hw.c 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846
  1. /*
  2. * Copyright (c) 2008 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <asm/unaligned.h>
  18. #include "core.h"
  19. #include "hw.h"
  20. #include "reg.h"
  21. #include "phy.h"
  22. #include "initvals.h"
  23. static const u8 CLOCK_RATE[] = { 40, 80, 22, 44, 88, 40 };
  24. extern struct hal_percal_data iq_cal_multi_sample;
  25. extern struct hal_percal_data iq_cal_single_sample;
  26. extern struct hal_percal_data adc_gain_cal_multi_sample;
  27. extern struct hal_percal_data adc_gain_cal_single_sample;
  28. extern struct hal_percal_data adc_dc_cal_multi_sample;
  29. extern struct hal_percal_data adc_dc_cal_single_sample;
  30. extern struct hal_percal_data adc_init_dc_cal;
  31. static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type);
  32. static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
  33. enum ath9k_ht_macmode macmode);
  34. static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
  35. struct ar5416_eeprom *pEepData,
  36. u32 reg, u32 value);
  37. static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan);
  38. static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan);
  39. /********************/
  40. /* Helper Functions */
  41. /********************/
  42. static u32 ath9k_hw_mac_usec(struct ath_hal *ah, u32 clks)
  43. {
  44. if (ah->ah_curchan != NULL)
  45. return clks / CLOCK_RATE[ath9k_hw_chan2wmode(ah, ah->ah_curchan)];
  46. else
  47. return clks / CLOCK_RATE[ATH9K_MODE_11B];
  48. }
  49. static u32 ath9k_hw_mac_to_usec(struct ath_hal *ah, u32 clks)
  50. {
  51. struct ath9k_channel *chan = ah->ah_curchan;
  52. if (chan && IS_CHAN_HT40(chan))
  53. return ath9k_hw_mac_usec(ah, clks) / 2;
  54. else
  55. return ath9k_hw_mac_usec(ah, clks);
  56. }
  57. static u32 ath9k_hw_mac_clks(struct ath_hal *ah, u32 usecs)
  58. {
  59. if (ah->ah_curchan != NULL)
  60. return usecs * CLOCK_RATE[ath9k_hw_chan2wmode(ah,
  61. ah->ah_curchan)];
  62. else
  63. return usecs * CLOCK_RATE[ATH9K_MODE_11B];
  64. }
  65. static u32 ath9k_hw_mac_to_clks(struct ath_hal *ah, u32 usecs)
  66. {
  67. struct ath9k_channel *chan = ah->ah_curchan;
  68. if (chan && IS_CHAN_HT40(chan))
  69. return ath9k_hw_mac_clks(ah, usecs) * 2;
  70. else
  71. return ath9k_hw_mac_clks(ah, usecs);
  72. }
  73. enum wireless_mode ath9k_hw_chan2wmode(struct ath_hal *ah,
  74. const struct ath9k_channel *chan)
  75. {
  76. if (IS_CHAN_B(chan))
  77. return ATH9K_MODE_11B;
  78. if (IS_CHAN_G(chan))
  79. return ATH9K_MODE_11G;
  80. return ATH9K_MODE_11A;
  81. }
  82. bool ath9k_hw_wait(struct ath_hal *ah, u32 reg, u32 mask, u32 val)
  83. {
  84. int i;
  85. for (i = 0; i < (AH_TIMEOUT / AH_TIME_QUANTUM); i++) {
  86. if ((REG_READ(ah, reg) & mask) == val)
  87. return true;
  88. udelay(AH_TIME_QUANTUM);
  89. }
  90. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  91. "timeout on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  92. reg, REG_READ(ah, reg), mask, val);
  93. return false;
  94. }
  95. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  96. {
  97. u32 retval;
  98. int i;
  99. for (i = 0, retval = 0; i < n; i++) {
  100. retval = (retval << 1) | (val & 1);
  101. val >>= 1;
  102. }
  103. return retval;
  104. }
  105. bool ath9k_get_channel_edges(struct ath_hal *ah,
  106. u16 flags, u16 *low,
  107. u16 *high)
  108. {
  109. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  110. if (flags & CHANNEL_5GHZ) {
  111. *low = pCap->low_5ghz_chan;
  112. *high = pCap->high_5ghz_chan;
  113. return true;
  114. }
  115. if ((flags & CHANNEL_2GHZ)) {
  116. *low = pCap->low_2ghz_chan;
  117. *high = pCap->high_2ghz_chan;
  118. return true;
  119. }
  120. return false;
  121. }
  122. u16 ath9k_hw_computetxtime(struct ath_hal *ah,
  123. struct ath_rate_table *rates,
  124. u32 frameLen, u16 rateix,
  125. bool shortPreamble)
  126. {
  127. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  128. u32 kbps;
  129. kbps = rates->info[rateix].ratekbps;
  130. if (kbps == 0)
  131. return 0;
  132. switch (rates->info[rateix].phy) {
  133. case WLAN_RC_PHY_CCK:
  134. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  135. if (shortPreamble && rates->info[rateix].short_preamble)
  136. phyTime >>= 1;
  137. numBits = frameLen << 3;
  138. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  139. break;
  140. case WLAN_RC_PHY_OFDM:
  141. if (ah->ah_curchan && IS_CHAN_QUARTER_RATE(ah->ah_curchan)) {
  142. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  143. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  144. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  145. txTime = OFDM_SIFS_TIME_QUARTER
  146. + OFDM_PREAMBLE_TIME_QUARTER
  147. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  148. } else if (ah->ah_curchan &&
  149. IS_CHAN_HALF_RATE(ah->ah_curchan)) {
  150. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  151. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  152. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  153. txTime = OFDM_SIFS_TIME_HALF +
  154. OFDM_PREAMBLE_TIME_HALF
  155. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  156. } else {
  157. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  158. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  159. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  160. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  161. + (numSymbols * OFDM_SYMBOL_TIME);
  162. }
  163. break;
  164. default:
  165. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  166. "Unknown phy %u (rate ix %u)\n",
  167. rates->info[rateix].phy, rateix);
  168. txTime = 0;
  169. break;
  170. }
  171. return txTime;
  172. }
  173. u32 ath9k_hw_mhz2ieee(struct ath_hal *ah, u32 freq, u32 flags)
  174. {
  175. if (flags & CHANNEL_2GHZ) {
  176. if (freq == 2484)
  177. return 14;
  178. if (freq < 2484)
  179. return (freq - 2407) / 5;
  180. else
  181. return 15 + ((freq - 2512) / 20);
  182. } else if (flags & CHANNEL_5GHZ) {
  183. if (ath9k_regd_is_public_safety_sku(ah) &&
  184. IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
  185. return ((freq * 10) +
  186. (((freq % 5) == 2) ? 5 : 0) - 49400) / 5;
  187. } else if ((flags & CHANNEL_A) && (freq <= 5000)) {
  188. return (freq - 4000) / 5;
  189. } else {
  190. return (freq - 5000) / 5;
  191. }
  192. } else {
  193. if (freq == 2484)
  194. return 14;
  195. if (freq < 2484)
  196. return (freq - 2407) / 5;
  197. if (freq < 5000) {
  198. if (ath9k_regd_is_public_safety_sku(ah)
  199. && IS_CHAN_IN_PUBLIC_SAFETY_BAND(freq)) {
  200. return ((freq * 10) +
  201. (((freq % 5) ==
  202. 2) ? 5 : 0) - 49400) / 5;
  203. } else if (freq > 4900) {
  204. return (freq - 4000) / 5;
  205. } else {
  206. return 15 + ((freq - 2512) / 20);
  207. }
  208. }
  209. return (freq - 5000) / 5;
  210. }
  211. }
  212. void ath9k_hw_get_channel_centers(struct ath_hal *ah,
  213. struct ath9k_channel *chan,
  214. struct chan_centers *centers)
  215. {
  216. int8_t extoff;
  217. struct ath_hal_5416 *ahp = AH5416(ah);
  218. if (!IS_CHAN_HT40(chan)) {
  219. centers->ctl_center = centers->ext_center =
  220. centers->synth_center = chan->channel;
  221. return;
  222. }
  223. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  224. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  225. centers->synth_center =
  226. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  227. extoff = 1;
  228. } else {
  229. centers->synth_center =
  230. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  231. extoff = -1;
  232. }
  233. centers->ctl_center =
  234. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  235. centers->ext_center =
  236. centers->synth_center + (extoff *
  237. ((ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
  238. HT40_CHANNEL_CENTER_SHIFT : 15));
  239. }
  240. /******************/
  241. /* Chip Revisions */
  242. /******************/
  243. static void ath9k_hw_read_revisions(struct ath_hal *ah)
  244. {
  245. u32 val;
  246. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  247. if (val == 0xFF) {
  248. val = REG_READ(ah, AR_SREV);
  249. ah->ah_macVersion = (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  250. ah->ah_macRev = MS(val, AR_SREV_REVISION2);
  251. ah->ah_isPciExpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  252. } else {
  253. if (!AR_SREV_9100(ah))
  254. ah->ah_macVersion = MS(val, AR_SREV_VERSION);
  255. ah->ah_macRev = val & AR_SREV_REVISION;
  256. if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE)
  257. ah->ah_isPciExpress = true;
  258. }
  259. }
  260. static int ath9k_hw_get_radiorev(struct ath_hal *ah)
  261. {
  262. u32 val;
  263. int i;
  264. REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
  265. for (i = 0; i < 8; i++)
  266. REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
  267. val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
  268. val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
  269. return ath9k_hw_reverse_bits(val, 8);
  270. }
  271. /************************************/
  272. /* HW Attach, Detach, Init Routines */
  273. /************************************/
  274. static void ath9k_hw_disablepcie(struct ath_hal *ah)
  275. {
  276. if (!AR_SREV_9100(ah))
  277. return;
  278. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  279. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  280. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  281. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  282. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  283. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  284. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  285. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  286. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  287. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  288. }
  289. static bool ath9k_hw_chip_test(struct ath_hal *ah)
  290. {
  291. u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
  292. u32 regHold[2];
  293. u32 patternData[4] = { 0x55555555,
  294. 0xaaaaaaaa,
  295. 0x66666666,
  296. 0x99999999 };
  297. int i, j;
  298. for (i = 0; i < 2; i++) {
  299. u32 addr = regAddr[i];
  300. u32 wrData, rdData;
  301. regHold[i] = REG_READ(ah, addr);
  302. for (j = 0; j < 0x100; j++) {
  303. wrData = (j << 16) | j;
  304. REG_WRITE(ah, addr, wrData);
  305. rdData = REG_READ(ah, addr);
  306. if (rdData != wrData) {
  307. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  308. "address test failed "
  309. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  310. addr, wrData, rdData);
  311. return false;
  312. }
  313. }
  314. for (j = 0; j < 4; j++) {
  315. wrData = patternData[j];
  316. REG_WRITE(ah, addr, wrData);
  317. rdData = REG_READ(ah, addr);
  318. if (wrData != rdData) {
  319. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  320. "address test failed "
  321. "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  322. addr, wrData, rdData);
  323. return false;
  324. }
  325. }
  326. REG_WRITE(ah, regAddr[i], regHold[i]);
  327. }
  328. udelay(100);
  329. return true;
  330. }
  331. static const char *ath9k_hw_devname(u16 devid)
  332. {
  333. switch (devid) {
  334. case AR5416_DEVID_PCI:
  335. return "Atheros 5416";
  336. case AR5416_DEVID_PCIE:
  337. return "Atheros 5418";
  338. case AR9160_DEVID_PCI:
  339. return "Atheros 9160";
  340. case AR9280_DEVID_PCI:
  341. case AR9280_DEVID_PCIE:
  342. return "Atheros 9280";
  343. }
  344. return NULL;
  345. }
  346. static void ath9k_hw_set_defaults(struct ath_hal *ah)
  347. {
  348. int i;
  349. ah->ah_config.dma_beacon_response_time = 2;
  350. ah->ah_config.sw_beacon_response_time = 10;
  351. ah->ah_config.additional_swba_backoff = 0;
  352. ah->ah_config.ack_6mb = 0x0;
  353. ah->ah_config.cwm_ignore_extcca = 0;
  354. ah->ah_config.pcie_powersave_enable = 0;
  355. ah->ah_config.pcie_l1skp_enable = 0;
  356. ah->ah_config.pcie_clock_req = 0;
  357. ah->ah_config.pcie_power_reset = 0x100;
  358. ah->ah_config.pcie_restore = 0;
  359. ah->ah_config.pcie_waen = 0;
  360. ah->ah_config.analog_shiftreg = 1;
  361. ah->ah_config.ht_enable = 1;
  362. ah->ah_config.ofdm_trig_low = 200;
  363. ah->ah_config.ofdm_trig_high = 500;
  364. ah->ah_config.cck_trig_high = 200;
  365. ah->ah_config.cck_trig_low = 100;
  366. ah->ah_config.enable_ani = 1;
  367. ah->ah_config.noise_immunity_level = 4;
  368. ah->ah_config.ofdm_weaksignal_det = 1;
  369. ah->ah_config.cck_weaksignal_thr = 0;
  370. ah->ah_config.spur_immunity_level = 2;
  371. ah->ah_config.firstep_level = 0;
  372. ah->ah_config.rssi_thr_high = 40;
  373. ah->ah_config.rssi_thr_low = 7;
  374. ah->ah_config.diversity_control = 0;
  375. ah->ah_config.antenna_switch_swap = 0;
  376. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  377. ah->ah_config.spurchans[i][0] = AR_NO_SPUR;
  378. ah->ah_config.spurchans[i][1] = AR_NO_SPUR;
  379. }
  380. ah->ah_config.intr_mitigation = 1;
  381. }
  382. static struct ath_hal_5416 *ath9k_hw_newstate(u16 devid,
  383. struct ath_softc *sc,
  384. void __iomem *mem,
  385. int *status)
  386. {
  387. static const u8 defbssidmask[ETH_ALEN] =
  388. { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  389. struct ath_hal_5416 *ahp;
  390. struct ath_hal *ah;
  391. ahp = kzalloc(sizeof(struct ath_hal_5416), GFP_KERNEL);
  392. if (ahp == NULL) {
  393. DPRINTF(sc, ATH_DBG_FATAL,
  394. "Cannot allocate memory for state block\n");
  395. *status = -ENOMEM;
  396. return NULL;
  397. }
  398. ah = &ahp->ah;
  399. ah->ah_sc = sc;
  400. ah->ah_sh = mem;
  401. ah->ah_magic = AR5416_MAGIC;
  402. ah->ah_countryCode = CTRY_DEFAULT;
  403. ah->ah_devid = devid;
  404. ah->ah_subvendorid = 0;
  405. ah->ah_flags = 0;
  406. if ((devid == AR5416_AR9100_DEVID))
  407. ah->ah_macVersion = AR_SREV_VERSION_9100;
  408. if (!AR_SREV_9100(ah))
  409. ah->ah_flags = AH_USE_EEPROM;
  410. ah->ah_powerLimit = MAX_RATE_POWER;
  411. ah->ah_tpScale = ATH9K_TP_SCALE_MAX;
  412. ahp->ah_atimWindow = 0;
  413. ahp->ah_diversityControl = ah->ah_config.diversity_control;
  414. ahp->ah_antennaSwitchSwap =
  415. ah->ah_config.antenna_switch_swap;
