ctree.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835
  1. #include <linux/module.h>
  2. #include "ctree.h"
  3. #include "disk-io.h"
  4. #include "transaction.h"
  5. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  6. *root, struct btrfs_path *path, int level);
  7. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  8. *root, struct btrfs_key *ins_key,
  9. struct btrfs_path *path, int data_size);
  10. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  11. *root, struct buffer_head *dst, struct buffer_head
  12. *src);
  13. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  14. btrfs_root *root, struct buffer_head *dst_buf,
  15. struct buffer_head *src_buf);
  16. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  17. struct btrfs_path *path, int level, int slot);
  18. inline void btrfs_init_path(struct btrfs_path *p)
  19. {
  20. memset(p, 0, sizeof(*p));
  21. }
  22. struct btrfs_path *btrfs_alloc_path(void)
  23. {
  24. struct btrfs_path *path;
  25. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  26. if (path)
  27. btrfs_init_path(path);
  28. return path;
  29. }
  30. void btrfs_free_path(struct btrfs_path *p)
  31. {
  32. btrfs_release_path(NULL, p);
  33. kmem_cache_free(btrfs_path_cachep, p);
  34. }
  35. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  36. {
  37. int i;
  38. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  39. if (!p->nodes[i])
  40. break;
  41. btrfs_block_release(root, p->nodes[i]);
  42. }
  43. memset(p, 0, sizeof(*p));
  44. }
  45. static int btrfs_cow_block(struct btrfs_trans_handle *trans, struct btrfs_root
  46. *root, struct buffer_head *buf, struct buffer_head
  47. *parent, int parent_slot, struct buffer_head
  48. **cow_ret)
  49. {
  50. struct buffer_head *cow;
  51. struct btrfs_node *cow_node;
  52. if (btrfs_header_generation(btrfs_buffer_header(buf)) ==
  53. trans->transid) {
  54. *cow_ret = buf;
  55. return 0;
  56. }
  57. cow = btrfs_alloc_free_block(trans, root, buf->b_blocknr);
  58. cow_node = btrfs_buffer_node(cow);
  59. if (buf->b_size != root->blocksize || cow->b_size != root->blocksize)
  60. WARN_ON(1);
  61. memcpy(cow_node, btrfs_buffer_node(buf), root->blocksize);
  62. btrfs_set_header_blocknr(&cow_node->header, bh_blocknr(cow));
  63. btrfs_set_header_generation(&cow_node->header, trans->transid);
  64. btrfs_set_header_owner(&cow_node->header, root->root_key.objectid);
  65. btrfs_inc_ref(trans, root, buf);
  66. if (buf == root->node) {
  67. root->node = cow;
  68. get_bh(cow);
  69. if (buf != root->commit_root) {
  70. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  71. }
  72. btrfs_block_release(root, buf);
  73. } else {
  74. btrfs_set_node_blockptr(btrfs_buffer_node(parent), parent_slot,
  75. bh_blocknr(cow));
  76. btrfs_mark_buffer_dirty(parent);
  77. btrfs_free_extent(trans, root, bh_blocknr(buf), 1, 1);
  78. }
  79. btrfs_block_release(root, buf);
  80. mark_buffer_dirty(cow);
  81. *cow_ret = cow;
  82. return 0;
  83. }
  84. /*
  85. * The leaf data grows from end-to-front in the node.
  86. * this returns the address of the start of the last item,
  87. * which is the stop of the leaf data stack
  88. */
  89. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  90. struct btrfs_leaf *leaf)
  91. {
  92. u32 nr = btrfs_header_nritems(&leaf->header);
  93. if (nr == 0)
  94. return BTRFS_LEAF_DATA_SIZE(root);
  95. return btrfs_item_offset(leaf->items + nr - 1);
  96. }
  97. /*
  98. * compare two keys in a memcmp fashion
  99. */
  100. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  101. {
  102. struct btrfs_key k1;
  103. btrfs_disk_key_to_cpu(&k1, disk);
  104. if (k1.objectid > k2->objectid)
  105. return 1;
  106. if (k1.objectid < k2->objectid)
  107. return -1;
  108. if (k1.flags > k2->flags)
  109. return 1;
  110. if (k1.flags < k2->flags)
  111. return -1;
  112. if (k1.offset > k2->offset)
  113. return 1;
  114. if (k1.offset < k2->offset)
  115. return -1;
  116. return 0;
  117. }
  118. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  119. int level)
  120. {
  121. struct btrfs_node *parent = NULL;
  122. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  123. int parent_slot;
  124. int slot;
  125. struct btrfs_key cpukey;
  126. u32 nritems = btrfs_header_nritems(&node->header);
  127. if (path->nodes[level + 1])
  128. parent = btrfs_buffer_node(path->nodes[level + 1]);
  129. parent_slot = path->slots[level + 1];
  130. slot = path->slots[level];
  131. BUG_ON(nritems == 0);
  132. if (parent) {
  133. struct btrfs_disk_key *parent_key;
  134. parent_key = &parent->ptrs[parent_slot].key;
  135. BUG_ON(memcmp(parent_key, &node->ptrs[0].key,
  136. sizeof(struct btrfs_disk_key)));
  137. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  138. btrfs_header_blocknr(&node->header));
  139. }
  140. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  141. if (slot != 0) {
  142. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot - 1].key);
  143. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) <= 0);
  144. }
  145. if (slot < nritems - 1) {
  146. btrfs_disk_key_to_cpu(&cpukey, &node->ptrs[slot + 1].key);
  147. BUG_ON(comp_keys(&node->ptrs[slot].key, &cpukey) >= 0);
  148. }
  149. return 0;
  150. }
  151. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  152. int level)
  153. {
  154. struct btrfs_leaf *leaf = btrfs_buffer_leaf(path->nodes[level]);
  155. struct btrfs_node *parent = NULL;
  156. int parent_slot;
  157. int slot = path->slots[0];
  158. struct btrfs_key cpukey;
  159. u32 nritems = btrfs_header_nritems(&leaf->header);
  160. if (path->nodes[level + 1])
  161. parent = btrfs_buffer_node(path->nodes[level + 1]);
  162. parent_slot = path->slots[level + 1];
  163. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  164. if (nritems == 0)
  165. return 0;
  166. if (parent) {
  167. struct btrfs_disk_key *parent_key;
  168. parent_key = &parent->ptrs[parent_slot].key;
  169. BUG_ON(memcmp(parent_key, &leaf->items[0].key,
  170. sizeof(struct btrfs_disk_key)));
  171. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  172. btrfs_header_blocknr(&leaf->header));
  173. }
  174. if (slot != 0) {
  175. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot - 1].key);
  176. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) <= 0);
  177. BUG_ON(btrfs_item_offset(leaf->items + slot - 1) !=
  178. btrfs_item_end(leaf->items + slot));
  179. }
  180. if (slot < nritems - 1) {
  181. btrfs_disk_key_to_cpu(&cpukey, &leaf->items[slot + 1].key);
  182. BUG_ON(comp_keys(&leaf->items[slot].key, &cpukey) >= 0);
  183. BUG_ON(btrfs_item_offset(leaf->items + slot) !=
  184. btrfs_item_end(leaf->items + slot + 1));
  185. }
  186. BUG_ON(btrfs_item_offset(leaf->items) +
  187. btrfs_item_size(leaf->items) != BTRFS_LEAF_DATA_SIZE(root));
  188. return 0;
  189. }
  190. static int check_block(struct btrfs_root *root, struct btrfs_path *path,
  191. int level)
  192. {
  193. struct btrfs_node *node = btrfs_buffer_node(path->nodes[level]);
  194. if (memcmp(node->header.fsid, root->fs_info->disk_super->fsid,
  195. sizeof(node->header.fsid)))
  196. BUG();
  197. if (level == 0)
  198. return check_leaf(root, path, level);
  199. return check_node(root, path, level);
  200. }
  201. /*
  202. * search for key in the array p. items p are item_size apart
  203. * and there are 'max' items in p
  204. * the slot in the array is returned via slot, and it points to
  205. * the place where you would insert key if it is not found in
  206. * the array.
