(re, maplen),
  1188. PCI_DMA_TODEVICE);
  1189. break;
  1190. }
  1191. if (le->ctrl & EOP) {
  1192. if (unlikely(netif_msg_tx_done(sky2)))
  1193. printk(KERN_DEBUG "%s: tx done %u\n",
  1194. dev->name, idx);
  1195. dev_kfree_skb_any(re->skb);
  1196. }
  1197. le->opcode = 0; /* paranoia */
  1198. }
  1199. sky2->tx_cons = idx;
  1200. if (tx_avail(sky2) > MAX_SKB_TX_LE + 4)
  1201. netif_wake_queue(dev);
  1202. }
  1203. /* Cleanup all untransmitted buffers, assume transmitter not running */
  1204. static void sky2_tx_clean(struct net_device *dev)
  1205. {
  1206. struct sky2_port *sky2 = netdev_priv(dev);
  1207. netif_tx_lock_bh(dev);
  1208. sky2_tx_complete(sky2, sky2->tx_prod);
  1209. netif_tx_unlock_bh(dev);
  1210. }
  1211. /* Network shutdown */
  1212. static int sky2_down(struct net_device *dev)
  1213. {
  1214. struct sky2_port *sky2 = netdev_priv(dev);
  1215. struct sky2_hw *hw = sky2->hw;
  1216. unsigned port = sky2->port;
  1217. u16 ctrl;
  1218. u32 imask;
  1219. /* Never really got started! */
  1220. if (!sky2->tx_le)
  1221. return 0;
  1222. if (netif_msg_ifdown(sky2))
  1223. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1224. /* Stop more packets from being queued */
  1225. netif_stop_queue(dev);
  1226. /* Disable port IRQ */
  1227. imask = sky2_read32(hw, B0_IMSK);
  1228. imask &= ~portirq_msk[port];
  1229. sky2_write32(hw, B0_IMSK, imask);
  1230. sky2_gmac_reset(hw, port);
  1231. /* Stop transmitter */
  1232. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_STOP);
  1233. sky2_read32(hw, Q_ADDR(txqaddr[port], Q_CSR));
  1234. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1235. RB_RST_SET | RB_DIS_OP_MD);
  1236. /* WA for dev. #4.209 */
  1237. if (hw->chip_id == CHIP_ID_YUKON_EC_U
  1238. && (hw->chip_rev == CHIP_REV_YU_EC_U_A1 || hw->chip_rev == CHIP_REV_YU_EC_U_B0))
  1239. sky2_write32(hw, SK_REG(port, TX_GMF_CTRL_T),
  1240. sky2->speed != SPEED_1000 ?
  1241. TX_STFW_ENA : TX_STFW_DIS);
  1242. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1243. ctrl &= ~(GM_GPCR_TX_ENA | GM_GPCR_RX_ENA);
  1244. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1245. sky2_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1246. /* Workaround shared GMAC reset */
  1247. if (!(hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0
  1248. && port == 0 && hw->dev[1] && netif_running(hw->dev[1])))
  1249. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1250. /* Disable Force Sync bit and Enable Alloc bit */
  1251. sky2_write8(hw, SK_REG(port, TXA_CTRL),
  1252. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1253. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1254. sky2_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1255. sky2_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1256. /* Reset the PCI FIFO of the async Tx queue */
  1257. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR),
  1258. BMU_RST_SET | BMU_FIFO_RST);
  1259. /* Reset the Tx prefetch units */
  1260. sky2_write32(hw, Y2_QADDR(txqaddr[port], PREF_UNIT_CTRL),
  1261. PREF_UNIT_RST_SET);
  1262. sky2_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1263. sky2_rx_stop(sky2);
  1264. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1265. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1266. sky2_phy_power(hw, port, 0);
  1267. /* turn off LED's */
  1268. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  1269. synchronize_irq(hw->pdev->irq);
  1270. sky2_tx_clean(dev);
  1271. sky2_rx_clean(sky2);
  1272. pci_free_consistent(hw->pdev, RX_LE_BYTES,
  1273. sky2->rx_le, sky2->rx_le_map);
  1274. kfree(sky2->rx_ring);
  1275. pci_free_consistent(hw->pdev,
  1276. TX_RING_SIZE * sizeof(struct sky2_tx_le),
  1277. sky2->tx_le, sky2->tx_le_map);
  1278. kfree(sky2->tx_ring);
  1279. sky2->tx_le = NULL;
  1280. sky2->rx_le = NULL;
  1281. sky2->rx_ring = NULL;
  1282. sky2->tx_ring = NULL;
  1283. return 0;
  1284. }
  1285. static u16 sky2_phy_speed(const struct sky2_hw *hw, u16 aux)
  1286. {
  1287. if (!sky2_is_copper(hw))
  1288. return SPEED_1000;
  1289. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1290. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1291. switch (aux & PHY_M_PS_SPEED_MSK) {
  1292. case PHY_M_PS_SPEED_1000:
  1293. return SPEED_1000;
  1294. case PHY_M_PS_SPEED_100:
  1295. return SPEED_100;
  1296. default:
  1297. return SPEED_10;
  1298. }
  1299. }
  1300. static void sky2_link_up(struct sky2_port *sky2)
  1301. {
  1302. struct sky2_hw *hw = sky2->hw;
  1303. unsigned port = sky2->port;
  1304. u16 reg;
  1305. static const char *fc_name[] = {
  1306. [FC_NONE] = "none",
  1307. [FC_TX] = "tx",
  1308. [FC_RX] = "rx",
  1309. [FC_BOTH] = "both",
  1310. };
  1311. /* enable Rx/Tx */
  1312. reg = gma_read16(hw, port, GM_GP_CTRL);
  1313. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1314. gma_write16(hw, port, GM_GP_CTRL, reg);
  1315. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1316. netif_carrier_on(sky2->netdev);
  1317. netif_wake_queue(sky2->netdev);
  1318. /* Turn on link LED */
  1319. sky2_write8(hw, SK_REG(port, LNK_LED_REG),
  1320. LINKLED_ON | LINKLED_BLINK_OFF | LINKLED_LINKSYNC_OFF);
  1321. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U) {
  1322. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  1323. u16 led = PHY_M_LEDC_LOS_CTRL(1); /* link active */
  1324. switch(sky2->speed) {
  1325. case SPEED_10:
  1326. led |= PHY_M_LEDC_INIT_CTRL(7);
  1327. break;
  1328. case SPEED_100:
  1329. led |= PHY_M_LEDC_STA1_CTRL(7);
  1330. break;
  1331. case SPEED_1000:
  1332. led |= PHY_M_LEDC_STA0_CTRL(7);
  1333. break;
  1334. }
  1335. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  1336. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, led);
  1337. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  1338. }
  1339. if (netif_msg_link(sky2))
  1340. printk(KERN_INFO PFX
  1341. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  1342. sky2->netdev->name, sky2->speed,
  1343. sky2->duplex == DUPLEX_FULL ? "full" : "half",
  1344. fc_name[sky2->flow_status]);
  1345. }
  1346. static void sky2_link_down(struct sky2_port *sky2)
  1347. {
  1348. struct sky2_hw *hw = sky2->hw;
  1349. unsigned port = sky2->port;
  1350. u16 reg;
  1351. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1352. reg = gma_read16(hw, port, GM_GP_CTRL);
  1353. reg &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1354. gma_write16(hw, port, GM_GP_CTRL, reg);
  1355. if (sky2->flow_status == FC_RX) {
  1356. /* restore Asymmetric Pause bit */
  1357. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1358. gm_phy_read(hw, port, PHY_MARV_AUNE_ADV)
  1359. | PHY_M_AN_ASP);
  1360. }
  1361. netif_carrier_off(sky2->netdev);
  1362. netif_stop_queue(sky2->netdev);
  1363. /* Turn on link LED */
  1364. sky2_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  1365. if (netif_msg_link(sky2))
  1366. printk(KERN_INFO PFX "%s: Link is down.\n", sky2->netdev->name);
  1367. sky2_phy_init(hw, port);
  1368. }
  1369. static enum flow_control sky2_flow(int rx, int tx)
  1370. {
  1371. if (rx)
  1372. return tx ? FC_BOTH : FC_RX;
  1373. else
  1374. return tx ? FC_TX : FC_NONE;
  1375. }
  1376. static int sky2_autoneg_done(struct sky2_port *sky2, u16 aux)
  1377. {
  1378. struct sky2_hw *hw = sky2->hw;
  1379. unsigned port = sky2->port;
  1380. u16 lpa;
  1381. lpa = gm_phy_read(hw, port, PHY_MARV_AUNE_LP);
  1382. if (lpa & PHY_M_AN_RF) {
  1383. printk(KERN_ERR PFX "%s: remote fault", sky2->netdev->name);
  1384. return -1;
  1385. }
  1386. if (!(aux & PHY_M_PS_SPDUP_RES)) {
  1387. printk(KERN_ERR PFX "%s: speed/duplex mismatch",
  1388. sky2->netdev->name);
  1389. return -1;
  1390. }
  1391. sky2->speed = sky2_phy_speed(hw, aux);
  1392. sky2->duplex = (aux & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1393. /* Pause bits are offset (9..8) */
  1394. if (hw->chip_id == CHIP_ID_YUKON_XL || hw->chip_id == CHIP_ID_YUKON_EC_U)
  1395. aux >>= 6;
  1396. sky2->flow_status = sky2_flow(aux & PHY_M_PS_RX_P_EN,
  1397. aux & PHY_M_PS_TX_P_EN);
  1398. if (sky2->duplex == DUPLEX_HALF && sky2->speed < SPEED_1000
  1399. && hw->chip_id != CHIP_ID_YUKON_EC_U)
  1400. sky2->flow_status = FC_NONE;
  1401. if (aux & PHY_M_PS_RX_P_EN)
  1402. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1403. else
  1404. sky2_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1405. return 0;
  1406. }
  1407. /* Interrupt from PHY */
  1408. static void sky2_phy_intr(struct sky2_hw *hw, unsigned port)
  1409. {
  1410. struct net_device *dev = hw->dev[port];
  1411. struct sky2_port *sky2 = netdev_priv(dev);
  1412. u16 istatus, phystat;
  1413. if (!netif_running(dev))
  1414. return;
  1415. spin_lock(&sky2->phy_lock);
  1416. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1417. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1418. if (netif_msg_intr(sky2))
  1419. printk(KERN_INFO PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1420. sky2->netdev->name, istatus, phystat);
  1421. if (sky2->autoneg == AUTONEG_ENABLE && (istatus & PHY_M_IS_AN_COMPL)) {
  1422. if (sky2_autoneg_done(sky2, phystat) == 0)
  1423. sky2_link_up(sky2);
  1424. goto out;
  1425. }
  1426. if (istatus & PHY_M_IS_LSP_CHANGE)
  1427. sky2->speed = sky2_phy_speed(hw, phystat);
  1428. if (istatus & PHY_M_IS_DUP_CHANGE)
  1429. sky2->duplex =
  1430. (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1431. if (istatus & PHY_M_IS_LST_CHANGE) {
  1432. if (phystat & PHY_M_PS_LINK_UP)
  1433. sky2_link_up(sky2);
  1434. else
  1435. sky2_link_down(sky2);
  1436. }
  1437. out:
  1438. spin_unlock(&sky2->phy_lock);
  1439. }
  1440. /* Transmit timeout is only called if we are running, carries is up
  1441. * and tx queue is full (stopped).