  416. ahp->ah_staId1Defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
  417. ahp->ah_beaconInterval = 100;
  418. ahp->ah_enable32kHzClock = DONT_USE_32KHZ;
  419. ahp->ah_slottime = (u32) -1;
  420. ahp->ah_acktimeout = (u32) -1;
  421. ahp->ah_ctstimeout = (u32) -1;
  422. ahp->ah_globaltxtimeout = (u32) -1;
  423. memcpy(&ahp->ah_bssidmask, defbssidmask, ETH_ALEN);
  424. ahp->ah_gBeaconRate = 0;
  425. return ahp;
  426. }
  427. static int ath9k_hw_rfattach(struct ath_hal *ah)
  428. {
  429. bool rfStatus = false;
  430. int ecode = 0;
  431. rfStatus = ath9k_hw_init_rf(ah, &ecode);
  432. if (!rfStatus) {
  433. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  434. "RF setup failed, status %u\n", ecode);
  435. return ecode;
  436. }
  437. return 0;
  438. }
  439. static int ath9k_hw_rf_claim(struct ath_hal *ah)
  440. {
  441. u32 val;
  442. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  443. val = ath9k_hw_get_radiorev(ah);
  444. switch (val & AR_RADIO_SREV_MAJOR) {
  445. case 0:
  446. val = AR_RAD5133_SREV_MAJOR;
  447. break;
  448. case AR_RAD5133_SREV_MAJOR:
  449. case AR_RAD5122_SREV_MAJOR:
  450. case AR_RAD2133_SREV_MAJOR:
  451. case AR_RAD2122_SREV_MAJOR:
  452. break;
  453. default:
  454. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  455. "5G Radio Chip Rev 0x%02X is not "
  456. "supported by this driver\n",
  457. ah->ah_analog5GhzRev);
  458. return -EOPNOTSUPP;
  459. }
  460. ah->ah_analog5GhzRev = val;
  461. return 0;
  462. }
  463. static int ath9k_hw_init_macaddr(struct ath_hal *ah)
  464. {
  465. u32 sum;
  466. int i;
  467. u16 eeval;
  468. struct ath_hal_5416 *ahp = AH5416(ah);
  469. sum = 0;
  470. for (i = 0; i < 3; i++) {
  471. eeval = ath9k_hw_get_eeprom(ah, AR_EEPROM_MAC(i));
  472. sum += eeval;
  473. ahp->ah_macaddr[2 * i] = eeval >> 8;
  474. ahp->ah_macaddr[2 * i + 1] = eeval & 0xff;
  475. }
  476. if (sum == 0 || sum == 0xffff * 3) {
  477. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  478. "mac address read failed: %pM\n",
  479. ahp->ah_macaddr);
  480. return -EADDRNOTAVAIL;
  481. }
  482. return 0;
  483. }
  484. static void ath9k_hw_init_rxgain_ini(struct ath_hal *ah)
  485. {
  486. u32 rxgain_type;
  487. struct ath_hal_5416 *ahp = AH5416(ah);
  488. if (ath9k_hw_get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
  489. rxgain_type = ath9k_hw_get_eeprom(ah, EEP_RXGAIN_TYPE);
  490. if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
  491. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  492. ar9280Modes_backoff_13db_rxgain_9280_2,
  493. ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
  494. else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
  495. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  496. ar9280Modes_backoff_23db_rxgain_9280_2,
  497. ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
  498. else
  499. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  500. ar9280Modes_original_rxgain_9280_2,
  501. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  502. } else
  503. INIT_INI_ARRAY(&ahp->ah_iniModesRxGain,
  504. ar9280Modes_original_rxgain_9280_2,
  505. ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
  506. }
  507. static void ath9k_hw_init_txgain_ini(struct ath_hal *ah)
  508. {
  509. u32 txgain_type;
  510. struct ath_hal_5416 *ahp = AH5416(ah);
  511. if (ath9k_hw_get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
  512. txgain_type = ath9k_hw_get_eeprom(ah, EEP_TXGAIN_TYPE);
  513. if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
  514. INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
  515. ar9280Modes_high_power_tx_gain_9280_2,
  516. ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
  517. else
  518. INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
  519. ar9280Modes_original_tx_gain_9280_2,
  520. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  521. } else
  522. INIT_INI_ARRAY(&ahp->ah_iniModesTxGain,
  523. ar9280Modes_original_tx_gain_9280_2,
  524. ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
  525. }
  526. static int ath9k_hw_post_attach(struct ath_hal *ah)
  527. {
  528. int ecode;
  529. if (!ath9k_hw_chip_test(ah)) {
  530. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  531. "hardware self-test failed\n");
  532. return -ENODEV;
  533. }
  534. ecode = ath9k_hw_rf_claim(ah);
  535. if (ecode != 0)
  536. return ecode;
  537. ecode = ath9k_hw_eeprom_attach(ah);
  538. if (ecode != 0)
  539. return ecode;
  540. ecode = ath9k_hw_rfattach(ah);
  541. if (ecode != 0)
  542. return ecode;
  543. if (!AR_SREV_9100(ah)) {
  544. ath9k_hw_ani_setup(ah);
  545. ath9k_hw_ani_attach(ah);
  546. }
  547. return 0;
  548. }
  549. static struct ath_hal *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
  550. void __iomem *mem, int *status)
  551. {
  552. struct ath_hal_5416 *ahp;
  553. struct ath_hal *ah;
  554. int ecode;
  555. #ifndef CONFIG_SLOW_ANT_DIV
  556. u32 i;
  557. u32 j;
  558. #endif
  559. ahp = ath9k_hw_newstate(devid, sc, mem, status);
  560. if (ahp == NULL)
  561. return NULL;
  562. ah = &ahp->ah;
  563. ath9k_hw_set_defaults(ah);
  564. if (ah->ah_config.intr_mitigation != 0)
  565. ahp->ah_intrMitigation = true;
  566. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  567. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "Couldn't reset chip\n");
  568. ecode = -EIO;
  569. goto bad;
  570. }
  571. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  572. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "Couldn't wakeup chip\n");
  573. ecode = -EIO;
  574. goto bad;
  575. }
  576. if (ah->ah_config.serialize_regmode == SER_REG_MODE_AUTO) {
  577. if (ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) {
  578. ah->ah_config.serialize_regmode =
  579. SER_REG_MODE_ON;
  580. } else {
  581. ah->ah_config.serialize_regmode =
  582. SER_REG_MODE_OFF;
  583. }
  584. }
  585. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  586. "serialize_regmode is %d\n",
  587. ah->ah_config.serialize_regmode);
  588. if ((ah->ah_macVersion != AR_SREV_VERSION_5416_PCI) &&
  589. (ah->ah_macVersion != AR_SREV_VERSION_5416_PCIE) &&
  590. (ah->ah_macVersion != AR_SREV_VERSION_9160) &&
  591. (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah))) {
  592. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  593. "Mac Chip Rev 0x%02x.%x is not supported by "
  594. "this driver\n", ah->ah_macVersion, ah->ah_macRev);
  595. ecode = -EOPNOTSUPP;
  596. goto bad;
  597. }
  598. if (AR_SREV_9100(ah)) {
  599. ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
  600. ahp->ah_suppCals = IQ_MISMATCH_CAL;
  601. ah->ah_isPciExpress = false;
  602. }
  603. ah->ah_phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  604. if (AR_SREV_9160_10_OR_LATER(ah)) {
  605. if (AR_SREV_9280_10_OR_LATER(ah)) {
  606. ahp->ah_iqCalData.calData = &iq_cal_single_sample;
  607. ahp->ah_adcGainCalData.calData =
  608. &adc_gain_cal_single_sample;
  609. ahp->ah_adcDcCalData.calData =
  610. &adc_dc_cal_single_sample;
  611. ahp->ah_adcDcCalInitData.calData =
  612. &adc_init_dc_cal;
  613. } else {
  614. ahp->ah_iqCalData.calData = &iq_cal_multi_sample;
  615. ahp->ah_adcGainCalData.calData =
  616. &adc_gain_cal_multi_sample;
  617. ahp->ah_adcDcCalData.calData =
  618. &adc_dc_cal_multi_sample;
  619. ahp->ah_adcDcCalInitData.calData =
  620. &adc_init_dc_cal;
  621. }
  622. ahp->ah_suppCals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
  623. }
  624. if (AR_SREV_9160(ah)) {
  625. ah->ah_config.enable_ani = 1;
  626. ahp->ah_ani_function = (ATH9K_ANI_SPUR_IMMUNITY_LEVEL |
  627. ATH9K_ANI_FIRSTEP_LEVEL);
  628. } else {
  629. ahp->ah_ani_function = ATH9K_ANI_ALL;
  630. if (AR_SREV_9280_10_OR_LATER(ah)) {
  631. ahp->ah_ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  632. }
  633. }
  634. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  635. "This Mac Chip Rev 0x%02x.%x is \n",
  636. ah->ah_macVersion, ah->ah_macRev);
  637. if (AR_SREV_9280_20_OR_LATER(ah)) {
  638. INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280_2,
  639. ARRAY_SIZE(ar9280Modes_9280_2), 6);
  640. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280_2,
  641. ARRAY_SIZE(ar9280Common_9280_2), 2);
  642. if (ah->ah_config.pcie_clock_req) {
  643. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  644. ar9280PciePhy_clkreq_off_L1_9280,
  645. ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
  646. } else {
  647. INIT_INI_ARRAY(&ahp->ah_iniPcieSerdes,
  648. ar9280PciePhy_clkreq_always_on_L1_9280,
  649. ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
  650. }
  651. INIT_INI_ARRAY(&ahp->ah_iniModesAdditional,
  652. ar9280Modes_fast_clock_9280_2,
  653. ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
  654. } else if (AR_SREV_9280_10_OR_LATER(ah)) {
  655. INIT_INI_ARRAY(&ahp->ah_iniModes, ar9280Modes_9280,
  656. ARRAY_SIZE(ar9280Modes_9280), 6);
  657. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar9280Common_9280,
  658. ARRAY_SIZE(ar9280Common_9280), 2);
  659. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  660. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9160,
  661. ARRAY_SIZE(ar5416Modes_9160), 6);
  662. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9160,
  663. ARRAY_SIZE(ar5416Common_9160), 2);
  664. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9160,
  665. ARRAY_SIZE(ar5416Bank0_9160), 2);
  666. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9160,
  667. ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
  668. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9160,
  669. ARRAY_SIZE(ar5416Bank1_9160), 2);
  670. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9160,
  671. ARRAY_SIZE(ar5416Bank2_9160), 2);
  672. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9160,
  673. ARRAY_SIZE(ar5416Bank3_9160), 3);
  674. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9160,
  675. ARRAY_SIZE(ar5416Bank6_9160), 3);
  676. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9160,
  677. ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
  678. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9160,
  679. ARRAY_SIZE(ar5416Bank7_9160), 2);
  680. if (AR_SREV_9160_11(ah)) {
  681. INIT_INI_ARRAY(&ahp->ah_iniAddac,
  682. ar5416Addac_91601_1,
  683. ARRAY_SIZE(ar5416Addac_91601_1), 2);
  684. } else {
  685. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9160,
  686. ARRAY_SIZE(ar5416Addac_9160), 2);
  687. }
  688. } else if (AR_SREV_9100_OR_LATER(ah)) {
  689. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes_9100,
  690. ARRAY_SIZE(ar5416Modes_9100), 6);
  691. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common_9100,
  692. ARRAY_SIZE(ar5416Common_9100), 2);
  693. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0_9100,
  694. ARRAY_SIZE(ar5416Bank0_9100), 2);
  695. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain_9100,
  696. ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
  697. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1_9100,
  698. ARRAY_SIZE(ar5416Bank1_9100), 2);
  699. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2_9100,
  700. ARRAY_SIZE(ar5416Bank2_9100), 2);
  701. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3_9100,
  702. ARRAY_SIZE(ar5416Bank3_9100), 3);
  703. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6_9100,
  704. ARRAY_SIZE(ar5416Bank6_9100), 3);
  705. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC_9100,
  706. ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
  707. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7_9100,
  708. ARRAY_SIZE(ar5416Bank7_9100), 2);
  709. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac_9100,
  710. ARRAY_SIZE(ar5416Addac_9100), 2);
  711. } else {
  712. INIT_INI_ARRAY(&ahp->ah_iniModes, ar5416Modes,
  713. ARRAY_SIZE(ar5416Modes), 6);
  714. INIT_INI_ARRAY(&ahp->ah_iniCommon, ar5416Common,
  715. ARRAY_SIZE(ar5416Common), 2);
  716. INIT_INI_ARRAY(&ahp->ah_iniBank0, ar5416Bank0,
  717. ARRAY_SIZE(ar5416Bank0), 2);
  718. INIT_INI_ARRAY(&ahp->ah_iniBB_RfGain, ar5416BB_RfGain,
  719. ARRAY_SIZE(ar5416BB_RfGain), 3);
  720. INIT_INI_ARRAY(&ahp->ah_iniBank1, ar5416Bank1,
  721. ARRAY_SIZE(ar5416Bank1), 2);
  722. INIT_INI_ARRAY(&ahp->ah_iniBank2, ar5416Bank2,
  723. ARRAY_SIZE(ar5416Bank2), 2);
  724. INIT_INI_ARRAY(&ahp->ah_iniBank3, ar5416Bank3,
  725. ARRAY_SIZE(ar5416Bank3), 3);
  726. INIT_INI_ARRAY(&ahp->ah_iniBank6, ar5416Bank6,
  727. ARRAY_SIZE(ar5416Bank6), 3);
  728. INIT_INI_ARRAY(&ahp->ah_iniBank6TPC, ar5416Bank6TPC,
  729. ARRAY_SIZE(ar5416Bank6TPC), 3);
  730. INIT_INI_ARRAY(&ahp->ah_iniBank7, ar5416Bank7,
  731. ARRAY_SIZE(ar5416Bank7), 2);
  732. INIT_INI_ARRAY(&ahp->ah_iniAddac, ar5416Addac,
  733. ARRAY_SIZE(ar5416Addac), 2);
  734. }
  735. if (ah->ah_isPciExpress)
  736. ath9k_hw_configpcipowersave(ah, 0);
  737. else
  738. ath9k_hw_disablepcie(ah);
  739. ecode = ath9k_hw_post_attach(ah);
  740. if (ecode != 0)
  741. goto bad;
  742. /* rxgain table */
  743. if (AR_SREV_9280_20_OR_LATER(ah))
  744. ath9k_hw_init_rxgain_ini(ah);
  745. /* txgain table */
  746. if (AR_SREV_9280_20_OR_LATER(ah))
  747. ath9k_hw_init_txgain_ini(ah);
  748. #ifndef CONFIG_SLOW_ANT_DIV
  749. if (ah->ah_devid == AR9280_DEVID_PCI) {
  750. for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
  751. u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
  752. for (j = 1; j < ahp->ah_iniModes.ia_columns; j++) {
  753. u32 val = INI_RA(&ahp->ah_iniModes, i, j);
  754. INI_RA(&ahp->ah_iniModes, i, j) =
  755. ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom,
  756. reg, val);
  757. }
  758. }
  759. }
  760. #endif
  761. if (!ath9k_hw_fill_cap_info(ah)) {
  762. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  763. "failed ath9k_hw_fill_cap_info\n");
  764. ecode = -EINVAL;
  765. goto bad;
  766. }
  767. ecode = ath9k_hw_init_macaddr(ah);
  768. if (ecode != 0) {
  769. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  770. "failed initializing mac address\n");
  771. goto bad;
  772. }
  773. if (AR_SREV_9285(ah))
  774. ah->ah_txTrigLevel = (AR_FTRIG_256B >> AR_FTRIG_S);
  775. else
  776. ah->ah_txTrigLevel = (AR_FTRIG_512B >> AR_FTRIG_S);
  777. ath9k_init_nfcal_hist_buffer(ah);
  778. return ah;
  779. bad:
  780. if (ahp)