  207. *
  208. * slot may point to max if the key is bigger than all of the keys
  209. */
  210. static int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
  211. int max, int *slot)
  212. {
  213. int low = 0;
  214. int high = max;
  215. int mid;
  216. int ret;
  217. struct btrfs_disk_key *tmp;
  218. while(low < high) {
  219. mid = (low + high) / 2;
  220. tmp = (struct btrfs_disk_key *)(p + mid * item_size);
  221. ret = comp_keys(tmp, key);
  222. if (ret < 0)
  223. low = mid + 1;
  224. else if (ret > 0)
  225. high = mid;
  226. else {
  227. *slot = mid;
  228. return 0;
  229. }
  230. }
  231. *slot = low;
  232. return 1;
  233. }
  234. /*
  235. * simple bin_search frontend that does the right thing for
  236. * leaves vs nodes
  237. */
  238. static int bin_search(struct btrfs_node *c, struct btrfs_key *key, int *slot)
  239. {
  240. if (btrfs_is_leaf(c)) {
  241. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  242. return generic_bin_search((void *)l->items,
  243. sizeof(struct btrfs_item),
  244. key, btrfs_header_nritems(&c->header),
  245. slot);
  246. } else {
  247. return generic_bin_search((void *)c->ptrs,
  248. sizeof(struct btrfs_key_ptr),
  249. key, btrfs_header_nritems(&c->header),
  250. slot);
  251. }
  252. return -1;
  253. }
  254. static struct buffer_head *read_node_slot(struct btrfs_root *root,
  255. struct buffer_head *parent_buf,
  256. int slot)
  257. {
  258. struct btrfs_node *node = btrfs_buffer_node(parent_buf);
  259. if (slot < 0)
  260. return NULL;
  261. if (slot >= btrfs_header_nritems(&node->header))
  262. return NULL;
  263. return read_tree_block(root, btrfs_node_blockptr(node, slot));
  264. }
  265. static int balance_level(struct btrfs_trans_handle *trans, struct btrfs_root
  266. *root, struct btrfs_path *path, int level)
  267. {
  268. struct buffer_head *right_buf;
  269. struct buffer_head *mid_buf;
  270. struct buffer_head *left_buf;
  271. struct buffer_head *parent_buf = NULL;
  272. struct btrfs_node *right = NULL;
  273. struct btrfs_node *mid;
  274. struct btrfs_node *left = NULL;
  275. struct btrfs_node *parent = NULL;
  276. int ret = 0;
  277. int wret;
  278. int pslot;
  279. int orig_slot = path->slots[level];
  280. u64 orig_ptr;
  281. if (level == 0)
  282. return 0;
  283. mid_buf = path->nodes[level];
  284. mid = btrfs_buffer_node(mid_buf);
  285. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  286. if (level < BTRFS_MAX_LEVEL - 1)
  287. parent_buf = path->nodes[level + 1];
  288. pslot = path->slots[level + 1];
  289. /*
  290. * deal with the case where there is only one pointer in the root
  291. * by promoting the node below to a root
  292. */
  293. if (!parent_buf) {
  294. struct buffer_head *child;
  295. u64 blocknr = bh_blocknr(mid_buf);
  296. if (btrfs_header_nritems(&mid->header) != 1)
  297. return 0;
  298. /* promote the child to a root */
  299. child = read_node_slot(root, mid_buf, 0);
  300. BUG_ON(!child);
  301. root->node = child;
  302. path->nodes[level] = NULL;
  303. clean_tree_block(trans, root, mid_buf);
  304. wait_on_buffer(mid_buf);
  305. /* once for the path */
  306. btrfs_block_release(root, mid_buf);
  307. /* once for the root ptr */
  308. btrfs_block_release(root, mid_buf);
  309. return btrfs_free_extent(trans, root, blocknr, 1, 1);
  310. }
  311. parent = btrfs_buffer_node(parent_buf);
  312. if (btrfs_header_nritems(&mid->header) >
  313. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  314. return 0;
  315. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  316. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  317. /* first, try to make some room in the middle buffer */
  318. if (left_buf) {
  319. btrfs_cow_block(trans, root, left_buf, parent_buf, pslot - 1,
  320. &left_buf);
  321. left = btrfs_buffer_node(left_buf);
  322. orig_slot += btrfs_header_nritems(&left->header);
  323. wret = push_node_left(trans, root, left_buf, mid_buf);
  324. if (wret < 0)
  325. ret = wret;
  326. }
  327. /*
  328. * then try to empty the right most buffer into the middle
  329. */
  330. if (right_buf) {
  331. btrfs_cow_block(trans, root, right_buf, parent_buf, pslot + 1,
  332. &right_buf);
  333. right = btrfs_buffer_node(right_buf);
  334. wret = push_node_left(trans, root, mid_buf, right_buf);
  335. if (wret < 0)
  336. ret = wret;
  337. if (btrfs_header_nritems(&right->header) == 0) {
  338. u64 blocknr = bh_blocknr(right_buf);
  339. clean_tree_block(trans, root, right_buf);
  340. wait_on_buffer(right_buf);
  341. btrfs_block_release(root, right_buf);
  342. right_buf = NULL;
  343. right = NULL;
  344. wret = del_ptr(trans, root, path, level + 1, pslot +
  345. 1);
  346. if (wret)
  347. ret = wret;
  348. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  349. if (wret)
  350. ret = wret;
  351. } else {
  352. btrfs_memcpy(root, parent,
  353. &parent->ptrs[pslot + 1].key,
  354. &right->ptrs[0].key,
  355. sizeof(struct btrfs_disk_key));
  356. btrfs_mark_buffer_dirty(parent_buf);
  357. }
  358. }
  359. if (btrfs_header_nritems(&mid->header) == 1) {
  360. /*
  361. * we're not allowed to leave a node with one item in the
  362. * tree during a delete. A deletion from lower in the tree
  363. * could try to delete the only pointer in this node.
  364. * So, pull some keys from the left.
  365. * There has to be a left pointer at this point because
  366. * otherwise we would have pulled some pointers from the
  367. * right
  368. */
  369. BUG_ON(!left_buf);
  370. wret = balance_node_right(trans, root, mid_buf, left_buf);
  371. if (wret < 0)
  372. ret = wret;
  373. BUG_ON(wret == 1);
  374. }
  375. if (btrfs_header_nritems(&mid->header) == 0) {
  376. /* we've managed to empty the middle node, drop it */
  377. u64 blocknr = bh_blocknr(mid_buf);
  378. clean_tree_block(trans, root, mid_buf);
  379. wait_on_buffer(mid_buf);
  380. btrfs_block_release(root, mid_buf);
  381. mid_buf = NULL;
  382. mid = NULL;
  383. wret = del_ptr(trans, root, path, level + 1, pslot);
  384. if (wret)
  385. ret = wret;
  386. wret = btrfs_free_extent(trans, root, blocknr, 1, 1);
  387. if (wret)
  388. ret = wret;
  389. } else {
  390. /* update the parent key to reflect our changes */
  391. btrfs_memcpy(root, parent,
  392. &parent->ptrs[pslot].key, &mid->ptrs[0].key,
  393. sizeof(struct btrfs_disk_key));
  394. btrfs_mark_buffer_dirty(parent_buf);
  395. }
  396. /* update the path */
  397. if (left_buf) {
  398. if (btrfs_header_nritems(&left->header) > orig_slot) {
  399. get_bh(left_buf);
  400. path->nodes[level] = left_buf;
  401. path->slots[level + 1] -= 1;
  402. path->slots[level] = orig_slot;
  403. if (mid_buf)
  404. btrfs_block_release(root, mid_buf);
  405. } else {
  406. orig_slot -= btrfs_header_nritems(&left->header);
  407. path->slots[level] = orig_slot;
  408. }
  409. }
  410. /* double check we haven't messed things up */
  411. check_block(root, path, level);
  412. if (orig_ptr !=
  413. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[level]),
  414. path->slots[level]))
  415. BUG();
  416. if (right_buf)
  417. btrfs_block_release(root, right_buf);
  418. if (left_buf)
  419. btrfs_block_release(root, left_buf);
  420. return ret;
  421. }
  422. /* returns zero if the push worked, non-zero otherwise */
  423. static int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  424. struct btrfs_root *root,
  425. struct btrfs_path *path, int level)
  426. {
  427. struct buffer_head *right_buf;
  428. struct buffer_head *mid_buf;
  429. struct buffer_head *left_buf;
