s3c-hsotg.c 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475
  1. /* linux/drivers/usb/gadget/s3c-hsotg.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * Copyright 2008 Openmoko, Inc.
  7. * Copyright 2008 Simtec Electronics
  8. * Ben Dooks <ben@simtec.co.uk>
  9. * http://armlinux.simtec.co.uk/
  10. *
  11. * S3C USB2.0 High-speed / OtG driver
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License version 2 as
  15. * published by the Free Software Foundation.
  16. */
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/spinlock.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/platform_device.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/debugfs.h>
  24. #include <linux/seq_file.h>
  25. #include <linux/delay.h>
  26. #include <linux/io.h>
  27. #include <linux/slab.h>
  28. #include <linux/clk.h>
  29. #include <linux/usb/ch9.h>
  30. #include <linux/usb/gadget.h>
  31. #include <mach/map.h>
  32. #include <plat/regs-usb-hsotg-phy.h>
  33. #include <plat/regs-usb-hsotg.h>
  34. #include <mach/regs-sys.h>
  35. #include <plat/udc-hs.h>
  36. #include <plat/cpu.h>
  37. #define DMA_ADDR_INVALID (~((dma_addr_t)0))
  38. /* EP0_MPS_LIMIT
  39. *
  40. * Unfortunately there seems to be a limit of the amount of data that can
  41. * be transferred by IN transactions on EP0. This is either 127 bytes or 3
  42. * packets (which practically means 1 packet and 63 bytes of data) when the
  43. * MPS is set to 64.
  44. *
  45. * This means if we are wanting to move >127 bytes of data, we need to
  46. * split the transactions up, but just doing one packet at a time does
  47. * not work (this may be an implicit DATA0 PID on first packet of the
  48. * transaction) and doing 2 packets is outside the controller's limits.
  49. *
  50. * If we try to lower the MPS size for EP0, then no transfers work properly
  51. * for EP0, and the system will fail basic enumeration. As no cause for this
  52. * has currently been found, we cannot support any large IN transfers for
  53. * EP0.
  54. */
  55. #define EP0_MPS_LIMIT 64
  56. struct s3c_hsotg;
  57. struct s3c_hsotg_req;
  58. /**
  59. * struct s3c_hsotg_ep - driver endpoint definition.
  60. * @ep: The gadget layer representation of the endpoint.
  61. * @name: The driver generated name for the endpoint.
  62. * @queue: Queue of requests for this endpoint.
  63. * @parent: Reference back to the parent device structure.
  64. * @req: The current request that the endpoint is processing. This is
  65. * used to indicate an request has been loaded onto the endpoint
  66. * and has yet to be completed (maybe due to data move, or simply
  67. * awaiting an ack from the core all the data has been completed).
  68. * @debugfs: File entry for debugfs file for this endpoint.
  69. * @lock: State lock to protect contents of endpoint.
  70. * @dir_in: Set to true if this endpoint is of the IN direction, which
  71. * means that it is sending data to the Host.
  72. * @index: The index for the endpoint registers.
  73. * @name: The name array passed to the USB core.
  74. * @halted: Set if the endpoint has been halted.
  75. * @periodic: Set if this is a periodic ep, such as Interrupt
  76. * @sent_zlp: Set if we've sent a zero-length packet.
  77. * @total_data: The total number of data bytes done.
  78. * @fifo_size: The size of the FIFO (for periodic IN endpoints)
  79. * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
  80. * @last_load: The offset of data for the last start of request.
  81. * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
  82. *
  83. * This is the driver's state for each registered enpoint, allowing it
  84. * to keep track of transactions that need doing. Each endpoint has a
  85. * lock to protect the state, to try and avoid using an overall lock
  86. * for the host controller as much as possible.
  87. *
  88. * For periodic IN endpoints, we have fifo_size and fifo_load to try
  89. * and keep track of the amount of data in the periodic FIFO for each
  90. * of these as we don't have a status register that tells us how much
  91. * is in each of them. (note, this may actually be useless information
  92. * as in shared-fifo mode periodic in acts like a single-frame packet
  93. * buffer than a fifo)
  94. */
  95. struct s3c_hsotg_ep {
  96. struct usb_ep ep;
  97. struct list_head queue;
  98. struct s3c_hsotg *parent;
  99. struct s3c_hsotg_req *req;
  100. struct dentry *debugfs;
  101. spinlock_t lock;
  102. unsigned long total_data;
  103. unsigned int size_loaded;
  104. unsigned int last_load;
  105. unsigned int fifo_load;
  106. unsigned short fifo_size;
  107. unsigned char dir_in;
  108. unsigned char index;
  109. unsigned int halted:1;
  110. unsigned int periodic:1;
  111. unsigned int sent_zlp:1;
  112. char name[10];
  113. };
  114. #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
  115. /**
  116. * struct s3c_hsotg - driver state.
  117. * @dev: The parent device supplied to the probe function
  118. * @driver: USB gadget driver
  119. * @plat: The platform specific configuration data.
  120. * @regs: The memory area mapped for accessing registers.
  121. * @regs_res: The resource that was allocated when claiming register space.
  122. * @irq: The IRQ number we are using
  123. * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
  124. * @debug_root: root directrory for debugfs.
  125. * @debug_file: main status file for debugfs.
  126. * @debug_fifo: FIFO status file for debugfs.
  127. * @ep0_reply: Request used for ep0 reply.
  128. * @ep0_buff: Buffer for EP0 reply data, if needed.
  129. * @ctrl_buff: Buffer for EP0 control requests.
  130. * @ctrl_req: Request for EP0 control packets.
  131. * @eps: The endpoints being supplied to the gadget framework
  132. */
  133. struct s3c_hsotg {
  134. struct device *dev;
  135. struct usb_gadget_driver *driver;
  136. struct s3c_hsotg_plat *plat;
  137. void __iomem *regs;
  138. struct resource *regs_res;
  139. int irq;
  140. struct clk *clk;
  141. unsigned int dedicated_fifos:1;
  142. struct dentry *debug_root;
  143. struct dentry *debug_file;
  144. struct dentry *debug_fifo;
  145. struct usb_request *ep0_reply;
  146. struct usb_request *ctrl_req;
  147. u8 ep0_buff[8];
  148. u8 ctrl_buff[8];
  149. struct usb_gadget gadget;
  150. struct s3c_hsotg_ep eps[];
  151. };
  152. /**
  153. * struct s3c_hsotg_req - data transfer request
  154. * @req: The USB gadget request
  155. * @queue: The list of requests for the endpoint this is queued for.
  156. * @in_progress: Has already had size/packets written to core
  157. * @mapped: DMA buffer for this request has been mapped via dma_map_single().
  158. */
  159. struct s3c_hsotg_req {
  160. struct usb_request req;
  161. struct list_head queue;
  162. unsigned char in_progress;
  163. unsigned char mapped;
  164. };
  165. /* conversion functions */
  166. static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
  167. {
  168. return container_of(req, struct s3c_hsotg_req, req);
  169. }
  170. static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
  171. {
  172. return container_of(ep, struct s3c_hsotg_ep, ep);
  173. }
  174. static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
  175. {
  176. return container_of(gadget, struct s3c_hsotg, gadget);
  177. }
  178. static inline void __orr32(void __iomem *ptr, u32 val)
  179. {
  180. writel(readl(ptr) | val, ptr);
  181. }
  182. static inline void __bic32(void __iomem *ptr, u32 val)
  183. {
  184. writel(readl(ptr) & ~val, ptr);
  185. }
  186. /* forward decleration of functions */
  187. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
  188. /**
  189. * using_dma - return the DMA status of the driver.
  190. * @hsotg: The driver state.
  191. *
  192. * Return true if we're using DMA.
  193. *
  194. * Currently, we have the DMA support code worked into everywhere
  195. * that needs it, but the AMBA DMA implementation in the hardware can
  196. * only DMA from 32bit aligned addresses. This means that gadgets such
  197. * as the CDC Ethernet cannot work as they often pass packets which are
  198. * not 32bit aligned.
  199. *
  200. * Unfortunately the choice to use DMA or not is global to the controller
  201. * and seems to be only settable when the controller is being put through
  202. * a core reset. This means we either need to fix the gadgets to take
  203. * account of DMA alignment, or add bounce buffers (yuerk).
  204. *
  205. * Until this issue is sorted out, we always return 'false'.
  206. */
  207. static inline bool using_dma(struct s3c_hsotg *hsotg)
  208. {
  209. return false; /* support is not complete */
  210. }
  211. /**
  212. * s3c_hsotg_en_gsint - enable one or more of the general interrupt
  213. * @hsotg: The device state
  214. * @ints: A bitmask of the interrupts to enable
  215. */
  216. static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
  217. {
  218. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  219. u32 new_gsintmsk;
  220. new_gsintmsk = gsintmsk | ints;
  221. if (new_gsintmsk != gsintmsk) {
  222. dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
  223. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  224. }
  225. }
  226. /**
  227. * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
  228. * @hsotg: The device state
  229. * @ints: A bitmask of the interrupts to enable
  230. */
  231. static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
  232. {
  233. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  234. u32 new_gsintmsk;
  235. new_gsintmsk = gsintmsk & ~ints;
  236. if (new_gsintmsk != gsintmsk)
  237. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  238. }
  239. /**
  240. * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
  241. * @hsotg: The device state
  242. * @ep: The endpoint index
  243. * @dir_in: True if direction is in.
  244. * @en: The enable value, true to enable
  245. *
  246. * Set or clear the mask for an individual endpoint's interrupt
  247. * request.
  248. */
  249. static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
  250. unsigned int ep, unsigned int dir_in,
  251. unsigned int en)
  252. {
  253. unsigned long flags;
  254. u32 bit = 1 << ep;
  255. u32 daint;
  256. if (!dir_in)
  257. bit <<= 16;
  258. local_irq_save(flags);
  259. daint = readl(hsotg->regs + S3C_DAINTMSK);
  260. if (en)
  261. daint |= bit;
  262. else
  263. daint &= ~bit;
  264. writel(daint, hsotg->regs + S3C_DAINTMSK);
  265. local_irq_restore(flags);
  266. }
  267. /**
  268. * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
  269. * @hsotg: The device instance.
  270. */
  271. static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
  272. {
  273. unsigned int ep;
  274. unsigned int addr;
  275. unsigned int size;
  276. int timeout;
  277. u32 val;
  278. /* the ryu 2.6.24 release ahs
  279. writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
  280. writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
  281. S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
  282. hsotg->regs + S3C_GNPTXFSIZ);
  283. */
  284. /* set FIFO sizes to 2048/1024 */
  285. writel(2048, hsotg->regs + S3C_GRXFSIZ);
  286. writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
  287. S3C_GNPTXFSIZ_NPTxFDep(1024),
  288. hsotg->regs + S3C_GNPTXFSIZ);
  289. /* arange all the rest of the TX FIFOs, as some versions of this
  290. * block have overlapping default addresses. This also ensures
  291. * that if the settings have been changed, then they are set to
  292. * known values. */
  293. /* start at the end of the GNPTXFSIZ, rounded up */
  294. addr = 2048 + 1024;
  295. size = 768;
  296. /* currently we allocate TX FIFOs for all possible endpoints,
  297. * and assume that they are all the same size. */
  298. for (ep = 0; ep <= 15; ep++) {
  299. val = addr;
  300. val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
  301. addr += size;
  302. writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
  303. }
  304. /* according to p428 of the design guide, we need to ensure that
  305. * all fifos are flushed before continuing */
  306. writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
  307. S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
  308. /* wait until the fifos are both flushed */
  309. timeout = 100;
  310. while (1) {
  311. val = readl(hsotg->regs + S3C_GRSTCTL);
  312. if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
  313. break;
  314. if (--timeout == 0) {
  315. dev_err(hsotg->dev,
  316. "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
  317. __func__, val);
  318. }
  319. udelay(1);
  320. }
  321. dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
  322. }
  323. /**
  324. * @ep: USB endpoint to allocate request for.
  325. * @flags: Allocation flags
  326. *
  327. * Allocate a new USB request structure appropriate for the specified endpoint
  328. */
  329. static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
  330. gfp_t flags)
  331. {
  332. struct s3c_hsotg_req *req;
  333. req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
  334. if (!req)
  335. return NULL;
  336. INIT_LIST_HEAD(&req->queue);
  337. req->req.dma = DMA_ADDR_INVALID;
  338. return &req->req;
  339. }
  340. /**
  341. * is_ep_periodic - return true if the endpoint is in periodic mode.
  342. * @hs_ep: The endpoint to query.
  343. *
  344. * Returns true if the endpoint is in periodic mode, meaning it is being
  345. * used for an Interrupt or ISO transfer.
  346. */
  347. static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
  348. {
  349. return hs_ep->periodic;
  350. }
  351. /**
  352. * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
  353. * @hsotg: The device state.
  354. * @hs_ep: The endpoint for the request
  355. * @hs_req: The request being processed.
  356. *
  357. * This is the reverse of s3c_hsotg_map_dma(), called for the completion
  358. * of a request to ensure the buffer is ready for access by the caller.
