xhci-mem.c 70 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333
  1. /*
  2. * xHCI host controller driver
  3. *
  4. * Copyright (C) 2008 Intel Corp.
  5. *
  6. * Author: Sarah Sharp
  7. * Some code borrowed from the Linux EHCI driver.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15. * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  16. * for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software Foundation,
  20. * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/usb.h>
  23. #include <linux/pci.h>
  24. #include <linux/slab.h>
  25. #include <linux/dmapool.h>
  26. #include "xhci.h"
  27. /*
  28. * Allocates a generic ring segment from the ring pool, sets the dma address,
  29. * initializes the segment to zero, and sets the private next pointer to NULL.
  30. *
  31. * Section 4.11.1.1:
  32. * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  33. */
  34. static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
  35. {
  36. struct xhci_segment *seg;
  37. dma_addr_t dma;
  38. seg = kzalloc(sizeof *seg, flags);
  39. if (!seg)
  40. return NULL;
  41. seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
  42. if (!seg->trbs) {
  43. kfree(seg);
  44. return NULL;
  45. }
  46. memset(seg->trbs, 0, SEGMENT_SIZE);
  47. seg->dma = dma;
  48. seg->next = NULL;
  49. return seg;
  50. }
  51. static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  52. {
  53. if (seg->trbs) {
  54. dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  55. seg->trbs = NULL;
  56. }
  57. kfree(seg);
  58. }
  59. /*
  60. * Make the prev segment point to the next segment.
  61. *
  62. * Change the last TRB in the prev segment to be a Link TRB which points to the
  63. * DMA address of the next segment. The caller needs to set any Link TRB
  64. * related flags, such as End TRB, Toggle Cycle, and no snoop.
  65. */
  66. static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  67. struct xhci_segment *next, bool link_trbs, bool isoc)
  68. {
  69. u32 val;
  70. if (!prev || !next)
  71. return;
  72. prev->next = next;
  73. if (link_trbs) {
  74. prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
  75. cpu_to_le64(next->dma);
  76. /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
  77. val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
  78. val &= ~TRB_TYPE_BITMASK;
  79. val |= TRB_TYPE(TRB_LINK);
  80. /* Always set the chain bit with 0.95 hardware */
  81. /* Set chain bit for isoc rings on AMD 0.96 host */
  82. if (xhci_link_trb_quirk(xhci) ||
  83. (isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)))
  84. val |= TRB_CHAIN;
  85. prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
  86. }
  87. }
  88. /* XXX: Do we need the hcd structure in all these functions? */
  89. void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
  90. {
  91. struct xhci_segment *seg;
  92. struct xhci_segment *first_seg;
  93. if (!ring)
  94. return;
  95. if (ring->first_seg) {
  96. first_seg = ring->first_seg;
  97. seg = first_seg->next;
  98. while (seg != first_seg) {
  99. struct xhci_segment *next = seg->next;
  100. xhci_segment_free(xhci, seg);
  101. seg = next;
  102. }
  103. xhci_segment_free(xhci, first_seg);
  104. ring->first_seg = NULL;
  105. }
  106. kfree(ring);
  107. }
  108. static void xhci_initialize_ring_info(struct xhci_ring *ring)
  109. {
  110. /* The ring is empty, so the enqueue pointer == dequeue pointer */
  111. ring->enqueue = ring->first_seg->trbs;
  112. ring->enq_seg = ring->first_seg;
  113. ring->dequeue = ring->enqueue;
  114. ring->deq_seg = ring->first_seg;
  115. /* The ring is initialized to 0. The producer must write 1 to the cycle
  116. * bit to handover ownership of the TRB, so PCS = 1. The consumer must
  117. * compare CCS to the cycle bit to check ownership, so CCS = 1.
  118. */
  119. ring->cycle_state = 1;
  120. /* Not necessary for new rings, but needed for re-initialized rings */
  121. ring->enq_updates = 0;
  122. ring->deq_updates = 0;
  123. }
  124. /**
  125. * Create a new ring with zero or more segments.
  126. *
  127. * Link each segment together into a ring.
  128. * Set the end flag and the cycle toggle bit on the last segment.
  129. * See section 4.9.1 and figures 15 and 16.
  130. */
  131. static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
  132. unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags)
  133. {
  134. struct xhci_ring *ring;
  135. struct xhci_segment *prev;
  136. ring = kzalloc(sizeof *(ring), flags);
  137. if (!ring)
  138. return NULL;
  139. INIT_LIST_HEAD(&ring->td_list);
  140. if (num_segs == 0)
  141. return ring;
  142. ring->first_seg = xhci_segment_alloc(xhci, flags);
  143. if (!ring->first_seg)
  144. goto fail;
  145. num_segs--;
  146. prev = ring->first_seg;
  147. while (num_segs > 0) {
  148. struct xhci_segment *next;
  149. next = xhci_segment_alloc(xhci, flags);
  150. if (!next)
  151. goto fail;
  152. xhci_link_segments(xhci, prev, next, link_trbs, isoc);
  153. prev = next;
  154. num_segs--;
  155. }
  156. xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc);
  157. if (link_trbs) {
  158. /* See section 4.9.2.1 and 6.4.4.1 */
  159. prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
  160. cpu_to_le32(LINK_TOGGLE);
  161. }
  162. xhci_initialize_ring_info(ring);
  163. return ring;
  164. fail:
  165. xhci_ring_free(xhci, ring);
  166. return NULL;
  167. }
  168. void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
  169. struct xhci_virt_device *virt_dev,
  170. unsigned int ep_index)
  171. {
  172. int rings_cached;
  173. rings_cached = virt_dev->num_rings_cached;
  174. if (rings_cached < XHCI_MAX_RINGS_CACHED) {
  175. virt_dev->ring_cache[rings_cached] =
  176. virt_dev->eps[ep_index].ring;
  177. virt_dev->num_rings_cached++;
  178. xhci_dbg(xhci, "Cached old ring, "
  179. "%d ring%s cached\n",
  180. virt_dev->num_rings_cached,
  181. (virt_dev->num_rings_cached > 1) ? "s" : "");
  182. } else {
  183. xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
  184. xhci_dbg(xhci, "Ring cache full (%d rings), "
  185. "freeing ring\n",
  186. virt_dev->num_rings_cached);
  187. }
  188. virt_dev->eps[ep_index].ring = NULL;
  189. }
  190. /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
  191. * pointers to the beginning of the ring.
  192. */
  193. static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
  194. struct xhci_ring *ring, bool isoc)
  195. {
  196. struct xhci_segment *seg = ring->first_seg;
  197. do {
  198. memset(seg->trbs, 0,
  199. sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
  200. /* All endpoint rings have link TRBs */
  201. xhci_link_segments(xhci, seg, seg->next, 1, isoc);
  202. seg = seg->next;
  203. } while (seg != ring->first_seg);
  204. xhci_initialize_ring_info(ring);
  205. /* td list should be empty since all URBs have been cancelled,
  206. * but just in case...
  207. */
  208. INIT_LIST_HEAD(&ring->td_list);
  209. }
  210. #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
  211. static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
  212. int type, gfp_t flags)
  213. {
  214. struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
  215. if (!ctx)
  216. return NULL;
  217. BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
  218. ctx->type = type;
  219. ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
  220. if (type == XHCI_CTX_TYPE_INPUT)
  221. ctx->size += CTX_SIZE(xhci->hcc_params);
  222. ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
  223. memset(ctx->bytes, 0, ctx->size);
  224. return ctx;
  225. }
  226. static void xhci_free_container_ctx(struct xhci_hcd *xhci,
  227. struct xhci_container_ctx *ctx)
  228. {
  229. if (!ctx)
  230. return;
  231. dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
  232. kfree(ctx);
  233. }
  234. struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
  235. struct xhci_container_ctx *ctx)
  236. {
  237. BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
  238. return (struct xhci_input_control_ctx *)ctx->bytes;
  239. }
  240. struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
  241. struct xhci_container_ctx *ctx)
  242. {
  243. if (ctx->type == XHCI_CTX_TYPE_DEVICE)
  244. return (struct xhci_slot_ctx *)ctx->bytes;
  245. return (struct xhci_slot_ctx *)
  246. (ctx->bytes + CTX_SIZE(xhci->hcc_params));
  247. }
  248. struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
  249. struct xhci_container_ctx *ctx,
  250. unsigned int ep_index)
  251. {
  252. /* increment ep index by offset of start of ep ctx array */
  253. ep_index++;
  254. if (ctx->type == XHCI_CTX_TYPE_INPUT)
  255. ep_index++;
  256. return (struct xhci_ep_ctx *)
  257. (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
  258. }
  259. /***************** Streams structures manipulation *************************/
  260. static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
  261. unsigned int num_stream_ctxs,
  262. struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
  263. {
  264. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  265. if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
  266. dma_free_coherent(&pdev->dev,
  267. sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
  268. stream_ctx, dma);
  269. else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
  270. return dma_pool_free(xhci->small_streams_pool,
  271. stream_ctx, dma);
  272. else
  273. return dma_pool_free(xhci->medium_streams_pool,
  274. stream_ctx, dma);
  275. }
  276. /*
  277. * The stream context array for each endpoint with bulk streams enabled can
  278. * vary in size, based on:
  279. * - how many streams the endpoint supports,
  280. * - the maximum primary stream array size the host controller supports,
  281. * - and how many streams the device driver asks for.
  282. *
  283. * The stream context array must be a power of 2, and can be as small as
  284. * 64 bytes or as large as 1MB.
