sched.c 271 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <asm/tlb.h>
  74. #include <asm/irq_regs.h>
  75. #include "sched_cpupri.h"
  76. #define CREATE_TRACE_POINTS
  77. #include <trace/events/sched.h>
  78. /*
  79. * Convert user-nice values [ -20 ... 0 ... 19 ]
  80. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  81. * and back.
  82. */
  83. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  84. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  85. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  86. /*
  87. * 'User priority' is the nice value converted to something we
  88. * can work with better when scaling various scheduler parameters,
  89. * it's a [ 0 ... 39 ] range.
  90. */
  91. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  92. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  93. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  94. /*
  95. * Helpers for converting nanosecond timing to jiffy resolution
  96. */
  97. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  98. #define NICE_0_LOAD SCHED_LOAD_SCALE
  99. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  100. /*
  101. * These are the 'tuning knobs' of the scheduler:
  102. *
  103. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  104. * Timeslices get refilled after they expire.
  105. */
  106. #define DEF_TIMESLICE (100 * HZ / 1000)
  107. /*
  108. * single value that denotes runtime == period, ie unlimited time.
  109. */
  110. #define RUNTIME_INF ((u64)~0ULL)
  111. static inline int rt_policy(int policy)
  112. {
  113. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  114. return 1;
  115. return 0;
  116. }
  117. static inline int task_has_rt_policy(struct task_struct *p)
  118. {
  119. return rt_policy(p->policy);
  120. }
  121. /*
  122. * This is the priority-queue data structure of the RT scheduling class:
  123. */
  124. struct rt_prio_array {
  125. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  126. struct list_head queue[MAX_RT_PRIO];
  127. };
  128. struct rt_bandwidth {
  129. /* nests inside the rq lock: */
  130. raw_spinlock_t rt_runtime_lock;
  131. ktime_t rt_period;
  132. u64 rt_runtime;
  133. struct hrtimer rt_period_timer;
  134. };
  135. static struct rt_bandwidth def_rt_bandwidth;
  136. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  137. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  138. {
  139. struct rt_bandwidth *rt_b =
  140. container_of(timer, struct rt_bandwidth, rt_period_timer);
  141. ktime_t now;
  142. int overrun;
  143. int idle = 0;
  144. for (;;) {
  145. now = hrtimer_cb_get_time(timer);
  146. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  147. if (!overrun)
  148. break;
  149. idle = do_sched_rt_period_timer(rt_b, overrun);
  150. }
  151. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  152. }
  153. static
  154. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  155. {
  156. rt_b->rt_period = ns_to_ktime(period);
  157. rt_b->rt_runtime = runtime;
  158. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  159. hrtimer_init(&rt_b->rt_period_timer,
  160. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  161. rt_b->rt_period_timer.function = sched_rt_period_timer;
  162. }
  163. static inline int rt_bandwidth_enabled(void)
  164. {
  165. return sysctl_sched_rt_runtime >= 0;
  166. }
  167. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  168. {
  169. ktime_t now;
  170. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  171. return;
  172. if (hrtimer_active(&rt_b->rt_period_timer))
  173. return;
  174. raw_spin_lock(&rt_b->rt_runtime_lock);
  175. for (;;) {
  176. unsigned long delta;
  177. ktime_t soft, hard;
  178. if (hrtimer_active(&rt_b->rt_period_timer))
  179. break;
  180. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  181. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  182. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  183. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  184. delta = ktime_to_ns(ktime_sub(hard, soft));
  185. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  186. HRTIMER_MODE_ABS_PINNED, 0);
  187. }
  188. raw_spin_unlock(&rt_b->rt_runtime_lock);
  189. }
  190. #ifdef CONFIG_RT_GROUP_SCHED
  191. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  192. {
  193. hrtimer_cancel(&rt_b->rt_period_timer);
  194. }
  195. #endif
  196. /*
  197. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  198. * detach_destroy_domains and partition_sched_domains.
  199. */
  200. static DEFINE_MUTEX(sched_domains_mutex);
  201. #ifdef CONFIG_GROUP_SCHED
  202. #include <linux/cgroup.h>
  203. struct cfs_rq;
  204. static LIST_HEAD(task_groups);
  205. /* task group related information */
  206. struct task_group {
  207. #ifdef CONFIG_CGROUP_SCHED
  208. struct cgroup_subsys_state css;
  209. #endif
  210. #ifdef CONFIG_USER_SCHED
  211. uid_t uid;
  212. #endif
  213. #ifdef CONFIG_FAIR_GROUP_SCHED
  214. /* schedulable entities of this group on each cpu */
  215. struct sched_entity **se;
  216. /* runqueue "owned" by this group on each cpu */
  217. struct cfs_rq **cfs_rq;
  218. unsigned long shares;
  219. #endif
  220. #ifdef CONFIG_RT_GROUP_SCHED
  221. struct sched_rt_entity **rt_se;
  222. struct rt_rq **rt_rq;
  223. struct rt_bandwidth rt_bandwidth;
  224. #endif
  225. struct rcu_head rcu;
  226. struct list_head list;
  227. struct task_group *parent;
  228. struct list_head siblings;
  229. struct list_head children;
  230. };
  231. #ifdef CONFIG_USER_SCHED
  232. /* Helper function to pass uid information to create_sched_user() */
  233. void set_tg_uid(struct user_struct *user)
  234. {
  235. user->tg->uid = user->uid;
  236. }
  237. /*
  238. * Root task group.
  239. * Every UID task group (including init_task_group aka UID-0) will
  240. * be a child to this group.
  241. */
  242. struct task_group root_task_group;
  243. #ifdef CONFIG_FAIR_GROUP_SCHED
  244. /* Default task group's sched entity on each cpu */
  245. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  246. /* Default task group's cfs_rq on each cpu */
  247. static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
  248. #endif /* CONFIG_FAIR_GROUP_SCHED */
  249. #ifdef CONFIG_RT_GROUP_SCHED
  250. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  251. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
  252. #endif /* CONFIG_RT_GROUP_SCHED */
  253. #else /* !CONFIG_USER_SCHED */
  254. #define root_task_group init_task_group
  255. #endif /* CONFIG_USER_SCHED */
  256. /* task_group_lock serializes add/remove of task groups and also changes to
  257. * a task group's cpu shares.
  258. */
  259. static DEFINE_SPINLOCK(task_group_lock);
  260. #ifdef CONFIG_FAIR_GROUP_SCHED
  261. #ifdef CONFIG_SMP
  262. static int root_task_group_empty(void)
  263. {
  264. return list_empty(&root_task_group.children);
  265. }
  266. #endif
  267. #ifdef CONFIG_USER_SCHED
  268. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  269. #else /* !CONFIG_USER_SCHED */
  270. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  271. #endif /* CONFIG_USER_SCHED */
  272. /*
  273. * A weight of 0 or 1 can cause arithmetics problems.
  274. * A weight of a cfs_rq is the sum of weights of which entities
  275. * are queued on this cfs_rq, so a weight of a entity should not be
  276. * too large, so as the shares value of a task group.
  277. * (The default weight is 1024 - so there's no practical
  278. * limitation from this.)
  279. */
  280. #define MIN_SHARES 2
  281. #define MAX_SHARES (1UL << 18)
  282. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  283. #endif
  284. /* Default task group.
  285. * Every task in system belong to this group at bootup.
  286. */
  287. struct task_group init_task_group;
  288. /* return group to which a task belongs */
  289. static inline struct task_group *task_group(struct task_struct *p)
  290. {
  291. struct task_group *tg;
  292. #ifdef CONFIG_USER_SCHED
  293. rcu_read_lock();
  294. tg = __task_cred(p)->user->tg;
  295. rcu_read_unlock();
  296. #elif defined(CONFIG_CGROUP_SCHED)
  297. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  298. struct task_group, css);
  299. #else
  300. tg = &init_task_group;
  301. #endif
  302. return tg;
  303. }
  304. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  305. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  306. {
  307. #ifdef CONFIG_FAIR_GROUP_SCHED
  308. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  309. p->se.parent = task_group(p)->se[cpu];
  310. #endif
  311. #ifdef CONFIG_RT_GROUP_SCHED
  312. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  313. p->rt.parent = task_group(p)->rt_se[cpu];
  314. #endif
  315. }
  316. #else
  317. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  318. static inline struct task_group *task_group(struct task_struct *p)
  319. {
  320. return NULL;
  321. }
  322. #endif /* CONFIG_GROUP_SCHED */
  323. /* CFS-related fields in a runqueue */
  324. struct cfs_rq {
  325. struct load_weight load;
  326. unsigned long nr_running;
  327. u64 exec_clock;
  328. u64 min_vruntime;
  329. struct rb_root tasks_timeline;
  330. struct rb_node *rb_leftmost;
  331. struct list_head tasks;
  332. struct list_head *balance_iterator;
  333. /*
  334. * 'curr' points to currently running entity on this cfs_rq.
  335. * It is set to NULL otherwise (i.e when none are currently running).
  336. */
  337. struct sched_entity *curr, *next, *last;
  338. unsigned int nr_spread_over;
  339. #ifdef CONFIG_FAIR_GROUP_SCHED
  340. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  341. /*
  342. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  343. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  344. * (like users, containers etc.)
  345. *
  346. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  347. * list is used during load balance.
  348. */
  349. struct list_head leaf_cfs_rq_list;
  350. struct task_group *tg; /* group that "owns" this runqueue */
  351. #ifdef CONFIG_SMP
  352. /*
  353. * the part of load.weight contributed by tasks
  354. */
  355. unsigned long task_weight;
  356. /*
  357. * h_load = weight * f(tg)
  358. *
  359. * Where f(tg) is the recursive weight fraction assigned to
  360. * this group.
  361. */
  362. unsigned long h_load;
  363. /*
  364. * this cpu's part of tg->shares
  365. */
  366. unsigned long shares;
  367. /*
  368. * load.weight at the time we set shares
  369. */
  370. unsigned long rq_weight;
  371. #endif
  372. #endif
  373. };
  374. /* Real-Time classes' related field in a runqueue: */
  375. struct rt_rq {
  376. struct rt_prio_array active;
  377. unsigned long rt_nr_running;
  378. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  379. struct {
  380. int curr; /* highest queued rt task prio */
  381. #ifdef CONFIG_SMP
  382. int next; /* next highest */
  383. #endif
  384. } highest_prio;
  385. #endif
  386. #ifdef CONFIG_SMP
  387. unsigned long rt_nr_migratory;
  388. unsigned long rt_nr_total;
  389. int overloaded;
  390. struct plist_head pushable_tasks;
  391. #endif
  392. int rt_throttled;
  393. u64 rt_time;
  394. u64 rt_runtime;
  395. /* Nests inside the rq lock: */
  396. raw_spinlock_t rt_runtime_lock;
  397. #ifdef CONFIG_RT_GROUP_SCHED
  398. unsigned long rt_nr_boosted;
  399. struct rq *rq;
  400. struct list_head leaf_rt_rq_list;
  401. struct task_group *tg;
  402. struct sched_rt_entity *rt_se;
  403. #endif
  404. };
  405. #ifdef CONFIG_SMP
  406. /*
  407. * We add the notion of a root-domain which will be used to define per-domain
  408. * variables. Each exclusive cpuset essentially defines an island domain by
  409. * fully partitioning the member cpus from any other cpuset. Whenever a new
  410. * exclusive cpuset is created, we also create and attach a new root-domain
  411. * object.
  412. *
  413. */
  414. struct root_domain {
  415. atomic_t refcount;
  416. cpumask_var_t span;
  417. cpumask_var_t online;
  418. /*
  419. * The "RT overload" flag: it gets set if a CPU has more than
  420. * one runnable RT task.
  421. */
  422. cpumask_var_t rto_mask;
  423. atomic_t rto_count;
  424. #ifdef CONFIG_SMP
  425. struct cpupri cpupri;
  426. #endif
  427. };
  428. /*
  429. * By default the system creates a single root-domain with all cpus as
  430. * members (mimicking the global state we have today).
  431. */
  432. static struct root_domain def_root_domain;
  433. #endif
  434. /*
  435. * This is the main, per-CPU runqueue data structure.
  436. *
  437. * Locking rule: those places that want to lock multiple runqueues
  438. * (such as the load balancing or the thread migration code), lock
  439. * acquire operations must be ordered by ascending &runqueue.
  440. */
  441. struct rq {
  442. /* runqueue lock: */
  443. raw_spinlock_t lock;
  444. /*
  445. * nr_running and cpu_load should be in the same cacheline because
  446. * remote CPUs use both these fields when doing load calculation.
  447. */
  448. unsigned long nr_running;
  449. #define CPU_LOAD_IDX_MAX 5
  450. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  451. #ifdef CONFIG_NO_HZ
  452. unsigned char in_nohz_recently;
  453. #endif
  454. /* capture load from *all* tasks on this cpu: */
  455. struct load_weight load;
  456. unsigned long nr_load_updates;
  457. u64 nr_switches;
  458. struct cfs_rq cfs;
  459. struct rt_rq rt;
  460. #ifdef CONFIG_FAIR_GROUP_SCHED
  461. /* list of leaf cfs_rq on this cpu: */
  462. struct list_head leaf_cfs_rq_list;
  463. #endif
  464. #ifdef CONFIG_RT_GROUP_SCHED
  465. struct list_head leaf_rt_rq_list;
  466. #endif
  467. /*
  468. * This is part of a global counter where only the total sum
  469. * over all CPUs matters. A task can increase this counter on
  470. * one CPU and if it got migrated afterwards it may decrease
  471. * it on another CPU. Always updated under the runqueue lock:
  472. */
  473. unsigned long nr_uninterruptible;
  474. struct task_struct *curr, *idle;
  475. unsigned long next_balance;
  476. struct mm_struct *prev_mm;
  477. u64 clock;
  478. atomic_t nr_iowait;
  479. #ifdef CONFIG_SMP
  480. struct root_domain *rd;
  481. struct sched_domain *sd;
  482. unsigned char idle_at_tick;
  483. /* For active balancing */
  484. int post_schedule;
  485. int active_balance;
  486. int push_cpu;
  487. /* cpu of this runqueue: */
  488. int cpu;
  489. int online;
  490. unsigned long avg_load_per_task;
  491. struct task_struct *migration_thread;
  492. struct list_head migration_queue;
  493. u64 rt_avg;
  494. u64 age_stamp;
  495. u64 idle_stamp;
  496. u64 avg_idle;
  497. #endif
  498. /* calc_load related fields */
  499. unsigned long calc_load_update;
  500. long calc_load_active;
  501. #ifdef CONFIG_SCHED_HRTICK
  502. #ifdef CONFIG_SMP
  503. int hrtick_csd_pending;
  504. struct call_single_data hrtick_csd;
  505. #endif
  506. struct hrtimer hrtick_timer;
  507. #endif
  508. #ifdef CONFIG_SCHEDSTATS
  509. /* latency stats */
  510. struct sched_info rq_sched_info;
  511. unsigned long long rq_cpu_time;
  512. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  513. /* sys_sched_yield() stats */
  514. unsigned int yld_count;
  515. /* schedule() stats */
  516. unsigned int sched_switch;
  517. unsigned int sched_count;
  518. unsigned int sched_goidle;
  519. /* try_to_wake_up() stats */
  520. unsigned int ttwu_count;
  521. unsigned int ttwu_local;
  522. /* BKL stats */
  523. unsigned int bkl_count;
  524. #endif
  525. };
  526. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  527. static inline
  528. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  529. {
  530. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  531. }
  532. static inline int cpu_of(struct rq *rq)
  533. {
  534. #ifdef CONFIG_SMP
  535. return rq->cpu;
  536. #else
  537. return 0;
  538. #endif
  539. }
  540. /*
  541. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  542. * See detach_destroy_domains: synchronize_sched for details.
  543. *
  544. * The domain tree of any CPU may only be accessed from within
  545. * preempt-disabled sections.
  546. */
  547. #define for_each_domain(cpu, __sd) \
  548. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  549. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  550. #define this_rq() (&__get_cpu_var(runqueues))
  551. #define task_rq(p) cpu_rq(task_cpu(p))
  552. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  553. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  554. inline void update_rq_clock(struct rq *rq)
  555. {
  556. rq->clock = sched_clock_cpu(cpu_of(rq));
  557. }
  558. /*
  559. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  560. */
  561. #ifdef CONFIG_SCHED_DEBUG
  562. # define const_debug __read_mostly
  563. #else
  564. # define const_debug static const
  565. #endif
  566. /**
  567. * runqueue_is_locked
  568. * @cpu: the processor in question.
  569. *
  570. * Returns true if the current cpu runqueue is locked.
  571. * This interface allows printk to be called with the runqueue lock
  572. * held and know whether or not it is OK to wake up the klogd.
  573. */
  574. int runqueue_is_locked(int cpu)
  575. {
  576. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  577. }
  578. /*
  579. * Debugging: various feature bits
  580. */
  581. #define SCHED_FEAT(name, enabled) \
  582. __SCHED_FEAT_##name ,
  583. enum {
  584. #include "sched_features.h"
  585. };
  586. #undef SCHED_FEAT
  587. #define SCHED_FEAT(name, enabled) \
  588. (1UL << __SCHED_FEAT_##name) * enabled |
  589. const_debug unsigned int sysctl_sched_features =
  590. #include "sched_features.h"
  591. 0;
  592. #undef SCHED_FEAT
  593. #ifdef CONFIG_SCHED_DEBUG
  594. #define SCHED_FEAT(name, enabled) \
  595. #name ,
  596. static __read_mostly char *sched_feat_names[] = {
  597. #include "sched_features.h"
  598. NULL
  599. };
  600. #undef SCHED_FEAT
  601. static int sched_feat_show(struct seq_file *m, void *v)
  602. {
  603. int i;
  604. for (i = 0; sched_feat_names[i]; i++) {
  605. if (!(sysctl_sched_features & (1UL << i)))
  606. seq_puts(m, "NO_");
  607. seq_printf(m, "%s ", sched_feat_names[i]);
  608. }
  609. seq_puts(m, "\n");
  610. return 0;
  611. }
  612. static ssize_t
  613. sched_feat_write(struct file *filp, const char __user *ubuf,
  614. size_t cnt, loff_t *ppos)
  615. {
  616. char buf[64];
  617. char *cmp = buf;
  618. int neg = 0;
  619. int i;
  620. if (cnt > 63)
  621. cnt = 63;
  622. if (copy_from_user(&buf, ubuf, cnt))
  623. return -EFAULT;
  624. buf[cnt] = 0;
  625. if (strncmp(buf, "NO_", 3) == 0) {
  626. neg = 1;
  627. cmp += 3;
  628. }
  629. for (i = 0; sched_feat_names[i]; i++) {
  630. int len = strlen(sched_feat_names[i]);
  631. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  632. if (neg)
  633. sysctl_sched_features &= ~(1UL << i);
  634. else
  635. sysctl_sched_features |= (1UL << i);
  636. break;
  637. }
  638. }
  639. if (!sched_feat_names[i])
  640. return -EINVAL;
  641. *ppos += cnt;
  642. return cnt;
  643. }
  644. static int sched_feat_open(struct inode *inode, struct file *filp)
  645. {
  646. return single_open(filp, sched_feat_show, NULL);
  647. }
  648. static const struct file_operations sched_feat_fops = {
  649. .open = sched_feat_open,
  650. .write = sched_feat_write,
  651. .read = seq_read,
  652. .llseek = seq_lseek,
  653. .release = single_release,
  654. };
  655. static __init int sched_init_debug(void)
  656. {
  657. debugfs_create_file("sched_features", 0644, NULL, NULL,
  658. &sched_feat_fops);
  659. return 0;
  660. }
  661. late_initcall(sched_init_debug);
  662. #endif
  663. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  664. /*
  665. * Number of tasks to iterate in a single balance run.
  666. * Limited because this is done with IRQs disabled.
  667. */
  668. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  669. /*
  670. * ratelimit for updating the group shares.
  671. * default: 0.25ms
  672. */
  673. unsigned int sysctl_sched_shares_ratelimit = 250000;
  674. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  675. /*
  676. * Inject some fuzzyness into changing the per-cpu group shares
  677. * this avoids remote rq-locks at the expense of fairness.
  678. * default: 4
  679. */
  680. unsigned int sysctl_sched_shares_thresh = 4;
  681. /*
  682. * period over which we average the RT time consumption, measured
  683. * in ms.
  684. *
  685. * default: 1s
  686. */
  687. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  688. /*
  689. * period over which we measure -rt task cpu usage in us.
  690. * default: 1s
  691. */
  692. unsigned int sysctl_sched_rt_period = 1000000;
  693. static __read_mostly int scheduler_running;
  694. /*
  695. * part of the period that we allow rt tasks to run in us.
  696. * default: 0.95s
  697. */
  698. int sysctl_sched_rt_runtime = 950000;
  699. static inline u64 global_rt_period(void)
  700. {
  701. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  702. }
  703. static inline u64 global_rt_runtime(void)
  704. {
  705. if (sysctl_sched_rt_runtime < 0)
  706. return RUNTIME_INF;
  707. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  708. }
  709. #ifndef prepare_arch_switch
  710. # define prepare_arch_switch(next) do { } while (0)
  711. #endif
  712. #ifndef finish_arch_switch
  713. # define finish_arch_switch(prev) do { } while (0)
  714. #endif
  715. static inline int task_current(struct rq *rq, struct task_struct *p)
  716. {
  717. return rq->curr == p;
  718. }
  719. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  720. static inline int task_running(struct rq *rq, struct task_struct *p)
  721. {
  722. return task_current(rq, p);
  723. }
  724. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  725. {
  726. }
  727. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  728. {
  729. #ifdef CONFIG_DEBUG_SPINLOCK
  730. /* this is a valid case when another task releases the spinlock */
  731. rq->lock.owner = current;
  732. #endif
  733. /*
  734. * If we are tracking spinlock dependencies then we have to
  735. * fix up the runqueue lock - which gets 'carried over' from
  736. * prev into current:
  737. */
  738. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  739. raw_spin_unlock_irq(&rq->lock);
  740. }
  741. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  742. static inline int task_running(struct rq *rq, struct task_struct *p)
  743. {
  744. #ifdef CONFIG_SMP
  745. return p->oncpu;
  746. #else
  747. return task_current(rq, p);
  748. #endif
  749. }
  750. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  751. {
  752. #ifdef CONFIG_SMP
  753. /*
  754. * We can optimise this out completely for !SMP, because the
  755. * SMP rebalancing from interrupt is the only thing that cares
  756. * here.
  757. */
  758. next->oncpu = 1;
  759. #endif
  760. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  761. raw_spin_unlock_irq(&rq->lock);
  762. #else
  763. raw_spin_unlock(&rq->lock);
  764. #endif
  765. }
  766. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  767. {
  768. #ifdef CONFIG_SMP
  769. /*
  770. * After ->oncpu is cleared, the task can be moved to a different CPU.
  771. * We must ensure this doesn't happen until the switch is completely
  772. * finished.
  773. */
  774. smp_wmb();
  775. prev->oncpu = 0;
  776. #endif
  777. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  778. local_irq_enable();
  779. #endif
  780. }
  781. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  782. /*
  783. * Check whether the task is waking, we use this to synchronize against
  784. * ttwu() so that task_cpu() reports a stable number.
  785. *
  786. * We need to make an exception for PF_STARTING tasks because the fork
  787. * path might require task_rq_lock() to work, eg. it can call
  788. * set_cpus_allowed_ptr() from the cpuset clone_ns code.
  789. */
  790. static inline int task_is_waking(struct task_struct *p)
  791. {
  792. return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
  793. }
  794. /*
  795. * __task_rq_lock - lock the runqueue a given task resides on.
  796. * Must be called interrupts disabled.
  797. */
  798. static inline struct rq *__task_rq_lock(struct task_struct *p)
  799. __acquires(rq->lock)
  800. {
  801. struct rq *rq;
  802. for (;;) {
  803. while (task_is_waking(p))
  804. cpu_relax();
  805. rq = task_rq(p);
  806. raw_spin_lock(&rq->lock);
  807. if (likely(rq == task_rq(p) && !task_is_waking(p)))
  808. return rq;
  809. raw_spin_unlock(&rq->lock);
  810. }
  811. }
  812. /*
  813. * task_rq_lock - lock the runqueue a given task resides on and disable
  814. * interrupts. Note the ordering: we can safely lookup the task_rq without
  815. * explicitly disabling preemption.
  816. */
  817. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  818. __acquires(rq->lock)
  819. {
  820. struct rq *rq;
  821. for (;;) {
  822. while (task_is_waking(p))
  823. cpu_relax();
  824. local_irq_save(*flags);
  825. rq = task_rq(p);
  826. raw_spin_lock(&rq->lock);
  827. if (likely(rq == task_rq(p) && !task_is_waking(p)))
  828. return rq;
  829. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  830. }
  831. }
  832. void task_rq_unlock_wait(struct task_struct *p)
  833. {
  834. struct rq *rq = task_rq(p);
  835. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  836. raw_spin_unlock_wait(&rq->lock);
  837. }
  838. static void __task_rq_unlock(struct rq *rq)
  839. __releases(rq->lock)
  840. {
  841. raw_spin_unlock(&rq->lock);
  842. }
  843. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  844. __releases(rq->lock)
  845. {
  846. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  847. }
  848. /*
  849. * this_rq_lock - lock this runqueue and disable interrupts.
  850. */
  851. static struct rq *this_rq_lock(void)
  852. __acquires(rq->lock)
  853. {
  854. struct rq *rq;
  855. local_irq_disable();
  856. rq = this_rq();
  857. raw_spin_lock(&rq->lock);
  858. return rq;
  859. }
  860. #ifdef CONFIG_SCHED_HRTICK
  861. /*
  862. * Use HR-timers to deliver accurate preemption points.
  863. *
  864. * Its all a bit involved since we cannot program an hrt while holding the
  865. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  866. * reschedule event.
  867. *
  868. * When we get rescheduled we reprogram the hrtick_timer outside of the
  869. * rq->lock.
  870. */
  871. /*
  872. * Use hrtick when:
  873. * - enabled by features
  874. * - hrtimer is actually high res
  875. */
  876. static inline int hrtick_enabled(struct rq *rq)
  877. {
  878. if (!sched_feat(HRTICK))
  879. return 0;
  880. if (!cpu_active(cpu_of(rq)))
  881. return 0;
  882. return hrtimer_is_hres_active(&rq->hrtick_timer);
  883. }
  884. static void hrtick_clear(struct rq *rq)
  885. {
  886. if (hrtimer_active(&rq->hrtick_timer))
  887. hrtimer_cancel(&rq->hrtick_timer);
  888. }
  889. /*
  890. * High-resolution timer tick.