  359. */
  360. static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
  361. struct s3c_hsotg_ep *hs_ep,
  362. struct s3c_hsotg_req *hs_req)
  363. {
  364. struct usb_request *req = &hs_req->req;
  365. enum dma_data_direction dir;
  366. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  367. /* ignore this if we're not moving any data */
  368. if (hs_req->req.length == 0)
  369. return;
  370. if (hs_req->mapped) {
  371. /* we mapped this, so unmap and remove the dma */
  372. dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
  373. req->dma = DMA_ADDR_INVALID;
  374. hs_req->mapped = 0;
  375. } else {
  376. dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
  377. }
  378. }
  379. /**
  380. * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
  381. * @hsotg: The controller state.
  382. * @hs_ep: The endpoint we're going to write for.
  383. * @hs_req: The request to write data for.
  384. *
  385. * This is called when the TxFIFO has some space in it to hold a new
  386. * transmission and we have something to give it. The actual setup of
  387. * the data size is done elsewhere, so all we have to do is to actually
  388. * write the data.
  389. *
  390. * The return value is zero if there is more space (or nothing was done)
  391. * otherwise -ENOSPC is returned if the FIFO space was used up.
  392. *
  393. * This routine is only needed for PIO
  394. */
  395. static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
  396. struct s3c_hsotg_ep *hs_ep,
  397. struct s3c_hsotg_req *hs_req)
  398. {
  399. bool periodic = is_ep_periodic(hs_ep);
  400. u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
  401. int buf_pos = hs_req->req.actual;
  402. int to_write = hs_ep->size_loaded;
  403. void *data;
  404. int can_write;
  405. int pkt_round;
  406. to_write -= (buf_pos - hs_ep->last_load);
  407. /* if there's nothing to write, get out early */
  408. if (to_write == 0)
  409. return 0;
  410. if (periodic && !hsotg->dedicated_fifos) {
  411. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  412. int size_left;
  413. int size_done;
  414. /* work out how much data was loaded so we can calculate
  415. * how much data is left in the fifo. */
  416. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  417. /* if shared fifo, we cannot write anything until the
  418. * previous data has been completely sent.
  419. */
  420. if (hs_ep->fifo_load != 0) {
  421. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  422. return -ENOSPC;
  423. }
  424. dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
  425. __func__, size_left,
  426. hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
  427. /* how much of the data has moved */
  428. size_done = hs_ep->size_loaded - size_left;
  429. /* how much data is left in the fifo */
  430. can_write = hs_ep->fifo_load - size_done;
  431. dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
  432. __func__, can_write);
  433. can_write = hs_ep->fifo_size - can_write;
  434. dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
  435. __func__, can_write);
  436. if (can_write <= 0) {
  437. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  438. return -ENOSPC;
  439. }
  440. } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
  441. can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
  442. can_write &= 0xffff;
  443. can_write *= 4;
  444. } else {
  445. if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
  446. dev_dbg(hsotg->dev,
  447. "%s: no queue slots available (0x%08x)\n",
  448. __func__, gnptxsts);
  449. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  450. return -ENOSPC;
  451. }
  452. can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
  453. can_write *= 4; /* fifo size is in 32bit quantities. */
  454. }
  455. dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
  456. __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
  457. /* limit to 512 bytes of data, it seems at least on the non-periodic
  458. * FIFO, requests of >512 cause the endpoint to get stuck with a
  459. * fragment of the end of the transfer in it.
  460. */
  461. if (can_write > 512)
  462. can_write = 512;
  463. /* limit the write to one max-packet size worth of data, but allow
  464. * the transfer to return that it did not run out of fifo space
  465. * doing it. */
  466. if (to_write > hs_ep->ep.maxpacket) {
  467. to_write = hs_ep->ep.maxpacket;
  468. s3c_hsotg_en_gsint(hsotg,
  469. periodic ? S3C_GINTSTS_PTxFEmp :
  470. S3C_GINTSTS_NPTxFEmp);
  471. }
  472. /* see if we can write data */
  473. if (to_write > can_write) {
  474. to_write = can_write;
  475. pkt_round = to_write % hs_ep->ep.maxpacket;
  476. /* Not sure, but we probably shouldn't be writing partial
  477. * packets into the FIFO, so round the write down to an
  478. * exact number of packets.
  479. *
  480. * Note, we do not currently check to see if we can ever
  481. * write a full packet or not to the FIFO.
  482. */
  483. if (pkt_round)
  484. to_write -= pkt_round;
  485. /* enable correct FIFO interrupt to alert us when there
  486. * is more room left. */
  487. s3c_hsotg_en_gsint(hsotg,
  488. periodic ? S3C_GINTSTS_PTxFEmp :
  489. S3C_GINTSTS_NPTxFEmp);
  490. }
  491. dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
  492. to_write, hs_req->req.length, can_write, buf_pos);
  493. if (to_write <= 0)
  494. return -ENOSPC;
  495. hs_req->req.actual = buf_pos + to_write;
  496. hs_ep->total_data += to_write;
  497. if (periodic)
  498. hs_ep->fifo_load += to_write;
  499. to_write = DIV_ROUND_UP(to_write, 4);
  500. data = hs_req->req.buf + buf_pos;
  501. writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
  502. return (to_write >= can_write) ? -ENOSPC : 0;
  503. }
  504. /**
  505. * get_ep_limit - get the maximum data legnth for this endpoint
  506. * @hs_ep: The endpoint
  507. *
  508. * Return the maximum data that can be queued in one go on a given endpoint
  509. * so that transfers that are too long can be split.
  510. */
  511. static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
  512. {
  513. int index = hs_ep->index;
  514. unsigned maxsize;
  515. unsigned maxpkt;
  516. if (index != 0) {
  517. maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
  518. maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
  519. } else {
  520. maxsize = 64+64;
  521. if (hs_ep->dir_in)
  522. maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
  523. else
  524. maxpkt = 2;
  525. }
  526. /* we made the constant loading easier above by using +1 */
  527. maxpkt--;
  528. maxsize--;
  529. /* constrain by packet count if maxpkts*pktsize is greater
  530. * than the length register size. */
  531. if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
  532. maxsize = maxpkt * hs_ep->ep.maxpacket;
  533. return maxsize;
  534. }
  535. /**
  536. * s3c_hsotg_start_req - start a USB request from an endpoint's queue
  537. * @hsotg: The controller state.
  538. * @hs_ep: The endpoint to process a request for
  539. * @hs_req: The request to start.
  540. * @continuing: True if we are doing more for the current request.
  541. *
  542. * Start the given request running by setting the endpoint registers
  543. * appropriately, and writing any data to the FIFOs.
  544. */
  545. static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
  546. struct s3c_hsotg_ep *hs_ep,
  547. struct s3c_hsotg_req *hs_req,
  548. bool continuing)
  549. {
  550. struct usb_request *ureq = &hs_req->req;
  551. int index = hs_ep->index;
  552. int dir_in = hs_ep->dir_in;
  553. u32 epctrl_reg;
  554. u32 epsize_reg;
  555. u32 epsize;
  556. u32 ctrl;
  557. unsigned length;
  558. unsigned packets;
  559. unsigned maxreq;
  560. if (index != 0) {
  561. if (hs_ep->req && !continuing) {
  562. dev_err(hsotg->dev, "%s: active request\n", __func__);
  563. WARN_ON(1);
  564. return;
  565. } else if (hs_ep->req != hs_req && continuing) {
  566. dev_err(hsotg->dev,
  567. "%s: continue different req\n", __func__);
  568. WARN_ON(1);
  569. return;
  570. }
  571. }
  572. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  573. epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
  574. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
  575. __func__, readl(hsotg->regs + epctrl_reg), index,
  576. hs_ep->dir_in ? "in" : "out");
  577. /* If endpoint is stalled, we will restart request later */
  578. ctrl = readl(hsotg->regs + epctrl_reg);
  579. if (ctrl & S3C_DxEPCTL_Stall) {
  580. dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
  581. return;
  582. }
  583. length = ureq->length - ureq->actual;
  584. if (0)
  585. dev_dbg(hsotg->dev,
  586. "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
  587. ureq->buf, length, ureq->dma,
  588. ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
  589. maxreq = get_ep_limit(hs_ep);
  590. if (length > maxreq) {
  591. int round = maxreq % hs_ep->ep.maxpacket;
  592. dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
  593. __func__, length, maxreq, round);
  594. /* round down to multiple of packets */
  595. if (round)
  596. maxreq -= round;
  597. length = maxreq;
  598. }
  599. if (length)
  600. packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
  601. else
  602. packets = 1; /* send one packet if length is zero. */
  603. if (dir_in && index != 0)
  604. epsize = S3C_DxEPTSIZ_MC(1);
  605. else
  606. epsize = 0;
  607. if (index != 0 && ureq->zero) {
  608. /* test for the packets being exactly right for the
  609. * transfer */
  610. if (length == (packets * hs_ep->ep.maxpacket))
  611. packets++;
  612. }
  613. epsize |= S3C_DxEPTSIZ_PktCnt(packets);
  614. epsize |= S3C_DxEPTSIZ_XferSize(length);
  615. dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
  616. __func__, packets, length, ureq->length, epsize, epsize_reg);
  617. /* store the request as the current one we're doing */
  618. hs_ep->req = hs_req;
  619. /* write size / packets */
  620. writel(epsize, hsotg->regs + epsize_reg);
  621. if (using_dma(hsotg)) {
  622. unsigned int dma_reg;
  623. /* write DMA address to control register, buffer already
  624. * synced by s3c_hsotg_ep_queue(). */
  625. dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
  626. writel(ureq->dma, hsotg->regs + dma_reg);
  627. dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
  628. __func__, ureq->dma, dma_reg);
  629. }
  630. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  631. ctrl |= S3C_DxEPCTL_USBActEp;
  632. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  633. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  634. writel(ctrl, hsotg->regs + epctrl_reg);
  635. /* set these, it seems that DMA support increments past the end
  636. * of the packet buffer so we need to calculate the length from
  637. * this information. */
  638. hs_ep->size_loaded = length;
  639. hs_ep->last_load = ureq->actual;
  640. if (dir_in && !using_dma(hsotg)) {
  641. /* set these anyway, we may need them for non-periodic in */
  642. hs_ep->fifo_load = 0;
  643. s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  644. }
  645. /* clear the INTknTXFEmpMsk when we start request, more as a aide
  646. * to debugging to see what is going on. */
  647. if (dir_in)
  648. writel(S3C_DIEPMSK_INTknTXFEmpMsk,
  649. hsotg->regs + S3C_DIEPINT(index));
  650. /* Note, trying to clear the NAK here causes problems with transmit
  651. * on the S3C6400 ending up with the TXFIFO becoming full. */
  652. /* check ep is enabled */
  653. if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
  654. dev_warn(hsotg->dev,
  655. "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
  656. index, readl(hsotg->regs + epctrl_reg));
  657. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
  658. __func__, readl(hsotg->regs + epctrl_reg));
  659. }
  660. /**
  661. * s3c_hsotg_map_dma - map the DMA memory being used for the request
  662. * @hsotg: The device state.
  663. * @hs_ep: The endpoint the request is on.
  664. * @req: The request being processed.
  665. *
  666. * We've been asked to queue a request, so ensure that the memory buffer
  667. * is correctly setup for DMA. If we've been passed an extant DMA address
  668. * then ensure the buffer has been synced to memory. If our buffer has no
  669. * DMA memory, then we map the memory and mark our request to allow us to
  670. * cleanup on completion.
  671. */
  672. static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
  673. struct s3c_hsotg_ep *hs_ep,
  674. struct usb_request *req)
  675. {
  676. enum dma_data_direction dir;
  677. struct s3c_hsotg_req *hs_req = our_req(req);
  678. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  679. /* if the length is zero, ignore the DMA data */
  680. if (hs_req->req.length == 0)
  681. return 0;
  682. if (req->dma == DMA_ADDR_INVALID) {
  683. dma_addr_t dma;
  684. dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
  685. if (unlikely(dma_mapping_error(hsotg->dev, dma)))
  686. goto dma_error;
  687. if (dma & 3) {
  688. dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
  689. __func__);
  690. dma_unmap_single(hsotg->dev, dma, req->length, dir);
  691. return -EINVAL;
  692. }
  693. hs_req->mapped = 1;
  694. req->dma = dma;
  695. } else {
  696. dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
  697. hs_req->mapped = 0;
  698. }
  699. return 0;
  700. dma_error:
  701. dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
  702. __func__, req->buf, req->length);
  703. return -EIO;
  704. }
  705. static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
  706. gfp_t gfp_flags)
  707. {
  708. struct s3c_hsotg_req *hs_req = our_req(req);
  709. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  710. struct s3c_hsotg *hs = hs_ep->parent;
  711. unsigned long irqflags;
  712. bool first;
  713. dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
  714. ep->name, req, req->length, req->buf, req->no_interrupt,
  715. req->zero, req->short_not_ok);
  716. /* initialise status of the request */
  717. INIT_LIST_HEAD(&hs_req->queue);
  718. req->actual = 0;
  719. req->status = -EINPROGRESS;
  720. /* if we're using DMA, sync the buffers as necessary */
  721. if (using_dma(hs)) {
  722. int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
  723. if (ret)
  724. return ret;
  725. }
  726. spin_lock_irqsave(&hs_ep->lock, irqflags);
  727. first = list_empty(&hs_ep->queue);
  728. list_add_tail(&hs_req->queue, &hs_ep->queue);
  729. if (first)
  730. s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
  731. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  732. return 0;
  733. }
  734. static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
  735. struct usb_request *req)
  736. {
  737. struct s3c_hsotg_req *hs_req = our_req(req);
  738. kfree(hs_req);
  739. }
  740. /**
  741. * s3c_hsotg_complete_oursetup - setup completion callback
  742. * @ep: The endpoint the request was on.