  1442. */
  1443. static void sky2_tx_timeout(struct net_device *dev)
  1444. {
  1445. struct sky2_port *sky2 = netdev_priv(dev);
  1446. struct sky2_hw *hw = sky2->hw;
  1447. unsigned txq = txqaddr[sky2->port];
  1448. u16 report, done;
  1449. if (netif_msg_timer(sky2))
  1450. printk(KERN_ERR PFX "%s: tx timeout\n", dev->name);
  1451. report = sky2_read16(hw, sky2->port == 0 ? STAT_TXA1_RIDX : STAT_TXA2_RIDX);
  1452. done = sky2_read16(hw, Q_ADDR(txq, Q_DONE));
  1453. printk(KERN_DEBUG PFX "%s: transmit ring %u .. %u report=%u done=%u\n",
  1454. dev->name,
  1455. sky2->tx_cons, sky2->tx_prod, report, done);
  1456. if (report != done) {
  1457. printk(KERN_INFO PFX "status burst pending (irq moderation?)\n");
  1458. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  1459. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  1460. } else if (report != sky2->tx_cons) {
  1461. printk(KERN_INFO PFX "status report lost?\n");
  1462. netif_tx_lock_bh(dev);
  1463. sky2_tx_complete(sky2, report);
  1464. netif_tx_unlock_bh(dev);
  1465. } else {
  1466. printk(KERN_INFO PFX "hardware hung? flushing\n");
  1467. sky2_write32(hw, Q_ADDR(txq, Q_CSR), BMU_STOP);
  1468. sky2_write32(hw, Y2_QADDR(txq, PREF_UNIT_CTRL), PREF_UNIT_RST_SET);
  1469. sky2_tx_clean(dev);
  1470. sky2_qset(hw, txq);
  1471. sky2_prefetch_init(hw, txq, sky2->tx_le_map, TX_RING_SIZE - 1);
  1472. }
  1473. }
  1474. static int sky2_change_mtu(struct net_device *dev, int new_mtu)
  1475. {
  1476. struct sky2_port *sky2 = netdev_priv(dev);
  1477. struct sky2_hw *hw = sky2->hw;
  1478. int err;
  1479. u16 ctl, mode;
  1480. u32 imask;
  1481. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  1482. return -EINVAL;
  1483. if (hw->chip_id == CHIP_ID_YUKON_EC_U && new_mtu > ETH_DATA_LEN)
  1484. return -EINVAL;
  1485. if (!netif_running(dev)) {
  1486. dev->mtu = new_mtu;
  1487. return 0;
  1488. }
  1489. imask = sky2_read32(hw, B0_IMSK);
  1490. sky2_write32(hw, B0_IMSK, 0);
  1491. dev->trans_start = jiffies; /* prevent tx timeout */
  1492. netif_stop_queue(dev);
  1493. netif_poll_disable(hw->dev[0]);
  1494. synchronize_irq(hw->pdev->irq);
  1495. ctl = gma_read16(hw, sky2->port, GM_GP_CTRL);
  1496. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl & ~GM_GPCR_RX_ENA);
  1497. sky2_rx_stop(sky2);
  1498. sky2_rx_clean(sky2);
  1499. dev->mtu = new_mtu;
  1500. mode = DATA_BLIND_VAL(DATA_BLIND_DEF) |
  1501. GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1502. if (dev->mtu > ETH_DATA_LEN)
  1503. mode |= GM_SMOD_JUMBO_ENA;
  1504. gma_write16(hw, sky2->port, GM_SERIAL_MODE, mode);
  1505. sky2_write8(hw, RB_ADDR(rxqaddr[sky2->port], RB_CTRL), RB_ENA_OP_MD);
  1506. err = sky2_rx_start(sky2);
  1507. sky2_write32(hw, B0_IMSK, imask);
  1508. if (err)
  1509. dev_close(dev);
  1510. else {
  1511. gma_write16(hw, sky2->port, GM_GP_CTRL, ctl);
  1512. netif_poll_enable(hw->dev[0]);
  1513. netif_wake_queue(dev);
  1514. }
  1515. return err;
  1516. }
  1517. /* For small just reuse existing skb for next receive */
  1518. static struct sk_buff *receive_copy(struct sky2_port *sky2,
  1519. const struct rx_ring_info *re,
  1520. unsigned length)
  1521. {
  1522. struct sk_buff *skb;
  1523. skb = netdev_alloc_skb(sky2->netdev, length + 2);
  1524. if (likely(skb)) {
  1525. skb_reserve(skb, 2);
  1526. pci_dma_sync_single_for_cpu(sky2->hw->pdev, re->data_addr,
  1527. length, PCI_DMA_FROMDEVICE);
  1528. memcpy(skb->data, re->skb->data, length);
  1529. skb->ip_summed = re->skb->ip_summed;
  1530. skb->csum = re->skb->csum;
  1531. pci_dma_sync_single_for_device(sky2->hw->pdev, re->data_addr,
  1532. length, PCI_DMA_FROMDEVICE);
  1533. re->skb->ip_summed = CHECKSUM_NONE;
  1534. skb_put(skb, length);
  1535. }
  1536. return skb;
  1537. }
  1538. /* Adjust length of skb with fragments to match received data */
  1539. static void skb_put_frags(struct sk_buff *skb, unsigned int hdr_space,
  1540. unsigned int length)
  1541. {
  1542. int i, num_frags;
  1543. unsigned int size;
  1544. /* put header into skb */
  1545. size = min(length, hdr_space);
  1546. skb->tail += size;
  1547. skb->len += size;
  1548. length -= size;
  1549. num_frags = skb_shinfo(skb)->nr_frags;
  1550. for (i = 0; i < num_frags; i++) {
  1551. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1552. if (length == 0) {
  1553. /* don't need this page */
  1554. __free_page(frag->page);
  1555. --skb_shinfo(skb)->nr_frags;
  1556. } else {
  1557. size = min(length, (unsigned) PAGE_SIZE);
  1558. frag->size = size;
  1559. skb->data_len += size;
  1560. skb->truesize += size;
  1561. skb->len += size;
  1562. length -= size;
  1563. }
  1564. }
  1565. }
  1566. /* Normal packet - take skb from ring element and put in a new one */
  1567. static struct sk_buff *receive_new(struct sky2_port *sky2,
  1568. struct rx_ring_info *re,
  1569. unsigned int length)
  1570. {
  1571. struct sk_buff *skb, *nskb;
  1572. unsigned hdr_space = sky2->rx_data_size;
  1573. pr_debug(PFX "receive new length=%d\n", length);
  1574. /* Don't be tricky about reusing pages (yet) */
  1575. nskb = sky2_rx_alloc(sky2);
  1576. if (unlikely(!nskb))
  1577. return NULL;
  1578. skb = re->skb;
  1579. sky2_rx_unmap_skb(sky2->hw->pdev, re);
  1580. prefetch(skb->data);
  1581. re->skb = nskb;
  1582. sky2_rx_map_skb(sky2->hw->pdev, re, hdr_space);
  1583. if (skb_shinfo(skb)->nr_frags)
  1584. skb_put_frags(skb, hdr_space, length);
  1585. else
  1586. skb_put(skb, length);
  1587. return skb;
  1588. }
  1589. /*
  1590. * Receive one packet.
  1591. * For larger packets, get new buffer.