  430. struct buffer_head *parent_buf = NULL;
  431. struct btrfs_node *right = NULL;
  432. struct btrfs_node *mid;
  433. struct btrfs_node *left = NULL;
  434. struct btrfs_node *parent = NULL;
  435. int ret = 0;
  436. int wret;
  437. int pslot;
  438. int orig_slot = path->slots[level];
  439. u64 orig_ptr;
  440. if (level == 0)
  441. return 1;
  442. mid_buf = path->nodes[level];
  443. mid = btrfs_buffer_node(mid_buf);
  444. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  445. if (level < BTRFS_MAX_LEVEL - 1)
  446. parent_buf = path->nodes[level + 1];
  447. pslot = path->slots[level + 1];
  448. if (!parent_buf)
  449. return 1;
  450. parent = btrfs_buffer_node(parent_buf);
  451. left_buf = read_node_slot(root, parent_buf, pslot - 1);
  452. /* first, try to make some room in the middle buffer */
  453. if (left_buf) {
  454. u32 left_nr;
  455. left = btrfs_buffer_node(left_buf);
  456. left_nr = btrfs_header_nritems(&left->header);
  457. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  458. wret = 1;
  459. } else {
  460. btrfs_cow_block(trans, root, left_buf, parent_buf,
  461. pslot - 1, &left_buf);
  462. left = btrfs_buffer_node(left_buf);
  463. wret = push_node_left(trans, root, left_buf, mid_buf);
  464. }
  465. if (wret < 0)
  466. ret = wret;
  467. if (wret == 0) {
  468. orig_slot += left_nr;
  469. btrfs_memcpy(root, parent,
  470. &parent->ptrs[pslot].key,
  471. &mid->ptrs[0].key,
  472. sizeof(struct btrfs_disk_key));
  473. btrfs_mark_buffer_dirty(parent_buf);
  474. if (btrfs_header_nritems(&left->header) > orig_slot) {
  475. path->nodes[level] = left_buf;
  476. path->slots[level + 1] -= 1;
  477. path->slots[level] = orig_slot;
  478. btrfs_block_release(root, mid_buf);
  479. } else {
  480. orig_slot -=
  481. btrfs_header_nritems(&left->header);
  482. path->slots[level] = orig_slot;
  483. btrfs_block_release(root, left_buf);
  484. }
  485. check_node(root, path, level);
  486. return 0;
  487. }
  488. btrfs_block_release(root, left_buf);
  489. }
  490. right_buf = read_node_slot(root, parent_buf, pslot + 1);
  491. /*
  492. * then try to empty the right most buffer into the middle
  493. */
  494. if (right_buf) {
  495. u32 right_nr;
  496. right = btrfs_buffer_node(right_buf);
  497. right_nr = btrfs_header_nritems(&right->header);
  498. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  499. wret = 1;
  500. } else {
  501. btrfs_cow_block(trans, root, right_buf,
  502. parent_buf, pslot + 1, &right_buf);
  503. right = btrfs_buffer_node(right_buf);
  504. wret = balance_node_right(trans, root,
  505. right_buf, mid_buf);
  506. }
  507. if (wret < 0)
  508. ret = wret;
  509. if (wret == 0) {
  510. btrfs_memcpy(root, parent,
  511. &parent->ptrs[pslot + 1].key,
  512. &right->ptrs[0].key,
  513. sizeof(struct btrfs_disk_key));
  514. btrfs_mark_buffer_dirty(parent_buf);
  515. if (btrfs_header_nritems(&mid->header) <= orig_slot) {
  516. path->nodes[level] = right_buf;
  517. path->slots[level + 1] += 1;
  518. path->slots[level] = orig_slot -
  519. btrfs_header_nritems(&mid->header);
  520. btrfs_block_release(root, mid_buf);
  521. } else {
  522. btrfs_block_release(root, right_buf);
  523. }
  524. check_node(root, path, level);
  525. return 0;
  526. }
  527. btrfs_block_release(root, right_buf);
  528. }
  529. check_node(root, path, level);
  530. return 1;
  531. }
  532. /*
  533. * look for key in the tree. path is filled in with nodes along the way
  534. * if key is found, we return zero and you can find the item in the leaf
  535. * level of the path (level 0)
  536. *
  537. * If the key isn't found, the path points to the slot where it should
  538. * be inserted, and 1 is returned. If there are other errors during the
  539. * search a negative error number is returned.
  540. *
  541. * if ins_len > 0, nodes and leaves will be split as we walk down the
  542. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  543. * possible)
  544. */
  545. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  546. *root, struct btrfs_key *key, struct btrfs_path *p, int
  547. ins_len, int cow)
  548. {
  549. struct buffer_head *b;
  550. struct buffer_head *cow_buf;
  551. struct btrfs_node *c;
  552. int slot;
  553. int ret;
  554. int level;
  555. WARN_ON(p->nodes[0] != NULL);
  556. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  557. again:
  558. b = root->node;
  559. get_bh(b);
  560. while (b) {
  561. c = btrfs_buffer_node(b);
  562. level = btrfs_header_level(&c->header);
  563. if (cow) {
  564. int wret;
  565. wret = btrfs_cow_block(trans, root, b,
  566. p->nodes[level + 1],
  567. p->slots[level + 1],
  568. &cow_buf);
  569. b = cow_buf;
  570. c = btrfs_buffer_node(b);
  571. }
  572. BUG_ON(!cow && ins_len);
  573. if (level != btrfs_header_level(&c->header))
  574. WARN_ON(1);
  575. level = btrfs_header_level(&c->header);
  576. p->nodes[level] = b;
  577. ret = check_block(root, p, level);
  578. if (ret)
  579. return -1;
  580. ret = bin_search(c, key, &slot);
  581. if (!btrfs_is_leaf(c)) {
  582. if (ret && slot > 0)
  583. slot -= 1;
  584. p->slots[level] = slot;
  585. if (ins_len > 0 && btrfs_header_nritems(&c->header) >=
  586. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  587. int sret = split_node(trans, root, p, level);
  588. BUG_ON(sret > 0);
  589. if (sret)
  590. return sret;
  591. b = p->nodes[level];
  592. c = btrfs_buffer_node(b);
  593. slot = p->slots[level];
  594. } else if (ins_len < 0) {
  595. int sret = balance_level(trans, root, p,
  596. level);
  597. if (sret)
  598. return sret;
  599. b = p->nodes[level];
  600. if (!b)
  601. goto again;
  602. c = btrfs_buffer_node(b);
  603. slot = p->slots[level];
  604. BUG_ON(btrfs_header_nritems(&c->header) == 1);
  605. }
  606. b = read_tree_block(root, btrfs_node_blockptr(c, slot));
  607. } else {
  608. struct btrfs_leaf *l = (struct btrfs_leaf *)c;
  609. p->slots[level] = slot;
  610. if (ins_len > 0 && btrfs_leaf_free_space(root, l) <
  611. sizeof(struct btrfs_item) + ins_len) {
  612. int sret = split_leaf(trans, root, key,
  613. p, ins_len);
  614. BUG_ON(sret > 0);
  615. if (sret)
  616. return sret;
  617. }
  618. return ret;
  619. }
  620. }
  621. return 1;
  622. }
  623. /*
  624. * adjust the pointers going up the tree, starting at level
  625. * making sure the right key of each node is points to 'key'.
  626. * This is used after shifting pointers to the left, so it stops
  627. * fixing up pointers when a given leaf/node is not in slot 0 of the
  628. * higher levels
  629. *
  630. * If this fails to write a tree block, it returns -1, but continues
  631. * fixing up the blocks in ram so the tree is consistent.
  632. */
  633. static int fixup_low_keys(struct btrfs_trans_handle *trans, struct btrfs_root
  634. *root, struct btrfs_path *path, struct btrfs_disk_key
  635. *key, int level)
  636. {
  637. int i;
  638. int ret = 0;
  639. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  640. struct btrfs_node *t;
  641. int tslot = path->slots[i];
  642. if (!path->nodes[i])
  643. break;
  644. t = btrfs_buffer_node(path->nodes[i]);
  645. btrfs_memcpy(root, t, &t->ptrs[tslot].key, key, sizeof(*key));
  646. btrfs_mark_buffer_dirty(path->nodes[i]);
  647. if (tslot != 0)
  648. break;
  649. }
  650. return ret;
  651. }
  652. /*
  653. * try to push data from one node into the next node left in the
  654. * tree.
  655. *
  656. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  657. * error, and > 0 if there was no room in the left hand block.