  891. * Runs from hardirq context with interrupts disabled.
  892. */
  893. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  894. {
  895. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  896. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  897. raw_spin_lock(&rq->lock);
  898. update_rq_clock(rq);
  899. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  900. raw_spin_unlock(&rq->lock);
  901. return HRTIMER_NORESTART;
  902. }
  903. #ifdef CONFIG_SMP
  904. /*
  905. * called from hardirq (IPI) context
  906. */
  907. static void __hrtick_start(void *arg)
  908. {
  909. struct rq *rq = arg;
  910. raw_spin_lock(&rq->lock);
  911. hrtimer_restart(&rq->hrtick_timer);
  912. rq->hrtick_csd_pending = 0;
  913. raw_spin_unlock(&rq->lock);
  914. }
  915. /*
  916. * Called to set the hrtick timer state.
  917. *
  918. * called with rq->lock held and irqs disabled
  919. */
  920. static void hrtick_start(struct rq *rq, u64 delay)
  921. {
  922. struct hrtimer *timer = &rq->hrtick_timer;
  923. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  924. hrtimer_set_expires(timer, time);
  925. if (rq == this_rq()) {
  926. hrtimer_restart(timer);
  927. } else if (!rq->hrtick_csd_pending) {
  928. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  929. rq->hrtick_csd_pending = 1;
  930. }
  931. }
  932. static int
  933. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  934. {
  935. int cpu = (int)(long)hcpu;
  936. switch (action) {
  937. case CPU_UP_CANCELED:
  938. case CPU_UP_CANCELED_FROZEN:
  939. case CPU_DOWN_PREPARE:
  940. case CPU_DOWN_PREPARE_FROZEN:
  941. case CPU_DEAD:
  942. case CPU_DEAD_FROZEN:
  943. hrtick_clear(cpu_rq(cpu));
  944. return NOTIFY_OK;
  945. }
  946. return NOTIFY_DONE;
  947. }
  948. static __init void init_hrtick(void)
  949. {
  950. hotcpu_notifier(hotplug_hrtick, 0);
  951. }
  952. #else
  953. /*
  954. * Called to set the hrtick timer state.
  955. *
  956. * called with rq->lock held and irqs disabled
  957. */
  958. static void hrtick_start(struct rq *rq, u64 delay)
  959. {
  960. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  961. HRTIMER_MODE_REL_PINNED, 0);
  962. }
  963. static inline void init_hrtick(void)
  964. {
  965. }
  966. #endif /* CONFIG_SMP */
  967. static void init_rq_hrtick(struct rq *rq)
  968. {
  969. #ifdef CONFIG_SMP
  970. rq->hrtick_csd_pending = 0;
  971. rq->hrtick_csd.flags = 0;
  972. rq->hrtick_csd.func = __hrtick_start;
  973. rq->hrtick_csd.info = rq;
  974. #endif
  975. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  976. rq->hrtick_timer.function = hrtick;
  977. }
  978. #else /* CONFIG_SCHED_HRTICK */
  979. static inline void hrtick_clear(struct rq *rq)
  980. {
  981. }
  982. static inline void init_rq_hrtick(struct rq *rq)
  983. {
  984. }
  985. static inline void init_hrtick(void)
  986. {
  987. }
  988. #endif /* CONFIG_SCHED_HRTICK */
  989. /*
  990. * resched_task - mark a task 'to be rescheduled now'.
  991. *
  992. * On UP this means the setting of the need_resched flag, on SMP it
  993. * might also involve a cross-CPU call to trigger the scheduler on
  994. * the target CPU.
  995. */
  996. #ifdef CONFIG_SMP
  997. #ifndef tsk_is_polling
  998. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  999. #endif
  1000. static void resched_task(struct task_struct *p)
  1001. {
  1002. int cpu;
  1003. assert_raw_spin_locked(&task_rq(p)->lock);
  1004. if (test_tsk_need_resched(p))
  1005. return;
  1006. set_tsk_need_resched(p);
  1007. cpu = task_cpu(p);
  1008. if (cpu == smp_processor_id())
  1009. return;
  1010. /* NEED_RESCHED must be visible before we test polling */
  1011. smp_mb();
  1012. if (!tsk_is_polling(p))
  1013. smp_send_reschedule(cpu);
  1014. }
  1015. static void resched_cpu(int cpu)
  1016. {
  1017. struct rq *rq = cpu_rq(cpu);
  1018. unsigned long flags;
  1019. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  1020. return;
  1021. resched_task(cpu_curr(cpu));
  1022. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1023. }
  1024. #ifdef CONFIG_NO_HZ
  1025. /*
  1026. * When add_timer_on() enqueues a timer into the timer wheel of an
  1027. * idle CPU then this timer might expire before the next timer event
  1028. * which is scheduled to wake up that CPU. In case of a completely
  1029. * idle system the next event might even be infinite time into the
  1030. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1031. * leaves the inner idle loop so the newly added timer is taken into
  1032. * account when the CPU goes back to idle and evaluates the timer
  1033. * wheel for the next timer event.
  1034. */
  1035. void wake_up_idle_cpu(int cpu)
  1036. {
  1037. struct rq *rq = cpu_rq(cpu);
  1038. if (cpu == smp_processor_id())
  1039. return;
  1040. /*
  1041. * This is safe, as this function is called with the timer
  1042. * wheel base lock of (cpu) held. When the CPU is on the way
  1043. * to idle and has not yet set rq->curr to idle then it will
  1044. * be serialized on the timer wheel base lock and take the new
  1045. * timer into account automatically.
  1046. */
  1047. if (rq->curr != rq->idle)
  1048. return;
  1049. /*
  1050. * We can set TIF_RESCHED on the idle task of the other CPU
  1051. * lockless. The worst case is that the other CPU runs the
  1052. * idle task through an additional NOOP schedule()
  1053. */
  1054. set_tsk_need_resched(rq->idle);
  1055. /* NEED_RESCHED must be visible before we test polling */
  1056. smp_mb();
  1057. if (!tsk_is_polling(rq->idle))
  1058. smp_send_reschedule(cpu);
  1059. }
  1060. #endif /* CONFIG_NO_HZ */
  1061. static u64 sched_avg_period(void)
  1062. {
  1063. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1064. }
  1065. static void sched_avg_update(struct rq *rq)
  1066. {
  1067. s64 period = sched_avg_period();
  1068. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1069. rq->age_stamp += period;
  1070. rq->rt_avg /= 2;
  1071. }
  1072. }
  1073. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1074. {
  1075. rq->rt_avg += rt_delta;
  1076. sched_avg_update(rq);
  1077. }
  1078. #else /* !CONFIG_SMP */
  1079. static void resched_task(struct task_struct *p)
  1080. {
  1081. assert_raw_spin_locked(&task_rq(p)->lock);
  1082. set_tsk_need_resched(p);
  1083. }
  1084. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1085. {
  1086. }
  1087. #endif /* CONFIG_SMP */
  1088. #if BITS_PER_LONG == 32
  1089. # define WMULT_CONST (~0UL)
  1090. #else
  1091. # define WMULT_CONST (1UL << 32)
  1092. #endif
  1093. #define WMULT_SHIFT 32
  1094. /*
  1095. * Shift right and round:
  1096. */
  1097. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1098. /*
  1099. * delta *= weight / lw
  1100. */
  1101. static unsigned long
  1102. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1103. struct load_weight *lw)
  1104. {
  1105. u64 tmp;
  1106. if (!lw->inv_weight) {
  1107. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1108. lw->inv_weight = 1;
  1109. else
  1110. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1111. / (lw->weight+1);
  1112. }
  1113. tmp = (u64)delta_exec * weight;
  1114. /*
  1115. * Check whether we'd overflow the 64-bit multiplication:
  1116. */
  1117. if (unlikely(tmp > WMULT_CONST))
  1118. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1119. WMULT_SHIFT/2);
  1120. else
  1121. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1122. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1123. }
  1124. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1125. {
  1126. lw->weight += inc;
  1127. lw->inv_weight = 0;
  1128. }
  1129. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1130. {
  1131. lw->weight -= dec;
  1132. lw->inv_weight = 0;
  1133. }
  1134. /*
  1135. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1136. * of tasks with abnormal "nice" values across CPUs the contribution that
  1137. * each task makes to its run queue's load is weighted according to its
  1138. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1139. * scaled version of the new time slice allocation that they receive on time
  1140. * slice expiry etc.
  1141. */
  1142. #define WEIGHT_IDLEPRIO 3
  1143. #define WMULT_IDLEPRIO 1431655765
  1144. /*
  1145. * Nice levels are multiplicative, with a gentle 10% change for every
  1146. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1147. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1148. * that remained on nice 0.
  1149. *
  1150. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1151. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1152. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1153. * If a task goes up by ~10% and another task goes down by ~10% then
  1154. * the relative distance between them is ~25%.)
  1155. */
  1156. static const int prio_to_weight[40] = {
  1157. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1158. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1159. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1160. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1161. /* 0 */ 1024, 820, 655, 526, 423,
  1162. /* 5 */ 335, 272, 215, 172, 137,
  1163. /* 10 */ 110, 87, 70, 56, 45,
  1164. /* 15 */ 36, 29, 23, 18, 15,
  1165. };
  1166. /*
  1167. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1168. *
  1169. * In cases where the weight does not change often, we can use the
  1170. * precalculated inverse to speed up arithmetics by turning divisions
  1171. * into multiplications:
  1172. */
  1173. static const u32 prio_to_wmult[40] = {
  1174. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1175. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1176. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1177. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1178. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1179. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1180. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1181. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1182. };
  1183. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1184. /*
  1185. * runqueue iterator, to support SMP load-balancing between different
  1186. * scheduling classes, without having to expose their internal data
  1187. * structures to the load-balancing proper:
  1188. */
  1189. struct rq_iterator {
  1190. void *arg;
  1191. struct task_struct *(*start)(void *);
  1192. struct task_struct *(*next)(void *);
  1193. };
  1194. #ifdef CONFIG_SMP
  1195. static unsigned long
  1196. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1197. unsigned long max_load_move, struct sched_domain *sd,
  1198. enum cpu_idle_type idle, int *all_pinned,
  1199. int *this_best_prio, struct rq_iterator *iterator);
  1200. static int
  1201. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1202. struct sched_domain *sd, enum cpu_idle_type idle,
  1203. struct rq_iterator *iterator);
  1204. #endif
  1205. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1206. enum cpuacct_stat_index {
  1207. CPUACCT_STAT_USER, /* ... user mode */
  1208. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1209. CPUACCT_STAT_NSTATS,
  1210. };
  1211. #ifdef CONFIG_CGROUP_CPUACCT
  1212. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1213. static void cpuacct_update_stats(struct task_struct *tsk,
  1214. enum cpuacct_stat_index idx, cputime_t val);
  1215. #else
  1216. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1217. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1218. enum cpuacct_stat_index idx, cputime_t val) {}
  1219. #endif
  1220. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1221. {
  1222. update_load_add(&rq->load, load);
  1223. }
  1224. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1225. {
  1226. update_load_sub(&rq->load, load);
  1227. }
  1228. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1229. typedef int (*tg_visitor)(struct task_group *, void *);
  1230. /*
  1231. * Iterate the full tree, calling @down when first entering a node and @up when
  1232. * leaving it for the final time.
  1233. */
  1234. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1235. {
  1236. struct task_group *parent, *child;
  1237. int ret;
  1238. rcu_read_lock();
  1239. parent = &root_task_group;
  1240. down:
  1241. ret = (*down)(parent, data);
  1242. if (ret)
  1243. goto out_unlock;
  1244. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1245. parent = child;
  1246. goto down;
  1247. up:
  1248. continue;
  1249. }
  1250. ret = (*up)(parent, data);
  1251. if (ret)
  1252. goto out_unlock;
  1253. child = parent;
  1254. parent = parent->parent;
  1255. if (parent)
  1256. goto up;
  1257. out_unlock:
  1258. rcu_read_unlock();
  1259. return ret;
  1260. }
  1261. static int tg_nop(struct task_group *tg, void *data)
  1262. {
  1263. return 0;
  1264. }
  1265. #endif
  1266. #ifdef CONFIG_SMP
  1267. /* Used instead of source_load when we know the type == 0 */
  1268. static unsigned long weighted_cpuload(const int cpu)
  1269. {
  1270. return cpu_rq(cpu)->load.weight;
  1271. }
  1272. /*
  1273. * Return a low guess at the load of a migration-source cpu weighted
  1274. * according to the scheduling class and "nice" value.
  1275. *
  1276. * We want to under-estimate the load of migration sources, to
  1277. * balance conservatively.
  1278. */
  1279. static unsigned long source_load(int cpu, int type)
  1280. {
  1281. struct rq *rq = cpu_rq(cpu);
  1282. unsigned long total = weighted_cpuload(cpu);
  1283. if (type == 0 || !sched_feat(LB_BIAS))
  1284. return total;
  1285. return min(rq->cpu_load[type-1], total);
  1286. }
  1287. /*
  1288. * Return a high guess at the load of a migration-target cpu weighted
  1289. * according to the scheduling class and "nice" value.
  1290. */
  1291. static unsigned long target_load(int cpu, int type)
  1292. {
  1293. struct rq *rq = cpu_rq(cpu);
  1294. unsigned long total = weighted_cpuload(cpu);
  1295. if (type == 0 || !sched_feat(LB_BIAS))
  1296. return total;
  1297. return max(rq->cpu_load[type-1], total);
  1298. }
  1299. static struct sched_group *group_of(int cpu)
  1300. {
  1301. struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
  1302. if (!sd)
  1303. return NULL;
  1304. return sd->groups;
  1305. }
  1306. static unsigned long power_of(int cpu)
  1307. {
  1308. struct sched_group *group = group_of(cpu);
  1309. if (!group)
  1310. return SCHED_LOAD_SCALE;
  1311. return group->cpu_power;
  1312. }
  1313. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1314. static unsigned long cpu_avg_load_per_task(int cpu)
  1315. {
  1316. struct rq *rq = cpu_rq(cpu);
  1317. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1318. if (nr_running)
  1319. rq->avg_load_per_task = rq->load.weight / nr_running;
  1320. else
  1321. rq->avg_load_per_task = 0;
  1322. return rq->avg_load_per_task;
  1323. }
  1324. #ifdef CONFIG_FAIR_GROUP_SCHED
  1325. static __read_mostly unsigned long *update_shares_data;
  1326. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1327. /*
  1328. * Calculate and set the cpu's group shares.
  1329. */
  1330. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1331. unsigned long sd_shares,
  1332. unsigned long sd_rq_weight,
  1333. unsigned long *usd_rq_weight)
  1334. {
  1335. unsigned long shares, rq_weight;
  1336. int boost = 0;
  1337. rq_weight = usd_rq_weight[cpu];
  1338. if (!rq_weight) {
  1339. boost = 1;
  1340. rq_weight = NICE_0_LOAD;
  1341. }
  1342. /*
  1343. * \Sum_j shares_j * rq_weight_i
  1344. * shares_i = -----------------------------
  1345. * \Sum_j rq_weight_j
  1346. */
  1347. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1348. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1349. if (abs(shares - tg->se[cpu]->load.weight) >
  1350. sysctl_sched_shares_thresh) {
  1351. struct rq *rq = cpu_rq(cpu);
  1352. unsigned long flags;
  1353. raw_spin_lock_irqsave(&rq->lock, flags);
  1354. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1355. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1356. __set_se_shares(tg->se[cpu], shares);
  1357. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1358. }
  1359. }
  1360. /*
  1361. * Re-compute the task group their per cpu shares over the given domain.
  1362. * This needs to be done in a bottom-up fashion because the rq weight of a
  1363. * parent group depends on the shares of its child groups.
  1364. */
  1365. static int tg_shares_up(struct task_group *tg, void *data)
  1366. {
  1367. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1368. unsigned long *usd_rq_weight;
  1369. struct sched_domain *sd = data;
  1370. unsigned long flags;
  1371. int i;
  1372. if (!tg->se[0])
  1373. return 0;
  1374. local_irq_save(flags);
  1375. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1376. for_each_cpu(i, sched_domain_span(sd)) {
  1377. weight = tg->cfs_rq[i]->load.weight;
  1378. usd_rq_weight[i] = weight;
  1379. rq_weight += weight;
  1380. /*
  1381. * If there are currently no tasks on the cpu pretend there
  1382. * is one of average load so that when a new task gets to
  1383. * run here it will not get delayed by group starvation.
  1384. */
  1385. if (!weight)
  1386. weight = NICE_0_LOAD;
  1387. sum_weight += weight;
  1388. shares += tg->cfs_rq[i]->shares;
  1389. }
  1390. if (!rq_weight)
  1391. rq_weight = sum_weight;
  1392. if ((!shares && rq_weight) || shares > tg->shares)
  1393. shares = tg->shares;
  1394. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1395. shares = tg->shares;
  1396. for_each_cpu(i, sched_domain_span(sd))
  1397. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1398. local_irq_restore(flags);
  1399. return 0;
  1400. }
  1401. /*
  1402. * Compute the cpu's hierarchical load factor for each task group.
  1403. * This needs to be done in a top-down fashion because the load of a child
  1404. * group is a fraction of its parents load.
  1405. */
  1406. static int tg_load_down(struct task_group *tg, void *data)
  1407. {
  1408. unsigned long load;
  1409. long cpu = (long)data;
  1410. if (!tg->parent) {
  1411. load = cpu_rq(cpu)->load.weight;
  1412. } else {
  1413. load = tg->parent->cfs_rq[cpu]->h_load;
  1414. load *= tg->cfs_rq[cpu]->shares;
  1415. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1416. }
  1417. tg->cfs_rq[cpu]->h_load = load;
  1418. return 0;
  1419. }
  1420. static void update_shares(struct sched_domain *sd)
  1421. {
  1422. s64 elapsed;
  1423. u64 now;
  1424. if (root_task_group_empty())
  1425. return;
  1426. now = cpu_clock(raw_smp_processor_id());
  1427. elapsed = now - sd->last_update;
  1428. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1429. sd->last_update = now;
  1430. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1431. }
  1432. }
  1433. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1434. {
  1435. if (root_task_group_empty())
  1436. return;
  1437. raw_spin_unlock(&rq->lock);
  1438. update_shares(sd);
  1439. raw_spin_lock(&rq->lock);
  1440. }
  1441. static void update_h_load(long cpu)
  1442. {
  1443. if (root_task_group_empty())
  1444. return;
  1445. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1446. }
  1447. #else
  1448. static inline void update_shares(struct sched_domain *sd)
  1449. {
  1450. }
  1451. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1452. {
  1453. }
  1454. #endif
  1455. #ifdef CONFIG_PREEMPT
  1456. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1457. /*
  1458. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1459. * way at the expense of forcing extra atomic operations in all
  1460. * invocations. This assures that the double_lock is acquired using the
  1461. * same underlying policy as the spinlock_t on this architecture, which
  1462. * reduces latency compared to the unfair variant below. However, it
  1463. * also adds more overhead and therefore may reduce throughput.
  1464. */
  1465. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1466. __releases(this_rq->lock)
  1467. __acquires(busiest->lock)
  1468. __acquires(this_rq->lock)
  1469. {
  1470. raw_spin_unlock(&this_rq->lock);
  1471. double_rq_lock(this_rq, busiest);
  1472. return 1;
  1473. }
  1474. #else
  1475. /*
  1476. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1477. * latency by eliminating extra atomic operations when the locks are
  1478. * already in proper order on entry. This favors lower cpu-ids and will
  1479. * grant the double lock to lower cpus over higher ids under contention,
  1480. * regardless of entry order into the function.
  1481. */
  1482. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1483. __releases(this_rq->lock)
  1484. __acquires(busiest->lock)
  1485. __acquires(this_rq->lock)
  1486. {
  1487. int ret = 0;
  1488. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1489. if (busiest < this_rq) {
  1490. raw_spin_unlock(&this_rq->lock);
  1491. raw_spin_lock(&busiest->lock);
  1492. raw_spin_lock_nested(&this_rq->lock,
  1493. SINGLE_DEPTH_NESTING);
  1494. ret = 1;
  1495. } else
  1496. raw_spin_lock_nested(&busiest->lock,
  1497. SINGLE_DEPTH_NESTING);
  1498. }
  1499. return ret;
  1500. }
  1501. #endif /* CONFIG_PREEMPT */
  1502. /*
  1503. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1504. */
  1505. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1506. {
  1507. if (unlikely(!irqs_disabled())) {
  1508. /* printk() doesn't work good under rq->lock */
  1509. raw_spin_unlock(&this_rq->lock);
  1510. BUG_ON(1);
  1511. }
  1512. return _double_lock_balance(this_rq, busiest);
  1513. }
  1514. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1515. __releases(busiest->lock)
  1516. {
  1517. raw_spin_unlock(&busiest->lock);
  1518. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1519. }
  1520. #endif
  1521. #ifdef CONFIG_FAIR_GROUP_SCHED
  1522. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1523. {
  1524. #ifdef CONFIG_SMP
  1525. cfs_rq->shares = shares;
  1526. #endif
  1527. }
  1528. #endif
  1529. static void calc_load_account_active(struct rq *this_rq);
  1530. static void update_sysctl(void);
  1531. static int get_update_sysctl_factor(void);
  1532. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1533. {
  1534. set_task_rq(p, cpu);
  1535. #ifdef CONFIG_SMP
  1536. /*
  1537. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1538. * successfuly executed on another CPU. We must ensure that updates of
  1539. * per-task data have been completed by this moment.
  1540. */
  1541. smp_wmb();
  1542. task_thread_info(p)->cpu = cpu;
  1543. #endif
  1544. }
  1545. #include "sched_stats.h"
  1546. #include "sched_idletask.c"
  1547. #include "sched_fair.c"
  1548. #include "sched_rt.c"
  1549. #ifdef CONFIG_SCHED_DEBUG
  1550. # include "sched_debug.c"
  1551. #endif
  1552. #define sched_class_highest (&rt_sched_class)
  1553. #define for_each_class(class) \
  1554. for (class = sched_class_highest; class; class = class->next)
  1555. static void inc_nr_running(struct rq *rq)
  1556. {
  1557. rq->nr_running++;
  1558. }
  1559. static void dec_nr_running(struct rq *rq)
  1560. {
  1561. rq->nr_running--;
  1562. }
  1563. static void set_load_weight(struct task_struct *p)
  1564. {
  1565. if (task_has_rt_policy(p)) {
  1566. p->se.load.weight = prio_to_weight[0] * 2;
  1567. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1568. return;
  1569. }
  1570. /*
  1571. * SCHED_IDLE tasks get minimal weight:
  1572. */
  1573. if (p->policy == SCHED_IDLE) {
  1574. p->se.load.weight = WEIGHT_IDLEPRIO;
  1575. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1576. return;
  1577. }
  1578. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1579. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1580. }
  1581. static void update_avg(u64 *avg, u64 sample)
  1582. {
  1583. s64 diff = sample - *avg;
  1584. *avg += diff >> 3;
  1585. }
  1586. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1587. {
  1588. if (wakeup)
  1589. p->se.start_runtime = p->se.sum_exec_runtime;
  1590. sched_info_queued(p);
  1591. p->sched_class->enqueue_task(rq, p, wakeup);
  1592. p->se.on_rq = 1;
  1593. }
  1594. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1595. {
  1596. if (sleep) {
  1597. if (p->se.last_wakeup) {
  1598. update_avg(&p->se.avg_overlap,
  1599. p->se.sum_exec_runtime - p->se.last_wakeup);
  1600. p->se.last_wakeup = 0;
  1601. } else {
  1602. update_avg(&p->se.avg_wakeup,
  1603. sysctl_sched_wakeup_granularity);
  1604. }
  1605. }
  1606. sched_info_dequeued(p);
  1607. p->sched_class->dequeue_task(rq, p, sleep);
  1608. p->se.on_rq = 0;
  1609. }
  1610. /*
  1611. * __normal_prio - return the priority that is based on the static prio
  1612. */
  1613. static inline int __normal_prio(struct task_struct *p)
  1614. {
  1615. return p->static_prio;
  1616. }
  1617. /*
  1618. * Calculate the expected normal priority: i.e. priority
  1619. * without taking RT-inheritance into account. Might be
  1620. * boosted by interactivity modifiers. Changes upon fork,
  1621. * setprio syscalls, and whenever the interactivity
  1622. * estimator recalculates.
  1623. */
  1624. static inline int normal_prio(struct task_struct *p)
  1625. {
  1626. int prio;
  1627. if (task_has_rt_policy(p))
  1628. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1629. else
  1630. prio = __normal_prio(p);
  1631. return prio;
  1632. }
  1633. /*
  1634. * Calculate the current priority, i.e. the priority
  1635. * taken into account by the scheduler. This value might
  1636. * be boosted by RT tasks, or might be boosted by
  1637. * interactivity modifiers. Will be RT if the task got
  1638. * RT-boosted. If not then it returns p->normal_prio.
  1639. */
  1640. static int effective_prio(struct task_struct *p)
  1641. {
  1642. p->normal_prio = normal_prio(p);
  1643. /*
  1644. * If we are RT tasks or we were boosted to RT priority,
  1645. * keep the priority unchanged. Otherwise, update priority
  1646. * to the normal priority:
  1647. */
  1648. if (!rt_prio(p->prio))
  1649. return p->normal_prio;
  1650. return p->prio;
  1651. }
  1652. /*
  1653. * activate_task - move a task to the runqueue.
  1654. */
  1655. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1656. {
  1657. if (task_contributes_to_load(p))
  1658. rq->nr_uninterruptible--;
  1659. enqueue_task(rq, p, wakeup);
  1660. inc_nr_running(rq);
  1661. }
  1662. /*
  1663. * deactivate_task - remove a task from the runqueue.
  1664. */
  1665. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1666. {
  1667. if (task_contributes_to_load(p))
  1668. rq->nr_uninterruptible++;
  1669. dequeue_task(rq, p, sleep);
  1670. dec_nr_running(rq);
  1671. }
  1672. /**
  1673. * task_curr - is this task currently executing on a CPU?
  1674. * @p: the task in question.