  285. */
  286. static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
  287. unsigned int num_stream_ctxs, dma_addr_t *dma,
  288. gfp_t mem_flags)
  289. {
  290. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  291. if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
  292. return dma_alloc_coherent(&pdev->dev,
  293. sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
  294. dma, mem_flags);
  295. else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
  296. return dma_pool_alloc(xhci->small_streams_pool,
  297. mem_flags, dma);
  298. else
  299. return dma_pool_alloc(xhci->medium_streams_pool,
  300. mem_flags, dma);
  301. }
  302. struct xhci_ring *xhci_dma_to_transfer_ring(
  303. struct xhci_virt_ep *ep,
  304. u64 address)
  305. {
  306. if (ep->ep_state & EP_HAS_STREAMS)
  307. return radix_tree_lookup(&ep->stream_info->trb_address_map,
  308. address >> SEGMENT_SHIFT);
  309. return ep->ring;
  310. }
  311. /* Only use this when you know stream_info is valid */
  312. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  313. static struct xhci_ring *dma_to_stream_ring(
  314. struct xhci_stream_info *stream_info,
  315. u64 address)
  316. {
  317. return radix_tree_lookup(&stream_info->trb_address_map,
  318. address >> SEGMENT_SHIFT);
  319. }
  320. #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
  321. struct xhci_ring *xhci_stream_id_to_ring(
  322. struct xhci_virt_device *dev,
  323. unsigned int ep_index,
  324. unsigned int stream_id)
  325. {
  326. struct xhci_virt_ep *ep = &dev->eps[ep_index];
  327. if (stream_id == 0)
  328. return ep->ring;
  329. if (!ep->stream_info)
  330. return NULL;
  331. if (stream_id > ep->stream_info->num_streams)
  332. return NULL;
  333. return ep->stream_info->stream_rings[stream_id];
  334. }
  335. #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
  336. static int xhci_test_radix_tree(struct xhci_hcd *xhci,
  337. unsigned int num_streams,
  338. struct xhci_stream_info *stream_info)
  339. {
  340. u32 cur_stream;
  341. struct xhci_ring *cur_ring;
  342. u64 addr;
  343. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  344. struct xhci_ring *mapped_ring;
  345. int trb_size = sizeof(union xhci_trb);
  346. cur_ring = stream_info->stream_rings[cur_stream];
  347. for (addr = cur_ring->first_seg->dma;
  348. addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
  349. addr += trb_size) {
  350. mapped_ring = dma_to_stream_ring(stream_info, addr);
  351. if (cur_ring != mapped_ring) {
  352. xhci_warn(xhci, "WARN: DMA address 0x%08llx "
  353. "didn't map to stream ID %u; "
  354. "mapped to ring %p\n",
  355. (unsigned long long) addr,
  356. cur_stream,
  357. mapped_ring);
  358. return -EINVAL;
  359. }
  360. }
  361. /* One TRB after the end of the ring segment shouldn't return a
  362. * pointer to the current ring (although it may be a part of a
  363. * different ring).
  364. */
  365. mapped_ring = dma_to_stream_ring(stream_info, addr);
  366. if (mapped_ring != cur_ring) {
  367. /* One TRB before should also fail */
  368. addr = cur_ring->first_seg->dma - trb_size;
  369. mapped_ring = dma_to_stream_ring(stream_info, addr);
  370. }
  371. if (mapped_ring == cur_ring) {
  372. xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
  373. "mapped to valid stream ID %u; "
  374. "mapped ring = %p\n",
  375. (unsigned long long) addr,
  376. cur_stream,
  377. mapped_ring);
  378. return -EINVAL;
  379. }
  380. }
  381. return 0;
  382. }
  383. #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
  384. /*
  385. * Change an endpoint's internal structure so it supports stream IDs. The
  386. * number of requested streams includes stream 0, which cannot be used by device
  387. * drivers.
  388. *
  389. * The number of stream contexts in the stream context array may be bigger than
  390. * the number of streams the driver wants to use. This is because the number of
  391. * stream context array entries must be a power of two.
  392. *
  393. * We need a radix tree for mapping physical addresses of TRBs to which stream
  394. * ID they belong to. We need to do this because the host controller won't tell
  395. * us which stream ring the TRB came from. We could store the stream ID in an
  396. * event data TRB, but that doesn't help us for the cancellation case, since the
  397. * endpoint may stop before it reaches that event data TRB.
  398. *
  399. * The radix tree maps the upper portion of the TRB DMA address to a ring
  400. * segment that has the same upper portion of DMA addresses. For example, say I
  401. * have segments of size 1KB, that are always 64-byte aligned. A segment may
  402. * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
  403. * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
  404. * pass the radix tree a key to get the right stream ID:
  405. *
  406. * 0x10c90fff >> 10 = 0x43243
  407. * 0x10c912c0 >> 10 = 0x43244
  408. * 0x10c91400 >> 10 = 0x43245
  409. *
  410. * Obviously, only those TRBs with DMA addresses that are within the segment
  411. * will make the radix tree return the stream ID for that ring.
  412. *
  413. * Caveats for the radix tree:
  414. *
  415. * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
  416. * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
  417. * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
  418. * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
  419. * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
  420. * extended systems (where the DMA address can be bigger than 32-bits),
  421. * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
  422. */
  423. struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
  424. unsigned int num_stream_ctxs,
  425. unsigned int num_streams, gfp_t mem_flags)
  426. {
  427. struct xhci_stream_info *stream_info;
  428. u32 cur_stream;
  429. struct xhci_ring *cur_ring;
  430. unsigned long key;
  431. u64 addr;
  432. int ret;
  433. xhci_dbg(xhci, "Allocating %u streams and %u "
  434. "stream context array entries.\n",
  435. num_streams, num_stream_ctxs);
  436. if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
  437. xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
  438. return NULL;
  439. }
  440. xhci->cmd_ring_reserved_trbs++;
  441. stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
  442. if (!stream_info)
  443. goto cleanup_trbs;
  444. stream_info->num_streams = num_streams;
  445. stream_info->num_stream_ctxs = num_stream_ctxs;
  446. /* Initialize the array of virtual pointers to stream rings. */
  447. stream_info->stream_rings = kzalloc(
  448. sizeof(struct xhci_ring *)*num_streams,
  449. mem_flags);
  450. if (!stream_info->stream_rings)
  451. goto cleanup_info;
  452. /* Initialize the array of DMA addresses for stream rings for the HW. */
  453. stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
  454. num_stream_ctxs, &stream_info->ctx_array_dma,
  455. mem_flags);
  456. if (!stream_info->stream_ctx_array)
  457. goto cleanup_ctx;
  458. memset(stream_info->stream_ctx_array, 0,
  459. sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
  460. /* Allocate everything needed to free the stream rings later */
  461. stream_info->free_streams_command =
  462. xhci_alloc_command(xhci, true, true, mem_flags);
  463. if (!stream_info->free_streams_command)
  464. goto cleanup_ctx;
  465. INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
  466. /* Allocate rings for all the streams that the driver will use,
  467. * and add their segment DMA addresses to the radix tree.
  468. * Stream 0 is reserved.
  469. */
  470. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  471. stream_info->stream_rings[cur_stream] =
  472. xhci_ring_alloc(xhci, 1, true, false, mem_flags);
  473. cur_ring = stream_info->stream_rings[cur_stream];
  474. if (!cur_ring)
  475. goto cleanup_rings;
  476. cur_ring->stream_id = cur_stream;
  477. /* Set deq ptr, cycle bit, and stream context type */
  478. addr = cur_ring->first_seg->dma |
  479. SCT_FOR_CTX(SCT_PRI_TR) |
  480. cur_ring->cycle_state;
  481. stream_info->stream_ctx_array[cur_stream].stream_ring =
  482. cpu_to_le64(addr);
  483. xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
  484. cur_stream, (unsigned long long) addr);
  485. key = (unsigned long)
  486. (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
  487. ret = radix_tree_insert(&stream_info->trb_address_map,
  488. key, cur_ring);
  489. if (ret) {
  490. xhci_ring_free(xhci, cur_ring);
  491. stream_info->stream_rings[cur_stream] = NULL;
  492. goto cleanup_rings;
  493. }
  494. }
  495. /* Leave the other unused stream ring pointers in the stream context
  496. * array initialized to zero. This will cause the xHC to give us an
  497. * error if the device asks for a stream ID we don't have setup (if it
  498. * was any other way, the host controller would assume the ring is
  499. * "empty" and wait forever for data to be queued to that stream ID).
  500. */
  501. #if XHCI_DEBUG
  502. /* Do a little test on the radix tree to make sure it returns the
  503. * correct values.
  504. */
  505. if (xhci_test_radix_tree(xhci, num_streams, stream_info))
  506. goto cleanup_rings;
  507. #endif
  508. return stream_info;
  509. cleanup_rings:
  510. for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
  511. cur_ring = stream_info->stream_rings[cur_stream];
  512. if (cur_ring) {
  513. addr = cur_ring->first_seg->dma;
  514. radix_tree_delete(&stream_info->trb_address_map,
  515. addr >> SEGMENT_SHIFT);
  516. xhci_ring_free(xhci, cur_ring);
  517. stream_info->stream_rings[cur_stream] = NULL;
  518. }
  519. }
  520. xhci_free_command(xhci, stream_info->free_streams_command);
  521. cleanup_ctx:
  522. kfree(stream_info->stream_rings);
  523. cleanup_info:
  524. kfree(stream_info);
  525. cleanup_trbs:
  526. xhci->cmd_ring_reserved_trbs--;
  527. return NULL;
  528. }
  529. /*
  530. * Sets the MaxPStreams field and the Linear Stream Array field.
  531. * Sets the dequeue pointer to the stream context array.
  532. */
  533. void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
  534. struct xhci_ep_ctx *ep_ctx,
  535. struct xhci_stream_info *stream_info)
  536. {
  537. u32 max_primary_streams;
  538. /* MaxPStreams is the number of stream context array entries, not the
  539. * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
  540. * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
  541. */
  542. max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
  543. xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
  544. 1 << (max_primary_streams + 1));
  545. ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
  546. ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
  547. | EP_HAS_LSA);
  548. ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
  549. }
  550. /*
  551. * Sets the MaxPStreams field and the Linear Stream Array field to 0.
  552. * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
  553. * not at the beginning of the ring).
  554. */
  555. void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
  556. struct xhci_ep_ctx *ep_ctx,
  557. struct xhci_virt_ep *ep)
  558. {
  559. dma_addr_t addr;
  560. ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
  561. addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
  562. ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
  563. }
  564. /* Frees all stream contexts associated with the endpoint,
  565. *
  566. * Caller should fix the endpoint context streams fields.
