ring_buffer.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072
  1. /*
  2. * Generic ring buffer
  3. *
  4. * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
  5. */
  6. #include <linux/ring_buffer.h>
  7. #include <linux/spinlock.h>
  8. #include <linux/debugfs.h>
  9. #include <linux/uaccess.h>
  10. #include <linux/module.h>
  11. #include <linux/percpu.h>
  12. #include <linux/mutex.h>
  13. #include <linux/sched.h> /* used for sched_clock() (for now) */
  14. #include <linux/init.h>
  15. #include <linux/hash.h>
  16. #include <linux/list.h>
  17. #include <linux/fs.h>
  18. /* Up this if you want to test the TIME_EXTENTS and normalization */
  19. #define DEBUG_SHIFT 0
  20. /* FIXME!!! */
  21. u64 ring_buffer_time_stamp(int cpu)
  22. {
  23. /* shift to debug/test normalization and TIME_EXTENTS */
  24. return sched_clock() << DEBUG_SHIFT;
  25. }
  26. void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
  27. {
  28. /* Just stupid testing the normalize function and deltas */
  29. *ts >>= DEBUG_SHIFT;
  30. }
  31. #define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
  32. #define RB_ALIGNMENT_SHIFT 2
  33. #define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
  34. #define RB_MAX_SMALL_DATA 28
  35. enum {
  36. RB_LEN_TIME_EXTEND = 8,
  37. RB_LEN_TIME_STAMP = 16,
  38. };
  39. /* inline for ring buffer fast paths */
  40. static inline unsigned
  41. rb_event_length(struct ring_buffer_event *event)
  42. {
  43. unsigned length;
  44. switch (event->type) {
  45. case RINGBUF_TYPE_PADDING:
  46. /* undefined */
  47. return -1;
  48. case RINGBUF_TYPE_TIME_EXTEND:
  49. return RB_LEN_TIME_EXTEND;
  50. case RINGBUF_TYPE_TIME_STAMP:
  51. return RB_LEN_TIME_STAMP;
  52. case RINGBUF_TYPE_DATA:
  53. if (event->len)
  54. length = event->len << RB_ALIGNMENT_SHIFT;
  55. else
  56. length = event->array[0];
  57. return length + RB_EVNT_HDR_SIZE;
  58. default:
  59. BUG();
  60. }
  61. /* not hit */
  62. return 0;
  63. }
  64. /**
  65. * ring_buffer_event_length - return the length of the event
  66. * @event: the event to get the length of
  67. */
  68. unsigned ring_buffer_event_length(struct ring_buffer_event *event)
  69. {
  70. return rb_event_length(event);
  71. }
  72. /* inline for ring buffer fast paths */
  73. static inline void *
  74. rb_event_data(struct ring_buffer_event *event)
  75. {
  76. BUG_ON(event->type != RINGBUF_TYPE_DATA);
  77. /* If length is in len field, then array[0] has the data */
  78. if (event->len)
  79. return (void *)&event->array[0];
  80. /* Otherwise length is in array[0] and array[1] has the data */
  81. return (void *)&event->array[1];
  82. }
  83. /**
  84. * ring_buffer_event_data - return the data of the event
  85. * @event: the event to get the data from
  86. */
  87. void *ring_buffer_event_data(struct ring_buffer_event *event)
  88. {
  89. return rb_event_data(event);
  90. }
  91. #define for_each_buffer_cpu(buffer, cpu) \
  92. for_each_cpu_mask(cpu, buffer->cpumask)
  93. #define TS_SHIFT 27
  94. #define TS_MASK ((1ULL << TS_SHIFT) - 1)
  95. #define TS_DELTA_TEST (~TS_MASK)
  96. /*
  97. * This hack stolen from mm/slob.c.
  98. * We can store per page timing information in the page frame of the page.
  99. * Thanks to Peter Zijlstra for suggesting this idea.
  100. */
  101. struct buffer_page {
  102. u64 time_stamp; /* page time stamp */
  103. local_t write; /* index for next write */
  104. local_t commit; /* write commited index */
  105. unsigned read; /* index for next read */
  106. struct list_head list; /* list of free pages */
  107. void *page; /* Actual data page */
  108. };
  109. /*
  110. * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
  111. * this issue out.
  112. */
  113. static inline void free_buffer_page(struct buffer_page *bpage)
  114. {
  115. if (bpage->page)
  116. free_page((unsigned long)bpage->page);
  117. kfree(bpage);
  118. }
  119. /*
  120. * We need to fit the time_stamp delta into 27 bits.
  121. */
  122. static inline int test_time_stamp(u64 delta)
  123. {
  124. if (delta & TS_DELTA_TEST)
  125. return 1;
  126. return 0;
  127. }
  128. #define BUF_PAGE_SIZE PAGE_SIZE
  129. /*
  130. * head_page == tail_page && head == tail then buffer is empty.
  131. */
  132. struct ring_buffer_per_cpu {
  133. int cpu;
  134. struct ring_buffer *buffer;
  135. spinlock_t lock;
  136. struct lock_class_key lock_key;
  137. struct list_head pages;
  138. struct buffer_page *head_page; /* read from head */
  139. struct buffer_page *tail_page; /* write to tail */
  140. struct buffer_page *commit_page; /* commited pages */
  141. struct buffer_page *reader_page;
  142. unsigned long overrun;
  143. unsigned long entries;
  144. u64 write_stamp;
  145. u64 read_stamp;
  146. atomic_t record_disabled;
  147. };
  148. struct ring_buffer {
  149. unsigned long size;
  150. unsigned pages;
  151. unsigned flags;
  152. int cpus;
  153. cpumask_t cpumask;
  154. atomic_t record_disabled;
  155. struct mutex mutex;
  156. struct ring_buffer_per_cpu **buffers;
  157. };
  158. struct ring_buffer_iter {
  159. struct ring_buffer_per_cpu *cpu_buffer;
  160. unsigned long head;
  161. struct buffer_page *head_page;
  162. u64 read_stamp;
  163. };
  164. #define RB_WARN_ON(buffer, cond) \
  165. do { \
  166. if (unlikely(cond)) { \
  167. atomic_inc(&buffer->record_disabled); \
  168. WARN_ON(1); \
  169. } \
  170. } while (0)
  171. #define RB_WARN_ON_RET(buffer, cond) \
  172. do { \
  173. if (unlikely(cond)) { \
  174. atomic_inc(&buffer->record_disabled); \
  175. WARN_ON(1); \
  176. return -1; \
  177. } \
  178. } while (0)
  179. #define RB_WARN_ON_ONCE(buffer, cond) \
  180. do { \
  181. static int once; \
  182. if (unlikely(cond) && !once) { \
  183. once++; \
  184. atomic_inc(&buffer->record_disabled); \
  185. WARN_ON(1); \
  186. } \
  187. } while (0)
  188. /**
  189. * check_pages - integrity check of buffer pages
  190. * @cpu_buffer: CPU buffer with pages to test
  191. *
  192. * As a safty measure we check to make sure the data pages have not
  193. * been corrupted.