  743. * @req: The request completed.
  744. *
  745. * Called on completion of any requests the driver itself
  746. * submitted that need cleaning up.
  747. */
  748. static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
  749. struct usb_request *req)
  750. {
  751. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  752. struct s3c_hsotg *hsotg = hs_ep->parent;
  753. dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
  754. s3c_hsotg_ep_free_request(ep, req);
  755. }
  756. /**
  757. * ep_from_windex - convert control wIndex value to endpoint
  758. * @hsotg: The driver state.
  759. * @windex: The control request wIndex field (in host order).
  760. *
  761. * Convert the given wIndex into a pointer to an driver endpoint
  762. * structure, or return NULL if it is not a valid endpoint.
  763. */
  764. static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
  765. u32 windex)
  766. {
  767. struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
  768. int dir = (windex & USB_DIR_IN) ? 1 : 0;
  769. int idx = windex & 0x7F;
  770. if (windex >= 0x100)
  771. return NULL;
  772. if (idx > S3C_HSOTG_EPS)
  773. return NULL;
  774. if (idx && ep->dir_in != dir)
  775. return NULL;
  776. return ep;
  777. }
  778. /**
  779. * s3c_hsotg_send_reply - send reply to control request
  780. * @hsotg: The device state
  781. * @ep: Endpoint 0
  782. * @buff: Buffer for request
  783. * @length: Length of reply.
  784. *
  785. * Create a request and queue it on the given endpoint. This is useful as
  786. * an internal method of sending replies to certain control requests, etc.
  787. */
  788. static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
  789. struct s3c_hsotg_ep *ep,
  790. void *buff,
  791. int length)
  792. {
  793. struct usb_request *req;
  794. int ret;
  795. dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
  796. req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
  797. hsotg->ep0_reply = req;
  798. if (!req) {
  799. dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
  800. return -ENOMEM;
  801. }
  802. req->buf = hsotg->ep0_buff;
  803. req->length = length;
  804. req->zero = 1; /* always do zero-length final transfer */
  805. req->complete = s3c_hsotg_complete_oursetup;
  806. if (length)
  807. memcpy(req->buf, buff, length);
  808. else
  809. ep->sent_zlp = 1;
  810. ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
  811. if (ret) {
  812. dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
  813. return ret;
  814. }
  815. return 0;
  816. }
  817. /**
  818. * s3c_hsotg_process_req_status - process request GET_STATUS
  819. * @hsotg: The device state
  820. * @ctrl: USB control request
  821. */
  822. static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
  823. struct usb_ctrlrequest *ctrl)
  824. {
  825. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  826. struct s3c_hsotg_ep *ep;
  827. __le16 reply;
  828. int ret;
  829. dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
  830. if (!ep0->dir_in) {
  831. dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
  832. return -EINVAL;
  833. }
  834. switch (ctrl->bRequestType & USB_RECIP_MASK) {
  835. case USB_RECIP_DEVICE:
  836. reply = cpu_to_le16(0); /* bit 0 => self powered,
  837. * bit 1 => remote wakeup */
  838. break;
  839. case USB_RECIP_INTERFACE:
  840. /* currently, the data result should be zero */
  841. reply = cpu_to_le16(0);
  842. break;
  843. case USB_RECIP_ENDPOINT:
  844. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  845. if (!ep)
  846. return -ENOENT;
  847. reply = cpu_to_le16(ep->halted ? 1 : 0);
  848. break;
  849. default:
  850. return 0;
  851. }
  852. if (le16_to_cpu(ctrl->wLength) != 2)
  853. return -EINVAL;
  854. ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
  855. if (ret) {
  856. dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
  857. return ret;
  858. }
  859. return 1;
  860. }
  861. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
  862. /**
  863. * get_ep_head - return the first request on the endpoint
  864. * @hs_ep: The controller endpoint to get
  865. *
  866. * Get the first request on the endpoint.
  867. */
  868. static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
  869. {
  870. if (list_empty(&hs_ep->queue))
  871. return NULL;
  872. return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
  873. }
  874. /**
  875. * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
  876. * @hsotg: The device state
  877. * @ctrl: USB control request
  878. */
  879. static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
  880. struct usb_ctrlrequest *ctrl)
  881. {
  882. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  883. struct s3c_hsotg_req *hs_req;
  884. bool restart;
  885. bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
  886. struct s3c_hsotg_ep *ep;
  887. int ret;
  888. dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
  889. __func__, set ? "SET" : "CLEAR");
  890. if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
  891. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  892. if (!ep) {
  893. dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
  894. __func__, le16_to_cpu(ctrl->wIndex));
  895. return -ENOENT;
  896. }
  897. switch (le16_to_cpu(ctrl->wValue)) {
  898. case USB_ENDPOINT_HALT:
  899. s3c_hsotg_ep_sethalt(&ep->ep, set);
  900. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  901. if (ret) {
  902. dev_err(hsotg->dev,
  903. "%s: failed to send reply\n", __func__);
  904. return ret;
  905. }
  906. if (!set) {
  907. /*
  908. * If we have request in progress,
  909. * then complete it
  910. */
  911. if (ep->req) {
  912. hs_req = ep->req;
  913. ep->req = NULL;
  914. list_del_init(&hs_req->queue);
  915. hs_req->req.complete(&ep->ep,
  916. &hs_req->req);
  917. }
  918. /* If we have pending request, then start it */
  919. restart = !list_empty(&ep->queue);
  920. if (restart) {
  921. hs_req = get_ep_head(ep);
  922. s3c_hsotg_start_req(hsotg, ep,
  923. hs_req, false);
  924. }
  925. }
  926. break;
  927. default:
  928. return -ENOENT;
  929. }
  930. } else
  931. return -ENOENT; /* currently only deal with endpoint */
  932. return 1;
  933. }
  934. /**
  935. * s3c_hsotg_process_control - process a control request
  936. * @hsotg: The device state
  937. * @ctrl: The control request received
  938. *
  939. * The controller has received the SETUP phase of a control request, and
  940. * needs to work out what to do next (and whether to pass it on to the
  941. * gadget driver).
  942. */
  943. static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
  944. struct usb_ctrlrequest *ctrl)
  945. {
  946. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  947. int ret = 0;
  948. u32 dcfg;
  949. ep0->sent_zlp = 0;
  950. dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
  951. ctrl->bRequest, ctrl->bRequestType,
  952. ctrl->wValue, ctrl->wLength);
  953. /* record the direction of the request, for later use when enquing
  954. * packets onto EP0. */
  955. ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
  956. dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
  957. /* if we've no data with this request, then the last part of the
  958. * transaction is going to implicitly be IN. */
  959. if (ctrl->wLength == 0)
  960. ep0->dir_in = 1;
  961. if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
  962. switch (ctrl->bRequest) {
  963. case USB_REQ_SET_ADDRESS:
  964. dcfg = readl(hsotg->regs + S3C_DCFG);
  965. dcfg &= ~S3C_DCFG_DevAddr_MASK;
  966. dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
  967. writel(dcfg, hsotg->regs + S3C_DCFG);
  968. dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
  969. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  970. return;
  971. case USB_REQ_GET_STATUS:
  972. ret = s3c_hsotg_process_req_status(hsotg, ctrl);
  973. break;
  974. case USB_REQ_CLEAR_FEATURE:
  975. case USB_REQ_SET_FEATURE:
  976. ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
  977. break;
  978. }
  979. }
  980. /* as a fallback, try delivering it to the driver to deal with */
  981. if (ret == 0 && hsotg->driver) {
  982. ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
  983. if (ret < 0)
  984. dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
  985. }
  986. /* the request is either unhandlable, or is not formatted correctly
  987. * so respond with a STALL for the status stage to indicate failure.
  988. */
  989. if (ret < 0) {
  990. u32 reg;
  991. u32 ctrl;
  992. dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
  993. reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
  994. /* S3C_DxEPCTL_Stall will be cleared by EP once it has
  995. * taken effect, so no need to clear later. */
  996. ctrl = readl(hsotg->regs + reg);
  997. ctrl |= S3C_DxEPCTL_Stall;
  998. ctrl |= S3C_DxEPCTL_CNAK;
  999. writel(ctrl, hsotg->regs + reg);
  1000. dev_dbg(hsotg->dev,
  1001. "written DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
  1002. ctrl, reg, readl(hsotg->regs + reg));
  1003. /* don't believe we need to anything more to get the EP
  1004. * to reply with a STALL packet */
  1005. }
  1006. }
  1007. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
  1008. /**
  1009. * s3c_hsotg_complete_setup - completion of a setup transfer
  1010. * @ep: The endpoint the request was on.
  1011. * @req: The request completed.
  1012. *
  1013. * Called on completion of any requests the driver itself submitted for
  1014. * EP0 setup packets
  1015. */
  1016. static void s3c_hsotg_complete_setup(struct usb_ep *ep,
  1017. struct usb_request *req)
  1018. {
  1019. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1020. struct s3c_hsotg *hsotg = hs_ep->parent;
  1021. if (req->status < 0) {
  1022. dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
  1023. return;
  1024. }
  1025. if (req->actual == 0)
  1026. s3c_hsotg_enqueue_setup(hsotg);
  1027. else
  1028. s3c_hsotg_process_control(hsotg, req->buf);
  1029. }
  1030. /**
  1031. * s3c_hsotg_enqueue_setup - start a request for EP0 packets
  1032. * @hsotg: The device state.
  1033. *
  1034. * Enqueue a request on EP0 if necessary to received any SETUP packets
  1035. * received from the host.
  1036. */
  1037. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
  1038. {
  1039. struct usb_request *req = hsotg->ctrl_req;
  1040. struct s3c_hsotg_req *hs_req = our_req(req);
  1041. int ret;
  1042. dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
  1043. req->zero = 0;
  1044. req->length = 8;
  1045. req->buf = hsotg->ctrl_buff;
  1046. req->complete = s3c_hsotg_complete_setup;
  1047. if (!list_empty(&hs_req->queue)) {
  1048. dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
  1049. return;
  1050. }
  1051. hsotg->eps[0].dir_in = 0;
  1052. ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
  1053. if (ret < 0) {
  1054. dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
  1055. /* Don't think there's much we can do other than watch the
  1056. * driver fail. */
  1057. }
  1058. }
  1059. /**
  1060. * s3c_hsotg_complete_request - complete a request given to us
  1061. * @hsotg: The device state.
  1062. * @hs_ep: The endpoint the request was on.
  1063. * @hs_req: The request to complete.
  1064. * @result: The result code (0 => Ok, otherwise errno)
  1065. *
  1066. * The given request has finished, so call the necessary completion
  1067. * if it has one and then look to see if we can start a new request
  1068. * on the endpoint.
  1069. *
  1070. * Note, expects the ep to already be locked as appropriate.
  1071. */
  1072. static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
  1073. struct s3c_hsotg_ep *hs_ep,
  1074. struct s3c_hsotg_req *hs_req,
  1075. int result)
  1076. {
  1077. bool restart;
  1078. if (!hs_req) {
  1079. dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
  1080. return;
  1081. }
  1082. dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
  1083. hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
  1084. /* only replace the status if we've not already set an error
  1085. * from a previous transaction */
  1086. if (hs_req->req.status == -EINPROGRESS)
  1087. hs_req->req.status = result;
  1088. hs_ep->req = NULL;
  1089. list_del_init(&hs_req->queue);
  1090. if (using_dma(hsotg))
  1091. s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
  1092. /* call the complete request with the locks off, just in case the
  1093. * request tries to queue more work for this endpoint. */
  1094. if (hs_req->req.complete) {
  1095. spin_unlock(&hs_ep->lock);
  1096. hs_req->req.complete(&hs_ep->ep, &hs_req->req);
  1097. spin_lock(&hs_ep->lock);
  1098. }
  1099. /* Look to see if there is anything else to do. Note, the completion
  1100. * of the previous request may have caused a new request to be started
  1101. * so be careful when doing this. */
  1102. if (!hs_ep->req && result >= 0) {
  1103. restart = !list_empty(&hs_ep->queue);
  1104. if (restart) {
  1105. hs_req = get_ep_head(hs_ep);
  1106. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
  1107. }
  1108. }
  1109. }
  1110. /**
  1111. * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
  1112. * @hsotg: The device state.