  781. ath9k_hw_detach((struct ath_hal *) ahp);
  782. if (status)
  783. *status = ecode;
  784. return NULL;
  785. }
  786. static void ath9k_hw_init_bb(struct ath_hal *ah,
  787. struct ath9k_channel *chan)
  788. {
  789. u32 synthDelay;
  790. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  791. if (IS_CHAN_B(chan))
  792. synthDelay = (4 * synthDelay) / 22;
  793. else
  794. synthDelay /= 10;
  795. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
  796. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  797. }
  798. static void ath9k_hw_init_qos(struct ath_hal *ah)
  799. {
  800. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  801. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  802. REG_WRITE(ah, AR_QOS_NO_ACK,
  803. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  804. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  805. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  806. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  807. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  808. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  809. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  810. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  811. }
  812. static void ath9k_hw_init_pll(struct ath_hal *ah,
  813. struct ath9k_channel *chan)
  814. {
  815. u32 pll;
  816. if (AR_SREV_9100(ah)) {
  817. if (chan && IS_CHAN_5GHZ(chan))
  818. pll = 0x1450;
  819. else
  820. pll = 0x1458;
  821. } else {
  822. if (AR_SREV_9280_10_OR_LATER(ah)) {
  823. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  824. if (chan && IS_CHAN_HALF_RATE(chan))
  825. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  826. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  827. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  828. if (chan && IS_CHAN_5GHZ(chan)) {
  829. pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
  830. if (AR_SREV_9280_20(ah)) {
  831. if (((chan->channel % 20) == 0)
  832. || ((chan->channel % 10) == 0))
  833. pll = 0x2850;
  834. else
  835. pll = 0x142c;
  836. }
  837. } else {
  838. pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
  839. }
  840. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  841. pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
  842. if (chan && IS_CHAN_HALF_RATE(chan))
  843. pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
  844. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  845. pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
  846. if (chan && IS_CHAN_5GHZ(chan))
  847. pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
  848. else
  849. pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
  850. } else {
  851. pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
  852. if (chan && IS_CHAN_HALF_RATE(chan))
  853. pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
  854. else if (chan && IS_CHAN_QUARTER_RATE(chan))
  855. pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
  856. if (chan && IS_CHAN_5GHZ(chan))
  857. pll |= SM(0xa, AR_RTC_PLL_DIV);
  858. else
  859. pll |= SM(0xb, AR_RTC_PLL_DIV);
  860. }
  861. }
  862. REG_WRITE(ah, (u16) (AR_RTC_PLL_CONTROL), pll);
  863. udelay(RTC_PLL_SETTLE_DELAY);
  864. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  865. }
  866. static void ath9k_hw_init_chain_masks(struct ath_hal *ah)
  867. {
  868. struct ath_hal_5416 *ahp = AH5416(ah);
  869. int rx_chainmask, tx_chainmask;
  870. rx_chainmask = ahp->ah_rxchainmask;
  871. tx_chainmask = ahp->ah_txchainmask;
  872. switch (rx_chainmask) {
  873. case 0x5:
  874. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  875. AR_PHY_SWAP_ALT_CHAIN);
  876. case 0x3:
  877. if (((ah)->ah_macVersion <= AR_SREV_VERSION_9160)) {
  878. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
  879. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
  880. break;
  881. }
  882. case 0x1:
  883. case 0x2:
  884. if (!AR_SREV_9280(ah))
  885. break;
  886. case 0x7:
  887. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  888. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  889. break;
  890. default:
  891. break;
  892. }
  893. REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
  894. if (tx_chainmask == 0x5) {
  895. REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
  896. AR_PHY_SWAP_ALT_CHAIN);
  897. }
  898. if (AR_SREV_9100(ah))
  899. REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
  900. REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
  901. }
  902. static void ath9k_hw_init_interrupt_masks(struct ath_hal *ah,
  903. enum nl80211_iftype opmode)
  904. {
  905. struct ath_hal_5416 *ahp = AH5416(ah);
  906. ahp->ah_maskReg = AR_IMR_TXERR |
  907. AR_IMR_TXURN |
  908. AR_IMR_RXERR |
  909. AR_IMR_RXORN |
  910. AR_IMR_BCNMISC;
  911. if (ahp->ah_intrMitigation)
  912. ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  913. else
  914. ahp->ah_maskReg |= AR_IMR_RXOK;
  915. ahp->ah_maskReg |= AR_IMR_TXOK;
  916. if (opmode == NL80211_IFTYPE_AP)
  917. ahp->ah_maskReg |= AR_IMR_MIB;
  918. REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
  919. REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
  920. if (!AR_SREV_9100(ah)) {
  921. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  922. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
  923. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  924. }
  925. }
  926. static bool ath9k_hw_set_ack_timeout(struct ath_hal *ah, u32 us)
  927. {
  928. struct ath_hal_5416 *ahp = AH5416(ah);
  929. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
  930. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
  931. ahp->ah_acktimeout = (u32) -1;
  932. return false;
  933. } else {
  934. REG_RMW_FIELD(ah, AR_TIME_OUT,
  935. AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
  936. ahp->ah_acktimeout = us;
  937. return true;
  938. }
  939. }
  940. static bool ath9k_hw_set_cts_timeout(struct ath_hal *ah, u32 us)
  941. {
  942. struct ath_hal_5416 *ahp = AH5416(ah);
  943. if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
  944. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
  945. ahp->ah_ctstimeout = (u32) -1;
  946. return false;
  947. } else {
  948. REG_RMW_FIELD(ah, AR_TIME_OUT,
  949. AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
  950. ahp->ah_ctstimeout = us;
  951. return true;
  952. }
  953. }
  954. static bool ath9k_hw_set_global_txtimeout(struct ath_hal *ah, u32 tu)
  955. {
  956. struct ath_hal_5416 *ahp = AH5416(ah);
  957. if (tu > 0xFFFF) {
  958. DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
  959. "bad global tx timeout %u\n", tu);
  960. ahp->ah_globaltxtimeout = (u32) -1;
  961. return false;
  962. } else {
  963. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  964. ahp->ah_globaltxtimeout = tu;
  965. return true;
  966. }
  967. }
  968. static void ath9k_hw_init_user_settings(struct ath_hal *ah)
  969. {
  970. struct ath_hal_5416 *ahp = AH5416(ah);
  971. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ahp->ah_miscMode 0x%x\n",
  972. ahp->ah_miscMode);
  973. if (ahp->ah_miscMode != 0)
  974. REG_WRITE(ah, AR_PCU_MISC,
  975. REG_READ(ah, AR_PCU_MISC) | ahp->ah_miscMode);
  976. if (ahp->ah_slottime != (u32) -1)
  977. ath9k_hw_setslottime(ah, ahp->ah_slottime);
  978. if (ahp->ah_acktimeout != (u32) -1)
  979. ath9k_hw_set_ack_timeout(ah, ahp->ah_acktimeout);
  980. if (ahp->ah_ctstimeout != (u32) -1)
  981. ath9k_hw_set_cts_timeout(ah, ahp->ah_ctstimeout);
  982. if (ahp->ah_globaltxtimeout != (u32) -1)
  983. ath9k_hw_set_global_txtimeout(ah, ahp->ah_globaltxtimeout);
  984. }
  985. const char *ath9k_hw_probe(u16 vendorid, u16 devid)
  986. {
  987. return vendorid == ATHEROS_VENDOR_ID ?
  988. ath9k_hw_devname(devid) : NULL;
  989. }
  990. void ath9k_hw_detach(struct ath_hal *ah)
  991. {
  992. if (!AR_SREV_9100(ah))
  993. ath9k_hw_ani_detach(ah);
  994. ath9k_hw_rfdetach(ah);
  995. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  996. kfree(ah);
  997. }
  998. struct ath_hal *ath9k_hw_attach(u16 devid, struct ath_softc *sc,
  999. void __iomem *mem, int *error)
  1000. {
  1001. struct ath_hal *ah = NULL;
  1002. switch (devid) {
  1003. case AR5416_DEVID_PCI:
  1004. case AR5416_DEVID_PCIE:
  1005. case AR9160_DEVID_PCI:
  1006. case AR9280_DEVID_PCI:
  1007. case AR9280_DEVID_PCIE:
  1008. ah = ath9k_hw_do_attach(devid, sc, mem, error);
  1009. break;
  1010. default:
  1011. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1012. "devid=0x%x not supported.\n", devid);
  1013. ah = NULL;
  1014. *error = -ENXIO;
  1015. break;
  1016. }
  1017. return ah;
  1018. }
  1019. /*******/
  1020. /* INI */
  1021. /*******/
  1022. static void ath9k_hw_override_ini(struct ath_hal *ah,
  1023. struct ath9k_channel *chan)
  1024. {
  1025. if (!AR_SREV_5416_V20_OR_LATER(ah) ||
  1026. AR_SREV_9280_10_OR_LATER(ah))
  1027. return;
  1028. REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
  1029. }
  1030. static u32 ath9k_hw_ini_fixup(struct ath_hal *ah,
  1031. struct ar5416_eeprom *pEepData,
  1032. u32 reg, u32 value)
  1033. {
  1034. struct base_eep_header *pBase = &(pEepData->baseEepHeader);
  1035. switch (ah->ah_devid) {
  1036. case AR9280_DEVID_PCI:
  1037. if (reg == 0x7894) {
  1038. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1039. "ini VAL: %x EEPROM: %x\n", value,
  1040. (pBase->version & 0xff));
  1041. if ((pBase->version & 0xff) > 0x0a) {
  1042. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1043. "PWDCLKIND: %d\n",
  1044. pBase->pwdclkind);
  1045. value &= ~AR_AN_TOP2_PWDCLKIND;
  1046. value |= AR_AN_TOP2_PWDCLKIND &
  1047. (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
  1048. } else {
  1049. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1050. "PWDCLKIND Earlier Rev\n");
  1051. }
  1052. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  1053. "final ini VAL: %x\n", value);
  1054. }
  1055. break;
  1056. }
  1057. return value;
  1058. }
  1059. static int ath9k_hw_process_ini(struct ath_hal *ah,
  1060. struct ath9k_channel *chan,
  1061. enum ath9k_ht_macmode macmode)
  1062. {
  1063. int i, regWrites = 0;
  1064. struct ath_hal_5416 *ahp = AH5416(ah);
  1065. u32 modesIndex, freqIndex;
  1066. int status;
  1067. switch (chan->chanmode) {
  1068. case CHANNEL_A:
  1069. case CHANNEL_A_HT20:
  1070. modesIndex = 1;
  1071. freqIndex = 1;
  1072. break;
  1073. case CHANNEL_A_HT40PLUS:
  1074. case CHANNEL_A_HT40MINUS:
  1075. modesIndex = 2;
  1076. freqIndex = 1;
  1077. break;
  1078. case CHANNEL_G:
  1079. case CHANNEL_G_HT20:
  1080. case CHANNEL_B:
  1081. modesIndex = 4;
  1082. freqIndex = 2;
  1083. break;
  1084. case CHANNEL_G_HT40PLUS:
  1085. case CHANNEL_G_HT40MINUS:
  1086. modesIndex = 3;
  1087. freqIndex = 2;
  1088. break;
  1089. default:
  1090. return -EINVAL;
  1091. }
  1092. REG_WRITE(ah, AR_PHY(0), 0x00000007);
  1093. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
  1094. ath9k_hw_set_addac(ah, chan);
  1095. if (AR_SREV_5416_V22_OR_LATER(ah)) {
  1096. REG_WRITE_ARRAY(&ahp->ah_iniAddac, 1, regWrites);
  1097. } else {
  1098. struct ar5416IniArray temp;
  1099. u32 addacSize =
  1100. sizeof(u32) * ahp->ah_iniAddac.ia_rows *
  1101. ahp->ah_iniAddac.ia_columns;
  1102. memcpy(ahp->ah_addac5416_21,
  1103. ahp->ah_iniAddac.ia_array, addacSize);
  1104. (ahp->ah_addac5416_21)[31 * ahp->ah_iniAddac.ia_columns + 1] = 0;
  1105. temp.ia_array = ahp->ah_addac5416_21;
  1106. temp.ia_columns = ahp->ah_iniAddac.ia_columns;
  1107. temp.ia_rows = ahp->ah_iniAddac.ia_rows;
  1108. REG_WRITE_ARRAY(&temp, 1, regWrites);
  1109. }
  1110. REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
  1111. for (i = 0; i < ahp->ah_iniModes.ia_rows; i++) {
  1112. u32 reg = INI_RA(&ahp->ah_iniModes, i, 0);
  1113. u32 val = INI_RA(&ahp->ah_iniModes, i, modesIndex);
  1114. #ifdef CONFIG_SLOW_ANT_DIV
  1115. if (ah->ah_devid == AR9280_DEVID_PCI)
  1116. val = ath9k_hw_ini_fixup(ah, &ahp->ah_eeprom, reg, val);
  1117. #endif
  1118. REG_WRITE(ah, reg, val);
  1119. if (reg >= 0x7800 && reg < 0x78a0
  1120. && ah->ah_config.analog_shiftreg) {
  1121. udelay(100);
  1122. }
  1123. DO_DELAY(regWrites);
  1124. }
  1125. if (AR_SREV_9280_20_OR_LATER(ah))
  1126. REG_WRITE_ARRAY(&ahp->ah_iniModesRxGain, modesIndex, regWrites);
  1127. if (AR_SREV_9280_20_OR_LATER(ah))
  1128. REG_WRITE_ARRAY(&ahp->ah_iniModesTxGain, modesIndex, regWrites);
  1129. for (i = 0; i < ahp->ah_iniCommon.ia_rows; i++) {
  1130. u32 reg = INI_RA(&ahp->ah_iniCommon, i, 0);
  1131. u32 val = INI_RA(&ahp->ah_iniCommon, i, 1);
  1132. REG_WRITE(ah, reg, val);
  1133. if (reg >= 0x7800 && reg < 0x78a0
  1134. && ah->ah_config.analog_shiftreg) {
  1135. udelay(100);
  1136. }
  1137. DO_DELAY(regWrites);
  1138. }
  1139. ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
  1140. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
  1141. REG_WRITE_ARRAY(&ahp->ah_iniModesAdditional, modesIndex,
  1142. regWrites);
  1143. }
  1144. ath9k_hw_override_ini(ah, chan);
  1145. ath9k_hw_set_regs(ah, chan, macmode);
  1146. ath9k_hw_init_chain_masks(ah);
  1147. status = ath9k_hw_set_txpower(ah, chan,
  1148. ath9k_regd_get_ctl(ah, chan),
  1149. ath9k_regd_get_antenna_allowed(ah,
  1150. chan),
  1151. chan->maxRegTxPower * 2,
  1152. min((u32) MAX_RATE_POWER,
  1153. (u32) ah->ah_powerLimit));
  1154. if (status != 0) {
  1155. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1156. "error init'ing transmit power\n");
  1157. return -EIO;
  1158. }
  1159. if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
  1160. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  1161. "ar5416SetRfRegs failed\n");
  1162. return -EIO;
  1163. }
  1164. return 0;
  1165. }
  1166. /****************************************/
  1167. /* Reset and Channel Switching Routines */
  1168. /****************************************/
  1169. static void ath9k_hw_set_rfmode(struct ath_hal *ah, struct ath9k_channel *chan)
  1170. {
  1171. u32 rfMode = 0;
  1172. if (chan == NULL)
  1173. return;
  1174. rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
  1175. ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
  1176. if (!AR_SREV_9280_10_OR_LATER(ah))
  1177. rfMode |= (IS_CHAN_5GHZ(chan)) ?