  658. */
  659. static int push_node_left(struct btrfs_trans_handle *trans, struct btrfs_root
  660. *root, struct buffer_head *dst_buf, struct
  661. buffer_head *src_buf)
  662. {
  663. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  664. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  665. int push_items = 0;
  666. int src_nritems;
  667. int dst_nritems;
  668. int ret = 0;
  669. src_nritems = btrfs_header_nritems(&src->header);
  670. dst_nritems = btrfs_header_nritems(&dst->header);
  671. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  672. if (push_items <= 0) {
  673. return 1;
  674. }
  675. if (src_nritems < push_items)
  676. push_items = src_nritems;
  677. btrfs_memcpy(root, dst, dst->ptrs + dst_nritems, src->ptrs,
  678. push_items * sizeof(struct btrfs_key_ptr));
  679. if (push_items < src_nritems) {
  680. btrfs_memmove(root, src, src->ptrs, src->ptrs + push_items,
  681. (src_nritems - push_items) *
  682. sizeof(struct btrfs_key_ptr));
  683. }
  684. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  685. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  686. btrfs_mark_buffer_dirty(src_buf);
  687. btrfs_mark_buffer_dirty(dst_buf);
  688. return ret;
  689. }
  690. /*
  691. * try to push data from one node into the next node right in the
  692. * tree.
  693. *
  694. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  695. * error, and > 0 if there was no room in the right hand block.
  696. *
  697. * this will only push up to 1/2 the contents of the left node over
  698. */
  699. static int balance_node_right(struct btrfs_trans_handle *trans, struct
  700. btrfs_root *root, struct buffer_head *dst_buf,
  701. struct buffer_head *src_buf)
  702. {
  703. struct btrfs_node *src = btrfs_buffer_node(src_buf);
  704. struct btrfs_node *dst = btrfs_buffer_node(dst_buf);
  705. int push_items = 0;
  706. int max_push;
  707. int src_nritems;
  708. int dst_nritems;
  709. int ret = 0;
  710. src_nritems = btrfs_header_nritems(&src->header);
  711. dst_nritems = btrfs_header_nritems(&dst->header);
  712. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  713. if (push_items <= 0) {
  714. return 1;
  715. }
  716. max_push = src_nritems / 2 + 1;
  717. /* don't try to empty the node */
  718. if (max_push > src_nritems)
  719. return 1;
  720. if (max_push < push_items)
  721. push_items = max_push;
  722. btrfs_memmove(root, dst, dst->ptrs + push_items, dst->ptrs,
  723. dst_nritems * sizeof(struct btrfs_key_ptr));
  724. btrfs_memcpy(root, dst, dst->ptrs,
  725. src->ptrs + src_nritems - push_items,
  726. push_items * sizeof(struct btrfs_key_ptr));
  727. btrfs_set_header_nritems(&src->header, src_nritems - push_items);
  728. btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
  729. btrfs_mark_buffer_dirty(src_buf);
  730. btrfs_mark_buffer_dirty(dst_buf);
  731. return ret;
  732. }
  733. /*
  734. * helper function to insert a new root level in the tree.
  735. * A new node is allocated, and a single item is inserted to
  736. * point to the existing root
  737. *
  738. * returns zero on success or < 0 on failure.
  739. */
  740. static int insert_new_root(struct btrfs_trans_handle *trans, struct btrfs_root
  741. *root, struct btrfs_path *path, int level)
  742. {
  743. struct buffer_head *t;
  744. struct btrfs_node *lower;
  745. struct btrfs_node *c;
  746. struct btrfs_disk_key *lower_key;
  747. BUG_ON(path->nodes[level]);
  748. BUG_ON(path->nodes[level-1] != root->node);
  749. t = btrfs_alloc_free_block(trans, root, root->node->b_blocknr);
  750. c = btrfs_buffer_node(t);
  751. memset(c, 0, root->blocksize);
  752. btrfs_set_header_nritems(&c->header, 1);
  753. btrfs_set_header_level(&c->header, level);
  754. btrfs_set_header_blocknr(&c->header, bh_blocknr(t));
  755. btrfs_set_header_generation(&c->header, trans->transid);
  756. btrfs_set_header_owner(&c->header, root->root_key.objectid);
  757. lower = btrfs_buffer_node(path->nodes[level-1]);
  758. memcpy(c->header.fsid, root->fs_info->disk_super->fsid,
  759. sizeof(c->header.fsid));
  760. if (btrfs_is_leaf(lower))
  761. lower_key = &((struct btrfs_leaf *)lower)->items[0].key;
  762. else
  763. lower_key = &lower->ptrs[0].key;
  764. btrfs_memcpy(root, c, &c->ptrs[0].key, lower_key,
  765. sizeof(struct btrfs_disk_key));
  766. btrfs_set_node_blockptr(c, 0, bh_blocknr(path->nodes[level - 1]));
  767. btrfs_mark_buffer_dirty(t);
  768. /* the super has an extra ref to root->node */
  769. btrfs_block_release(root, root->node);
  770. root->node = t;
  771. get_bh(t);
  772. path->nodes[level] = t;
  773. path->slots[level] = 0;
  774. return 0;
  775. }
  776. /*
  777. * worker function to insert a single pointer in a node.
  778. * the node should have enough room for the pointer already
  779. *
  780. * slot and level indicate where you want the key to go, and
  781. * blocknr is the block the key points to.
  782. *
  783. * returns zero on success and < 0 on any error
  784. */
  785. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  786. *root, struct btrfs_path *path, struct btrfs_disk_key
  787. *key, u64 blocknr, int slot, int level)
  788. {
  789. struct btrfs_node *lower;
  790. int nritems;
  791. BUG_ON(!path->nodes[level]);
  792. lower = btrfs_buffer_node(path->nodes[level]);
  793. nritems = btrfs_header_nritems(&lower->header);
  794. if (slot > nritems)
  795. BUG();
  796. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  797. BUG();
  798. if (slot != nritems) {
  799. btrfs_memmove(root, lower, lower->ptrs + slot + 1,
  800. lower->ptrs + slot,
  801. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  802. }
  803. btrfs_memcpy(root, lower, &lower->ptrs[slot].key,
  804. key, sizeof(struct btrfs_disk_key));
  805. btrfs_set_node_blockptr(lower, slot, blocknr);
  806. btrfs_set_header_nritems(&lower->header, nritems + 1);
  807. btrfs_mark_buffer_dirty(path->nodes[level]);
  808. check_node(root, path, level);
  809. return 0;
  810. }
  811. /*
  812. * split the node at the specified level in path in two.
  813. * The path is corrected to point to the appropriate node after the split
  814. *
  815. * Before splitting this tries to make some room in the node by pushing
  816. * left and right, if either one works, it returns right away.
  817. *
  818. * returns 0 on success and < 0 on failure
  819. */
  820. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  821. *root, struct btrfs_path *path, int level)
  822. {
  823. struct buffer_head *t;
  824. struct btrfs_node *c;
  825. struct buffer_head *split_buffer;
  826. struct btrfs_node *split;
  827. int mid;
  828. int ret;
  829. int wret;
  830. u32 c_nritems;
  831. t = path->nodes[level];
  832. c = btrfs_buffer_node(t);
  833. if (t == root->node) {
  834. /* trying to split the root, lets make a new one */
  835. ret = insert_new_root(trans, root, path, level + 1);
  836. if (ret)
  837. return ret;
  838. } else {
  839. ret = push_nodes_for_insert(trans, root, path, level);
  840. t = path->nodes[level];
  841. c = btrfs_buffer_node(t);
  842. if (!ret &&
  843. btrfs_header_nritems(&c->header) <
  844. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  845. return 0;
  846. }
  847. c_nritems = btrfs_header_nritems(&c->header);
  848. split_buffer = btrfs_alloc_free_block(trans, root, t->b_blocknr);
  849. split = btrfs_buffer_node(split_buffer);
  850. btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
  851. btrfs_set_header_level(&split->header, btrfs_header_level(&c->header));
  852. btrfs_set_header_blocknr(&split->header, bh_blocknr(split_buffer));
  853. btrfs_set_header_generation(&split->header, trans->transid);
  854. btrfs_set_header_owner(&split->header, root->root_key.objectid);
  855. memcpy(split->header.fsid, root->fs_info->disk_super->fsid,
  856. sizeof(split->header.fsid));
  857. mid = (c_nritems + 1) / 2;
  858. btrfs_memcpy(root, split, split->ptrs, c->ptrs + mid,
  859. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  860. btrfs_set_header_nritems(&split->header, c_nritems - mid);
  861. btrfs_set_header_nritems(&c->header, mid);
  862. ret = 0;
  863. btrfs_mark_buffer_dirty(t);
  864. btrfs_mark_buffer_dirty(split_buffer);
  865. wret = insert_ptr(trans, root, path, &split->ptrs[0].key,
  866. bh_blocknr(split_buffer), path->slots[level + 1] + 1,
  867. level + 1);
  868. if (wret)
  869. ret = wret;
  870. if (path->slots[level] >= mid) {
  871. path->slots[level] -= mid;
  872. btrfs_block_release(root, t);
  873. path->nodes[level] = split_buffer;
  874. path->slots[level + 1] += 1;
  875. } else {
  876. btrfs_block_release(root, split_buffer);
  877. }
  878. return ret;
  879. }
  880. /*
  881. * how many bytes are required to store the items in a leaf. start
  882. * and nr indicate which items in the leaf to check. This totals up the
  883. * space used both by the item structs and the item data
  884. */
  885. static int leaf_space_used(struct btrfs_leaf *l, int start, int nr)
  886. {
  887. int data_len;
  888. int nritems = btrfs_header_nritems(&l->header);
  889. int end = min(nritems, start + nr) - 1;
  890. if (!nr)
  891. return 0;
  892. data_len = btrfs_item_end(l->items + start);
  893. data_len = data_len - btrfs_item_offset(l->items + end);
  894. data_len += sizeof(struct btrfs_item) * nr;
  895. WARN_ON(data_len < 0);
  896. return data_len;
  897. }
  898. /*
  899. * The space between the end of the leaf items and
  900. * the start of the leaf data. IOW, how much room
  901. * the leaf has left for both items and data
  902. */
  903. int btrfs_leaf_free_space(struct btrfs_root *root, struct btrfs_leaf *leaf)
  904. {
  905. int nritems = btrfs_header_nritems(&leaf->header);
  906. return BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  907. }
  908. /*
  909. * push some data in the path leaf to the right, trying to free up at
  910. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  911. *
  912. * returns 1 if the push failed because the other node didn't have enough
  913. * room, 0 if everything worked out and < 0 if there were major errors.