  1592. */
  1593. static struct sk_buff *sky2_receive(struct net_device *dev,
  1594. u16 length, u32 status)
  1595. {
  1596. struct sky2_port *sky2 = netdev_priv(dev);
  1597. struct rx_ring_info *re = sky2->rx_ring + sky2->rx_next;
  1598. struct sk_buff *skb = NULL;
  1599. if (unlikely(netif_msg_rx_status(sky2)))
  1600. printk(KERN_DEBUG PFX "%s: rx slot %u status 0x%x len %d\n",
  1601. dev->name, sky2->rx_next, status, length);
  1602. sky2->rx_next = (sky2->rx_next + 1) % sky2->rx_pending;
  1603. prefetch(sky2->rx_ring + sky2->rx_next);
  1604. if (status & GMR_FS_ANY_ERR)
  1605. goto error;
  1606. if (!(status & GMR_FS_RX_OK))
  1607. goto resubmit;
  1608. if (length > dev->mtu + ETH_HLEN)
  1609. goto oversize;
  1610. if (length < copybreak)
  1611. skb = receive_copy(sky2, re, length);
  1612. else
  1613. skb = receive_new(sky2, re, length);
  1614. resubmit:
  1615. sky2_rx_submit(sky2, re);
  1616. return skb;
  1617. oversize:
  1618. ++sky2->net_stats.rx_over_errors;
  1619. goto resubmit;
  1620. error:
  1621. ++sky2->net_stats.rx_errors;
  1622. if (status & GMR_FS_RX_FF_OV) {
  1623. sky2->net_stats.rx_fifo_errors++;
  1624. goto resubmit;
  1625. }
  1626. if (netif_msg_rx_err(sky2) && net_ratelimit())
  1627. printk(KERN_INFO PFX "%s: rx error, status 0x%x length %d\n",
  1628. dev->name, status, length);
  1629. if (status & (GMR_FS_LONG_ERR | GMR_FS_UN_SIZE))
  1630. sky2->net_stats.rx_length_errors++;
  1631. if (status & GMR_FS_FRAGMENT)
  1632. sky2->net_stats.rx_frame_errors++;
  1633. if (status & GMR_FS_CRC_ERR)
  1634. sky2->net_stats.rx_crc_errors++;
  1635. goto resubmit;
  1636. }
  1637. /* Transmit complete */
  1638. static inline void sky2_tx_done(struct net_device *dev, u16 last)
  1639. {
  1640. struct sky2_port *sky2 = netdev_priv(dev);
  1641. if (netif_running(dev)) {
  1642. netif_tx_lock(dev);
  1643. sky2_tx_complete(sky2, last);
  1644. netif_tx_unlock(dev);
  1645. }
  1646. }
  1647. /* Process status response ring */
  1648. static int sky2_status_intr(struct sky2_hw *hw, int to_do)
  1649. {
  1650. struct sky2_port *sky2;
  1651. int work_done = 0;
  1652. unsigned buf_write[2] = { 0, 0 };
  1653. u16 hwidx = sky2_read16(hw, STAT_PUT_IDX);
  1654. rmb();
  1655. while (hw->st_idx != hwidx) {
  1656. struct sky2_status_le *le = hw->st_le + hw->st_idx;
  1657. struct net_device *dev;
  1658. struct sk_buff *skb;
  1659. u32 status;
  1660. u16 length;
  1661. hw->st_idx = RING_NEXT(hw->st_idx, STATUS_RING_SIZE);
  1662. BUG_ON(le->link >= 2);
  1663. dev = hw->dev[le->link];
  1664. sky2 = netdev_priv(dev);
  1665. length = le16_to_cpu(le->length);
  1666. status = le32_to_cpu(le->status);
  1667. switch (le->opcode & ~HW_OWNER) {
  1668. case OP_RXSTAT:
  1669. skb = sky2_receive(dev, length, status);
  1670. if (!skb)
  1671. goto force_update;
  1672. skb->protocol = eth_type_trans(skb, dev);
  1673. dev->last_rx = jiffies;
  1674. #ifdef SKY2_VLAN_TAG_USED
  1675. if (sky2->vlgrp && (status & GMR_FS_VLAN)) {
  1676. vlan_hwaccel_receive_skb(skb,
  1677. sky2->vlgrp,
  1678. be16_to_cpu(sky2->rx_tag));
  1679. } else
  1680. #endif
  1681. netif_receive_skb(skb);
  1682. /* Update receiver after 16 frames */
  1683. if (++buf_write[le->link] == RX_BUF_WRITE) {
  1684. force_update:
  1685. sky2_put_idx(hw, rxqaddr[le->link], sky2->rx_put);
  1686. buf_write[le->link] = 0;
  1687. }
  1688. /* Stop after net poll weight */
  1689. if (++work_done >= to_do)
  1690. goto exit_loop;
  1691. break;
  1692. #ifdef SKY2_VLAN_TAG_USED
  1693. case OP_RXVLAN:
  1694. sky2->rx_tag = length;
  1695. break;
  1696. case OP_RXCHKSVLAN:
  1697. sky2->rx_tag = length;
  1698. /* fall through */
  1699. #endif
  1700. case OP_RXCHKS:
  1701. skb = sky2->rx_ring[sky2->rx_next].skb;
  1702. skb->ip_summed = CHECKSUM_COMPLETE;
  1703. skb->csum = status & 0xffff;
  1704. break;
  1705. case OP_TXINDEXLE:
  1706. /* TX index reports status for both ports */
  1707. BUILD_BUG_ON(TX_RING_SIZE > 0x1000);
  1708. sky2_tx_done(hw->dev[0], status & 0xfff);
  1709. if (hw->dev[1])
  1710. sky2_tx_done(hw->dev[1],
  1711. ((status >> 24) & 0xff)
  1712. | (u16)(length & 0xf) << 8);
  1713. break;
  1714. default:
  1715. if (net_ratelimit())
  1716. printk(KERN_WARNING PFX
  1717. "unknown status opcode 0x%x\n", le->opcode);
  1718. goto exit_loop;
  1719. }
  1720. }
  1721. /* Fully processed status ring so clear irq */
  1722. sky2_write32(hw, STAT_CTRL, SC_STAT_CLR_IRQ);
  1723. exit_loop:
  1724. if (buf_write[0]) {
  1725. sky2 = netdev_priv(hw->dev[0]);
  1726. sky2_put_idx(hw, Q_R1, sky2->rx_put);
  1727. }
  1728. if (buf_write[1]) {
  1729. sky2 = netdev_priv(hw->dev[1]);
  1730. sky2_put_idx(hw, Q_R2, sky2->rx_put);
  1731. }
  1732. return work_done;
  1733. }
  1734. static void sky2_hw_error(struct sky2_hw *hw, unsigned port, u32 status)
  1735. {
  1736. struct net_device *dev = hw->dev[port];
  1737. if (net_ratelimit())
  1738. printk(KERN_INFO PFX "%s: hw error interrupt status 0x%x\n",
  1739. dev->name, status);
  1740. if (status & Y2_IS_PAR_RD1) {
  1741. if (net_ratelimit())
  1742. printk(KERN_ERR PFX "%s: ram data read parity error\n",
  1743. dev->name);
  1744. /* Clear IRQ */
  1745. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_RD_PERR);
  1746. }
  1747. if (status & Y2_IS_PAR_WR1) {
  1748. if (net_ratelimit())
  1749. printk(KERN_ERR PFX "%s: ram data write parity error\n",
  1750. dev->name);
  1751. sky2_write16(hw, RAM_BUFFER(port, B3_RI_CTRL), RI_CLR_WR_PERR);
  1752. }
  1753. if (status & Y2_IS_PAR_MAC1) {
  1754. if (net_ratelimit())
  1755. printk(KERN_ERR PFX "%s: MAC parity error\n", dev->name);
  1756. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_PE);
  1757. }
  1758. if (status & Y2_IS_PAR_RX1) {
  1759. if (net_ratelimit())
  1760. printk(KERN_ERR PFX "%s: RX parity error\n", dev->name);
  1761. sky2_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), BMU_CLR_IRQ_PAR);
  1762. }
  1763. if (status & Y2_IS_TCP_TXA1) {
  1764. if (net_ratelimit())
  1765. printk(KERN_ERR PFX "%s: TCP segmentation error\n",
  1766. dev->name);
  1767. sky2_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), BMU_CLR_IRQ_TCP);
  1768. }
  1769. }
  1770. static void sky2_hw_intr(struct sky2_hw *hw)
  1771. {
  1772. u32 status = sky2_read32(hw, B0_HWE_ISRC);
  1773. if (status & Y2_IS_TIST_OV)
  1774. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  1775. if (status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) {
  1776. u16 pci_err;
  1777. pci_err = sky2_pci_read16(hw, PCI_STATUS);
  1778. if (net_ratelimit())
  1779. printk(KERN_ERR PFX "%s: pci hw error (0x%x)\n",
  1780. pci_name(hw->pdev), pci_err);
  1781. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1782. sky2_pci_write16(hw, PCI_STATUS,
  1783. pci_err | PCI_STATUS_ERROR_BITS);
  1784. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1785. }
  1786. if (status & Y2_IS_PCI_EXP) {
  1787. /* PCI-Express uncorrectable Error occurred */
  1788. u32 pex_err;
  1789. pex_err = sky2_pci_read32(hw, PEX_UNC_ERR_STAT);
  1790. if (net_ratelimit())
  1791. printk(KERN_ERR PFX "%s: pci express error (0x%x)\n",
  1792. pci_name(hw->pdev), pex_err);
  1793. /* clear the interrupt */
  1794. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1795. sky2_pci_write32(hw, PEX_UNC_ERR_STAT,
  1796. 0xffffffffUL);
  1797. sky2_write32(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1798. if (pex_err & PEX_FATAL_ERRORS) {
  1799. u32 hwmsk = sky2_read32(hw, B0_HWE_IMSK);
  1800. hwmsk &= ~Y2_IS_PCI_EXP;
  1801. sky2_write32(hw, B0_HWE_IMSK, hwmsk);
  1802. }
  1803. }
  1804. if (status & Y2_HWE_L1_MASK)
  1805. sky2_hw_error(hw, 0, status);
  1806. status >>= 8;
  1807. if (status & Y2_HWE_L1_MASK)
  1808. sky2_hw_error(hw, 1, status);
  1809. }
  1810. static void sky2_mac_intr(struct sky2_hw *hw, unsigned port)
  1811. {
  1812. struct net_device *dev = hw->dev[port];
  1813. struct sky2_port *sky2 = netdev_priv(dev);
  1814. u8 status = sky2_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1815. if (netif_msg_intr(sky2))
  1816. printk(KERN_INFO PFX "%s: mac interrupt status 0x%x\n",
  1817. dev->name, status);
  1818. if (status & GM_IS_RX_FF_OR) {
  1819. ++sky2->net_stats.rx_fifo_errors;
  1820. sky2_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1821. }
  1822. if (status & GM_IS_TX_FF_UR) {
  1823. ++sky2->net_stats.tx_fifo_errors;
  1824. sky2_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1825. }
  1826. }
  1827. /* This should never happen it is a fatal situation */
  1828. static void sky2_descriptor_error(struct sky2_hw *hw, unsigned port,
  1829. const char *rxtx, u32 mask)
  1830. {
  1831. struct net_device *dev = hw->dev[port];
  1832. struct sky2_port *sky2 = netdev_priv(dev);
  1833. u32 imask;
  1834. printk(KERN_ERR PFX "%s: %s descriptor error (hardware problem)\n",
  1835. dev ? dev->name : "<not registered>", rxtx);
  1836. imask = sky2_read32(hw, B0_IMSK);
  1837. imask &= ~mask;
  1838. sky2_write32(hw, B0_IMSK, imask);
  1839. if (dev) {
  1840. spin_lock(&sky2->phy_lock);
  1841. sky2_link_down(sky2);
  1842. spin_unlock(&sky2->phy_lock);
  1843. }
  1844. }
  1845. /* If idle then force a fake soft NAPI poll once a second
  1846. * to work around cases where sharing an edge triggered interrupt.