  1675. */
  1676. inline int task_curr(const struct task_struct *p)
  1677. {
  1678. return cpu_curr(task_cpu(p)) == p;
  1679. }
  1680. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1681. const struct sched_class *prev_class,
  1682. int oldprio, int running)
  1683. {
  1684. if (prev_class != p->sched_class) {
  1685. if (prev_class->switched_from)
  1686. prev_class->switched_from(rq, p, running);
  1687. p->sched_class->switched_to(rq, p, running);
  1688. } else
  1689. p->sched_class->prio_changed(rq, p, oldprio, running);
  1690. }
  1691. #ifdef CONFIG_SMP
  1692. /*
  1693. * Is this task likely cache-hot:
  1694. */
  1695. static int
  1696. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1697. {
  1698. s64 delta;
  1699. if (p->sched_class != &fair_sched_class)
  1700. return 0;
  1701. /*
  1702. * Buddy candidates are cache hot:
  1703. */
  1704. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1705. (&p->se == cfs_rq_of(&p->se)->next ||
  1706. &p->se == cfs_rq_of(&p->se)->last))
  1707. return 1;
  1708. if (sysctl_sched_migration_cost == -1)
  1709. return 1;
  1710. if (sysctl_sched_migration_cost == 0)
  1711. return 0;
  1712. delta = now - p->se.exec_start;
  1713. return delta < (s64)sysctl_sched_migration_cost;
  1714. }
  1715. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1716. {
  1717. #ifdef CONFIG_SCHED_DEBUG
  1718. /*
  1719. * We should never call set_task_cpu() on a blocked task,
  1720. * ttwu() will sort out the placement.
  1721. */
  1722. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1723. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1724. #endif
  1725. trace_sched_migrate_task(p, new_cpu);
  1726. if (task_cpu(p) != new_cpu) {
  1727. p->se.nr_migrations++;
  1728. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1729. }
  1730. __set_task_cpu(p, new_cpu);
  1731. }
  1732. struct migration_req {
  1733. struct list_head list;
  1734. struct task_struct *task;
  1735. int dest_cpu;
  1736. struct completion done;
  1737. };
  1738. /*
  1739. * The task's runqueue lock must be held.
  1740. * Returns true if you have to wait for migration thread.
  1741. */
  1742. static int
  1743. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1744. {
  1745. struct rq *rq = task_rq(p);
  1746. /*
  1747. * If the task is not on a runqueue (and not running), then
  1748. * the next wake-up will properly place the task.
  1749. */
  1750. if (!p->se.on_rq && !task_running(rq, p))
  1751. return 0;
  1752. init_completion(&req->done);
  1753. req->task = p;
  1754. req->dest_cpu = dest_cpu;
  1755. list_add(&req->list, &rq->migration_queue);
  1756. return 1;
  1757. }
  1758. /*
  1759. * wait_task_context_switch - wait for a thread to complete at least one
  1760. * context switch.
  1761. *
  1762. * @p must not be current.
  1763. */
  1764. void wait_task_context_switch(struct task_struct *p)
  1765. {
  1766. unsigned long nvcsw, nivcsw, flags;
  1767. int running;
  1768. struct rq *rq;
  1769. nvcsw = p->nvcsw;
  1770. nivcsw = p->nivcsw;
  1771. for (;;) {
  1772. /*
  1773. * The runqueue is assigned before the actual context
  1774. * switch. We need to take the runqueue lock.
  1775. *
  1776. * We could check initially without the lock but it is
  1777. * very likely that we need to take the lock in every
  1778. * iteration.
  1779. */
  1780. rq = task_rq_lock(p, &flags);
  1781. running = task_running(rq, p);
  1782. task_rq_unlock(rq, &flags);
  1783. if (likely(!running))
  1784. break;
  1785. /*
  1786. * The switch count is incremented before the actual
  1787. * context switch. We thus wait for two switches to be
  1788. * sure at least one completed.
  1789. */
  1790. if ((p->nvcsw - nvcsw) > 1)
  1791. break;
  1792. if ((p->nivcsw - nivcsw) > 1)
  1793. break;
  1794. cpu_relax();
  1795. }
  1796. }
  1797. /*
  1798. * wait_task_inactive - wait for a thread to unschedule.
  1799. *
  1800. * If @match_state is nonzero, it's the @p->state value just checked and
  1801. * not expected to change. If it changes, i.e. @p might have woken up,
  1802. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1803. * we return a positive number (its total switch count). If a second call
  1804. * a short while later returns the same number, the caller can be sure that
  1805. * @p has remained unscheduled the whole time.
  1806. *
  1807. * The caller must ensure that the task *will* unschedule sometime soon,
  1808. * else this function might spin for a *long* time. This function can't
  1809. * be called with interrupts off, or it may introduce deadlock with
  1810. * smp_call_function() if an IPI is sent by the same process we are
  1811. * waiting to become inactive.
  1812. */
  1813. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1814. {
  1815. unsigned long flags;
  1816. int running, on_rq;
  1817. unsigned long ncsw;
  1818. struct rq *rq;
  1819. for (;;) {
  1820. /*
  1821. * We do the initial early heuristics without holding
  1822. * any task-queue locks at all. We'll only try to get
  1823. * the runqueue lock when things look like they will
  1824. * work out!
  1825. */
  1826. rq = task_rq(p);
  1827. /*
  1828. * If the task is actively running on another CPU
  1829. * still, just relax and busy-wait without holding
  1830. * any locks.
  1831. *
  1832. * NOTE! Since we don't hold any locks, it's not
  1833. * even sure that "rq" stays as the right runqueue!
  1834. * But we don't care, since "task_running()" will
  1835. * return false if the runqueue has changed and p
  1836. * is actually now running somewhere else!
  1837. */
  1838. while (task_running(rq, p)) {
  1839. if (match_state && unlikely(p->state != match_state))
  1840. return 0;
  1841. cpu_relax();
  1842. }
  1843. /*
  1844. * Ok, time to look more closely! We need the rq
  1845. * lock now, to be *sure*. If we're wrong, we'll
  1846. * just go back and repeat.
  1847. */
  1848. rq = task_rq_lock(p, &flags);
  1849. trace_sched_wait_task(rq, p);
  1850. running = task_running(rq, p);
  1851. on_rq = p->se.on_rq;
  1852. ncsw = 0;
  1853. if (!match_state || p->state == match_state)
  1854. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1855. task_rq_unlock(rq, &flags);
  1856. /*
  1857. * If it changed from the expected state, bail out now.
  1858. */
  1859. if (unlikely(!ncsw))
  1860. break;
  1861. /*
  1862. * Was it really running after all now that we
  1863. * checked with the proper locks actually held?
  1864. *
  1865. * Oops. Go back and try again..
  1866. */
  1867. if (unlikely(running)) {
  1868. cpu_relax();
  1869. continue;
  1870. }
  1871. /*
  1872. * It's not enough that it's not actively running,
  1873. * it must be off the runqueue _entirely_, and not
  1874. * preempted!
  1875. *
  1876. * So if it was still runnable (but just not actively
  1877. * running right now), it's preempted, and we should
  1878. * yield - it could be a while.
  1879. */
  1880. if (unlikely(on_rq)) {
  1881. schedule_timeout_uninterruptible(1);
  1882. continue;
  1883. }
  1884. /*
  1885. * Ahh, all good. It wasn't running, and it wasn't
  1886. * runnable, which means that it will never become
  1887. * running in the future either. We're all done!
  1888. */
  1889. break;
  1890. }
  1891. return ncsw;
  1892. }
  1893. /***
  1894. * kick_process - kick a running thread to enter/exit the kernel
  1895. * @p: the to-be-kicked thread
  1896. *
  1897. * Cause a process which is running on another CPU to enter
  1898. * kernel-mode, without any delay. (to get signals handled.)
  1899. *
  1900. * NOTE: this function doesnt have to take the runqueue lock,
  1901. * because all it wants to ensure is that the remote task enters
  1902. * the kernel. If the IPI races and the task has been migrated
  1903. * to another CPU then no harm is done and the purpose has been
  1904. * achieved as well.
  1905. */
  1906. void kick_process(struct task_struct *p)
  1907. {
  1908. int cpu;
  1909. preempt_disable();
  1910. cpu = task_cpu(p);
  1911. if ((cpu != smp_processor_id()) && task_curr(p))
  1912. smp_send_reschedule(cpu);
  1913. preempt_enable();
  1914. }
  1915. EXPORT_SYMBOL_GPL(kick_process);
  1916. #endif /* CONFIG_SMP */
  1917. /**
  1918. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1919. * @p: the task to evaluate
  1920. * @func: the function to be called
  1921. * @info: the function call argument
  1922. *
  1923. * Calls the function @func when the task is currently running. This might
  1924. * be on the current CPU, which just calls the function directly
  1925. */
  1926. void task_oncpu_function_call(struct task_struct *p,
  1927. void (*func) (void *info), void *info)
  1928. {
  1929. int cpu;
  1930. preempt_disable();
  1931. cpu = task_cpu(p);
  1932. if (task_curr(p))
  1933. smp_call_function_single(cpu, func, info, 1);
  1934. preempt_enable();
  1935. }
  1936. #ifdef CONFIG_SMP
  1937. static int select_fallback_rq(int cpu, struct task_struct *p)
  1938. {
  1939. int dest_cpu;
  1940. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1941. /* Look for allowed, online CPU in same node. */
  1942. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1943. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1944. return dest_cpu;
  1945. /* Any allowed, online CPU? */
  1946. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1947. if (dest_cpu < nr_cpu_ids)
  1948. return dest_cpu;
  1949. /* No more Mr. Nice Guy. */
  1950. if (dest_cpu >= nr_cpu_ids) {
  1951. rcu_read_lock();
  1952. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  1953. rcu_read_unlock();
  1954. dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
  1955. /*
  1956. * Don't tell them about moving exiting tasks or
  1957. * kernel threads (both mm NULL), since they never
  1958. * leave kernel.
  1959. */
  1960. if (p->mm && printk_ratelimit()) {
  1961. printk(KERN_INFO "process %d (%s) no "
  1962. "longer affine to cpu%d\n",
  1963. task_pid_nr(p), p->comm, cpu);
  1964. }
  1965. }
  1966. return dest_cpu;
  1967. }
  1968. /*
  1969. * Gets called from 3 sites (exec, fork, wakeup), since it is called without
  1970. * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
  1971. * by:
  1972. *
  1973. * exec: is unstable, retry loop
  1974. * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
  1975. */
  1976. static inline
  1977. int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
  1978. {
  1979. int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
  1980. /*
  1981. * In order not to call set_task_cpu() on a blocking task we need
  1982. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1983. * cpu.
  1984. *
  1985. * Since this is common to all placement strategies, this lives here.
  1986. *
  1987. * [ this allows ->select_task() to simply return task_cpu(p) and
  1988. * not worry about this generic constraint ]
  1989. */
  1990. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1991. !cpu_online(cpu)))
  1992. cpu = select_fallback_rq(task_cpu(p), p);
  1993. return cpu;
  1994. }
  1995. #endif
  1996. /***
  1997. * try_to_wake_up - wake up a thread
  1998. * @p: the to-be-woken-up thread
  1999. * @state: the mask of task states that can be woken
  2000. * @sync: do a synchronous wakeup?
  2001. *
  2002. * Put it on the run-queue if it's not already there. The "current"
  2003. * thread is always on the run-queue (except when the actual
  2004. * re-schedule is in progress), and as such you're allowed to do
  2005. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2006. * runnable without the overhead of this.
  2007. *
  2008. * returns failure only if the task is already active.
  2009. */
  2010. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  2011. int wake_flags)
  2012. {
  2013. int cpu, orig_cpu, this_cpu, success = 0;
  2014. unsigned long flags;
  2015. struct rq *rq, *orig_rq;
  2016. if (!sched_feat(SYNC_WAKEUPS))
  2017. wake_flags &= ~WF_SYNC;
  2018. this_cpu = get_cpu();
  2019. smp_wmb();
  2020. rq = orig_rq = task_rq_lock(p, &flags);
  2021. update_rq_clock(rq);
  2022. if (!(p->state & state))
  2023. goto out;
  2024. if (p->se.on_rq)
  2025. goto out_running;
  2026. cpu = task_cpu(p);
  2027. orig_cpu = cpu;
  2028. #ifdef CONFIG_SMP
  2029. if (unlikely(task_running(rq, p)))
  2030. goto out_activate;
  2031. /*
  2032. * In order to handle concurrent wakeups and release the rq->lock
  2033. * we put the task in TASK_WAKING state.
  2034. *
  2035. * First fix up the nr_uninterruptible count:
  2036. */
  2037. if (task_contributes_to_load(p))
  2038. rq->nr_uninterruptible--;
  2039. p->state = TASK_WAKING;
  2040. if (p->sched_class->task_waking)
  2041. p->sched_class->task_waking(rq, p);
  2042. __task_rq_unlock(rq);
  2043. cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
  2044. if (cpu != orig_cpu) {
  2045. /*
  2046. * Since we migrate the task without holding any rq->lock,
  2047. * we need to be careful with task_rq_lock(), since that
  2048. * might end up locking an invalid rq.
  2049. */
  2050. set_task_cpu(p, cpu);
  2051. }
  2052. rq = cpu_rq(cpu);
  2053. raw_spin_lock(&rq->lock);
  2054. update_rq_clock(rq);
  2055. /*
  2056. * We migrated the task without holding either rq->lock, however
  2057. * since the task is not on the task list itself, nobody else
  2058. * will try and migrate the task, hence the rq should match the
  2059. * cpu we just moved it to.
  2060. */
  2061. WARN_ON(task_cpu(p) != cpu);
  2062. WARN_ON(p->state != TASK_WAKING);
  2063. #ifdef CONFIG_SCHEDSTATS
  2064. schedstat_inc(rq, ttwu_count);
  2065. if (cpu == this_cpu)
  2066. schedstat_inc(rq, ttwu_local);
  2067. else {
  2068. struct sched_domain *sd;
  2069. for_each_domain(this_cpu, sd) {
  2070. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2071. schedstat_inc(sd, ttwu_wake_remote);
  2072. break;
  2073. }
  2074. }
  2075. }
  2076. #endif /* CONFIG_SCHEDSTATS */
  2077. out_activate:
  2078. #endif /* CONFIG_SMP */
  2079. schedstat_inc(p, se.nr_wakeups);
  2080. if (wake_flags & WF_SYNC)
  2081. schedstat_inc(p, se.nr_wakeups_sync);
  2082. if (orig_cpu != cpu)
  2083. schedstat_inc(p, se.nr_wakeups_migrate);
  2084. if (cpu == this_cpu)
  2085. schedstat_inc(p, se.nr_wakeups_local);
  2086. else
  2087. schedstat_inc(p, se.nr_wakeups_remote);
  2088. activate_task(rq, p, 1);
  2089. success = 1;
  2090. /*
  2091. * Only attribute actual wakeups done by this task.
  2092. */
  2093. if (!in_interrupt()) {
  2094. struct sched_entity *se = &current->se;
  2095. u64 sample = se->sum_exec_runtime;
  2096. if (se->last_wakeup)
  2097. sample -= se->last_wakeup;
  2098. else
  2099. sample -= se->start_runtime;
  2100. update_avg(&se->avg_wakeup, sample);
  2101. se->last_wakeup = se->sum_exec_runtime;
  2102. }
  2103. out_running:
  2104. trace_sched_wakeup(rq, p, success);
  2105. check_preempt_curr(rq, p, wake_flags);
  2106. p->state = TASK_RUNNING;
  2107. #ifdef CONFIG_SMP
  2108. if (p->sched_class->task_woken)
  2109. p->sched_class->task_woken(rq, p);
  2110. if (unlikely(rq->idle_stamp)) {
  2111. u64 delta = rq->clock - rq->idle_stamp;
  2112. u64 max = 2*sysctl_sched_migration_cost;
  2113. if (delta > max)
  2114. rq->avg_idle = max;
  2115. else
  2116. update_avg(&rq->avg_idle, delta);
  2117. rq->idle_stamp = 0;
  2118. }
  2119. #endif
  2120. out:
  2121. task_rq_unlock(rq, &flags);
  2122. put_cpu();
  2123. return success;
  2124. }
  2125. /**
  2126. * wake_up_process - Wake up a specific process
  2127. * @p: The process to be woken up.
  2128. *
  2129. * Attempt to wake up the nominated process and move it to the set of runnable
  2130. * processes. Returns 1 if the process was woken up, 0 if it was already
  2131. * running.
  2132. *
  2133. * It may be assumed that this function implies a write memory barrier before
  2134. * changing the task state if and only if any tasks are woken up.
  2135. */
  2136. int wake_up_process(struct task_struct *p)
  2137. {
  2138. return try_to_wake_up(p, TASK_ALL, 0);
  2139. }
  2140. EXPORT_SYMBOL(wake_up_process);
  2141. int wake_up_state(struct task_struct *p, unsigned int state)
  2142. {
  2143. return try_to_wake_up(p, state, 0);
  2144. }
  2145. /*
  2146. * Perform scheduler related setup for a newly forked process p.
  2147. * p is forked by current.
  2148. *
  2149. * __sched_fork() is basic setup used by init_idle() too:
  2150. */
  2151. static void __sched_fork(struct task_struct *p)
  2152. {
  2153. p->se.exec_start = 0;
  2154. p->se.sum_exec_runtime = 0;
  2155. p->se.prev_sum_exec_runtime = 0;
  2156. p->se.nr_migrations = 0;
  2157. p->se.last_wakeup = 0;
  2158. p->se.avg_overlap = 0;
  2159. p->se.start_runtime = 0;
  2160. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2161. #ifdef CONFIG_SCHEDSTATS
  2162. p->se.wait_start = 0;
  2163. p->se.wait_max = 0;
  2164. p->se.wait_count = 0;
  2165. p->se.wait_sum = 0;
  2166. p->se.sleep_start = 0;
  2167. p->se.sleep_max = 0;
  2168. p->se.sum_sleep_runtime = 0;
  2169. p->se.block_start = 0;
  2170. p->se.block_max = 0;
  2171. p->se.exec_max = 0;
  2172. p->se.slice_max = 0;
  2173. p->se.nr_migrations_cold = 0;
  2174. p->se.nr_failed_migrations_affine = 0;
  2175. p->se.nr_failed_migrations_running = 0;
  2176. p->se.nr_failed_migrations_hot = 0;
  2177. p->se.nr_forced_migrations = 0;
  2178. p->se.nr_wakeups = 0;
  2179. p->se.nr_wakeups_sync = 0;
  2180. p->se.nr_wakeups_migrate = 0;
  2181. p->se.nr_wakeups_local = 0;
  2182. p->se.nr_wakeups_remote = 0;
  2183. p->se.nr_wakeups_affine = 0;
  2184. p->se.nr_wakeups_affine_attempts = 0;
  2185. p->se.nr_wakeups_passive = 0;
  2186. p->se.nr_wakeups_idle = 0;
  2187. #endif
  2188. INIT_LIST_HEAD(&p->rt.run_list);
  2189. p->se.on_rq = 0;
  2190. INIT_LIST_HEAD(&p->se.group_node);
  2191. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2192. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2193. #endif
  2194. }
  2195. /*
  2196. * fork()/clone()-time setup:
  2197. */
  2198. void sched_fork(struct task_struct *p, int clone_flags)
  2199. {
  2200. int cpu = get_cpu();
  2201. __sched_fork(p);
  2202. /*
  2203. * We mark the process as waking here. This guarantees that
  2204. * nobody will actually run it, and a signal or other external
  2205. * event cannot wake it up and insert it on the runqueue either.
  2206. */
  2207. p->state = TASK_WAKING;
  2208. /*
  2209. * Revert to default priority/policy on fork if requested.
  2210. */
  2211. if (unlikely(p->sched_reset_on_fork)) {
  2212. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2213. p->policy = SCHED_NORMAL;
  2214. p->normal_prio = p->static_prio;
  2215. }
  2216. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2217. p->static_prio = NICE_TO_PRIO(0);
  2218. p->normal_prio = p->static_prio;
  2219. set_load_weight(p);
  2220. }
  2221. /*
  2222. * We don't need the reset flag anymore after the fork. It has
  2223. * fulfilled its duty:
  2224. */
  2225. p->sched_reset_on_fork = 0;
  2226. }
  2227. /*
  2228. * Make sure we do not leak PI boosting priority to the child.
  2229. */
  2230. p->prio = current->normal_prio;
  2231. if (!rt_prio(p->prio))
  2232. p->sched_class = &fair_sched_class;
  2233. if (p->sched_class->task_fork)
  2234. p->sched_class->task_fork(p);
  2235. set_task_cpu(p, cpu);
  2236. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2237. if (likely(sched_info_on()))
  2238. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2239. #endif
  2240. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2241. p->oncpu = 0;
  2242. #endif
  2243. #ifdef CONFIG_PREEMPT
  2244. /* Want to start with kernel preemption disabled. */
  2245. task_thread_info(p)->preempt_count = 1;
  2246. #endif
  2247. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2248. put_cpu();
  2249. }
  2250. /*
  2251. * wake_up_new_task - wake up a newly created task for the first time.
  2252. *
  2253. * This function will do some initial scheduler statistics housekeeping
  2254. * that must be done for every newly created context, then puts the task
  2255. * on the runqueue and wakes it.
  2256. */
  2257. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2258. {
  2259. unsigned long flags;
  2260. struct rq *rq;
  2261. int cpu = get_cpu();
  2262. #ifdef CONFIG_SMP
  2263. /*
  2264. * Fork balancing, do it here and not earlier because:
  2265. * - cpus_allowed can change in the fork path
  2266. * - any previously selected cpu might disappear through hotplug
  2267. *
  2268. * We still have TASK_WAKING but PF_STARTING is gone now, meaning
  2269. * ->cpus_allowed is stable, we have preemption disabled, meaning
  2270. * cpu_online_mask is stable.
  2271. */
  2272. cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
  2273. set_task_cpu(p, cpu);
  2274. #endif
  2275. /*
  2276. * Since the task is not on the rq and we still have TASK_WAKING set
  2277. * nobody else will migrate this task.
  2278. */
  2279. rq = cpu_rq(cpu);
  2280. raw_spin_lock_irqsave(&rq->lock, flags);
  2281. BUG_ON(p->state != TASK_WAKING);
  2282. p->state = TASK_RUNNING;
  2283. update_rq_clock(rq);
  2284. activate_task(rq, p, 0);
  2285. trace_sched_wakeup_new(rq, p, 1);
  2286. check_preempt_curr(rq, p, WF_FORK);
  2287. #ifdef CONFIG_SMP
  2288. if (p->sched_class->task_woken)
  2289. p->sched_class->task_woken(rq, p);
  2290. #endif
  2291. task_rq_unlock(rq, &flags);
  2292. put_cpu();
  2293. }
  2294. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2295. /**
  2296. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2297. * @notifier: notifier struct to register
  2298. */
  2299. void preempt_notifier_register(struct preempt_notifier *notifier)
  2300. {
  2301. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2302. }
  2303. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2304. /**
  2305. * preempt_notifier_unregister - no longer interested in preemption notifications
  2306. * @notifier: notifier struct to unregister
  2307. *
  2308. * This is safe to call from within a preemption notifier.
  2309. */
  2310. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2311. {
  2312. hlist_del(&notifier->link);
  2313. }
  2314. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2315. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2316. {
  2317. struct preempt_notifier *notifier;
  2318. struct hlist_node *node;
  2319. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2320. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2321. }
  2322. static void
  2323. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2324. struct task_struct *next)
  2325. {
  2326. struct preempt_notifier *notifier;
  2327. struct hlist_node *node;
  2328. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2329. notifier->ops->sched_out(notifier, next);
  2330. }
  2331. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2332. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2333. {
  2334. }
  2335. static void
  2336. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2337. struct task_struct *next)
  2338. {
  2339. }
  2340. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2341. /**
  2342. * prepare_task_switch - prepare to switch tasks
  2343. * @rq: the runqueue preparing to switch
  2344. * @prev: the current task that is being switched out
  2345. * @next: the task we are going to switch to.
  2346. *
  2347. * This is called with the rq lock held and interrupts off. It must
  2348. * be paired with a subsequent finish_task_switch after the context
  2349. * switch.
  2350. *
  2351. * prepare_task_switch sets up locking and calls architecture specific
  2352. * hooks.
  2353. */
  2354. static inline void
  2355. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2356. struct task_struct *next)
  2357. {
  2358. fire_sched_out_preempt_notifiers(prev, next);
  2359. prepare_lock_switch(rq, next);
  2360. prepare_arch_switch(next);
  2361. }
  2362. /**
  2363. * finish_task_switch - clean up after a task-switch
  2364. * @rq: runqueue associated with task-switch
  2365. * @prev: the thread we just switched away from.
  2366. *
  2367. * finish_task_switch must be called after the context switch, paired
  2368. * with a prepare_task_switch call before the context switch.
  2369. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2370. * and do any other architecture-specific cleanup actions.
  2371. *
  2372. * Note that we may have delayed dropping an mm in context_switch(). If
  2373. * so, we finish that here outside of the runqueue lock. (Doing it
  2374. * with the lock held can cause deadlocks; see schedule() for
  2375. * details.)
  2376. */
  2377. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2378. __releases(rq->lock)
  2379. {
  2380. struct mm_struct *mm = rq->prev_mm;
  2381. long prev_state;
  2382. rq->prev_mm = NULL;
  2383. /*
  2384. * A task struct has one reference for the use as "current".
  2385. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2386. * schedule one last time. The schedule call will never return, and
  2387. * the scheduled task must drop that reference.
  2388. * The test for TASK_DEAD must occur while the runqueue locks are
  2389. * still held, otherwise prev could be scheduled on another cpu, die
  2390. * there before we look at prev->state, and then the reference would
  2391. * be dropped twice.
  2392. * Manfred Spraul <manfred@colorfullife.com>
  2393. */
  2394. prev_state = prev->state;
  2395. finish_arch_switch(prev);
  2396. perf_event_task_sched_in(current, cpu_of(rq));
  2397. finish_lock_switch(rq, prev);
  2398. fire_sched_in_preempt_notifiers(current);
  2399. if (mm)
  2400. mmdrop(mm);
  2401. if (unlikely(prev_state == TASK_DEAD)) {
  2402. /*
  2403. * Remove function-return probe instances associated with this
  2404. * task and put them back on the free list.
  2405. */
  2406. kprobe_flush_task(prev);
  2407. put_task_struct(prev);
  2408. }
  2409. }
  2410. #ifdef CONFIG_SMP
  2411. /* assumes rq->lock is held */
  2412. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2413. {
  2414. if (prev->sched_class->pre_schedule)
  2415. prev->sched_class->pre_schedule(rq, prev);
  2416. }
  2417. /* rq->lock is NOT held, but preemption is disabled */
  2418. static inline void post_schedule(struct rq *rq)
  2419. {
  2420. if (rq->post_schedule) {
  2421. unsigned long flags;
  2422. raw_spin_lock_irqsave(&rq->lock, flags);
  2423. if (rq->curr->sched_class->post_schedule)
  2424. rq->curr->sched_class->post_schedule(rq);
  2425. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2426. rq->post_schedule = 0;
  2427. }
  2428. }
  2429. #else
  2430. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2431. {
  2432. }
  2433. static inline void post_schedule(struct rq *rq)
  2434. {
  2435. }
  2436. #endif
  2437. /**
  2438. * schedule_tail - first thing a freshly forked thread must call.