  914. */
  915. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  916. *root, struct btrfs_path *path, int data_size)
  917. {
  918. struct buffer_head *left_buf = path->nodes[0];
  919. struct btrfs_leaf *left = btrfs_buffer_leaf(left_buf);
  920. struct btrfs_leaf *right;
  921. struct buffer_head *right_buf;
  922. struct buffer_head *upper;
  923. struct btrfs_node *upper_node;
  924. int slot;
  925. int i;
  926. int free_space;
  927. int push_space = 0;
  928. int push_items = 0;
  929. struct btrfs_item *item;
  930. u32 left_nritems;
  931. u32 right_nritems;
  932. slot = path->slots[1];
  933. if (!path->nodes[1]) {
  934. return 1;
  935. }
  936. upper = path->nodes[1];
  937. upper_node = btrfs_buffer_node(upper);
  938. if (slot >= btrfs_header_nritems(&upper_node->header) - 1) {
  939. return 1;
  940. }
  941. right_buf = read_tree_block(root,
  942. btrfs_node_blockptr(btrfs_buffer_node(upper), slot + 1));
  943. right = btrfs_buffer_leaf(right_buf);
  944. free_space = btrfs_leaf_free_space(root, right);
  945. if (free_space < data_size + sizeof(struct btrfs_item)) {
  946. btrfs_block_release(root, right_buf);
  947. return 1;
  948. }
  949. /* cow and double check */
  950. btrfs_cow_block(trans, root, right_buf, upper, slot + 1, &right_buf);
  951. right = btrfs_buffer_leaf(right_buf);
  952. free_space = btrfs_leaf_free_space(root, right);
  953. if (free_space < data_size + sizeof(struct btrfs_item)) {
  954. btrfs_block_release(root, right_buf);
  955. return 1;
  956. }
  957. left_nritems = btrfs_header_nritems(&left->header);
  958. if (left_nritems == 0) {
  959. btrfs_block_release(root, right_buf);
  960. return 1;
  961. }
  962. for (i = left_nritems - 1; i >= 1; i--) {
  963. item = left->items + i;
  964. if (path->slots[0] == i)
  965. push_space += data_size + sizeof(*item);
  966. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  967. free_space)
  968. break;
  969. push_items++;
  970. push_space += btrfs_item_size(item) + sizeof(*item);
  971. }
  972. if (push_items == 0) {
  973. btrfs_block_release(root, right_buf);
  974. return 1;
  975. }
  976. if (push_items == left_nritems)
  977. WARN_ON(1);
  978. right_nritems = btrfs_header_nritems(&right->header);
  979. /* push left to right */
  980. push_space = btrfs_item_end(left->items + left_nritems - push_items);
  981. push_space -= leaf_data_end(root, left);
  982. /* make room in the right data area */
  983. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  984. leaf_data_end(root, right) - push_space,
  985. btrfs_leaf_data(right) +
  986. leaf_data_end(root, right), BTRFS_LEAF_DATA_SIZE(root) -
  987. leaf_data_end(root, right));
  988. /* copy from the left data area */
  989. btrfs_memcpy(root, right, btrfs_leaf_data(right) +
  990. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  991. btrfs_leaf_data(left) + leaf_data_end(root, left),
  992. push_space);
  993. btrfs_memmove(root, right, right->items + push_items, right->items,
  994. right_nritems * sizeof(struct btrfs_item));
  995. /* copy the items from left to right */
  996. btrfs_memcpy(root, right, right->items, left->items +
  997. left_nritems - push_items,
  998. push_items * sizeof(struct btrfs_item));
  999. /* update the item pointers */
  1000. right_nritems += push_items;
  1001. btrfs_set_header_nritems(&right->header, right_nritems);
  1002. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1003. for (i = 0; i < right_nritems; i++) {
  1004. btrfs_set_item_offset(right->items + i, push_space -
  1005. btrfs_item_size(right->items + i));
  1006. push_space = btrfs_item_offset(right->items + i);
  1007. }
  1008. left_nritems -= push_items;
  1009. btrfs_set_header_nritems(&left->header, left_nritems);
  1010. btrfs_mark_buffer_dirty(left_buf);
  1011. btrfs_mark_buffer_dirty(right_buf);
  1012. btrfs_memcpy(root, upper_node, &upper_node->ptrs[slot + 1].key,
  1013. &right->items[0].key, sizeof(struct btrfs_disk_key));
  1014. btrfs_mark_buffer_dirty(upper);
  1015. /* then fixup the leaf pointer in the path */
  1016. if (path->slots[0] >= left_nritems) {
  1017. path->slots[0] -= left_nritems;
  1018. btrfs_block_release(root, path->nodes[0]);
  1019. path->nodes[0] = right_buf;
  1020. path->slots[1] += 1;
  1021. } else {
  1022. btrfs_block_release(root, right_buf);
  1023. }
  1024. if (path->nodes[1])
  1025. check_node(root, path, 1);
  1026. return 0;
  1027. }
  1028. /*
  1029. * push some data in the path leaf to the left, trying to free up at
  1030. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1031. */
  1032. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1033. *root, struct btrfs_path *path, int data_size)
  1034. {
  1035. struct buffer_head *right_buf = path->nodes[0];
  1036. struct btrfs_leaf *right = btrfs_buffer_leaf(right_buf);
  1037. struct buffer_head *t;
  1038. struct btrfs_leaf *left;
  1039. int slot;
  1040. int i;
  1041. int free_space;
  1042. int push_space = 0;
  1043. int push_items = 0;
  1044. struct btrfs_item *item;
  1045. u32 old_left_nritems;
  1046. int ret = 0;
  1047. int wret;
  1048. slot = path->slots[1];
  1049. if (slot == 0) {
  1050. return 1;
  1051. }
  1052. if (!path->nodes[1]) {
  1053. return 1;
  1054. }
  1055. t = read_tree_block(root,
  1056. btrfs_node_blockptr(btrfs_buffer_node(path->nodes[1]), slot - 1));
  1057. left = btrfs_buffer_leaf(t);
  1058. free_space = btrfs_leaf_free_space(root, left);
  1059. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1060. btrfs_block_release(root, t);
  1061. return 1;
  1062. }
  1063. /* cow and double check */
  1064. btrfs_cow_block(trans, root, t, path->nodes[1], slot - 1, &t);
  1065. left = btrfs_buffer_leaf(t);
  1066. free_space = btrfs_leaf_free_space(root, left);
  1067. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1068. btrfs_block_release(root, t);
  1069. return 1;
  1070. }
  1071. if (btrfs_header_nritems(&right->header) == 0) {
  1072. btrfs_block_release(root, t);
  1073. return 1;
  1074. }
  1075. for (i = 0; i < btrfs_header_nritems(&right->header) - 1; i++) {
  1076. item = right->items + i;
  1077. if (path->slots[0] == i)
  1078. push_space += data_size + sizeof(*item);
  1079. if (btrfs_item_size(item) + sizeof(*item) + push_space >
  1080. free_space)
  1081. break;
  1082. push_items++;
  1083. push_space += btrfs_item_size(item) + sizeof(*item);
  1084. }
  1085. if (push_items == 0) {
  1086. btrfs_block_release(root, t);
  1087. return 1;
  1088. }
  1089. if (push_items == btrfs_header_nritems(&right->header))
  1090. WARN_ON(1);
  1091. /* push data from right to left */
  1092. btrfs_memcpy(root, left, left->items +
  1093. btrfs_header_nritems(&left->header),
  1094. right->items, push_items * sizeof(struct btrfs_item));
  1095. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1096. btrfs_item_offset(right->items + push_items -1);
  1097. btrfs_memcpy(root, left, btrfs_leaf_data(left) +
  1098. leaf_data_end(root, left) - push_space,
  1099. btrfs_leaf_data(right) +
  1100. btrfs_item_offset(right->items + push_items - 1),
  1101. push_space);
  1102. old_left_nritems = btrfs_header_nritems(&left->header);
  1103. BUG_ON(old_left_nritems < 0);