  567. */
  568. void xhci_free_stream_info(struct xhci_hcd *xhci,
  569. struct xhci_stream_info *stream_info)
  570. {
  571. int cur_stream;
  572. struct xhci_ring *cur_ring;
  573. dma_addr_t addr;
  574. if (!stream_info)
  575. return;
  576. for (cur_stream = 1; cur_stream < stream_info->num_streams;
  577. cur_stream++) {
  578. cur_ring = stream_info->stream_rings[cur_stream];
  579. if (cur_ring) {
  580. addr = cur_ring->first_seg->dma;
  581. radix_tree_delete(&stream_info->trb_address_map,
  582. addr >> SEGMENT_SHIFT);
  583. xhci_ring_free(xhci, cur_ring);
  584. stream_info->stream_rings[cur_stream] = NULL;
  585. }
  586. }
  587. xhci_free_command(xhci, stream_info->free_streams_command);
  588. xhci->cmd_ring_reserved_trbs--;
  589. if (stream_info->stream_ctx_array)
  590. xhci_free_stream_ctx(xhci,
  591. stream_info->num_stream_ctxs,
  592. stream_info->stream_ctx_array,
  593. stream_info->ctx_array_dma);
  594. if (stream_info)
  595. kfree(stream_info->stream_rings);
  596. kfree(stream_info);
  597. }
  598. /***************** Device context manipulation *************************/
  599. static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
  600. struct xhci_virt_ep *ep)
  601. {
  602. init_timer(&ep->stop_cmd_timer);
  603. ep->stop_cmd_timer.data = (unsigned long) ep;
  604. ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
  605. ep->xhci = xhci;
  606. }
  607. static void xhci_free_tt_info(struct xhci_hcd *xhci,
  608. struct xhci_virt_device *virt_dev,
  609. int slot_id)
  610. {
  611. struct list_head *tt;
  612. struct list_head *tt_list_head;
  613. struct list_head *tt_next;
  614. struct xhci_tt_bw_info *tt_info;
  615. /* If the device never made it past the Set Address stage,
  616. * it may not have the real_port set correctly.
  617. */
  618. if (virt_dev->real_port == 0 ||
  619. virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
  620. xhci_dbg(xhci, "Bad real port.\n");
  621. return;
  622. }
  623. tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
  624. if (list_empty(tt_list_head))
  625. return;
  626. list_for_each(tt, tt_list_head) {
  627. tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
  628. if (tt_info->slot_id == slot_id)
  629. break;
  630. }
  631. /* Cautionary measure in case the hub was disconnected before we
  632. * stored the TT information.
  633. */
  634. if (tt_info->slot_id != slot_id)
  635. return;
  636. tt_next = tt->next;
  637. tt_info = list_entry(tt, struct xhci_tt_bw_info,
  638. tt_list);
  639. /* Multi-TT hubs will have more than one entry */
  640. do {
  641. list_del(tt);
  642. kfree(tt_info);
  643. tt = tt_next;
  644. if (list_empty(tt_list_head))
  645. break;
  646. tt_next = tt->next;
  647. tt_info = list_entry(tt, struct xhci_tt_bw_info,
  648. tt_list);
  649. } while (tt_info->slot_id == slot_id);
  650. }
  651. int xhci_alloc_tt_info(struct xhci_hcd *xhci,
  652. struct xhci_virt_device *virt_dev,
  653. struct usb_device *hdev,
  654. struct usb_tt *tt, gfp_t mem_flags)
  655. {
  656. struct xhci_tt_bw_info *tt_info;
  657. unsigned int num_ports;
  658. int i, j;
  659. if (!tt->multi)
  660. num_ports = 1;
  661. else
  662. num_ports = hdev->maxchild;
  663. for (i = 0; i < num_ports; i++, tt_info++) {
  664. struct xhci_interval_bw_table *bw_table;
  665. tt_info = kzalloc(sizeof(*tt_info), mem_flags);
  666. if (!tt_info)
  667. goto free_tts;
  668. INIT_LIST_HEAD(&tt_info->tt_list);
  669. list_add(&tt_info->tt_list,
  670. &xhci->rh_bw[virt_dev->real_port - 1].tts);
  671. tt_info->slot_id = virt_dev->udev->slot_id;
  672. if (tt->multi)
  673. tt_info->ttport = i+1;
  674. bw_table = &tt_info->bw_table;
  675. for (j = 0; j < XHCI_MAX_INTERVAL; j++)
  676. INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
  677. }
  678. return 0;
  679. free_tts:
  680. xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
  681. return -ENOMEM;
  682. }
  683. /* All the xhci_tds in the ring's TD list should be freed at this point.
  684. * Should be called with xhci->lock held if there is any chance the TT lists
  685. * will be manipulated by the configure endpoint, allocate device, or update
  686. * hub functions while this function is removing the TT entries from the list.
  687. */
  688. void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
  689. {
  690. struct xhci_virt_device *dev;
  691. int i;
  692. int old_active_eps = 0;
  693. /* Slot ID 0 is reserved */
  694. if (slot_id == 0 || !xhci->devs[slot_id])
  695. return;
  696. dev = xhci->devs[slot_id];
  697. xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
  698. if (!dev)
  699. return;
  700. if (dev->tt_info)
  701. old_active_eps = dev->tt_info->active_eps;
  702. for (i = 0; i < 31; ++i) {
  703. if (dev->eps[i].ring)
  704. xhci_ring_free(xhci, dev->eps[i].ring);
  705. if (dev->eps[i].stream_info)
  706. xhci_free_stream_info(xhci,
  707. dev->eps[i].stream_info);
  708. /* Endpoints on the TT/root port lists should have been removed
  709. * when usb_disable_device() was called for the device.
  710. * We can't drop them anyway, because the udev might have gone
  711. * away by this point, and we can't tell what speed it was.
  712. */
  713. if (!list_empty(&dev->eps[i].bw_endpoint_list))
  714. xhci_warn(xhci, "Slot %u endpoint %u "
  715. "not removed from BW list!\n",
  716. slot_id, i);
  717. }
  718. /* If this is a hub, free the TT(s) from the TT list */
  719. xhci_free_tt_info(xhci, dev, slot_id);
  720. /* If necessary, update the number of active TTs on this root port */
  721. xhci_update_tt_active_eps(xhci, dev, old_active_eps);
  722. if (dev->ring_cache) {
  723. for (i = 0; i < dev->num_rings_cached; i++)
  724. xhci_ring_free(xhci, dev->ring_cache[i]);
  725. kfree(dev->ring_cache);
  726. }
  727. if (dev->in_ctx)
  728. xhci_free_container_ctx(xhci, dev->in_ctx);
  729. if (dev->out_ctx)
  730. xhci_free_container_ctx(xhci, dev->out_ctx);
  731. kfree(xhci->devs[slot_id]);
  732. xhci->devs[slot_id] = NULL;
  733. }
  734. int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
  735. struct usb_device *udev, gfp_t flags)
  736. {
  737. struct xhci_virt_device *dev;
  738. int i;
  739. /* Slot ID 0 is reserved */
  740. if (slot_id == 0 || xhci->devs[slot_id]) {
  741. xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
  742. return 0;
  743. }
  744. xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
  745. if (!xhci->devs[slot_id])
  746. return 0;
  747. dev = xhci->devs[slot_id];
  748. /* Allocate the (output) device context that will be used in the HC. */
  749. dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
  750. if (!dev->out_ctx)
  751. goto fail;
  752. xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
  753. (unsigned long long)dev->out_ctx->dma);
  754. /* Allocate the (input) device context for address device command */
  755. dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
  756. if (!dev->in_ctx)
  757. goto fail;
  758. xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
  759. (unsigned long long)dev->in_ctx->dma);
  760. /* Initialize the cancellation list and watchdog timers for each ep */
  761. for (i = 0; i < 31; i++) {
  762. xhci_init_endpoint_timer(xhci, &dev->eps[i]);
  763. INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
  764. INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
  765. }
  766. /* Allocate endpoint 0 ring */
  767. dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags);
  768. if (!dev->eps[0].ring)
  769. goto fail;
  770. /* Allocate pointers to the ring cache */
  771. dev->ring_cache = kzalloc(
  772. sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
  773. flags);
  774. if (!dev->ring_cache)
  775. goto fail;
  776. dev->num_rings_cached = 0;
  777. init_completion(&dev->cmd_completion);
  778. INIT_LIST_HEAD(&dev->cmd_list);
  779. dev->udev = udev;
  780. /* Point to output device context in dcbaa. */
  781. xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
  782. xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
  783. slot_id,
  784. &xhci->dcbaa->dev_context_ptrs[slot_id],
  785. le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
  786. return 1;
  787. fail:
  788. xhci_free_virt_device(xhci, slot_id);
  789. return 0;
  790. }
  791. void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
  792. struct usb_device *udev)
  793. {
  794. struct xhci_virt_device *virt_dev;
  795. struct xhci_ep_ctx *ep0_ctx;
  796. struct xhci_ring *ep_ring;
  797. virt_dev = xhci->devs[udev->slot_id];
  798. ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
  799. ep_ring = virt_dev->eps[0].ring;
  800. /*
  801. * FIXME we don't keep track of the dequeue pointer very well after a
  802. * Set TR dequeue pointer, so we're setting the dequeue pointer of the
  803. * host to our enqueue pointer. This should only be called after a
  804. * configured device has reset, so all control transfers should have
  805. * been completed or cancelled before the reset.
  806. */
  807. ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
  808. ep_ring->enqueue)
  809. | ep_ring->cycle_state);
  810. }
  811. /*
  812. * The xHCI roothub may have ports of differing speeds in any order in the port
  813. * status registers. xhci->port_array provides an array of the port speed for
  814. * each offset into the port status registers.
  815. *
  816. * The xHCI hardware wants to know the roothub port number that the USB device
  817. * is attached to (or the roothub port its ancestor hub is attached to). All we
  818. * know is the index of that port under either the USB 2.0 or the USB 3.0
  819. * roothub, but that doesn't give us the real index into the HW port status
  820. * registers. Scan through the xHCI roothub port array, looking for the Nth
  821. * entry of the correct port speed. Return the port number of that entry.