  2439. * @prev: the thread we just switched away from.
  2440. */
  2441. asmlinkage void schedule_tail(struct task_struct *prev)
  2442. __releases(rq->lock)
  2443. {
  2444. struct rq *rq = this_rq();
  2445. finish_task_switch(rq, prev);
  2446. /*
  2447. * FIXME: do we need to worry about rq being invalidated by the
  2448. * task_switch?
  2449. */
  2450. post_schedule(rq);
  2451. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2452. /* In this case, finish_task_switch does not reenable preemption */
  2453. preempt_enable();
  2454. #endif
  2455. if (current->set_child_tid)
  2456. put_user(task_pid_vnr(current), current->set_child_tid);
  2457. }
  2458. /*
  2459. * context_switch - switch to the new MM and the new
  2460. * thread's register state.
  2461. */
  2462. static inline void
  2463. context_switch(struct rq *rq, struct task_struct *prev,
  2464. struct task_struct *next)
  2465. {
  2466. struct mm_struct *mm, *oldmm;
  2467. prepare_task_switch(rq, prev, next);
  2468. trace_sched_switch(rq, prev, next);
  2469. mm = next->mm;
  2470. oldmm = prev->active_mm;
  2471. /*
  2472. * For paravirt, this is coupled with an exit in switch_to to
  2473. * combine the page table reload and the switch backend into
  2474. * one hypercall.
  2475. */
  2476. arch_start_context_switch(prev);
  2477. if (likely(!mm)) {
  2478. next->active_mm = oldmm;
  2479. atomic_inc(&oldmm->mm_count);
  2480. enter_lazy_tlb(oldmm, next);
  2481. } else
  2482. switch_mm(oldmm, mm, next);
  2483. if (likely(!prev->mm)) {
  2484. prev->active_mm = NULL;
  2485. rq->prev_mm = oldmm;
  2486. }
  2487. /*
  2488. * Since the runqueue lock will be released by the next
  2489. * task (which is an invalid locking op but in the case
  2490. * of the scheduler it's an obvious special-case), so we
  2491. * do an early lockdep release here:
  2492. */
  2493. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2494. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2495. #endif
  2496. /* Here we just switch the register state and the stack. */
  2497. switch_to(prev, next, prev);
  2498. barrier();
  2499. /*
  2500. * this_rq must be evaluated again because prev may have moved
  2501. * CPUs since it called schedule(), thus the 'rq' on its stack
  2502. * frame will be invalid.
  2503. */
  2504. finish_task_switch(this_rq(), prev);
  2505. }
  2506. /*
  2507. * nr_running, nr_uninterruptible and nr_context_switches:
  2508. *
  2509. * externally visible scheduler statistics: current number of runnable
  2510. * threads, current number of uninterruptible-sleeping threads, total
  2511. * number of context switches performed since bootup.
  2512. */
  2513. unsigned long nr_running(void)
  2514. {
  2515. unsigned long i, sum = 0;
  2516. for_each_online_cpu(i)
  2517. sum += cpu_rq(i)->nr_running;
  2518. return sum;
  2519. }
  2520. unsigned long nr_uninterruptible(void)
  2521. {
  2522. unsigned long i, sum = 0;
  2523. for_each_possible_cpu(i)
  2524. sum += cpu_rq(i)->nr_uninterruptible;
  2525. /*
  2526. * Since we read the counters lockless, it might be slightly
  2527. * inaccurate. Do not allow it to go below zero though:
  2528. */
  2529. if (unlikely((long)sum < 0))
  2530. sum = 0;
  2531. return sum;
  2532. }
  2533. unsigned long long nr_context_switches(void)
  2534. {
  2535. int i;
  2536. unsigned long long sum = 0;
  2537. for_each_possible_cpu(i)
  2538. sum += cpu_rq(i)->nr_switches;
  2539. return sum;
  2540. }
  2541. unsigned long nr_iowait(void)
  2542. {
  2543. unsigned long i, sum = 0;
  2544. for_each_possible_cpu(i)
  2545. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2546. return sum;
  2547. }
  2548. unsigned long nr_iowait_cpu(void)
  2549. {
  2550. struct rq *this = this_rq();
  2551. return atomic_read(&this->nr_iowait);
  2552. }
  2553. unsigned long this_cpu_load(void)
  2554. {
  2555. struct rq *this = this_rq();
  2556. return this->cpu_load[0];
  2557. }
  2558. /* Variables and functions for calc_load */
  2559. static atomic_long_t calc_load_tasks;
  2560. static unsigned long calc_load_update;
  2561. unsigned long avenrun[3];
  2562. EXPORT_SYMBOL(avenrun);
  2563. /**
  2564. * get_avenrun - get the load average array
  2565. * @loads: pointer to dest load array
  2566. * @offset: offset to add
  2567. * @shift: shift count to shift the result left
  2568. *
  2569. * These values are estimates at best, so no need for locking.
  2570. */
  2571. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2572. {
  2573. loads[0] = (avenrun[0] + offset) << shift;
  2574. loads[1] = (avenrun[1] + offset) << shift;
  2575. loads[2] = (avenrun[2] + offset) << shift;
  2576. }
  2577. static unsigned long
  2578. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2579. {
  2580. load *= exp;
  2581. load += active * (FIXED_1 - exp);
  2582. return load >> FSHIFT;
  2583. }
  2584. /*
  2585. * calc_load - update the avenrun load estimates 10 ticks after the
  2586. * CPUs have updated calc_load_tasks.
  2587. */
  2588. void calc_global_load(void)
  2589. {
  2590. unsigned long upd = calc_load_update + 10;
  2591. long active;
  2592. if (time_before(jiffies, upd))
  2593. return;
  2594. active = atomic_long_read(&calc_load_tasks);
  2595. active = active > 0 ? active * FIXED_1 : 0;
  2596. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2597. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2598. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2599. calc_load_update += LOAD_FREQ;
  2600. }
  2601. /*
  2602. * Either called from update_cpu_load() or from a cpu going idle
  2603. */
  2604. static void calc_load_account_active(struct rq *this_rq)
  2605. {
  2606. long nr_active, delta;
  2607. nr_active = this_rq->nr_running;
  2608. nr_active += (long) this_rq->nr_uninterruptible;
  2609. if (nr_active != this_rq->calc_load_active) {
  2610. delta = nr_active - this_rq->calc_load_active;
  2611. this_rq->calc_load_active = nr_active;
  2612. atomic_long_add(delta, &calc_load_tasks);
  2613. }
  2614. }
  2615. /*
  2616. * Update rq->cpu_load[] statistics. This function is usually called every
  2617. * scheduler tick (TICK_NSEC).
  2618. */
  2619. static void update_cpu_load(struct rq *this_rq)
  2620. {
  2621. unsigned long this_load = this_rq->load.weight;
  2622. int i, scale;
  2623. this_rq->nr_load_updates++;
  2624. /* Update our load: */
  2625. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2626. unsigned long old_load, new_load;
  2627. /* scale is effectively 1 << i now, and >> i divides by scale */
  2628. old_load = this_rq->cpu_load[i];
  2629. new_load = this_load;
  2630. /*
  2631. * Round up the averaging division if load is increasing. This
  2632. * prevents us from getting stuck on 9 if the load is 10, for
  2633. * example.
  2634. */
  2635. if (new_load > old_load)
  2636. new_load += scale-1;
  2637. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2638. }
  2639. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2640. this_rq->calc_load_update += LOAD_FREQ;
  2641. calc_load_account_active(this_rq);
  2642. }
  2643. }
  2644. #ifdef CONFIG_SMP
  2645. /*
  2646. * double_rq_lock - safely lock two runqueues
  2647. *
  2648. * Note this does not disable interrupts like task_rq_lock,
  2649. * you need to do so manually before calling.
  2650. */
  2651. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2652. __acquires(rq1->lock)
  2653. __acquires(rq2->lock)
  2654. {
  2655. BUG_ON(!irqs_disabled());
  2656. if (rq1 == rq2) {
  2657. raw_spin_lock(&rq1->lock);
  2658. __acquire(rq2->lock); /* Fake it out ;) */
  2659. } else {
  2660. if (rq1 < rq2) {
  2661. raw_spin_lock(&rq1->lock);
  2662. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2663. } else {
  2664. raw_spin_lock(&rq2->lock);
  2665. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2666. }
  2667. }
  2668. update_rq_clock(rq1);
  2669. update_rq_clock(rq2);
  2670. }
  2671. /*
  2672. * double_rq_unlock - safely unlock two runqueues
  2673. *
  2674. * Note this does not restore interrupts like task_rq_unlock,
  2675. * you need to do so manually after calling.
  2676. */
  2677. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2678. __releases(rq1->lock)
  2679. __releases(rq2->lock)
  2680. {
  2681. raw_spin_unlock(&rq1->lock);
  2682. if (rq1 != rq2)
  2683. raw_spin_unlock(&rq2->lock);
  2684. else
  2685. __release(rq2->lock);
  2686. }
  2687. /*
  2688. * sched_exec - execve() is a valuable balancing opportunity, because at
  2689. * this point the task has the smallest effective memory and cache footprint.
  2690. */
  2691. void sched_exec(void)
  2692. {
  2693. struct task_struct *p = current;
  2694. struct migration_req req;
  2695. int dest_cpu, this_cpu;
  2696. unsigned long flags;
  2697. struct rq *rq;
  2698. again:
  2699. this_cpu = get_cpu();
  2700. dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
  2701. if (dest_cpu == this_cpu) {
  2702. put_cpu();
  2703. return;
  2704. }
  2705. rq = task_rq_lock(p, &flags);
  2706. put_cpu();
  2707. /*
  2708. * select_task_rq() can race against ->cpus_allowed
  2709. */
  2710. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2711. || unlikely(!cpu_active(dest_cpu))) {
  2712. task_rq_unlock(rq, &flags);
  2713. goto again;
  2714. }
  2715. /* force the process onto the specified CPU */
  2716. if (migrate_task(p, dest_cpu, &req)) {
  2717. /* Need to wait for migration thread (might exit: take ref). */
  2718. struct task_struct *mt = rq->migration_thread;
  2719. get_task_struct(mt);
  2720. task_rq_unlock(rq, &flags);
  2721. wake_up_process(mt);
  2722. put_task_struct(mt);
  2723. wait_for_completion(&req.done);
  2724. return;
  2725. }
  2726. task_rq_unlock(rq, &flags);
  2727. }
  2728. /*
  2729. * pull_task - move a task from a remote runqueue to the local runqueue.
  2730. * Both runqueues must be locked.
  2731. */
  2732. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2733. struct rq *this_rq, int this_cpu)
  2734. {
  2735. deactivate_task(src_rq, p, 0);
  2736. set_task_cpu(p, this_cpu);
  2737. activate_task(this_rq, p, 0);
  2738. check_preempt_curr(this_rq, p, 0);
  2739. }
  2740. /*
  2741. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2742. */
  2743. static
  2744. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2745. struct sched_domain *sd, enum cpu_idle_type idle,
  2746. int *all_pinned)
  2747. {
  2748. int tsk_cache_hot = 0;
  2749. /*
  2750. * We do not migrate tasks that are:
  2751. * 1) running (obviously), or
  2752. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2753. * 3) are cache-hot on their current CPU.
  2754. */
  2755. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2756. schedstat_inc(p, se.nr_failed_migrations_affine);
  2757. return 0;
  2758. }
  2759. *all_pinned = 0;
  2760. if (task_running(rq, p)) {
  2761. schedstat_inc(p, se.nr_failed_migrations_running);
  2762. return 0;
  2763. }
  2764. /*
  2765. * Aggressive migration if:
  2766. * 1) task is cache cold, or
  2767. * 2) too many balance attempts have failed.
  2768. */
  2769. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2770. if (!tsk_cache_hot ||
  2771. sd->nr_balance_failed > sd->cache_nice_tries) {
  2772. #ifdef CONFIG_SCHEDSTATS
  2773. if (tsk_cache_hot) {
  2774. schedstat_inc(sd, lb_hot_gained[idle]);
  2775. schedstat_inc(p, se.nr_forced_migrations);
  2776. }
  2777. #endif
  2778. return 1;
  2779. }
  2780. if (tsk_cache_hot) {
  2781. schedstat_inc(p, se.nr_failed_migrations_hot);
  2782. return 0;
  2783. }
  2784. return 1;
  2785. }
  2786. static unsigned long
  2787. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2788. unsigned long max_load_move, struct sched_domain *sd,
  2789. enum cpu_idle_type idle, int *all_pinned,
  2790. int *this_best_prio, struct rq_iterator *iterator)
  2791. {
  2792. int loops = 0, pulled = 0, pinned = 0;
  2793. struct task_struct *p;
  2794. long rem_load_move = max_load_move;
  2795. if (max_load_move == 0)
  2796. goto out;
  2797. pinned = 1;
  2798. /*
  2799. * Start the load-balancing iterator:
  2800. */
  2801. p = iterator->start(iterator->arg);
  2802. next:
  2803. if (!p || loops++ > sysctl_sched_nr_migrate)
  2804. goto out;
  2805. if ((p->se.load.weight >> 1) > rem_load_move ||
  2806. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2807. p = iterator->next(iterator->arg);
  2808. goto next;
  2809. }
  2810. pull_task(busiest, p, this_rq, this_cpu);
  2811. pulled++;
  2812. rem_load_move -= p->se.load.weight;
  2813. #ifdef CONFIG_PREEMPT
  2814. /*
  2815. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2816. * will stop after the first task is pulled to minimize the critical
  2817. * section.
  2818. */
  2819. if (idle == CPU_NEWLY_IDLE)
  2820. goto out;
  2821. #endif
  2822. /*
  2823. * We only want to steal up to the prescribed amount of weighted load.
  2824. */
  2825. if (rem_load_move > 0) {
  2826. if (p->prio < *this_best_prio)
  2827. *this_best_prio = p->prio;
  2828. p = iterator->next(iterator->arg);
  2829. goto next;
  2830. }
  2831. out:
  2832. /*
  2833. * Right now, this is one of only two places pull_task() is called,
  2834. * so we can safely collect pull_task() stats here rather than
  2835. * inside pull_task().
  2836. */
  2837. schedstat_add(sd, lb_gained[idle], pulled);
  2838. if (all_pinned)
  2839. *all_pinned = pinned;
  2840. return max_load_move - rem_load_move;
  2841. }
  2842. /*
  2843. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2844. * this_rq, as part of a balancing operation within domain "sd".
  2845. * Returns 1 if successful and 0 otherwise.
  2846. *
  2847. * Called with both runqueues locked.
  2848. */
  2849. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2850. unsigned long max_load_move,
  2851. struct sched_domain *sd, enum cpu_idle_type idle,
  2852. int *all_pinned)
  2853. {
  2854. const struct sched_class *class = sched_class_highest;
  2855. unsigned long total_load_moved = 0;
  2856. int this_best_prio = this_rq->curr->prio;
  2857. do {
  2858. total_load_moved +=
  2859. class->load_balance(this_rq, this_cpu, busiest,
  2860. max_load_move - total_load_moved,
  2861. sd, idle, all_pinned, &this_best_prio);
  2862. class = class->next;
  2863. #ifdef CONFIG_PREEMPT
  2864. /*
  2865. * NEWIDLE balancing is a source of latency, so preemptible
  2866. * kernels will stop after the first task is pulled to minimize
  2867. * the critical section.
  2868. */
  2869. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2870. break;
  2871. #endif
  2872. } while (class && max_load_move > total_load_moved);
  2873. return total_load_moved > 0;
  2874. }
  2875. static int
  2876. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2877. struct sched_domain *sd, enum cpu_idle_type idle,
  2878. struct rq_iterator *iterator)
  2879. {
  2880. struct task_struct *p = iterator->start(iterator->arg);
  2881. int pinned = 0;
  2882. while (p) {
  2883. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2884. pull_task(busiest, p, this_rq, this_cpu);
  2885. /*
  2886. * Right now, this is only the second place pull_task()
  2887. * is called, so we can safely collect pull_task()
  2888. * stats here rather than inside pull_task().
  2889. */
  2890. schedstat_inc(sd, lb_gained[idle]);
  2891. return 1;
  2892. }
  2893. p = iterator->next(iterator->arg);
  2894. }
  2895. return 0;
  2896. }
  2897. /*
  2898. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2899. * part of active balancing operations within "domain".
  2900. * Returns 1 if successful and 0 otherwise.
  2901. *
  2902. * Called with both runqueues locked.
  2903. */
  2904. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2905. struct sched_domain *sd, enum cpu_idle_type idle)
  2906. {
  2907. const struct sched_class *class;
  2908. for_each_class(class) {
  2909. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2910. return 1;
  2911. }
  2912. return 0;
  2913. }
  2914. /********** Helpers for find_busiest_group ************************/
  2915. /*
  2916. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2917. * during load balancing.
  2918. */
  2919. struct sd_lb_stats {
  2920. struct sched_group *busiest; /* Busiest group in this sd */
  2921. struct sched_group *this; /* Local group in this sd */
  2922. unsigned long total_load; /* Total load of all groups in sd */
  2923. unsigned long total_pwr; /* Total power of all groups in sd */
  2924. unsigned long avg_load; /* Average load across all groups in sd */
  2925. /** Statistics of this group */
  2926. unsigned long this_load;
  2927. unsigned long this_load_per_task;
  2928. unsigned long this_nr_running;
  2929. /* Statistics of the busiest group */
  2930. unsigned long max_load;
  2931. unsigned long busiest_load_per_task;
  2932. unsigned long busiest_nr_running;
  2933. int group_imb; /* Is there imbalance in this sd */
  2934. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2935. int power_savings_balance; /* Is powersave balance needed for this sd */
  2936. struct sched_group *group_min; /* Least loaded group in sd */
  2937. struct sched_group *group_leader; /* Group which relieves group_min */
  2938. unsigned long min_load_per_task; /* load_per_task in group_min */
  2939. unsigned long leader_nr_running; /* Nr running of group_leader */
  2940. unsigned long min_nr_running; /* Nr running of group_min */
  2941. #endif
  2942. };
  2943. /*
  2944. * sg_lb_stats - stats of a sched_group required for load_balancing
  2945. */
  2946. struct sg_lb_stats {
  2947. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2948. unsigned long group_load; /* Total load over the CPUs of the group */
  2949. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2950. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2951. unsigned long group_capacity;
  2952. int group_imb; /* Is there an imbalance in the group ? */
  2953. };
  2954. /**
  2955. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2956. * @group: The group whose first cpu is to be returned.
  2957. */
  2958. static inline unsigned int group_first_cpu(struct sched_group *group)
  2959. {
  2960. return cpumask_first(sched_group_cpus(group));
  2961. }
  2962. /**
  2963. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2964. * @sd: The sched_domain whose load_idx is to be obtained.
  2965. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2966. */
  2967. static inline int get_sd_load_idx(struct sched_domain *sd,
  2968. enum cpu_idle_type idle)
  2969. {
  2970. int load_idx;
  2971. switch (idle) {
  2972. case CPU_NOT_IDLE:
  2973. load_idx = sd->busy_idx;
  2974. break;
  2975. case CPU_NEWLY_IDLE:
  2976. load_idx = sd->newidle_idx;
  2977. break;
  2978. default:
  2979. load_idx = sd->idle_idx;
  2980. break;
  2981. }
  2982. return load_idx;
  2983. }
  2984. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2985. /**
  2986. * init_sd_power_savings_stats - Initialize power savings statistics for
  2987. * the given sched_domain, during load balancing.
  2988. *
  2989. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2990. * @sds: Variable containing the statistics for sd.
  2991. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2992. */
  2993. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2994. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2995. {
  2996. /*
  2997. * Busy processors will not participate in power savings
  2998. * balance.
  2999. */
  3000. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  3001. sds->power_savings_balance = 0;
  3002. else {
  3003. sds->power_savings_balance = 1;
  3004. sds->min_nr_running = ULONG_MAX;
  3005. sds->leader_nr_running = 0;
  3006. }
  3007. }
  3008. /**
  3009. * update_sd_power_savings_stats - Update the power saving stats for a
  3010. * sched_domain while performing load balancing.
  3011. *
  3012. * @group: sched_group belonging to the sched_domain under consideration.
  3013. * @sds: Variable containing the statistics of the sched_domain
  3014. * @local_group: Does group contain the CPU for which we're performing
  3015. * load balancing ?
  3016. * @sgs: Variable containing the statistics of the group.
  3017. */
  3018. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3019. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3020. {
  3021. if (!sds->power_savings_balance)
  3022. return;
  3023. /*
  3024. * If the local group is idle or completely loaded
  3025. * no need to do power savings balance at this domain
  3026. */
  3027. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  3028. !sds->this_nr_running))
  3029. sds->power_savings_balance = 0;
  3030. /*
  3031. * If a group is already running at full capacity or idle,
  3032. * don't include that group in power savings calculations
  3033. */
  3034. if (!sds->power_savings_balance ||
  3035. sgs->sum_nr_running >= sgs->group_capacity ||
  3036. !sgs->sum_nr_running)
  3037. return;
  3038. /*
  3039. * Calculate the group which has the least non-idle load.
  3040. * This is the group from where we need to pick up the load
  3041. * for saving power
  3042. */
  3043. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3044. (sgs->sum_nr_running == sds->min_nr_running &&
  3045. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3046. sds->group_min = group;
  3047. sds->min_nr_running = sgs->sum_nr_running;
  3048. sds->min_load_per_task = sgs->sum_weighted_load /
  3049. sgs->sum_nr_running;
  3050. }
  3051. /*
  3052. * Calculate the group which is almost near its
  3053. * capacity but still has some space to pick up some load
  3054. * from other group and save more power
  3055. */
  3056. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3057. return;
  3058. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3059. (sgs->sum_nr_running == sds->leader_nr_running &&
  3060. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3061. sds->group_leader = group;
  3062. sds->leader_nr_running = sgs->sum_nr_running;
  3063. }
  3064. }
  3065. /**
  3066. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3067. * @sds: Variable containing the statistics of the sched_domain
  3068. * under consideration.
  3069. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3070. * @imbalance: Variable to store the imbalance.
  3071. *
  3072. * Description:
  3073. * Check if we have potential to perform some power-savings balance.
  3074. * If yes, set the busiest group to be the least loaded group in the
  3075. * sched_domain, so that it's CPUs can be put to idle.
  3076. *
  3077. * Returns 1 if there is potential to perform power-savings balance.
  3078. * Else returns 0.
  3079. */
  3080. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3081. int this_cpu, unsigned long *imbalance)
  3082. {
  3083. if (!sds->power_savings_balance)
  3084. return 0;
  3085. if (sds->this != sds->group_leader ||
  3086. sds->group_leader == sds->group_min)
  3087. return 0;
  3088. *imbalance = sds->min_load_per_task;
  3089. sds->busiest = sds->group_min;
  3090. return 1;
  3091. }
  3092. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3093. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3094. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3095. {
  3096. return;
  3097. }
  3098. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3099. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3100. {
  3101. return;
  3102. }
  3103. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3104. int this_cpu, unsigned long *imbalance)
  3105. {
  3106. return 0;
  3107. }
  3108. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3109. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3110. {
  3111. return SCHED_LOAD_SCALE;
  3112. }
  3113. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3114. {
  3115. return default_scale_freq_power(sd, cpu);
  3116. }
  3117. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3118. {
  3119. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3120. unsigned long smt_gain = sd->smt_gain;
  3121. smt_gain /= weight;
  3122. return smt_gain;
  3123. }
  3124. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3125. {
  3126. return default_scale_smt_power(sd, cpu);
  3127. }
  3128. unsigned long scale_rt_power(int cpu)
  3129. {
  3130. struct rq *rq = cpu_rq(cpu);
  3131. u64 total, available;
  3132. sched_avg_update(rq);
  3133. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3134. available = total - rq->rt_avg;
  3135. if (unlikely((s64)total < SCHED_LOAD_SCALE))
  3136. total = SCHED_LOAD_SCALE;
  3137. total >>= SCHED_LOAD_SHIFT;
  3138. return div_u64(available, total);
  3139. }
  3140. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3141. {
  3142. unsigned long weight = cpumask_weight(sched_domain_span(sd));
  3143. unsigned long power = SCHED_LOAD_SCALE;
  3144. struct sched_group *sdg = sd->groups;
  3145. if (sched_feat(ARCH_POWER))
  3146. power *= arch_scale_freq_power(sd, cpu);
  3147. else
  3148. power *= default_scale_freq_power(sd, cpu);
  3149. power >>= SCHED_LOAD_SHIFT;
  3150. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3151. if (sched_feat(ARCH_POWER))
  3152. power *= arch_scale_smt_power(sd, cpu);
  3153. else
  3154. power *= default_scale_smt_power(sd, cpu);
  3155. power >>= SCHED_LOAD_SHIFT;
  3156. }
  3157. power *= scale_rt_power(cpu);
  3158. power >>= SCHED_LOAD_SHIFT;
  3159. if (!power)
  3160. power = 1;
  3161. sdg->cpu_power = power;
  3162. }
  3163. static void update_group_power(struct sched_domain *sd, int cpu)
  3164. {
  3165. struct sched_domain *child = sd->child;
  3166. struct sched_group *group, *sdg = sd->groups;
  3167. unsigned long power;
  3168. if (!child) {
  3169. update_cpu_power(sd, cpu);
  3170. return;
  3171. }
  3172. power = 0;
  3173. group = child->groups;
  3174. do {
  3175. power += group->cpu_power;
  3176. group = group->next;
  3177. } while (group != child->groups);
  3178. sdg->cpu_power = power;
  3179. }
  3180. /**
  3181. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3182. * @sd: The sched_domain whose statistics are to be updated.
  3183. * @group: sched_group whose statistics are to be updated.
  3184. * @this_cpu: Cpu for which load balance is currently performed.
  3185. * @idle: Idle status of this_cpu
  3186. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3187. * @sd_idle: Idle status of the sched_domain containing group.
  3188. * @local_group: Does group contain this_cpu.
  3189. * @cpus: Set of cpus considered for load balancing.
  3190. * @balance: Should we balance.
  3191. * @sgs: variable to hold the statistics for this group.