  194. */
  195. static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
  196. {
  197. struct list_head *head = &cpu_buffer->pages;
  198. struct buffer_page *page, *tmp;
  199. RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
  200. RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
  201. list_for_each_entry_safe(page, tmp, head, list) {
  202. RB_WARN_ON_RET(cpu_buffer,
  203. page->list.next->prev != &page->list);
  204. RB_WARN_ON_RET(cpu_buffer,
  205. page->list.prev->next != &page->list);
  206. }
  207. return 0;
  208. }
  209. static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
  210. unsigned nr_pages)
  211. {
  212. struct list_head *head = &cpu_buffer->pages;
  213. struct buffer_page *page, *tmp;
  214. unsigned long addr;
  215. LIST_HEAD(pages);
  216. unsigned i;
  217. for (i = 0; i < nr_pages; i++) {
  218. page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
  219. GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
  220. if (!page)
  221. goto free_pages;
  222. list_add(&page->list, &pages);
  223. addr = __get_free_page(GFP_KERNEL);
  224. if (!addr)
  225. goto free_pages;
  226. page->page = (void *)addr;
  227. }
  228. list_splice(&pages, head);
  229. rb_check_pages(cpu_buffer);
  230. return 0;
  231. free_pages:
  232. list_for_each_entry_safe(page, tmp, &pages, list) {
  233. list_del_init(&page->list);
  234. free_buffer_page(page);
  235. }
  236. return -ENOMEM;
  237. }
  238. static struct ring_buffer_per_cpu *
  239. rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
  240. {
  241. struct ring_buffer_per_cpu *cpu_buffer;
  242. struct buffer_page *page;
  243. unsigned long addr;
  244. int ret;
  245. cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
  246. GFP_KERNEL, cpu_to_node(cpu));
  247. if (!cpu_buffer)
  248. return NULL;
  249. cpu_buffer->cpu = cpu;
  250. cpu_buffer->buffer = buffer;
  251. spin_lock_init(&cpu_buffer->lock);
  252. INIT_LIST_HEAD(&cpu_buffer->pages);
  253. page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
  254. GFP_KERNEL, cpu_to_node(cpu));
  255. if (!page)
  256. goto fail_free_buffer;
  257. cpu_buffer->reader_page = page;
  258. addr = __get_free_page(GFP_KERNEL);
  259. if (!addr)
  260. goto fail_free_reader;
  261. page->page = (void *)addr;
  262. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  263. ret = rb_allocate_pages(cpu_buffer, buffer->pages);
  264. if (ret < 0)
  265. goto fail_free_reader;
  266. cpu_buffer->head_page
  267. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  268. cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
  269. return cpu_buffer;
  270. fail_free_reader:
  271. free_buffer_page(cpu_buffer->reader_page);
  272. fail_free_buffer:
  273. kfree(cpu_buffer);
  274. return NULL;
  275. }
  276. static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
  277. {
  278. struct list_head *head = &cpu_buffer->pages;
  279. struct buffer_page *page, *tmp;
  280. list_del_init(&cpu_buffer->reader_page->list);
  281. free_buffer_page(cpu_buffer->reader_page);
  282. list_for_each_entry_safe(page, tmp, head, list) {
  283. list_del_init(&page->list);
  284. free_buffer_page(page);
  285. }
  286. kfree(cpu_buffer);
  287. }
  288. /*
  289. * Causes compile errors if the struct buffer_page gets bigger
  290. * than the struct page.
  291. */
  292. extern int ring_buffer_page_too_big(void);
  293. /**
  294. * ring_buffer_alloc - allocate a new ring_buffer
  295. * @size: the size in bytes that is needed.
  296. * @flags: attributes to set for the ring buffer.
  297. *
  298. * Currently the only flag that is available is the RB_FL_OVERWRITE
  299. * flag. This flag means that the buffer will overwrite old data
  300. * when the buffer wraps. If this flag is not set, the buffer will
  301. * drop data when the tail hits the head.
  302. */
  303. struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
  304. {
  305. struct ring_buffer *buffer;
  306. int bsize;
  307. int cpu;
  308. /* Paranoid! Optimizes out when all is well */
  309. if (sizeof(struct buffer_page) > sizeof(struct page))
  310. ring_buffer_page_too_big();
  311. /* keep it in its own cache line */
  312. buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
  313. GFP_KERNEL);
  314. if (!buffer)
  315. return NULL;
  316. buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  317. buffer->flags = flags;
  318. /* need at least two pages */
  319. if (buffer->pages == 1)
  320. buffer->pages++;
  321. buffer->cpumask = cpu_possible_map;
  322. buffer->cpus = nr_cpu_ids;
  323. bsize = sizeof(void *) * nr_cpu_ids;
  324. buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
  325. GFP_KERNEL);
  326. if (!buffer->buffers)
  327. goto fail_free_buffer;
  328. for_each_buffer_cpu(buffer, cpu) {
  329. buffer->buffers[cpu] =
  330. rb_allocate_cpu_buffer(buffer, cpu);
  331. if (!buffer->buffers[cpu])
  332. goto fail_free_buffers;
  333. }
  334. mutex_init(&buffer->mutex);
  335. return buffer;
  336. fail_free_buffers:
  337. for_each_buffer_cpu(buffer, cpu) {
  338. if (buffer->buffers[cpu])
  339. rb_free_cpu_buffer(buffer->buffers[cpu]);
  340. }
  341. kfree(buffer->buffers);
  342. fail_free_buffer:
  343. kfree(buffer);
  344. return NULL;
  345. }
  346. /**
  347. * ring_buffer_free - free a ring buffer.
  348. * @buffer: the buffer to free.
  349. */
  350. void
  351. ring_buffer_free(struct ring_buffer *buffer)
  352. {
  353. int cpu;
  354. for_each_buffer_cpu(buffer, cpu)
  355. rb_free_cpu_buffer(buffer->buffers[cpu]);
  356. kfree(buffer);
  357. }
  358. static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
  359. static void
  360. rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
  361. {
  362. struct buffer_page *page;
  363. struct list_head *p;
  364. unsigned i;
  365. atomic_inc(&cpu_buffer->record_disabled);
  366. synchronize_sched();
  367. for (i = 0; i < nr_pages; i++) {
  368. BUG_ON(list_empty(&cpu_buffer->pages));
  369. p = cpu_buffer->pages.next;
  370. page = list_entry(p, struct buffer_page, list);
  371. list_del_init(&page->list);
  372. free_buffer_page(page);
  373. }
  374. BUG_ON(list_empty(&cpu_buffer->pages));
  375. rb_reset_cpu(cpu_buffer);
  376. rb_check_pages(cpu_buffer);
  377. atomic_dec(&cpu_buffer->record_disabled);
  378. }
  379. static void
  380. rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
  381. struct list_head *pages, unsigned nr_pages)
  382. {
  383. struct buffer_page *page;
  384. struct list_head *p;
  385. unsigned i;
  386. atomic_inc(&cpu_buffer->record_disabled);
  387. synchronize_sched();
  388. for (i = 0; i < nr_pages; i++) {
  389. BUG_ON(list_empty(pages));
  390. p = pages->next;
  391. page = list_entry(p, struct buffer_page, list);
  392. list_del_init(&page->list);
  393. list_add_tail(&page->list, &cpu_buffer->pages);
  394. }
  395. rb_reset_cpu(cpu_buffer);
  396. rb_check_pages(cpu_buffer);
  397. atomic_dec(&cpu_buffer->record_disabled);
  398. }
  399. /**
  400. * ring_buffer_resize - resize the ring buffer
  401. * @buffer: the buffer to resize.
  402. * @size: the new size.
  403. *
  404. * The tracer is responsible for making sure that the buffer is
  405. * not being used while changing the size.
  406. * Note: We may be able to change the above requirement by using
  407. * RCU synchronizations.
  408. *
  409. * Minimum size is 2 * BUF_PAGE_SIZE.
  410. *
  411. * Returns -1 on failure.