  1178. AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
  1179. if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
  1180. rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
  1181. REG_WRITE(ah, AR_PHY_MODE, rfMode);
  1182. }
  1183. static void ath9k_hw_mark_phy_inactive(struct ath_hal *ah)
  1184. {
  1185. REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
  1186. }
  1187. static inline void ath9k_hw_set_dma(struct ath_hal *ah)
  1188. {
  1189. u32 regval;
  1190. regval = REG_READ(ah, AR_AHB_MODE);
  1191. REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
  1192. regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
  1193. REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
  1194. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->ah_txTrigLevel);
  1195. regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
  1196. REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
  1197. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  1198. if (AR_SREV_9285(ah)) {
  1199. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1200. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  1201. } else {
  1202. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  1203. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  1204. }
  1205. }
  1206. static void ath9k_hw_set_operating_mode(struct ath_hal *ah, int opmode)
  1207. {
  1208. u32 val;
  1209. val = REG_READ(ah, AR_STA_ID1);
  1210. val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
  1211. switch (opmode) {
  1212. case NL80211_IFTYPE_AP:
  1213. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
  1214. | AR_STA_ID1_KSRCH_MODE);
  1215. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1216. break;
  1217. case NL80211_IFTYPE_ADHOC:
  1218. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
  1219. | AR_STA_ID1_KSRCH_MODE);
  1220. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1221. break;
  1222. case NL80211_IFTYPE_STATION:
  1223. case NL80211_IFTYPE_MONITOR:
  1224. REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
  1225. break;
  1226. }
  1227. }
  1228. static inline void ath9k_hw_get_delta_slope_vals(struct ath_hal *ah,
  1229. u32 coef_scaled,
  1230. u32 *coef_mantissa,
  1231. u32 *coef_exponent)
  1232. {
  1233. u32 coef_exp, coef_man;
  1234. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1235. if ((coef_scaled >> coef_exp) & 0x1)
  1236. break;
  1237. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1238. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1239. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1240. *coef_exponent = coef_exp - 16;
  1241. }
  1242. static void ath9k_hw_set_delta_slope(struct ath_hal *ah,
  1243. struct ath9k_channel *chan)
  1244. {
  1245. u32 coef_scaled, ds_coef_exp, ds_coef_man;
  1246. u32 clockMhzScaled = 0x64000000;
  1247. struct chan_centers centers;
  1248. if (IS_CHAN_HALF_RATE(chan))
  1249. clockMhzScaled = clockMhzScaled >> 1;
  1250. else if (IS_CHAN_QUARTER_RATE(chan))
  1251. clockMhzScaled = clockMhzScaled >> 2;
  1252. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1253. coef_scaled = clockMhzScaled / centers.synth_center;
  1254. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1255. &ds_coef_exp);
  1256. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1257. AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
  1258. REG_RMW_FIELD(ah, AR_PHY_TIMING3,
  1259. AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
  1260. coef_scaled = (9 * coef_scaled) / 10;
  1261. ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
  1262. &ds_coef_exp);
  1263. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1264. AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
  1265. REG_RMW_FIELD(ah, AR_PHY_HALFGI,
  1266. AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
  1267. }
  1268. static bool ath9k_hw_set_reset(struct ath_hal *ah, int type)
  1269. {
  1270. u32 rst_flags;
  1271. u32 tmpReg;
  1272. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1273. AR_RTC_FORCE_WAKE_ON_INT);
  1274. if (AR_SREV_9100(ah)) {
  1275. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1276. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1277. } else {
  1278. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1279. if (tmpReg &
  1280. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  1281. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  1282. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1283. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1284. } else {
  1285. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1286. }
  1287. rst_flags = AR_RTC_RC_MAC_WARM;
  1288. if (type == ATH9K_RESET_COLD)
  1289. rst_flags |= AR_RTC_RC_MAC_COLD;
  1290. }
  1291. REG_WRITE(ah, (u16) (AR_RTC_RC), rst_flags);
  1292. udelay(50);
  1293. REG_WRITE(ah, (u16) (AR_RTC_RC), 0);
  1294. if (!ath9k_hw_wait(ah, (u16) (AR_RTC_RC), AR_RTC_RC_M, 0)) {
  1295. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  1296. "RTC stuck in MAC reset\n");
  1297. return false;
  1298. }
  1299. if (!AR_SREV_9100(ah))
  1300. REG_WRITE(ah, AR_RC, 0);
  1301. ath9k_hw_init_pll(ah, NULL);
  1302. if (AR_SREV_9100(ah))
  1303. udelay(50);
  1304. return true;
  1305. }
  1306. static bool ath9k_hw_set_reset_power_on(struct ath_hal *ah)
  1307. {
  1308. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1309. AR_RTC_FORCE_WAKE_ON_INT);
  1310. REG_WRITE(ah, (u16) (AR_RTC_RESET), 0);
  1311. REG_WRITE(ah, (u16) (AR_RTC_RESET), 1);
  1312. if (!ath9k_hw_wait(ah,
  1313. AR_RTC_STATUS,
  1314. AR_RTC_STATUS_M,
  1315. AR_RTC_STATUS_ON)) {
  1316. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
  1317. return false;
  1318. }
  1319. ath9k_hw_read_revisions(ah);
  1320. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1321. }
  1322. static bool ath9k_hw_set_reset_reg(struct ath_hal *ah, u32 type)
  1323. {
  1324. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1325. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1326. switch (type) {
  1327. case ATH9K_RESET_POWER_ON:
  1328. return ath9k_hw_set_reset_power_on(ah);
  1329. break;
  1330. case ATH9K_RESET_WARM:
  1331. case ATH9K_RESET_COLD:
  1332. return ath9k_hw_set_reset(ah, type);
  1333. break;
  1334. default:
  1335. return false;
  1336. }
  1337. }
  1338. static void ath9k_hw_set_regs(struct ath_hal *ah, struct ath9k_channel *chan,
  1339. enum ath9k_ht_macmode macmode)
  1340. {
  1341. u32 phymode;
  1342. struct ath_hal_5416 *ahp = AH5416(ah);
  1343. phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
  1344. | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH;
  1345. if (IS_CHAN_HT40(chan)) {
  1346. phymode |= AR_PHY_FC_DYN2040_EN;
  1347. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  1348. (chan->chanmode == CHANNEL_G_HT40PLUS))
  1349. phymode |= AR_PHY_FC_DYN2040_PRI_CH;
  1350. if (ahp->ah_extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
  1351. phymode |= AR_PHY_FC_DYN2040_EXT_CH;
  1352. }
  1353. REG_WRITE(ah, AR_PHY_TURBO, phymode);
  1354. ath9k_hw_set11nmac2040(ah, macmode);
  1355. REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
  1356. REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
  1357. }
  1358. static bool ath9k_hw_chip_reset(struct ath_hal *ah,
  1359. struct ath9k_channel *chan)
  1360. {
  1361. struct ath_hal_5416 *ahp = AH5416(ah);
  1362. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1363. return false;
  1364. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1365. return false;
  1366. ahp->ah_chipFullSleep = false;
  1367. ath9k_hw_init_pll(ah, chan);
  1368. ath9k_hw_set_rfmode(ah, chan);
  1369. return true;
  1370. }
  1371. static struct ath9k_channel *ath9k_hw_check_chan(struct ath_hal *ah,
  1372. struct ath9k_channel *chan)
  1373. {
  1374. if (!(IS_CHAN_2GHZ(chan) ^ IS_CHAN_5GHZ(chan))) {
  1375. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1376. "invalid channel %u/0x%x; not marked as "
  1377. "2GHz or 5GHz\n", chan->channel, chan->channelFlags);
  1378. return NULL;
  1379. }
  1380. if (!IS_CHAN_OFDM(chan) &&
  1381. !IS_CHAN_B(chan) &&
  1382. !IS_CHAN_HT20(chan) &&
  1383. !IS_CHAN_HT40(chan)) {
  1384. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1385. "invalid channel %u/0x%x; not marked as "
  1386. "OFDM or CCK or HT20 or HT40PLUS or HT40MINUS\n",
  1387. chan->channel, chan->channelFlags);
  1388. return NULL;
  1389. }
  1390. return ath9k_regd_check_channel(ah, chan);
  1391. }
  1392. static bool ath9k_hw_channel_change(struct ath_hal *ah,
  1393. struct ath9k_channel *chan,
  1394. enum ath9k_ht_macmode macmode)
  1395. {
  1396. u32 synthDelay, qnum;
  1397. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1398. if (ath9k_hw_numtxpending(ah, qnum)) {
  1399. DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
  1400. "Transmit frames pending on queue %d\n", qnum);
  1401. return false;
  1402. }
  1403. }
  1404. REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
  1405. if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
  1406. AR_PHY_RFBUS_GRANT_EN)) {
  1407. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  1408. "Could not kill baseband RX\n");
  1409. return false;
  1410. }
  1411. ath9k_hw_set_regs(ah, chan, macmode);
  1412. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1413. if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
  1414. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1415. "failed to set channel\n");
  1416. return false;
  1417. }
  1418. } else {
  1419. if (!(ath9k_hw_set_channel(ah, chan))) {
  1420. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1421. "failed to set channel\n");
  1422. return false;
  1423. }
  1424. }
  1425. if (ath9k_hw_set_txpower(ah, chan,
  1426. ath9k_regd_get_ctl(ah, chan),
  1427. ath9k_regd_get_antenna_allowed(ah, chan),
  1428. chan->maxRegTxPower * 2,
  1429. min((u32) MAX_RATE_POWER,
  1430. (u32) ah->ah_powerLimit)) != 0) {
  1431. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1432. "error init'ing transmit power\n");
  1433. return false;
  1434. }
  1435. synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
  1436. if (IS_CHAN_B(chan))
  1437. synthDelay = (4 * synthDelay) / 22;
  1438. else
  1439. synthDelay /= 10;
  1440. udelay(synthDelay + BASE_ACTIVATE_DELAY);
  1441. REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
  1442. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1443. ath9k_hw_set_delta_slope(ah, chan);
  1444. if (AR_SREV_9280_10_OR_LATER(ah))
  1445. ath9k_hw_9280_spur_mitigate(ah, chan);
  1446. else
  1447. ath9k_hw_spur_mitigate(ah, chan);
  1448. if (!chan->oneTimeCalsDone)
  1449. chan->oneTimeCalsDone = true;
  1450. return true;
  1451. }
  1452. static void ath9k_hw_9280_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan)
  1453. {
  1454. int bb_spur = AR_NO_SPUR;
  1455. int freq;
  1456. int bin, cur_bin;
  1457. int bb_spur_off, spur_subchannel_sd;
  1458. int spur_freq_sd;
  1459. int spur_delta_phase;
  1460. int denominator;
  1461. int upper, lower, cur_vit_mask;
  1462. int tmp, newVal;
  1463. int i;
  1464. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  1465. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  1466. };
  1467. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  1468. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  1469. };
  1470. int inc[4] = { 0, 100, 0, 0 };
  1471. struct chan_centers centers;
  1472. int8_t mask_m[123];
  1473. int8_t mask_p[123];
  1474. int8_t mask_amt;
  1475. int tmp_mask;
  1476. int cur_bb_spur;
  1477. bool is2GHz = IS_CHAN_2GHZ(chan);
  1478. memset(&mask_m, 0, sizeof(int8_t) * 123);
  1479. memset(&mask_p, 0, sizeof(int8_t) * 123);
  1480. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1481. freq = centers.synth_center;
  1482. ah->ah_config.spurmode = SPUR_ENABLE_EEPROM;
  1483. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  1484. cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
  1485. if (is2GHz)
  1486. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
  1487. else
  1488. cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
  1489. if (AR_NO_SPUR == cur_bb_spur)
  1490. break;
  1491. cur_bb_spur = cur_bb_spur - freq;
  1492. if (IS_CHAN_HT40(chan)) {
  1493. if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
  1494. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
  1495. bb_spur = cur_bb_spur;
  1496. break;
  1497. }
  1498. } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
  1499. (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
  1500. bb_spur = cur_bb_spur;
  1501. break;
  1502. }
  1503. }
  1504. if (AR_NO_SPUR == bb_spur) {
  1505. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  1506. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  1507. return;
  1508. } else {
  1509. REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
  1510. AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
  1511. }
  1512. bin = bb_spur * 320;
  1513. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  1514. newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  1515. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  1516. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  1517. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  1518. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
  1519. newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  1520. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  1521. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  1522. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  1523. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  1524. REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
  1525. if (IS_CHAN_HT40(chan)) {
  1526. if (bb_spur < 0) {
  1527. spur_subchannel_sd = 1;
  1528. bb_spur_off = bb_spur + 10;
  1529. } else {
  1530. spur_subchannel_sd = 0;
  1531. bb_spur_off = bb_spur - 10;
  1532. }
  1533. } else {
  1534. spur_subchannel_sd = 0;
  1535. bb_spur_off = bb_spur;
  1536. }
  1537. if (IS_CHAN_HT40(chan))
  1538. spur_delta_phase =
  1539. ((bb_spur * 262144) /
  1540. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1541. else
  1542. spur_delta_phase =
  1543. ((bb_spur * 524288) /
  1544. 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1545. denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
  1546. spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
  1547. newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  1548. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  1549. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  1550. REG_WRITE(ah, AR_PHY_TIMING11, newVal);
  1551. newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
  1552. REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
  1553. cur_bin = -6000;
  1554. upper = bin + 100;
  1555. lower = bin - 100;
  1556. for (i = 0; i < 4; i++) {
  1557. int pilot_mask = 0;
  1558. int chan_mask = 0;
  1559. int bp = 0;
  1560. for (bp = 0; bp < 30; bp++) {
  1561. if ((cur_bin > lower) && (cur_bin < upper)) {
  1562. pilot_mask = pilot_mask | 0x1 << bp;
  1563. chan_mask = chan_mask | 0x1 << bp;
  1564. }
  1565. cur_bin += 100;
  1566. }
  1567. cur_bin += inc[i];
  1568. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  1569. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  1570. }
  1571. cur_vit_mask = 6100;
  1572. upper = bin + 120;
  1573. lower = bin - 120;
  1574. for (i = 0; i < 123; i++) {
  1575. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  1576. /* workaround for gcc bug #37014 */
  1577. volatile int tmp = abs(cur_vit_mask - bin);
  1578. if (tmp < 75)
  1579. mask_amt = 1;