  3192. */
  3193. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3194. struct sched_group *group, int this_cpu,
  3195. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3196. int local_group, const struct cpumask *cpus,
  3197. int *balance, struct sg_lb_stats *sgs)
  3198. {
  3199. unsigned long load, max_cpu_load, min_cpu_load;
  3200. int i;
  3201. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3202. unsigned long sum_avg_load_per_task;
  3203. unsigned long avg_load_per_task;
  3204. if (local_group) {
  3205. balance_cpu = group_first_cpu(group);
  3206. if (balance_cpu == this_cpu)
  3207. update_group_power(sd, this_cpu);
  3208. }
  3209. /* Tally up the load of all CPUs in the group */
  3210. sum_avg_load_per_task = avg_load_per_task = 0;
  3211. max_cpu_load = 0;
  3212. min_cpu_load = ~0UL;
  3213. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3214. struct rq *rq = cpu_rq(i);
  3215. if (*sd_idle && rq->nr_running)
  3216. *sd_idle = 0;
  3217. /* Bias balancing toward cpus of our domain */
  3218. if (local_group) {
  3219. if (idle_cpu(i) && !first_idle_cpu) {
  3220. first_idle_cpu = 1;
  3221. balance_cpu = i;
  3222. }
  3223. load = target_load(i, load_idx);
  3224. } else {
  3225. load = source_load(i, load_idx);
  3226. if (load > max_cpu_load)
  3227. max_cpu_load = load;
  3228. if (min_cpu_load > load)
  3229. min_cpu_load = load;
  3230. }
  3231. sgs->group_load += load;
  3232. sgs->sum_nr_running += rq->nr_running;
  3233. sgs->sum_weighted_load += weighted_cpuload(i);
  3234. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3235. }
  3236. /*
  3237. * First idle cpu or the first cpu(busiest) in this sched group
  3238. * is eligible for doing load balancing at this and above
  3239. * domains. In the newly idle case, we will allow all the cpu's
  3240. * to do the newly idle load balance.
  3241. */
  3242. if (idle != CPU_NEWLY_IDLE && local_group &&
  3243. balance_cpu != this_cpu && balance) {
  3244. *balance = 0;
  3245. return;
  3246. }
  3247. /* Adjust by relative CPU power of the group */
  3248. sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
  3249. /*
  3250. * Consider the group unbalanced when the imbalance is larger
  3251. * than the average weight of two tasks.
  3252. *
  3253. * APZ: with cgroup the avg task weight can vary wildly and
  3254. * might not be a suitable number - should we keep a
  3255. * normalized nr_running number somewhere that negates
  3256. * the hierarchy?
  3257. */
  3258. avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
  3259. group->cpu_power;
  3260. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3261. sgs->group_imb = 1;
  3262. sgs->group_capacity =
  3263. DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
  3264. }
  3265. /**
  3266. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3267. * @sd: sched_domain whose statistics are to be updated.
  3268. * @this_cpu: Cpu for which load balance is currently performed.
  3269. * @idle: Idle status of this_cpu
  3270. * @sd_idle: Idle status of the sched_domain containing group.
  3271. * @cpus: Set of cpus considered for load balancing.
  3272. * @balance: Should we balance.
  3273. * @sds: variable to hold the statistics for this sched_domain.
  3274. */
  3275. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3276. enum cpu_idle_type idle, int *sd_idle,
  3277. const struct cpumask *cpus, int *balance,
  3278. struct sd_lb_stats *sds)
  3279. {
  3280. struct sched_domain *child = sd->child;
  3281. struct sched_group *group = sd->groups;
  3282. struct sg_lb_stats sgs;
  3283. int load_idx, prefer_sibling = 0;
  3284. if (child && child->flags & SD_PREFER_SIBLING)
  3285. prefer_sibling = 1;
  3286. init_sd_power_savings_stats(sd, sds, idle);
  3287. load_idx = get_sd_load_idx(sd, idle);
  3288. do {
  3289. int local_group;
  3290. local_group = cpumask_test_cpu(this_cpu,
  3291. sched_group_cpus(group));
  3292. memset(&sgs, 0, sizeof(sgs));
  3293. update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
  3294. local_group, cpus, balance, &sgs);
  3295. if (local_group && balance && !(*balance))
  3296. return;
  3297. sds->total_load += sgs.group_load;
  3298. sds->total_pwr += group->cpu_power;
  3299. /*
  3300. * In case the child domain prefers tasks go to siblings
  3301. * first, lower the group capacity to one so that we'll try
  3302. * and move all the excess tasks away.
  3303. */
  3304. if (prefer_sibling)
  3305. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3306. if (local_group) {
  3307. sds->this_load = sgs.avg_load;
  3308. sds->this = group;
  3309. sds->this_nr_running = sgs.sum_nr_running;
  3310. sds->this_load_per_task = sgs.sum_weighted_load;
  3311. } else if (sgs.avg_load > sds->max_load &&
  3312. (sgs.sum_nr_running > sgs.group_capacity ||
  3313. sgs.group_imb)) {
  3314. sds->max_load = sgs.avg_load;
  3315. sds->busiest = group;
  3316. sds->busiest_nr_running = sgs.sum_nr_running;
  3317. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3318. sds->group_imb = sgs.group_imb;
  3319. }
  3320. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3321. group = group->next;
  3322. } while (group != sd->groups);
  3323. }
  3324. /**
  3325. * fix_small_imbalance - Calculate the minor imbalance that exists
  3326. * amongst the groups of a sched_domain, during
  3327. * load balancing.
  3328. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3329. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3330. * @imbalance: Variable to store the imbalance.
  3331. */
  3332. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3333. int this_cpu, unsigned long *imbalance)
  3334. {
  3335. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3336. unsigned int imbn = 2;
  3337. if (sds->this_nr_running) {
  3338. sds->this_load_per_task /= sds->this_nr_running;
  3339. if (sds->busiest_load_per_task >
  3340. sds->this_load_per_task)
  3341. imbn = 1;
  3342. } else
  3343. sds->this_load_per_task =
  3344. cpu_avg_load_per_task(this_cpu);
  3345. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3346. sds->busiest_load_per_task * imbn) {
  3347. *imbalance = sds->busiest_load_per_task;
  3348. return;
  3349. }
  3350. /*
  3351. * OK, we don't have enough imbalance to justify moving tasks,
  3352. * however we may be able to increase total CPU power used by
  3353. * moving them.
  3354. */
  3355. pwr_now += sds->busiest->cpu_power *
  3356. min(sds->busiest_load_per_task, sds->max_load);
  3357. pwr_now += sds->this->cpu_power *
  3358. min(sds->this_load_per_task, sds->this_load);
  3359. pwr_now /= SCHED_LOAD_SCALE;
  3360. /* Amount of load we'd subtract */
  3361. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3362. sds->busiest->cpu_power;
  3363. if (sds->max_load > tmp)
  3364. pwr_move += sds->busiest->cpu_power *
  3365. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3366. /* Amount of load we'd add */
  3367. if (sds->max_load * sds->busiest->cpu_power <
  3368. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3369. tmp = (sds->max_load * sds->busiest->cpu_power) /
  3370. sds->this->cpu_power;
  3371. else
  3372. tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
  3373. sds->this->cpu_power;
  3374. pwr_move += sds->this->cpu_power *
  3375. min(sds->this_load_per_task, sds->this_load + tmp);
  3376. pwr_move /= SCHED_LOAD_SCALE;
  3377. /* Move if we gain throughput */
  3378. if (pwr_move > pwr_now)
  3379. *imbalance = sds->busiest_load_per_task;
  3380. }
  3381. /**
  3382. * calculate_imbalance - Calculate the amount of imbalance present within the
  3383. * groups of a given sched_domain during load balance.
  3384. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3385. * @this_cpu: Cpu for which currently load balance is being performed.
  3386. * @imbalance: The variable to store the imbalance.
  3387. */
  3388. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3389. unsigned long *imbalance)
  3390. {
  3391. unsigned long max_pull;
  3392. /*
  3393. * In the presence of smp nice balancing, certain scenarios can have
  3394. * max load less than avg load(as we skip the groups at or below
  3395. * its cpu_power, while calculating max_load..)
  3396. */
  3397. if (sds->max_load < sds->avg_load) {
  3398. *imbalance = 0;
  3399. return fix_small_imbalance(sds, this_cpu, imbalance);
  3400. }
  3401. /* Don't want to pull so many tasks that a group would go idle */
  3402. max_pull = min(sds->max_load - sds->avg_load,
  3403. sds->max_load - sds->busiest_load_per_task);
  3404. /* How much load to actually move to equalise the imbalance */
  3405. *imbalance = min(max_pull * sds->busiest->cpu_power,
  3406. (sds->avg_load - sds->this_load) * sds->this->cpu_power)
  3407. / SCHED_LOAD_SCALE;
  3408. /*
  3409. * if *imbalance is less than the average load per runnable task
  3410. * there is no gaurantee that any tasks will be moved so we'll have
  3411. * a think about bumping its value to force at least one task to be
  3412. * moved
  3413. */
  3414. if (*imbalance < sds->busiest_load_per_task)
  3415. return fix_small_imbalance(sds, this_cpu, imbalance);
  3416. }
  3417. /******* find_busiest_group() helpers end here *********************/
  3418. /**
  3419. * find_busiest_group - Returns the busiest group within the sched_domain
  3420. * if there is an imbalance. If there isn't an imbalance, and
  3421. * the user has opted for power-savings, it returns a group whose
  3422. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3423. * such a group exists.
  3424. *
  3425. * Also calculates the amount of weighted load which should be moved
  3426. * to restore balance.
  3427. *
  3428. * @sd: The sched_domain whose busiest group is to be returned.
  3429. * @this_cpu: The cpu for which load balancing is currently being performed.
  3430. * @imbalance: Variable which stores amount of weighted load which should
  3431. * be moved to restore balance/put a group to idle.
  3432. * @idle: The idle status of this_cpu.
  3433. * @sd_idle: The idleness of sd
  3434. * @cpus: The set of CPUs under consideration for load-balancing.
  3435. * @balance: Pointer to a variable indicating if this_cpu
  3436. * is the appropriate cpu to perform load balancing at this_level.
  3437. *
  3438. * Returns: - the busiest group if imbalance exists.
  3439. * - If no imbalance and user has opted for power-savings balance,
  3440. * return the least loaded group whose CPUs can be
  3441. * put to idle by rebalancing its tasks onto our group.
  3442. */
  3443. static struct sched_group *
  3444. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3445. unsigned long *imbalance, enum cpu_idle_type idle,
  3446. int *sd_idle, const struct cpumask *cpus, int *balance)
  3447. {
  3448. struct sd_lb_stats sds;
  3449. memset(&sds, 0, sizeof(sds));
  3450. /*
  3451. * Compute the various statistics relavent for load balancing at
  3452. * this level.
  3453. */
  3454. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3455. balance, &sds);
  3456. /* Cases where imbalance does not exist from POV of this_cpu */
  3457. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3458. * at this level.
  3459. * 2) There is no busy sibling group to pull from.
  3460. * 3) This group is the busiest group.
  3461. * 4) This group is more busy than the avg busieness at this
  3462. * sched_domain.
  3463. * 5) The imbalance is within the specified limit.
  3464. * 6) Any rebalance would lead to ping-pong
  3465. */
  3466. if (balance && !(*balance))
  3467. goto ret;
  3468. if (!sds.busiest || sds.busiest_nr_running == 0)
  3469. goto out_balanced;
  3470. if (sds.this_load >= sds.max_load)
  3471. goto out_balanced;
  3472. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3473. if (sds.this_load >= sds.avg_load)
  3474. goto out_balanced;
  3475. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3476. goto out_balanced;
  3477. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3478. if (sds.group_imb)
  3479. sds.busiest_load_per_task =
  3480. min(sds.busiest_load_per_task, sds.avg_load);
  3481. /*
  3482. * We're trying to get all the cpus to the average_load, so we don't
  3483. * want to push ourselves above the average load, nor do we wish to
  3484. * reduce the max loaded cpu below the average load, as either of these
  3485. * actions would just result in more rebalancing later, and ping-pong
  3486. * tasks around. Thus we look for the minimum possible imbalance.
  3487. * Negative imbalances (*we* are more loaded than anyone else) will
  3488. * be counted as no imbalance for these purposes -- we can't fix that
  3489. * by pulling tasks to us. Be careful of negative numbers as they'll
  3490. * appear as very large values with unsigned longs.
  3491. */
  3492. if (sds.max_load <= sds.busiest_load_per_task)
  3493. goto out_balanced;
  3494. /* Looks like there is an imbalance. Compute it */
  3495. calculate_imbalance(&sds, this_cpu, imbalance);
  3496. return sds.busiest;
  3497. out_balanced:
  3498. /*
  3499. * There is no obvious imbalance. But check if we can do some balancing
  3500. * to save power.
  3501. */
  3502. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3503. return sds.busiest;
  3504. ret:
  3505. *imbalance = 0;
  3506. return NULL;
  3507. }
  3508. /*
  3509. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3510. */
  3511. static struct rq *
  3512. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3513. unsigned long imbalance, const struct cpumask *cpus)
  3514. {
  3515. struct rq *busiest = NULL, *rq;
  3516. unsigned long max_load = 0;
  3517. int i;
  3518. for_each_cpu(i, sched_group_cpus(group)) {
  3519. unsigned long power = power_of(i);
  3520. unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
  3521. unsigned long wl;
  3522. if (!cpumask_test_cpu(i, cpus))
  3523. continue;
  3524. rq = cpu_rq(i);
  3525. wl = weighted_cpuload(i);
  3526. /*
  3527. * When comparing with imbalance, use weighted_cpuload()
  3528. * which is not scaled with the cpu power.
  3529. */
  3530. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3531. continue;
  3532. /*
  3533. * For the load comparisons with the other cpu's, consider
  3534. * the weighted_cpuload() scaled with the cpu power, so that
  3535. * the load can be moved away from the cpu that is potentially
  3536. * running at a lower capacity.
  3537. */
  3538. wl = (wl * SCHED_LOAD_SCALE) / power;
  3539. if (wl > max_load) {
  3540. max_load = wl;
  3541. busiest = rq;
  3542. }
  3543. }
  3544. return busiest;
  3545. }
  3546. /*
  3547. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3548. * so long as it is large enough.
  3549. */
  3550. #define MAX_PINNED_INTERVAL 512
  3551. /* Working cpumask for load_balance and load_balance_newidle. */
  3552. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3553. /*
  3554. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3555. * tasks if there is an imbalance.
  3556. */
  3557. static int load_balance(int this_cpu, struct rq *this_rq,
  3558. struct sched_domain *sd, enum cpu_idle_type idle,
  3559. int *balance)
  3560. {
  3561. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3562. struct sched_group *group;
  3563. unsigned long imbalance;
  3564. struct rq *busiest;
  3565. unsigned long flags;
  3566. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3567. cpumask_copy(cpus, cpu_active_mask);
  3568. /*
  3569. * When power savings policy is enabled for the parent domain, idle
  3570. * sibling can pick up load irrespective of busy siblings. In this case,
  3571. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3572. * portraying it as CPU_NOT_IDLE.
  3573. */
  3574. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3575. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3576. sd_idle = 1;
  3577. schedstat_inc(sd, lb_count[idle]);
  3578. redo:
  3579. update_shares(sd);
  3580. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3581. cpus, balance);
  3582. if (*balance == 0)
  3583. goto out_balanced;
  3584. if (!group) {
  3585. schedstat_inc(sd, lb_nobusyg[idle]);
  3586. goto out_balanced;
  3587. }
  3588. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3589. if (!busiest) {
  3590. schedstat_inc(sd, lb_nobusyq[idle]);
  3591. goto out_balanced;
  3592. }
  3593. BUG_ON(busiest == this_rq);
  3594. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3595. ld_moved = 0;
  3596. if (busiest->nr_running > 1) {
  3597. /*
  3598. * Attempt to move tasks. If find_busiest_group has found
  3599. * an imbalance but busiest->nr_running <= 1, the group is
  3600. * still unbalanced. ld_moved simply stays zero, so it is
  3601. * correctly treated as an imbalance.
  3602. */
  3603. local_irq_save(flags);
  3604. double_rq_lock(this_rq, busiest);
  3605. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3606. imbalance, sd, idle, &all_pinned);
  3607. double_rq_unlock(this_rq, busiest);
  3608. local_irq_restore(flags);
  3609. /*
  3610. * some other cpu did the load balance for us.
  3611. */
  3612. if (ld_moved && this_cpu != smp_processor_id())
  3613. resched_cpu(this_cpu);
  3614. /* All tasks on this runqueue were pinned by CPU affinity */
  3615. if (unlikely(all_pinned)) {
  3616. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3617. if (!cpumask_empty(cpus))
  3618. goto redo;
  3619. goto out_balanced;
  3620. }
  3621. }
  3622. if (!ld_moved) {
  3623. schedstat_inc(sd, lb_failed[idle]);
  3624. sd->nr_balance_failed++;
  3625. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3626. raw_spin_lock_irqsave(&busiest->lock, flags);
  3627. /* don't kick the migration_thread, if the curr
  3628. * task on busiest cpu can't be moved to this_cpu
  3629. */
  3630. if (!cpumask_test_cpu(this_cpu,
  3631. &busiest->curr->cpus_allowed)) {
  3632. raw_spin_unlock_irqrestore(&busiest->lock,
  3633. flags);
  3634. all_pinned = 1;
  3635. goto out_one_pinned;
  3636. }
  3637. if (!busiest->active_balance) {
  3638. busiest->active_balance = 1;
  3639. busiest->push_cpu = this_cpu;
  3640. active_balance = 1;
  3641. }
  3642. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3643. if (active_balance)
  3644. wake_up_process(busiest->migration_thread);
  3645. /*
  3646. * We've kicked active balancing, reset the failure
  3647. * counter.
  3648. */
  3649. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3650. }
  3651. } else
  3652. sd->nr_balance_failed = 0;
  3653. if (likely(!active_balance)) {
  3654. /* We were unbalanced, so reset the balancing interval */
  3655. sd->balance_interval = sd->min_interval;
  3656. } else {
  3657. /*
  3658. * If we've begun active balancing, start to back off. This
  3659. * case may not be covered by the all_pinned logic if there
  3660. * is only 1 task on the busy runqueue (because we don't call
  3661. * move_tasks).
  3662. */
  3663. if (sd->balance_interval < sd->max_interval)
  3664. sd->balance_interval *= 2;
  3665. }
  3666. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3667. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3668. ld_moved = -1;
  3669. goto out;
  3670. out_balanced:
  3671. schedstat_inc(sd, lb_balanced[idle]);
  3672. sd->nr_balance_failed = 0;
  3673. out_one_pinned:
  3674. /* tune up the balancing interval */
  3675. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3676. (sd->balance_interval < sd->max_interval))
  3677. sd->balance_interval *= 2;
  3678. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3679. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3680. ld_moved = -1;
  3681. else
  3682. ld_moved = 0;
  3683. out:
  3684. if (ld_moved)
  3685. update_shares(sd);
  3686. return ld_moved;
  3687. }
  3688. /*
  3689. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3690. * tasks if there is an imbalance.
  3691. *
  3692. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3693. * this_rq is locked.
  3694. */
  3695. static int
  3696. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3697. {
  3698. struct sched_group *group;
  3699. struct rq *busiest = NULL;
  3700. unsigned long imbalance;
  3701. int ld_moved = 0;
  3702. int sd_idle = 0;
  3703. int all_pinned = 0;
  3704. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3705. cpumask_copy(cpus, cpu_active_mask);
  3706. /*
  3707. * When power savings policy is enabled for the parent domain, idle
  3708. * sibling can pick up load irrespective of busy siblings. In this case,
  3709. * let the state of idle sibling percolate up as IDLE, instead of
  3710. * portraying it as CPU_NOT_IDLE.
  3711. */
  3712. if (sd->flags & SD_SHARE_CPUPOWER &&
  3713. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3714. sd_idle = 1;
  3715. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3716. redo:
  3717. update_shares_locked(this_rq, sd);
  3718. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3719. &sd_idle, cpus, NULL);
  3720. if (!group) {
  3721. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3722. goto out_balanced;
  3723. }
  3724. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3725. if (!busiest) {
  3726. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3727. goto out_balanced;
  3728. }
  3729. BUG_ON(busiest == this_rq);
  3730. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3731. ld_moved = 0;
  3732. if (busiest->nr_running > 1) {
  3733. /* Attempt to move tasks */
  3734. double_lock_balance(this_rq, busiest);
  3735. /* this_rq->clock is already updated */
  3736. update_rq_clock(busiest);
  3737. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3738. imbalance, sd, CPU_NEWLY_IDLE,
  3739. &all_pinned);
  3740. double_unlock_balance(this_rq, busiest);
  3741. if (unlikely(all_pinned)) {
  3742. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3743. if (!cpumask_empty(cpus))
  3744. goto redo;
  3745. }
  3746. }
  3747. if (!ld_moved) {
  3748. int active_balance = 0;
  3749. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3750. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3751. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3752. return -1;
  3753. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3754. return -1;
  3755. if (sd->nr_balance_failed++ < 2)
  3756. return -1;
  3757. /*
  3758. * The only task running in a non-idle cpu can be moved to this
  3759. * cpu in an attempt to completely freeup the other CPU
  3760. * package. The same method used to move task in load_balance()
  3761. * have been extended for load_balance_newidle() to speedup
  3762. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3763. *
  3764. * The package power saving logic comes from
  3765. * find_busiest_group(). If there are no imbalance, then
  3766. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3767. * f_b_g() will select a group from which a running task may be
  3768. * pulled to this cpu in order to make the other package idle.
  3769. * If there is no opportunity to make a package idle and if
  3770. * there are no imbalance, then f_b_g() will return NULL and no
  3771. * action will be taken in load_balance_newidle().
  3772. *
  3773. * Under normal task pull operation due to imbalance, there
  3774. * will be more than one task in the source run queue and
  3775. * move_tasks() will succeed. ld_moved will be true and this
  3776. * active balance code will not be triggered.
  3777. */
  3778. /* Lock busiest in correct order while this_rq is held */
  3779. double_lock_balance(this_rq, busiest);
  3780. /*
  3781. * don't kick the migration_thread, if the curr
  3782. * task on busiest cpu can't be moved to this_cpu
  3783. */
  3784. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3785. double_unlock_balance(this_rq, busiest);
  3786. all_pinned = 1;
  3787. return ld_moved;
  3788. }
  3789. if (!busiest->active_balance) {
  3790. busiest->active_balance = 1;
  3791. busiest->push_cpu = this_cpu;
  3792. active_balance = 1;
  3793. }
  3794. double_unlock_balance(this_rq, busiest);
  3795. /*
  3796. * Should not call ttwu while holding a rq->lock
  3797. */
  3798. raw_spin_unlock(&this_rq->lock);
  3799. if (active_balance)
  3800. wake_up_process(busiest->migration_thread);
  3801. raw_spin_lock(&this_rq->lock);
  3802. } else
  3803. sd->nr_balance_failed = 0;
  3804. update_shares_locked(this_rq, sd);
  3805. return ld_moved;
  3806. out_balanced:
  3807. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3808. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3809. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3810. return -1;
  3811. sd->nr_balance_failed = 0;
  3812. return 0;
  3813. }
  3814. /*
  3815. * idle_balance is called by schedule() if this_cpu is about to become
  3816. * idle. Attempts to pull tasks from other CPUs.
  3817. */
  3818. static void idle_balance(int this_cpu, struct rq *this_rq)
  3819. {
  3820. struct sched_domain *sd;
  3821. int pulled_task = 0;
  3822. unsigned long next_balance = jiffies + HZ;
  3823. this_rq->idle_stamp = this_rq->clock;
  3824. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3825. return;
  3826. for_each_domain(this_cpu, sd) {
  3827. unsigned long interval;
  3828. if (!(sd->flags & SD_LOAD_BALANCE))
  3829. continue;
  3830. if (sd->flags & SD_BALANCE_NEWIDLE)
  3831. /* If we've pulled tasks over stop searching: */
  3832. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3833. sd);
  3834. interval = msecs_to_jiffies(sd->balance_interval);
  3835. if (time_after(next_balance, sd->last_balance + interval))
  3836. next_balance = sd->last_balance + interval;
  3837. if (pulled_task) {
  3838. this_rq->idle_stamp = 0;
  3839. break;
  3840. }
  3841. }
  3842. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3843. /*
  3844. * We are going idle. next_balance may be set based on
  3845. * a busy processor. So reset next_balance.
  3846. */
  3847. this_rq->next_balance = next_balance;
  3848. }
  3849. }
  3850. /*
  3851. * active_load_balance is run by migration threads. It pushes running tasks
  3852. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3853. * running on each physical CPU where possible, and avoids physical /
  3854. * logical imbalances.
  3855. *
  3856. * Called with busiest_rq locked.
  3857. */
  3858. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3859. {
  3860. int target_cpu = busiest_rq->push_cpu;
  3861. struct sched_domain *sd;
  3862. struct rq *target_rq;
  3863. /* Is there any task to move? */
  3864. if (busiest_rq->nr_running <= 1)
  3865. return;
  3866. target_rq = cpu_rq(target_cpu);
  3867. /*
  3868. * This condition is "impossible", if it occurs
  3869. * we need to fix it. Originally reported by
  3870. * Bjorn Helgaas on a 128-cpu setup.
  3871. */
  3872. BUG_ON(busiest_rq == target_rq);
  3873. /* move a task from busiest_rq to target_rq */
  3874. double_lock_balance(busiest_rq, target_rq);
  3875. update_rq_clock(busiest_rq);
  3876. update_rq_clock(target_rq);
  3877. /* Search for an sd spanning us and the target CPU. */
  3878. for_each_domain(target_cpu, sd) {
  3879. if ((sd->flags & SD_LOAD_BALANCE) &&
  3880. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3881. break;
  3882. }
  3883. if (likely(sd)) {
  3884. schedstat_inc(sd, alb_count);
  3885. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3886. sd, CPU_IDLE))
  3887. schedstat_inc(sd, alb_pushed);
  3888. else
  3889. schedstat_inc(sd, alb_failed);
  3890. }
  3891. double_unlock_balance(busiest_rq, target_rq);
  3892. }
  3893. #ifdef CONFIG_NO_HZ
  3894. static struct {
  3895. atomic_t load_balancer;
  3896. cpumask_var_t cpu_mask;
  3897. cpumask_var_t ilb_grp_nohz_mask;
  3898. } nohz ____cacheline_aligned = {
  3899. .load_balancer = ATOMIC_INIT(-1),
  3900. };
  3901. int get_nohz_load_balancer(void)
  3902. {
  3903. return atomic_read(&nohz.load_balancer);
  3904. }
  3905. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3906. /**
  3907. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3908. * @cpu: The cpu whose lowest level of sched domain is to
  3909. * be returned.