  1847. */
  1848. static inline void sky2_idle_start(struct sky2_hw *hw)
  1849. {
  1850. if (idle_timeout > 0)
  1851. mod_timer(&hw->idle_timer,
  1852. jiffies + msecs_to_jiffies(idle_timeout));
  1853. }
  1854. static void sky2_idle(unsigned long arg)
  1855. {
  1856. struct sky2_hw *hw = (struct sky2_hw *) arg;
  1857. struct net_device *dev = hw->dev[0];
  1858. if (__netif_rx_schedule_prep(dev))
  1859. __netif_rx_schedule(dev);
  1860. mod_timer(&hw->idle_timer, jiffies + msecs_to_jiffies(idle_timeout));
  1861. }
  1862. static int sky2_poll(struct net_device *dev0, int *budget)
  1863. {
  1864. struct sky2_hw *hw = ((struct sky2_port *) netdev_priv(dev0))->hw;
  1865. int work_limit = min(dev0->quota, *budget);
  1866. int work_done = 0;
  1867. u32 status = sky2_read32(hw, B0_Y2_SP_EISR);
  1868. if (status & Y2_IS_HW_ERR)
  1869. sky2_hw_intr(hw);
  1870. if (status & Y2_IS_IRQ_PHY1)
  1871. sky2_phy_intr(hw, 0);
  1872. if (status & Y2_IS_IRQ_PHY2)
  1873. sky2_phy_intr(hw, 1);
  1874. if (status & Y2_IS_IRQ_MAC1)
  1875. sky2_mac_intr(hw, 0);
  1876. if (status & Y2_IS_IRQ_MAC2)
  1877. sky2_mac_intr(hw, 1);
  1878. if (status & Y2_IS_CHK_RX1)
  1879. sky2_descriptor_error(hw, 0, "receive", Y2_IS_CHK_RX1);
  1880. if (status & Y2_IS_CHK_RX2)
  1881. sky2_descriptor_error(hw, 1, "receive", Y2_IS_CHK_RX2);
  1882. if (status & Y2_IS_CHK_TXA1)
  1883. sky2_descriptor_error(hw, 0, "transmit", Y2_IS_CHK_TXA1);
  1884. if (status & Y2_IS_CHK_TXA2)
  1885. sky2_descriptor_error(hw, 1, "transmit", Y2_IS_CHK_TXA2);
  1886. work_done = sky2_status_intr(hw, work_limit);
  1887. if (work_done < work_limit) {
  1888. netif_rx_complete(dev0);
  1889. sky2_read32(hw, B0_Y2_SP_LISR);
  1890. return 0;
  1891. } else {
  1892. *budget -= work_done;
  1893. dev0->quota -= work_done;
  1894. return 1;
  1895. }
  1896. }
  1897. static irqreturn_t sky2_intr(int irq, void *dev_id)
  1898. {
  1899. struct sky2_hw *hw = dev_id;
  1900. struct net_device *dev0 = hw->dev[0];
  1901. u32 status;
  1902. /* Reading this mask interrupts as side effect */
  1903. status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  1904. if (status == 0 || status == ~0)
  1905. return IRQ_NONE;
  1906. prefetch(&hw->st_le[hw->st_idx]);
  1907. if (likely(__netif_rx_schedule_prep(dev0)))
  1908. __netif_rx_schedule(dev0);
  1909. return IRQ_HANDLED;
  1910. }
  1911. #ifdef CONFIG_NET_POLL_CONTROLLER
  1912. static void sky2_netpoll(struct net_device *dev)
  1913. {
  1914. struct sky2_port *sky2 = netdev_priv(dev);
  1915. struct net_device *dev0 = sky2->hw->dev[0];
  1916. if (netif_running(dev) && __netif_rx_schedule_prep(dev0))
  1917. __netif_rx_schedule(dev0);
  1918. }
  1919. #endif
  1920. /* Chip internal frequency for clock calculations */
  1921. static inline u32 sky2_mhz(const struct sky2_hw *hw)
  1922. {
  1923. switch (hw->chip_id) {
  1924. case CHIP_ID_YUKON_EC:
  1925. case CHIP_ID_YUKON_EC_U:
  1926. return 125; /* 125 Mhz */
  1927. case CHIP_ID_YUKON_FE:
  1928. return 100; /* 100 Mhz */
  1929. default: /* YUKON_XL */
  1930. return 156; /* 156 Mhz */
  1931. }
  1932. }
  1933. static inline u32 sky2_us2clk(const struct sky2_hw *hw, u32 us)
  1934. {
  1935. return sky2_mhz(hw) * us;
  1936. }
  1937. static inline u32 sky2_clk2us(const struct sky2_hw *hw, u32 clk)
  1938. {
  1939. return clk / sky2_mhz(hw);
  1940. }
  1941. static int sky2_reset(struct sky2_hw *hw)
  1942. {
  1943. u16 status;
  1944. u8 t8;
  1945. int i;
  1946. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1947. hw->chip_id = sky2_read8(hw, B2_CHIP_ID);
  1948. if (hw->chip_id < CHIP_ID_YUKON_XL || hw->chip_id > CHIP_ID_YUKON_FE) {
  1949. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  1950. pci_name(hw->pdev), hw->chip_id);
  1951. return -EOPNOTSUPP;
  1952. }
  1953. hw->chip_rev = (sky2_read8(hw, B2_MAC_CFG) & CFG_CHIP_R_MSK) >> 4;
  1954. /* This rev is really old, and requires untested workarounds */
  1955. if (hw->chip_id == CHIP_ID_YUKON_EC && hw->chip_rev == CHIP_REV_YU_EC_A1) {
  1956. printk(KERN_ERR PFX "%s: unsupported revision Yukon-%s (0x%x) rev %d\n",
  1957. pci_name(hw->pdev), yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  1958. hw->chip_id, hw->chip_rev);
  1959. return -EOPNOTSUPP;
  1960. }
  1961. /* disable ASF */
  1962. if (hw->chip_id <= CHIP_ID_YUKON_EC) {
  1963. sky2_write8(hw, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
  1964. sky2_write16(hw, B0_CTST, Y2_ASF_DISABLE);
  1965. }
  1966. /* do a SW reset */
  1967. sky2_write8(hw, B0_CTST, CS_RST_SET);
  1968. sky2_write8(hw, B0_CTST, CS_RST_CLR);
  1969. /* clear PCI errors, if any */
  1970. status = sky2_pci_read16(hw, PCI_STATUS);
  1971. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  1972. sky2_pci_write16(hw, PCI_STATUS, status | PCI_STATUS_ERROR_BITS);
  1973. sky2_write8(hw, B0_CTST, CS_MRST_CLR);
  1974. /* clear any PEX errors */
  1975. if (pci_find_capability(hw->pdev, PCI_CAP_ID_EXP))
  1976. sky2_pci_write32(hw, PEX_UNC_ERR_STAT, 0xffffffffUL);
  1977. hw->pmd_type = sky2_read8(hw, B2_PMD_TYP);
  1978. hw->ports = 1;
  1979. t8 = sky2_read8(hw, B2_Y2_HW_RES);
  1980. if ((t8 & CFG_DUAL_MAC_MSK) == CFG_DUAL_MAC_MSK) {
  1981. if (!(sky2_read8(hw, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
  1982. ++hw->ports;
  1983. }
  1984. sky2_set_power_state(hw, PCI_D0);
  1985. for (i = 0; i < hw->ports; i++) {
  1986. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  1987. sky2_write8(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  1988. }
  1989. sky2_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  1990. /* Clear I2C IRQ noise */
  1991. sky2_write32(hw, B2_I2C_IRQ, 1);
  1992. /* turn off hardware timer (unused) */
  1993. sky2_write8(hw, B2_TI_CTRL, TIM_STOP);
  1994. sky2_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  1995. sky2_write8(hw, B0_Y2LED, LED_STAT_ON);
  1996. /* Turn off descriptor polling */
  1997. sky2_write32(hw, B28_DPT_CTRL, DPT_STOP);
  1998. /* Turn off receive timestamp */
  1999. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_STOP);
  2000. sky2_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2001. /* enable the Tx Arbiters */
  2002. for (i = 0; i < hw->ports; i++)
  2003. sky2_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2004. /* Initialize ram interface */
  2005. for (i = 0; i < hw->ports; i++) {
  2006. sky2_write8(hw, RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
  2007. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R1), SK_RI_TO_53);
  2008. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA1), SK_RI_TO_53);
  2009. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS1), SK_RI_TO_53);
  2010. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R1), SK_RI_TO_53);
  2011. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA1), SK_RI_TO_53);
  2012. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS1), SK_RI_TO_53);
  2013. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_R2), SK_RI_TO_53);
  2014. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XA2), SK_RI_TO_53);
  2015. sky2_write8(hw, RAM_BUFFER(i, B3_RI_WTO_XS2), SK_RI_TO_53);
  2016. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_R2), SK_RI_TO_53);
  2017. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XA2), SK_RI_TO_53);
  2018. sky2_write8(hw, RAM_BUFFER(i, B3_RI_RTO_XS2), SK_RI_TO_53);
  2019. }
  2020. sky2_write32(hw, B0_HWE_IMSK, Y2_HWE_ALL_MASK);
  2021. for (i = 0; i < hw->ports; i++)
  2022. sky2_gmac_reset(hw, i);
  2023. memset(hw->st_le, 0, STATUS_LE_BYTES);
  2024. hw->st_idx = 0;
  2025. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_SET);
  2026. sky2_write32(hw, STAT_CTRL, SC_STAT_RST_CLR);
  2027. sky2_write32(hw, STAT_LIST_ADDR_LO, hw->st_dma);
  2028. sky2_write32(hw, STAT_LIST_ADDR_HI, (u64) hw->st_dma >> 32);
  2029. /* Set the list last index */
  2030. sky2_write16(hw, STAT_LAST_IDX, STATUS_RING_SIZE - 1);
  2031. sky2_write16(hw, STAT_TX_IDX_TH, 10);
  2032. sky2_write8(hw, STAT_FIFO_WM, 16);
  2033. /* set Status-FIFO ISR watermark */
  2034. if (hw->chip_id == CHIP_ID_YUKON_XL && hw->chip_rev == 0)
  2035. sky2_write8(hw, STAT_FIFO_ISR_WM, 4);
  2036. else
  2037. sky2_write8(hw, STAT_FIFO_ISR_WM, 16);