  412. */
  413. int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
  414. {
  415. struct ring_buffer_per_cpu *cpu_buffer;
  416. unsigned nr_pages, rm_pages, new_pages;
  417. struct buffer_page *page, *tmp;
  418. unsigned long buffer_size;
  419. unsigned long addr;
  420. LIST_HEAD(pages);
  421. int i, cpu;
  422. size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  423. size *= BUF_PAGE_SIZE;
  424. buffer_size = buffer->pages * BUF_PAGE_SIZE;
  425. /* we need a minimum of two pages */
  426. if (size < BUF_PAGE_SIZE * 2)
  427. size = BUF_PAGE_SIZE * 2;
  428. if (size == buffer_size)
  429. return size;
  430. mutex_lock(&buffer->mutex);
  431. nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
  432. if (size < buffer_size) {
  433. /* easy case, just free pages */
  434. BUG_ON(nr_pages >= buffer->pages);
  435. rm_pages = buffer->pages - nr_pages;
  436. for_each_buffer_cpu(buffer, cpu) {
  437. cpu_buffer = buffer->buffers[cpu];
  438. rb_remove_pages(cpu_buffer, rm_pages);
  439. }
  440. goto out;
  441. }
  442. /*
  443. * This is a bit more difficult. We only want to add pages
  444. * when we can allocate enough for all CPUs. We do this
  445. * by allocating all the pages and storing them on a local
  446. * link list. If we succeed in our allocation, then we
  447. * add these pages to the cpu_buffers. Otherwise we just free
  448. * them all and return -ENOMEM;
  449. */
  450. BUG_ON(nr_pages <= buffer->pages);
  451. new_pages = nr_pages - buffer->pages;
  452. for_each_buffer_cpu(buffer, cpu) {
  453. for (i = 0; i < new_pages; i++) {
  454. page = kzalloc_node(ALIGN(sizeof(*page),
  455. cache_line_size()),
  456. GFP_KERNEL, cpu_to_node(cpu));
  457. if (!page)
  458. goto free_pages;
  459. list_add(&page->list, &pages);
  460. addr = __get_free_page(GFP_KERNEL);
  461. if (!addr)
  462. goto free_pages;
  463. page->page = (void *)addr;
  464. }
  465. }
  466. for_each_buffer_cpu(buffer, cpu) {
  467. cpu_buffer = buffer->buffers[cpu];
  468. rb_insert_pages(cpu_buffer, &pages, new_pages);
  469. }
  470. BUG_ON(!list_empty(&pages));
  471. out:
  472. buffer->pages = nr_pages;
  473. mutex_unlock(&buffer->mutex);
  474. return size;
  475. free_pages:
  476. list_for_each_entry_safe(page, tmp, &pages, list) {
  477. list_del_init(&page->list);
  478. free_buffer_page(page);
  479. }
  480. return -ENOMEM;
  481. }
  482. static inline int rb_null_event(struct ring_buffer_event *event)
  483. {
  484. return event->type == RINGBUF_TYPE_PADDING;
  485. }
  486. static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
  487. {
  488. return page->page + index;
  489. }
  490. static inline struct ring_buffer_event *
  491. rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
  492. {
  493. return __rb_page_index(cpu_buffer->reader_page,
  494. cpu_buffer->reader_page->read);
  495. }
  496. static inline struct ring_buffer_event *
  497. rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
  498. {
  499. return __rb_page_index(cpu_buffer->head_page,
  500. cpu_buffer->head_page->read);
  501. }
  502. static inline struct ring_buffer_event *
  503. rb_iter_head_event(struct ring_buffer_iter *iter)
  504. {
  505. return __rb_page_index(iter->head_page, iter->head);
  506. }
  507. static inline unsigned rb_page_write(struct buffer_page *bpage)
  508. {
  509. return local_read(&bpage->write);
  510. }
  511. static inline unsigned rb_page_commit(struct buffer_page *bpage)
  512. {
  513. return local_read(&bpage->commit);
  514. }
  515. /* Size is determined by what has been commited */
  516. static inline unsigned rb_page_size(struct buffer_page *bpage)
  517. {
  518. return rb_page_commit(bpage);
  519. }
  520. static inline unsigned
  521. rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
  522. {
  523. return rb_page_commit(cpu_buffer->commit_page);
  524. }
  525. static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
  526. {
  527. return rb_page_commit(cpu_buffer->head_page);
  528. }
  529. /*
  530. * When the tail hits the head and the buffer is in overwrite mode,
  531. * the head jumps to the next page and all content on the previous
  532. * page is discarded. But before doing so, we update the overrun
  533. * variable of the buffer.
  534. */
  535. static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
  536. {
  537. struct ring_buffer_event *event;
  538. unsigned long head;
  539. for (head = 0; head < rb_head_size(cpu_buffer);
  540. head += rb_event_length(event)) {
  541. event = __rb_page_index(cpu_buffer->head_page, head);
  542. BUG_ON(rb_null_event(event));
  543. /* Only count data entries */
  544. if (event->type != RINGBUF_TYPE_DATA)
  545. continue;
  546. cpu_buffer->overrun++;
  547. cpu_buffer->entries--;
  548. }
  549. }
  550. static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
  551. struct buffer_page **page)
  552. {
  553. struct list_head *p = (*page)->list.next;
  554. if (p == &cpu_buffer->pages)
  555. p = p->next;
  556. *page = list_entry(p, struct buffer_page, list);
  557. }
  558. static inline unsigned
  559. rb_event_index(struct ring_buffer_event *event)
  560. {
  561. unsigned long addr = (unsigned long)event;
  562. return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
  563. }
  564. static inline int
  565. rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
  566. struct ring_buffer_event *event)
  567. {
  568. unsigned long addr = (unsigned long)event;
  569. unsigned long index;
  570. index = rb_event_index(event);
  571. addr &= PAGE_MASK;
  572. return cpu_buffer->commit_page->page == (void *)addr &&
  573. rb_commit_index(cpu_buffer) == index;
  574. }
  575. static inline void
  576. rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
  577. struct ring_buffer_event *event)
  578. {
  579. unsigned long addr = (unsigned long)event;
  580. unsigned long index;
  581. index = rb_event_index(event);
  582. addr &= PAGE_MASK;
  583. while (cpu_buffer->commit_page->page != (void *)addr) {
  584. RB_WARN_ON(cpu_buffer,
  585. cpu_buffer->commit_page == cpu_buffer->tail_page);
  586. cpu_buffer->commit_page->commit =
  587. cpu_buffer->commit_page->write;
  588. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  589. cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
  590. }
  591. /* Now set the commit to the event's index */
  592. local_set(&cpu_buffer->commit_page->commit, index);
  593. }
  594. static inline void
  595. rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
  596. {
  597. /*
  598. * We only race with interrupts and NMIs on this CPU.
  599. * If we own the commit event, then we can commit
  600. * all others that interrupted us, since the interruptions
  601. * are in stack format (they finish before they come
  602. * back to us). This allows us to do a simple loop to
  603. * assign the commit to the tail.
  604. */
  605. while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
  606. cpu_buffer->commit_page->commit =
  607. cpu_buffer->commit_page->write;
  608. rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
  609. cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
  610. /* add barrier to keep gcc from optimizing too much */
  611. barrier();
  612. }
  613. while (rb_commit_index(cpu_buffer) !=
  614. rb_page_write(cpu_buffer->commit_page)) {
  615. cpu_buffer->commit_page->commit =
  616. cpu_buffer->commit_page->write;
  617. barrier();
  618. }
  619. }
  620. static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  621. {
  622. cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
  623. cpu_buffer->reader_page->read = 0;
  624. }
  625. static inline void rb_inc_iter(struct ring_buffer_iter *iter)
  626. {
  627. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  628. /*
  629. * The iterator could be on the reader page (it starts there).
  630. * But the head could have moved, since the reader was
  631. * found. Check for this case and assign the iterator
  632. * to the head page instead of next.
  633. */
  634. if (iter->head_page == cpu_buffer->reader_page)
  635. iter->head_page = cpu_buffer->head_page;
  636. else
  637. rb_inc_page(cpu_buffer, &iter->head_page);
  638. iter->read_stamp = iter->head_page->time_stamp;
  639. iter->head = 0;
  640. }
  641. /**
  642. * ring_buffer_update_event - update event type and data
  643. * @event: the even to update
  644. * @type: the type of event
  645. * @length: the size of the event field in the ring buffer
  646. *
  647. * Update the type and data fields of the event. The length
  648. * is the actual size that is written to the ring buffer,
  649. * and with this, we can determine what to place into the
  650. * data field.