  3910. * @flag: The flag to check for the lowest sched_domain
  3911. * for the given cpu.
  3912. *
  3913. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3914. */
  3915. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3916. {
  3917. struct sched_domain *sd;
  3918. for_each_domain(cpu, sd)
  3919. if (sd && (sd->flags & flag))
  3920. break;
  3921. return sd;
  3922. }
  3923. /**
  3924. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3925. * @cpu: The cpu whose domains we're iterating over.
  3926. * @sd: variable holding the value of the power_savings_sd
  3927. * for cpu.
  3928. * @flag: The flag to filter the sched_domains to be iterated.
  3929. *
  3930. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3931. * set, starting from the lowest sched_domain to the highest.
  3932. */
  3933. #define for_each_flag_domain(cpu, sd, flag) \
  3934. for (sd = lowest_flag_domain(cpu, flag); \
  3935. (sd && (sd->flags & flag)); sd = sd->parent)
  3936. /**
  3937. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3938. * @ilb_group: group to be checked for semi-idleness
  3939. *
  3940. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3941. *
  3942. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3943. * and atleast one non-idle CPU. This helper function checks if the given
  3944. * sched_group is semi-idle or not.
  3945. */
  3946. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3947. {
  3948. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3949. sched_group_cpus(ilb_group));
  3950. /*
  3951. * A sched_group is semi-idle when it has atleast one busy cpu
  3952. * and atleast one idle cpu.
  3953. */
  3954. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3955. return 0;
  3956. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3957. return 0;
  3958. return 1;
  3959. }
  3960. /**
  3961. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3962. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3963. *
  3964. * Returns: Returns the id of the idle load balancer if it exists,
  3965. * Else, returns >= nr_cpu_ids.
  3966. *
  3967. * This algorithm picks the idle load balancer such that it belongs to a
  3968. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3969. * completely idle packages/cores just for the purpose of idle load balancing
  3970. * when there are other idle cpu's which are better suited for that job.
  3971. */
  3972. static int find_new_ilb(int cpu)
  3973. {
  3974. struct sched_domain *sd;
  3975. struct sched_group *ilb_group;
  3976. /*
  3977. * Have idle load balancer selection from semi-idle packages only
  3978. * when power-aware load balancing is enabled
  3979. */
  3980. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3981. goto out_done;
  3982. /*
  3983. * Optimize for the case when we have no idle CPUs or only one
  3984. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3985. */
  3986. if (cpumask_weight(nohz.cpu_mask) < 2)
  3987. goto out_done;
  3988. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3989. ilb_group = sd->groups;
  3990. do {
  3991. if (is_semi_idle_group(ilb_group))
  3992. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3993. ilb_group = ilb_group->next;
  3994. } while (ilb_group != sd->groups);
  3995. }
  3996. out_done:
  3997. return cpumask_first(nohz.cpu_mask);
  3998. }
  3999. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  4000. static inline int find_new_ilb(int call_cpu)
  4001. {
  4002. return cpumask_first(nohz.cpu_mask);
  4003. }
  4004. #endif
  4005. /*
  4006. * This routine will try to nominate the ilb (idle load balancing)
  4007. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  4008. * load balancing on behalf of all those cpus. If all the cpus in the system
  4009. * go into this tickless mode, then there will be no ilb owner (as there is
  4010. * no need for one) and all the cpus will sleep till the next wakeup event
  4011. * arrives...
  4012. *
  4013. * For the ilb owner, tick is not stopped. And this tick will be used
  4014. * for idle load balancing. ilb owner will still be part of
  4015. * nohz.cpu_mask..
  4016. *
  4017. * While stopping the tick, this cpu will become the ilb owner if there
  4018. * is no other owner. And will be the owner till that cpu becomes busy
  4019. * or if all cpus in the system stop their ticks at which point
  4020. * there is no need for ilb owner.
  4021. *
  4022. * When the ilb owner becomes busy, it nominates another owner, during the
  4023. * next busy scheduler_tick()
  4024. */
  4025. int select_nohz_load_balancer(int stop_tick)
  4026. {
  4027. int cpu = smp_processor_id();
  4028. if (stop_tick) {
  4029. cpu_rq(cpu)->in_nohz_recently = 1;
  4030. if (!cpu_active(cpu)) {
  4031. if (atomic_read(&nohz.load_balancer) != cpu)
  4032. return 0;
  4033. /*
  4034. * If we are going offline and still the leader,
  4035. * give up!
  4036. */
  4037. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4038. BUG();
  4039. return 0;
  4040. }
  4041. cpumask_set_cpu(cpu, nohz.cpu_mask);
  4042. /* time for ilb owner also to sleep */
  4043. if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
  4044. if (atomic_read(&nohz.load_balancer) == cpu)
  4045. atomic_set(&nohz.load_balancer, -1);
  4046. return 0;
  4047. }
  4048. if (atomic_read(&nohz.load_balancer) == -1) {
  4049. /* make me the ilb owner */
  4050. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  4051. return 1;
  4052. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  4053. int new_ilb;
  4054. if (!(sched_smt_power_savings ||
  4055. sched_mc_power_savings))
  4056. return 1;
  4057. /*
  4058. * Check to see if there is a more power-efficient
  4059. * ilb.
  4060. */
  4061. new_ilb = find_new_ilb(cpu);
  4062. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  4063. atomic_set(&nohz.load_balancer, -1);
  4064. resched_cpu(new_ilb);
  4065. return 0;
  4066. }
  4067. return 1;
  4068. }
  4069. } else {
  4070. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  4071. return 0;
  4072. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4073. if (atomic_read(&nohz.load_balancer) == cpu)
  4074. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  4075. BUG();
  4076. }
  4077. return 0;
  4078. }
  4079. #endif
  4080. static DEFINE_SPINLOCK(balancing);
  4081. /*
  4082. * It checks each scheduling domain to see if it is due to be balanced,
  4083. * and initiates a balancing operation if so.
  4084. *
  4085. * Balancing parameters are set up in arch_init_sched_domains.
  4086. */
  4087. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4088. {
  4089. int balance = 1;
  4090. struct rq *rq = cpu_rq(cpu);
  4091. unsigned long interval;
  4092. struct sched_domain *sd;
  4093. /* Earliest time when we have to do rebalance again */
  4094. unsigned long next_balance = jiffies + 60*HZ;
  4095. int update_next_balance = 0;
  4096. int need_serialize;
  4097. for_each_domain(cpu, sd) {
  4098. if (!(sd->flags & SD_LOAD_BALANCE))
  4099. continue;
  4100. interval = sd->balance_interval;
  4101. if (idle != CPU_IDLE)
  4102. interval *= sd->busy_factor;
  4103. /* scale ms to jiffies */
  4104. interval = msecs_to_jiffies(interval);
  4105. if (unlikely(!interval))
  4106. interval = 1;
  4107. if (interval > HZ*NR_CPUS/10)
  4108. interval = HZ*NR_CPUS/10;
  4109. need_serialize = sd->flags & SD_SERIALIZE;
  4110. if (need_serialize) {
  4111. if (!spin_trylock(&balancing))
  4112. goto out;
  4113. }
  4114. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4115. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4116. /*
  4117. * We've pulled tasks over so either we're no
  4118. * longer idle, or one of our SMT siblings is
  4119. * not idle.
  4120. */
  4121. idle = CPU_NOT_IDLE;
  4122. }
  4123. sd->last_balance = jiffies;
  4124. }
  4125. if (need_serialize)
  4126. spin_unlock(&balancing);
  4127. out:
  4128. if (time_after(next_balance, sd->last_balance + interval)) {
  4129. next_balance = sd->last_balance + interval;
  4130. update_next_balance = 1;
  4131. }
  4132. /*
  4133. * Stop the load balance at this level. There is another
  4134. * CPU in our sched group which is doing load balancing more
  4135. * actively.
  4136. */
  4137. if (!balance)
  4138. break;
  4139. }
  4140. /*
  4141. * next_balance will be updated only when there is a need.
  4142. * When the cpu is attached to null domain for ex, it will not be
  4143. * updated.
  4144. */
  4145. if (likely(update_next_balance))
  4146. rq->next_balance = next_balance;
  4147. }
  4148. /*
  4149. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4150. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4151. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4152. */
  4153. static void run_rebalance_domains(struct softirq_action *h)
  4154. {
  4155. int this_cpu = smp_processor_id();
  4156. struct rq *this_rq = cpu_rq(this_cpu);
  4157. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4158. CPU_IDLE : CPU_NOT_IDLE;
  4159. rebalance_domains(this_cpu, idle);
  4160. #ifdef CONFIG_NO_HZ
  4161. /*
  4162. * If this cpu is the owner for idle load balancing, then do the
  4163. * balancing on behalf of the other idle cpus whose ticks are
  4164. * stopped.
  4165. */
  4166. if (this_rq->idle_at_tick &&
  4167. atomic_read(&nohz.load_balancer) == this_cpu) {
  4168. struct rq *rq;
  4169. int balance_cpu;
  4170. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4171. if (balance_cpu == this_cpu)
  4172. continue;
  4173. /*
  4174. * If this cpu gets work to do, stop the load balancing
  4175. * work being done for other cpus. Next load
  4176. * balancing owner will pick it up.
  4177. */
  4178. if (need_resched())
  4179. break;
  4180. rebalance_domains(balance_cpu, CPU_IDLE);
  4181. rq = cpu_rq(balance_cpu);
  4182. if (time_after(this_rq->next_balance, rq->next_balance))
  4183. this_rq->next_balance = rq->next_balance;
  4184. }
  4185. }
  4186. #endif
  4187. }
  4188. static inline int on_null_domain(int cpu)
  4189. {
  4190. return !rcu_dereference(cpu_rq(cpu)->sd);
  4191. }
  4192. /*
  4193. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4194. *
  4195. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4196. * idle load balancing owner or decide to stop the periodic load balancing,
  4197. * if the whole system is idle.
  4198. */
  4199. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4200. {
  4201. #ifdef CONFIG_NO_HZ
  4202. /*
  4203. * If we were in the nohz mode recently and busy at the current
  4204. * scheduler tick, then check if we need to nominate new idle
  4205. * load balancer.
  4206. */
  4207. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4208. rq->in_nohz_recently = 0;
  4209. if (atomic_read(&nohz.load_balancer) == cpu) {
  4210. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4211. atomic_set(&nohz.load_balancer, -1);
  4212. }
  4213. if (atomic_read(&nohz.load_balancer) == -1) {
  4214. int ilb = find_new_ilb(cpu);
  4215. if (ilb < nr_cpu_ids)
  4216. resched_cpu(ilb);
  4217. }
  4218. }
  4219. /*
  4220. * If this cpu is idle and doing idle load balancing for all the
  4221. * cpus with ticks stopped, is it time for that to stop?
  4222. */
  4223. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4224. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4225. resched_cpu(cpu);
  4226. return;
  4227. }
  4228. /*
  4229. * If this cpu is idle and the idle load balancing is done by
  4230. * someone else, then no need raise the SCHED_SOFTIRQ
  4231. */
  4232. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4233. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4234. return;
  4235. #endif
  4236. /* Don't need to rebalance while attached to NULL domain */
  4237. if (time_after_eq(jiffies, rq->next_balance) &&
  4238. likely(!on_null_domain(cpu)))
  4239. raise_softirq(SCHED_SOFTIRQ);
  4240. }
  4241. #else /* CONFIG_SMP */
  4242. /*
  4243. * on UP we do not need to balance between CPUs:
  4244. */
  4245. static inline void idle_balance(int cpu, struct rq *rq)
  4246. {
  4247. }
  4248. #endif
  4249. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4250. EXPORT_PER_CPU_SYMBOL(kstat);
  4251. /*
  4252. * Return any ns on the sched_clock that have not yet been accounted in
  4253. * @p in case that task is currently running.
  4254. *
  4255. * Called with task_rq_lock() held on @rq.
  4256. */
  4257. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4258. {
  4259. u64 ns = 0;
  4260. if (task_current(rq, p)) {
  4261. update_rq_clock(rq);
  4262. ns = rq->clock - p->se.exec_start;
  4263. if ((s64)ns < 0)
  4264. ns = 0;
  4265. }
  4266. return ns;
  4267. }
  4268. unsigned long long task_delta_exec(struct task_struct *p)
  4269. {
  4270. unsigned long flags;
  4271. struct rq *rq;
  4272. u64 ns = 0;
  4273. rq = task_rq_lock(p, &flags);
  4274. ns = do_task_delta_exec(p, rq);
  4275. task_rq_unlock(rq, &flags);
  4276. return ns;
  4277. }
  4278. /*
  4279. * Return accounted runtime for the task.
  4280. * In case the task is currently running, return the runtime plus current's
  4281. * pending runtime that have not been accounted yet.
  4282. */
  4283. unsigned long long task_sched_runtime(struct task_struct *p)
  4284. {
  4285. unsigned long flags;
  4286. struct rq *rq;
  4287. u64 ns = 0;
  4288. rq = task_rq_lock(p, &flags);
  4289. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4290. task_rq_unlock(rq, &flags);
  4291. return ns;
  4292. }
  4293. /*
  4294. * Return sum_exec_runtime for the thread group.
  4295. * In case the task is currently running, return the sum plus current's
  4296. * pending runtime that have not been accounted yet.
  4297. *
  4298. * Note that the thread group might have other running tasks as well,
  4299. * so the return value not includes other pending runtime that other
  4300. * running tasks might have.
  4301. */
  4302. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4303. {
  4304. struct task_cputime totals;
  4305. unsigned long flags;
  4306. struct rq *rq;
  4307. u64 ns;
  4308. rq = task_rq_lock(p, &flags);
  4309. thread_group_cputime(p, &totals);
  4310. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4311. task_rq_unlock(rq, &flags);
  4312. return ns;
  4313. }
  4314. /*
  4315. * Account user cpu time to a process.
  4316. * @p: the process that the cpu time gets accounted to
  4317. * @cputime: the cpu time spent in user space since the last update
  4318. * @cputime_scaled: cputime scaled by cpu frequency
  4319. */
  4320. void account_user_time(struct task_struct *p, cputime_t cputime,
  4321. cputime_t cputime_scaled)
  4322. {
  4323. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4324. cputime64_t tmp;
  4325. /* Add user time to process. */
  4326. p->utime = cputime_add(p->utime, cputime);
  4327. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4328. account_group_user_time(p, cputime);
  4329. /* Add user time to cpustat. */
  4330. tmp = cputime_to_cputime64(cputime);
  4331. if (TASK_NICE(p) > 0)
  4332. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4333. else
  4334. cpustat->user = cputime64_add(cpustat->user, tmp);
  4335. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4336. /* Account for user time used */
  4337. acct_update_integrals(p);
  4338. }
  4339. /*
  4340. * Account guest cpu time to a process.
  4341. * @p: the process that the cpu time gets accounted to
  4342. * @cputime: the cpu time spent in virtual machine since the last update
  4343. * @cputime_scaled: cputime scaled by cpu frequency
  4344. */
  4345. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4346. cputime_t cputime_scaled)
  4347. {
  4348. cputime64_t tmp;
  4349. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4350. tmp = cputime_to_cputime64(cputime);
  4351. /* Add guest time to process. */
  4352. p->utime = cputime_add(p->utime, cputime);
  4353. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4354. account_group_user_time(p, cputime);
  4355. p->gtime = cputime_add(p->gtime, cputime);
  4356. /* Add guest time to cpustat. */
  4357. if (TASK_NICE(p) > 0) {
  4358. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4359. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  4360. } else {
  4361. cpustat->user = cputime64_add(cpustat->user, tmp);
  4362. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4363. }
  4364. }
  4365. /*
  4366. * Account system cpu time to a process.
  4367. * @p: the process that the cpu time gets accounted to
  4368. * @hardirq_offset: the offset to subtract from hardirq_count()
  4369. * @cputime: the cpu time spent in kernel space since the last update
  4370. * @cputime_scaled: cputime scaled by cpu frequency
  4371. */
  4372. void account_system_time(struct task_struct *p, int hardirq_offset,
  4373. cputime_t cputime, cputime_t cputime_scaled)
  4374. {
  4375. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4376. cputime64_t tmp;
  4377. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4378. account_guest_time(p, cputime, cputime_scaled);
  4379. return;
  4380. }
  4381. /* Add system time to process. */
  4382. p->stime = cputime_add(p->stime, cputime);
  4383. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4384. account_group_system_time(p, cputime);
  4385. /* Add system time to cpustat. */
  4386. tmp = cputime_to_cputime64(cputime);
  4387. if (hardirq_count() - hardirq_offset)
  4388. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4389. else if (softirq_count())
  4390. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4391. else
  4392. cpustat->system = cputime64_add(cpustat->system, tmp);
  4393. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4394. /* Account for system time used */
  4395. acct_update_integrals(p);
  4396. }
  4397. /*
  4398. * Account for involuntary wait time.
  4399. * @steal: the cpu time spent in involuntary wait
  4400. */
  4401. void account_steal_time(cputime_t cputime)
  4402. {
  4403. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4404. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4405. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4406. }
  4407. /*
  4408. * Account for idle time.
  4409. * @cputime: the cpu time spent in idle wait
  4410. */
  4411. void account_idle_time(cputime_t cputime)
  4412. {
  4413. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4414. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4415. struct rq *rq = this_rq();
  4416. if (atomic_read(&rq->nr_iowait) > 0)
  4417. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4418. else
  4419. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4420. }
  4421. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4422. /*
  4423. * Account a single tick of cpu time.
  4424. * @p: the process that the cpu time gets accounted to
  4425. * @user_tick: indicates if the tick is a user or a system tick
  4426. */
  4427. void account_process_tick(struct task_struct *p, int user_tick)
  4428. {
  4429. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  4430. struct rq *rq = this_rq();
  4431. if (user_tick)
  4432. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  4433. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4434. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  4435. one_jiffy_scaled);
  4436. else
  4437. account_idle_time(cputime_one_jiffy);
  4438. }
  4439. /*
  4440. * Account multiple ticks of steal time.
  4441. * @p: the process from which the cpu time has been stolen
  4442. * @ticks: number of stolen ticks
  4443. */
  4444. void account_steal_ticks(unsigned long ticks)
  4445. {
  4446. account_steal_time(jiffies_to_cputime(ticks));
  4447. }
  4448. /*
  4449. * Account multiple ticks of idle time.
  4450. * @ticks: number of stolen ticks
  4451. */
  4452. void account_idle_ticks(unsigned long ticks)
  4453. {
  4454. account_idle_time(jiffies_to_cputime(ticks));
  4455. }
  4456. #endif
  4457. /*
  4458. * Use precise platform statistics if available:
  4459. */
  4460. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4461. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4462. {
  4463. *ut = p->utime;
  4464. *st = p->stime;
  4465. }
  4466. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4467. {
  4468. struct task_cputime cputime;
  4469. thread_group_cputime(p, &cputime);
  4470. *ut = cputime.utime;
  4471. *st = cputime.stime;
  4472. }
  4473. #else
  4474. #ifndef nsecs_to_cputime
  4475. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  4476. #endif
  4477. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4478. {
  4479. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  4480. /*
  4481. * Use CFS's precise accounting:
  4482. */
  4483. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  4484. if (total) {
  4485. u64 temp;
  4486. temp = (u64)(rtime * utime);
  4487. do_div(temp, total);
  4488. utime = (cputime_t)temp;
  4489. } else
  4490. utime = rtime;
  4491. /*
  4492. * Compare with previous values, to keep monotonicity:
  4493. */
  4494. p->prev_utime = max(p->prev_utime, utime);
  4495. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  4496. *ut = p->prev_utime;
  4497. *st = p->prev_stime;
  4498. }
  4499. /*
  4500. * Must be called with siglock held.
  4501. */
  4502. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  4503. {
  4504. struct signal_struct *sig = p->signal;
  4505. struct task_cputime cputime;
  4506. cputime_t rtime, utime, total;
  4507. thread_group_cputime(p, &cputime);
  4508. total = cputime_add(cputime.utime, cputime.stime);
  4509. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  4510. if (total) {
  4511. u64 temp;
  4512. temp = (u64)(rtime * cputime.utime);
  4513. do_div(temp, total);
  4514. utime = (cputime_t)temp;
  4515. } else
  4516. utime = rtime;
  4517. sig->prev_utime = max(sig->prev_utime, utime);
  4518. sig->prev_stime = max(sig->prev_stime,
  4519. cputime_sub(rtime, sig->prev_utime));
  4520. *ut = sig->prev_utime;
  4521. *st = sig->prev_stime;
  4522. }
  4523. #endif
  4524. /*
  4525. * This function gets called by the timer code, with HZ frequency.
  4526. * We call it with interrupts disabled.
  4527. *
  4528. * It also gets called by the fork code, when changing the parent's
  4529. * timeslices.
  4530. */
  4531. void scheduler_tick(void)
  4532. {
  4533. int cpu = smp_processor_id();
  4534. struct rq *rq = cpu_rq(cpu);
  4535. struct task_struct *curr = rq->curr;
  4536. sched_clock_tick();
  4537. raw_spin_lock(&rq->lock);
  4538. update_rq_clock(rq);
  4539. update_cpu_load(rq);
  4540. curr->sched_class->task_tick(rq, curr, 0);
  4541. raw_spin_unlock(&rq->lock);
  4542. perf_event_task_tick(curr, cpu);
  4543. #ifdef CONFIG_SMP
  4544. rq->idle_at_tick = idle_cpu(cpu);
  4545. trigger_load_balance(rq, cpu);
  4546. #endif
  4547. }
  4548. notrace unsigned long get_parent_ip(unsigned long addr)
  4549. {
  4550. if (in_lock_functions(addr)) {
  4551. addr = CALLER_ADDR2;
  4552. if (in_lock_functions(addr))
  4553. addr = CALLER_ADDR3;
  4554. }
  4555. return addr;
  4556. }
  4557. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4558. defined(CONFIG_PREEMPT_TRACER))
  4559. void __kprobes add_preempt_count(int val)
  4560. {
  4561. #ifdef CONFIG_DEBUG_PREEMPT
  4562. /*
  4563. * Underflow?
  4564. */
  4565. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4566. return;
  4567. #endif
  4568. preempt_count() += val;
  4569. #ifdef CONFIG_DEBUG_PREEMPT
  4570. /*
  4571. * Spinlock count overflowing soon?
  4572. */
  4573. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4574. PREEMPT_MASK - 10);
  4575. #endif
  4576. if (preempt_count() == val)
  4577. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4578. }
  4579. EXPORT_SYMBOL(add_preempt_count);
  4580. void __kprobes sub_preempt_count(int val)
  4581. {
  4582. #ifdef CONFIG_DEBUG_PREEMPT
  4583. /*
  4584. * Underflow?
  4585. */
  4586. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4587. return;
  4588. /*
  4589. * Is the spinlock portion underflowing?
  4590. */
  4591. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4592. !(preempt_count() & PREEMPT_MASK)))
  4593. return;
  4594. #endif
  4595. if (preempt_count() == val)
  4596. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4597. preempt_count() -= val;
  4598. }
  4599. EXPORT_SYMBOL(sub_preempt_count);
  4600. #endif
  4601. /*
  4602. * Print scheduling while atomic bug:
  4603. */
  4604. static noinline void __schedule_bug(struct task_struct *prev)
  4605. {
  4606. struct pt_regs *regs = get_irq_regs();
  4607. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4608. prev->comm, prev->pid, preempt_count());
  4609. debug_show_held_locks(prev);
  4610. print_modules();
  4611. if (irqs_disabled())
  4612. print_irqtrace_events(prev);
  4613. if (regs)
  4614. show_regs(regs);
  4615. else
  4616. dump_stack();
  4617. }
  4618. /*
  4619. * Various schedule()-time debugging checks and statistics:
  4620. */
  4621. static inline void schedule_debug(struct task_struct *prev)
  4622. {
  4623. /*
  4624. * Test if we are atomic. Since do_exit() needs to call into
  4625. * schedule() atomically, we ignore that path for now.
  4626. * Otherwise, whine if we are scheduling when we should not be.
  4627. */
  4628. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4629. __schedule_bug(prev);
  4630. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4631. schedstat_inc(this_rq(), sched_count);
  4632. #ifdef CONFIG_SCHEDSTATS
  4633. if (unlikely(prev->lock_depth >= 0)) {
  4634. schedstat_inc(this_rq(), bkl_count);
  4635. schedstat_inc(prev, sched_info.bkl_count);
  4636. }
  4637. #endif
  4638. }
  4639. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4640. {
  4641. if (prev->state == TASK_RUNNING) {
  4642. u64 runtime = prev->se.sum_exec_runtime;
  4643. runtime -= prev->se.prev_sum_exec_runtime;
  4644. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4645. /*
  4646. * In order to avoid avg_overlap growing stale when we are
  4647. * indeed overlapping and hence not getting put to sleep, grow
  4648. * the avg_overlap on preemption.
  4649. *
  4650. * We use the average preemption runtime because that
  4651. * correlates to the amount of cache footprint a task can
  4652. * build up.
  4653. */
  4654. update_avg(&prev->se.avg_overlap, runtime);
  4655. }
  4656. prev->sched_class->put_prev_task(rq, prev);
  4657. }
  4658. /*
  4659. * Pick up the highest-prio task:
  4660. */
  4661. static inline struct task_struct *
  4662. pick_next_task(struct rq *rq)
  4663. {
  4664. const struct sched_class *class;
  4665. struct task_struct *p;
  4666. /*
  4667. * Optimization: we know that if all tasks are in
  4668. * the fair class we can call that function directly:
  4669. */
  4670. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4671. p = fair_sched_class.pick_next_task(rq);
  4672. if (likely(p))
  4673. return p;
  4674. }
  4675. class = sched_class_highest;
  4676. for ( ; ; ) {
  4677. p = class->pick_next_task(rq);
  4678. if (p)
  4679. return p;
  4680. /*
  4681. * Will never be NULL as the idle class always
  4682. * returns a non-NULL p:
  4683. */
  4684. class = class->next;
  4685. }
  4686. }
  4687. /*
  4688. * schedule() is the main scheduler function.