  2038. sky2_write32(hw, STAT_TX_TIMER_INI, sky2_us2clk(hw, 1000));
  2039. sky2_write32(hw, STAT_ISR_TIMER_INI, sky2_us2clk(hw, 20));
  2040. sky2_write32(hw, STAT_LEV_TIMER_INI, sky2_us2clk(hw, 100));
  2041. /* enable status unit */
  2042. sky2_write32(hw, STAT_CTRL, SC_STAT_OP_ON);
  2043. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2044. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2045. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2046. return 0;
  2047. }
  2048. static u32 sky2_supported_modes(const struct sky2_hw *hw)
  2049. {
  2050. if (sky2_is_copper(hw)) {
  2051. u32 modes = SUPPORTED_10baseT_Half
  2052. | SUPPORTED_10baseT_Full
  2053. | SUPPORTED_100baseT_Half
  2054. | SUPPORTED_100baseT_Full
  2055. | SUPPORTED_Autoneg | SUPPORTED_TP;
  2056. if (hw->chip_id != CHIP_ID_YUKON_FE)
  2057. modes |= SUPPORTED_1000baseT_Half
  2058. | SUPPORTED_1000baseT_Full;
  2059. return modes;
  2060. } else
  2061. return SUPPORTED_1000baseT_Half
  2062. | SUPPORTED_1000baseT_Full
  2063. | SUPPORTED_Autoneg
  2064. | SUPPORTED_FIBRE;
  2065. }
  2066. static int sky2_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2067. {
  2068. struct sky2_port *sky2 = netdev_priv(dev);
  2069. struct sky2_hw *hw = sky2->hw;
  2070. ecmd->transceiver = XCVR_INTERNAL;
  2071. ecmd->supported = sky2_supported_modes(hw);
  2072. ecmd->phy_address = PHY_ADDR_MARV;
  2073. if (sky2_is_copper(hw)) {
  2074. ecmd->supported = SUPPORTED_10baseT_Half
  2075. | SUPPORTED_10baseT_Full
  2076. | SUPPORTED_100baseT_Half
  2077. | SUPPORTED_100baseT_Full
  2078. | SUPPORTED_1000baseT_Half
  2079. | SUPPORTED_1000baseT_Full
  2080. | SUPPORTED_Autoneg | SUPPORTED_TP;
  2081. ecmd->port = PORT_TP;
  2082. ecmd->speed = sky2->speed;
  2083. } else {
  2084. ecmd->speed = SPEED_1000;
  2085. ecmd->port = PORT_FIBRE;
  2086. }
  2087. ecmd->advertising = sky2->advertising;
  2088. ecmd->autoneg = sky2->autoneg;
  2089. ecmd->duplex = sky2->duplex;
  2090. return 0;
  2091. }
  2092. static int sky2_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2093. {
  2094. struct sky2_port *sky2 = netdev_priv(dev);
  2095. const struct sky2_hw *hw = sky2->hw;
  2096. u32 supported = sky2_supported_modes(hw);
  2097. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2098. ecmd->advertising = supported;
  2099. sky2->duplex = -1;
  2100. sky2->speed = -1;
  2101. } else {
  2102. u32 setting;
  2103. switch (ecmd->speed) {
  2104. case SPEED_1000:
  2105. if (ecmd->duplex == DUPLEX_FULL)
  2106. setting = SUPPORTED_1000baseT_Full;
  2107. else if (ecmd->duplex == DUPLEX_HALF)
  2108. setting = SUPPORTED_1000baseT_Half;
  2109. else
  2110. return -EINVAL;
  2111. break;
  2112. case SPEED_100:
  2113. if (ecmd->duplex == DUPLEX_FULL)
  2114. setting = SUPPORTED_100baseT_Full;
  2115. else if (ecmd->duplex == DUPLEX_HALF)
  2116. setting = SUPPORTED_100baseT_Half;
  2117. else
  2118. return -EINVAL;
  2119. break;
  2120. case SPEED_10:
  2121. if (ecmd->duplex == DUPLEX_FULL)
  2122. setting = SUPPORTED_10baseT_Full;
  2123. else if (ecmd->duplex == DUPLEX_HALF)
  2124. setting = SUPPORTED_10baseT_Half;
  2125. else
  2126. return -EINVAL;
  2127. break;
  2128. default:
  2129. return -EINVAL;
  2130. }
  2131. if ((setting & supported) == 0)
  2132. return -EINVAL;
  2133. sky2->speed = ecmd->speed;
  2134. sky2->duplex = ecmd->duplex;
  2135. }
  2136. sky2->autoneg = ecmd->autoneg;
  2137. sky2->advertising = ecmd->advertising;
  2138. if (netif_running(dev))
  2139. sky2_phy_reinit(sky2);
  2140. return 0;
  2141. }
  2142. static void sky2_get_drvinfo(struct net_device *dev,
  2143. struct ethtool_drvinfo *info)
  2144. {
  2145. struct sky2_port *sky2 = netdev_priv(dev);
  2146. strcpy(info->driver, DRV_NAME);
  2147. strcpy(info->version, DRV_VERSION);
  2148. strcpy(info->fw_version, "N/A");
  2149. strcpy(info->bus_info, pci_name(sky2->hw->pdev));
  2150. }
  2151. static const struct sky2_stat {
  2152. char name[ETH_GSTRING_LEN];
  2153. u16 offset;
  2154. } sky2_stats[] = {
  2155. { "tx_bytes", GM_TXO_OK_HI },
  2156. { "rx_bytes", GM_RXO_OK_HI },
  2157. { "tx_broadcast", GM_TXF_BC_OK },
  2158. { "rx_broadcast", GM_RXF_BC_OK },
  2159. { "tx_multicast", GM_TXF_MC_OK },
  2160. { "rx_multicast", GM_RXF_MC_OK },
  2161. { "tx_unicast", GM_TXF_UC_OK },
  2162. { "rx_unicast", GM_RXF_UC_OK },
  2163. { "tx_mac_pause", GM_TXF_MPAUSE },
  2164. { "rx_mac_pause", GM_RXF_MPAUSE },
  2165. { "collisions", GM_TXF_COL },
  2166. { "late_collision",GM_TXF_LAT_COL },
  2167. { "aborted", GM_TXF_ABO_COL },
  2168. { "single_collisions", GM_TXF_SNG_COL },
  2169. { "multi_collisions", GM_TXF_MUL_COL },
  2170. { "rx_short", GM_RXF_SHT },
  2171. { "rx_runt", GM_RXE_FRAG },
  2172. { "rx_64_byte_packets", GM_RXF_64B },
  2173. { "rx_65_to_127_byte_packets", GM_RXF_127B },
  2174. { "rx_128_to_255_byte_packets", GM_RXF_255B },
  2175. { "rx_256_to_511_byte_packets", GM_RXF_511B },
  2176. { "rx_512_to_1023_byte_packets", GM_RXF_1023B },
  2177. { "rx_1024_to_1518_byte_packets", GM_RXF_1518B },
  2178. { "rx_1518_to_max_byte_packets", GM_RXF_MAX_SZ },
  2179. { "rx_too_long", GM_RXF_LNG_ERR },
  2180. { "rx_fifo_overflow", GM_RXE_FIFO_OV },
  2181. { "rx_jabber", GM_RXF_JAB_PKT },
  2182. { "rx_fcs_error", GM_RXF_FCS_ERR },
  2183. { "tx_64_byte_packets", GM_TXF_64B },
  2184. { "tx_65_to_127_byte_packets", GM_TXF_127B },
  2185. { "tx_128_to_255_byte_packets", GM_TXF_255B },
  2186. { "tx_256_to_511_byte_packets", GM_TXF_511B },
  2187. { "tx_512_to_1023_byte_packets", GM_TXF_1023B },
  2188. { "tx_1024_to_1518_byte_packets", GM_TXF_1518B },
  2189. { "tx_1519_to_max_byte_packets", GM_TXF_MAX_SZ },
  2190. { "tx_fifo_underrun", GM_TXE_FIFO_UR },
  2191. };
  2192. static u32 sky2_get_rx_csum(struct net_device *dev)
  2193. {
  2194. struct sky2_port *sky2 = netdev_priv(dev);
  2195. return sky2->rx_csum;
  2196. }
  2197. static int sky2_set_rx_csum(struct net_device *dev, u32 data)
  2198. {
  2199. struct sky2_port *sky2 = netdev_priv(dev);
  2200. sky2->rx_csum = data;
  2201. sky2_write32(sky2->hw, Q_ADDR(rxqaddr[sky2->port], Q_CSR),
  2202. data ? BMU_ENA_RX_CHKSUM : BMU_DIS_RX_CHKSUM);
  2203. return 0;
  2204. }
  2205. static u32 sky2_get_msglevel(struct net_device *netdev)
  2206. {
  2207. struct sky2_port *sky2 = netdev_priv(netdev);
  2208. return sky2->msg_enable;
  2209. }
  2210. static int sky2_nway_reset(struct net_device *dev)
  2211. {
  2212. struct sky2_port *sky2 = netdev_priv(dev);
  2213. if (!netif_running(dev) || sky2->autoneg != AUTONEG_ENABLE)
  2214. return -EINVAL;
  2215. sky2_phy_reinit(sky2);
  2216. return 0;
  2217. }
  2218. static void sky2_phy_stats(struct sky2_port *sky2, u64 * data, unsigned count)
  2219. {
  2220. struct sky2_hw *hw = sky2->hw;
  2221. unsigned port = sky2->port;
  2222. int i;
  2223. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  2224. | (u64) gma_read32(hw, port, GM_TXO_OK_LO);
  2225. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  2226. | (u64) gma_read32(hw, port, GM_RXO_OK_LO);
  2227. for (i = 2; i < count; i++)
  2228. data[i] = (u64) gma_read32(hw, port, sky2_stats[i].offset);
  2229. }
  2230. static void sky2_set_msglevel(struct net_device *netdev, u32 value)
  2231. {
  2232. struct sky2_port *sky2 = netdev_priv(netdev);
  2233. sky2->msg_enable = value;
  2234. }
  2235. static int sky2_get_stats_count(struct net_device *dev)
  2236. {
  2237. return ARRAY_SIZE(sky2_stats);
  2238. }
  2239. static void sky2_get_ethtool_stats(struct net_device *dev,
  2240. struct ethtool_stats *stats, u64 * data)
  2241. {
  2242. struct sky2_port *sky2 = netdev_priv(dev);
  2243. sky2_phy_stats(sky2, data, ARRAY_SIZE(sky2_stats));
  2244. }
  2245. static void sky2_get_strings(struct net_device *dev, u32 stringset, u8 * data)
  2246. {
  2247. int i;
  2248. switch (stringset) {
  2249. case ETH_SS_STATS:
  2250. for (i = 0; i < ARRAY_SIZE(sky2_stats); i++)
  2251. memcpy(data + i * ETH_GSTRING_LEN,
  2252. sky2_stats[i].name, ETH_GSTRING_LEN);
  2253. break;
  2254. }
  2255. }
  2256. /* Use hardware MIB variables for critical path statistics and
  2257. * transmit feedback not reported at interrupt.
  2258. * Other errors are accounted for in interrupt handler.