  822. */
  823. static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
  824. struct usb_device *udev)
  825. {
  826. struct usb_device *top_dev;
  827. unsigned int num_similar_speed_ports;
  828. unsigned int faked_port_num;
  829. int i;
  830. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  831. top_dev = top_dev->parent)
  832. /* Found device below root hub */;
  833. faked_port_num = top_dev->portnum;
  834. for (i = 0, num_similar_speed_ports = 0;
  835. i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
  836. u8 port_speed = xhci->port_array[i];
  837. /*
  838. * Skip ports that don't have known speeds, or have duplicate
  839. * Extended Capabilities port speed entries.
  840. */
  841. if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
  842. continue;
  843. /*
  844. * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
  845. * 1.1 ports are under the USB 2.0 hub. If the port speed
  846. * matches the device speed, it's a similar speed port.
  847. */
  848. if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
  849. num_similar_speed_ports++;
  850. if (num_similar_speed_ports == faked_port_num)
  851. /* Roothub ports are numbered from 1 to N */
  852. return i+1;
  853. }
  854. return 0;
  855. }
  856. /* Setup an xHCI virtual device for a Set Address command */
  857. int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
  858. {
  859. struct xhci_virt_device *dev;
  860. struct xhci_ep_ctx *ep0_ctx;
  861. struct xhci_slot_ctx *slot_ctx;
  862. u32 port_num;
  863. struct usb_device *top_dev;
  864. dev = xhci->devs[udev->slot_id];
  865. /* Slot ID 0 is reserved */
  866. if (udev->slot_id == 0 || !dev) {
  867. xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
  868. udev->slot_id);
  869. return -EINVAL;
  870. }
  871. ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
  872. slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
  873. /* 3) Only the control endpoint is valid - one endpoint context */
  874. slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
  875. switch (udev->speed) {
  876. case USB_SPEED_SUPER:
  877. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
  878. break;
  879. case USB_SPEED_HIGH:
  880. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
  881. break;
  882. case USB_SPEED_FULL:
  883. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
  884. break;
  885. case USB_SPEED_LOW:
  886. slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
  887. break;
  888. case USB_SPEED_WIRELESS:
  889. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  890. return -EINVAL;
  891. break;
  892. default:
  893. /* Speed was set earlier, this shouldn't happen. */
  894. BUG();
  895. }
  896. /* Find the root hub port this device is under */
  897. port_num = xhci_find_real_port_number(xhci, udev);
  898. if (!port_num)
  899. return -EINVAL;
  900. slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
  901. /* Set the port number in the virtual_device to the faked port number */
  902. for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
  903. top_dev = top_dev->parent)
  904. /* Found device below root hub */;
  905. dev->fake_port = top_dev->portnum;
  906. dev->real_port = port_num;
  907. xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
  908. xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
  909. /* Find the right bandwidth table that this device will be a part of.
  910. * If this is a full speed device attached directly to a root port (or a
  911. * decendent of one), it counts as a primary bandwidth domain, not a
  912. * secondary bandwidth domain under a TT. An xhci_tt_info structure
  913. * will never be created for the HS root hub.
  914. */
  915. if (!udev->tt || !udev->tt->hub->parent) {
  916. dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
  917. } else {
  918. struct xhci_root_port_bw_info *rh_bw;
  919. struct xhci_tt_bw_info *tt_bw;
  920. rh_bw = &xhci->rh_bw[port_num - 1];
  921. /* Find the right TT. */
  922. list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
  923. if (tt_bw->slot_id != udev->tt->hub->slot_id)
  924. continue;
  925. if (!dev->udev->tt->multi ||
  926. (udev->tt->multi &&
  927. tt_bw->ttport == dev->udev->ttport)) {
  928. dev->bw_table = &tt_bw->bw_table;
  929. dev->tt_info = tt_bw;
  930. break;
  931. }
  932. }
  933. if (!dev->tt_info)
  934. xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
  935. }
  936. /* Is this a LS/FS device under an external HS hub? */
  937. if (udev->tt && udev->tt->hub->parent) {
  938. slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
  939. (udev->ttport << 8));
  940. if (udev->tt->multi)
  941. slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
  942. }
  943. xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
  944. xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
  945. /* Step 4 - ring already allocated */
  946. /* Step 5 */
  947. ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
  948. /*
  949. * XXX: Not sure about wireless USB devices.
  950. */
  951. switch (udev->speed) {
  952. case USB_SPEED_SUPER:
  953. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
  954. break;
  955. case USB_SPEED_HIGH:
  956. /* USB core guesses at a 64-byte max packet first for FS devices */
  957. case USB_SPEED_FULL:
  958. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
  959. break;
  960. case USB_SPEED_LOW:
  961. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
  962. break;
  963. case USB_SPEED_WIRELESS:
  964. xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
  965. return -EINVAL;
  966. break;
  967. default:
  968. /* New speed? */
  969. BUG();
  970. }
  971. /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
  972. ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
  973. ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
  974. dev->eps[0].ring->cycle_state);
  975. /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
  976. return 0;
  977. }
  978. /*
  979. * Convert interval expressed as 2^(bInterval - 1) == interval into
  980. * straight exponent value 2^n == interval.
  981. *
  982. */
  983. static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
  984. struct usb_host_endpoint *ep)
  985. {
  986. unsigned int interval;
  987. interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
  988. if (interval != ep->desc.bInterval - 1)
  989. dev_warn(&udev->dev,
  990. "ep %#x - rounding interval to %d %sframes\n",
  991. ep->desc.bEndpointAddress,
  992. 1 << interval,
  993. udev->speed == USB_SPEED_FULL ? "" : "micro");
  994. if (udev->speed == USB_SPEED_FULL) {
  995. /*
  996. * Full speed isoc endpoints specify interval in frames,
  997. * not microframes. We are using microframes everywhere,
  998. * so adjust accordingly.
  999. */
  1000. interval += 3; /* 1 frame = 2^3 uframes */
  1001. }
  1002. return interval;
  1003. }
  1004. /*
  1005. * Convert bInterval expressed in frames (in 1-255 range) to exponent of
  1006. * microframes, rounded down to nearest power of 2.
  1007. */
  1008. static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
  1009. struct usb_host_endpoint *ep)
  1010. {
  1011. unsigned int interval;
  1012. interval = fls(8 * ep->desc.bInterval) - 1;
  1013. interval = clamp_val(interval, 3, 10);
  1014. if ((1 << interval) != 8 * ep->desc.bInterval)
  1015. dev_warn(&udev->dev,
  1016. "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
  1017. ep->desc.bEndpointAddress,
  1018. 1 << interval,
  1019. 8 * ep->desc.bInterval);
  1020. return interval;
  1021. }
  1022. /* Return the polling or NAK interval.
  1023. *
  1024. * The polling interval is expressed in "microframes". If xHCI's Interval field
  1025. * is set to N, it will service the endpoint every 2^(Interval)*125us.
  1026. *
  1027. * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
  1028. * is set to 0.
  1029. */
  1030. static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
  1031. struct usb_host_endpoint *ep)
  1032. {
  1033. unsigned int interval = 0;
  1034. switch (udev->speed) {
  1035. case USB_SPEED_HIGH:
  1036. /* Max NAK rate */
  1037. if (usb_endpoint_xfer_control(&ep->desc) ||
  1038. usb_endpoint_xfer_bulk(&ep->desc)) {
  1039. interval = ep->desc.bInterval;
  1040. break;
  1041. }
  1042. /* Fall through - SS and HS isoc/int have same decoding */
  1043. case USB_SPEED_SUPER:
  1044. if (usb_endpoint_xfer_int(&ep->desc) ||
  1045. usb_endpoint_xfer_isoc(&ep->desc)) {
  1046. interval = xhci_parse_exponent_interval(udev, ep);
  1047. }
  1048. break;
  1049. case USB_SPEED_FULL:
  1050. if (usb_endpoint_xfer_isoc(&ep->desc)) {
  1051. interval = xhci_parse_exponent_interval(udev, ep);
  1052. break;
  1053. }
  1054. /*
  1055. * Fall through for interrupt endpoint interval decoding
  1056. * since it uses the same rules as low speed interrupt
  1057. * endpoints.
  1058. */
  1059. case USB_SPEED_LOW:
  1060. if (usb_endpoint_xfer_int(&ep->desc) ||
  1061. usb_endpoint_xfer_isoc(&ep->desc)) {
  1062. interval = xhci_parse_frame_interval(udev, ep);
  1063. }
  1064. break;
  1065. default:
  1066. BUG();
  1067. }
  1068. return EP_INTERVAL(interval);
  1069. }
  1070. /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
  1071. * High speed endpoint descriptors can define "the number of additional
  1072. * transaction opportunities per microframe", but that goes in the Max Burst
  1073. * endpoint context field.
  1074. */
  1075. static u32 xhci_get_endpoint_mult(struct usb_device *udev,
  1076. struct usb_host_endpoint *ep)
  1077. {
  1078. if (udev->speed != USB_SPEED_SUPER ||
  1079. !usb_endpoint_xfer_isoc(&ep->desc))
  1080. return 0;
  1081. return ep->ss_ep_comp.bmAttributes;
  1082. }
  1083. static u32 xhci_get_endpoint_type(struct usb_device *udev,
  1084. struct usb_host_endpoint *ep)
  1085. {
  1086. int in;
  1087. u32 type;
  1088. in = usb_endpoint_dir_in(&ep->desc);
  1089. if (usb_endpoint_xfer_control(&ep->desc)) {
  1090. type = EP_TYPE(CTRL_EP);
  1091. } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
  1092. if (in)
  1093. type = EP_TYPE(BULK_IN_EP);
  1094. else
  1095. type = EP_TYPE(BULK_OUT_EP);
  1096. } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
  1097. if (in)
  1098. type = EP_TYPE(ISOC_IN_EP);
  1099. else
  1100. type = EP_TYPE(ISOC_OUT_EP);
  1101. } else if (usb_endpoint_xfer_int(&ep->desc)) {
  1102. if (in)
  1103. type = EP_TYPE(INT_IN_EP);
  1104. else
  1105. type = EP_TYPE(INT_OUT_EP);
  1106. } else {
  1107. BUG();
  1108. }
  1109. return type;
  1110. }
  1111. /* Return the maximum endpoint service interval time (ESIT) payload.