  1104. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1105. u32 ioff = btrfs_item_offset(left->items + i);
  1106. btrfs_set_item_offset(left->items + i, ioff -
  1107. (BTRFS_LEAF_DATA_SIZE(root) -
  1108. btrfs_item_offset(left->items +
  1109. old_left_nritems - 1)));
  1110. }
  1111. btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
  1112. /* fixup right node */
  1113. push_space = btrfs_item_offset(right->items + push_items - 1) -
  1114. leaf_data_end(root, right);
  1115. btrfs_memmove(root, right, btrfs_leaf_data(right) +
  1116. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1117. btrfs_leaf_data(right) +
  1118. leaf_data_end(root, right), push_space);
  1119. btrfs_memmove(root, right, right->items, right->items + push_items,
  1120. (btrfs_header_nritems(&right->header) - push_items) *
  1121. sizeof(struct btrfs_item));
  1122. btrfs_set_header_nritems(&right->header,
  1123. btrfs_header_nritems(&right->header) -
  1124. push_items);
  1125. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1126. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1127. btrfs_set_item_offset(right->items + i, push_space -
  1128. btrfs_item_size(right->items + i));
  1129. push_space = btrfs_item_offset(right->items + i);
  1130. }
  1131. btrfs_mark_buffer_dirty(t);
  1132. btrfs_mark_buffer_dirty(right_buf);
  1133. wret = fixup_low_keys(trans, root, path, &right->items[0].key, 1);
  1134. if (wret)
  1135. ret = wret;
  1136. /* then fixup the leaf pointer in the path */
  1137. if (path->slots[0] < push_items) {
  1138. path->slots[0] += old_left_nritems;
  1139. btrfs_block_release(root, path->nodes[0]);
  1140. path->nodes[0] = t;
  1141. path->slots[1] -= 1;
  1142. } else {
  1143. btrfs_block_release(root, t);
  1144. path->slots[0] -= push_items;
  1145. }
  1146. BUG_ON(path->slots[0] < 0);
  1147. if (path->nodes[1])
  1148. check_node(root, path, 1);
  1149. return ret;
  1150. }
  1151. /*
  1152. * split the path's leaf in two, making sure there is at least data_size
  1153. * available for the resulting leaf level of the path.
  1154. *
  1155. * returns 0 if all went well and < 0 on failure.
  1156. */
  1157. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1158. *root, struct btrfs_key *ins_key,
  1159. struct btrfs_path *path, int data_size)
  1160. {
  1161. struct buffer_head *l_buf;
  1162. struct btrfs_leaf *l;
  1163. u32 nritems;
  1164. int mid;
  1165. int slot;
  1166. struct btrfs_leaf *right;
  1167. struct buffer_head *right_buffer;
  1168. int space_needed = data_size + sizeof(struct btrfs_item);
  1169. int data_copy_size;
  1170. int rt_data_off;
  1171. int i;
  1172. int ret = 0;
  1173. int wret;
  1174. int double_split = 0;
  1175. struct btrfs_disk_key disk_key;
  1176. /* first try to make some room by pushing left and right */
  1177. wret = push_leaf_left(trans, root, path, data_size);
  1178. if (wret < 0)
  1179. return wret;
  1180. if (wret) {
  1181. wret = push_leaf_right(trans, root, path, data_size);
  1182. if (wret < 0)
  1183. return wret;
  1184. }
  1185. l_buf = path->nodes[0];
  1186. l = btrfs_buffer_leaf(l_buf);
  1187. /* did the pushes work? */
  1188. if (btrfs_leaf_free_space(root, l) >=
  1189. sizeof(struct btrfs_item) + data_size)
  1190. return 0;
  1191. if (!path->nodes[1]) {
  1192. ret = insert_new_root(trans, root, path, 1);
  1193. if (ret)
  1194. return ret;
  1195. }
  1196. slot = path->slots[0];
  1197. nritems = btrfs_header_nritems(&l->header);
  1198. mid = (nritems + 1)/ 2;
  1199. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
  1200. BUG_ON(!right_buffer);
  1201. right = btrfs_buffer_leaf(right_buffer);
  1202. memset(&right->header, 0, sizeof(right->header));
  1203. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1204. btrfs_set_header_generation(&right->header, trans->transid);
  1205. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1206. btrfs_set_header_level(&right->header, 0);
  1207. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1208. sizeof(right->header.fsid));
  1209. if (mid <= slot) {
  1210. if (nritems == 1 ||
  1211. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1212. BTRFS_LEAF_DATA_SIZE(root)) {
  1213. if (slot >= nritems) {
  1214. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1215. btrfs_set_header_nritems(&right->header, 0);
  1216. wret = insert_ptr(trans, root, path,
  1217. &disk_key,
  1218. bh_blocknr(right_buffer),
  1219. path->slots[1] + 1, 1);
  1220. if (wret)
  1221. ret = wret;
  1222. btrfs_block_release(root, path->nodes[0]);
  1223. path->nodes[0] = right_buffer;
  1224. path->slots[0] = 0;
  1225. path->slots[1] += 1;
  1226. return ret;
  1227. }
  1228. mid = slot;
  1229. double_split = 1;
  1230. }
  1231. } else {
  1232. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1233. BTRFS_LEAF_DATA_SIZE(root)) {
  1234. if (slot == 0) {
  1235. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1236. btrfs_set_header_nritems(&right->header, 0);
  1237. wret = insert_ptr(trans, root, path,
  1238. &disk_key,
  1239. bh_blocknr(right_buffer),
  1240. path->slots[1], 1);
  1241. if (wret)
  1242. ret = wret;
  1243. btrfs_block_release(root, path->nodes[0]);
  1244. path->nodes[0] = right_buffer;
  1245. path->slots[0] = 0;
  1246. if (path->slots[1] == 0) {
  1247. wret = fixup_low_keys(trans, root,
  1248. path, &disk_key, 1);
  1249. if (wret)
  1250. ret = wret;
  1251. }
  1252. return ret;
  1253. }
  1254. mid = slot;
  1255. double_split = 1;
  1256. }
  1257. }
  1258. btrfs_set_header_nritems(&right->header, nritems - mid);
  1259. data_copy_size = btrfs_item_end(l->items + mid) -
  1260. leaf_data_end(root, l);
  1261. btrfs_memcpy(root, right, right->items, l->items + mid,
  1262. (nritems - mid) * sizeof(struct btrfs_item));
  1263. btrfs_memcpy(root, right,
  1264. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1265. data_copy_size, btrfs_leaf_data(l) +
  1266. leaf_data_end(root, l), data_copy_size);
  1267. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1268. btrfs_item_end(l->items + mid);
  1269. for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
  1270. u32 ioff = btrfs_item_offset(right->items + i);
  1271. btrfs_set_item_offset(right->items + i, ioff + rt_data_off);
  1272. }
  1273. btrfs_set_header_nritems(&l->header, mid);
  1274. ret = 0;
  1275. wret = insert_ptr(trans, root, path, &right->items[0].key,
  1276. bh_blocknr(right_buffer), path->slots[1] + 1, 1);
  1277. if (wret)
  1278. ret = wret;
  1279. btrfs_mark_buffer_dirty(right_buffer);
  1280. btrfs_mark_buffer_dirty(l_buf);
  1281. BUG_ON(path->slots[0] != slot);
  1282. if (mid <= slot) {
  1283. btrfs_block_release(root, path->nodes[0]);
  1284. path->nodes[0] = right_buffer;
  1285. path->slots[0] -= mid;
  1286. path->slots[1] += 1;
  1287. } else
  1288. btrfs_block_release(root, right_buffer);
  1289. BUG_ON(path->slots[0] < 0);
  1290. check_node(root, path, 1);
  1291. if (!double_split)
  1292. return ret;
  1293. right_buffer = btrfs_alloc_free_block(trans, root, l_buf->b_blocknr);
  1294. BUG_ON(!right_buffer);
  1295. right = btrfs_buffer_leaf(right_buffer);
