blk.h 6.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. #ifndef BLK_INTERNAL_H
  2. #define BLK_INTERNAL_H
  3. #include <linux/idr.h>
  4. /* Amount of time in which a process may batch requests */
  5. #define BLK_BATCH_TIME (HZ/50UL)
  6. /* Number of requests a "batching" process may submit */
  7. #define BLK_BATCH_REQ 32
  8. extern struct kmem_cache *blk_requestq_cachep;
  9. extern struct kobj_type blk_queue_ktype;
  10. extern struct ida blk_queue_ida;
  11. static inline void __blk_get_queue(struct request_queue *q)
  12. {
  13. kobject_get(&q->kobj);
  14. }
  15. void init_request_from_bio(struct request *req, struct bio *bio);
  16. void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  17. struct bio *bio);
  18. int blk_rq_append_bio(struct request_queue *q, struct request *rq,
  19. struct bio *bio);
  20. void blk_drain_queue(struct request_queue *q, bool drain_all);
  21. void blk_dequeue_request(struct request *rq);
  22. void __blk_queue_free_tags(struct request_queue *q);
  23. bool __blk_end_bidi_request(struct request *rq, int error,
  24. unsigned int nr_bytes, unsigned int bidi_bytes);
  25. void blk_rq_timed_out_timer(unsigned long data);
  26. void blk_delete_timer(struct request *);
  27. void blk_add_timer(struct request *);
  28. void __generic_unplug_device(struct request_queue *);
  29. /*
  30. * Internal atomic flags for request handling
  31. */
  32. enum rq_atomic_flags {
  33. REQ_ATOM_COMPLETE = 0,
  34. };
  35. /*
  36. * EH timer and IO completion will both attempt to 'grab' the request, make
  37. * sure that only one of them succeeds
  38. */
  39. static inline int blk_mark_rq_complete(struct request *rq)
  40. {
  41. return test_and_set_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
  42. }
  43. static inline void blk_clear_rq_complete(struct request *rq)
  44. {
  45. clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
  46. }
  47. /*
  48. * Internal elevator interface
  49. */
  50. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  51. void blk_insert_flush(struct request *rq);
  52. void blk_abort_flushes(struct request_queue *q);
  53. static inline struct request *__elv_next_request(struct request_queue *q)
  54. {
  55. struct request *rq;
  56. while (1) {
  57. if (!list_empty(&q->queue_head)) {
  58. rq = list_entry_rq(q->queue_head.next);
  59. return rq;
  60. }
  61. /*
  62. * Flush request is running and flush request isn't queueable
  63. * in the drive, we can hold the queue till flush request is
  64. * finished. Even we don't do this, driver can't dispatch next
  65. * requests and will requeue them. And this can improve
  66. * throughput too. For example, we have request flush1, write1,
  67. * flush 2. flush1 is dispatched, then queue is hold, write1
  68. * isn't inserted to queue. After flush1 is finished, flush2
  69. * will be dispatched. Since disk cache is already clean,
  70. * flush2 will be finished very soon, so looks like flush2 is
  71. * folded to flush1.
  72. * Since the queue is hold, a flag is set to indicate the queue
  73. * should be restarted later. Please see flush_end_io() for
  74. * details.