  1112. * Basically, this is the maxpacket size, multiplied by the burst size
  1113. * and mult size.
  1114. */
  1115. static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
  1116. struct usb_device *udev,
  1117. struct usb_host_endpoint *ep)
  1118. {
  1119. int max_burst;
  1120. int max_packet;
  1121. /* Only applies for interrupt or isochronous endpoints */
  1122. if (usb_endpoint_xfer_control(&ep->desc) ||
  1123. usb_endpoint_xfer_bulk(&ep->desc))
  1124. return 0;
  1125. if (udev->speed == USB_SPEED_SUPER)
  1126. return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
  1127. max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
  1128. max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
  1129. /* A 0 in max burst means 1 transfer per ESIT */
  1130. return max_packet * (max_burst + 1);
  1131. }
  1132. /* Set up an endpoint with one ring segment. Do not allocate stream rings.
  1133. * Drivers will have to call usb_alloc_streams() to do that.
  1134. */
  1135. int xhci_endpoint_init(struct xhci_hcd *xhci,
  1136. struct xhci_virt_device *virt_dev,
  1137. struct usb_device *udev,
  1138. struct usb_host_endpoint *ep,
  1139. gfp_t mem_flags)
  1140. {
  1141. unsigned int ep_index;
  1142. struct xhci_ep_ctx *ep_ctx;
  1143. struct xhci_ring *ep_ring;
  1144. unsigned int max_packet;
  1145. unsigned int max_burst;
  1146. u32 max_esit_payload;
  1147. ep_index = xhci_get_endpoint_index(&ep->desc);
  1148. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  1149. /* Set up the endpoint ring */
  1150. /*
  1151. * Isochronous endpoint ring needs bigger size because one isoc URB
  1152. * carries multiple packets and it will insert multiple tds to the
  1153. * ring.
  1154. * This should be replaced with dynamic ring resizing in the future.
  1155. */
  1156. if (usb_endpoint_xfer_isoc(&ep->desc))
  1157. virt_dev->eps[ep_index].new_ring =
  1158. xhci_ring_alloc(xhci, 8, true, true, mem_flags);
  1159. else
  1160. virt_dev->eps[ep_index].new_ring =
  1161. xhci_ring_alloc(xhci, 1, true, false, mem_flags);
  1162. if (!virt_dev->eps[ep_index].new_ring) {
  1163. /* Attempt to use the ring cache */
  1164. if (virt_dev->num_rings_cached == 0)
  1165. return -ENOMEM;
  1166. virt_dev->eps[ep_index].new_ring =
  1167. virt_dev->ring_cache[virt_dev->num_rings_cached];
  1168. virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
  1169. virt_dev->num_rings_cached--;
  1170. xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
  1171. usb_endpoint_xfer_isoc(&ep->desc) ? true : false);
  1172. }
  1173. virt_dev->eps[ep_index].skip = false;
  1174. ep_ring = virt_dev->eps[ep_index].new_ring;
  1175. ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
  1176. ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
  1177. | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
  1178. /* FIXME dig Mult and streams info out of ep companion desc */
  1179. /* Allow 3 retries for everything but isoc;
  1180. * CErr shall be set to 0 for Isoch endpoints.
  1181. */
  1182. if (!usb_endpoint_xfer_isoc(&ep->desc))
  1183. ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
  1184. else
  1185. ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
  1186. ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
  1187. /* Set the max packet size and max burst */
  1188. switch (udev->speed) {
  1189. case USB_SPEED_SUPER:
  1190. max_packet = usb_endpoint_maxp(&ep->desc);
  1191. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
  1192. /* dig out max burst from ep companion desc */
  1193. max_packet = ep->ss_ep_comp.bMaxBurst;
  1194. ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
  1195. break;
  1196. case USB_SPEED_HIGH:
  1197. /* bits 11:12 specify the number of additional transaction
  1198. * opportunities per microframe (USB 2.0, section 9.6.6)
  1199. */
  1200. if (usb_endpoint_xfer_isoc(&ep->desc) ||
  1201. usb_endpoint_xfer_int(&ep->desc)) {
  1202. max_burst = (usb_endpoint_maxp(&ep->desc)
  1203. & 0x1800) >> 11;
  1204. ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
  1205. }
  1206. /* Fall through */
  1207. case USB_SPEED_FULL:
  1208. case USB_SPEED_LOW:
  1209. max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
  1210. ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
  1211. break;
  1212. default:
  1213. BUG();
  1214. }
  1215. max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
  1216. ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
  1217. /*
  1218. * XXX no idea how to calculate the average TRB buffer length for bulk
  1219. * endpoints, as the driver gives us no clue how big each scatter gather
  1220. * list entry (or buffer) is going to be.
  1221. *
  1222. * For isochronous and interrupt endpoints, we set it to the max
  1223. * available, until we have new API in the USB core to allow drivers to
  1224. * declare how much bandwidth they actually need.
  1225. *
  1226. * Normally, it would be calculated by taking the total of the buffer
  1227. * lengths in the TD and then dividing by the number of TRBs in a TD,
  1228. * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
  1229. * use Event Data TRBs, and we don't chain in a link TRB on short
  1230. * transfers, we're basically dividing by 1.
  1231. *
  1232. * xHCI 1.0 specification indicates that the Average TRB Length should
  1233. * be set to 8 for control endpoints.
  1234. */
  1235. if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
  1236. ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
  1237. else
  1238. ep_ctx->tx_info |=
  1239. cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
  1240. /* FIXME Debug endpoint context */
  1241. return 0;
  1242. }
  1243. void xhci_endpoint_zero(struct xhci_hcd *xhci,
  1244. struct xhci_virt_device *virt_dev,
  1245. struct usb_host_endpoint *ep)
  1246. {
  1247. unsigned int ep_index;
  1248. struct xhci_ep_ctx *ep_ctx;
  1249. ep_index = xhci_get_endpoint_index(&ep->desc);
  1250. ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
  1251. ep_ctx->ep_info = 0;
  1252. ep_ctx->ep_info2 = 0;
  1253. ep_ctx->deq = 0;
  1254. ep_ctx->tx_info = 0;
  1255. /* Don't free the endpoint ring until the set interface or configuration
  1256. * request succeeds.
  1257. */
  1258. }
  1259. void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
  1260. {
  1261. bw_info->ep_interval = 0;
  1262. bw_info->mult = 0;
  1263. bw_info->num_packets = 0;
  1264. bw_info->max_packet_size = 0;
  1265. bw_info->type = 0;
  1266. bw_info->max_esit_payload = 0;
  1267. }
  1268. void xhci_update_bw_info(struct xhci_hcd *xhci,
  1269. struct xhci_container_ctx *in_ctx,
  1270. struct xhci_input_control_ctx *ctrl_ctx,
  1271. struct xhci_virt_device *virt_dev)
  1272. {
  1273. struct xhci_bw_info *bw_info;
  1274. struct xhci_ep_ctx *ep_ctx;
  1275. unsigned int ep_type;
  1276. int i;
  1277. for (i = 1; i < 31; ++i) {
  1278. bw_info = &virt_dev->eps[i].bw_info;
  1279. /* We can't tell what endpoint type is being dropped, but
  1280. * unconditionally clearing the bandwidth info for non-periodic
  1281. * endpoints should be harmless because the info will never be
  1282. * set in the first place.
  1283. */
  1284. if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
  1285. /* Dropped endpoint */
  1286. xhci_clear_endpoint_bw_info(bw_info);
  1287. continue;
  1288. }
  1289. if (EP_IS_ADDED(ctrl_ctx, i)) {
  1290. ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
  1291. ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
  1292. /* Ignore non-periodic endpoints */
  1293. if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
  1294. ep_type != ISOC_IN_EP &&
  1295. ep_type != INT_IN_EP)
  1296. continue;
  1297. /* Added or changed endpoint */
  1298. bw_info->ep_interval = CTX_TO_EP_INTERVAL(
  1299. le32_to_cpu(ep_ctx->ep_info));
  1300. /* Number of packets and mult are zero-based in the
  1301. * input context, but we want one-based for the
  1302. * interval table.
  1303. */
  1304. bw_info->mult = CTX_TO_EP_MULT(
  1305. le32_to_cpu(ep_ctx->ep_info)) + 1;
  1306. bw_info->num_packets = CTX_TO_MAX_BURST(
  1307. le32_to_cpu(ep_ctx->ep_info2)) + 1;
  1308. bw_info->max_packet_size = MAX_PACKET_DECODED(
  1309. le32_to_cpu(ep_ctx->ep_info2));
  1310. bw_info->type = ep_type;
  1311. bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
  1312. le32_to_cpu(ep_ctx->tx_info));
  1313. }
  1314. }
  1315. }
  1316. /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
  1317. * Useful when you want to change one particular aspect of the endpoint and then
  1318. * issue a configure endpoint command.
  1319. */
  1320. void xhci_endpoint_copy(struct xhci_hcd *xhci,
  1321. struct xhci_container_ctx *in_ctx,
  1322. struct xhci_container_ctx *out_ctx,
  1323. unsigned int ep_index)
  1324. {
  1325. struct xhci_ep_ctx *out_ep_ctx;
  1326. struct xhci_ep_ctx *in_ep_ctx;
  1327. out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
  1328. in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
  1329. in_ep_ctx->ep_info = out_ep_ctx->ep_info;
  1330. in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
  1331. in_ep_ctx->deq = out_ep_ctx->deq;
  1332. in_ep_ctx->tx_info = out_ep_ctx->tx_info;
  1333. }
  1334. /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
  1335. * Useful when you want to change one particular aspect of the endpoint and then
  1336. * issue a configure endpoint command. Only the context entries field matters,
  1337. * but we'll copy the whole thing anyway.