  1113. * @hs_ep: The endpoint the request was on.
  1114. * @hs_req: The request to complete.
  1115. * @result: The result code (0 => Ok, otherwise errno)
  1116. *
  1117. * See s3c_hsotg_complete_request(), but called with the endpoint's
  1118. * lock held.
  1119. */
  1120. static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
  1121. struct s3c_hsotg_ep *hs_ep,
  1122. struct s3c_hsotg_req *hs_req,
  1123. int result)
  1124. {
  1125. unsigned long flags;
  1126. spin_lock_irqsave(&hs_ep->lock, flags);
  1127. s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
  1128. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1129. }
  1130. /**
  1131. * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
  1132. * @hsotg: The device state.
  1133. * @ep_idx: The endpoint index for the data
  1134. * @size: The size of data in the fifo, in bytes
  1135. *
  1136. * The FIFO status shows there is data to read from the FIFO for a given
  1137. * endpoint, so sort out whether we need to read the data into a request
  1138. * that has been made for that endpoint.
  1139. */
  1140. static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
  1141. {
  1142. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
  1143. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1144. void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
  1145. int to_read;
  1146. int max_req;
  1147. int read_ptr;
  1148. if (!hs_req) {
  1149. u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
  1150. int ptr;
  1151. dev_warn(hsotg->dev,
  1152. "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
  1153. __func__, size, ep_idx, epctl);
  1154. /* dump the data from the FIFO, we've nothing we can do */
  1155. for (ptr = 0; ptr < size; ptr += 4)
  1156. (void)readl(fifo);
  1157. return;
  1158. }
  1159. spin_lock(&hs_ep->lock);
  1160. to_read = size;
  1161. read_ptr = hs_req->req.actual;
  1162. max_req = hs_req->req.length - read_ptr;
  1163. dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
  1164. __func__, to_read, max_req, read_ptr, hs_req->req.length);
  1165. if (to_read > max_req) {
  1166. /* more data appeared than we where willing
  1167. * to deal with in this request.
  1168. */
  1169. /* currently we don't deal this */
  1170. WARN_ON_ONCE(1);
  1171. }
  1172. hs_ep->total_data += to_read;
  1173. hs_req->req.actual += to_read;
  1174. to_read = DIV_ROUND_UP(to_read, 4);
  1175. /* note, we might over-write the buffer end by 3 bytes depending on
  1176. * alignment of the data. */
  1177. readsl(fifo, hs_req->req.buf + read_ptr, to_read);
  1178. spin_unlock(&hs_ep->lock);
  1179. }
  1180. /**
  1181. * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
  1182. * @hsotg: The device instance
  1183. * @req: The request currently on this endpoint
  1184. *
  1185. * Generate a zero-length IN packet request for terminating a SETUP
  1186. * transaction.
  1187. *
  1188. * Note, since we don't write any data to the TxFIFO, then it is
  1189. * currently believed that we do not need to wait for any space in
  1190. * the TxFIFO.
  1191. */
  1192. static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
  1193. struct s3c_hsotg_req *req)
  1194. {
  1195. u32 ctrl;
  1196. if (!req) {
  1197. dev_warn(hsotg->dev, "%s: no request?\n", __func__);
  1198. return;
  1199. }
  1200. if (req->req.length == 0) {
  1201. hsotg->eps[0].sent_zlp = 1;
  1202. s3c_hsotg_enqueue_setup(hsotg);
  1203. return;
  1204. }
  1205. hsotg->eps[0].dir_in = 1;
  1206. hsotg->eps[0].sent_zlp = 1;
  1207. dev_dbg(hsotg->dev, "sending zero-length packet\n");
  1208. /* issue a zero-sized packet to terminate this */
  1209. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  1210. S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
  1211. ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
  1212. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  1213. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  1214. ctrl |= S3C_DxEPCTL_USBActEp;
  1215. writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
  1216. }
  1217. /**
  1218. * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
  1219. * @hsotg: The device instance
  1220. * @epnum: The endpoint received from
  1221. * @was_setup: Set if processing a SetupDone event.
  1222. *
  1223. * The RXFIFO has delivered an OutDone event, which means that the data
  1224. * transfer for an OUT endpoint has been completed, either by a short
  1225. * packet or by the finish of a transfer.
  1226. */
  1227. static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
  1228. int epnum, bool was_setup)
  1229. {
  1230. u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
  1231. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
  1232. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1233. struct usb_request *req = &hs_req->req;
  1234. unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1235. int result = 0;
  1236. if (!hs_req) {
  1237. dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
  1238. return;
  1239. }
  1240. if (using_dma(hsotg)) {
  1241. unsigned size_done;
  1242. /* Calculate the size of the transfer by checking how much
  1243. * is left in the endpoint size register and then working it
  1244. * out from the amount we loaded for the transfer.
  1245. *
  1246. * We need to do this as DMA pointers are always 32bit aligned
  1247. * so may overshoot/undershoot the transfer.
  1248. */
  1249. size_done = hs_ep->size_loaded - size_left;
  1250. size_done += hs_ep->last_load;
  1251. req->actual = size_done;
  1252. }
  1253. /* if there is more request to do, schedule new transfer */
  1254. if (req->actual < req->length && size_left == 0) {
  1255. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
  1256. return;
  1257. }
  1258. if (req->actual < req->length && req->short_not_ok) {
  1259. dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
  1260. __func__, req->actual, req->length);
  1261. /* todo - what should we return here? there's no one else
  1262. * even bothering to check the status. */
  1263. }
  1264. if (epnum == 0) {
  1265. if (!was_setup && req->complete != s3c_hsotg_complete_setup)
  1266. s3c_hsotg_send_zlp(hsotg, hs_req);
  1267. }
  1268. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
  1269. }
  1270. /**
  1271. * s3c_hsotg_read_frameno - read current frame number
  1272. * @hsotg: The device instance
  1273. *
  1274. * Return the current frame number
  1275. */
  1276. static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
  1277. {
  1278. u32 dsts;
  1279. dsts = readl(hsotg->regs + S3C_DSTS);
  1280. dsts &= S3C_DSTS_SOFFN_MASK;
  1281. dsts >>= S3C_DSTS_SOFFN_SHIFT;
  1282. return dsts;
  1283. }
  1284. /**
  1285. * s3c_hsotg_handle_rx - RX FIFO has data
  1286. * @hsotg: The device instance
  1287. *
  1288. * The IRQ handler has detected that the RX FIFO has some data in it
  1289. * that requires processing, so find out what is in there and do the
  1290. * appropriate read.
  1291. *
  1292. * The RXFIFO is a true FIFO, the packets coming out are still in packet
  1293. * chunks, so if you have x packets received on an endpoint you'll get x
  1294. * FIFO events delivered, each with a packet's worth of data in it.
  1295. *
  1296. * When using DMA, we should not be processing events from the RXFIFO
  1297. * as the actual data should be sent to the memory directly and we turn
  1298. * on the completion interrupts to get notifications of transfer completion.
  1299. */
  1300. static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
  1301. {
  1302. u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
  1303. u32 epnum, status, size;
  1304. WARN_ON(using_dma(hsotg));
  1305. epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
  1306. status = grxstsr & S3C_GRXSTS_PktSts_MASK;
  1307. size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
  1308. size >>= S3C_GRXSTS_ByteCnt_SHIFT;
  1309. if (1)
  1310. dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
  1311. __func__, grxstsr, size, epnum);
  1312. #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
  1313. switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
  1314. case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
  1315. dev_dbg(hsotg->dev, "GlobalOutNAK\n");
  1316. break;
  1317. case __status(S3C_GRXSTS_PktSts_OutDone):
  1318. dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
  1319. s3c_hsotg_read_frameno(hsotg));
  1320. if (!using_dma(hsotg))
  1321. s3c_hsotg_handle_outdone(hsotg, epnum, false);
  1322. break;
  1323. case __status(S3C_GRXSTS_PktSts_SetupDone):
  1324. dev_dbg(hsotg->dev,
  1325. "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1326. s3c_hsotg_read_frameno(hsotg),
  1327. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1328. s3c_hsotg_handle_outdone(hsotg, epnum, true);
  1329. break;
  1330. case __status(S3C_GRXSTS_PktSts_OutRX):
  1331. s3c_hsotg_rx_data(hsotg, epnum, size);
  1332. break;
  1333. case __status(S3C_GRXSTS_PktSts_SetupRX):
  1334. dev_dbg(hsotg->dev,
  1335. "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1336. s3c_hsotg_read_frameno(hsotg),
  1337. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1338. s3c_hsotg_rx_data(hsotg, epnum, size);
  1339. break;
  1340. default:
  1341. dev_warn(hsotg->dev, "%s: unknown status %08x\n",
  1342. __func__, grxstsr);
  1343. s3c_hsotg_dump(hsotg);
  1344. break;
  1345. }
  1346. }
  1347. /**
  1348. * s3c_hsotg_ep0_mps - turn max packet size into register setting
  1349. * @mps: The maximum packet size in bytes.
  1350. */
  1351. static u32 s3c_hsotg_ep0_mps(unsigned int mps)
  1352. {
  1353. switch (mps) {
  1354. case 64:
  1355. return S3C_D0EPCTL_MPS_64;
  1356. case 32:
  1357. return S3C_D0EPCTL_MPS_32;
  1358. case 16:
  1359. return S3C_D0EPCTL_MPS_16;
  1360. case 8:
  1361. return S3C_D0EPCTL_MPS_8;
  1362. }
  1363. /* bad max packet size, warn and return invalid result */
  1364. WARN_ON(1);
  1365. return (u32)-1;
  1366. }
  1367. /**
  1368. * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
  1369. * @hsotg: The driver state.
  1370. * @ep: The index number of the endpoint
  1371. * @mps: The maximum packet size in bytes
  1372. *
  1373. * Configure the maximum packet size for the given endpoint, updating
  1374. * the hardware control registers to reflect this.
  1375. */
  1376. static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
  1377. unsigned int ep, unsigned int mps)
  1378. {
  1379. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
  1380. void __iomem *regs = hsotg->regs;
  1381. u32 mpsval;
  1382. u32 reg;
  1383. if (ep == 0) {
  1384. /* EP0 is a special case */
  1385. mpsval = s3c_hsotg_ep0_mps(mps);
  1386. if (mpsval > 3)
  1387. goto bad_mps;
  1388. } else {
  1389. if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
  1390. goto bad_mps;
  1391. mpsval = mps;
  1392. }
  1393. hs_ep->ep.maxpacket = mps;
  1394. /* update both the in and out endpoint controldir_ registers, even
  1395. * if one of the directions may not be in use. */
  1396. reg = readl(regs + S3C_DIEPCTL(ep));
  1397. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1398. reg |= mpsval;
  1399. writel(reg, regs + S3C_DIEPCTL(ep));
  1400. reg = readl(regs + S3C_DOEPCTL(ep));
  1401. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1402. reg |= mpsval;
  1403. writel(reg, regs + S3C_DOEPCTL(ep));
  1404. return;
  1405. bad_mps:
  1406. dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
  1407. }
  1408. /**
  1409. * s3c_hsotg_txfifo_flush - flush Tx FIFO
  1410. * @hsotg: The driver state
  1411. * @idx: The index for the endpoint (0..15)
  1412. */
  1413. static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
  1414. {
  1415. int timeout;
  1416. int val;
  1417. writel(S3C_GRSTCTL_TxFNum(idx) | S3C_GRSTCTL_TxFFlsh,
  1418. hsotg->regs + S3C_GRSTCTL);
  1419. /* wait until the fifo is flushed */
  1420. timeout = 100;
  1421. while (1) {
  1422. val = readl(hsotg->regs + S3C_GRSTCTL);
  1423. if ((val & (S3C_GRSTCTL_TxFFlsh)) == 0)
  1424. break;
  1425. if (--timeout == 0) {
  1426. dev_err(hsotg->dev,
  1427. "%s: timeout flushing fifo (GRSTCTL=%08x)\n",
  1428. __func__, val);
  1429. }
  1430. udelay(1);
  1431. }
  1432. }
  1433. /**
  1434. * s3c_hsotg_trytx - check to see if anything needs transmitting
  1435. * @hsotg: The driver state
  1436. * @hs_ep: The driver endpoint to check.
  1437. *
  1438. * Check to see if there is a request that has data to send, and if so
  1439. * make an attempt to write data into the FIFO.
  1440. */
  1441. static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
  1442. struct s3c_hsotg_ep *hs_ep)
  1443. {
  1444. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1445. if (!hs_ep->dir_in || !hs_req)
  1446. return 0;
  1447. if (hs_req->req.actual < hs_req->req.length) {
  1448. dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
  1449. hs_ep->index);
  1450. return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  1451. }
  1452. return 0;
  1453. }
  1454. /**
  1455. * s3c_hsotg_complete_in - complete IN transfer
  1456. * @hsotg: The device state.
  1457. * @hs_ep: The endpoint that has just completed.
  1458. *
  1459. * An IN transfer has been completed, update the transfer's state and then
  1460. * call the relevant completion routines.