  75. */
  76. if (q->flush_pending_idx != q->flush_running_idx &&
  77. !queue_flush_queueable(q)) {
  78. q->flush_queue_delayed = 1;
  79. return NULL;
  80. }
  81. if (unlikely(blk_queue_dead(q)) ||
  82. !q->elevator->ops->elevator_dispatch_fn(q, 0))
  83. return NULL;
  84. }
  85. }
  86. static inline void elv_activate_rq(struct request_queue *q, struct request *rq)
  87. {
  88. struct elevator_queue *e = q->elevator;
  89. if (e->ops->elevator_activate_req_fn)
  90. e->ops->elevator_activate_req_fn(q, rq);
  91. }
  92. static inline void elv_deactivate_rq(struct request_queue *q, struct request *rq)
  93. {
  94. struct elevator_queue *e = q->elevator;
  95. if (e->ops->elevator_deactivate_req_fn)
  96. e->ops->elevator_deactivate_req_fn(q, rq);
  97. }
  98. #ifdef CONFIG_FAIL_IO_TIMEOUT
  99. int blk_should_fake_timeout(struct request_queue *);
  100. ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
  101. ssize_t part_timeout_store(struct device *, struct device_attribute *,
  102. const char *, size_t);
  103. #else
  104. static inline int blk_should_fake_timeout(struct request_queue *q)
  105. {
  106. return 0;
  107. }
  108. #endif
  109. void get_io_context(struct io_context *ioc);
  110. struct io_context *current_io_context(gfp_t gfp_flags, int node);
  111. int ll_back_merge_fn(struct request_queue *q, struct request *req,
  112. struct bio *bio);
  113. int ll_front_merge_fn(struct request_queue *q, struct request *req,
  114. struct bio *bio);
  115. int attempt_back_merge(struct request_queue *q, struct request *rq);
  116. int attempt_front_merge(struct request_queue *q, struct request *rq);
  117. int blk_attempt_req_merge(struct request_queue *q, struct request *rq,
  118. struct request *next);
  119. void blk_recalc_rq_segments(struct request *rq);
  120. void blk_rq_set_mixed_merge(struct request *rq);
  121. void blk_queue_congestion_threshold(struct request_queue *q);
  122. int blk_dev_init(void);
  123. void elv_quiesce_start(struct request_queue *q);
  124. void elv_quiesce_end(struct request_queue *q);
  125. /*
  126. * Return the threshold (number of used requests) at which the queue is
  127. * considered to be congested. It include a little hysteresis to keep the
  128. * context switch rate down.
  129. */
  130. static inline int queue_congestion_on_threshold(struct request_queue *q)
  131. {
  132. return q->nr_congestion_on;
  133. }
  134. /*
  135. * The threshold at which a queue is considered to be uncongested
  136. */
  137. static inline int queue_congestion_off_threshold(struct request_queue *q)
  138. {
  139. return q->nr_congestion_off;
  140. }
  141. static inline int blk_cpu_to_group(int cpu)
  142. {
  143. int group = NR_CPUS;
  144. #ifdef CONFIG_SCHED_MC
  145. const struct cpumask *mask = cpu_coregroup_mask(cpu);
  146. group = cpumask_first(mask);
  147. #elif defined(CONFIG_SCHED_SMT)
  148. group = cpumask_first(topology_thread_cpumask(cpu));
  149. #else
  150. return cpu;
  151. #endif
  152. if (likely(group < NR_CPUS))
  153. return group;
  154. return cpu;
  155. }
  156. /*
  157. * Contribute to IO statistics IFF:
  158. *
  159. * a) it's attached to a gendisk, and
  160. * b) the queue had IO stats enabled when this request was started, and
  161. * c) it's a file system request or a discard request
  162. */
  163. static inline int blk_do_io_stat(struct request *rq)
  164. {
  165. return rq->rq_disk &&
  166. (rq->cmd_flags & REQ_IO_STAT) &&
  167. (rq->cmd_type == REQ_TYPE_FS ||
  168. (rq->cmd_flags & REQ_DISCARD));
  169. }
  170. #ifdef CONFIG_BLK_DEV_THROTTLING
  171. extern bool blk_throtl_bio(struct request_queue *q, struct bio *bio);
  172. extern void blk_throtl_drain(struct request_queue *q);
  173. extern int blk_throtl_init(struct request_queue *q);
  174. extern void blk_throtl_exit(struct request_queue *q);
  175. extern void blk_throtl_release(struct request_queue *q);
  176. #else /* CONFIG_BLK_DEV_THROTTLING */
  177. static inline bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
  178. {
  179. return false;
  180. }
  181. static inline void blk_throtl_drain(struct request_queue *q) { }
  182. static inline int blk_throtl_init(struct request_queue *q) { return 0; }
  183. static inline void blk_throtl_exit(struct request_queue *q) { }
  184. static inline void blk_throtl_release(struct request_queue *q) { }
  185. #endif /* CONFIG_BLK_DEV_THROTTLING */
  186. #endif /* BLK_INTERNAL_H */