  1338. */
  1339. void xhci_slot_copy(struct xhci_hcd *xhci,
  1340. struct xhci_container_ctx *in_ctx,
  1341. struct xhci_container_ctx *out_ctx)
  1342. {
  1343. struct xhci_slot_ctx *in_slot_ctx;
  1344. struct xhci_slot_ctx *out_slot_ctx;
  1345. in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
  1346. out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
  1347. in_slot_ctx->dev_info = out_slot_ctx->dev_info;
  1348. in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
  1349. in_slot_ctx->tt_info = out_slot_ctx->tt_info;
  1350. in_slot_ctx->dev_state = out_slot_ctx->dev_state;
  1351. }
  1352. /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
  1353. static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
  1354. {
  1355. int i;
  1356. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  1357. int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  1358. xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
  1359. if (!num_sp)
  1360. return 0;
  1361. xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
  1362. if (!xhci->scratchpad)
  1363. goto fail_sp;
  1364. xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
  1365. num_sp * sizeof(u64),
  1366. &xhci->scratchpad->sp_dma, flags);
  1367. if (!xhci->scratchpad->sp_array)
  1368. goto fail_sp2;
  1369. xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
  1370. if (!xhci->scratchpad->sp_buffers)
  1371. goto fail_sp3;
  1372. xhci->scratchpad->sp_dma_buffers =
  1373. kzalloc(sizeof(dma_addr_t) * num_sp, flags);
  1374. if (!xhci->scratchpad->sp_dma_buffers)
  1375. goto fail_sp4;
  1376. xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
  1377. for (i = 0; i < num_sp; i++) {
  1378. dma_addr_t dma;
  1379. void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
  1380. flags);
  1381. if (!buf)
  1382. goto fail_sp5;
  1383. xhci->scratchpad->sp_array[i] = dma;
  1384. xhci->scratchpad->sp_buffers[i] = buf;
  1385. xhci->scratchpad->sp_dma_buffers[i] = dma;
  1386. }
  1387. return 0;
  1388. fail_sp5:
  1389. for (i = i - 1; i >= 0; i--) {
  1390. dma_free_coherent(dev, xhci->page_size,
  1391. xhci->scratchpad->sp_buffers[i],
  1392. xhci->scratchpad->sp_dma_buffers[i]);
  1393. }
  1394. kfree(xhci->scratchpad->sp_dma_buffers);
  1395. fail_sp4:
  1396. kfree(xhci->scratchpad->sp_buffers);
  1397. fail_sp3:
  1398. dma_free_coherent(dev, num_sp * sizeof(u64),
  1399. xhci->scratchpad->sp_array,
  1400. xhci->scratchpad->sp_dma);
  1401. fail_sp2:
  1402. kfree(xhci->scratchpad);
  1403. xhci->scratchpad = NULL;
  1404. fail_sp:
  1405. return -ENOMEM;
  1406. }
  1407. static void scratchpad_free(struct xhci_hcd *xhci)
  1408. {
  1409. int num_sp;
  1410. int i;
  1411. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  1412. if (!xhci->scratchpad)
  1413. return;
  1414. num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
  1415. for (i = 0; i < num_sp; i++) {
  1416. dma_free_coherent(&pdev->dev, xhci->page_size,
  1417. xhci->scratchpad->sp_buffers[i],
  1418. xhci->scratchpad->sp_dma_buffers[i]);
  1419. }
  1420. kfree(xhci->scratchpad->sp_dma_buffers);
  1421. kfree(xhci->scratchpad->sp_buffers);
  1422. dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
  1423. xhci->scratchpad->sp_array,
  1424. xhci->scratchpad->sp_dma);
  1425. kfree(xhci->scratchpad);
  1426. xhci->scratchpad = NULL;
  1427. }
  1428. struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
  1429. bool allocate_in_ctx, bool allocate_completion,
  1430. gfp_t mem_flags)
  1431. {
  1432. struct xhci_command *command;
  1433. command = kzalloc(sizeof(*command), mem_flags);
  1434. if (!command)
  1435. return NULL;
  1436. if (allocate_in_ctx) {
  1437. command->in_ctx =
  1438. xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
  1439. mem_flags);
  1440. if (!command->in_ctx) {
  1441. kfree(command);
  1442. return NULL;
  1443. }
  1444. }
  1445. if (allocate_completion) {
  1446. command->completion =
  1447. kzalloc(sizeof(struct completion), mem_flags);
  1448. if (!command->completion) {
  1449. xhci_free_container_ctx(xhci, command->in_ctx);
  1450. kfree(command);
  1451. return NULL;
  1452. }
  1453. init_completion(command->completion);
  1454. }
  1455. command->status = 0;
  1456. INIT_LIST_HEAD(&command->cmd_list);
  1457. return command;
  1458. }
  1459. void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
  1460. {
  1461. if (urb_priv) {
  1462. kfree(urb_priv->td[0]);
  1463. kfree(urb_priv);
  1464. }
  1465. }
  1466. void xhci_free_command(struct xhci_hcd *xhci,
  1467. struct xhci_command *command)
  1468. {
  1469. xhci_free_container_ctx(xhci,
  1470. command->in_ctx);
  1471. kfree(command->completion);
  1472. kfree(command);
  1473. }
  1474. void xhci_mem_cleanup(struct xhci_hcd *xhci)
  1475. {
  1476. struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
  1477. struct dev_info *dev_info, *next;
  1478. unsigned long flags;
  1479. int size;
  1480. int i;
  1481. /* Free the Event Ring Segment Table and the actual Event Ring */
  1482. if (xhci->ir_set) {
  1483. xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
  1484. xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
  1485. xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
  1486. }
  1487. size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
  1488. if (xhci->erst.entries)
  1489. dma_free_coherent(&pdev->dev, size,
  1490. xhci->erst.entries, xhci->erst.erst_dma_addr);
  1491. xhci->erst.entries = NULL;
  1492. xhci_dbg(xhci, "Freed ERST\n");
  1493. if (xhci->event_ring)
  1494. xhci_ring_free(xhci, xhci->event_ring);
  1495. xhci->event_ring = NULL;
  1496. xhci_dbg(xhci, "Freed event ring\n");
  1497. xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
  1498. if (xhci->cmd_ring)
  1499. xhci_ring_free(xhci, xhci->cmd_ring);
  1500. xhci->cmd_ring = NULL;
  1501. xhci_dbg(xhci, "Freed command ring\n");
  1502. for (i = 1; i < MAX_HC_SLOTS; ++i)
  1503. xhci_free_virt_device(xhci, i);
  1504. if (xhci->segment_pool)
  1505. dma_pool_destroy(xhci->segment_pool);
  1506. xhci->segment_pool = NULL;
  1507. xhci_dbg(xhci, "Freed segment pool\n");
  1508. if (xhci->device_pool)
  1509. dma_pool_destroy(xhci->device_pool);
  1510. xhci->device_pool = NULL;
  1511. xhci_dbg(xhci, "Freed device context pool\n");
  1512. if (xhci->small_streams_pool)
  1513. dma_pool_destroy(xhci->small_streams_pool);
  1514. xhci->small_streams_pool = NULL;
  1515. xhci_dbg(xhci, "Freed small stream array pool\n");
  1516. if (xhci->medium_streams_pool)
  1517. dma_pool_destroy(xhci->medium_streams_pool);
  1518. xhci->medium_streams_pool = NULL;
  1519. xhci_dbg(xhci, "Freed medium stream array pool\n");
  1520. xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
  1521. if (xhci->dcbaa)
  1522. dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
  1523. xhci->dcbaa, xhci->dcbaa->dma);
  1524. xhci->dcbaa = NULL;
  1525. scratchpad_free(xhci);
  1526. spin_lock_irqsave(&xhci->lock, flags);
  1527. list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
  1528. list_del(&dev_info->list);
  1529. kfree(dev_info);
  1530. }
  1531. spin_unlock_irqrestore(&xhci->lock, flags);
  1532. xhci->num_usb2_ports = 0;
  1533. xhci->num_usb3_ports = 0;
  1534. kfree(xhci->usb2_ports);
  1535. kfree(xhci->usb3_ports);
  1536. kfree(xhci->port_array);
  1537. kfree(xhci->rh_bw);
  1538. xhci->page_size = 0;
  1539. xhci->page_shift = 0;
  1540. xhci->bus_state[0].bus_suspended = 0;
  1541. xhci->bus_state[1].bus_suspended = 0;
  1542. }
  1543. static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
  1544. struct xhci_segment *input_seg,
  1545. union xhci_trb *start_trb,
  1546. union xhci_trb *end_trb,
  1547. dma_addr_t input_dma,
  1548. struct xhci_segment *result_seg,
  1549. char *test_name, int test_number)
  1550. {
  1551. unsigned long long start_dma;
  1552. unsigned long long end_dma;
  1553. struct xhci_segment *seg;
  1554. start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
  1555. end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
  1556. seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
  1557. if (seg != result_seg) {
  1558. xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
  1559. test_name, test_number);
  1560. xhci_warn(xhci, "Tested TRB math w/ seg %p and "
  1561. "input DMA 0x%llx\n",
  1562. input_seg,
  1563. (unsigned long long) input_dma);
  1564. xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
  1565. "ending TRB %p (0x%llx DMA)\n",
  1566. start_trb, start_dma,
  1567. end_trb, end_dma);
  1568. xhci_warn(xhci, "Expected seg %p, got seg %p\n",
  1569. result_seg, seg);
  1570. return -1;
  1571. }
  1572. return 0;
  1573. }
  1574. /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
  1575. static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
  1576. {
  1577. struct {
  1578. dma_addr_t input_dma;
  1579. struct xhci_segment *result_seg;
  1580. } simple_test_vector [] = {
  1581. /* A zeroed DMA field should fail */
  1582. { 0, NULL },
  1583. /* One TRB before the ring start should fail */
  1584. { xhci->event_ring->first_seg->dma - 16, NULL },
  1585. /* One byte before the ring start should fail */
  1586. { xhci->event_ring->first_seg->dma - 1, NULL },
  1587. /* Starting TRB should succeed */
  1588. { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
  1589. /* Ending TRB should succeed */
  1590. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