  651. */
  652. static inline void
  653. rb_update_event(struct ring_buffer_event *event,
  654. unsigned type, unsigned length)
  655. {
  656. event->type = type;
  657. switch (type) {
  658. case RINGBUF_TYPE_PADDING:
  659. break;
  660. case RINGBUF_TYPE_TIME_EXTEND:
  661. event->len =
  662. (RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
  663. >> RB_ALIGNMENT_SHIFT;
  664. break;
  665. case RINGBUF_TYPE_TIME_STAMP:
  666. event->len =
  667. (RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
  668. >> RB_ALIGNMENT_SHIFT;
  669. break;
  670. case RINGBUF_TYPE_DATA:
  671. length -= RB_EVNT_HDR_SIZE;
  672. if (length > RB_MAX_SMALL_DATA) {
  673. event->len = 0;
  674. event->array[0] = length;
  675. } else
  676. event->len =
  677. (length + (RB_ALIGNMENT-1))
  678. >> RB_ALIGNMENT_SHIFT;
  679. break;
  680. default:
  681. BUG();
  682. }
  683. }
  684. static inline unsigned rb_calculate_event_length(unsigned length)
  685. {
  686. struct ring_buffer_event event; /* Used only for sizeof array */
  687. /* zero length can cause confusions */
  688. if (!length)
  689. length = 1;
  690. if (length > RB_MAX_SMALL_DATA)
  691. length += sizeof(event.array[0]);
  692. length += RB_EVNT_HDR_SIZE;
  693. length = ALIGN(length, RB_ALIGNMENT);
  694. return length;
  695. }
  696. static struct ring_buffer_event *
  697. __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
  698. unsigned type, unsigned long length, u64 *ts)
  699. {
  700. struct buffer_page *tail_page, *head_page, *reader_page;
  701. unsigned long tail, write;
  702. struct ring_buffer *buffer = cpu_buffer->buffer;
  703. struct ring_buffer_event *event;
  704. unsigned long flags;
  705. tail_page = cpu_buffer->tail_page;
  706. write = local_add_return(length, &tail_page->write);
  707. tail = write - length;
  708. /* See if we shot pass the end of this buffer page */
  709. if (write > BUF_PAGE_SIZE) {
  710. struct buffer_page *next_page = tail_page;
  711. spin_lock_irqsave(&cpu_buffer->lock, flags);
  712. rb_inc_page(cpu_buffer, &next_page);
  713. head_page = cpu_buffer->head_page;
  714. reader_page = cpu_buffer->reader_page;
  715. /* we grabbed the lock before incrementing */
  716. RB_WARN_ON(cpu_buffer, next_page == reader_page);
  717. /*
  718. * If for some reason, we had an interrupt storm that made
  719. * it all the way around the buffer, bail, and warn
  720. * about it.
  721. */
  722. if (unlikely(next_page == cpu_buffer->commit_page)) {
  723. WARN_ON_ONCE(1);
  724. goto out_unlock;
  725. }
  726. if (next_page == head_page) {
  727. if (!(buffer->flags & RB_FL_OVERWRITE)) {
  728. /* reset write */
  729. if (tail <= BUF_PAGE_SIZE)
  730. local_set(&tail_page->write, tail);
  731. goto out_unlock;
  732. }
  733. /* tail_page has not moved yet? */
  734. if (tail_page == cpu_buffer->tail_page) {
  735. /* count overflows */
  736. rb_update_overflow(cpu_buffer);
  737. rb_inc_page(cpu_buffer, &head_page);
  738. cpu_buffer->head_page = head_page;
  739. cpu_buffer->head_page->read = 0;
  740. }
  741. }
  742. /*
  743. * If the tail page is still the same as what we think
  744. * it is, then it is up to us to update the tail
  745. * pointer.
  746. */
  747. if (tail_page == cpu_buffer->tail_page) {
  748. local_set(&next_page->write, 0);
  749. local_set(&next_page->commit, 0);
  750. cpu_buffer->tail_page = next_page;
  751. /* reread the time stamp */
  752. *ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  753. cpu_buffer->tail_page->time_stamp = *ts;
  754. }
  755. /*
  756. * The actual tail page has moved forward.
  757. */
  758. if (tail < BUF_PAGE_SIZE) {
  759. /* Mark the rest of the page with padding */
  760. event = __rb_page_index(tail_page, tail);
  761. event->type = RINGBUF_TYPE_PADDING;
  762. }
  763. if (tail <= BUF_PAGE_SIZE)
  764. /* Set the write back to the previous setting */
  765. local_set(&tail_page->write, tail);
  766. /*
  767. * If this was a commit entry that failed,
  768. * increment that too
  769. */
  770. if (tail_page == cpu_buffer->commit_page &&
  771. tail == rb_commit_index(cpu_buffer)) {
  772. rb_set_commit_to_write(cpu_buffer);
  773. }
  774. spin_unlock_irqrestore(&cpu_buffer->lock, flags);
  775. /* fail and let the caller try again */
  776. return ERR_PTR(-EAGAIN);
  777. }
  778. /* We reserved something on the buffer */
  779. BUG_ON(write > BUF_PAGE_SIZE);
  780. event = __rb_page_index(tail_page, tail);
  781. rb_update_event(event, type, length);
  782. /*
  783. * If this is a commit and the tail is zero, then update
  784. * this page's time stamp.
  785. */
  786. if (!tail && rb_is_commit(cpu_buffer, event))
  787. cpu_buffer->commit_page->time_stamp = *ts;
  788. return event;
  789. out_unlock:
  790. spin_unlock_irqrestore(&cpu_buffer->lock, flags);
  791. return NULL;
  792. }
  793. static int
  794. rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  795. u64 *ts, u64 *delta)
  796. {
  797. struct ring_buffer_event *event;
  798. static int once;
  799. int ret;
  800. if (unlikely(*delta > (1ULL << 59) && !once++)) {
  801. printk(KERN_WARNING "Delta way too big! %llu"
  802. " ts=%llu write stamp = %llu\n",
  803. (unsigned long long)*delta,
  804. (unsigned long long)*ts,
  805. (unsigned long long)cpu_buffer->write_stamp);
  806. WARN_ON(1);
  807. }
  808. /*
  809. * The delta is too big, we to add a
  810. * new timestamp.
  811. */
  812. event = __rb_reserve_next(cpu_buffer,
  813. RINGBUF_TYPE_TIME_EXTEND,
  814. RB_LEN_TIME_EXTEND,
  815. ts);
  816. if (!event)
  817. return -EBUSY;
  818. if (PTR_ERR(event) == -EAGAIN)
  819. return -EAGAIN;
  820. /* Only a commited time event can update the write stamp */
  821. if (rb_is_commit(cpu_buffer, event)) {
  822. /*
  823. * If this is the first on the page, then we need to
  824. * update the page itself, and just put in a zero.
  825. */
  826. if (rb_event_index(event)) {
  827. event->time_delta = *delta & TS_MASK;
  828. event->array[0] = *delta >> TS_SHIFT;
  829. } else {
  830. cpu_buffer->commit_page->time_stamp = *ts;
  831. event->time_delta = 0;
  832. event->array[0] = 0;
  833. }
  834. cpu_buffer->write_stamp = *ts;
  835. /* let the caller know this was the commit */
  836. ret = 1;
  837. } else {
  838. /* Darn, this is just wasted space */
  839. event->time_delta = 0;
  840. event->array[0] = 0;
  841. ret = 0;
  842. }
  843. *delta = 0;
  844. return ret;
  845. }
  846. static struct ring_buffer_event *
  847. rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
  848. unsigned type, unsigned long length)
  849. {
  850. struct ring_buffer_event *event;
  851. u64 ts, delta;
  852. int commit = 0;
  853. int nr_loops = 0;
  854. again:
  855. /*
  856. * We allow for interrupts to reenter here and do a trace.
  857. * If one does, it will cause this original code to loop
  858. * back here. Even with heavy interrupts happening, this
  859. * should only happen a few times in a row. If this happens
  860. * 1000 times in a row, there must be either an interrupt
  861. * storm or we have something buggy.
  862. * Bail!
  863. */
  864. if (unlikely(++nr_loops > 1000)) {
  865. RB_WARN_ON(cpu_buffer, 1);
  866. return NULL;
  867. }
  868. ts = ring_buffer_time_stamp(cpu_buffer->cpu);
  869. /*
  870. * Only the first commit can update the timestamp.
  871. * Yes there is a race here. If an interrupt comes in
  872. * just after the conditional and it traces too, then it
  873. * will also check the deltas. More than one timestamp may
  874. * also be made. But only the entry that did the actual
  875. * commit will be something other than zero.