  1461. */
  1462. static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
  1463. struct s3c_hsotg_ep *hs_ep)
  1464. {
  1465. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1466. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  1467. int size_left, size_done;
  1468. if (!hs_req) {
  1469. dev_dbg(hsotg->dev, "XferCompl but no req\n");
  1470. return;
  1471. }
  1472. /* Calculate the size of the transfer by checking how much is left
  1473. * in the endpoint size register and then working it out from
  1474. * the amount we loaded for the transfer.
  1475. *
  1476. * We do this even for DMA, as the transfer may have incremented
  1477. * past the end of the buffer (DMA transfers are always 32bit
  1478. * aligned).
  1479. */
  1480. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1481. size_done = hs_ep->size_loaded - size_left;
  1482. size_done += hs_ep->last_load;
  1483. if (hs_req->req.actual != size_done)
  1484. dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
  1485. __func__, hs_req->req.actual, size_done);
  1486. hs_req->req.actual = size_done;
  1487. /* if we did all of the transfer, and there is more data left
  1488. * around, then try restarting the rest of the request */
  1489. if (!size_left && hs_req->req.actual < hs_req->req.length) {
  1490. dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
  1491. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
  1492. } else
  1493. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
  1494. }
  1495. /**
  1496. * s3c_hsotg_epint - handle an in/out endpoint interrupt
  1497. * @hsotg: The driver state
  1498. * @idx: The index for the endpoint (0..15)
  1499. * @dir_in: Set if this is an IN endpoint
  1500. *
  1501. * Process and clear any interrupt pending for an individual endpoint
  1502. */
  1503. static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
  1504. int dir_in)
  1505. {
  1506. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
  1507. u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
  1508. u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
  1509. u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
  1510. u32 ints;
  1511. ints = readl(hsotg->regs + epint_reg);
  1512. /* Clear endpoint interrupts */
  1513. writel(ints, hsotg->regs + epint_reg);
  1514. dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
  1515. __func__, idx, dir_in ? "in" : "out", ints);
  1516. if (ints & S3C_DxEPINT_XferCompl) {
  1517. dev_dbg(hsotg->dev,
  1518. "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
  1519. __func__, readl(hsotg->regs + epctl_reg),
  1520. readl(hsotg->regs + epsiz_reg));
  1521. /* we get OutDone from the FIFO, so we only need to look
  1522. * at completing IN requests here */
  1523. if (dir_in) {
  1524. s3c_hsotg_complete_in(hsotg, hs_ep);
  1525. if (idx == 0 && !hs_ep->req)
  1526. s3c_hsotg_enqueue_setup(hsotg);
  1527. } else if (using_dma(hsotg)) {
  1528. /* We're using DMA, we need to fire an OutDone here
  1529. * as we ignore the RXFIFO. */
  1530. s3c_hsotg_handle_outdone(hsotg, idx, false);
  1531. }
  1532. }
  1533. if (ints & S3C_DxEPINT_EPDisbld) {
  1534. dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
  1535. if (dir_in) {
  1536. int epctl = readl(hsotg->regs + epctl_reg);
  1537. s3c_hsotg_txfifo_flush(hsotg, idx);
  1538. if ((epctl & S3C_DxEPCTL_Stall) &&
  1539. (epctl & S3C_DxEPCTL_EPType_Bulk)) {
  1540. int dctl = readl(hsotg->regs + S3C_DCTL);
  1541. dctl |= S3C_DCTL_CGNPInNAK;
  1542. writel(dctl, hsotg->regs + S3C_DCTL);
  1543. }
  1544. }
  1545. }
  1546. if (ints & S3C_DxEPINT_AHBErr)
  1547. dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
  1548. if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
  1549. dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
  1550. if (using_dma(hsotg) && idx == 0) {
  1551. /* this is the notification we've received a
  1552. * setup packet. In non-DMA mode we'd get this
  1553. * from the RXFIFO, instead we need to process
  1554. * the setup here. */
  1555. if (dir_in)
  1556. WARN_ON_ONCE(1);
  1557. else
  1558. s3c_hsotg_handle_outdone(hsotg, 0, true);
  1559. }
  1560. }
  1561. if (ints & S3C_DxEPINT_Back2BackSetup)
  1562. dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
  1563. if (dir_in) {
  1564. /* not sure if this is important, but we'll clear it anyway
  1565. */
  1566. if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
  1567. dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
  1568. __func__, idx);
  1569. }
  1570. /* this probably means something bad is happening */
  1571. if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
  1572. dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
  1573. __func__, idx);
  1574. }
  1575. /* FIFO has space or is empty (see GAHBCFG) */
  1576. if (hsotg->dedicated_fifos &&
  1577. ints & S3C_DIEPMSK_TxFIFOEmpty) {
  1578. dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
  1579. __func__, idx);
  1580. s3c_hsotg_trytx(hsotg, hs_ep);
  1581. }
  1582. }
  1583. }
  1584. /**
  1585. * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
  1586. * @hsotg: The device state.
  1587. *
  1588. * Handle updating the device settings after the enumeration phase has
  1589. * been completed.
  1590. */
  1591. static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
  1592. {
  1593. u32 dsts = readl(hsotg->regs + S3C_DSTS);
  1594. int ep0_mps = 0, ep_mps;
  1595. /* This should signal the finish of the enumeration phase
  1596. * of the USB handshaking, so we should now know what rate
  1597. * we connected at. */
  1598. dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
  1599. /* note, since we're limited by the size of transfer on EP0, and
  1600. * it seems IN transfers must be a even number of packets we do
  1601. * not advertise a 64byte MPS on EP0. */
  1602. /* catch both EnumSpd_FS and EnumSpd_FS48 */
  1603. switch (dsts & S3C_DSTS_EnumSpd_MASK) {
  1604. case S3C_DSTS_EnumSpd_FS:
  1605. case S3C_DSTS_EnumSpd_FS48:
  1606. hsotg->gadget.speed = USB_SPEED_FULL;
  1607. ep0_mps = EP0_MPS_LIMIT;
  1608. ep_mps = 64;
  1609. break;
  1610. case S3C_DSTS_EnumSpd_HS:
  1611. hsotg->gadget.speed = USB_SPEED_HIGH;
  1612. ep0_mps = EP0_MPS_LIMIT;
  1613. ep_mps = 512;
  1614. break;
  1615. case S3C_DSTS_EnumSpd_LS:
  1616. hsotg->gadget.speed = USB_SPEED_LOW;
  1617. /* note, we don't actually support LS in this driver at the
  1618. * moment, and the documentation seems to imply that it isn't
  1619. * supported by the PHYs on some of the devices.
  1620. */
  1621. break;
  1622. }
  1623. dev_info(hsotg->dev, "new device is %s\n",
  1624. usb_speed_string(hsotg->gadget.speed));
  1625. /* we should now know the maximum packet size for an
  1626. * endpoint, so set the endpoints to a default value. */
  1627. if (ep0_mps) {
  1628. int i;
  1629. s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
  1630. for (i = 1; i < S3C_HSOTG_EPS; i++)
  1631. s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
  1632. }
  1633. /* ensure after enumeration our EP0 is active */
  1634. s3c_hsotg_enqueue_setup(hsotg);
  1635. dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  1636. readl(hsotg->regs + S3C_DIEPCTL0),
  1637. readl(hsotg->regs + S3C_DOEPCTL0));
  1638. }
  1639. /**
  1640. * kill_all_requests - remove all requests from the endpoint's queue
  1641. * @hsotg: The device state.
  1642. * @ep: The endpoint the requests may be on.
  1643. * @result: The result code to use.
  1644. * @force: Force removal of any current requests
  1645. *
  1646. * Go through the requests on the given endpoint and mark them
  1647. * completed with the given result code.
  1648. */
  1649. static void kill_all_requests(struct s3c_hsotg *hsotg,
  1650. struct s3c_hsotg_ep *ep,
  1651. int result, bool force)
  1652. {
  1653. struct s3c_hsotg_req *req, *treq;
  1654. unsigned long flags;
  1655. spin_lock_irqsave(&ep->lock, flags);
  1656. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1657. /* currently, we can't do much about an already
  1658. * running request on an in endpoint */
  1659. if (ep->req == req && ep->dir_in && !force)
  1660. continue;
  1661. s3c_hsotg_complete_request(hsotg, ep, req,
  1662. result);
  1663. }
  1664. spin_unlock_irqrestore(&ep->lock, flags);
  1665. }
  1666. #define call_gadget(_hs, _entry) \
  1667. if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
  1668. (_hs)->driver && (_hs)->driver->_entry) \
  1669. (_hs)->driver->_entry(&(_hs)->gadget);
  1670. /**
  1671. * s3c_hsotg_disconnect_irq - disconnect irq service
  1672. * @hsotg: The device state.
  1673. *
  1674. * A disconnect IRQ has been received, meaning that the host has
  1675. * lost contact with the bus. Remove all current transactions
  1676. * and signal the gadget driver that this has happened.
  1677. */
  1678. static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
  1679. {
  1680. unsigned ep;
  1681. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  1682. kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
  1683. call_gadget(hsotg, disconnect);
  1684. }
  1685. /**
  1686. * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
  1687. * @hsotg: The device state:
  1688. * @periodic: True if this is a periodic FIFO interrupt
  1689. */
  1690. static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
  1691. {
  1692. struct s3c_hsotg_ep *ep;
  1693. int epno, ret;
  1694. /* look through for any more data to transmit */
  1695. for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
  1696. ep = &hsotg->eps[epno];
  1697. if (!ep->dir_in)
  1698. continue;
  1699. if ((periodic && !ep->periodic) ||
  1700. (!periodic && ep->periodic))
  1701. continue;
  1702. ret = s3c_hsotg_trytx(hsotg, ep);
  1703. if (ret < 0)
  1704. break;
  1705. }
  1706. }
  1707. static struct s3c_hsotg *our_hsotg;
  1708. /* IRQ flags which will trigger a retry around the IRQ loop */
  1709. #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
  1710. S3C_GINTSTS_PTxFEmp | \
  1711. S3C_GINTSTS_RxFLvl)
  1712. /**
  1713. * s3c_hsotg_irq - handle device interrupt
  1714. * @irq: The IRQ number triggered
  1715. * @pw: The pw value when registered the handler.
  1716. */
  1717. static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
  1718. {
  1719. struct s3c_hsotg *hsotg = pw;
  1720. int retry_count = 8;
  1721. u32 gintsts;
  1722. u32 gintmsk;
  1723. irq_retry:
  1724. gintsts = readl(hsotg->regs + S3C_GINTSTS);
  1725. gintmsk = readl(hsotg->regs + S3C_GINTMSK);
  1726. dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
  1727. __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
  1728. gintsts &= gintmsk;
  1729. if (gintsts & S3C_GINTSTS_OTGInt) {
  1730. u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
  1731. dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
  1732. writel(otgint, hsotg->regs + S3C_GOTGINT);
  1733. }
  1734. if (gintsts & S3C_GINTSTS_DisconnInt) {
  1735. dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
  1736. writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
  1737. s3c_hsotg_disconnect_irq(hsotg);
  1738. }
  1739. if (gintsts & S3C_GINTSTS_SessReqInt) {
  1740. dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
  1741. writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
  1742. }
  1743. if (gintsts & S3C_GINTSTS_EnumDone) {
  1744. writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
  1745. s3c_hsotg_irq_enumdone(hsotg);
  1746. }
  1747. if (gintsts & S3C_GINTSTS_ConIDStsChng) {
  1748. dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
  1749. readl(hsotg->regs + S3C_DSTS),
  1750. readl(hsotg->regs + S3C_GOTGCTL));
  1751. writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
  1752. }
  1753. if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
  1754. u32 daint = readl(hsotg->regs + S3C_DAINT);
  1755. u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
  1756. u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
  1757. int ep;
  1758. dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
  1759. for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
  1760. if (daint_out & 1)
  1761. s3c_hsotg_epint(hsotg, ep, 0);
  1762. }
  1763. for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
  1764. if (daint_in & 1)
  1765. s3c_hsotg_epint(hsotg, ep, 1);
  1766. }
  1767. }
  1768. if (gintsts & S3C_GINTSTS_USBRst) {
  1769. dev_info(hsotg->dev, "%s: USBRst\n", __func__);
  1770. dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
  1771. readl(hsotg->regs + S3C_GNPTXSTS));
  1772. writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
  1773. kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
  1774. /* it seems after a reset we can end up with a situation
  1775. * where the TXFIFO still has data in it... the docs
  1776. * suggest resetting all the fifos, so use the init_fifo
  1777. * code to relayout and flush the fifos.