  1591. xhci->event_ring->first_seg },
  1592. /* One byte after the ring end should fail */
  1593. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
  1594. /* One TRB after the ring end should fail */
  1595. { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
  1596. /* An address of all ones should fail */
  1597. { (dma_addr_t) (~0), NULL },
  1598. };
  1599. struct {
  1600. struct xhci_segment *input_seg;
  1601. union xhci_trb *start_trb;
  1602. union xhci_trb *end_trb;
  1603. dma_addr_t input_dma;
  1604. struct xhci_segment *result_seg;
  1605. } complex_test_vector [] = {
  1606. /* Test feeding a valid DMA address from a different ring */
  1607. { .input_seg = xhci->event_ring->first_seg,
  1608. .start_trb = xhci->event_ring->first_seg->trbs,
  1609. .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1610. .input_dma = xhci->cmd_ring->first_seg->dma,
  1611. .result_seg = NULL,
  1612. },
  1613. /* Test feeding a valid end TRB from a different ring */
  1614. { .input_seg = xhci->event_ring->first_seg,
  1615. .start_trb = xhci->event_ring->first_seg->trbs,
  1616. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1617. .input_dma = xhci->cmd_ring->first_seg->dma,
  1618. .result_seg = NULL,
  1619. },
  1620. /* Test feeding a valid start and end TRB from a different ring */
  1621. { .input_seg = xhci->event_ring->first_seg,
  1622. .start_trb = xhci->cmd_ring->first_seg->trbs,
  1623. .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1624. .input_dma = xhci->cmd_ring->first_seg->dma,
  1625. .result_seg = NULL,
  1626. },
  1627. /* TRB in this ring, but after this TD */
  1628. { .input_seg = xhci->event_ring->first_seg,
  1629. .start_trb = &xhci->event_ring->first_seg->trbs[0],
  1630. .end_trb = &xhci->event_ring->first_seg->trbs[3],
  1631. .input_dma = xhci->event_ring->first_seg->dma + 4*16,
  1632. .result_seg = NULL,
  1633. },
  1634. /* TRB in this ring, but before this TD */
  1635. { .input_seg = xhci->event_ring->first_seg,
  1636. .start_trb = &xhci->event_ring->first_seg->trbs[3],
  1637. .end_trb = &xhci->event_ring->first_seg->trbs[6],
  1638. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  1639. .result_seg = NULL,
  1640. },
  1641. /* TRB in this ring, but after this wrapped TD */
  1642. { .input_seg = xhci->event_ring->first_seg,
  1643. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1644. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1645. .input_dma = xhci->event_ring->first_seg->dma + 2*16,
  1646. .result_seg = NULL,
  1647. },
  1648. /* TRB in this ring, but before this wrapped TD */
  1649. { .input_seg = xhci->event_ring->first_seg,
  1650. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1651. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1652. .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
  1653. .result_seg = NULL,
  1654. },
  1655. /* TRB not in this ring, and we have a wrapped TD */
  1656. { .input_seg = xhci->event_ring->first_seg,
  1657. .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
  1658. .end_trb = &xhci->event_ring->first_seg->trbs[1],
  1659. .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
  1660. .result_seg = NULL,
  1661. },
  1662. };
  1663. unsigned int num_tests;
  1664. int i, ret;
  1665. num_tests = ARRAY_SIZE(simple_test_vector);
  1666. for (i = 0; i < num_tests; i++) {
  1667. ret = xhci_test_trb_in_td(xhci,
  1668. xhci->event_ring->first_seg,
  1669. xhci->event_ring->first_seg->trbs,
  1670. &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
  1671. simple_test_vector[i].input_dma,
  1672. simple_test_vector[i].result_seg,
  1673. "Simple", i);
  1674. if (ret < 0)
  1675. return ret;
  1676. }
  1677. num_tests = ARRAY_SIZE(complex_test_vector);
  1678. for (i = 0; i < num_tests; i++) {
  1679. ret = xhci_test_trb_in_td(xhci,
  1680. complex_test_vector[i].input_seg,
  1681. complex_test_vector[i].start_trb,
  1682. complex_test_vector[i].end_trb,
  1683. complex_test_vector[i].input_dma,
  1684. complex_test_vector[i].result_seg,
  1685. "Complex", i);
  1686. if (ret < 0)
  1687. return ret;
  1688. }
  1689. xhci_dbg(xhci, "TRB math tests passed.\n");
  1690. return 0;
  1691. }
  1692. static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
  1693. {
  1694. u64 temp;
  1695. dma_addr_t deq;
  1696. deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
  1697. xhci->event_ring->dequeue);
  1698. if (deq == 0 && !in_interrupt())
  1699. xhci_warn(xhci, "WARN something wrong with SW event ring "
  1700. "dequeue ptr.\n");
  1701. /* Update HC event ring dequeue pointer */
  1702. temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
  1703. temp &= ERST_PTR_MASK;
  1704. /* Don't clear the EHB bit (which is RW1C) because
  1705. * there might be more events to service.
  1706. */
  1707. temp &= ~ERST_EHB;
  1708. xhci_dbg(xhci, "// Write event ring dequeue pointer, "
  1709. "preserving EHB bit\n");
  1710. xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
  1711. &xhci->ir_set->erst_dequeue);
  1712. }
  1713. static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
  1714. __le32 __iomem *addr, u8 major_revision)
  1715. {
  1716. u32 temp, port_offset, port_count;
  1717. int i;
  1718. if (major_revision > 0x03) {
  1719. xhci_warn(xhci, "Ignoring unknown port speed, "
  1720. "Ext Cap %p, revision = 0x%x\n",
  1721. addr, major_revision);
  1722. /* Ignoring port protocol we can't understand. FIXME */
  1723. return;
  1724. }
  1725. /* Port offset and count in the third dword, see section 7.2 */
  1726. temp = xhci_readl(xhci, addr + 2);
  1727. port_offset = XHCI_EXT_PORT_OFF(temp);
  1728. port_count = XHCI_EXT_PORT_COUNT(temp);
  1729. xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
  1730. "count = %u, revision = 0x%x\n",
  1731. addr, port_offset, port_count, major_revision);
  1732. /* Port count includes the current port offset */
  1733. if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
  1734. /* WTF? "Valid values are ‘1’ to MaxPorts" */
  1735. return;
  1736. /* Check the host's USB2 LPM capability */
  1737. if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
  1738. (temp & XHCI_L1C)) {
  1739. xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
  1740. xhci->sw_lpm_support = 1;
  1741. }
  1742. if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
  1743. xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
  1744. xhci->sw_lpm_support = 1;
  1745. if (temp & XHCI_HLC) {
  1746. xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
  1747. xhci->hw_lpm_support = 1;
  1748. }
  1749. }
  1750. port_offset--;
  1751. for (i = port_offset; i < (port_offset + port_count); i++) {
  1752. /* Duplicate entry. Ignore the port if the revisions differ. */
  1753. if (xhci->port_array[i] != 0) {
  1754. xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
  1755. " port %u\n", addr, i);
  1756. xhci_warn(xhci, "Port was marked as USB %u, "
  1757. "duplicated as USB %u\n",
  1758. xhci->port_array[i], major_revision);
  1759. /* Only adjust the roothub port counts if we haven't
  1760. * found a similar duplicate.
  1761. */
  1762. if (xhci->port_array[i] != major_revision &&
  1763. xhci->port_array[i] != DUPLICATE_ENTRY) {
  1764. if (xhci->port_array[i] == 0x03)
  1765. xhci->num_usb3_ports--;
  1766. else
  1767. xhci->num_usb2_ports--;
  1768. xhci->port_array[i] = DUPLICATE_ENTRY;
  1769. }
  1770. /* FIXME: Should we disable the port? */
  1771. continue;
  1772. }
  1773. xhci->port_array[i] = major_revision;
  1774. if (major_revision == 0x03)
  1775. xhci->num_usb3_ports++;
  1776. else
  1777. xhci->num_usb2_ports++;
  1778. }
  1779. /* FIXME: Should we disable ports not in the Extended Capabilities? */
  1780. }
  1781. /*
  1782. * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
  1783. * specify what speeds each port is supposed to be. We can't count on the port
  1784. * speed bits in the PORTSC register being correct until a device is connected,
  1785. * but we need to set up the two fake roothubs with the correct number of USB
  1786. * 3.0 and USB 2.0 ports at host controller initialization time.
  1787. */
  1788. static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
  1789. {
  1790. __le32 __iomem *addr;
  1791. u32 offset;
  1792. unsigned int num_ports;
  1793. int i, j, port_index;
  1794. addr = &xhci->cap_regs->hcc_params;
  1795. offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
  1796. if (offset == 0) {
  1797. xhci_err(xhci, "No Extended Capability registers, "
  1798. "unable to set up roothub.\n");
  1799. return -ENODEV;
  1800. }
  1801. num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
  1802. xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
  1803. if (!xhci->port_array)
  1804. return -ENOMEM;
  1805. xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
  1806. if (!xhci->rh_bw)
  1807. return -ENOMEM;
  1808. for (i = 0; i < num_ports; i++) {
  1809. struct xhci_interval_bw_table *bw_table;
  1810. INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
  1811. bw_table = &xhci->rh_bw[i].bw_table;
  1812. for (j = 0; j < XHCI_MAX_INTERVAL; j++)
  1813. INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
  1814. }
  1815. /*
  1816. * For whatever reason, the first capability offset is from the
  1817. * capability register base, not from the HCCPARAMS register.
  1818. * See section 5.3.6 for offset calculation.