  2259. */
  2260. static struct net_device_stats *sky2_get_stats(struct net_device *dev)
  2261. {
  2262. struct sky2_port *sky2 = netdev_priv(dev);
  2263. u64 data[13];
  2264. sky2_phy_stats(sky2, data, ARRAY_SIZE(data));
  2265. sky2->net_stats.tx_bytes = data[0];
  2266. sky2->net_stats.rx_bytes = data[1];
  2267. sky2->net_stats.tx_packets = data[2] + data[4] + data[6];
  2268. sky2->net_stats.rx_packets = data[3] + data[5] + data[7];
  2269. sky2->net_stats.multicast = data[3] + data[5];
  2270. sky2->net_stats.collisions = data[10];
  2271. sky2->net_stats.tx_aborted_errors = data[12];
  2272. return &sky2->net_stats;
  2273. }
  2274. static int sky2_set_mac_address(struct net_device *dev, void *p)
  2275. {
  2276. struct sky2_port *sky2 = netdev_priv(dev);
  2277. struct sky2_hw *hw = sky2->hw;
  2278. unsigned port = sky2->port;
  2279. const struct sockaddr *addr = p;
  2280. if (!is_valid_ether_addr(addr->sa_data))
  2281. return -EADDRNOTAVAIL;
  2282. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2283. memcpy_toio(hw->regs + B2_MAC_1 + port * 8,
  2284. dev->dev_addr, ETH_ALEN);
  2285. memcpy_toio(hw->regs + B2_MAC_2 + port * 8,
  2286. dev->dev_addr, ETH_ALEN);
  2287. /* virtual address for data */
  2288. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2289. /* physical address: used for pause frames */
  2290. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2291. return 0;
  2292. }
  2293. static void inline sky2_add_filter(u8 filter[8], const u8 *addr)
  2294. {
  2295. u32 bit;
  2296. bit = ether_crc(ETH_ALEN, addr) & 63;
  2297. filter[bit >> 3] |= 1 << (bit & 7);
  2298. }
  2299. static void sky2_set_multicast(struct net_device *dev)
  2300. {
  2301. struct sky2_port *sky2 = netdev_priv(dev);
  2302. struct sky2_hw *hw = sky2->hw;
  2303. unsigned port = sky2->port;
  2304. struct dev_mc_list *list = dev->mc_list;
  2305. u16 reg;
  2306. u8 filter[8];
  2307. int rx_pause;
  2308. static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
  2309. rx_pause = (sky2->flow_status == FC_RX || sky2->flow_status == FC_BOTH);
  2310. memset(filter, 0, sizeof(filter));
  2311. reg = gma_read16(hw, port, GM_RX_CTRL);
  2312. reg |= GM_RXCR_UCF_ENA;
  2313. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2314. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2315. else if (dev->flags & IFF_ALLMULTI)
  2316. memset(filter, 0xff, sizeof(filter));
  2317. else if (dev->mc_count == 0 && !rx_pause)
  2318. reg &= ~GM_RXCR_MCF_ENA;
  2319. else {
  2320. int i;
  2321. reg |= GM_RXCR_MCF_ENA;
  2322. if (rx_pause)
  2323. sky2_add_filter(filter, pause_mc_addr);
  2324. for (i = 0; list && i < dev->mc_count; i++, list = list->next)
  2325. sky2_add_filter(filter, list->dmi_addr);
  2326. }
  2327. gma_write16(hw, port, GM_MC_ADDR_H1,
  2328. (u16) filter[0] | ((u16) filter[1] << 8));
  2329. gma_write16(hw, port, GM_MC_ADDR_H2,
  2330. (u16) filter[2] | ((u16) filter[3] << 8));
  2331. gma_write16(hw, port, GM_MC_ADDR_H3,
  2332. (u16) filter[4] | ((u16) filter[5] << 8));
  2333. gma_write16(hw, port, GM_MC_ADDR_H4,
  2334. (u16) filter[6] | ((u16) filter[7] << 8));
  2335. gma_write16(hw, port, GM_RX_CTRL, reg);
  2336. }
  2337. /* Can have one global because blinking is controlled by
  2338. * ethtool and that is always under RTNL mutex
  2339. */
  2340. static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
  2341. {
  2342. u16 pg;
  2343. switch (hw->chip_id) {
  2344. case CHIP_ID_YUKON_XL:
  2345. pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2346. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2347. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
  2348. on ? (PHY_M_LEDC_LOS_CTRL(1) |
  2349. PHY_M_LEDC_INIT_CTRL(7) |
  2350. PHY_M_LEDC_STA1_CTRL(7) |
  2351. PHY_M_LEDC_STA0_CTRL(7))
  2352. : 0);
  2353. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2354. break;
  2355. default:
  2356. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  2357. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  2358. on ? PHY_M_LED_ALL : 0);
  2359. }
  2360. }
  2361. /* blink LED's for finding board */
  2362. static int sky2_phys_id(struct net_device *dev, u32 data)
  2363. {
  2364. struct sky2_port *sky2 = netdev_priv(dev);
  2365. struct sky2_hw *hw = sky2->hw;
  2366. unsigned port = sky2->port;
  2367. u16 ledctrl, ledover = 0;
  2368. long ms;
  2369. int interrupted;
  2370. int onoff = 1;
  2371. if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
  2372. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
  2373. else
  2374. ms = data * 1000;
  2375. /* save initial values */
  2376. spin_lock_bh(&sky2->phy_lock);
  2377. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2378. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2379. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2380. ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  2381. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2382. } else {
  2383. ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
  2384. ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
  2385. }
  2386. interrupted = 0;
  2387. while (!interrupted && ms > 0) {
  2388. sky2_led(hw, port, onoff);
  2389. onoff = !onoff;
  2390. spin_unlock_bh(&sky2->phy_lock);
  2391. interrupted = msleep_interruptible(250);
  2392. spin_lock_bh(&sky2->phy_lock);
  2393. ms -= 250;
  2394. }
  2395. /* resume regularly scheduled programming */
  2396. if (hw->chip_id == CHIP_ID_YUKON_XL) {
  2397. u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
  2398. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
  2399. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
  2400. gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
  2401. } else {
  2402. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  2403. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  2404. }
  2405. spin_unlock_bh(&sky2->phy_lock);
  2406. return 0;
  2407. }
  2408. static void sky2_get_pauseparam(struct net_device *dev,
  2409. struct ethtool_pauseparam *ecmd)
  2410. {
  2411. struct sky2_port *sky2 = netdev_priv(dev);
  2412. switch (sky2->flow_mode) {
  2413. case FC_NONE:
  2414. ecmd->tx_pause = ecmd->rx_pause = 0;
  2415. break;
  2416. case FC_TX:
  2417. ecmd->tx_pause = 1, ecmd->rx_pause = 0;
  2418. break;
  2419. case FC_RX:
  2420. ecmd->tx_pause = 0, ecmd->rx_pause = 1;
  2421. break;
  2422. case FC_BOTH:
  2423. ecmd->tx_pause = ecmd->rx_pause = 1;
  2424. }
  2425. ecmd->autoneg = sky2->autoneg;
  2426. }
  2427. static int sky2_set_pauseparam(struct net_device *dev,
  2428. struct ethtool_pauseparam *ecmd)
  2429. {
  2430. struct sky2_port *sky2 = netdev_priv(dev);
  2431. sky2->autoneg = ecmd->autoneg;
  2432. sky2->flow_mode = sky2_flow(ecmd->rx_pause, ecmd->tx_pause);
  2433. if (netif_running(dev))
  2434. sky2_phy_reinit(sky2);
  2435. return 0;
  2436. }
  2437. static int sky2_get_coalesce(struct net_device *dev,
  2438. struct ethtool_coalesce *ecmd)
  2439. {
  2440. struct sky2_port *sky2 = netdev_priv(dev);
  2441. struct sky2_hw *hw = sky2->hw;
  2442. if (sky2_read8(hw, STAT_TX_TIMER_CTRL) == TIM_STOP)
  2443. ecmd->tx_coalesce_usecs = 0;
  2444. else {
  2445. u32 clks = sky2_read32(hw, STAT_TX_TIMER_INI);
  2446. ecmd->tx_coalesce_usecs = sky2_clk2us(hw, clks);
  2447. }
  2448. ecmd->tx_max_coalesced_frames = sky2_read16(hw, STAT_TX_IDX_TH);
  2449. if (sky2_read8(hw, STAT_LEV_TIMER_CTRL) == TIM_STOP)
  2450. ecmd->rx_coalesce_usecs = 0;
  2451. else {
  2452. u32 clks = sky2_read32(hw, STAT_LEV_TIMER_INI);
  2453. ecmd->rx_coalesce_usecs = sky2_clk2us(hw, clks);
  2454. }
  2455. ecmd->rx_max_coalesced_frames = sky2_read8(hw, STAT_FIFO_WM);
  2456. if (sky2_read8(hw, STAT_ISR_TIMER_CTRL) == TIM_STOP)
  2457. ecmd->rx_coalesce_usecs_irq = 0;
  2458. else {
  2459. u32 clks = sky2_read32(hw, STAT_ISR_TIMER_INI);
  2460. ecmd->rx_coalesce_usecs_irq = sky2_clk2us(hw, clks);
  2461. }
  2462. ecmd->rx_max_coalesced_frames_irq = sky2_read8(hw, STAT_FIFO_ISR_WM);
  2463. return 0;
  2464. }
  2465. /* Note: this affect both ports */
  2466. static int sky2_set_coalesce(struct net_device *dev,
  2467. struct ethtool_coalesce *ecmd)
  2468. {
  2469. struct sky2_port *sky2 = netdev_priv(dev);
  2470. struct sky2_hw *hw = sky2->hw;
  2471. const u32 tmax = sky2_clk2us(hw, 0x0ffffff);
  2472. if (ecmd->tx_coalesce_usecs > tmax ||
  2473. ecmd->rx_coalesce_usecs > tmax ||
  2474. ecmd->rx_coalesce_usecs_irq > tmax)
  2475. return -EINVAL;
  2476. if (ecmd->tx_max_coalesced_frames >= TX_RING_SIZE-1)
  2477. return -EINVAL;
  2478. if (ecmd->rx_max_coalesced_frames > RX_MAX_PENDING)
  2479. return -EINVAL;
  2480. if (ecmd->rx_max_coalesced_frames_irq >RX_MAX_PENDING)
  2481. return -EINVAL;
  2482. if (ecmd->tx_coalesce_usecs == 0)
  2483. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_STOP);
  2484. else {
  2485. sky2_write32(hw, STAT_TX_TIMER_INI,
  2486. sky2_us2clk(hw, ecmd->tx_coalesce_usecs));
  2487. sky2_write8(hw, STAT_TX_TIMER_CTRL, TIM_START);
  2488. }
  2489. sky2_write16(hw, STAT_TX_IDX_TH, ecmd->tx_max_coalesced_frames);
  2490. if (ecmd->rx_coalesce_usecs == 0)
  2491. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_STOP);
  2492. else {
  2493. sky2_write32(hw, STAT_LEV_TIMER_INI,
  2494. sky2_us2clk(hw, ecmd->rx_coalesce_usecs));
  2495. sky2_write8(hw, STAT_LEV_TIMER_CTRL, TIM_START);
  2496. }
  2497. sky2_write8(hw, STAT_FIFO_WM, ecmd->rx_max_coalesced_frames);
  2498. if (ecmd->rx_coalesce_usecs_irq == 0)
  2499. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_STOP);
  2500. else {
  2501. sky2_write32(hw, STAT_ISR_TIMER_INI,
  2502. sky2_us2clk(hw, ecmd->rx_coalesce_usecs_irq));
  2503. sky2_write8(hw, STAT_ISR_TIMER_CTRL, TIM_START);
  2504. }
  2505. sky2_write8(hw, STAT_FIFO_ISR_WM, ecmd->rx_max_coalesced_frames_irq);
  2506. return 0;
  2507. }
  2508. static void sky2_get_ringparam(struct net_device *dev,
  2509. struct ethtool_ringparam *ering)
  2510. {
  2511. struct sky2_port *sky2 = netdev_priv(dev);
  2512. ering->rx_max_pending = RX_MAX_PENDING;
  2513. ering->rx_mini_max_pending = 0;
  2514. ering->rx_jumbo_max_pending = 0;
  2515. ering->tx_max_pending = TX_RING_SIZE - 1;
  2516. ering->rx_pending = sky2->rx_pending;
  2517. ering->rx_mini_pending = 0;
  2518. ering->rx_jumbo_pending = 0;
  2519. ering->tx_pending = sky2->tx_pending;
  2520. }
  2521. static int sky2_set_ringparam(struct net_device *dev,
  2522. struct ethtool_ringparam *ering)
  2523. {
  2524. struct sky2_port *sky2 = netdev_priv(dev);
  2525. int err = 0;
  2526. if (ering->rx_pending > RX_MAX_PENDING ||
  2527. ering->rx_pending < 8 ||
  2528. ering->tx_pending < MAX_SKB_TX_LE ||
  2529. ering->tx_pending > TX_RING_SIZE - 1)
  2530. return -EINVAL;
  2531. if (netif_running(dev))
  2532. sky2_down(dev);
  2533. sky2->rx_pending = ering->rx_pending;
  2534. sky2->tx_pending = ering->tx_pending;
  2535. if (netif_running(dev)) {
  2536. err = sky2_up(dev);
  2537. if (err)
  2538. dev_close(dev);
  2539. else
  2540. sky2_set_multicast(dev);
  2541. }
  2542. return err;
  2543. }
  2544. static int sky2_get_regs_len(struct net_device *dev)
  2545. {
  2546. return 0x4000;
  2547. }
  2548. /*
  2549. * Returns copy of control register region
  2550. * Note: access to the RAM address register set will cause timeouts.