  876. */
  877. if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
  878. rb_page_write(cpu_buffer->tail_page) ==
  879. rb_commit_index(cpu_buffer)) {
  880. delta = ts - cpu_buffer->write_stamp;
  881. /* make sure this delta is calculated here */
  882. barrier();
  883. /* Did the write stamp get updated already? */
  884. if (unlikely(ts < cpu_buffer->write_stamp))
  885. delta = 0;
  886. if (test_time_stamp(delta)) {
  887. commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
  888. if (commit == -EBUSY)
  889. return NULL;
  890. if (commit == -EAGAIN)
  891. goto again;
  892. RB_WARN_ON(cpu_buffer, commit < 0);
  893. }
  894. } else
  895. /* Non commits have zero deltas */
  896. delta = 0;
  897. event = __rb_reserve_next(cpu_buffer, type, length, &ts);
  898. if (PTR_ERR(event) == -EAGAIN)
  899. goto again;
  900. if (!event) {
  901. if (unlikely(commit))
  902. /*
  903. * Ouch! We needed a timestamp and it was commited. But
  904. * we didn't get our event reserved.
  905. */
  906. rb_set_commit_to_write(cpu_buffer);
  907. return NULL;
  908. }
  909. /*
  910. * If the timestamp was commited, make the commit our entry
  911. * now so that we will update it when needed.
  912. */
  913. if (commit)
  914. rb_set_commit_event(cpu_buffer, event);
  915. else if (!rb_is_commit(cpu_buffer, event))
  916. delta = 0;
  917. event->time_delta = delta;
  918. return event;
  919. }
  920. static DEFINE_PER_CPU(int, rb_need_resched);
  921. /**
  922. * ring_buffer_lock_reserve - reserve a part of the buffer
  923. * @buffer: the ring buffer to reserve from
  924. * @length: the length of the data to reserve (excluding event header)
  925. * @flags: a pointer to save the interrupt flags
  926. *
  927. * Returns a reseverd event on the ring buffer to copy directly to.
  928. * The user of this interface will need to get the body to write into
  929. * and can use the ring_buffer_event_data() interface.
  930. *
  931. * The length is the length of the data needed, not the event length
  932. * which also includes the event header.
  933. *
  934. * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
  935. * If NULL is returned, then nothing has been allocated or locked.
  936. */
  937. struct ring_buffer_event *
  938. ring_buffer_lock_reserve(struct ring_buffer *buffer,
  939. unsigned long length,
  940. unsigned long *flags)
  941. {
  942. struct ring_buffer_per_cpu *cpu_buffer;
  943. struct ring_buffer_event *event;
  944. int cpu, resched;
  945. if (atomic_read(&buffer->record_disabled))
  946. return NULL;
  947. /* If we are tracing schedule, we don't want to recurse */
  948. resched = need_resched();
  949. preempt_disable_notrace();
  950. cpu = raw_smp_processor_id();
  951. if (!cpu_isset(cpu, buffer->cpumask))
  952. goto out;
  953. cpu_buffer = buffer->buffers[cpu];
  954. if (atomic_read(&cpu_buffer->record_disabled))
  955. goto out;
  956. length = rb_calculate_event_length(length);
  957. if (length > BUF_PAGE_SIZE)
  958. goto out;
  959. event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
  960. if (!event)
  961. goto out;
  962. /*
  963. * Need to store resched state on this cpu.
  964. * Only the first needs to.
  965. */
  966. if (preempt_count() == 1)
  967. per_cpu(rb_need_resched, cpu) = resched;
  968. return event;
  969. out:
  970. if (resched)
  971. preempt_enable_notrace();
  972. else
  973. preempt_enable_notrace();
  974. return NULL;
  975. }
  976. static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
  977. struct ring_buffer_event *event)
  978. {
  979. cpu_buffer->entries++;
  980. /* Only process further if we own the commit */
  981. if (!rb_is_commit(cpu_buffer, event))
  982. return;
  983. cpu_buffer->write_stamp += event->time_delta;
  984. rb_set_commit_to_write(cpu_buffer);
  985. }
  986. /**
  987. * ring_buffer_unlock_commit - commit a reserved
  988. * @buffer: The buffer to commit to
  989. * @event: The event pointer to commit.
  990. * @flags: the interrupt flags received from ring_buffer_lock_reserve.
  991. *
  992. * This commits the data to the ring buffer, and releases any locks held.
  993. *
  994. * Must be paired with ring_buffer_lock_reserve.
  995. */
  996. int ring_buffer_unlock_commit(struct ring_buffer *buffer,
  997. struct ring_buffer_event *event,
  998. unsigned long flags)
  999. {
  1000. struct ring_buffer_per_cpu *cpu_buffer;
  1001. int cpu = raw_smp_processor_id();
  1002. cpu_buffer = buffer->buffers[cpu];
  1003. rb_commit(cpu_buffer, event);
  1004. /*
  1005. * Only the last preempt count needs to restore preemption.
  1006. */
  1007. if (preempt_count() == 1) {
  1008. if (per_cpu(rb_need_resched, cpu))
  1009. preempt_enable_no_resched_notrace();
  1010. else
  1011. preempt_enable_notrace();
  1012. } else
  1013. preempt_enable_no_resched_notrace();
  1014. return 0;
  1015. }
  1016. /**
  1017. * ring_buffer_write - write data to the buffer without reserving
  1018. * @buffer: The ring buffer to write to.
  1019. * @length: The length of the data being written (excluding the event header)
  1020. * @data: The data to write to the buffer.
  1021. *
  1022. * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
  1023. * one function. If you already have the data to write to the buffer, it
  1024. * may be easier to simply call this function.
  1025. *
  1026. * Note, like ring_buffer_lock_reserve, the length is the length of the data
  1027. * and not the length of the event which would hold the header.
  1028. */
  1029. int ring_buffer_write(struct ring_buffer *buffer,
  1030. unsigned long length,
  1031. void *data)
  1032. {
  1033. struct ring_buffer_per_cpu *cpu_buffer;
  1034. struct ring_buffer_event *event;
  1035. unsigned long event_length;
  1036. void *body;
  1037. int ret = -EBUSY;
  1038. int cpu, resched;
  1039. if (atomic_read(&buffer->record_disabled))
  1040. return -EBUSY;
  1041. resched = need_resched();
  1042. preempt_disable_notrace();
  1043. cpu = raw_smp_processor_id();
  1044. if (!cpu_isset(cpu, buffer->cpumask))
  1045. goto out;
  1046. cpu_buffer = buffer->buffers[cpu];
  1047. if (atomic_read(&cpu_buffer->record_disabled))
  1048. goto out;
  1049. event_length = rb_calculate_event_length(length);
  1050. event = rb_reserve_next_event(cpu_buffer,
  1051. RINGBUF_TYPE_DATA, event_length);
  1052. if (!event)
  1053. goto out;
  1054. body = rb_event_data(event);
  1055. memcpy(body, data, length);
  1056. rb_commit(cpu_buffer, event);
  1057. ret = 0;
  1058. out:
  1059. if (resched)
  1060. preempt_enable_no_resched_notrace();
  1061. else
  1062. preempt_enable_notrace();
  1063. return ret;
  1064. }
  1065. static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
  1066. {
  1067. struct buffer_page *reader = cpu_buffer->reader_page;
  1068. struct buffer_page *head = cpu_buffer->head_page;
  1069. struct buffer_page *commit = cpu_buffer->commit_page;
  1070. return reader->read == rb_page_commit(reader) &&
  1071. (commit == reader ||
  1072. (commit == head &&
  1073. head->read == rb_page_commit(commit)));
  1074. }
  1075. /**
  1076. * ring_buffer_record_disable - stop all writes into the buffer
  1077. * @buffer: The ring buffer to stop writes to.
  1078. *
  1079. * This prevents all writes to the buffer. Any attempt to write
  1080. * to the buffer after this will fail and return NULL.
  1081. *
  1082. * The caller should call synchronize_sched() after this.
  1083. */
  1084. void ring_buffer_record_disable(struct ring_buffer *buffer)
  1085. {
  1086. atomic_inc(&buffer->record_disabled);
  1087. }
  1088. /**
  1089. * ring_buffer_record_enable - enable writes to the buffer
  1090. * @buffer: The ring buffer to enable writes
  1091. *
  1092. * Note, multiple disables will need the same number of enables
  1093. * to truely enable the writing (much like preempt_disable).
  1094. */
  1095. void ring_buffer_record_enable(struct ring_buffer *buffer)
  1096. {
  1097. atomic_dec(&buffer->record_disabled);
  1098. }
  1099. /**
  1100. * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
  1101. * @buffer: The ring buffer to stop writes to.