  4689. */
  4690. asmlinkage void __sched schedule(void)
  4691. {
  4692. struct task_struct *prev, *next;
  4693. unsigned long *switch_count;
  4694. struct rq *rq;
  4695. int cpu;
  4696. need_resched:
  4697. preempt_disable();
  4698. cpu = smp_processor_id();
  4699. rq = cpu_rq(cpu);
  4700. rcu_sched_qs(cpu);
  4701. prev = rq->curr;
  4702. switch_count = &prev->nivcsw;
  4703. release_kernel_lock(prev);
  4704. need_resched_nonpreemptible:
  4705. schedule_debug(prev);
  4706. if (sched_feat(HRTICK))
  4707. hrtick_clear(rq);
  4708. raw_spin_lock_irq(&rq->lock);
  4709. update_rq_clock(rq);
  4710. clear_tsk_need_resched(prev);
  4711. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4712. if (unlikely(signal_pending_state(prev->state, prev)))
  4713. prev->state = TASK_RUNNING;
  4714. else
  4715. deactivate_task(rq, prev, 1);
  4716. switch_count = &prev->nvcsw;
  4717. }
  4718. pre_schedule(rq, prev);
  4719. if (unlikely(!rq->nr_running))
  4720. idle_balance(cpu, rq);
  4721. put_prev_task(rq, prev);
  4722. next = pick_next_task(rq);
  4723. if (likely(prev != next)) {
  4724. sched_info_switch(prev, next);
  4725. perf_event_task_sched_out(prev, next, cpu);
  4726. rq->nr_switches++;
  4727. rq->curr = next;
  4728. ++*switch_count;
  4729. context_switch(rq, prev, next); /* unlocks the rq */
  4730. /*
  4731. * the context switch might have flipped the stack from under
  4732. * us, hence refresh the local variables.
  4733. */
  4734. cpu = smp_processor_id();
  4735. rq = cpu_rq(cpu);
  4736. } else
  4737. raw_spin_unlock_irq(&rq->lock);
  4738. post_schedule(rq);
  4739. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  4740. prev = rq->curr;
  4741. switch_count = &prev->nivcsw;
  4742. goto need_resched_nonpreemptible;
  4743. }
  4744. preempt_enable_no_resched();
  4745. if (need_resched())
  4746. goto need_resched;
  4747. }
  4748. EXPORT_SYMBOL(schedule);
  4749. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  4750. /*
  4751. * Look out! "owner" is an entirely speculative pointer
  4752. * access and not reliable.
  4753. */
  4754. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4755. {
  4756. unsigned int cpu;
  4757. struct rq *rq;
  4758. if (!sched_feat(OWNER_SPIN))
  4759. return 0;
  4760. #ifdef CONFIG_DEBUG_PAGEALLOC
  4761. /*
  4762. * Need to access the cpu field knowing that
  4763. * DEBUG_PAGEALLOC could have unmapped it if
  4764. * the mutex owner just released it and exited.
  4765. */
  4766. if (probe_kernel_address(&owner->cpu, cpu))
  4767. goto out;
  4768. #else
  4769. cpu = owner->cpu;
  4770. #endif
  4771. /*
  4772. * Even if the access succeeded (likely case),
  4773. * the cpu field may no longer be valid.
  4774. */
  4775. if (cpu >= nr_cpumask_bits)
  4776. goto out;
  4777. /*
  4778. * We need to validate that we can do a
  4779. * get_cpu() and that we have the percpu area.
  4780. */
  4781. if (!cpu_online(cpu))
  4782. goto out;
  4783. rq = cpu_rq(cpu);
  4784. for (;;) {
  4785. /*
  4786. * Owner changed, break to re-assess state.
  4787. */
  4788. if (lock->owner != owner)
  4789. break;
  4790. /*
  4791. * Is that owner really running on that cpu?
  4792. */
  4793. if (task_thread_info(rq->curr) != owner || need_resched())
  4794. return 0;
  4795. cpu_relax();
  4796. }
  4797. out:
  4798. return 1;
  4799. }
  4800. #endif
  4801. #ifdef CONFIG_PREEMPT
  4802. /*
  4803. * this is the entry point to schedule() from in-kernel preemption
  4804. * off of preempt_enable. Kernel preemptions off return from interrupt
  4805. * occur there and call schedule directly.
  4806. */
  4807. asmlinkage void __sched preempt_schedule(void)
  4808. {
  4809. struct thread_info *ti = current_thread_info();
  4810. /*
  4811. * If there is a non-zero preempt_count or interrupts are disabled,
  4812. * we do not want to preempt the current task. Just return..
  4813. */
  4814. if (likely(ti->preempt_count || irqs_disabled()))
  4815. return;
  4816. do {
  4817. add_preempt_count(PREEMPT_ACTIVE);
  4818. schedule();
  4819. sub_preempt_count(PREEMPT_ACTIVE);
  4820. /*
  4821. * Check again in case we missed a preemption opportunity
  4822. * between schedule and now.
  4823. */
  4824. barrier();
  4825. } while (need_resched());
  4826. }
  4827. EXPORT_SYMBOL(preempt_schedule);
  4828. /*
  4829. * this is the entry point to schedule() from kernel preemption
  4830. * off of irq context.
  4831. * Note, that this is called and return with irqs disabled. This will
  4832. * protect us against recursive calling from irq.
  4833. */
  4834. asmlinkage void __sched preempt_schedule_irq(void)
  4835. {
  4836. struct thread_info *ti = current_thread_info();
  4837. /* Catch callers which need to be fixed */
  4838. BUG_ON(ti->preempt_count || !irqs_disabled());
  4839. do {
  4840. add_preempt_count(PREEMPT_ACTIVE);
  4841. local_irq_enable();
  4842. schedule();
  4843. local_irq_disable();
  4844. sub_preempt_count(PREEMPT_ACTIVE);
  4845. /*
  4846. * Check again in case we missed a preemption opportunity
  4847. * between schedule and now.
  4848. */
  4849. barrier();
  4850. } while (need_resched());
  4851. }
  4852. #endif /* CONFIG_PREEMPT */
  4853. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  4854. void *key)
  4855. {
  4856. return try_to_wake_up(curr->private, mode, wake_flags);
  4857. }
  4858. EXPORT_SYMBOL(default_wake_function);
  4859. /*
  4860. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4861. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4862. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4863. *
  4864. * There are circumstances in which we can try to wake a task which has already
  4865. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4866. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4867. */
  4868. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4869. int nr_exclusive, int wake_flags, void *key)
  4870. {
  4871. wait_queue_t *curr, *next;
  4872. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4873. unsigned flags = curr->flags;
  4874. if (curr->func(curr, mode, wake_flags, key) &&
  4875. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4876. break;
  4877. }
  4878. }
  4879. /**
  4880. * __wake_up - wake up threads blocked on a waitqueue.
  4881. * @q: the waitqueue
  4882. * @mode: which threads
  4883. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4884. * @key: is directly passed to the wakeup function
  4885. *
  4886. * It may be assumed that this function implies a write memory barrier before
  4887. * changing the task state if and only if any tasks are woken up.
  4888. */
  4889. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4890. int nr_exclusive, void *key)
  4891. {
  4892. unsigned long flags;
  4893. spin_lock_irqsave(&q->lock, flags);
  4894. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4895. spin_unlock_irqrestore(&q->lock, flags);
  4896. }
  4897. EXPORT_SYMBOL(__wake_up);
  4898. /*
  4899. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4900. */
  4901. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4902. {
  4903. __wake_up_common(q, mode, 1, 0, NULL);
  4904. }
  4905. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4906. {
  4907. __wake_up_common(q, mode, 1, 0, key);
  4908. }
  4909. /**
  4910. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4911. * @q: the waitqueue
  4912. * @mode: which threads
  4913. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4914. * @key: opaque value to be passed to wakeup targets
  4915. *
  4916. * The sync wakeup differs that the waker knows that it will schedule
  4917. * away soon, so while the target thread will be woken up, it will not
  4918. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4919. * with each other. This can prevent needless bouncing between CPUs.
  4920. *
  4921. * On UP it can prevent extra preemption.
  4922. *
  4923. * It may be assumed that this function implies a write memory barrier before
  4924. * changing the task state if and only if any tasks are woken up.
  4925. */
  4926. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4927. int nr_exclusive, void *key)
  4928. {
  4929. unsigned long flags;
  4930. int wake_flags = WF_SYNC;
  4931. if (unlikely(!q))
  4932. return;
  4933. if (unlikely(!nr_exclusive))
  4934. wake_flags = 0;
  4935. spin_lock_irqsave(&q->lock, flags);
  4936. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  4937. spin_unlock_irqrestore(&q->lock, flags);
  4938. }
  4939. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4940. /*
  4941. * __wake_up_sync - see __wake_up_sync_key()
  4942. */
  4943. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4944. {
  4945. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4946. }
  4947. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4948. /**
  4949. * complete: - signals a single thread waiting on this completion
  4950. * @x: holds the state of this particular completion
  4951. *
  4952. * This will wake up a single thread waiting on this completion. Threads will be
  4953. * awakened in the same order in which they were queued.
  4954. *
  4955. * See also complete_all(), wait_for_completion() and related routines.
  4956. *
  4957. * It may be assumed that this function implies a write memory barrier before
  4958. * changing the task state if and only if any tasks are woken up.
  4959. */
  4960. void complete(struct completion *x)
  4961. {
  4962. unsigned long flags;
  4963. spin_lock_irqsave(&x->wait.lock, flags);
  4964. x->done++;
  4965. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4966. spin_unlock_irqrestore(&x->wait.lock, flags);
  4967. }
  4968. EXPORT_SYMBOL(complete);
  4969. /**
  4970. * complete_all: - signals all threads waiting on this completion
  4971. * @x: holds the state of this particular completion
  4972. *
  4973. * This will wake up all threads waiting on this particular completion event.
  4974. *
  4975. * It may be assumed that this function implies a write memory barrier before
  4976. * changing the task state if and only if any tasks are woken up.
  4977. */
  4978. void complete_all(struct completion *x)
  4979. {
  4980. unsigned long flags;
  4981. spin_lock_irqsave(&x->wait.lock, flags);
  4982. x->done += UINT_MAX/2;
  4983. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4984. spin_unlock_irqrestore(&x->wait.lock, flags);
  4985. }
  4986. EXPORT_SYMBOL(complete_all);
  4987. static inline long __sched
  4988. do_wait_for_common(struct completion *x, long timeout, int state)
  4989. {
  4990. if (!x->done) {
  4991. DECLARE_WAITQUEUE(wait, current);
  4992. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4993. __add_wait_queue_tail(&x->wait, &wait);
  4994. do {
  4995. if (signal_pending_state(state, current)) {
  4996. timeout = -ERESTARTSYS;
  4997. break;
  4998. }
  4999. __set_current_state(state);
  5000. spin_unlock_irq(&x->wait.lock);
  5001. timeout = schedule_timeout(timeout);
  5002. spin_lock_irq(&x->wait.lock);
  5003. } while (!x->done && timeout);
  5004. __remove_wait_queue(&x->wait, &wait);
  5005. if (!x->done)
  5006. return timeout;
  5007. }
  5008. x->done--;
  5009. return timeout ?: 1;
  5010. }
  5011. static long __sched
  5012. wait_for_common(struct completion *x, long timeout, int state)
  5013. {
  5014. might_sleep();
  5015. spin_lock_irq(&x->wait.lock);
  5016. timeout = do_wait_for_common(x, timeout, state);
  5017. spin_unlock_irq(&x->wait.lock);
  5018. return timeout;
  5019. }
  5020. /**
  5021. * wait_for_completion: - waits for completion of a task
  5022. * @x: holds the state of this particular completion
  5023. *
  5024. * This waits to be signaled for completion of a specific task. It is NOT
  5025. * interruptible and there is no timeout.
  5026. *
  5027. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  5028. * and interrupt capability. Also see complete().
  5029. */
  5030. void __sched wait_for_completion(struct completion *x)
  5031. {
  5032. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  5033. }
  5034. EXPORT_SYMBOL(wait_for_completion);
  5035. /**
  5036. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  5037. * @x: holds the state of this particular completion
  5038. * @timeout: timeout value in jiffies
  5039. *
  5040. * This waits for either a completion of a specific task to be signaled or for a
  5041. * specified timeout to expire. The timeout is in jiffies. It is not
  5042. * interruptible.
  5043. */
  5044. unsigned long __sched
  5045. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  5046. {
  5047. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  5048. }
  5049. EXPORT_SYMBOL(wait_for_completion_timeout);
  5050. /**
  5051. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  5052. * @x: holds the state of this particular completion
  5053. *
  5054. * This waits for completion of a specific task to be signaled. It is
  5055. * interruptible.
  5056. */
  5057. int __sched wait_for_completion_interruptible(struct completion *x)
  5058. {
  5059. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  5060. if (t == -ERESTARTSYS)
  5061. return t;
  5062. return 0;
  5063. }
  5064. EXPORT_SYMBOL(wait_for_completion_interruptible);
  5065. /**
  5066. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  5067. * @x: holds the state of this particular completion
  5068. * @timeout: timeout value in jiffies
  5069. *
  5070. * This waits for either a completion of a specific task to be signaled or for a
  5071. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  5072. */
  5073. unsigned long __sched
  5074. wait_for_completion_interruptible_timeout(struct completion *x,
  5075. unsigned long timeout)
  5076. {
  5077. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  5078. }
  5079. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  5080. /**
  5081. * wait_for_completion_killable: - waits for completion of a task (killable)
  5082. * @x: holds the state of this particular completion
  5083. *
  5084. * This waits to be signaled for completion of a specific task. It can be
  5085. * interrupted by a kill signal.
  5086. */
  5087. int __sched wait_for_completion_killable(struct completion *x)
  5088. {
  5089. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  5090. if (t == -ERESTARTSYS)
  5091. return t;
  5092. return 0;
  5093. }
  5094. EXPORT_SYMBOL(wait_for_completion_killable);
  5095. /**
  5096. * try_wait_for_completion - try to decrement a completion without blocking
  5097. * @x: completion structure
  5098. *
  5099. * Returns: 0 if a decrement cannot be done without blocking
  5100. * 1 if a decrement succeeded.
  5101. *
  5102. * If a completion is being used as a counting completion,
  5103. * attempt to decrement the counter without blocking. This
  5104. * enables us to avoid waiting if the resource the completion
  5105. * is protecting is not available.
  5106. */
  5107. bool try_wait_for_completion(struct completion *x)
  5108. {
  5109. unsigned long flags;
  5110. int ret = 1;
  5111. spin_lock_irqsave(&x->wait.lock, flags);
  5112. if (!x->done)
  5113. ret = 0;
  5114. else
  5115. x->done--;
  5116. spin_unlock_irqrestore(&x->wait.lock, flags);
  5117. return ret;
  5118. }
  5119. EXPORT_SYMBOL(try_wait_for_completion);
  5120. /**
  5121. * completion_done - Test to see if a completion has any waiters
  5122. * @x: completion structure
  5123. *
  5124. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  5125. * 1 if there are no waiters.
  5126. *
  5127. */
  5128. bool completion_done(struct completion *x)
  5129. {
  5130. unsigned long flags;
  5131. int ret = 1;
  5132. spin_lock_irqsave(&x->wait.lock, flags);
  5133. if (!x->done)
  5134. ret = 0;
  5135. spin_unlock_irqrestore(&x->wait.lock, flags);
  5136. return ret;
  5137. }
  5138. EXPORT_SYMBOL(completion_done);
  5139. static long __sched
  5140. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  5141. {
  5142. unsigned long flags;
  5143. wait_queue_t wait;
  5144. init_waitqueue_entry(&wait, current);
  5145. __set_current_state(state);
  5146. spin_lock_irqsave(&q->lock, flags);
  5147. __add_wait_queue(q, &wait);
  5148. spin_unlock(&q->lock);
  5149. timeout = schedule_timeout(timeout);
  5150. spin_lock_irq(&q->lock);
  5151. __remove_wait_queue(q, &wait);
  5152. spin_unlock_irqrestore(&q->lock, flags);
  5153. return timeout;
  5154. }
  5155. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  5156. {
  5157. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5158. }
  5159. EXPORT_SYMBOL(interruptible_sleep_on);
  5160. long __sched
  5161. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5162. {
  5163. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  5164. }
  5165. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  5166. void __sched sleep_on(wait_queue_head_t *q)
  5167. {
  5168. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5169. }
  5170. EXPORT_SYMBOL(sleep_on);
  5171. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5172. {
  5173. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5174. }
  5175. EXPORT_SYMBOL(sleep_on_timeout);
  5176. #ifdef CONFIG_RT_MUTEXES
  5177. /*
  5178. * rt_mutex_setprio - set the current priority of a task
  5179. * @p: task
  5180. * @prio: prio value (kernel-internal form)
  5181. *
  5182. * This function changes the 'effective' priority of a task. It does
  5183. * not touch ->normal_prio like __setscheduler().
  5184. *
  5185. * Used by the rt_mutex code to implement priority inheritance logic.
  5186. */
  5187. void rt_mutex_setprio(struct task_struct *p, int prio)
  5188. {
  5189. unsigned long flags;
  5190. int oldprio, on_rq, running;
  5191. struct rq *rq;
  5192. const struct sched_class *prev_class = p->sched_class;
  5193. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5194. rq = task_rq_lock(p, &flags);
  5195. update_rq_clock(rq);
  5196. oldprio = p->prio;
  5197. on_rq = p->se.on_rq;
  5198. running = task_current(rq, p);
  5199. if (on_rq)
  5200. dequeue_task(rq, p, 0);
  5201. if (running)
  5202. p->sched_class->put_prev_task(rq, p);
  5203. if (rt_prio(prio))
  5204. p->sched_class = &rt_sched_class;
  5205. else
  5206. p->sched_class = &fair_sched_class;
  5207. p->prio = prio;
  5208. if (running)
  5209. p->sched_class->set_curr_task(rq);
  5210. if (on_rq) {
  5211. enqueue_task(rq, p, 0);
  5212. check_class_changed(rq, p, prev_class, oldprio, running);
  5213. }
  5214. task_rq_unlock(rq, &flags);
  5215. }
  5216. #endif
  5217. void set_user_nice(struct task_struct *p, long nice)
  5218. {
  5219. int old_prio, delta, on_rq;
  5220. unsigned long flags;
  5221. struct rq *rq;
  5222. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5223. return;
  5224. /*
  5225. * We have to be careful, if called from sys_setpriority(),
  5226. * the task might be in the middle of scheduling on another CPU.
  5227. */
  5228. rq = task_rq_lock(p, &flags);
  5229. update_rq_clock(rq);
  5230. /*
  5231. * The RT priorities are set via sched_setscheduler(), but we still
  5232. * allow the 'normal' nice value to be set - but as expected
  5233. * it wont have any effect on scheduling until the task is
  5234. * SCHED_FIFO/SCHED_RR:
  5235. */
  5236. if (task_has_rt_policy(p)) {
  5237. p->static_prio = NICE_TO_PRIO(nice);
  5238. goto out_unlock;
  5239. }
  5240. on_rq = p->se.on_rq;
  5241. if (on_rq)
  5242. dequeue_task(rq, p, 0);
  5243. p->static_prio = NICE_TO_PRIO(nice);
  5244. set_load_weight(p);
  5245. old_prio = p->prio;
  5246. p->prio = effective_prio(p);
  5247. delta = p->prio - old_prio;
  5248. if (on_rq) {
  5249. enqueue_task(rq, p, 0);
  5250. /*
  5251. * If the task increased its priority or is running and
  5252. * lowered its priority, then reschedule its CPU:
  5253. */
  5254. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5255. resched_task(rq->curr);
  5256. }
  5257. out_unlock:
  5258. task_rq_unlock(rq, &flags);
  5259. }
  5260. EXPORT_SYMBOL(set_user_nice);
  5261. /*
  5262. * can_nice - check if a task can reduce its nice value
  5263. * @p: task
  5264. * @nice: nice value
  5265. */
  5266. int can_nice(const struct task_struct *p, const int nice)
  5267. {
  5268. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5269. int nice_rlim = 20 - nice;
  5270. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5271. capable(CAP_SYS_NICE));
  5272. }
  5273. #ifdef __ARCH_WANT_SYS_NICE
  5274. /*
  5275. * sys_nice - change the priority of the current process.
  5276. * @increment: priority increment
  5277. *
  5278. * sys_setpriority is a more generic, but much slower function that
  5279. * does similar things.
  5280. */
  5281. SYSCALL_DEFINE1(nice, int, increment)
  5282. {
  5283. long nice, retval;
  5284. /*
  5285. * Setpriority might change our priority at the same moment.
  5286. * We don't have to worry. Conceptually one call occurs first
  5287. * and we have a single winner.
  5288. */
  5289. if (increment < -40)
  5290. increment = -40;
  5291. if (increment > 40)
  5292. increment = 40;
  5293. nice = TASK_NICE(current) + increment;
  5294. if (nice < -20)
  5295. nice = -20;
  5296. if (nice > 19)
  5297. nice = 19;
  5298. if (increment < 0 && !can_nice(current, nice))
  5299. return -EPERM;
  5300. retval = security_task_setnice(current, nice);
  5301. if (retval)
  5302. return retval;
  5303. set_user_nice(current, nice);
  5304. return 0;
  5305. }
  5306. #endif
  5307. /**
  5308. * task_prio - return the priority value of a given task.
  5309. * @p: the task in question.
  5310. *
  5311. * This is the priority value as seen by users in /proc.
  5312. * RT tasks are offset by -200. Normal tasks are centered
  5313. * around 0, value goes from -16 to +15.
  5314. */
  5315. int task_prio(const struct task_struct *p)
  5316. {
  5317. return p->prio - MAX_RT_PRIO;
  5318. }
  5319. /**
  5320. * task_nice - return the nice value of a given task.
  5321. * @p: the task in question.
  5322. */
  5323. int task_nice(const struct task_struct *p)
  5324. {
  5325. return TASK_NICE(p);
  5326. }
  5327. EXPORT_SYMBOL(task_nice);
  5328. /**
  5329. * idle_cpu - is a given cpu idle currently?
  5330. * @cpu: the processor in question.
  5331. */
  5332. int idle_cpu(int cpu)
  5333. {
  5334. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5335. }
  5336. /**
  5337. * idle_task - return the idle task for a given cpu.
  5338. * @cpu: the processor in question.
  5339. */
  5340. struct task_struct *idle_task(int cpu)
  5341. {
  5342. return cpu_rq(cpu)->idle;
  5343. }
  5344. /**
  5345. * find_process_by_pid - find a process with a matching PID value.
  5346. * @pid: the pid in question.
  5347. */
  5348. static struct task_struct *find_process_by_pid(pid_t pid)
  5349. {
  5350. return pid ? find_task_by_vpid(pid) : current;
  5351. }
  5352. /* Actually do priority change: must hold rq lock. */
  5353. static void
  5354. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5355. {
  5356. BUG_ON(p->se.on_rq);
  5357. p->policy = policy;
  5358. p->rt_priority = prio;
  5359. p->normal_prio = normal_prio(p);
  5360. /* we are holding p->pi_lock already */
  5361. p->prio = rt_mutex_getprio(p);
  5362. if (rt_prio(p->prio))
  5363. p->sched_class = &rt_sched_class;
  5364. else
  5365. p->sched_class = &fair_sched_class;
  5366. set_load_weight(p);
  5367. }
  5368. /*
  5369. * check the target process has a UID that matches the current process's
  5370. */
  5371. static bool check_same_owner(struct task_struct *p)
  5372. {
  5373. const struct cred *cred = current_cred(), *pcred;
  5374. bool match;
  5375. rcu_read_lock();
  5376. pcred = __task_cred(p);
  5377. match = (cred->euid == pcred->euid ||
  5378. cred->euid == pcred->uid);
  5379. rcu_read_unlock();
  5380. return match;
  5381. }
  5382. static int __sched_setscheduler(struct task_struct *p, int policy,
  5383. struct sched_param *param, bool user)
  5384. {
  5385. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5386. unsigned long flags;
  5387. const struct sched_class *prev_class = p->sched_class;
  5388. struct rq *rq;
  5389. int reset_on_fork;
  5390. /* may grab non-irq protected spin_locks */
  5391. BUG_ON(in_interrupt());
  5392. recheck:
  5393. /* double check policy once rq lock held */
  5394. if (policy < 0) {
  5395. reset_on_fork = p->sched_reset_on_fork;
  5396. policy = oldpolicy = p->policy;
  5397. } else {
  5398. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5399. policy &= ~SCHED_RESET_ON_FORK;
  5400. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5401. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5402. policy != SCHED_IDLE)
  5403. return -EINVAL;
  5404. }
  5405. /*
  5406. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5407. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5408. * SCHED_BATCH and SCHED_IDLE is 0.
  5409. */
  5410. if (param->sched_priority < 0 ||
  5411. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5412. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5413. return -EINVAL;
  5414. if (rt_policy(policy) != (param->sched_priority != 0))
  5415. return -EINVAL;
  5416. /*
  5417. * Allow unprivileged RT tasks to decrease priority:
  5418. */
  5419. if (user && !capable(CAP_SYS_NICE)) {
  5420. if (rt_policy(policy)) {
  5421. unsigned long rlim_rtprio;
  5422. if (!lock_task_sighand(p, &flags))
  5423. return -ESRCH;
  5424. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5425. unlock_task_sighand(p, &flags);
  5426. /* can't set/change the rt policy */
  5427. if (policy != p->policy && !rlim_rtprio)
  5428. return -EPERM;
  5429. /* can't increase priority */
  5430. if (param->sched_priority > p->rt_priority &&
  5431. param->sched_priority > rlim_rtprio)
  5432. return -EPERM;
  5433. }
  5434. /*
  5435. * Like positive nice levels, dont allow tasks to
  5436. * move out of SCHED_IDLE either:
  5437. */
  5438. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5439. return -EPERM;
  5440. /* can't change other user's priorities */
  5441. if (!check_same_owner(p))
  5442. return -EPERM;
  5443. /* Normal users shall not reset the sched_reset_on_fork flag */
  5444. if (p->sched_reset_on_fork && !reset_on_fork)
  5445. return -EPERM;
  5446. }
  5447. if (user) {
  5448. #ifdef CONFIG_RT_GROUP_SCHED
  5449. /*
  5450. * Do not allow realtime tasks into groups that have no runtime
  5451. * assigned.
  5452. */
  5453. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5454. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5455. return -EPERM;
  5456. #endif
  5457. retval = security_task_setscheduler(p, policy, param);
  5458. if (retval)
  5459. return retval;
  5460. }
  5461. /*
  5462. * make sure no PI-waiters arrive (or leave) while we are
  5463. * changing the priority of the task:
  5464. */
  5465. raw_spin_lock_irqsave(&p->pi_lock, flags);
  5466. /*
  5467. * To be able to change p->policy safely, the apropriate
  5468. * runqueue lock must be held.