  2551. */
  2552. static void sky2_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  2553. void *p)
  2554. {
  2555. const struct sky2_port *sky2 = netdev_priv(dev);
  2556. const void __iomem *io = sky2->hw->regs;
  2557. BUG_ON(regs->len < B3_RI_WTO_R1);
  2558. regs->version = 1;
  2559. memset(p, 0, regs->len);
  2560. memcpy_fromio(p, io, B3_RAM_ADDR);
  2561. memcpy_fromio(p + B3_RI_WTO_R1,
  2562. io + B3_RI_WTO_R1,
  2563. regs->len - B3_RI_WTO_R1);
  2564. }
  2565. static const struct ethtool_ops sky2_ethtool_ops = {
  2566. .get_settings = sky2_get_settings,
  2567. .set_settings = sky2_set_settings,
  2568. .get_drvinfo = sky2_get_drvinfo,
  2569. .get_msglevel = sky2_get_msglevel,
  2570. .set_msglevel = sky2_set_msglevel,
  2571. .nway_reset = sky2_nway_reset,
  2572. .get_regs_len = sky2_get_regs_len,
  2573. .get_regs = sky2_get_regs,
  2574. .get_link = ethtool_op_get_link,
  2575. .get_sg = ethtool_op_get_sg,
  2576. .set_sg = ethtool_op_set_sg,
  2577. .get_tx_csum = ethtool_op_get_tx_csum,
  2578. .set_tx_csum = ethtool_op_set_tx_csum,
  2579. .get_tso = ethtool_op_get_tso,
  2580. .set_tso = ethtool_op_set_tso,
  2581. .get_rx_csum = sky2_get_rx_csum,
  2582. .set_rx_csum = sky2_set_rx_csum,
  2583. .get_strings = sky2_get_strings,
  2584. .get_coalesce = sky2_get_coalesce,
  2585. .set_coalesce = sky2_set_coalesce,
  2586. .get_ringparam = sky2_get_ringparam,
  2587. .set_ringparam = sky2_set_ringparam,
  2588. .get_pauseparam = sky2_get_pauseparam,
  2589. .set_pauseparam = sky2_set_pauseparam,
  2590. .phys_id = sky2_phys_id,
  2591. .get_stats_count = sky2_get_stats_count,
  2592. .get_ethtool_stats = sky2_get_ethtool_stats,
  2593. .get_perm_addr = ethtool_op_get_perm_addr,
  2594. };
  2595. /* Initialize network device */
  2596. static __devinit struct net_device *sky2_init_netdev(struct sky2_hw *hw,
  2597. unsigned port, int highmem)
  2598. {
  2599. struct sky2_port *sky2;
  2600. struct net_device *dev = alloc_etherdev(sizeof(*sky2));
  2601. if (!dev) {
  2602. printk(KERN_ERR "sky2 etherdev alloc failed");
  2603. return NULL;
  2604. }
  2605. SET_MODULE_OWNER(dev);
  2606. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2607. dev->irq = hw->pdev->irq;
  2608. dev->open = sky2_up;
  2609. dev->stop = sky2_down;
  2610. dev->do_ioctl = sky2_ioctl;
  2611. dev->hard_start_xmit = sky2_xmit_frame;
  2612. dev->get_stats = sky2_get_stats;
  2613. dev->set_multicast_list = sky2_set_multicast;
  2614. dev->set_mac_address = sky2_set_mac_address;
  2615. dev->change_mtu = sky2_change_mtu;
  2616. SET_ETHTOOL_OPS(dev, &sky2_ethtool_ops);
  2617. dev->tx_timeout = sky2_tx_timeout;
  2618. dev->watchdog_timeo = TX_WATCHDOG;
  2619. if (port == 0)
  2620. dev->poll = sky2_poll;
  2621. dev->weight = NAPI_WEIGHT;
  2622. #ifdef CONFIG_NET_POLL_CONTROLLER
  2623. /* Network console (only works on port 0)
  2624. * because netpoll makes assumptions about NAPI
  2625. */
  2626. if (port == 0)
  2627. dev->poll_controller = sky2_netpoll;
  2628. #endif
  2629. sky2 = netdev_priv(dev);
  2630. sky2->netdev = dev;
  2631. sky2->hw = hw;
  2632. sky2->msg_enable = netif_msg_init(debug, default_msg);
  2633. /* Auto speed and flow control */
  2634. sky2->autoneg = AUTONEG_ENABLE;
  2635. sky2->flow_mode = FC_BOTH;
  2636. sky2->duplex = -1;
  2637. sky2->speed = -1;
  2638. sky2->advertising = sky2_supported_modes(hw);
  2639. sky2->rx_csum = 1;
  2640. spin_lock_init(&sky2->phy_lock);
  2641. sky2->tx_pending = TX_DEF_PENDING;
  2642. sky2->rx_pending = RX_DEF_PENDING;
  2643. hw->dev[port] = dev;
  2644. sky2->port = port;
  2645. if (hw->chip_id != CHIP_ID_YUKON_EC_U)
  2646. dev->features |= NETIF_F_TSO;
  2647. if (highmem)
  2648. dev->features |= NETIF_F_HIGHDMA;
  2649. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2650. #ifdef SKY2_VLAN_TAG_USED
  2651. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  2652. dev->vlan_rx_register = sky2_vlan_rx_register;
  2653. dev->vlan_rx_kill_vid = sky2_vlan_rx_kill_vid;
  2654. #endif
  2655. /* read the mac address */
  2656. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port * 8, ETH_ALEN);
  2657. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2658. /* device is off until link detection */
  2659. netif_carrier_off(dev);
  2660. netif_stop_queue(dev);
  2661. return dev;
  2662. }
  2663. static void __devinit sky2_show_addr(struct net_device *dev)
  2664. {
  2665. const struct sky2_port *sky2 = netdev_priv(dev);
  2666. if (netif_msg_probe(sky2))
  2667. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2668. dev->name,
  2669. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2670. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2671. }
  2672. /* Handle software interrupt used during MSI test */
  2673. static irqreturn_t __devinit sky2_test_intr(int irq, void *dev_id)
  2674. {
  2675. struct sky2_hw *hw = dev_id;
  2676. u32 status = sky2_read32(hw, B0_Y2_SP_ISRC2);
  2677. if (status == 0)
  2678. return IRQ_NONE;
  2679. if (status & Y2_IS_IRQ_SW) {
  2680. hw->msi = 1;
  2681. wake_up(&hw->msi_wait);
  2682. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2683. }
  2684. sky2_write32(hw, B0_Y2_SP_ICR, 2);
  2685. return IRQ_HANDLED;
  2686. }
  2687. /* Test interrupt path by forcing a a software IRQ */
  2688. static int __devinit sky2_test_msi(struct sky2_hw *hw)
  2689. {
  2690. struct pci_dev *pdev = hw->pdev;
  2691. int err;
  2692. init_waitqueue_head (&hw->msi_wait);
  2693. sky2_write32(hw, B0_IMSK, Y2_IS_IRQ_SW);
  2694. err = request_irq(pdev->irq, sky2_test_intr, 0, DRV_NAME, hw);
  2695. if (err) {
  2696. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2697. pci_name(pdev), pdev->irq);
  2698. return err;
  2699. }
  2700. sky2_write8(hw, B0_CTST, CS_ST_SW_IRQ);
  2701. sky2_read8(hw, B0_CTST);
  2702. wait_event_timeout(hw->msi_wait, hw->msi, HZ/10);
  2703. if (!hw->msi) {
  2704. /* MSI test failed, go back to INTx mode */
  2705. printk(KERN_INFO PFX "%s: No interrupt generated using MSI, "
  2706. "switching to INTx mode.\n",
  2707. pci_name(pdev));
  2708. err = -EOPNOTSUPP;
  2709. sky2_write8(hw, B0_CTST, CS_CL_SW_IRQ);
  2710. }
  2711. sky2_write32(hw, B0_IMSK, 0);
  2712. sky2_read32(hw, B0_IMSK);
  2713. free_irq(pdev->irq, hw);
  2714. return err;
  2715. }
  2716. static int __devinit sky2_probe(struct pci_dev *pdev,
  2717. const struct pci_device_id *ent)
  2718. {
  2719. struct net_device *dev, *dev1 = NULL;
  2720. struct sky2_hw *hw;
  2721. int err, pm_cap, using_dac = 0;
  2722. err = pci_enable_device(pdev);
  2723. if (err) {
  2724. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2725. pci_name(pdev));
  2726. goto err_out;
  2727. }
  2728. err = pci_request_regions(pdev, DRV_NAME);
  2729. if (err) {
  2730. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2731. pci_name(pdev));
  2732. goto err_out;
  2733. }
  2734. pci_set_master(pdev);
  2735. /* Find power-management capability. */
  2736. pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  2737. if (pm_cap == 0) {
  2738. printk(KERN_ERR PFX "Cannot find PowerManagement capability, "
  2739. "aborting.\n");
  2740. err = -EIO;
  2741. goto err_out_free_regions;
  2742. }
  2743. if (sizeof(dma_addr_t) > sizeof(u32) &&
  2744. !(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  2745. using_dac = 1;
  2746. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2747. if (err < 0) {
  2748. printk(KERN_ERR PFX "%s unable to obtain 64 bit DMA "
  2749. "for consistent allocations\n", pci_name(pdev));
  2750. goto err_out_free_regions;
  2751. }
  2752. } else {
  2753. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2754. if (err) {
  2755. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2756. pci_name(pdev));
  2757. goto err_out_free_regions;
  2758. }
  2759. }
  2760. err = -ENOMEM;
  2761. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2762. if (!hw) {
  2763. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2764. pci_name(pdev));
  2765. goto err_out_free_regions;
  2766. }
  2767. hw->pdev = pdev;
  2768. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2769. if (!hw->regs) {
  2770. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2771. pci_name(pdev));
  2772. goto err_out_free_hw;
  2773. }
  2774. hw->pm_cap = pm_cap;
  2775. #ifdef __BIG_ENDIAN
  2776. /* The sk98lin vendor driver uses hardware byte swapping but
  2777. * this driver uses software swapping.