  1296. memset(&right->header, 0, sizeof(right->header));
  1297. btrfs_set_header_blocknr(&right->header, bh_blocknr(right_buffer));
  1298. btrfs_set_header_generation(&right->header, trans->transid);
  1299. btrfs_set_header_owner(&right->header, root->root_key.objectid);
  1300. btrfs_set_header_level(&right->header, 0);
  1301. memcpy(right->header.fsid, root->fs_info->disk_super->fsid,
  1302. sizeof(right->header.fsid));
  1303. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1304. btrfs_set_header_nritems(&right->header, 0);
  1305. wret = insert_ptr(trans, root, path,
  1306. &disk_key,
  1307. bh_blocknr(right_buffer),
  1308. path->slots[1], 1);
  1309. if (wret)
  1310. ret = wret;
  1311. if (path->slots[1] == 0) {
  1312. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1313. if (wret)
  1314. ret = wret;
  1315. }
  1316. btrfs_block_release(root, path->nodes[0]);
  1317. path->nodes[0] = right_buffer;
  1318. path->slots[0] = 0;
  1319. check_node(root, path, 1);
  1320. check_leaf(root, path, 0);
  1321. return ret;
  1322. }
  1323. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1324. struct btrfs_root *root,
  1325. struct btrfs_path *path,
  1326. u32 new_size)
  1327. {
  1328. int ret = 0;
  1329. int slot;
  1330. int slot_orig;
  1331. struct btrfs_leaf *leaf;
  1332. struct buffer_head *leaf_buf;
  1333. u32 nritems;
  1334. unsigned int data_end;
  1335. unsigned int old_data_start;
  1336. unsigned int old_size;
  1337. unsigned int size_diff;
  1338. int i;
  1339. slot_orig = path->slots[0];
  1340. leaf_buf = path->nodes[0];
  1341. leaf = btrfs_buffer_leaf(leaf_buf);
  1342. nritems = btrfs_header_nritems(&leaf->header);
  1343. data_end = leaf_data_end(root, leaf);
  1344. slot = path->slots[0];
  1345. old_data_start = btrfs_item_offset(leaf->items + slot);
  1346. old_size = btrfs_item_size(leaf->items + slot);
  1347. BUG_ON(old_size <= new_size);
  1348. size_diff = old_size - new_size;
  1349. BUG_ON(slot < 0);
  1350. BUG_ON(slot >= nritems);
  1351. /*
  1352. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1353. */
  1354. /* first correct the data pointers */
  1355. for (i = slot; i < nritems; i++) {
  1356. u32 ioff = btrfs_item_offset(leaf->items + i);
  1357. btrfs_set_item_offset(leaf->items + i,
  1358. ioff + size_diff);
  1359. }
  1360. /* shift the data */
  1361. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1362. data_end + size_diff, btrfs_leaf_data(leaf) +
  1363. data_end, old_data_start + new_size - data_end);
  1364. btrfs_set_item_size(leaf->items + slot, new_size);
  1365. btrfs_mark_buffer_dirty(leaf_buf);
  1366. ret = 0;
  1367. if (btrfs_leaf_free_space(root, leaf) < 0)
  1368. BUG();
  1369. check_leaf(root, path, 0);
  1370. return ret;
  1371. }
  1372. int btrfs_extend_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1373. *root, struct btrfs_path *path, u32 data_size)
  1374. {
  1375. int ret = 0;
  1376. int slot;
  1377. int slot_orig;
  1378. struct btrfs_leaf *leaf;
  1379. struct buffer_head *leaf_buf;
  1380. u32 nritems;
  1381. unsigned int data_end;
  1382. unsigned int old_data;
  1383. unsigned int old_size;
  1384. int i;
  1385. slot_orig = path->slots[0];
  1386. leaf_buf = path->nodes[0];
  1387. leaf = btrfs_buffer_leaf(leaf_buf);
  1388. nritems = btrfs_header_nritems(&leaf->header);
  1389. data_end = leaf_data_end(root, leaf);
  1390. if (btrfs_leaf_free_space(root, leaf) < data_size)
  1391. BUG();
  1392. slot = path->slots[0];
  1393. old_data = btrfs_item_end(leaf->items + slot);
  1394. BUG_ON(slot < 0);
  1395. BUG_ON(slot >= nritems);
  1396. /*
  1397. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1398. */
  1399. /* first correct the data pointers */
  1400. for (i = slot; i < nritems; i++) {
  1401. u32 ioff = btrfs_item_offset(leaf->items + i);
  1402. btrfs_set_item_offset(leaf->items + i,
  1403. ioff - data_size);
  1404. }
  1405. /* shift the data */
  1406. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1407. data_end - data_size, btrfs_leaf_data(leaf) +
  1408. data_end, old_data - data_end);
  1409. data_end = old_data;
  1410. old_size = btrfs_item_size(leaf->items + slot);
  1411. btrfs_set_item_size(leaf->items + slot, old_size + data_size);
  1412. btrfs_mark_buffer_dirty(leaf_buf);
  1413. ret = 0;
  1414. if (btrfs_leaf_free_space(root, leaf) < 0)
  1415. BUG();
  1416. check_leaf(root, path, 0);
  1417. return ret;
  1418. }
  1419. /*
  1420. * Given a key and some data, insert an item into the tree.
  1421. * This does all the path init required, making room in the tree if needed.
  1422. */
  1423. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1424. *root, struct btrfs_path *path, struct btrfs_key
  1425. *cpu_key, u32 data_size)
  1426. {
  1427. int ret = 0;
  1428. int slot;
  1429. int slot_orig;
  1430. struct btrfs_leaf *leaf;
  1431. struct buffer_head *leaf_buf;
  1432. u32 nritems;
  1433. unsigned int data_end;
  1434. struct btrfs_disk_key disk_key;
  1435. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  1436. /* create a root if there isn't one */
  1437. if (!root->node)
  1438. BUG();
  1439. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  1440. if (ret == 0) {
  1441. return -EEXIST;
  1442. }
  1443. if (ret < 0)
  1444. goto out;
  1445. slot_orig = path->slots[0];
  1446. leaf_buf = path->nodes[0];
  1447. leaf = btrfs_buffer_leaf(leaf_buf);
  1448. nritems = btrfs_header_nritems(&leaf->header);
  1449. data_end = leaf_data_end(root, leaf);
  1450. if (btrfs_leaf_free_space(root, leaf) <
  1451. sizeof(struct btrfs_item) + data_size) {
  1452. BUG();
  1453. }
  1454. slot = path->slots[0];
  1455. BUG_ON(slot < 0);
  1456. if (slot != nritems) {
  1457. int i;
  1458. unsigned int old_data = btrfs_item_end(leaf->items + slot);
  1459. /*
  1460. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1461. */
  1462. /* first correct the data pointers */
  1463. for (i = slot; i < nritems; i++) {
  1464. u32 ioff = btrfs_item_offset(leaf->items + i);
  1465. btrfs_set_item_offset(leaf->items + i,
  1466. ioff - data_size);
  1467. }
  1468. /* shift the items */
  1469. btrfs_memmove(root, leaf, leaf->items + slot + 1,
  1470. leaf->items + slot,
  1471. (nritems - slot) * sizeof(struct btrfs_item));
  1472. /* shift the data */
  1473. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1474. data_end - data_size, btrfs_leaf_data(leaf) +
  1475. data_end, old_data - data_end);
  1476. data_end = old_data;
  1477. }
  1478. /* setup the item for the new data */
  1479. btrfs_memcpy(root, leaf, &leaf->items[slot].key, &disk_key,
  1480. sizeof(struct btrfs_disk_key));
  1481. btrfs_set_item_offset(leaf->items + slot, data_end - data_size);
  1482. btrfs_set_item_size(leaf->items + slot, data_size);
  1483. btrfs_set_header_nritems(&leaf->header, nritems + 1);
  1484. btrfs_mark_buffer_dirty(leaf_buf);
  1485. ret = 0;
  1486. if (slot == 0)
  1487. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1488. if (btrfs_leaf_free_space(root, leaf) < 0)
  1489. BUG();
  1490. check_leaf(root, path, 0);
  1491. out:
  1492. return ret;
  1493. }
  1494. /*
  1495. * Given a key and some data, insert an item into the tree.