  1102. * @cpu: The CPU buffer to stop
  1103. *
  1104. * This prevents all writes to the buffer. Any attempt to write
  1105. * to the buffer after this will fail and return NULL.
  1106. *
  1107. * The caller should call synchronize_sched() after this.
  1108. */
  1109. void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
  1110. {
  1111. struct ring_buffer_per_cpu *cpu_buffer;
  1112. if (!cpu_isset(cpu, buffer->cpumask))
  1113. return;
  1114. cpu_buffer = buffer->buffers[cpu];
  1115. atomic_inc(&cpu_buffer->record_disabled);
  1116. }
  1117. /**
  1118. * ring_buffer_record_enable_cpu - enable writes to the buffer
  1119. * @buffer: The ring buffer to enable writes
  1120. * @cpu: The CPU to enable.
  1121. *
  1122. * Note, multiple disables will need the same number of enables
  1123. * to truely enable the writing (much like preempt_disable).
  1124. */
  1125. void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
  1126. {
  1127. struct ring_buffer_per_cpu *cpu_buffer;
  1128. if (!cpu_isset(cpu, buffer->cpumask))
  1129. return;
  1130. cpu_buffer = buffer->buffers[cpu];
  1131. atomic_dec(&cpu_buffer->record_disabled);
  1132. }
  1133. /**
  1134. * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
  1135. * @buffer: The ring buffer
  1136. * @cpu: The per CPU buffer to get the entries from.
  1137. */
  1138. unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
  1139. {
  1140. struct ring_buffer_per_cpu *cpu_buffer;
  1141. if (!cpu_isset(cpu, buffer->cpumask))
  1142. return 0;
  1143. cpu_buffer = buffer->buffers[cpu];
  1144. return cpu_buffer->entries;
  1145. }
  1146. /**
  1147. * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
  1148. * @buffer: The ring buffer
  1149. * @cpu: The per CPU buffer to get the number of overruns from
  1150. */
  1151. unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
  1152. {
  1153. struct ring_buffer_per_cpu *cpu_buffer;
  1154. if (!cpu_isset(cpu, buffer->cpumask))
  1155. return 0;
  1156. cpu_buffer = buffer->buffers[cpu];
  1157. return cpu_buffer->overrun;
  1158. }
  1159. /**
  1160. * ring_buffer_entries - get the number of entries in a buffer
  1161. * @buffer: The ring buffer
  1162. *
  1163. * Returns the total number of entries in the ring buffer
  1164. * (all CPU entries)
  1165. */
  1166. unsigned long ring_buffer_entries(struct ring_buffer *buffer)
  1167. {
  1168. struct ring_buffer_per_cpu *cpu_buffer;
  1169. unsigned long entries = 0;
  1170. int cpu;
  1171. /* if you care about this being correct, lock the buffer */
  1172. for_each_buffer_cpu(buffer, cpu) {
  1173. cpu_buffer = buffer->buffers[cpu];
  1174. entries += cpu_buffer->entries;
  1175. }
  1176. return entries;
  1177. }
  1178. /**
  1179. * ring_buffer_overrun_cpu - get the number of overruns in buffer
  1180. * @buffer: The ring buffer
  1181. *
  1182. * Returns the total number of overruns in the ring buffer
  1183. * (all CPU entries)
  1184. */
  1185. unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
  1186. {
  1187. struct ring_buffer_per_cpu *cpu_buffer;
  1188. unsigned long overruns = 0;
  1189. int cpu;
  1190. /* if you care about this being correct, lock the buffer */
  1191. for_each_buffer_cpu(buffer, cpu) {
  1192. cpu_buffer = buffer->buffers[cpu];
  1193. overruns += cpu_buffer->overrun;
  1194. }
  1195. return overruns;
  1196. }
  1197. /**
  1198. * ring_buffer_iter_reset - reset an iterator
  1199. * @iter: The iterator to reset
  1200. *
  1201. * Resets the iterator, so that it will start from the beginning
  1202. * again.
  1203. */
  1204. void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
  1205. {
  1206. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1207. /* Iterator usage is expected to have record disabled */
  1208. if (list_empty(&cpu_buffer->reader_page->list)) {
  1209. iter->head_page = cpu_buffer->head_page;
  1210. iter->head = cpu_buffer->head_page->read;
  1211. } else {
  1212. iter->head_page = cpu_buffer->reader_page;
  1213. iter->head = cpu_buffer->reader_page->read;
  1214. }
  1215. if (iter->head)
  1216. iter->read_stamp = cpu_buffer->read_stamp;
  1217. else
  1218. iter->read_stamp = iter->head_page->time_stamp;
  1219. }
  1220. /**
  1221. * ring_buffer_iter_empty - check if an iterator has no more to read
  1222. * @iter: The iterator to check
  1223. */
  1224. int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
  1225. {
  1226. struct ring_buffer_per_cpu *cpu_buffer;
  1227. cpu_buffer = iter->cpu_buffer;
  1228. return iter->head_page == cpu_buffer->commit_page &&
  1229. iter->head == rb_commit_index(cpu_buffer);
  1230. }
  1231. static void
  1232. rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
  1233. struct ring_buffer_event *event)
  1234. {
  1235. u64 delta;
  1236. switch (event->type) {
  1237. case RINGBUF_TYPE_PADDING:
  1238. return;
  1239. case RINGBUF_TYPE_TIME_EXTEND:
  1240. delta = event->array[0];
  1241. delta <<= TS_SHIFT;
  1242. delta += event->time_delta;
  1243. cpu_buffer->read_stamp += delta;
  1244. return;
  1245. case RINGBUF_TYPE_TIME_STAMP:
  1246. /* FIXME: not implemented */
  1247. return;
  1248. case RINGBUF_TYPE_DATA:
  1249. cpu_buffer->read_stamp += event->time_delta;
  1250. return;
  1251. default:
  1252. BUG();
  1253. }
  1254. return;
  1255. }
  1256. static void
  1257. rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
  1258. struct ring_buffer_event *event)
  1259. {
  1260. u64 delta;
  1261. switch (event->type) {
  1262. case RINGBUF_TYPE_PADDING:
  1263. return;
  1264. case RINGBUF_TYPE_TIME_EXTEND:
  1265. delta = event->array[0];
  1266. delta <<= TS_SHIFT;
  1267. delta += event->time_delta;
  1268. iter->read_stamp += delta;
  1269. return;
  1270. case RINGBUF_TYPE_TIME_STAMP:
  1271. /* FIXME: not implemented */
  1272. return;
  1273. case RINGBUF_TYPE_DATA:
  1274. iter->read_stamp += event->time_delta;
  1275. return;
  1276. default:
  1277. BUG();
  1278. }
  1279. return;
  1280. }
  1281. static struct buffer_page *
  1282. rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
  1283. {
  1284. struct buffer_page *reader = NULL;
  1285. unsigned long flags;
  1286. int nr_loops = 0;
  1287. spin_lock_irqsave(&cpu_buffer->lock, flags);
  1288. again:
  1289. /*
  1290. * This should normally only loop twice. But because the
  1291. * start of the reader inserts an empty page, it causes
  1292. * a case where we will loop three times. There should be no
  1293. * reason to loop four times (that I know of).
  1294. */
  1295. if (unlikely(++nr_loops > 3)) {
  1296. RB_WARN_ON(cpu_buffer, 1);
  1297. reader = NULL;
  1298. goto out;
  1299. }
  1300. reader = cpu_buffer->reader_page;
  1301. /* If there's more to read, return this page */
  1302. if (cpu_buffer->reader_page->read < rb_page_size(reader))
  1303. goto out;
  1304. /* Never should we have an index greater than the size */
  1305. RB_WARN_ON(cpu_buffer,
  1306. cpu_buffer->reader_page->read > rb_page_size(reader));
  1307. /* check if we caught up to the tail */
  1308. reader = NULL;
  1309. if (cpu_buffer->commit_page == cpu_buffer->reader_page)
  1310. goto out;
  1311. /*
  1312. * Splice the empty reader page into the list around the head.
  1313. * Reset the reader page to size zero.