  1778. */
  1779. s3c_hsotg_init_fifo(hsotg);
  1780. s3c_hsotg_enqueue_setup(hsotg);
  1781. }
  1782. /* check both FIFOs */
  1783. if (gintsts & S3C_GINTSTS_NPTxFEmp) {
  1784. dev_dbg(hsotg->dev, "NPTxFEmp\n");
  1785. /* Disable the interrupt to stop it happening again
  1786. * unless one of these endpoint routines decides that
  1787. * it needs re-enabling */
  1788. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  1789. s3c_hsotg_irq_fifoempty(hsotg, false);
  1790. }
  1791. if (gintsts & S3C_GINTSTS_PTxFEmp) {
  1792. dev_dbg(hsotg->dev, "PTxFEmp\n");
  1793. /* See note in S3C_GINTSTS_NPTxFEmp */
  1794. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  1795. s3c_hsotg_irq_fifoempty(hsotg, true);
  1796. }
  1797. if (gintsts & S3C_GINTSTS_RxFLvl) {
  1798. /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
  1799. * we need to retry s3c_hsotg_handle_rx if this is still
  1800. * set. */
  1801. s3c_hsotg_handle_rx(hsotg);
  1802. }
  1803. if (gintsts & S3C_GINTSTS_ModeMis) {
  1804. dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
  1805. writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
  1806. }
  1807. if (gintsts & S3C_GINTSTS_USBSusp) {
  1808. dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
  1809. writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
  1810. call_gadget(hsotg, suspend);
  1811. }
  1812. if (gintsts & S3C_GINTSTS_WkUpInt) {
  1813. dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
  1814. writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
  1815. call_gadget(hsotg, resume);
  1816. }
  1817. if (gintsts & S3C_GINTSTS_ErlySusp) {
  1818. dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
  1819. writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
  1820. }
  1821. /* these next two seem to crop-up occasionally causing the core
  1822. * to shutdown the USB transfer, so try clearing them and logging
  1823. * the occurrence. */
  1824. if (gintsts & S3C_GINTSTS_GOUTNakEff) {
  1825. dev_info(hsotg->dev, "GOUTNakEff triggered\n");
  1826. writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
  1827. s3c_hsotg_dump(hsotg);
  1828. }
  1829. if (gintsts & S3C_GINTSTS_GINNakEff) {
  1830. dev_info(hsotg->dev, "GINNakEff triggered\n");
  1831. writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
  1832. s3c_hsotg_dump(hsotg);
  1833. }
  1834. /* if we've had fifo events, we should try and go around the
  1835. * loop again to see if there's any point in returning yet. */
  1836. if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
  1837. goto irq_retry;
  1838. return IRQ_HANDLED;
  1839. }
  1840. /**
  1841. * s3c_hsotg_ep_enable - enable the given endpoint
  1842. * @ep: The USB endpint to configure
  1843. * @desc: The USB endpoint descriptor to configure with.
  1844. *
  1845. * This is called from the USB gadget code's usb_ep_enable().
  1846. */
  1847. static int s3c_hsotg_ep_enable(struct usb_ep *ep,
  1848. const struct usb_endpoint_descriptor *desc)
  1849. {
  1850. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1851. struct s3c_hsotg *hsotg = hs_ep->parent;
  1852. unsigned long flags;
  1853. int index = hs_ep->index;
  1854. u32 epctrl_reg;
  1855. u32 epctrl;
  1856. u32 mps;
  1857. int dir_in;
  1858. int ret = 0;
  1859. dev_dbg(hsotg->dev,
  1860. "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
  1861. __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
  1862. desc->wMaxPacketSize, desc->bInterval);
  1863. /* not to be called for EP0 */
  1864. WARN_ON(index == 0);
  1865. dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
  1866. if (dir_in != hs_ep->dir_in) {
  1867. dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
  1868. return -EINVAL;
  1869. }
  1870. mps = usb_endpoint_maxp(desc);
  1871. /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
  1872. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1873. epctrl = readl(hsotg->regs + epctrl_reg);
  1874. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
  1875. __func__, epctrl, epctrl_reg);
  1876. spin_lock_irqsave(&hs_ep->lock, flags);
  1877. epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
  1878. epctrl |= S3C_DxEPCTL_MPS(mps);
  1879. /* mark the endpoint as active, otherwise the core may ignore
  1880. * transactions entirely for this endpoint */
  1881. epctrl |= S3C_DxEPCTL_USBActEp;
  1882. /* set the NAK status on the endpoint, otherwise we might try and
  1883. * do something with data that we've yet got a request to process
  1884. * since the RXFIFO will take data for an endpoint even if the
  1885. * size register hasn't been set.
  1886. */
  1887. epctrl |= S3C_DxEPCTL_SNAK;
  1888. /* update the endpoint state */
  1889. hs_ep->ep.maxpacket = mps;
  1890. /* default, set to non-periodic */
  1891. hs_ep->periodic = 0;
  1892. switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
  1893. case USB_ENDPOINT_XFER_ISOC:
  1894. dev_err(hsotg->dev, "no current ISOC support\n");
  1895. ret = -EINVAL;
  1896. goto out;
  1897. case USB_ENDPOINT_XFER_BULK:
  1898. epctrl |= S3C_DxEPCTL_EPType_Bulk;
  1899. break;
  1900. case USB_ENDPOINT_XFER_INT:
  1901. if (dir_in) {
  1902. /* Allocate our TxFNum by simply using the index
  1903. * of the endpoint for the moment. We could do
  1904. * something better if the host indicates how
  1905. * many FIFOs we are expecting to use. */
  1906. hs_ep->periodic = 1;
  1907. epctrl |= S3C_DxEPCTL_TxFNum(index);
  1908. }
  1909. epctrl |= S3C_DxEPCTL_EPType_Intterupt;
  1910. break;
  1911. case USB_ENDPOINT_XFER_CONTROL:
  1912. epctrl |= S3C_DxEPCTL_EPType_Control;
  1913. break;
  1914. }
  1915. /* if the hardware has dedicated fifos, we must give each IN EP
  1916. * a unique tx-fifo even if it is non-periodic.
  1917. */
  1918. if (dir_in && hsotg->dedicated_fifos)
  1919. epctrl |= S3C_DxEPCTL_TxFNum(index);
  1920. /* for non control endpoints, set PID to D0 */
  1921. if (index)
  1922. epctrl |= S3C_DxEPCTL_SetD0PID;
  1923. dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
  1924. __func__, epctrl);
  1925. writel(epctrl, hsotg->regs + epctrl_reg);
  1926. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
  1927. __func__, readl(hsotg->regs + epctrl_reg));
  1928. /* enable the endpoint interrupt */
  1929. s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
  1930. out:
  1931. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1932. return ret;
  1933. }
  1934. static int s3c_hsotg_ep_disable(struct usb_ep *ep)
  1935. {
  1936. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1937. struct s3c_hsotg *hsotg = hs_ep->parent;
  1938. int dir_in = hs_ep->dir_in;
  1939. int index = hs_ep->index;
  1940. unsigned long flags;
  1941. u32 epctrl_reg;
  1942. u32 ctrl;
  1943. dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
  1944. if (ep == &hsotg->eps[0].ep) {
  1945. dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
  1946. return -EINVAL;
  1947. }
  1948. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1949. /* terminate all requests with shutdown */
  1950. kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
  1951. spin_lock_irqsave(&hs_ep->lock, flags);
  1952. ctrl = readl(hsotg->regs + epctrl_reg);
  1953. ctrl &= ~S3C_DxEPCTL_EPEna;
  1954. ctrl &= ~S3C_DxEPCTL_USBActEp;
  1955. ctrl |= S3C_DxEPCTL_SNAK;
  1956. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  1957. writel(ctrl, hsotg->regs + epctrl_reg);
  1958. /* disable endpoint interrupts */
  1959. s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
  1960. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1961. return 0;
  1962. }
  1963. /**
  1964. * on_list - check request is on the given endpoint
  1965. * @ep: The endpoint to check.
  1966. * @test: The request to test if it is on the endpoint.
  1967. */
  1968. static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
  1969. {
  1970. struct s3c_hsotg_req *req, *treq;
  1971. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1972. if (req == test)
  1973. return true;
  1974. }
  1975. return false;
  1976. }
  1977. static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
  1978. {
  1979. struct s3c_hsotg_req *hs_req = our_req(req);
  1980. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1981. struct s3c_hsotg *hs = hs_ep->parent;
  1982. unsigned long flags;
  1983. dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
  1984. spin_lock_irqsave(&hs_ep->lock, flags);
  1985. if (!on_list(hs_ep, hs_req)) {
  1986. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1987. return -EINVAL;
  1988. }
  1989. s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
  1990. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1991. return 0;
  1992. }
  1993. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
  1994. {
  1995. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1996. struct s3c_hsotg *hs = hs_ep->parent;
  1997. int index = hs_ep->index;
  1998. unsigned long irqflags;
  1999. u32 epreg;
  2000. u32 epctl;
  2001. u32 xfertype;
  2002. dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
  2003. spin_lock_irqsave(&hs_ep->lock, irqflags);
  2004. /* write both IN and OUT control registers */
  2005. epreg = S3C_DIEPCTL(index);
  2006. epctl = readl(hs->regs + epreg);
  2007. if (value) {
  2008. epctl |= S3C_DxEPCTL_Stall + S3C_DxEPCTL_SNAK;
  2009. if (epctl & S3C_DxEPCTL_EPEna)
  2010. epctl |= S3C_DxEPCTL_EPDis;
  2011. } else {
  2012. epctl &= ~S3C_DxEPCTL_Stall;
  2013. xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
  2014. if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
  2015. xfertype == S3C_DxEPCTL_EPType_Intterupt)
  2016. epctl |= S3C_DxEPCTL_SetD0PID;
  2017. }
  2018. writel(epctl, hs->regs + epreg);
  2019. epreg = S3C_DOEPCTL(index);
  2020. epctl = readl(hs->regs + epreg);
  2021. if (value)
  2022. epctl |= S3C_DxEPCTL_Stall;
  2023. else {
  2024. epctl &= ~S3C_DxEPCTL_Stall;
  2025. xfertype = epctl & S3C_DxEPCTL_EPType_MASK;
  2026. if (xfertype == S3C_DxEPCTL_EPType_Bulk ||
  2027. xfertype == S3C_DxEPCTL_EPType_Intterupt)
  2028. epctl |= S3C_DxEPCTL_SetD0PID;
  2029. }
  2030. writel(epctl, hs->regs + epreg);
  2031. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  2032. return 0;
  2033. }
  2034. static struct usb_ep_ops s3c_hsotg_ep_ops = {
  2035. .enable = s3c_hsotg_ep_enable,
  2036. .disable = s3c_hsotg_ep_disable,
  2037. .alloc_request = s3c_hsotg_ep_alloc_request,
  2038. .free_request = s3c_hsotg_ep_free_request,
  2039. .queue = s3c_hsotg_ep_queue,
  2040. .dequeue = s3c_hsotg_ep_dequeue,
  2041. .set_halt = s3c_hsotg_ep_sethalt,
  2042. /* note, don't believe we have any call for the fifo routines */
  2043. };
  2044. /**
  2045. * s3c_hsotg_corereset - issue softreset to the core
  2046. * @hsotg: The device state
  2047. *
  2048. * Issue a soft reset to the core, and await the core finishing it.