  2778. */
  2779. {
  2780. u32 reg;
  2781. reg = sky2_pci_read32(hw, PCI_DEV_REG2);
  2782. reg &= ~PCI_REV_DESC;
  2783. sky2_pci_write32(hw, PCI_DEV_REG2, reg);
  2784. }
  2785. #endif
  2786. /* ring for status responses */
  2787. hw->st_le = pci_alloc_consistent(hw->pdev, STATUS_LE_BYTES,
  2788. &hw->st_dma);
  2789. if (!hw->st_le)
  2790. goto err_out_iounmap;
  2791. err = sky2_reset(hw);
  2792. if (err)
  2793. goto err_out_iounmap;
  2794. printk(KERN_INFO PFX "v%s addr 0x%llx irq %d Yukon-%s (0x%x) rev %d\n",
  2795. DRV_VERSION, (unsigned long long)pci_resource_start(pdev, 0),
  2796. pdev->irq, yukon2_name[hw->chip_id - CHIP_ID_YUKON_XL],
  2797. hw->chip_id, hw->chip_rev);
  2798. dev = sky2_init_netdev(hw, 0, using_dac);
  2799. if (!dev)
  2800. goto err_out_free_pci;
  2801. if (!disable_msi && pci_enable_msi(pdev) == 0) {
  2802. err = sky2_test_msi(hw);
  2803. if (err == -EOPNOTSUPP)
  2804. pci_disable_msi(pdev);
  2805. else if (err)
  2806. goto err_out_free_netdev;
  2807. }
  2808. err = register_netdev(dev);
  2809. if (err) {
  2810. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2811. pci_name(pdev));
  2812. goto err_out_free_netdev;
  2813. }
  2814. err = request_irq(pdev->irq, sky2_intr, hw->msi ? 0 : IRQF_SHARED,
  2815. dev->name, hw);
  2816. if (err) {
  2817. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2818. pci_name(pdev), pdev->irq);
  2819. goto err_out_unregister;
  2820. }
  2821. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2822. sky2_show_addr(dev);
  2823. if (hw->ports > 1 && (dev1 = sky2_init_netdev(hw, 1, using_dac))) {
  2824. if (register_netdev(dev1) == 0)
  2825. sky2_show_addr(dev1);
  2826. else {
  2827. /* Failure to register second port need not be fatal */
  2828. printk(KERN_WARNING PFX
  2829. "register of second port failed\n");
  2830. hw->dev[1] = NULL;
  2831. free_netdev(dev1);
  2832. }
  2833. }
  2834. setup_timer(&hw->idle_timer, sky2_idle, (unsigned long) hw);
  2835. sky2_idle_start(hw);
  2836. pci_set_drvdata(pdev, hw);
  2837. return 0;
  2838. err_out_unregister:
  2839. if (hw->msi)
  2840. pci_disable_msi(pdev);
  2841. unregister_netdev(dev);
  2842. err_out_free_netdev:
  2843. free_netdev(dev);
  2844. err_out_free_pci:
  2845. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2846. pci_free_consistent(hw->pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2847. err_out_iounmap:
  2848. iounmap(hw->regs);
  2849. err_out_free_hw:
  2850. kfree(hw);
  2851. err_out_free_regions:
  2852. pci_release_regions(pdev);
  2853. pci_disable_device(pdev);
  2854. err_out:
  2855. return err;
  2856. }
  2857. static void __devexit sky2_remove(struct pci_dev *pdev)
  2858. {
  2859. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2860. struct net_device *dev0, *dev1;
  2861. if (!hw)
  2862. return;
  2863. del_timer_sync(&hw->idle_timer);
  2864. sky2_write32(hw, B0_IMSK, 0);
  2865. synchronize_irq(hw->pdev->irq);
  2866. dev0 = hw->dev[0];
  2867. dev1 = hw->dev[1];
  2868. if (dev1)
  2869. unregister_netdev(dev1);
  2870. unregister_netdev(dev0);
  2871. sky2_set_power_state(hw, PCI_D3hot);
  2872. sky2_write16(hw, B0_Y2LED, LED_STAT_OFF);
  2873. sky2_write8(hw, B0_CTST, CS_RST_SET);
  2874. sky2_read8(hw, B0_CTST);
  2875. free_irq(pdev->irq, hw);
  2876. if (hw->msi)
  2877. pci_disable_msi(pdev);
  2878. pci_free_consistent(pdev, STATUS_LE_BYTES, hw->st_le, hw->st_dma);
  2879. pci_release_regions(pdev);
  2880. pci_disable_device(pdev);
  2881. if (dev1)
  2882. free_netdev(dev1);
  2883. free_netdev(dev0);
  2884. iounmap(hw->regs);
  2885. kfree(hw);
  2886. pci_set_drvdata(pdev, NULL);
  2887. }
  2888. #ifdef CONFIG_PM
  2889. static int sky2_suspend(struct pci_dev *pdev, pm_message_t state)
  2890. {
  2891. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2892. int i;
  2893. pci_power_t pstate = pci_choose_state(pdev, state);
  2894. if (!(pstate == PCI_D3hot || pstate == PCI_D3cold))
  2895. return -EINVAL;
  2896. del_timer_sync(&hw->idle_timer);
  2897. netif_poll_disable(hw->dev[0]);
  2898. for (i = 0; i < hw->ports; i++) {
  2899. struct net_device *dev = hw->dev[i];
  2900. if (netif_running(dev)) {
  2901. sky2_down(dev);
  2902. netif_device_detach(dev);
  2903. }
  2904. }
  2905. sky2_write32(hw, B0_IMSK, 0);
  2906. pci_save_state(pdev);
  2907. sky2_set_power_state(hw, pstate);
  2908. return 0;
  2909. }
  2910. static int sky2_resume(struct pci_dev *pdev)
  2911. {
  2912. struct sky2_hw *hw = pci_get_drvdata(pdev);
  2913. int i, err;
  2914. pci_restore_state(pdev);
  2915. pci_enable_wake(pdev, PCI_D0, 0);
  2916. sky2_set_power_state(hw, PCI_D0);
  2917. err = sky2_reset(hw);
  2918. if (err)
  2919. goto out;
  2920. sky2_write32(hw, B0_IMSK, Y2_IS_BASE);
  2921. for (i = 0; i < hw->ports; i++) {
  2922. struct net_device *dev = hw->dev[i];
  2923. if (netif_running(dev)) {
  2924. netif_device_attach(dev);
  2925. err = sky2_up(dev);
  2926. if (err) {
  2927. printk(KERN_ERR PFX "%s: could not up: %d\n",
  2928. dev->name, err);
  2929. dev_close(dev);
  2930. goto out;
  2931. }
  2932. }
  2933. }
  2934. netif_poll_enable(hw->dev[0]);
  2935. sky2_idle_start(hw);
  2936. out:
  2937. return err;
  2938. }
  2939. #endif
  2940. static struct pci_driver sky2_driver = {
  2941. .name = DRV_NAME,
  2942. .id_table = sky2_id_table,
  2943. .probe = sky2_probe,
  2944. .remove = __devexit_p(sky2_remove),
  2945. #ifdef CONFIG_PM
  2946. .suspend = sky2_suspend,
  2947. .resume = sky2_resume,
  2948. #endif
  2949. };
  2950. static int __init sky2_init_module(void)
  2951. {
  2952. return pci_register_driver(&sky2_driver);
  2953. }
  2954. static void __exit sky2_cleanup_module(void)
  2955. {
  2956. pci_unregister_driver(&sky2_driver);
  2957. }
  2958. module_init(sky2_init_module);
  2959. module_exit(sky2_cleanup_module);
  2960. MODULE_DESCRIPTION("Marvell Yukon 2 Gigabit Ethernet driver");
  2961. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  2962. MODULE_LICENSE("GPL");
  2963. MODULE_VERSION(DRV_VERSION);