  1496. * This does all the path init required, making room in the tree if needed.
  1497. */
  1498. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  1499. *root, struct btrfs_key *cpu_key, void *data, u32
  1500. data_size)
  1501. {
  1502. int ret = 0;
  1503. struct btrfs_path *path;
  1504. u8 *ptr;
  1505. path = btrfs_alloc_path();
  1506. BUG_ON(!path);
  1507. btrfs_init_path(path);
  1508. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  1509. if (!ret) {
  1510. ptr = btrfs_item_ptr(btrfs_buffer_leaf(path->nodes[0]),
  1511. path->slots[0], u8);
  1512. btrfs_memcpy(root, path->nodes[0]->b_data,
  1513. ptr, data, data_size);
  1514. btrfs_mark_buffer_dirty(path->nodes[0]);
  1515. }
  1516. btrfs_release_path(root, path);
  1517. btrfs_free_path(path);
  1518. return ret;
  1519. }
  1520. /*
  1521. * delete the pointer from a given node.
  1522. *
  1523. * If the delete empties a node, the node is removed from the tree,
  1524. * continuing all the way the root if required. The root is converted into
  1525. * a leaf if all the nodes are emptied.
  1526. */
  1527. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1528. struct btrfs_path *path, int level, int slot)
  1529. {
  1530. struct btrfs_node *node;
  1531. struct buffer_head *parent = path->nodes[level];
  1532. u32 nritems;
  1533. int ret = 0;
  1534. int wret;
  1535. node = btrfs_buffer_node(parent);
  1536. nritems = btrfs_header_nritems(&node->header);
  1537. if (slot != nritems -1) {
  1538. btrfs_memmove(root, node, node->ptrs + slot,
  1539. node->ptrs + slot + 1,
  1540. sizeof(struct btrfs_key_ptr) *
  1541. (nritems - slot - 1));
  1542. }
  1543. nritems--;
  1544. btrfs_set_header_nritems(&node->header, nritems);
  1545. if (nritems == 0 && parent == root->node) {
  1546. struct btrfs_header *header = btrfs_buffer_header(root->node);
  1547. BUG_ON(btrfs_header_level(header) != 1);
  1548. /* just turn the root into a leaf and break */
  1549. btrfs_set_header_level(header, 0);
  1550. } else if (slot == 0) {
  1551. wret = fixup_low_keys(trans, root, path, &node->ptrs[0].key,
  1552. level + 1);
  1553. if (wret)
  1554. ret = wret;
  1555. }
  1556. btrfs_mark_buffer_dirty(parent);
  1557. return ret;
  1558. }
  1559. /*
  1560. * delete the item at the leaf level in path. If that empties
  1561. * the leaf, remove it from the tree
  1562. */
  1563. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  1564. struct btrfs_path *path)
  1565. {
  1566. int slot;
  1567. struct btrfs_leaf *leaf;
  1568. struct buffer_head *leaf_buf;
  1569. int doff;
  1570. int dsize;
  1571. int ret = 0;
  1572. int wret;
  1573. u32 nritems;
  1574. leaf_buf = path->nodes[0];
  1575. leaf = btrfs_buffer_leaf(leaf_buf);
  1576. slot = path->slots[0];
  1577. doff = btrfs_item_offset(leaf->items + slot);
  1578. dsize = btrfs_item_size(leaf->items + slot);
  1579. nritems = btrfs_header_nritems(&leaf->header);
  1580. if (slot != nritems - 1) {
  1581. int i;
  1582. int data_end = leaf_data_end(root, leaf);
  1583. btrfs_memmove(root, leaf, btrfs_leaf_data(leaf) +
  1584. data_end + dsize,
  1585. btrfs_leaf_data(leaf) + data_end,
  1586. doff - data_end);
  1587. for (i = slot + 1; i < nritems; i++) {
  1588. u32 ioff = btrfs_item_offset(leaf->items + i);
  1589. btrfs_set_item_offset(leaf->items + i, ioff + dsize);
  1590. }
  1591. btrfs_memmove(root, leaf, leaf->items + slot,
  1592. leaf->items + slot + 1,
  1593. sizeof(struct btrfs_item) *
  1594. (nritems - slot - 1));
  1595. }
  1596. btrfs_set_header_nritems(&leaf->header, nritems - 1);
  1597. nritems--;
  1598. /* delete the leaf if we've emptied it */
  1599. if (nritems == 0) {
  1600. if (leaf_buf == root->node) {
  1601. btrfs_set_header_level(&leaf->header, 0);
  1602. } else {
  1603. clean_tree_block(trans, root, leaf_buf);
  1604. wait_on_buffer(leaf_buf);
  1605. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  1606. if (wret)
  1607. ret = wret;
  1608. wret = btrfs_free_extent(trans, root,
  1609. bh_blocknr(leaf_buf), 1, 1);
  1610. if (wret)
  1611. ret = wret;
  1612. }
  1613. } else {
  1614. int used = leaf_space_used(leaf, 0, nritems);
  1615. if (slot == 0) {
  1616. wret = fixup_low_keys(trans, root, path,
  1617. &leaf->items[0].key, 1);
  1618. if (wret)
  1619. ret = wret;
  1620. }
  1621. /* delete the leaf if it is mostly empty */
  1622. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  1623. /* push_leaf_left fixes the path.
  1624. * make sure the path still points to our leaf
  1625. * for possible call to del_ptr below
  1626. */
  1627. slot = path->slots[1];
  1628. get_bh(leaf_buf);
  1629. wret = push_leaf_left(trans, root, path, 1);
  1630. if (wret < 0)
  1631. ret = wret;
  1632. if (path->nodes[0] == leaf_buf &&
  1633. btrfs_header_nritems(&leaf->header)) {
  1634. wret = push_leaf_right(trans, root, path, 1);
  1635. if (wret < 0)
  1636. ret = wret;
  1637. }
  1638. if (btrfs_header_nritems(&leaf->header) == 0) {
  1639. u64 blocknr = bh_blocknr(leaf_buf);
  1640. clean_tree_block(trans, root, leaf_buf);
  1641. wait_on_buffer(leaf_buf);
  1642. wret = del_ptr(trans, root, path, 1, slot);
  1643. if (wret)
  1644. ret = wret;
  1645. btrfs_block_release(root, leaf_buf);
  1646. wret = btrfs_free_extent(trans, root, blocknr,
  1647. 1, 1);
  1648. if (wret)
  1649. ret = wret;
  1650. } else {
  1651. btrfs_mark_buffer_dirty(leaf_buf);
  1652. btrfs_block_release(root, leaf_buf);
  1653. }
  1654. } else {
  1655. btrfs_mark_buffer_dirty(leaf_buf);
  1656. }
  1657. }
  1658. return ret;
  1659. }
  1660. /*
  1661. * walk up the tree as far as required to find the next leaf.
  1662. * returns 0 if it found something or 1 if there are no greater leaves.
  1663. * returns < 0 on io errors.
  1664. */
  1665. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  1666. {
  1667. int slot;
  1668. int level = 1;
  1669. u64 blocknr;
  1670. struct buffer_head *c;
  1671. struct btrfs_node *c_node;
  1672. struct buffer_head *next = NULL;
  1673. while(level < BTRFS_MAX_LEVEL) {
  1674. if (!path->nodes[level])
  1675. return 1;
  1676. slot = path->slots[level] + 1;
  1677. c = path->nodes[level];
  1678. c_node = btrfs_buffer_node(c);
  1679. if (slot >= btrfs_header_nritems(&c_node->header)) {
  1680. level++;
  1681. continue;
  1682. }
  1683. blocknr = btrfs_node_blockptr(c_node, slot);
  1684. if (next)
  1685. btrfs_block_release(root, next);
  1686. next = read_tree_block(root, blocknr);
  1687. break;
  1688. }
  1689. path->slots[level] = slot;
  1690. while(1) {
  1691. level--;
  1692. c = path->nodes[level];
  1693. btrfs_block_release(root, c);
  1694. path->nodes[level] = next;
  1695. path->slots[level] = 0;
  1696. if (!level)
  1697. break;
  1698. next = read_tree_block(root,
  1699. btrfs_node_blockptr(btrfs_buffer_node(next), 0));
  1700. }
  1701. return 0;
  1702. }