  1580. else
  1581. mask_amt = 0;
  1582. if (cur_vit_mask < 0)
  1583. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  1584. else
  1585. mask_p[cur_vit_mask / 100] = mask_amt;
  1586. }
  1587. cur_vit_mask -= 100;
  1588. }
  1589. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  1590. | (mask_m[48] << 26) | (mask_m[49] << 24)
  1591. | (mask_m[50] << 22) | (mask_m[51] << 20)
  1592. | (mask_m[52] << 18) | (mask_m[53] << 16)
  1593. | (mask_m[54] << 14) | (mask_m[55] << 12)
  1594. | (mask_m[56] << 10) | (mask_m[57] << 8)
  1595. | (mask_m[58] << 6) | (mask_m[59] << 4)
  1596. | (mask_m[60] << 2) | (mask_m[61] << 0);
  1597. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  1598. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  1599. tmp_mask = (mask_m[31] << 28)
  1600. | (mask_m[32] << 26) | (mask_m[33] << 24)
  1601. | (mask_m[34] << 22) | (mask_m[35] << 20)
  1602. | (mask_m[36] << 18) | (mask_m[37] << 16)
  1603. | (mask_m[48] << 14) | (mask_m[39] << 12)
  1604. | (mask_m[40] << 10) | (mask_m[41] << 8)
  1605. | (mask_m[42] << 6) | (mask_m[43] << 4)
  1606. | (mask_m[44] << 2) | (mask_m[45] << 0);
  1607. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  1608. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  1609. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  1610. | (mask_m[18] << 26) | (mask_m[18] << 24)
  1611. | (mask_m[20] << 22) | (mask_m[20] << 20)
  1612. | (mask_m[22] << 18) | (mask_m[22] << 16)
  1613. | (mask_m[24] << 14) | (mask_m[24] << 12)
  1614. | (mask_m[25] << 10) | (mask_m[26] << 8)
  1615. | (mask_m[27] << 6) | (mask_m[28] << 4)
  1616. | (mask_m[29] << 2) | (mask_m[30] << 0);
  1617. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  1618. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  1619. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  1620. | (mask_m[2] << 26) | (mask_m[3] << 24)
  1621. | (mask_m[4] << 22) | (mask_m[5] << 20)
  1622. | (mask_m[6] << 18) | (mask_m[7] << 16)
  1623. | (mask_m[8] << 14) | (mask_m[9] << 12)
  1624. | (mask_m[10] << 10) | (mask_m[11] << 8)
  1625. | (mask_m[12] << 6) | (mask_m[13] << 4)
  1626. | (mask_m[14] << 2) | (mask_m[15] << 0);
  1627. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  1628. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  1629. tmp_mask = (mask_p[15] << 28)
  1630. | (mask_p[14] << 26) | (mask_p[13] << 24)
  1631. | (mask_p[12] << 22) | (mask_p[11] << 20)
  1632. | (mask_p[10] << 18) | (mask_p[9] << 16)
  1633. | (mask_p[8] << 14) | (mask_p[7] << 12)
  1634. | (mask_p[6] << 10) | (mask_p[5] << 8)
  1635. | (mask_p[4] << 6) | (mask_p[3] << 4)
  1636. | (mask_p[2] << 2) | (mask_p[1] << 0);
  1637. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  1638. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  1639. tmp_mask = (mask_p[30] << 28)
  1640. | (mask_p[29] << 26) | (mask_p[28] << 24)
  1641. | (mask_p[27] << 22) | (mask_p[26] << 20)
  1642. | (mask_p[25] << 18) | (mask_p[24] << 16)
  1643. | (mask_p[23] << 14) | (mask_p[22] << 12)
  1644. | (mask_p[21] << 10) | (mask_p[20] << 8)
  1645. | (mask_p[19] << 6) | (mask_p[18] << 4)
  1646. | (mask_p[17] << 2) | (mask_p[16] << 0);
  1647. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  1648. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  1649. tmp_mask = (mask_p[45] << 28)
  1650. | (mask_p[44] << 26) | (mask_p[43] << 24)
  1651. | (mask_p[42] << 22) | (mask_p[41] << 20)
  1652. | (mask_p[40] << 18) | (mask_p[39] << 16)
  1653. | (mask_p[38] << 14) | (mask_p[37] << 12)
  1654. | (mask_p[36] << 10) | (mask_p[35] << 8)
  1655. | (mask_p[34] << 6) | (mask_p[33] << 4)
  1656. | (mask_p[32] << 2) | (mask_p[31] << 0);
  1657. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  1658. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  1659. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  1660. | (mask_p[59] << 26) | (mask_p[58] << 24)
  1661. | (mask_p[57] << 22) | (mask_p[56] << 20)
  1662. | (mask_p[55] << 18) | (mask_p[54] << 16)
  1663. | (mask_p[53] << 14) | (mask_p[52] << 12)
  1664. | (mask_p[51] << 10) | (mask_p[50] << 8)
  1665. | (mask_p[49] << 6) | (mask_p[48] << 4)
  1666. | (mask_p[47] << 2) | (mask_p[46] << 0);
  1667. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  1668. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  1669. }
  1670. static void ath9k_hw_spur_mitigate(struct ath_hal *ah, struct ath9k_channel *chan)
  1671. {
  1672. int bb_spur = AR_NO_SPUR;
  1673. int bin, cur_bin;
  1674. int spur_freq_sd;
  1675. int spur_delta_phase;
  1676. int denominator;
  1677. int upper, lower, cur_vit_mask;
  1678. int tmp, new;
  1679. int i;
  1680. int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
  1681. AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
  1682. };
  1683. int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
  1684. AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
  1685. };
  1686. int inc[4] = { 0, 100, 0, 0 };
  1687. int8_t mask_m[123];
  1688. int8_t mask_p[123];
  1689. int8_t mask_amt;
  1690. int tmp_mask;
  1691. int cur_bb_spur;
  1692. bool is2GHz = IS_CHAN_2GHZ(chan);
  1693. memset(&mask_m, 0, sizeof(int8_t) * 123);
  1694. memset(&mask_p, 0, sizeof(int8_t) * 123);
  1695. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  1696. cur_bb_spur = ath9k_hw_eeprom_get_spur_chan(ah, i, is2GHz);
  1697. if (AR_NO_SPUR == cur_bb_spur)
  1698. break;
  1699. cur_bb_spur = cur_bb_spur - (chan->channel * 10);
  1700. if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
  1701. bb_spur = cur_bb_spur;
  1702. break;
  1703. }
  1704. }
  1705. if (AR_NO_SPUR == bb_spur)
  1706. return;
  1707. bin = bb_spur * 32;
  1708. tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
  1709. new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
  1710. AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
  1711. AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
  1712. AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
  1713. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
  1714. new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
  1715. AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
  1716. AR_PHY_SPUR_REG_MASK_RATE_SELECT |
  1717. AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
  1718. SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
  1719. REG_WRITE(ah, AR_PHY_SPUR_REG, new);
  1720. spur_delta_phase = ((bb_spur * 524288) / 100) &
  1721. AR_PHY_TIMING11_SPUR_DELTA_PHASE;
  1722. denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
  1723. spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
  1724. new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
  1725. SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
  1726. SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
  1727. REG_WRITE(ah, AR_PHY_TIMING11, new);
  1728. cur_bin = -6000;
  1729. upper = bin + 100;
  1730. lower = bin - 100;
  1731. for (i = 0; i < 4; i++) {
  1732. int pilot_mask = 0;
  1733. int chan_mask = 0;
  1734. int bp = 0;
  1735. for (bp = 0; bp < 30; bp++) {
  1736. if ((cur_bin > lower) && (cur_bin < upper)) {
  1737. pilot_mask = pilot_mask | 0x1 << bp;
  1738. chan_mask = chan_mask | 0x1 << bp;
  1739. }
  1740. cur_bin += 100;
  1741. }
  1742. cur_bin += inc[i];
  1743. REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
  1744. REG_WRITE(ah, chan_mask_reg[i], chan_mask);
  1745. }
  1746. cur_vit_mask = 6100;
  1747. upper = bin + 120;
  1748. lower = bin - 120;
  1749. for (i = 0; i < 123; i++) {
  1750. if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
  1751. /* workaround for gcc bug #37014 */
  1752. volatile int tmp = abs(cur_vit_mask - bin);
  1753. if (tmp < 75)
  1754. mask_amt = 1;
  1755. else
  1756. mask_amt = 0;
  1757. if (cur_vit_mask < 0)
  1758. mask_m[abs(cur_vit_mask / 100)] = mask_amt;
  1759. else
  1760. mask_p[cur_vit_mask / 100] = mask_amt;
  1761. }
  1762. cur_vit_mask -= 100;
  1763. }
  1764. tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
  1765. | (mask_m[48] << 26) | (mask_m[49] << 24)
  1766. | (mask_m[50] << 22) | (mask_m[51] << 20)
  1767. | (mask_m[52] << 18) | (mask_m[53] << 16)
  1768. | (mask_m[54] << 14) | (mask_m[55] << 12)
  1769. | (mask_m[56] << 10) | (mask_m[57] << 8)
  1770. | (mask_m[58] << 6) | (mask_m[59] << 4)
  1771. | (mask_m[60] << 2) | (mask_m[61] << 0);
  1772. REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
  1773. REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
  1774. tmp_mask = (mask_m[31] << 28)
  1775. | (mask_m[32] << 26) | (mask_m[33] << 24)
  1776. | (mask_m[34] << 22) | (mask_m[35] << 20)
  1777. | (mask_m[36] << 18) | (mask_m[37] << 16)
  1778. | (mask_m[48] << 14) | (mask_m[39] << 12)
  1779. | (mask_m[40] << 10) | (mask_m[41] << 8)
  1780. | (mask_m[42] << 6) | (mask_m[43] << 4)
  1781. | (mask_m[44] << 2) | (mask_m[45] << 0);
  1782. REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
  1783. REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
  1784. tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
  1785. | (mask_m[18] << 26) | (mask_m[18] << 24)
  1786. | (mask_m[20] << 22) | (mask_m[20] << 20)
  1787. | (mask_m[22] << 18) | (mask_m[22] << 16)
  1788. | (mask_m[24] << 14) | (mask_m[24] << 12)
  1789. | (mask_m[25] << 10) | (mask_m[26] << 8)
  1790. | (mask_m[27] << 6) | (mask_m[28] << 4)
  1791. | (mask_m[29] << 2) | (mask_m[30] << 0);
  1792. REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
  1793. REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
  1794. tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
  1795. | (mask_m[2] << 26) | (mask_m[3] << 24)
  1796. | (mask_m[4] << 22) | (mask_m[5] << 20)
  1797. | (mask_m[6] << 18) | (mask_m[7] << 16)
  1798. | (mask_m[8] << 14) | (mask_m[9] << 12)
  1799. | (mask_m[10] << 10) | (mask_m[11] << 8)
  1800. | (mask_m[12] << 6) | (mask_m[13] << 4)
  1801. | (mask_m[14] << 2) | (mask_m[15] << 0);
  1802. REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
  1803. REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
  1804. tmp_mask = (mask_p[15] << 28)
  1805. | (mask_p[14] << 26) | (mask_p[13] << 24)
  1806. | (mask_p[12] << 22) | (mask_p[11] << 20)
  1807. | (mask_p[10] << 18) | (mask_p[9] << 16)
  1808. | (mask_p[8] << 14) | (mask_p[7] << 12)
  1809. | (mask_p[6] << 10) | (mask_p[5] << 8)
  1810. | (mask_p[4] << 6) | (mask_p[3] << 4)
  1811. | (mask_p[2] << 2) | (mask_p[1] << 0);
  1812. REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
  1813. REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
  1814. tmp_mask = (mask_p[30] << 28)
  1815. | (mask_p[29] << 26) | (mask_p[28] << 24)
  1816. | (mask_p[27] << 22) | (mask_p[26] << 20)
  1817. | (mask_p[25] << 18) | (mask_p[24] << 16)
  1818. | (mask_p[23] << 14) | (mask_p[22] << 12)
  1819. | (mask_p[21] << 10) | (mask_p[20] << 8)
  1820. | (mask_p[19] << 6) | (mask_p[18] << 4)
  1821. | (mask_p[17] << 2) | (mask_p[16] << 0);
  1822. REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
  1823. REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
  1824. tmp_mask = (mask_p[45] << 28)
  1825. | (mask_p[44] << 26) | (mask_p[43] << 24)
  1826. | (mask_p[42] << 22) | (mask_p[41] << 20)
  1827. | (mask_p[40] << 18) | (mask_p[39] << 16)
  1828. | (mask_p[38] << 14) | (mask_p[37] << 12)
  1829. | (mask_p[36] << 10) | (mask_p[35] << 8)
  1830. | (mask_p[34] << 6) | (mask_p[33] << 4)
  1831. | (mask_p[32] << 2) | (mask_p[31] << 0);
  1832. REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
  1833. REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
  1834. tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
  1835. | (mask_p[59] << 26) | (mask_p[58] << 24)
  1836. | (mask_p[57] << 22) | (mask_p[56] << 20)
  1837. | (mask_p[55] << 18) | (mask_p[54] << 16)
  1838. | (mask_p[53] << 14) | (mask_p[52] << 12)
  1839. | (mask_p[51] << 10) | (mask_p[50] << 8)
  1840. | (mask_p[49] << 6) | (mask_p[48] << 4)
  1841. | (mask_p[47] << 2) | (mask_p[46] << 0);
  1842. REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
  1843. REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
  1844. }
  1845. bool ath9k_hw_reset(struct ath_hal *ah, struct ath9k_channel *chan,
  1846. enum ath9k_ht_macmode macmode,
  1847. u8 txchainmask, u8 rxchainmask,
  1848. enum ath9k_ht_extprotspacing extprotspacing,
  1849. bool bChannelChange, int *status)
  1850. {
  1851. u32 saveLedState;
  1852. struct ath_hal_5416 *ahp = AH5416(ah);
  1853. struct ath9k_channel *curchan = ah->ah_curchan;
  1854. u32 saveDefAntenna;
  1855. u32 macStaId1;
  1856. int ecode;
  1857. int i, rx_chainmask;
  1858. ahp->ah_extprotspacing = extprotspacing;
  1859. ahp->ah_txchainmask = txchainmask;
  1860. ahp->ah_rxchainmask = rxchainmask;
  1861. if (AR_SREV_9280(ah)) {
  1862. ahp->ah_txchainmask &= 0x3;
  1863. ahp->ah_rxchainmask &= 0x3;
  1864. }
  1865. if (ath9k_hw_check_chan(ah, chan) == NULL) {
  1866. DPRINTF(ah->ah_sc, ATH_DBG_CHANNEL,
  1867. "invalid channel %u/0x%x; no mapping\n",
  1868. chan->channel, chan->channelFlags);
  1869. ecode = -EINVAL;
  1870. goto bad;
  1871. }
  1872. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  1873. ecode = -EIO;
  1874. goto bad;
  1875. }
  1876. if (curchan)
  1877. ath9k_hw_getnf(ah, curchan);
  1878. if (bChannelChange &&
  1879. (ahp->ah_chipFullSleep != true) &&
  1880. (ah->ah_curchan != NULL) &&
  1881. (chan->channel != ah->ah_curchan->channel) &&
  1882. ((chan->channelFlags & CHANNEL_ALL) ==
  1883. (ah->ah_curchan->channelFlags & CHANNEL_ALL)) &&
  1884. (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
  1885. !IS_CHAN_A_5MHZ_SPACED(ah->ah_curchan)))) {
  1886. if (ath9k_hw_channel_change(ah, chan, macmode)) {
  1887. ath9k_hw_loadnf(ah, ah->ah_curchan);
  1888. ath9k_hw_start_nfcal(ah);
  1889. return true;
  1890. }
  1891. }
  1892. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1893. if (saveDefAntenna == 0)
  1894. saveDefAntenna = 1;
  1895. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1896. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1897. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1898. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1899. ath9k_hw_mark_phy_inactive(ah);
  1900. if (!ath9k_hw_chip_reset(ah, chan)) {
  1901. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "chip reset failed\n");
  1902. ecode = -EINVAL;
  1903. goto bad;
  1904. }
  1905. if (AR_SREV_9280(ah)) {
  1906. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  1907. AR_GPIO_JTAG_DISABLE);
  1908. if (test_bit(ATH9K_MODE_11A, ah->ah_caps.wireless_modes)) {
  1909. if (IS_CHAN_5GHZ(chan))
  1910. ath9k_hw_set_gpio(ah, 9, 0);
  1911. else
  1912. ath9k_hw_set_gpio(ah, 9, 1);
  1913. }
  1914. ath9k_hw_cfg_output(ah, 9, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1915. }
  1916. ecode = ath9k_hw_process_ini(ah, chan, macmode);
  1917. if (ecode != 0) {
  1918. ecode = -EINVAL;
  1919. goto bad;
  1920. }
  1921. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1922. ath9k_hw_set_delta_slope(ah, chan);
  1923. if (AR_SREV_9280_10_OR_LATER(ah))
  1924. ath9k_hw_9280_spur_mitigate(ah, chan);
  1925. else
  1926. ath9k_hw_spur_mitigate(ah, chan);
  1927. if (!ath9k_hw_eeprom_set_board_values(ah, chan)) {
  1928. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1929. "error setting board options\n");
  1930. ecode = -EIO;
  1931. goto bad;
  1932. }
  1933. ath9k_hw_decrease_chain_power(ah, chan);
  1934. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ahp->ah_macaddr));
  1935. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ahp->ah_macaddr + 4)
  1936. | macStaId1
  1937. | AR_STA_ID1_RTS_USE_DEF
  1938. | (ah->ah_config.