  1314. */
  1315. reader = cpu_buffer->head_page;
  1316. cpu_buffer->reader_page->list.next = reader->list.next;
  1317. cpu_buffer->reader_page->list.prev = reader->list.prev;
  1318. local_set(&cpu_buffer->reader_page->write, 0);
  1319. local_set(&cpu_buffer->reader_page->commit, 0);
  1320. /* Make the reader page now replace the head */
  1321. reader->list.prev->next = &cpu_buffer->reader_page->list;
  1322. reader->list.next->prev = &cpu_buffer->reader_page->list;
  1323. /*
  1324. * If the tail is on the reader, then we must set the head
  1325. * to the inserted page, otherwise we set it one before.
  1326. */
  1327. cpu_buffer->head_page = cpu_buffer->reader_page;
  1328. if (cpu_buffer->commit_page != reader)
  1329. rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
  1330. /* Finally update the reader page to the new head */
  1331. cpu_buffer->reader_page = reader;
  1332. rb_reset_reader_page(cpu_buffer);
  1333. goto again;
  1334. out:
  1335. spin_unlock_irqrestore(&cpu_buffer->lock, flags);
  1336. return reader;
  1337. }
  1338. static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
  1339. {
  1340. struct ring_buffer_event *event;
  1341. struct buffer_page *reader;
  1342. unsigned length;
  1343. reader = rb_get_reader_page(cpu_buffer);
  1344. /* This function should not be called when buffer is empty */
  1345. BUG_ON(!reader);
  1346. event = rb_reader_event(cpu_buffer);
  1347. if (event->type == RINGBUF_TYPE_DATA)
  1348. cpu_buffer->entries--;
  1349. rb_update_read_stamp(cpu_buffer, event);
  1350. length = rb_event_length(event);
  1351. cpu_buffer->reader_page->read += length;
  1352. }
  1353. static void rb_advance_iter(struct ring_buffer_iter *iter)
  1354. {
  1355. struct ring_buffer *buffer;
  1356. struct ring_buffer_per_cpu *cpu_buffer;
  1357. struct ring_buffer_event *event;
  1358. unsigned length;
  1359. cpu_buffer = iter->cpu_buffer;
  1360. buffer = cpu_buffer->buffer;
  1361. /*
  1362. * Check if we are at the end of the buffer.
  1363. */
  1364. if (iter->head >= rb_page_size(iter->head_page)) {
  1365. BUG_ON(iter->head_page == cpu_buffer->commit_page);
  1366. rb_inc_iter(iter);
  1367. return;
  1368. }
  1369. event = rb_iter_head_event(iter);
  1370. length = rb_event_length(event);
  1371. /*
  1372. * This should not be called to advance the header if we are
  1373. * at the tail of the buffer.
  1374. */
  1375. BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
  1376. (iter->head + length > rb_commit_index(cpu_buffer)));
  1377. rb_update_iter_read_stamp(iter, event);
  1378. iter->head += length;
  1379. /* check for end of page padding */
  1380. if ((iter->head >= rb_page_size(iter->head_page)) &&
  1381. (iter->head_page != cpu_buffer->commit_page))
  1382. rb_advance_iter(iter);
  1383. }
  1384. /**
  1385. * ring_buffer_peek - peek at the next event to be read
  1386. * @buffer: The ring buffer to read
  1387. * @cpu: The cpu to peak at
  1388. * @ts: The timestamp counter of this event.
  1389. *
  1390. * This will return the event that will be read next, but does
  1391. * not consume the data.
  1392. */
  1393. struct ring_buffer_event *
  1394. ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
  1395. {
  1396. struct ring_buffer_per_cpu *cpu_buffer;
  1397. struct ring_buffer_event *event;
  1398. struct buffer_page *reader;
  1399. int nr_loops = 0;
  1400. if (!cpu_isset(cpu, buffer->cpumask))
  1401. return NULL;
  1402. cpu_buffer = buffer->buffers[cpu];
  1403. again:
  1404. /*
  1405. * We repeat when a timestamp is encountered. It is possible
  1406. * to get multiple timestamps from an interrupt entering just
  1407. * as one timestamp is about to be written. The max times
  1408. * that this can happen is the number of nested interrupts we
  1409. * can have. Nesting 10 deep of interrupts is clearly
  1410. * an anomaly.
  1411. */
  1412. if (unlikely(++nr_loops > 10)) {
  1413. RB_WARN_ON(cpu_buffer, 1);
  1414. return NULL;
  1415. }
  1416. reader = rb_get_reader_page(cpu_buffer);
  1417. if (!reader)
  1418. return NULL;
  1419. event = rb_reader_event(cpu_buffer);
  1420. switch (event->type) {
  1421. case RINGBUF_TYPE_PADDING:
  1422. RB_WARN_ON(cpu_buffer, 1);
  1423. rb_advance_reader(cpu_buffer);
  1424. return NULL;
  1425. case RINGBUF_TYPE_TIME_EXTEND:
  1426. /* Internal data, OK to advance */
  1427. rb_advance_reader(cpu_buffer);
  1428. goto again;
  1429. case RINGBUF_TYPE_TIME_STAMP:
  1430. /* FIXME: not implemented */
  1431. rb_advance_reader(cpu_buffer);
  1432. goto again;
  1433. case RINGBUF_TYPE_DATA:
  1434. if (ts) {
  1435. *ts = cpu_buffer->read_stamp + event->time_delta;
  1436. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1437. }
  1438. return event;
  1439. default:
  1440. BUG();
  1441. }
  1442. return NULL;
  1443. }
  1444. /**
  1445. * ring_buffer_iter_peek - peek at the next event to be read
  1446. * @iter: The ring buffer iterator
  1447. * @ts: The timestamp counter of this event.
  1448. *
  1449. * This will return the event that will be read next, but does
  1450. * not increment the iterator.
  1451. */
  1452. struct ring_buffer_event *
  1453. ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
  1454. {
  1455. struct ring_buffer *buffer;
  1456. struct ring_buffer_per_cpu *cpu_buffer;
  1457. struct ring_buffer_event *event;
  1458. int nr_loops = 0;
  1459. if (ring_buffer_iter_empty(iter))
  1460. return NULL;
  1461. cpu_buffer = iter->cpu_buffer;
  1462. buffer = cpu_buffer->buffer;
  1463. again:
  1464. /*
  1465. * We repeat when a timestamp is encountered. It is possible
  1466. * to get multiple timestamps from an interrupt entering just
  1467. * as one timestamp is about to be written. The max times
  1468. * that this can happen is the number of nested interrupts we
  1469. * can have. Nesting 10 deep of interrupts is clearly
  1470. * an anomaly.
  1471. */
  1472. if (unlikely(++nr_loops > 10)) {
  1473. RB_WARN_ON(cpu_buffer, 1);
  1474. return NULL;
  1475. }
  1476. if (rb_per_cpu_empty(cpu_buffer))
  1477. return NULL;
  1478. event = rb_iter_head_event(iter);
  1479. switch (event->type) {
  1480. case RINGBUF_TYPE_PADDING:
  1481. rb_inc_iter(iter);
  1482. goto again;
  1483. case RINGBUF_TYPE_TIME_EXTEND:
  1484. /* Internal data, OK to advance */
  1485. rb_advance_iter(iter);
  1486. goto again;
  1487. case RINGBUF_TYPE_TIME_STAMP:
  1488. /* FIXME: not implemented */
  1489. rb_advance_iter(iter);
  1490. goto again;
  1491. case RINGBUF_TYPE_DATA:
  1492. if (ts) {
  1493. *ts = iter->read_stamp + event->time_delta;
  1494. ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
  1495. }
  1496. return event;
  1497. default:
  1498. BUG();
  1499. }
  1500. return NULL;
  1501. }
  1502. /**
  1503. * ring_buffer_consume - return an event and consume it
  1504. * @buffer: The ring buffer to get the next event from
  1505. *
  1506. * Returns the next event in the ring buffer, and that event is consumed.
  1507. * Meaning, that sequential reads will keep returning a different event,
  1508. * and eventually empty the ring buffer if the producer is slower.