  2049. */
  2050. static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
  2051. {
  2052. int timeout;
  2053. u32 grstctl;
  2054. dev_dbg(hsotg->dev, "resetting core\n");
  2055. /* issue soft reset */
  2056. writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
  2057. timeout = 1000;
  2058. do {
  2059. grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  2060. } while ((grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
  2061. if (grstctl & S3C_GRSTCTL_CSftRst) {
  2062. dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
  2063. return -EINVAL;
  2064. }
  2065. timeout = 1000;
  2066. while (1) {
  2067. u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  2068. if (timeout-- < 0) {
  2069. dev_info(hsotg->dev,
  2070. "%s: reset failed, GRSTCTL=%08x\n",
  2071. __func__, grstctl);
  2072. return -ETIMEDOUT;
  2073. }
  2074. if (!(grstctl & S3C_GRSTCTL_AHBIdle))
  2075. continue;
  2076. break; /* reset done */
  2077. }
  2078. dev_dbg(hsotg->dev, "reset successful\n");
  2079. return 0;
  2080. }
  2081. static int s3c_hsotg_start(struct usb_gadget_driver *driver,
  2082. int (*bind)(struct usb_gadget *))
  2083. {
  2084. struct s3c_hsotg *hsotg = our_hsotg;
  2085. int ret;
  2086. if (!hsotg) {
  2087. printk(KERN_ERR "%s: called with no device\n", __func__);
  2088. return -ENODEV;
  2089. }
  2090. if (!driver) {
  2091. dev_err(hsotg->dev, "%s: no driver\n", __func__);
  2092. return -EINVAL;
  2093. }
  2094. if (driver->max_speed < USB_SPEED_FULL)
  2095. dev_err(hsotg->dev, "%s: bad speed\n", __func__);
  2096. if (!bind || !driver->setup) {
  2097. dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
  2098. return -EINVAL;
  2099. }
  2100. WARN_ON(hsotg->driver);
  2101. driver->driver.bus = NULL;
  2102. hsotg->driver = driver;
  2103. hsotg->gadget.dev.driver = &driver->driver;
  2104. hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
  2105. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  2106. ret = device_add(&hsotg->gadget.dev);
  2107. if (ret) {
  2108. dev_err(hsotg->dev, "failed to register gadget device\n");
  2109. goto err;
  2110. }
  2111. ret = bind(&hsotg->gadget);
  2112. if (ret) {
  2113. dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
  2114. hsotg->gadget.dev.driver = NULL;
  2115. hsotg->driver = NULL;
  2116. goto err;
  2117. }
  2118. /* we must now enable ep0 ready for host detection and then
  2119. * set configuration. */
  2120. s3c_hsotg_corereset(hsotg);
  2121. /* set the PLL on, remove the HNP/SRP and set the PHY */
  2122. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
  2123. (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
  2124. /* looks like soft-reset changes state of FIFOs */
  2125. s3c_hsotg_init_fifo(hsotg);
  2126. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2127. writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
  2128. /* Clear any pending OTG interrupts */
  2129. writel(0xffffffff, hsotg->regs + S3C_GOTGINT);
  2130. /* Clear any pending interrupts */
  2131. writel(0xffffffff, hsotg->regs + S3C_GINTSTS);
  2132. writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
  2133. S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
  2134. S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
  2135. S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
  2136. S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
  2137. S3C_GINTSTS_ErlySusp,
  2138. hsotg->regs + S3C_GINTMSK);
  2139. if (using_dma(hsotg))
  2140. writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
  2141. S3C_GAHBCFG_HBstLen_Incr4,
  2142. hsotg->regs + S3C_GAHBCFG);
  2143. else
  2144. writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
  2145. /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
  2146. * up being flooded with interrupts if the host is polling the
  2147. * endpoint to try and read data. */
  2148. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2149. S3C_DIEPMSK_INTknEPMisMsk |
  2150. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
  2151. ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
  2152. hsotg->regs + S3C_DIEPMSK);
  2153. /* don't need XferCompl, we get that from RXFIFO in slave mode. In
  2154. * DMA mode we may need this. */
  2155. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2156. S3C_DOEPMSK_EPDisbldMsk |
  2157. (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
  2158. S3C_DIEPMSK_TimeOUTMsk) : 0),
  2159. hsotg->regs + S3C_DOEPMSK);
  2160. writel(0, hsotg->regs + S3C_DAINTMSK);
  2161. dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2162. readl(hsotg->regs + S3C_DIEPCTL0),
  2163. readl(hsotg->regs + S3C_DOEPCTL0));
  2164. /* enable in and out endpoint interrupts */
  2165. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
  2166. /* Enable the RXFIFO when in slave mode, as this is how we collect
  2167. * the data. In DMA mode, we get events from the FIFO but also
  2168. * things we cannot process, so do not use it. */
  2169. if (!using_dma(hsotg))
  2170. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
  2171. /* Enable interrupts for EP0 in and out */
  2172. s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
  2173. s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
  2174. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2175. udelay(10); /* see openiboot */
  2176. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2177. dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
  2178. /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
  2179. writing to the EPCTL register.. */
  2180. /* set to read 1 8byte packet */
  2181. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  2182. S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
  2183. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2184. S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
  2185. S3C_DxEPCTL_USBActEp,
  2186. hsotg->regs + S3C_DOEPCTL0);
  2187. /* enable, but don't activate EP0in */
  2188. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2189. S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
  2190. s3c_hsotg_enqueue_setup(hsotg);
  2191. dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2192. readl(hsotg->regs + S3C_DIEPCTL0),
  2193. readl(hsotg->regs + S3C_DOEPCTL0));
  2194. /* clear global NAKs */
  2195. writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
  2196. hsotg->regs + S3C_DCTL);
  2197. /* must be at-least 3ms to allow bus to see disconnect */
  2198. msleep(3);
  2199. /* remove the soft-disconnect and let's go */
  2200. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2201. /* report to the user, and return */
  2202. dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
  2203. return 0;
  2204. err:
  2205. hsotg->driver = NULL;
  2206. hsotg->gadget.dev.driver = NULL;
  2207. return ret;
  2208. }
  2209. static int s3c_hsotg_stop(struct usb_gadget_driver *driver)
  2210. {
  2211. struct s3c_hsotg *hsotg = our_hsotg;
  2212. int ep;
  2213. if (!hsotg)
  2214. return -ENODEV;
  2215. if (!driver || driver != hsotg->driver || !driver->unbind)
  2216. return -EINVAL;
  2217. /* all endpoints should be shutdown */
  2218. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  2219. s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
  2220. call_gadget(hsotg, disconnect);
  2221. driver->unbind(&hsotg->gadget);
  2222. hsotg->driver = NULL;
  2223. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  2224. device_del(&hsotg->gadget.dev);
  2225. dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
  2226. driver->driver.name);
  2227. return 0;
  2228. }
  2229. static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
  2230. {
  2231. return s3c_hsotg_read_frameno(to_hsotg(gadget));
  2232. }
  2233. static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
  2234. .get_frame = s3c_hsotg_gadget_getframe,
  2235. .start = s3c_hsotg_start,
  2236. .stop = s3c_hsotg_stop,
  2237. };
  2238. /**
  2239. * s3c_hsotg_initep - initialise a single endpoint
  2240. * @hsotg: The device state.
  2241. * @hs_ep: The endpoint to be initialised.
  2242. * @epnum: The endpoint number
  2243. *
  2244. * Initialise the given endpoint (as part of the probe and device state
  2245. * creation) to give to the gadget driver. Setup the endpoint name, any
  2246. * direction information and other state that may be required.
  2247. */
  2248. static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
  2249. struct s3c_hsotg_ep *hs_ep,
  2250. int epnum)
  2251. {
  2252. u32 ptxfifo;
  2253. char *dir;
  2254. if (epnum == 0)
  2255. dir = "";
  2256. else if ((epnum % 2) == 0) {
  2257. dir = "out";
  2258. } else {
  2259. dir = "in";
  2260. hs_ep->dir_in = 1;
  2261. }
  2262. hs_ep->index = epnum;
  2263. snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
  2264. INIT_LIST_HEAD(&hs_ep->queue);
  2265. INIT_LIST_HEAD(&hs_ep->ep.ep_list);
  2266. spin_lock_init(&hs_ep->lock);
  2267. /* add to the list of endpoints known by the gadget driver */
  2268. if (epnum)
  2269. list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
  2270. hs_ep->parent = hsotg;
  2271. hs_ep->ep.name = hs_ep->name;
  2272. hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
  2273. hs_ep->ep.ops = &s3c_hsotg_ep_ops;
  2274. /* Read the FIFO size for the Periodic TX FIFO, even if we're
  2275. * an OUT endpoint, we may as well do this if in future the
  2276. * code is changed to make each endpoint's direction changeable.
  2277. */
  2278. ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
  2279. hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
  2280. /* if we're using dma, we need to set the next-endpoint pointer
  2281. * to be something valid.
  2282. */
  2283. if (using_dma(hsotg)) {
  2284. u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
  2285. writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
  2286. writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
  2287. }
  2288. }
  2289. /**
  2290. * s3c_hsotg_otgreset - reset the OtG phy block
  2291. * @hsotg: The host state.
  2292. *
  2293. * Power up the phy, set the basic configuration and start the PHY.
  2294. */
  2295. static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
  2296. {
  2297. struct clk *xusbxti;
  2298. u32 pwr, osc;
  2299. pwr = readl(S3C_PHYPWR);
  2300. pwr &= ~0x19;
  2301. writel(pwr, S3C_PHYPWR);
  2302. mdelay(1);
  2303. osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
  2304. xusbxti = clk_get(hsotg->dev, "xusbxti");
  2305. if (xusbxti && !IS_ERR(xusbxti)) {
  2306. switch (clk_get_rate(xusbxti)) {
  2307. case 12*MHZ:
  2308. osc |= S3C_PHYCLK_CLKSEL_12M;
  2309. break;
  2310. case 24*MHZ:
  2311. osc |= S3C_PHYCLK_CLKSEL_24M;
  2312. break;
  2313. default:
  2314. case 48*MHZ:
  2315. /* default reference clock */
  2316. break;
  2317. }
  2318. clk_put(xusbxti);
  2319. }
  2320. writel(osc | 0x10, S3C_PHYCLK);
  2321. /* issue a full set of resets to the otg and core */
  2322. writel(S3C_RSTCON_PHY, S3C_RSTCON);
  2323. udelay(20); /* at-least 10uS */
  2324. writel(0, S3C_RSTCON);
  2325. }
  2326. static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
  2327. {
  2328. u32 cfg4;
  2329. /* unmask subset of endpoint interrupts */
  2330. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2331. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
  2332. hsotg->regs + S3C_DIEPMSK);
  2333. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2334. S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
  2335. hsotg->regs + S3C_DOEPMSK);
  2336. writel(0, hsotg->regs + S3C_DAINTMSK);
  2337. /* Be in disconnected state until gadget is registered */
  2338. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2339. if (0) {
  2340. /* post global nak until we're ready */
  2341. writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
  2342. hsotg->regs + S3C_DCTL);
  2343. }
  2344. /* setup fifos */
  2345. dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2346. readl(hsotg->regs + S3C_GRXFSIZ),
  2347. readl(hsotg->regs + S3C_GNPTXFSIZ));
  2348. s3c_hsotg_init_fifo(hsotg);
  2349. /* set the PLL on, remove the HNP/SRP and set the PHY */
  2350. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
  2351. hsotg->regs + S3C_GUSBCFG);
  2352. writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
  2353. hsotg->regs + S3C_GAHBCFG);
  2354. /* check hardware configuration */
  2355. cfg4 = readl(hsotg->regs + 0x50);
  2356. hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
  2357. dev_info(hsotg->dev, "%s fifos\n",
  2358. hsotg->dedicated_fifos ? "dedicated" : "shared");
  2359. }
  2360. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
  2361. {
  2362. #ifdef DEBUG
  2363. struct device *dev = hsotg->dev;
  2364. void __iomem *regs = hsotg->regs;
  2365. u32 val;
  2366. int idx;
  2367. dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
  2368. readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
  2369. readl(regs + S3C_DIEPMSK));
  2370. dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
  2371. readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
  2372. dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2373. readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
  2374. /* show periodic fifo settings */
  2375. for (idx = 1; idx <= 15; idx++) {
  2376. val = readl(regs + S3C_DPTXFSIZn(idx));
  2377. dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
  2378. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2379. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2380. }
  2381. for (idx = 0; idx < 15; idx++) {
  2382. dev_info(dev,
  2383. "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
  2384. readl(regs + S3C_DIEPCTL(idx)),
  2385. readl(regs + S3C_DIEPTSIZ(idx)),
  2386. readl(regs + S3C_DIEPDMA(idx)));
  2387. val = readl(regs + S3C_DOEPCTL(idx));
  2388. dev_info(dev,
  2389. "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
  2390. idx, readl(regs + S3C_DOEPCTL(idx)),
  2391. readl(regs + S3C_DOEPTSIZ(idx)),
  2392. readl(regs + S3C_DOEPDMA(idx)));
  2393. }
  2394. dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
  2395. readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
  2396. #endif
  2397. }
  2398. /**
  2399. * state_show - debugfs: show overall driver and device state.
  2400. * @seq: The seq file to write to.
  2401. * @v: Unused parameter.
  2402. *
  2403. * This debugfs entry shows the overall state of the hardware and
  2404. * some general information about each of the endpoints available
  2405. * to the system.
  2406. */
  2407. static int state_show(struct seq_file *seq, void *v)
  2408. {
  2409. struct s3c_hsotg *hsotg = seq->private;
  2410. void __iomem *regs = hsotg->regs;
  2411. int idx;
  2412. seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
  2413. readl(regs + S3C_DCFG),
  2414. readl(regs + S3C_DCTL),
  2415. readl(regs + S3C_DSTS));
  2416. seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
  2417. readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
  2418. seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
  2419. readl(regs + S3C_GINTMSK),
  2420. readl(regs + S3C_GINTSTS));
  2421. seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
  2422. readl(regs + S3C_DAINTMSK),
  2423. readl(regs + S3C_DAINT));
  2424. seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
  2425. readl(regs + S3C_GNPTXSTS),
  2426. readl(regs + S3C_GRXSTSR));
  2427. seq_printf(seq, "\nEndpoint status:\n");
  2428. for (idx = 0; idx < 15; idx++) {
  2429. u32 in, out;
  2430. in = readl(regs + S3C_DIEPCTL(idx));
  2431. out = readl(regs + S3C_DOEPCTL(idx));
  2432. seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
  2433. idx, in, out);
  2434. in = readl(regs + S3C_DIEPTSIZ(idx));
  2435. out = readl(regs + S3C_DOEPTSIZ(idx));
  2436. seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
  2437. in, out);
  2438. seq_printf(seq, "\n");
  2439. }
  2440. return 0;
  2441. }
  2442. static int state_open(struct inode *inode, struct file *file)
  2443. {
  2444. return single_open(file, state_show, inode->i_private);
  2445. }
  2446. static const struct file_operations state_fops = {
  2447. .owner = THIS_MODULE,
  2448. .open = state_open,
  2449. .read = seq_read,
  2450. .llseek = seq_lseek,
  2451. .release = single_release,
  2452. };
  2453. /**
  2454. * fifo_show - debugfs: show the fifo information
  2455. * @seq: The seq_file to write data to.