  1939. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1940. | ahp->ah_staId1Defaults);
  1941. ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
  1942. REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
  1943. REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
  1944. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1945. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
  1946. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
  1947. ((ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S));
  1948. REG_WRITE(ah, AR_ISR, ~0);
  1949. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1950. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1951. if (!(ath9k_hw_ar9280_set_channel(ah, chan))) {
  1952. ecode = -EIO;
  1953. goto bad;
  1954. }
  1955. } else {
  1956. if (!(ath9k_hw_set_channel(ah, chan))) {
  1957. ecode = -EIO;
  1958. goto bad;
  1959. }
  1960. }
  1961. for (i = 0; i < AR_NUM_DCU; i++)
  1962. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1963. ahp->ah_intrTxqs = 0;
  1964. for (i = 0; i < ah->ah_caps.total_queues; i++)
  1965. ath9k_hw_resettxqueue(ah, i);
  1966. ath9k_hw_init_interrupt_masks(ah, ah->ah_opmode);
  1967. ath9k_hw_init_qos(ah);
  1968. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1969. if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1970. ath9k_enable_rfkill(ah);
  1971. #endif
  1972. ath9k_hw_init_user_settings(ah);
  1973. REG_WRITE(ah, AR_STA_ID1,
  1974. REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
  1975. ath9k_hw_set_dma(ah);
  1976. REG_WRITE(ah, AR_OBS, 8);
  1977. if (ahp->ah_intrMitigation) {
  1978. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1979. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1980. }
  1981. ath9k_hw_init_bb(ah, chan);
  1982. if (!ath9k_hw_init_cal(ah, chan)){
  1983. ecode = -EIO;;
  1984. goto bad;
  1985. }
  1986. rx_chainmask = ahp->ah_rxchainmask;
  1987. if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
  1988. REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
  1989. REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
  1990. }
  1991. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1992. if (AR_SREV_9100(ah)) {
  1993. u32 mask;
  1994. mask = REG_READ(ah, AR_CFG);
  1995. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1996. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  1997. "CFG Byte Swap Set 0x%x\n", mask);
  1998. } else {
  1999. mask =
  2000. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  2001. REG_WRITE(ah, AR_CFG, mask);
  2002. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  2003. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  2004. }
  2005. } else {
  2006. #ifdef __BIG_ENDIAN
  2007. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  2008. #endif
  2009. }
  2010. return true;
  2011. bad:
  2012. if (status)
  2013. *status = ecode;
  2014. return false;
  2015. }
  2016. /************************/
  2017. /* Key Cache Management */
  2018. /************************/
  2019. bool ath9k_hw_keyreset(struct ath_hal *ah, u16 entry)
  2020. {
  2021. u32 keyType;
  2022. if (entry >= ah->ah_caps.keycache_size) {
  2023. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2024. "entry %u out of range\n", entry);
  2025. return false;
  2026. }
  2027. keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
  2028. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
  2029. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
  2030. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
  2031. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
  2032. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
  2033. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
  2034. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
  2035. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
  2036. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  2037. u16 micentry = entry + 64;
  2038. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
  2039. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  2040. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
  2041. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  2042. }
  2043. if (ah->ah_curchan == NULL)
  2044. return true;
  2045. return true;
  2046. }
  2047. bool ath9k_hw_keysetmac(struct ath_hal *ah, u16 entry, const u8 *mac)
  2048. {
  2049. u32 macHi, macLo;
  2050. if (entry >= ah->ah_caps.keycache_size) {
  2051. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2052. "entry %u out of range\n", entry);
  2053. return false;
  2054. }
  2055. if (mac != NULL) {
  2056. macHi = (mac[5] << 8) | mac[4];
  2057. macLo = (mac[3] << 24) |
  2058. (mac[2] << 16) |
  2059. (mac[1] << 8) |
  2060. mac[0];
  2061. macLo >>= 1;
  2062. macLo |= (macHi & 1) << 31;
  2063. macHi >>= 1;
  2064. } else {
  2065. macLo = macHi = 0;
  2066. }
  2067. REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
  2068. REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
  2069. return true;
  2070. }
  2071. bool ath9k_hw_set_keycache_entry(struct ath_hal *ah, u16 entry,
  2072. const struct ath9k_keyval *k,
  2073. const u8 *mac, int xorKey)
  2074. {
  2075. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2076. u32 key0, key1, key2, key3, key4;
  2077. u32 keyType;
  2078. u32 xorMask = xorKey ?
  2079. (ATH9K_KEY_XOR << 24 | ATH9K_KEY_XOR << 16 | ATH9K_KEY_XOR << 8
  2080. | ATH9K_KEY_XOR) : 0;
  2081. struct ath_hal_5416 *ahp = AH5416(ah);
  2082. if (entry >= pCap->keycache_size) {
  2083. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2084. "entry %u out of range\n", entry);
  2085. return false;
  2086. }
  2087. switch (k->kv_type) {
  2088. case ATH9K_CIPHER_AES_OCB:
  2089. keyType = AR_KEYTABLE_TYPE_AES;
  2090. break;
  2091. case ATH9K_CIPHER_AES_CCM:
  2092. if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
  2093. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2094. "AES-CCM not supported by mac rev 0x%x\n",
  2095. ah->ah_macRev);
  2096. return false;
  2097. }
  2098. keyType = AR_KEYTABLE_TYPE_CCM;
  2099. break;
  2100. case ATH9K_CIPHER_TKIP:
  2101. keyType = AR_KEYTABLE_TYPE_TKIP;
  2102. if (ATH9K_IS_MIC_ENABLED(ah)
  2103. && entry + 64 >= pCap->keycache_size) {
  2104. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2105. "entry %u inappropriate for TKIP\n", entry);
  2106. return false;
  2107. }
  2108. break;
  2109. case ATH9K_CIPHER_WEP:
  2110. if (k->kv_len < LEN_WEP40) {
  2111. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2112. "WEP key length %u too small\n", k->kv_len);
  2113. return false;
  2114. }
  2115. if (k->kv_len <= LEN_WEP40)
  2116. keyType = AR_KEYTABLE_TYPE_40;
  2117. else if (k->kv_len <= LEN_WEP104)
  2118. keyType = AR_KEYTABLE_TYPE_104;
  2119. else
  2120. keyType = AR_KEYTABLE_TYPE_128;
  2121. break;
  2122. case ATH9K_CIPHER_CLR:
  2123. keyType = AR_KEYTABLE_TYPE_CLR;
  2124. break;
  2125. default:
  2126. DPRINTF(ah->ah_sc, ATH_DBG_KEYCACHE,
  2127. "cipher %u not supported\n", k->kv_type);
  2128. return false;
  2129. }
  2130. key0 = get_unaligned_le32(k->kv_val + 0) ^ xorMask;
  2131. key1 = (get_unaligned_le16(k->kv_val + 4) ^ xorMask) & 0xffff;
  2132. key2 = get_unaligned_le32(k->kv_val + 6) ^ xorMask;
  2133. key3 = (get_unaligned_le16(k->kv_val + 10) ^ xorMask) & 0xffff;
  2134. key4 = get_unaligned_le32(k->kv_val + 12) ^ xorMask;
  2135. if (k->kv_len <= LEN_WEP104)
  2136. key4 &= 0xff;
  2137. if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
  2138. u16 micentry = entry + 64;
  2139. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
  2140. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
  2141. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2142. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2143. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2144. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2145. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2146. if (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) {
  2147. u32 mic0, mic1, mic2, mic3, mic4;
  2148. mic0 = get_unaligned_le32(k->kv_mic + 0);
  2149. mic2 = get_unaligned_le32(k->kv_mic + 4);
  2150. mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
  2151. mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
  2152. mic4 = get_unaligned_le32(k->kv_txmic + 4);
  2153. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  2154. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
  2155. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  2156. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
  2157. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
  2158. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  2159. AR_KEYTABLE_TYPE_CLR);
  2160. } else {
  2161. u32 mic0, mic2;
  2162. mic0 = get_unaligned_le32(k->kv_mic + 0);
  2163. mic2 = get_unaligned_le32(k->kv_mic + 4);
  2164. REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
  2165. REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
  2166. REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
  2167. REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
  2168. REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
  2169. REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
  2170. AR_KEYTABLE_TYPE_CLR);
  2171. }
  2172. REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
  2173. REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
  2174. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2175. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2176. } else {
  2177. REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
  2178. REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
  2179. REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
  2180. REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
  2181. REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
  2182. REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
  2183. (void) ath9k_hw_keysetmac(ah, entry, mac);
  2184. }
  2185. if (ah->ah_curchan == NULL)
  2186. return true;
  2187. return true;
  2188. }
  2189. bool ath9k_hw_keyisvalid(struct ath_hal *ah, u16 entry)
  2190. {
  2191. if (entry < ah->ah_caps.keycache_size) {
  2192. u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
  2193. if (val & AR_KEYTABLE_VALID)
  2194. return true;
  2195. }
  2196. return false;
  2197. }
  2198. /******************************/
  2199. /* Power Management (Chipset) */
  2200. /******************************/
  2201. static void ath9k_set_power_sleep(struct ath_hal *ah, int setChip)
  2202. {
  2203. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2204. if (setChip) {
  2205. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2206. AR_RTC_FORCE_WAKE_EN);
  2207. if (!AR_SREV_9100(ah))
  2208. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  2209. REG_CLR_BIT(ah, (u16) (AR_RTC_RESET),
  2210. AR_RTC_RESET_EN);
  2211. }
  2212. }
  2213. static void ath9k_set_power_network_sleep(struct ath_hal *ah, int setChip)
  2214. {
  2215. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2216. if (setChip) {
  2217. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2218. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2219. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  2220. AR_RTC_FORCE_WAKE_ON_INT);
  2221. } else {
  2222. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  2223. AR_RTC_FORCE_WAKE_EN);
  2224. }
  2225. }
  2226. }
  2227. static bool ath9k_hw_set_power_awake(struct ath_hal *ah,
  2228. int setChip)
  2229. {
  2230. u32 val;
  2231. int i;
  2232. if (setChip) {
  2233. if ((REG_READ(ah, AR_RTC_STATUS) &
  2234. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  2235. if (ath9k_hw_set_reset_reg(ah,
  2236. ATH9K_RESET_POWER_ON) != true) {
  2237. return false;
  2238. }
  2239. }
  2240. if (AR_SREV_9100(ah))
  2241. REG_SET_BIT(ah, AR_RTC_RESET,
  2242. AR_RTC_RESET_EN);
  2243. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2244. AR_RTC_FORCE_WAKE_EN);
  2245. udelay(50);
  2246. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  2247. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  2248. if (val == AR_RTC_STATUS_ON)
  2249. break;
  2250. udelay(50);
  2251. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  2252. AR_RTC_FORCE_WAKE_EN);
  2253. }
  2254. if (i == 0) {
  2255. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2256. "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
  2257. return false;
  2258. }
  2259. }
  2260. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  2261. return true;
  2262. }
  2263. bool ath9k_hw_setpower(struct ath_hal *ah,
  2264. enum ath9k_power_mode mode)
  2265. {
  2266. struct ath_hal_5416 *ahp = AH5416(ah);
  2267. static const char *modes[] = {
  2268. "AWAKE",
  2269. "FULL-SLEEP",
  2270. "NETWORK SLEEP",
  2271. "UNDEFINED"
  2272. };
  2273. int status = true, setChip = true;
  2274. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT, "%s -> %s (%s)\n",
  2275. modes[ahp->ah_powerMode], modes[mode],
  2276. setChip ? "set chip " : "");
  2277. switch (mode) {
  2278. case ATH9K_PM_AWAKE:
  2279. status = ath9k_hw_set_power_awake(ah, setChip);
  2280. break;
  2281. case ATH9K_PM_FULL_SLEEP:
  2282. ath9k_set_power_sleep(ah, setChip);
  2283. ahp->ah_chipFullSleep = true;
  2284. break;
  2285. case ATH9K_PM_NETWORK_SLEEP:
  2286. ath9k_set_power_network_sleep(ah, setChip);
  2287. break;
  2288. default:
  2289. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  2290. "Unknown power mode %u\n", mode);
  2291. return false;
  2292. }
  2293. ahp->ah_powerMode = mode;
  2294. return status;
  2295. }
  2296. void ath9k_hw_configpcipowersave(struct ath_hal *ah, int restore)
  2297. {
  2298. struct ath_hal_5416 *ahp = AH5416(ah);
  2299. u8 i;
  2300. if (ah->ah_isPciExpress != true)
  2301. return;
  2302. if (ah->ah_config.pcie_powersave_enable == 2)
  2303. return;
  2304. if (restore)
  2305. return;
  2306. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2307. for (i = 0; i < ahp->ah_iniPcieSerdes.ia_rows; i++) {
  2308. REG_WRITE(ah, INI_RA(&ahp->ah_iniPcieSerdes, i, 0),
  2309. INI_RA(&ahp->ah_iniPcieSerdes, i, 1));
  2310. }
  2311. udelay(1000);
  2312. } else if (AR_SREV_9280(ah) &&
  2313. (ah->ah_macRev == AR_SREV_REVISION_9280_10)) {
  2314. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
  2315. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2316. REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
  2317. REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
  2318. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
  2319. if (ah->ah_config.pcie_clock_req)
  2320. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
  2321. else
  2322. REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
  2323. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2324. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2325. REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
  2326. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2327. udelay(1000);
  2328. } else {
  2329. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  2330. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  2331. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
  2332. REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
  2333. REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
  2334. REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
  2335. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  2336. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  2337. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
  2338. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  2339. }
  2340. REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
  2341. if (ah->ah_config.pcie_waen) {
  2342. REG_WRITE(ah, AR_WA, ah->ah_config.pcie_waen);
  2343. } else {
  2344. if (AR_SREV_9280(ah))
  2345. REG_WRITE(ah, AR_WA, 0x0040073f);
  2346. else
  2347. REG_WRITE(ah, AR_WA, 0x0000073f);
  2348. }
  2349. }
  2350. /**********************/
  2351. /* Interrupt Handling */
  2352. /**********************/
  2353. bool ath9k_hw_intrpend(struct ath_hal *ah)
  2354. {
  2355. u32 host_isr;
  2356. if (AR_SREV_9100(ah))
  2357. return true;
  2358. host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
  2359. if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
  2360. return true;
  2361. host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  2362. if ((host_isr & AR_INTR_SYNC_DEFAULT)
  2363. && (host_isr != AR_INTR_SPURIOUS))
  2364. return true;
  2365. return false;
  2366. }
  2367. bool ath9k_hw_getisr(struct ath_hal *ah, enum ath9k_int *masked)
  2368. {
  2369. u32 isr = 0;
  2370. u32 mask2 = 0;
  2371. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2372. u32 sync_cause = 0;
  2373. bool fatal_int = false;
  2374. struct ath_hal_5416 *ahp = AH5416(ah);
  2375. if (!AR_SREV_9100(ah)) {
  2376. if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
  2377. if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
  2378. == AR_RTC_STATUS_ON) {
  2379. isr = REG_READ(ah, AR_ISR);
  2380. }
  2381. }
  2382. sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
  2383. AR_INTR_SYNC_DEFAULT;
  2384. *masked = 0;
  2385. if (!isr && !sync_cause)
  2386. return false;
  2387. } else {
  2388. *masked = 0;
  2389. isr = REG_READ(ah, AR_ISR);
  2390. }
  2391. if (isr) {
  2392. if (isr & AR_ISR_BCNMISC) {
  2393. u32 isr2;
  2394. isr2 = REG_READ(ah, AR_ISR_S2);
  2395. if (isr2 & AR_ISR_S2_TIM)
  2396. mask2 |= ATH9K_INT_TIM;
  2397. if (isr2 & AR_ISR_S2_DTIM)
  2398. mask2 |= ATH9K_INT_DTIM;
  2399. if (isr2 & AR_ISR_S2_DTIMSYNC)
  2400. mask2 |= ATH9K_INT_DTIMSYNC;
  2401. if (isr2 & (AR_ISR_S2_CABEND))
  2402. mask2 |= ATH9K_INT_CABEND;
  2403. if (isr2 & AR_ISR_S2_GTT)
  2404. mask2 |= ATH9K_INT_GTT;
  2405. if (isr2 & AR_ISR_S2_CST)
  2406. mask2 |= ATH9K_INT_CST;
  2407. }
  2408. isr = REG_READ(ah, AR_ISR_RAC);
  2409. if (isr == 0xffffffff) {