  1509. */
  1510. struct ring_buffer_event *
  1511. ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
  1512. {
  1513. struct ring_buffer_per_cpu *cpu_buffer;
  1514. struct ring_buffer_event *event;
  1515. if (!cpu_isset(cpu, buffer->cpumask))
  1516. return NULL;
  1517. event = ring_buffer_peek(buffer, cpu, ts);
  1518. if (!event)
  1519. return NULL;
  1520. cpu_buffer = buffer->buffers[cpu];
  1521. rb_advance_reader(cpu_buffer);
  1522. return event;
  1523. }
  1524. /**
  1525. * ring_buffer_read_start - start a non consuming read of the buffer
  1526. * @buffer: The ring buffer to read from
  1527. * @cpu: The cpu buffer to iterate over
  1528. *
  1529. * This starts up an iteration through the buffer. It also disables
  1530. * the recording to the buffer until the reading is finished.
  1531. * This prevents the reading from being corrupted. This is not
  1532. * a consuming read, so a producer is not expected.
  1533. *
  1534. * Must be paired with ring_buffer_finish.
  1535. */
  1536. struct ring_buffer_iter *
  1537. ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
  1538. {
  1539. struct ring_buffer_per_cpu *cpu_buffer;
  1540. struct ring_buffer_iter *iter;
  1541. unsigned long flags;
  1542. if (!cpu_isset(cpu, buffer->cpumask))
  1543. return NULL;
  1544. iter = kmalloc(sizeof(*iter), GFP_KERNEL);
  1545. if (!iter)
  1546. return NULL;
  1547. cpu_buffer = buffer->buffers[cpu];
  1548. iter->cpu_buffer = cpu_buffer;
  1549. atomic_inc(&cpu_buffer->record_disabled);
  1550. synchronize_sched();
  1551. spin_lock_irqsave(&cpu_buffer->lock, flags);
  1552. ring_buffer_iter_reset(iter);
  1553. spin_unlock_irqrestore(&cpu_buffer->lock, flags);
  1554. return iter;
  1555. }
  1556. /**
  1557. * ring_buffer_finish - finish reading the iterator of the buffer
  1558. * @iter: The iterator retrieved by ring_buffer_start
  1559. *
  1560. * This re-enables the recording to the buffer, and frees the
  1561. * iterator.
  1562. */
  1563. void
  1564. ring_buffer_read_finish(struct ring_buffer_iter *iter)
  1565. {
  1566. struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
  1567. atomic_dec(&cpu_buffer->record_disabled);
  1568. kfree(iter);
  1569. }
  1570. /**
  1571. * ring_buffer_read - read the next item in the ring buffer by the iterator
  1572. * @iter: The ring buffer iterator
  1573. * @ts: The time stamp of the event read.
  1574. *
  1575. * This reads the next event in the ring buffer and increments the iterator.
  1576. */
  1577. struct ring_buffer_event *
  1578. ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
  1579. {
  1580. struct ring_buffer_event *event;
  1581. event = ring_buffer_iter_peek(iter, ts);
  1582. if (!event)
  1583. return NULL;
  1584. rb_advance_iter(iter);
  1585. return event;
  1586. }
  1587. /**
  1588. * ring_buffer_size - return the size of the ring buffer (in bytes)
  1589. * @buffer: The ring buffer.
  1590. */
  1591. unsigned long ring_buffer_size(struct ring_buffer *buffer)
  1592. {
  1593. return BUF_PAGE_SIZE * buffer->pages;
  1594. }
  1595. static void
  1596. rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
  1597. {
  1598. cpu_buffer->head_page
  1599. = list_entry(cpu_buffer->pages.next, struct buffer_page, list);
  1600. local_set(&cpu_buffer->head_page->write, 0);
  1601. local_set(&cpu_buffer->head_page->commit, 0);
  1602. cpu_buffer->head_page->read = 0;
  1603. cpu_buffer->tail_page = cpu_buffer->head_page;
  1604. cpu_buffer->commit_page = cpu_buffer->head_page;
  1605. INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
  1606. local_set(&cpu_buffer->reader_page->write, 0);
  1607. local_set(&cpu_buffer->reader_page->commit, 0);
  1608. cpu_buffer->reader_page->read = 0;
  1609. cpu_buffer->overrun = 0;
  1610. cpu_buffer->entries = 0;
  1611. }
  1612. /**
  1613. * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
  1614. * @buffer: The ring buffer to reset a per cpu buffer of
  1615. * @cpu: The CPU buffer to be reset
  1616. */
  1617. void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
  1618. {
  1619. struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
  1620. unsigned long flags;
  1621. if (!cpu_isset(cpu, buffer->cpumask))
  1622. return;
  1623. spin_lock_irqsave(&cpu_buffer->lock, flags);
  1624. rb_reset_cpu(cpu_buffer);
  1625. spin_unlock_irqrestore(&cpu_buffer->lock, flags);
  1626. }
  1627. /**
  1628. * ring_buffer_reset - reset a ring buffer
  1629. * @buffer: The ring buffer to reset all cpu buffers
  1630. */
  1631. void ring_buffer_reset(struct ring_buffer *buffer)
  1632. {
  1633. int cpu;
  1634. for_each_buffer_cpu(buffer, cpu)
  1635. ring_buffer_reset_cpu(buffer, cpu);
  1636. }
  1637. /**
  1638. * rind_buffer_empty - is the ring buffer empty?
  1639. * @buffer: The ring buffer to test
  1640. */
  1641. int ring_buffer_empty(struct ring_buffer *buffer)
  1642. {
  1643. struct ring_buffer_per_cpu *cpu_buffer;
  1644. int cpu;
  1645. /* yes this is racy, but if you don't like the race, lock the buffer */
  1646. for_each_buffer_cpu(buffer, cpu) {
  1647. cpu_buffer = buffer->buffers[cpu];
  1648. if (!rb_per_cpu_empty(cpu_buffer))
  1649. return 0;
  1650. }
  1651. return 1;
  1652. }
  1653. /**
  1654. * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
  1655. * @buffer: The ring buffer
  1656. * @cpu: The CPU buffer to test
  1657. */
  1658. int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
  1659. {
  1660. struct ring_buffer_per_cpu *cpu_buffer;
  1661. if (!cpu_isset(cpu, buffer->cpumask))
  1662. return 1;
  1663. cpu_buffer = buffer->buffers[cpu];
  1664. return rb_per_cpu_empty(cpu_buffer);
  1665. }
  1666. /**
  1667. * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
  1668. * @buffer_a: One buffer to swap with
  1669. * @buffer_b: The other buffer to swap with
  1670. *
  1671. * This function is useful for tracers that want to take a "snapshot"
  1672. * of a CPU buffer and has another back up buffer lying around.
  1673. * it is expected that the tracer handles the cpu buffer not being
  1674. * used at the moment.
  1675. */
  1676. int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
  1677. struct ring_buffer *buffer_b, int cpu)
  1678. {
  1679. struct ring_buffer_per_cpu *cpu_buffer_a;
  1680. struct ring_buffer_per_cpu *cpu_buffer_b;
  1681. if (!cpu_isset(cpu, buffer_a->cpumask) ||
  1682. !cpu_isset(cpu, buffer_b->cpumask))
  1683. return -EINVAL;
  1684. /* At least make sure the two buffers are somewhat the same */
  1685. if (buffer_a->size != buffer_b->size ||
  1686. buffer_a->pages != buffer_b->pages)
  1687. return -EINVAL;
  1688. cpu_buffer_a = buffer_a->buffers[cpu];
  1689. cpu_buffer_b = buffer_b->buffers[cpu];
  1690. /*
  1691. * We can't do a synchronize_sched here because this
  1692. * function can be called in atomic context.
  1693. * Normally this will be called from the same CPU as cpu.
  1694. * If not it's up to the caller to protect this.
  1695. */
  1696. atomic_inc(&cpu_buffer_a->record_disabled);
  1697. atomic_inc(&cpu_buffer_b->record_disabled);
  1698. buffer_a->buffers[cpu] = cpu_buffer_b;
  1699. buffer_b->buffers[cpu] = cpu_buffer_a;
  1700. cpu_buffer_b->buffer = buffer_a;
  1701. cpu_buffer_a->buffer = buffer_b;
  1702. atomic_dec(&cpu_buffer_a->record_disabled);
  1703. atomic_dec(&cpu_buffer_b->record_disabled);
  1704. return 0;
  1705. }