  1819. */
  1820. addr = &xhci->cap_regs->hc_capbase + offset;
  1821. while (1) {
  1822. u32 cap_id;
  1823. cap_id = xhci_readl(xhci, addr);
  1824. if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
  1825. xhci_add_in_port(xhci, num_ports, addr,
  1826. (u8) XHCI_EXT_PORT_MAJOR(cap_id));
  1827. offset = XHCI_EXT_CAPS_NEXT(cap_id);
  1828. if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
  1829. == num_ports)
  1830. break;
  1831. /*
  1832. * Once you're into the Extended Capabilities, the offset is
  1833. * always relative to the register holding the offset.
  1834. */
  1835. addr += offset;
  1836. }
  1837. if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
  1838. xhci_warn(xhci, "No ports on the roothubs?\n");
  1839. return -ENODEV;
  1840. }
  1841. xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
  1842. xhci->num_usb2_ports, xhci->num_usb3_ports);
  1843. /* Place limits on the number of roothub ports so that the hub
  1844. * descriptors aren't longer than the USB core will allocate.
  1845. */
  1846. if (xhci->num_usb3_ports > 15) {
  1847. xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
  1848. xhci->num_usb3_ports = 15;
  1849. }
  1850. if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
  1851. xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
  1852. USB_MAXCHILDREN);
  1853. xhci->num_usb2_ports = USB_MAXCHILDREN;
  1854. }
  1855. /*
  1856. * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
  1857. * Not sure how the USB core will handle a hub with no ports...
  1858. */
  1859. if (xhci->num_usb2_ports) {
  1860. xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
  1861. xhci->num_usb2_ports, flags);
  1862. if (!xhci->usb2_ports)
  1863. return -ENOMEM;
  1864. port_index = 0;
  1865. for (i = 0; i < num_ports; i++) {
  1866. if (xhci->port_array[i] == 0x03 ||
  1867. xhci->port_array[i] == 0 ||
  1868. xhci->port_array[i] == DUPLICATE_ENTRY)
  1869. continue;
  1870. xhci->usb2_ports[port_index] =
  1871. &xhci->op_regs->port_status_base +
  1872. NUM_PORT_REGS*i;
  1873. xhci_dbg(xhci, "USB 2.0 port at index %u, "
  1874. "addr = %p\n", i,
  1875. xhci->usb2_ports[port_index]);
  1876. port_index++;
  1877. if (port_index == xhci->num_usb2_ports)
  1878. break;
  1879. }
  1880. }
  1881. if (xhci->num_usb3_ports) {
  1882. xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
  1883. xhci->num_usb3_ports, flags);
  1884. if (!xhci->usb3_ports)
  1885. return -ENOMEM;
  1886. port_index = 0;
  1887. for (i = 0; i < num_ports; i++)
  1888. if (xhci->port_array[i] == 0x03) {
  1889. xhci->usb3_ports[port_index] =
  1890. &xhci->op_regs->port_status_base +
  1891. NUM_PORT_REGS*i;
  1892. xhci_dbg(xhci, "USB 3.0 port at index %u, "
  1893. "addr = %p\n", i,
  1894. xhci->usb3_ports[port_index]);
  1895. port_index++;
  1896. if (port_index == xhci->num_usb3_ports)
  1897. break;
  1898. }
  1899. }
  1900. return 0;
  1901. }
  1902. int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
  1903. {
  1904. dma_addr_t dma;
  1905. struct device *dev = xhci_to_hcd(xhci)->self.controller;
  1906. unsigned int val, val2;
  1907. u64 val_64;
  1908. struct xhci_segment *seg;
  1909. u32 page_size;
  1910. int i;
  1911. page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
  1912. xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
  1913. for (i = 0; i < 16; i++) {
  1914. if ((0x1 & page_size) != 0)
  1915. break;
  1916. page_size = page_size >> 1;
  1917. }
  1918. if (i < 16)
  1919. xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
  1920. else
  1921. xhci_warn(xhci, "WARN: no supported page size\n");
  1922. /* Use 4K pages, since that's common and the minimum the HC supports */
  1923. xhci->page_shift = 12;
  1924. xhci->page_size = 1 << xhci->page_shift;
  1925. xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
  1926. /*
  1927. * Program the Number of Device Slots Enabled field in the CONFIG
  1928. * register with the max value of slots the HC can handle.
  1929. */
  1930. val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
  1931. xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
  1932. (unsigned int) val);
  1933. val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
  1934. val |= (val2 & ~HCS_SLOTS_MASK);
  1935. xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
  1936. (unsigned int) val);
  1937. xhci_writel(xhci, val, &xhci->op_regs->config_reg);
  1938. /*
  1939. * Section 5.4.8 - doorbell array must be
  1940. * "physically contiguous and 64-byte (cache line) aligned".
  1941. */
  1942. xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
  1943. GFP_KERNEL);
  1944. if (!xhci->dcbaa)
  1945. goto fail;
  1946. memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
  1947. xhci->dcbaa->dma = dma;
  1948. xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
  1949. (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
  1950. xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
  1951. /*
  1952. * Initialize the ring segment pool. The ring must be a contiguous
  1953. * structure comprised of TRBs. The TRBs must be 16 byte aligned,
  1954. * however, the command ring segment needs 64-byte aligned segments,
  1955. * so we pick the greater alignment need.
  1956. */
  1957. xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
  1958. SEGMENT_SIZE, 64, xhci->page_size);
  1959. /* See Table 46 and Note on Figure 55 */
  1960. xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
  1961. 2112, 64, xhci->page_size);
  1962. if (!xhci->segment_pool || !xhci->device_pool)
  1963. goto fail;
  1964. /* Linear stream context arrays don't have any boundary restrictions,
  1965. * and only need to be 16-byte aligned.
  1966. */
  1967. xhci->small_streams_pool =
  1968. dma_pool_create("xHCI 256 byte stream ctx arrays",
  1969. dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
  1970. xhci->medium_streams_pool =
  1971. dma_pool_create("xHCI 1KB stream ctx arrays",
  1972. dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
  1973. /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
  1974. * will be allocated with dma_alloc_coherent()
  1975. */
  1976. if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
  1977. goto fail;
  1978. /* Set up the command ring to have one segments for now. */
  1979. xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags);
  1980. if (!xhci->cmd_ring)
  1981. goto fail;
  1982. xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
  1983. xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
  1984. (unsigned long long)xhci->cmd_ring->first_seg->dma);
  1985. /* Set the address in the Command Ring Control register */
  1986. val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
  1987. val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
  1988. (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
  1989. xhci->cmd_ring->cycle_state;
  1990. xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
  1991. xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
  1992. xhci_dbg_cmd_ptrs(xhci);
  1993. val = xhci_readl(xhci, &xhci->cap_regs->db_off);
  1994. val &= DBOFF_MASK;
  1995. xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
  1996. " from cap regs base addr\n", val);
  1997. xhci->dba = (void __iomem *) xhci->cap_regs + val;
  1998. xhci_dbg_regs(xhci);
  1999. xhci_print_run_regs(xhci);
  2000. /* Set ir_set to interrupt register set 0 */
  2001. xhci->ir_set = &xhci->run_regs->ir_set[0];
  2002. /*
  2003. * Event ring setup: Allocate a normal ring, but also setup
  2004. * the event ring segment table (ERST). Section 4.9.3.
  2005. */
  2006. xhci_dbg(xhci, "// Allocating event ring\n");
  2007. xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false,
  2008. flags);
  2009. if (!xhci->event_ring)
  2010. goto fail;
  2011. if (xhci_check_trb_in_td_math(xhci, flags) < 0)
  2012. goto fail;
  2013. xhci->erst.entries = dma_alloc_coherent(dev,
  2014. sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
  2015. GFP_KERNEL);
  2016. if (!xhci->erst.entries)
  2017. goto fail;
  2018. xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
  2019. (unsigned long long)dma);
  2020. memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
  2021. xhci->erst.num_entries = ERST_NUM_SEGS;
  2022. xhci->erst.erst_dma_addr = dma;
  2023. xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
  2024. xhci->erst.num_entries,
  2025. xhci->erst.entries,
  2026. (unsigned long long)xhci->erst.erst_dma_addr);
  2027. /* set ring base address and size for each segment table entry */
  2028. for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
  2029. struct xhci_erst_entry *entry = &xhci->erst.entries[val];
  2030. entry->seg_addr = cpu_to_le64(seg->dma);
  2031. entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
  2032. entry->rsvd = 0;
  2033. seg = seg->next;
  2034. }
  2035. /* set ERST count with the number of entries in the segment table */
  2036. val = xhci_readl(xhci, &xhci->ir_set->erst_size);
  2037. val &= ERST_SIZE_MASK;
  2038. val |= ERST_NUM_SEGS;
  2039. xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
  2040. val);
  2041. xhci_writel(xhci, val, &xhci->ir_set->erst_size);
  2042. xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
  2043. /* set the segment table base address */
  2044. xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
  2045. (unsigned long long)xhci->erst.erst_dma_addr);
  2046. val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
  2047. val_64 &= ERST_PTR_MASK;
  2048. val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
  2049. xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
  2050. /* Set the event ring dequeue address */
  2051. xhci_set_hc_event_deq(xhci);
  2052. xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
  2053. xhci_print_ir_set(xhci, 0);
  2054. /*
  2055. * XXX: Might need to set the Interrupter Moderation Register to
  2056. * something other than the default (~1ms minimum between interrupts).
  2057. * See section 5.5.1.2.
  2058. */
  2059. init_completion(&xhci->addr_dev);
  2060. for (i = 0; i < MAX_HC_SLOTS; ++i)
  2061. xhci->devs[i] = NULL;
  2062. for (i = 0; i < USB_MAXCHILDREN; ++i) {
  2063. xhci->bus_state[0].resume_done[i] = 0;
  2064. xhci->bus_state[1].resume_done[i] = 0;
  2065. }
  2066. if (scratchpad_alloc(xhci, flags))
  2067. goto fail;
  2068. if (xhci_setup_port_arrays(xhci, flags))
  2069. goto fail;
  2070. INIT_LIST_HEAD(&xhci->lpm_failed_devs);
  2071. return 0;
  2072. fail:
  2073. xhci_warn(xhci, "Couldn't initialize memory\n");
  2074. xhci_mem_cleanup(xhci);
  2075. return -ENOMEM;
  2076. }