  2410. *masked = 0;
  2411. return false;
  2412. }
  2413. *masked = isr & ATH9K_INT_COMMON;
  2414. if (ahp->ah_intrMitigation) {
  2415. if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
  2416. *masked |= ATH9K_INT_RX;
  2417. }
  2418. if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
  2419. *masked |= ATH9K_INT_RX;
  2420. if (isr &
  2421. (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
  2422. AR_ISR_TXEOL)) {
  2423. u32 s0_s, s1_s;
  2424. *masked |= ATH9K_INT_TX;
  2425. s0_s = REG_READ(ah, AR_ISR_S0_S);
  2426. ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
  2427. ahp->ah_intrTxqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
  2428. s1_s = REG_READ(ah, AR_ISR_S1_S);
  2429. ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
  2430. ahp->ah_intrTxqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
  2431. }
  2432. if (isr & AR_ISR_RXORN) {
  2433. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2434. "receive FIFO overrun interrupt\n");
  2435. }
  2436. if (!AR_SREV_9100(ah)) {
  2437. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2438. u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
  2439. if (isr5 & AR_ISR_S5_TIM_TIMER)
  2440. *masked |= ATH9K_INT_TIM_TIMER;
  2441. }
  2442. }
  2443. *masked |= mask2;
  2444. }
  2445. if (AR_SREV_9100(ah))
  2446. return true;
  2447. if (sync_cause) {
  2448. fatal_int =
  2449. (sync_cause &
  2450. (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
  2451. ? true : false;
  2452. if (fatal_int) {
  2453. if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
  2454. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2455. "received PCI FATAL interrupt\n");
  2456. }
  2457. if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
  2458. DPRINTF(ah->ah_sc, ATH_DBG_ANY,
  2459. "received PCI PERR interrupt\n");
  2460. }
  2461. }
  2462. if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
  2463. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2464. "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
  2465. REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
  2466. REG_WRITE(ah, AR_RC, 0);
  2467. *masked |= ATH9K_INT_FATAL;
  2468. }
  2469. if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
  2470. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
  2471. "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
  2472. }
  2473. REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
  2474. (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
  2475. }
  2476. return true;
  2477. }
  2478. enum ath9k_int ath9k_hw_intrget(struct ath_hal *ah)
  2479. {
  2480. return AH5416(ah)->ah_maskReg;
  2481. }
  2482. enum ath9k_int ath9k_hw_set_interrupts(struct ath_hal *ah, enum ath9k_int ints)
  2483. {
  2484. struct ath_hal_5416 *ahp = AH5416(ah);
  2485. u32 omask = ahp->ah_maskReg;
  2486. u32 mask, mask2;
  2487. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2488. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
  2489. if (omask & ATH9K_INT_GLOBAL) {
  2490. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
  2491. REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
  2492. (void) REG_READ(ah, AR_IER);
  2493. if (!AR_SREV_9100(ah)) {
  2494. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
  2495. (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
  2496. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  2497. (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
  2498. }
  2499. }
  2500. mask = ints & ATH9K_INT_COMMON;
  2501. mask2 = 0;
  2502. if (ints & ATH9K_INT_TX) {
  2503. if (ahp->ah_txOkInterruptMask)
  2504. mask |= AR_IMR_TXOK;
  2505. if (ahp->ah_txDescInterruptMask)
  2506. mask |= AR_IMR_TXDESC;
  2507. if (ahp->ah_txErrInterruptMask)
  2508. mask |= AR_IMR_TXERR;
  2509. if (ahp->ah_txEolInterruptMask)
  2510. mask |= AR_IMR_TXEOL;
  2511. }
  2512. if (ints & ATH9K_INT_RX) {
  2513. mask |= AR_IMR_RXERR;
  2514. if (ahp->ah_intrMitigation)
  2515. mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
  2516. else
  2517. mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
  2518. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
  2519. mask |= AR_IMR_GENTMR;
  2520. }
  2521. if (ints & (ATH9K_INT_BMISC)) {
  2522. mask |= AR_IMR_BCNMISC;
  2523. if (ints & ATH9K_INT_TIM)
  2524. mask2 |= AR_IMR_S2_TIM;
  2525. if (ints & ATH9K_INT_DTIM)
  2526. mask2 |= AR_IMR_S2_DTIM;
  2527. if (ints & ATH9K_INT_DTIMSYNC)
  2528. mask2 |= AR_IMR_S2_DTIMSYNC;
  2529. if (ints & ATH9K_INT_CABEND)
  2530. mask2 |= (AR_IMR_S2_CABEND);
  2531. }
  2532. if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
  2533. mask |= AR_IMR_BCNMISC;
  2534. if (ints & ATH9K_INT_GTT)
  2535. mask2 |= AR_IMR_S2_GTT;
  2536. if (ints & ATH9K_INT_CST)
  2537. mask2 |= AR_IMR_S2_CST;
  2538. }
  2539. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
  2540. REG_WRITE(ah, AR_IMR, mask);
  2541. mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
  2542. AR_IMR_S2_DTIM |
  2543. AR_IMR_S2_DTIMSYNC |
  2544. AR_IMR_S2_CABEND |
  2545. AR_IMR_S2_CABTO |
  2546. AR_IMR_S2_TSFOOR |
  2547. AR_IMR_S2_GTT | AR_IMR_S2_CST);
  2548. REG_WRITE(ah, AR_IMR_S2, mask | mask2);
  2549. ahp->ah_maskReg = ints;
  2550. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  2551. if (ints & ATH9K_INT_TIM_TIMER)
  2552. REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2553. else
  2554. REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
  2555. }
  2556. if (ints & ATH9K_INT_GLOBAL) {
  2557. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
  2558. REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
  2559. if (!AR_SREV_9100(ah)) {
  2560. REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
  2561. AR_INTR_MAC_IRQ);
  2562. REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
  2563. REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
  2564. AR_INTR_SYNC_DEFAULT);
  2565. REG_WRITE(ah, AR_INTR_SYNC_MASK,
  2566. AR_INTR_SYNC_DEFAULT);
  2567. }
  2568. DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
  2569. REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
  2570. }
  2571. return omask;
  2572. }
  2573. /*******************/
  2574. /* Beacon Handling */
  2575. /*******************/
  2576. void ath9k_hw_beaconinit(struct ath_hal *ah, u32 next_beacon, u32 beacon_period)
  2577. {
  2578. struct ath_hal_5416 *ahp = AH5416(ah);
  2579. int flags = 0;
  2580. ahp->ah_beaconInterval = beacon_period;
  2581. switch (ah->ah_opmode) {
  2582. case NL80211_IFTYPE_STATION:
  2583. case NL80211_IFTYPE_MONITOR:
  2584. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2585. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
  2586. REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
  2587. flags |= AR_TBTT_TIMER_EN;
  2588. break;
  2589. case NL80211_IFTYPE_ADHOC:
  2590. REG_SET_BIT(ah, AR_TXCFG,
  2591. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  2592. REG_WRITE(ah, AR_NEXT_NDP_TIMER,
  2593. TU_TO_USEC(next_beacon +
  2594. (ahp->ah_atimWindow ? ahp->
  2595. ah_atimWindow : 1)));
  2596. flags |= AR_NDP_TIMER_EN;
  2597. case NL80211_IFTYPE_AP:
  2598. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
  2599. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
  2600. TU_TO_USEC(next_beacon -
  2601. ah->ah_config.
  2602. dma_beacon_response_time));
  2603. REG_WRITE(ah, AR_NEXT_SWBA,
  2604. TU_TO_USEC(next_beacon -
  2605. ah->ah_config.
  2606. sw_beacon_response_time));
  2607. flags |=
  2608. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  2609. break;
  2610. default:
  2611. DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
  2612. "%s: unsupported opmode: %d\n",
  2613. __func__, ah->ah_opmode);
  2614. return;
  2615. break;
  2616. }
  2617. REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2618. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
  2619. REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
  2620. REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
  2621. beacon_period &= ~ATH9K_BEACON_ENA;
  2622. if (beacon_period & ATH9K_BEACON_RESET_TSF) {
  2623. beacon_period &= ~ATH9K_BEACON_RESET_TSF;
  2624. ath9k_hw_reset_tsf(ah);
  2625. }
  2626. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  2627. }
  2628. void ath9k_hw_set_sta_beacon_timers(struct ath_hal *ah,
  2629. const struct ath9k_beacon_state *bs)
  2630. {
  2631. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  2632. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2633. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  2634. REG_WRITE(ah, AR_BEACON_PERIOD,
  2635. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2636. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  2637. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  2638. REG_RMW_FIELD(ah, AR_RSSI_THR,
  2639. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  2640. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  2641. if (bs->bs_sleepduration > beaconintval)
  2642. beaconintval = bs->bs_sleepduration;
  2643. dtimperiod = bs->bs_dtimperiod;
  2644. if (bs->bs_sleepduration > dtimperiod)
  2645. dtimperiod = bs->bs_sleepduration;
  2646. if (beaconintval == dtimperiod)
  2647. nextTbtt = bs->bs_nextdtim;
  2648. else
  2649. nextTbtt = bs->bs_nexttbtt;
  2650. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  2651. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  2652. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  2653. DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  2654. REG_WRITE(ah, AR_NEXT_DTIM,
  2655. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  2656. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  2657. REG_WRITE(ah, AR_SLEEP1,
  2658. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  2659. | AR_SLEEP1_ASSUME_DTIM);
  2660. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  2661. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  2662. else
  2663. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  2664. REG_WRITE(ah, AR_SLEEP2,
  2665. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  2666. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  2667. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  2668. REG_SET_BIT(ah, AR_TIMER_MODE,
  2669. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  2670. AR_DTIM_TIMER_EN);
  2671. }
  2672. /*******************/
  2673. /* HW Capabilities */
  2674. /*******************/
  2675. bool ath9k_hw_fill_cap_info(struct ath_hal *ah)
  2676. {
  2677. struct ath_hal_5416 *ahp = AH5416(ah);
  2678. struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2679. u16 capField = 0, eeval;
  2680. eeval = ath9k_hw_get_eeprom(ah, EEP_REG_0);
  2681. ah->ah_currentRD = eeval;
  2682. eeval = ath9k_hw_get_eeprom(ah, EEP_REG_1);
  2683. ah->ah_currentRDExt = eeval;
  2684. capField = ath9k_hw_get_eeprom(ah, EEP_OP_CAP);
  2685. if (ah->ah_opmode != NL80211_IFTYPE_AP &&
  2686. ah->ah_subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  2687. if (ah->ah_currentRD == 0x64 || ah->ah_currentRD == 0x65)
  2688. ah->ah_currentRD += 5;
  2689. else if (ah->ah_currentRD == 0x41)
  2690. ah->ah_currentRD = 0x43;
  2691. DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
  2692. "regdomain mapped to 0x%x\n", ah->ah_currentRD);
  2693. }
  2694. eeval = ath9k_hw_get_eeprom(ah, EEP_OP_MODE);
  2695. bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
  2696. if (eeval & AR5416_OPFLAGS_11A) {
  2697. set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
  2698. if (ah->ah_config.ht_enable) {
  2699. if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
  2700. set_bit(ATH9K_MODE_11NA_HT20,
  2701. pCap->wireless_modes);
  2702. if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
  2703. set_bit(ATH9K_MODE_11NA_HT40PLUS,
  2704. pCap->wireless_modes);
  2705. set_bit(ATH9K_MODE_11NA_HT40MINUS,
  2706. pCap->wireless_modes);
  2707. }
  2708. }
  2709. }
  2710. if (eeval & AR5416_OPFLAGS_11G) {
  2711. set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
  2712. set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
  2713. if (ah->ah_config.ht_enable) {
  2714. if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
  2715. set_bit(ATH9K_MODE_11NG_HT20,
  2716. pCap->wireless_modes);
  2717. if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
  2718. set_bit(ATH9K_MODE_11NG_HT40PLUS,
  2719. pCap->wireless_modes);
  2720. set_bit(ATH9K_MODE_11NG_HT40MINUS,
  2721. pCap->wireless_modes);
  2722. }
  2723. }
  2724. }
  2725. pCap->tx_chainmask = ath9k_hw_get_eeprom(ah, EEP_TX_MASK);
  2726. if ((ah->ah_isPciExpress)
  2727. || (eeval & AR5416_OPFLAGS_11A)) {
  2728. pCap->rx_chainmask =
  2729. ath9k_hw_get_eeprom(ah, EEP_RX_MASK);
  2730. } else {
  2731. pCap->rx_chainmask =
  2732. (ath9k_hw_gpio_get(ah, 0)) ? 0x5 : 0x7;
  2733. }
  2734. if (!(AR_SREV_9280(ah) && (ah->ah_macRev == 0)))
  2735. ahp->ah_miscMode |= AR_PCU_MIC_NEW_LOC_ENA;
  2736. pCap->low_2ghz_chan = 2312;
  2737. pCap->high_2ghz_chan = 2732;
  2738. pCap->low_5ghz_chan = 4920;
  2739. pCap->high_5ghz_chan = 6100;
  2740. pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
  2741. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
  2742. pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
  2743. pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
  2744. pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
  2745. pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
  2746. pCap->hw_caps |= ATH9K_HW_CAP_CHAN_SPREAD;
  2747. if (ah->ah_config.ht_enable)
  2748. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  2749. else
  2750. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  2751. pCap->hw_caps |= ATH9K_HW_CAP_GTT;
  2752. pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
  2753. pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
  2754. pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
  2755. if (capField & AR_EEPROM_EEPCAP_MAXQCU)
  2756. pCap->total_queues =
  2757. MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
  2758. else
  2759. pCap->total_queues = ATH9K_NUM_TX_QUEUES;
  2760. if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
  2761. pCap->keycache_size =
  2762. 1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
  2763. else
  2764. pCap->keycache_size = AR_KEYTABLE_SIZE;
  2765. pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
  2766. pCap->num_mr_retries = 4;
  2767. pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
  2768. if (AR_SREV_9280_10_OR_LATER(ah))
  2769. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  2770. else
  2771. pCap->num_gpio_pins = AR_NUM_GPIO;
  2772. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2773. pCap->hw_caps |= ATH9K_HW_CAP_WOW;
  2774. pCap->hw_caps |= ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
  2775. } else {
  2776. pCap->hw_caps &= ~ATH9K_HW_CAP_WOW;
  2777. pCap->hw_caps &= ~ATH9K_HW_CAP_WOW_MATCHPATTERN_EXACT;
  2778. }
  2779. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  2780. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  2781. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  2782. } else {
  2783. pCap->rts_aggr_limit = (8 * 1024);
  2784. }
  2785. pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
  2786. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  2787. ah->ah_rfsilent = ath9k_hw_get_eeprom(ah, EEP_RF_SILENT);
  2788. if (ah->ah_rfsilent & EEP_RFSILENT_ENABLED) {
  2789. ah->ah_rfkill_gpio =
  2790. MS(ah->ah_rfsilent, EEP_RFSILENT_GPIO_SEL);
  2791. ah->ah_rfkill_polarity =
  2792. MS(ah->ah_rfsilent, EEP_RFSILENT_POLARITY);
  2793. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  2794. }
  2795. #endif
  2796. if ((ah->ah_macVersion == AR_SREV_VERSION_5416_PCI) ||
  2797. (ah->ah_macVersion == AR_SREV_VERSION_5416_PCIE) ||
  2798. (ah->ah_macVersion == AR_SREV_VERSION_9160) ||
  2799. (ah->ah_macVersion == AR_SREV_VERSION_9100) ||
  2800. (ah->ah_macVersion == AR_SREV_VERSION_9280))
  2801. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  2802. else
  2803. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  2804. if (AR_SREV_9280(ah))
  2805. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  2806. else
  2807. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  2808. if (ah->ah_currentRDExt & (1 << REG_EXT_JAPAN_MIDBAND)) {
  2809. pCap->reg_cap =
  2810. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2811. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
  2812. AR_EEPROM_EEREGCAP_EN_KK_U2 |
  2813. AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
  2814. } else {
  2815. pCap->reg_cap =
  2816. AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
  2817. AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
  2818. }
  2819. pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
  2820. pCap->num_antcfg_5ghz =
  2821. ath9k_hw_get_num_ant_config(ah, IEEE80211_BAND_5GHZ);
  2822. pCap->num_antcfg_2ghz =
  2823. ath9k_hw_get_num_ant_config(ah, IEEE80211_BAND_2GHZ);
  2824. return true;
  2825. }
  2826. bool ath9k_hw_getcapability(struct ath_hal *ah, enum ath9k_capability_type type,
  2827. u32 capability, u32 *result)
  2828. {
  2829. struct ath_hal_5416 *ahp = AH5416(ah);
  2830. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  2831. switch (type) {
  2832. case ATH9K_CAP_CIPHER:
  2833. switch (capability) {
  2834. case ATH9K_CIPHER_AES_CCM:
  2835. case ATH9K_CIPHER_AES_OCB:
  2836. case ATH9K_CIPHER_TKIP:
  2837. case ATH9K_CIPHER_WEP:
  2838. case ATH9K_CIPHER_MIC:
  2839. case ATH9K_CIPHER_CLR:
  2840. return true;
  2841. default:
  2842. return false;
  2843. }
  2844. case ATH9K_CAP_TKIP_MIC:
  2845. switch (capability) {
  2846. case 0:
  2847. return true;
  2848. case 1:
  2849. return (ahp->ah_staId1Defaults &
  2850. AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
  2851. false;
  2852. }
  2853. case ATH9K_CAP_TKIP_SPLIT:
  2854. return (ahp->ah_miscMode & AR_PCU_MIC_NEW_LOC_ENA) ?