  2456. * @v: Unused parameter.
  2457. *
  2458. * Show the FIFO information for the overall fifo and all the
  2459. * periodic transmission FIFOs.
  2460. */
  2461. static int fifo_show(struct seq_file *seq, void *v)
  2462. {
  2463. struct s3c_hsotg *hsotg = seq->private;
  2464. void __iomem *regs = hsotg->regs;
  2465. u32 val;
  2466. int idx;
  2467. seq_printf(seq, "Non-periodic FIFOs:\n");
  2468. seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
  2469. val = readl(regs + S3C_GNPTXFSIZ);
  2470. seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
  2471. val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
  2472. val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
  2473. seq_printf(seq, "\nPeriodic TXFIFOs:\n");
  2474. for (idx = 1; idx <= 15; idx++) {
  2475. val = readl(regs + S3C_DPTXFSIZn(idx));
  2476. seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
  2477. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2478. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2479. }
  2480. return 0;
  2481. }
  2482. static int fifo_open(struct inode *inode, struct file *file)
  2483. {
  2484. return single_open(file, fifo_show, inode->i_private);
  2485. }
  2486. static const struct file_operations fifo_fops = {
  2487. .owner = THIS_MODULE,
  2488. .open = fifo_open,
  2489. .read = seq_read,
  2490. .llseek = seq_lseek,
  2491. .release = single_release,
  2492. };
  2493. static const char *decode_direction(int is_in)
  2494. {
  2495. return is_in ? "in" : "out";
  2496. }
  2497. /**
  2498. * ep_show - debugfs: show the state of an endpoint.
  2499. * @seq: The seq_file to write data to.
  2500. * @v: Unused parameter.
  2501. *
  2502. * This debugfs entry shows the state of the given endpoint (one is
  2503. * registered for each available).
  2504. */
  2505. static int ep_show(struct seq_file *seq, void *v)
  2506. {
  2507. struct s3c_hsotg_ep *ep = seq->private;
  2508. struct s3c_hsotg *hsotg = ep->parent;
  2509. struct s3c_hsotg_req *req;
  2510. void __iomem *regs = hsotg->regs;
  2511. int index = ep->index;
  2512. int show_limit = 15;
  2513. unsigned long flags;
  2514. seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
  2515. ep->index, ep->ep.name, decode_direction(ep->dir_in));
  2516. /* first show the register state */
  2517. seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
  2518. readl(regs + S3C_DIEPCTL(index)),
  2519. readl(regs + S3C_DOEPCTL(index)));
  2520. seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
  2521. readl(regs + S3C_DIEPDMA(index)),
  2522. readl(regs + S3C_DOEPDMA(index)));
  2523. seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
  2524. readl(regs + S3C_DIEPINT(index)),
  2525. readl(regs + S3C_DOEPINT(index)));
  2526. seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
  2527. readl(regs + S3C_DIEPTSIZ(index)),
  2528. readl(regs + S3C_DOEPTSIZ(index)));
  2529. seq_printf(seq, "\n");
  2530. seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
  2531. seq_printf(seq, "total_data=%ld\n", ep->total_data);
  2532. seq_printf(seq, "request list (%p,%p):\n",
  2533. ep->queue.next, ep->queue.prev);
  2534. spin_lock_irqsave(&ep->lock, flags);
  2535. list_for_each_entry(req, &ep->queue, queue) {
  2536. if (--show_limit < 0) {
  2537. seq_printf(seq, "not showing more requests...\n");
  2538. break;
  2539. }
  2540. seq_printf(seq, "%c req %p: %d bytes @%p, ",
  2541. req == ep->req ? '*' : ' ',
  2542. req, req->req.length, req->req.buf);
  2543. seq_printf(seq, "%d done, res %d\n",
  2544. req->req.actual, req->req.status);
  2545. }
  2546. spin_unlock_irqrestore(&ep->lock, flags);
  2547. return 0;
  2548. }
  2549. static int ep_open(struct inode *inode, struct file *file)
  2550. {
  2551. return single_open(file, ep_show, inode->i_private);
  2552. }
  2553. static const struct file_operations ep_fops = {
  2554. .owner = THIS_MODULE,
  2555. .open = ep_open,
  2556. .read = seq_read,
  2557. .llseek = seq_lseek,
  2558. .release = single_release,
  2559. };
  2560. /**
  2561. * s3c_hsotg_create_debug - create debugfs directory and files
  2562. * @hsotg: The driver state
  2563. *
  2564. * Create the debugfs files to allow the user to get information
  2565. * about the state of the system. The directory name is created
  2566. * with the same name as the device itself, in case we end up
  2567. * with multiple blocks in future systems.
  2568. */
  2569. static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
  2570. {
  2571. struct dentry *root;
  2572. unsigned epidx;
  2573. root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
  2574. hsotg->debug_root = root;
  2575. if (IS_ERR(root)) {
  2576. dev_err(hsotg->dev, "cannot create debug root\n");
  2577. return;
  2578. }
  2579. /* create general state file */
  2580. hsotg->debug_file = debugfs_create_file("state", 0444, root,
  2581. hsotg, &state_fops);
  2582. if (IS_ERR(hsotg->debug_file))
  2583. dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
  2584. hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
  2585. hsotg, &fifo_fops);
  2586. if (IS_ERR(hsotg->debug_fifo))
  2587. dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
  2588. /* create one file for each endpoint */
  2589. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2590. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2591. ep->debugfs = debugfs_create_file(ep->name, 0444,
  2592. root, ep, &ep_fops);
  2593. if (IS_ERR(ep->debugfs))
  2594. dev_err(hsotg->dev, "failed to create %s debug file\n",
  2595. ep->name);
  2596. }
  2597. }
  2598. /**
  2599. * s3c_hsotg_delete_debug - cleanup debugfs entries
  2600. * @hsotg: The driver state
  2601. *
  2602. * Cleanup (remove) the debugfs files for use on module exit.
  2603. */
  2604. static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
  2605. {
  2606. unsigned epidx;
  2607. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2608. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2609. debugfs_remove(ep->debugfs);
  2610. }
  2611. debugfs_remove(hsotg->debug_file);
  2612. debugfs_remove(hsotg->debug_fifo);
  2613. debugfs_remove(hsotg->debug_root);
  2614. }
  2615. /**
  2616. * s3c_hsotg_gate - set the hardware gate for the block
  2617. * @pdev: The device we bound to
  2618. * @on: On or off.
  2619. *
  2620. * Set the hardware gate setting into the block. If we end up on
  2621. * something other than an S3C64XX, then we might need to change this
  2622. * to using a platform data callback, or some other mechanism.
  2623. */
  2624. static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
  2625. {
  2626. unsigned long flags;
  2627. u32 others;
  2628. local_irq_save(flags);
  2629. others = __raw_readl(S3C64XX_OTHERS);
  2630. if (on)
  2631. others |= S3C64XX_OTHERS_USBMASK;
  2632. else
  2633. others &= ~S3C64XX_OTHERS_USBMASK;
  2634. __raw_writel(others, S3C64XX_OTHERS);
  2635. local_irq_restore(flags);
  2636. }
  2637. static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
  2638. static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
  2639. {
  2640. struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
  2641. struct device *dev = &pdev->dev;
  2642. struct s3c_hsotg *hsotg;
  2643. struct resource *res;
  2644. int epnum;
  2645. int ret;
  2646. if (!plat)
  2647. plat = &s3c_hsotg_default_pdata;
  2648. hsotg = kzalloc(sizeof(struct s3c_hsotg) +
  2649. sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
  2650. GFP_KERNEL);
  2651. if (!hsotg) {
  2652. dev_err(dev, "cannot get memory\n");
  2653. return -ENOMEM;
  2654. }
  2655. hsotg->dev = dev;
  2656. hsotg->plat = plat;
  2657. hsotg->clk = clk_get(&pdev->dev, "otg");
  2658. if (IS_ERR(hsotg->clk)) {
  2659. dev_err(dev, "cannot get otg clock\n");
  2660. ret = PTR_ERR(hsotg->clk);
  2661. goto err_mem;
  2662. }
  2663. platform_set_drvdata(pdev, hsotg);
  2664. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2665. if (!res) {
  2666. dev_err(dev, "cannot find register resource 0\n");
  2667. ret = -EINVAL;
  2668. goto err_clk;
  2669. }
  2670. hsotg->regs_res = request_mem_region(res->start, resource_size(res),
  2671. dev_name(dev));
  2672. if (!hsotg->regs_res) {
  2673. dev_err(dev, "cannot reserve registers\n");
  2674. ret = -ENOENT;
  2675. goto err_clk;
  2676. }
  2677. hsotg->regs = ioremap(res->start, resource_size(res));
  2678. if (!hsotg->regs) {
  2679. dev_err(dev, "cannot map registers\n");
  2680. ret = -ENXIO;
  2681. goto err_regs_res;
  2682. }
  2683. ret = platform_get_irq(pdev, 0);
  2684. if (ret < 0) {
  2685. dev_err(dev, "cannot find IRQ\n");
  2686. goto err_regs;
  2687. }
  2688. hsotg->irq = ret;
  2689. ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
  2690. if (ret < 0) {
  2691. dev_err(dev, "cannot claim IRQ\n");
  2692. goto err_regs;
  2693. }
  2694. dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
  2695. device_initialize(&hsotg->gadget.dev);
  2696. dev_set_name(&hsotg->gadget.dev, "gadget");
  2697. hsotg->gadget.max_speed = USB_SPEED_HIGH;
  2698. hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
  2699. hsotg->gadget.name = dev_name(dev);
  2700. hsotg->gadget.dev.parent = dev;
  2701. hsotg->gadget.dev.dma_mask = dev->dma_mask;
  2702. /* setup endpoint information */
  2703. INIT_LIST_HEAD(&hsotg->gadget.ep_list);
  2704. hsotg->gadget.ep0 = &hsotg->eps[0].ep;
  2705. /* allocate EP0 request */
  2706. hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
  2707. GFP_KERNEL);
  2708. if (!hsotg->ctrl_req) {
  2709. dev_err(dev, "failed to allocate ctrl req\n");
  2710. goto err_regs;
  2711. }
  2712. /* reset the system */
  2713. clk_enable(hsotg->clk);
  2714. s3c_hsotg_gate(pdev, true);
  2715. s3c_hsotg_otgreset(hsotg);
  2716. s3c_hsotg_corereset(hsotg);
  2717. s3c_hsotg_init(hsotg);
  2718. /* initialise the endpoints now the core has been initialised */
  2719. for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
  2720. s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
  2721. ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
  2722. if (ret)
  2723. goto err_add_udc;
  2724. s3c_hsotg_create_debug(hsotg);
  2725. s3c_hsotg_dump(hsotg);
  2726. our_hsotg = hsotg;
  2727. return 0;
  2728. err_add_udc:
  2729. s3c_hsotg_gate(pdev, false);
  2730. clk_disable(hsotg->clk);
  2731. clk_put(hsotg->clk);
  2732. err_regs:
  2733. iounmap(hsotg->regs);
  2734. err_regs_res:
  2735. release_resource(hsotg->regs_res);
  2736. kfree(hsotg->regs_res);
  2737. err_clk:
  2738. clk_put(hsotg->clk);
  2739. err_mem:
  2740. kfree(hsotg);
  2741. return ret;
  2742. }
  2743. static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
  2744. {
  2745. struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
  2746. usb_del_gadget_udc(&hsotg->gadget);
  2747. s3c_hsotg_delete_debug(hsotg);
  2748. usb_gadget_unregister_driver(hsotg->driver);
  2749. free_irq(hsotg->irq, hsotg);
  2750. iounmap(hsotg->regs);
  2751. release_resource(hsotg->regs_res);
  2752. kfree(hsotg->regs_res);
  2753. s3c_hsotg_gate(pdev, false);
  2754. clk_disable(hsotg->clk);
  2755. clk_put(hsotg->clk);
  2756. kfree(hsotg);
  2757. return 0;
  2758. }
  2759. #if 1
  2760. #define s3c_hsotg_suspend NULL
  2761. #define s3c_hsotg_resume NULL
  2762. #endif
  2763. static struct platform_driver s3c_hsotg_driver = {
  2764. .driver = {
  2765. .name = "s3c-hsotg",
  2766. .owner = THIS_MODULE,
  2767. },
  2768. .probe = s3c_hsotg_probe,
  2769. .remove = __devexit_p(s3c_hsotg_remove),
  2770. .suspend = s3c_hsotg_suspend,
  2771. .resume = s3c_hsotg_resume,
  2772. };
  2773. module_platform_driver(s3c_hsotg_driver);
  2774. MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
  2775. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  2776. MODULE_LICENSE("GPL");
  2777. MODULE_ALIAS("platform:s3c-hsotg");