  2855. false : true;
  2856. case ATH9K_CAP_WME_TKIPMIC:
  2857. return 0;
  2858. case ATH9K_CAP_PHYCOUNTERS:
  2859. return ahp->ah_hasHwPhyCounters ? 0 : -ENXIO;
  2860. case ATH9K_CAP_DIVERSITY:
  2861. return (REG_READ(ah, AR_PHY_CCK_DETECT) &
  2862. AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
  2863. true : false;
  2864. case ATH9K_CAP_PHYDIAG:
  2865. return true;
  2866. case ATH9K_CAP_MCAST_KEYSRCH:
  2867. switch (capability) {
  2868. case 0:
  2869. return true;
  2870. case 1:
  2871. if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
  2872. return false;
  2873. } else {
  2874. return (ahp->ah_staId1Defaults &
  2875. AR_STA_ID1_MCAST_KSRCH) ? true :
  2876. false;
  2877. }
  2878. }
  2879. return false;
  2880. case ATH9K_CAP_TSF_ADJUST:
  2881. return (ahp->ah_miscMode & AR_PCU_TX_ADD_TSF) ?
  2882. true : false;
  2883. case ATH9K_CAP_RFSILENT:
  2884. if (capability == 3)
  2885. return false;
  2886. case ATH9K_CAP_ANT_CFG_2GHZ:
  2887. *result = pCap->num_antcfg_2ghz;
  2888. return true;
  2889. case ATH9K_CAP_ANT_CFG_5GHZ:
  2890. *result = pCap->num_antcfg_5ghz;
  2891. return true;
  2892. case ATH9K_CAP_TXPOW:
  2893. switch (capability) {
  2894. case 0:
  2895. return 0;
  2896. case 1:
  2897. *result = ah->ah_powerLimit;
  2898. return 0;
  2899. case 2:
  2900. *result = ah->ah_maxPowerLevel;
  2901. return 0;
  2902. case 3:
  2903. *result = ah->ah_tpScale;
  2904. return 0;
  2905. }
  2906. return false;
  2907. default:
  2908. return false;
  2909. }
  2910. }
  2911. bool ath9k_hw_setcapability(struct ath_hal *ah, enum ath9k_capability_type type,
  2912. u32 capability, u32 setting, int *status)
  2913. {
  2914. struct ath_hal_5416 *ahp = AH5416(ah);
  2915. u32 v;
  2916. switch (type) {
  2917. case ATH9K_CAP_TKIP_MIC:
  2918. if (setting)
  2919. ahp->ah_staId1Defaults |=
  2920. AR_STA_ID1_CRPT_MIC_ENABLE;
  2921. else
  2922. ahp->ah_staId1Defaults &=
  2923. ~AR_STA_ID1_CRPT_MIC_ENABLE;
  2924. return true;
  2925. case ATH9K_CAP_DIVERSITY:
  2926. v = REG_READ(ah, AR_PHY_CCK_DETECT);
  2927. if (setting)
  2928. v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  2929. else
  2930. v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
  2931. REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
  2932. return true;
  2933. case ATH9K_CAP_MCAST_KEYSRCH:
  2934. if (setting)
  2935. ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
  2936. else
  2937. ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
  2938. return true;
  2939. case ATH9K_CAP_TSF_ADJUST:
  2940. if (setting)
  2941. ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
  2942. else
  2943. ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
  2944. return true;
  2945. default:
  2946. return false;
  2947. }
  2948. }
  2949. /****************************/
  2950. /* GPIO / RFKILL / Antennae */
  2951. /****************************/
  2952. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hal *ah,
  2953. u32 gpio, u32 type)
  2954. {
  2955. int addr;
  2956. u32 gpio_shift, tmp;
  2957. if (gpio > 11)
  2958. addr = AR_GPIO_OUTPUT_MUX3;
  2959. else if (gpio > 5)
  2960. addr = AR_GPIO_OUTPUT_MUX2;
  2961. else
  2962. addr = AR_GPIO_OUTPUT_MUX1;
  2963. gpio_shift = (gpio % 6) * 5;
  2964. if (AR_SREV_9280_20_OR_LATER(ah)
  2965. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2966. REG_RMW(ah, addr, (type << gpio_shift),
  2967. (0x1f << gpio_shift));
  2968. } else {
  2969. tmp = REG_READ(ah, addr);
  2970. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2971. tmp &= ~(0x1f << gpio_shift);
  2972. tmp |= (type << gpio_shift);
  2973. REG_WRITE(ah, addr, tmp);
  2974. }
  2975. }
  2976. void ath9k_hw_cfg_gpio_input(struct ath_hal *ah, u32 gpio)
  2977. {
  2978. u32 gpio_shift;
  2979. ASSERT(gpio < ah->ah_caps.num_gpio_pins);
  2980. gpio_shift = gpio << 1;
  2981. REG_RMW(ah,
  2982. AR_GPIO_OE_OUT,
  2983. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2984. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2985. }
  2986. u32 ath9k_hw_gpio_get(struct ath_hal *ah, u32 gpio)
  2987. {
  2988. if (gpio >= ah->ah_caps.num_gpio_pins)
  2989. return 0xffffffff;
  2990. if (AR_SREV_9280_10_OR_LATER(ah)) {
  2991. return (MS
  2992. (REG_READ(ah, AR_GPIO_IN_OUT),
  2993. AR928X_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) != 0;
  2994. } else {
  2995. return (MS(REG_READ(ah, AR_GPIO_IN_OUT), AR_GPIO_IN_VAL) &
  2996. AR_GPIO_BIT(gpio)) != 0;
  2997. }
  2998. }
  2999. void ath9k_hw_cfg_output(struct ath_hal *ah, u32 gpio,
  3000. u32 ah_signal_type)
  3001. {
  3002. u32 gpio_shift;
  3003. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  3004. gpio_shift = 2 * gpio;
  3005. REG_RMW(ah,
  3006. AR_GPIO_OE_OUT,
  3007. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  3008. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  3009. }
  3010. void ath9k_hw_set_gpio(struct ath_hal *ah, u32 gpio, u32 val)
  3011. {
  3012. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  3013. AR_GPIO_BIT(gpio));
  3014. }
  3015. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  3016. void ath9k_enable_rfkill(struct ath_hal *ah)
  3017. {
  3018. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
  3019. AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
  3020. REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
  3021. AR_GPIO_INPUT_MUX2_RFSILENT);
  3022. ath9k_hw_cfg_gpio_input(ah, ah->ah_rfkill_gpio);
  3023. REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
  3024. }
  3025. #endif
  3026. int ath9k_hw_select_antconfig(struct ath_hal *ah, u32 cfg)
  3027. {
  3028. struct ath9k_channel *chan = ah->ah_curchan;
  3029. const struct ath9k_hw_capabilities *pCap = &ah->ah_caps;
  3030. u16 ant_config;
  3031. u32 halNumAntConfig;
  3032. halNumAntConfig = IS_CHAN_2GHZ(chan) ?
  3033. pCap->num_antcfg_2ghz : pCap->num_antcfg_5ghz;
  3034. if (cfg < halNumAntConfig) {
  3035. if (!ath9k_hw_get_eeprom_antenna_cfg(ah, chan,
  3036. cfg, &ant_config)) {
  3037. REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
  3038. return 0;
  3039. }
  3040. }
  3041. return -EINVAL;
  3042. }
  3043. u32 ath9k_hw_getdefantenna(struct ath_hal *ah)
  3044. {
  3045. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  3046. }
  3047. void ath9k_hw_setantenna(struct ath_hal *ah, u32 antenna)
  3048. {
  3049. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  3050. }
  3051. bool ath9k_hw_setantennaswitch(struct ath_hal *ah,
  3052. enum ath9k_ant_setting settings,
  3053. struct ath9k_channel *chan,
  3054. u8 *tx_chainmask,
  3055. u8 *rx_chainmask,
  3056. u8 *antenna_cfgd)
  3057. {
  3058. struct ath_hal_5416 *ahp = AH5416(ah);
  3059. static u8 tx_chainmask_cfg, rx_chainmask_cfg;
  3060. if (AR_SREV_9280(ah)) {
  3061. if (!tx_chainmask_cfg) {
  3062. tx_chainmask_cfg = *tx_chainmask;
  3063. rx_chainmask_cfg = *rx_chainmask;
  3064. }
  3065. switch (settings) {
  3066. case ATH9K_ANT_FIXED_A:
  3067. *tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  3068. *rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
  3069. *antenna_cfgd = true;
  3070. break;
  3071. case ATH9K_ANT_FIXED_B:
  3072. if (ah->ah_caps.tx_chainmask >
  3073. ATH9K_ANTENNA1_CHAINMASK) {
  3074. *tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  3075. }
  3076. *rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
  3077. *antenna_cfgd = true;
  3078. break;
  3079. case ATH9K_ANT_VARIABLE:
  3080. *tx_chainmask = tx_chainmask_cfg;
  3081. *rx_chainmask = rx_chainmask_cfg;
  3082. *antenna_cfgd = true;
  3083. break;
  3084. default:
  3085. break;
  3086. }
  3087. } else {
  3088. ahp->ah_diversityControl = settings;
  3089. }
  3090. return true;
  3091. }
  3092. /*********************/
  3093. /* General Operation */
  3094. /*********************/
  3095. u32 ath9k_hw_getrxfilter(struct ath_hal *ah)
  3096. {
  3097. u32 bits = REG_READ(ah, AR_RX_FILTER);
  3098. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  3099. if (phybits & AR_PHY_ERR_RADAR)
  3100. bits |= ATH9K_RX_FILTER_PHYRADAR;
  3101. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  3102. bits |= ATH9K_RX_FILTER_PHYERR;
  3103. return bits;
  3104. }
  3105. void ath9k_hw_setrxfilter(struct ath_hal *ah, u32 bits)
  3106. {
  3107. u32 phybits;
  3108. REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
  3109. phybits = 0;
  3110. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  3111. phybits |= AR_PHY_ERR_RADAR;
  3112. if (bits & ATH9K_RX_FILTER_PHYERR)
  3113. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  3114. REG_WRITE(ah, AR_PHY_ERR, phybits);
  3115. if (phybits)
  3116. REG_WRITE(ah, AR_RXCFG,
  3117. REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
  3118. else
  3119. REG_WRITE(ah, AR_RXCFG,
  3120. REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
  3121. }
  3122. bool ath9k_hw_phy_disable(struct ath_hal *ah)
  3123. {
  3124. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
  3125. }
  3126. bool ath9k_hw_disable(struct ath_hal *ah)
  3127. {
  3128. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  3129. return false;
  3130. return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
  3131. }
  3132. bool ath9k_hw_set_txpowerlimit(struct ath_hal *ah, u32 limit)
  3133. {
  3134. struct ath9k_channel *chan = ah->ah_curchan;
  3135. ah->ah_powerLimit = min(limit, (u32) MAX_RATE_POWER);
  3136. if (ath9k_hw_set_txpower(ah, chan,
  3137. ath9k_regd_get_ctl(ah, chan),
  3138. ath9k_regd_get_antenna_allowed(ah, chan),
  3139. chan->maxRegTxPower * 2,
  3140. min((u32) MAX_RATE_POWER,
  3141. (u32) ah->ah_powerLimit)) != 0)
  3142. return false;
  3143. return true;
  3144. }
  3145. void ath9k_hw_getmac(struct ath_hal *ah, u8 *mac)
  3146. {
  3147. struct ath_hal_5416 *ahp = AH5416(ah);
  3148. memcpy(mac, ahp->ah_macaddr, ETH_ALEN);
  3149. }
  3150. bool ath9k_hw_setmac(struct ath_hal *ah, const u8 *mac)
  3151. {
  3152. struct ath_hal_5416 *ahp = AH5416(ah);
  3153. memcpy(ahp->ah_macaddr, mac, ETH_ALEN);
  3154. return true;
  3155. }
  3156. void ath9k_hw_setopmode(struct ath_hal *ah)
  3157. {
  3158. ath9k_hw_set_operating_mode(ah, ah->ah_opmode);
  3159. }
  3160. void ath9k_hw_setmcastfilter(struct ath_hal *ah, u32 filter0, u32 filter1)
  3161. {
  3162. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  3163. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  3164. }
  3165. void ath9k_hw_getbssidmask(struct ath_hal *ah, u8 *mask)
  3166. {
  3167. struct ath_hal_5416 *ahp = AH5416(ah);
  3168. memcpy(mask, ahp->ah_bssidmask, ETH_ALEN);
  3169. }
  3170. bool ath9k_hw_setbssidmask(struct ath_hal *ah, const u8 *mask)
  3171. {
  3172. struct ath_hal_5416 *ahp = AH5416(ah);
  3173. memcpy(ahp->ah_bssidmask, mask, ETH_ALEN);
  3174. REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(ahp->ah_bssidmask));
  3175. REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(ahp->ah_bssidmask + 4));
  3176. return true;
  3177. }
  3178. void ath9k_hw_write_associd(struct ath_hal *ah, const u8 *bssid, u16 assocId)
  3179. {
  3180. struct ath_hal_5416 *ahp = AH5416(ah);
  3181. memcpy(ahp->ah_bssid, bssid, ETH_ALEN);
  3182. ahp->ah_assocId = assocId;
  3183. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(ahp->ah_bssid));
  3184. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(ahp->ah_bssid + 4) |
  3185. ((assocId & 0x3fff) << AR_BSS_ID1_AID_S));
  3186. }
  3187. u64 ath9k_hw_gettsf64(struct ath_hal *ah)
  3188. {
  3189. u64 tsf;
  3190. tsf = REG_READ(ah, AR_TSF_U32);
  3191. tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
  3192. return tsf;
  3193. }
  3194. void ath9k_hw_reset_tsf(struct ath_hal *ah)
  3195. {
  3196. int count;
  3197. count = 0;
  3198. while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
  3199. count++;
  3200. if (count > 10) {
  3201. DPRINTF(ah->ah_sc, ATH_DBG_RESET,
  3202. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  3203. break;
  3204. }
  3205. udelay(10);
  3206. }
  3207. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  3208. }
  3209. bool ath9k_hw_set_tsfadjust(struct ath_hal *ah, u32 setting)
  3210. {
  3211. struct ath_hal_5416 *ahp = AH5416(ah);
  3212. if (setting)
  3213. ahp->ah_miscMode |= AR_PCU_TX_ADD_TSF;
  3214. else
  3215. ahp->ah_miscMode &= ~AR_PCU_TX_ADD_TSF;
  3216. return true;
  3217. }
  3218. bool ath9k_hw_setslottime(struct ath_hal *ah, u32 us)
  3219. {
  3220. struct ath_hal_5416 *ahp = AH5416(ah);
  3221. if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
  3222. DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
  3223. ahp->ah_slottime = (u32) -1;
  3224. return false;
  3225. } else {
  3226. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
  3227. ahp->ah_slottime = us;
  3228. return true;
  3229. }
  3230. }
  3231. void ath9k_hw_set11nmac2040(struct ath_hal *ah, enum ath9k_ht_macmode mode)
  3232. {
  3233. u32 macmode;
  3234. if (mode == ATH9K_HT_MACMODE_2040 &&
  3235. !ah->ah_config.cwm_ignore_extcca)
  3236. macmode = AR_2040_JOINED_RX_CLEAR;
  3237. else
  3238. macmode = 0;
  3239. REG_WRITE(ah, AR_2040_MODE, macmode);
  3240. }