  5469. */
  5470. rq = __task_rq_lock(p);
  5471. /* recheck policy now with rq lock held */
  5472. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5473. policy = oldpolicy = -1;
  5474. __task_rq_unlock(rq);
  5475. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5476. goto recheck;
  5477. }
  5478. update_rq_clock(rq);
  5479. on_rq = p->se.on_rq;
  5480. running = task_current(rq, p);
  5481. if (on_rq)
  5482. deactivate_task(rq, p, 0);
  5483. if (running)
  5484. p->sched_class->put_prev_task(rq, p);
  5485. p->sched_reset_on_fork = reset_on_fork;
  5486. oldprio = p->prio;
  5487. __setscheduler(rq, p, policy, param->sched_priority);
  5488. if (running)
  5489. p->sched_class->set_curr_task(rq);
  5490. if (on_rq) {
  5491. activate_task(rq, p, 0);
  5492. check_class_changed(rq, p, prev_class, oldprio, running);
  5493. }
  5494. __task_rq_unlock(rq);
  5495. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  5496. rt_mutex_adjust_pi(p);
  5497. return 0;
  5498. }
  5499. /**
  5500. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5501. * @p: the task in question.
  5502. * @policy: new policy.
  5503. * @param: structure containing the new RT priority.
  5504. *
  5505. * NOTE that the task may be already dead.
  5506. */
  5507. int sched_setscheduler(struct task_struct *p, int policy,
  5508. struct sched_param *param)
  5509. {
  5510. return __sched_setscheduler(p, policy, param, true);
  5511. }
  5512. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5513. /**
  5514. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5515. * @p: the task in question.
  5516. * @policy: new policy.
  5517. * @param: structure containing the new RT priority.
  5518. *
  5519. * Just like sched_setscheduler, only don't bother checking if the
  5520. * current context has permission. For example, this is needed in
  5521. * stop_machine(): we create temporary high priority worker threads,
  5522. * but our caller might not have that capability.
  5523. */
  5524. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5525. struct sched_param *param)
  5526. {
  5527. return __sched_setscheduler(p, policy, param, false);
  5528. }
  5529. static int
  5530. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5531. {
  5532. struct sched_param lparam;
  5533. struct task_struct *p;
  5534. int retval;
  5535. if (!param || pid < 0)
  5536. return -EINVAL;
  5537. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5538. return -EFAULT;
  5539. rcu_read_lock();
  5540. retval = -ESRCH;
  5541. p = find_process_by_pid(pid);
  5542. if (p != NULL)
  5543. retval = sched_setscheduler(p, policy, &lparam);
  5544. rcu_read_unlock();
  5545. return retval;
  5546. }
  5547. /**
  5548. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5549. * @pid: the pid in question.
  5550. * @policy: new policy.
  5551. * @param: structure containing the new RT priority.
  5552. */
  5553. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5554. struct sched_param __user *, param)
  5555. {
  5556. /* negative values for policy are not valid */
  5557. if (policy < 0)
  5558. return -EINVAL;
  5559. return do_sched_setscheduler(pid, policy, param);
  5560. }
  5561. /**
  5562. * sys_sched_setparam - set/change the RT priority of a thread
  5563. * @pid: the pid in question.
  5564. * @param: structure containing the new RT priority.
  5565. */
  5566. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5567. {
  5568. return do_sched_setscheduler(pid, -1, param);
  5569. }
  5570. /**
  5571. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5572. * @pid: the pid in question.
  5573. */
  5574. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5575. {
  5576. struct task_struct *p;
  5577. int retval;
  5578. if (pid < 0)
  5579. return -EINVAL;
  5580. retval = -ESRCH;
  5581. rcu_read_lock();
  5582. p = find_process_by_pid(pid);
  5583. if (p) {
  5584. retval = security_task_getscheduler(p);
  5585. if (!retval)
  5586. retval = p->policy
  5587. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5588. }
  5589. rcu_read_unlock();
  5590. return retval;
  5591. }
  5592. /**
  5593. * sys_sched_getparam - get the RT priority of a thread
  5594. * @pid: the pid in question.
  5595. * @param: structure containing the RT priority.
  5596. */
  5597. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5598. {
  5599. struct sched_param lp;
  5600. struct task_struct *p;
  5601. int retval;
  5602. if (!param || pid < 0)
  5603. return -EINVAL;
  5604. rcu_read_lock();
  5605. p = find_process_by_pid(pid);
  5606. retval = -ESRCH;
  5607. if (!p)
  5608. goto out_unlock;
  5609. retval = security_task_getscheduler(p);
  5610. if (retval)
  5611. goto out_unlock;
  5612. lp.sched_priority = p->rt_priority;
  5613. rcu_read_unlock();
  5614. /*
  5615. * This one might sleep, we cannot do it with a spinlock held ...
  5616. */
  5617. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5618. return retval;
  5619. out_unlock:
  5620. rcu_read_unlock();
  5621. return retval;
  5622. }
  5623. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5624. {
  5625. cpumask_var_t cpus_allowed, new_mask;
  5626. struct task_struct *p;
  5627. int retval;
  5628. get_online_cpus();
  5629. rcu_read_lock();
  5630. p = find_process_by_pid(pid);
  5631. if (!p) {
  5632. rcu_read_unlock();
  5633. put_online_cpus();
  5634. return -ESRCH;
  5635. }
  5636. /* Prevent p going away */
  5637. get_task_struct(p);
  5638. rcu_read_unlock();
  5639. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5640. retval = -ENOMEM;
  5641. goto out_put_task;
  5642. }
  5643. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5644. retval = -ENOMEM;
  5645. goto out_free_cpus_allowed;
  5646. }
  5647. retval = -EPERM;
  5648. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5649. goto out_unlock;
  5650. retval = security_task_setscheduler(p, 0, NULL);
  5651. if (retval)
  5652. goto out_unlock;
  5653. cpuset_cpus_allowed(p, cpus_allowed);
  5654. cpumask_and(new_mask, in_mask, cpus_allowed);
  5655. again:
  5656. retval = set_cpus_allowed_ptr(p, new_mask);
  5657. if (!retval) {
  5658. cpuset_cpus_allowed(p, cpus_allowed);
  5659. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5660. /*
  5661. * We must have raced with a concurrent cpuset
  5662. * update. Just reset the cpus_allowed to the
  5663. * cpuset's cpus_allowed
  5664. */
  5665. cpumask_copy(new_mask, cpus_allowed);
  5666. goto again;
  5667. }
  5668. }
  5669. out_unlock:
  5670. free_cpumask_var(new_mask);
  5671. out_free_cpus_allowed:
  5672. free_cpumask_var(cpus_allowed);
  5673. out_put_task:
  5674. put_task_struct(p);
  5675. put_online_cpus();
  5676. return retval;
  5677. }
  5678. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5679. struct cpumask *new_mask)
  5680. {
  5681. if (len < cpumask_size())
  5682. cpumask_clear(new_mask);
  5683. else if (len > cpumask_size())
  5684. len = cpumask_size();
  5685. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5686. }
  5687. /**
  5688. * sys_sched_setaffinity - set the cpu affinity of a process
  5689. * @pid: pid of the process
  5690. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5691. * @user_mask_ptr: user-space pointer to the new cpu mask
  5692. */
  5693. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5694. unsigned long __user *, user_mask_ptr)
  5695. {
  5696. cpumask_var_t new_mask;
  5697. int retval;
  5698. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5699. return -ENOMEM;
  5700. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5701. if (retval == 0)
  5702. retval = sched_setaffinity(pid, new_mask);
  5703. free_cpumask_var(new_mask);
  5704. return retval;
  5705. }
  5706. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5707. {
  5708. struct task_struct *p;
  5709. unsigned long flags;
  5710. struct rq *rq;
  5711. int retval;
  5712. get_online_cpus();
  5713. rcu_read_lock();
  5714. retval = -ESRCH;
  5715. p = find_process_by_pid(pid);
  5716. if (!p)
  5717. goto out_unlock;
  5718. retval = security_task_getscheduler(p);
  5719. if (retval)
  5720. goto out_unlock;
  5721. rq = task_rq_lock(p, &flags);
  5722. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5723. task_rq_unlock(rq, &flags);
  5724. out_unlock:
  5725. rcu_read_unlock();
  5726. put_online_cpus();
  5727. return retval;
  5728. }
  5729. /**
  5730. * sys_sched_getaffinity - get the cpu affinity of a process
  5731. * @pid: pid of the process
  5732. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5733. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5734. */
  5735. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5736. unsigned long __user *, user_mask_ptr)
  5737. {
  5738. int ret;
  5739. cpumask_var_t mask;
  5740. if (len < cpumask_size())
  5741. return -EINVAL;
  5742. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5743. return -ENOMEM;
  5744. ret = sched_getaffinity(pid, mask);
  5745. if (ret == 0) {
  5746. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5747. ret = -EFAULT;
  5748. else
  5749. ret = cpumask_size();
  5750. }
  5751. free_cpumask_var(mask);
  5752. return ret;
  5753. }
  5754. /**
  5755. * sys_sched_yield - yield the current processor to other threads.
  5756. *
  5757. * This function yields the current CPU to other tasks. If there are no
  5758. * other threads running on this CPU then this function will return.
  5759. */
  5760. SYSCALL_DEFINE0(sched_yield)
  5761. {
  5762. struct rq *rq = this_rq_lock();
  5763. schedstat_inc(rq, yld_count);
  5764. current->sched_class->yield_task(rq);
  5765. /*
  5766. * Since we are going to call schedule() anyway, there's
  5767. * no need to preempt or enable interrupts:
  5768. */
  5769. __release(rq->lock);
  5770. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5771. do_raw_spin_unlock(&rq->lock);
  5772. preempt_enable_no_resched();
  5773. schedule();
  5774. return 0;
  5775. }
  5776. static inline int should_resched(void)
  5777. {
  5778. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  5779. }
  5780. static void __cond_resched(void)
  5781. {
  5782. add_preempt_count(PREEMPT_ACTIVE);
  5783. schedule();
  5784. sub_preempt_count(PREEMPT_ACTIVE);
  5785. }
  5786. int __sched _cond_resched(void)
  5787. {
  5788. if (should_resched()) {
  5789. __cond_resched();
  5790. return 1;
  5791. }
  5792. return 0;
  5793. }
  5794. EXPORT_SYMBOL(_cond_resched);
  5795. /*
  5796. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5797. * call schedule, and on return reacquire the lock.
  5798. *
  5799. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5800. * operations here to prevent schedule() from being called twice (once via
  5801. * spin_unlock(), once by hand).
  5802. */
  5803. int __cond_resched_lock(spinlock_t *lock)
  5804. {
  5805. int resched = should_resched();
  5806. int ret = 0;
  5807. lockdep_assert_held(lock);
  5808. if (spin_needbreak(lock) || resched) {
  5809. spin_unlock(lock);
  5810. if (resched)
  5811. __cond_resched();
  5812. else
  5813. cpu_relax();
  5814. ret = 1;
  5815. spin_lock(lock);
  5816. }
  5817. return ret;
  5818. }
  5819. EXPORT_SYMBOL(__cond_resched_lock);
  5820. int __sched __cond_resched_softirq(void)
  5821. {
  5822. BUG_ON(!in_softirq());
  5823. if (should_resched()) {
  5824. local_bh_enable();
  5825. __cond_resched();
  5826. local_bh_disable();
  5827. return 1;
  5828. }
  5829. return 0;
  5830. }
  5831. EXPORT_SYMBOL(__cond_resched_softirq);
  5832. /**
  5833. * yield - yield the current processor to other threads.
  5834. *
  5835. * This is a shortcut for kernel-space yielding - it marks the
  5836. * thread runnable and calls sys_sched_yield().
  5837. */
  5838. void __sched yield(void)
  5839. {
  5840. set_current_state(TASK_RUNNING);
  5841. sys_sched_yield();
  5842. }
  5843. EXPORT_SYMBOL(yield);
  5844. /*
  5845. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5846. * that process accounting knows that this is a task in IO wait state.
  5847. */
  5848. void __sched io_schedule(void)
  5849. {
  5850. struct rq *rq = raw_rq();
  5851. delayacct_blkio_start();
  5852. atomic_inc(&rq->nr_iowait);
  5853. current->in_iowait = 1;
  5854. schedule();
  5855. current->in_iowait = 0;
  5856. atomic_dec(&rq->nr_iowait);
  5857. delayacct_blkio_end();
  5858. }
  5859. EXPORT_SYMBOL(io_schedule);
  5860. long __sched io_schedule_timeout(long timeout)
  5861. {
  5862. struct rq *rq = raw_rq();
  5863. long ret;
  5864. delayacct_blkio_start();
  5865. atomic_inc(&rq->nr_iowait);
  5866. current->in_iowait = 1;
  5867. ret = schedule_timeout(timeout);
  5868. current->in_iowait = 0;
  5869. atomic_dec(&rq->nr_iowait);
  5870. delayacct_blkio_end();
  5871. return ret;
  5872. }
  5873. /**
  5874. * sys_sched_get_priority_max - return maximum RT priority.
  5875. * @policy: scheduling class.
  5876. *
  5877. * this syscall returns the maximum rt_priority that can be used
  5878. * by a given scheduling class.
  5879. */
  5880. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5881. {
  5882. int ret = -EINVAL;
  5883. switch (policy) {
  5884. case SCHED_FIFO:
  5885. case SCHED_RR:
  5886. ret = MAX_USER_RT_PRIO-1;
  5887. break;
  5888. case SCHED_NORMAL:
  5889. case SCHED_BATCH:
  5890. case SCHED_IDLE:
  5891. ret = 0;
  5892. break;
  5893. }
  5894. return ret;
  5895. }
  5896. /**
  5897. * sys_sched_get_priority_min - return minimum RT priority.
  5898. * @policy: scheduling class.
  5899. *
  5900. * this syscall returns the minimum rt_priority that can be used
  5901. * by a given scheduling class.
  5902. */
  5903. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5904. {
  5905. int ret = -EINVAL;
  5906. switch (policy) {
  5907. case SCHED_FIFO:
  5908. case SCHED_RR:
  5909. ret = 1;
  5910. break;
  5911. case SCHED_NORMAL:
  5912. case SCHED_BATCH:
  5913. case SCHED_IDLE:
  5914. ret = 0;
  5915. }
  5916. return ret;
  5917. }
  5918. /**
  5919. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5920. * @pid: pid of the process.
  5921. * @interval: userspace pointer to the timeslice value.
  5922. *
  5923. * this syscall writes the default timeslice value of a given process
  5924. * into the user-space timespec buffer. A value of '0' means infinity.
  5925. */
  5926. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5927. struct timespec __user *, interval)
  5928. {
  5929. struct task_struct *p;
  5930. unsigned int time_slice;
  5931. unsigned long flags;
  5932. struct rq *rq;
  5933. int retval;
  5934. struct timespec t;
  5935. if (pid < 0)
  5936. return -EINVAL;
  5937. retval = -ESRCH;
  5938. rcu_read_lock();
  5939. p = find_process_by_pid(pid);
  5940. if (!p)
  5941. goto out_unlock;
  5942. retval = security_task_getscheduler(p);
  5943. if (retval)
  5944. goto out_unlock;
  5945. rq = task_rq_lock(p, &flags);
  5946. time_slice = p->sched_class->get_rr_interval(rq, p);
  5947. task_rq_unlock(rq, &flags);
  5948. rcu_read_unlock();
  5949. jiffies_to_timespec(time_slice, &t);
  5950. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5951. return retval;
  5952. out_unlock:
  5953. rcu_read_unlock();
  5954. return retval;
  5955. }
  5956. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5957. void sched_show_task(struct task_struct *p)
  5958. {
  5959. unsigned long free = 0;
  5960. unsigned state;
  5961. state = p->state ? __ffs(p->state) + 1 : 0;
  5962. printk(KERN_INFO "%-13.13s %c", p->comm,
  5963. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5964. #if BITS_PER_LONG == 32
  5965. if (state == TASK_RUNNING)
  5966. printk(KERN_CONT " running ");
  5967. else
  5968. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5969. #else
  5970. if (state == TASK_RUNNING)
  5971. printk(KERN_CONT " running task ");
  5972. else
  5973. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5974. #endif
  5975. #ifdef CONFIG_DEBUG_STACK_USAGE
  5976. free = stack_not_used(p);
  5977. #endif
  5978. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5979. task_pid_nr(p), task_pid_nr(p->real_parent),
  5980. (unsigned long)task_thread_info(p)->flags);
  5981. show_stack(p, NULL);
  5982. }
  5983. void show_state_filter(unsigned long state_filter)
  5984. {
  5985. struct task_struct *g, *p;
  5986. #if BITS_PER_LONG == 32
  5987. printk(KERN_INFO
  5988. " task PC stack pid father\n");
  5989. #else
  5990. printk(KERN_INFO
  5991. " task PC stack pid father\n");
  5992. #endif
  5993. read_lock(&tasklist_lock);
  5994. do_each_thread(g, p) {
  5995. /*
  5996. * reset the NMI-timeout, listing all files on a slow
  5997. * console might take alot of time:
  5998. */
  5999. touch_nmi_watchdog();
  6000. if (!state_filter || (p->state & state_filter))
  6001. sched_show_task(p);
  6002. } while_each_thread(g, p);
  6003. touch_all_softlockup_watchdogs();
  6004. #ifdef CONFIG_SCHED_DEBUG
  6005. sysrq_sched_debug_show();
  6006. #endif
  6007. read_unlock(&tasklist_lock);
  6008. /*
  6009. * Only show locks if all tasks are dumped:
  6010. */
  6011. if (!state_filter)
  6012. debug_show_all_locks();
  6013. }
  6014. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  6015. {
  6016. idle->sched_class = &idle_sched_class;
  6017. }
  6018. /**
  6019. * init_idle - set up an idle thread for a given CPU
  6020. * @idle: task in question
  6021. * @cpu: cpu the idle task belongs to
  6022. *
  6023. * NOTE: this function does not set the idle thread's NEED_RESCHED
  6024. * flag, to make booting more robust.
  6025. */
  6026. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  6027. {
  6028. struct rq *rq = cpu_rq(cpu);
  6029. unsigned long flags;
  6030. raw_spin_lock_irqsave(&rq->lock, flags);
  6031. __sched_fork(idle);
  6032. idle->state = TASK_RUNNING;
  6033. idle->se.exec_start = sched_clock();
  6034. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  6035. __set_task_cpu(idle, cpu);
  6036. rq->curr = rq->idle = idle;
  6037. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  6038. idle->oncpu = 1;
  6039. #endif
  6040. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6041. /* Set the preempt count _outside_ the spinlocks! */
  6042. #if defined(CONFIG_PREEMPT)
  6043. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  6044. #else
  6045. task_thread_info(idle)->preempt_count = 0;
  6046. #endif
  6047. /*
  6048. * The idle tasks have their own, simple scheduling class:
  6049. */
  6050. idle->sched_class = &idle_sched_class;
  6051. ftrace_graph_init_task(idle);
  6052. }
  6053. /*
  6054. * In a system that switches off the HZ timer nohz_cpu_mask
  6055. * indicates which cpus entered this state. This is used
  6056. * in the rcu update to wait only for active cpus. For system
  6057. * which do not switch off the HZ timer nohz_cpu_mask should
  6058. * always be CPU_BITS_NONE.
  6059. */
  6060. cpumask_var_t nohz_cpu_mask;
  6061. /*
  6062. * Increase the granularity value when there are more CPUs,
  6063. * because with more CPUs the 'effective latency' as visible
  6064. * to users decreases. But the relationship is not linear,
  6065. * so pick a second-best guess by going with the log2 of the
  6066. * number of CPUs.
  6067. *
  6068. * This idea comes from the SD scheduler of Con Kolivas:
  6069. */
  6070. static int get_update_sysctl_factor(void)
  6071. {
  6072. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  6073. unsigned int factor;
  6074. switch (sysctl_sched_tunable_scaling) {
  6075. case SCHED_TUNABLESCALING_NONE:
  6076. factor = 1;
  6077. break;
  6078. case SCHED_TUNABLESCALING_LINEAR:
  6079. factor = cpus;
  6080. break;
  6081. case SCHED_TUNABLESCALING_LOG:
  6082. default:
  6083. factor = 1 + ilog2(cpus);
  6084. break;
  6085. }
  6086. return factor;
  6087. }
  6088. static void update_sysctl(void)
  6089. {
  6090. unsigned int factor = get_update_sysctl_factor();
  6091. #define SET_SYSCTL(name) \
  6092. (sysctl_##name = (factor) * normalized_sysctl_##name)
  6093. SET_SYSCTL(sched_min_granularity);
  6094. SET_SYSCTL(sched_latency);
  6095. SET_SYSCTL(sched_wakeup_granularity);
  6096. SET_SYSCTL(sched_shares_ratelimit);
  6097. #undef SET_SYSCTL
  6098. }
  6099. static inline void sched_init_granularity(void)
  6100. {
  6101. update_sysctl();
  6102. }
  6103. #ifdef CONFIG_SMP
  6104. /*
  6105. * This is how migration works:
  6106. *
  6107. * 1) we queue a struct migration_req structure in the source CPU's
  6108. * runqueue and wake up that CPU's migration thread.
  6109. * 2) we down() the locked semaphore => thread blocks.
  6110. * 3) migration thread wakes up (implicitly it forces the migrated
  6111. * thread off the CPU)
  6112. * 4) it gets the migration request and checks whether the migrated
  6113. * task is still in the wrong runqueue.
  6114. * 5) if it's in the wrong runqueue then the migration thread removes
  6115. * it and puts it into the right queue.
  6116. * 6) migration thread up()s the semaphore.
  6117. * 7) we wake up and the migration is done.
  6118. */
  6119. /*
  6120. * Change a given task's CPU affinity. Migrate the thread to a
  6121. * proper CPU and schedule it away if the CPU it's executing on
  6122. * is removed from the allowed bitmask.
  6123. *
  6124. * NOTE: the caller must have a valid reference to the task, the
  6125. * task must not exit() & deallocate itself prematurely. The
  6126. * call is not atomic; no spinlocks may be held.
  6127. */
  6128. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  6129. {
  6130. struct migration_req req;
  6131. unsigned long flags;
  6132. struct rq *rq;
  6133. int ret = 0;
  6134. rq = task_rq_lock(p, &flags);
  6135. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  6136. ret = -EINVAL;
  6137. goto out;
  6138. }
  6139. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  6140. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  6141. ret = -EINVAL;
  6142. goto out;
  6143. }
  6144. if (p->sched_class->set_cpus_allowed)
  6145. p->sched_class->set_cpus_allowed(p, new_mask);
  6146. else {
  6147. cpumask_copy(&p->cpus_allowed, new_mask);
  6148. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  6149. }
  6150. /* Can the task run on the task's current CPU? If so, we're done */
  6151. if (cpumask_test_cpu(task_cpu(p), new_mask))
  6152. goto out;
  6153. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  6154. /* Need help from migration thread: drop lock and wait. */
  6155. struct task_struct *mt = rq->migration_thread;
  6156. get_task_struct(mt);
  6157. task_rq_unlock(rq, &flags);
  6158. wake_up_process(rq->migration_thread);
  6159. put_task_struct(mt);
  6160. wait_for_completion(&req.done);
  6161. tlb_migrate_finish(p->mm);
  6162. return 0;
  6163. }
  6164. out:
  6165. task_rq_unlock(rq, &flags);
  6166. return ret;
  6167. }
  6168. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6169. /*
  6170. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6171. * this because either it can't run here any more (set_cpus_allowed()
  6172. * away from this CPU, or CPU going down), or because we're
  6173. * attempting to rebalance this task on exec (sched_exec).
  6174. *
  6175. * So we race with normal scheduler movements, but that's OK, as long
  6176. * as the task is no longer on this CPU.
  6177. *
  6178. * Returns non-zero if task was successfully migrated.
  6179. */
  6180. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6181. {
  6182. struct rq *rq_dest, *rq_src;
  6183. int ret = 0;
  6184. if (unlikely(!cpu_active(dest_cpu)))
  6185. return ret;
  6186. rq_src = cpu_rq(src_cpu);
  6187. rq_dest = cpu_rq(dest_cpu);
  6188. double_rq_lock(rq_src, rq_dest);
  6189. /* Already moved. */
  6190. if (task_cpu(p) != src_cpu)
  6191. goto done;
  6192. /* Affinity changed (again). */
  6193. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6194. goto fail;
  6195. /*
  6196. * If we're not on a rq, the next wake-up will ensure we're
  6197. * placed properly.
  6198. */
  6199. if (p->se.on_rq) {
  6200. deactivate_task(rq_src, p, 0);
  6201. set_task_cpu(p, dest_cpu);
  6202. activate_task(rq_dest, p, 0);
  6203. check_preempt_curr(rq_dest, p, 0);
  6204. }
  6205. done:
  6206. ret = 1;
  6207. fail:
  6208. double_rq_unlock(rq_src, rq_dest);
  6209. return ret;
  6210. }
  6211. #define RCU_MIGRATION_IDLE 0
  6212. #define RCU_MIGRATION_NEED_QS 1
  6213. #define RCU_MIGRATION_GOT_QS 2
  6214. #define RCU_MIGRATION_MUST_SYNC 3
  6215. /*
  6216. * migration_thread - this is a highprio system thread that performs
  6217. * thread migration by bumping thread off CPU then 'pushing' onto
  6218. * another runqueue.
  6219. */
  6220. static int migration_thread(void *data)
  6221. {
  6222. int badcpu;
  6223. int cpu = (long)data;
  6224. struct rq *rq;
  6225. rq = cpu_rq(cpu);
  6226. BUG_ON(rq->migration_thread != current);
  6227. set_current_state(TASK_INTERRUPTIBLE);
  6228. while (!kthread_should_stop()) {
  6229. struct migration_req *req;
  6230. struct list_head *head;
  6231. raw_spin_lock_irq(&rq->lock);
  6232. if (cpu_is_offline(cpu)) {
  6233. raw_spin_unlock_irq(&rq->lock);
  6234. break;
  6235. }
  6236. if (rq->active_balance) {
  6237. active_load_balance(rq, cpu);
  6238. rq->active_balance = 0;
  6239. }
  6240. head = &rq->migration_queue;
  6241. if (list_empty(head)) {
  6242. raw_spin_unlock_irq(&rq->lock);
  6243. schedule();
  6244. set_current_state(TASK_INTERRUPTIBLE);
  6245. continue;
  6246. }
  6247. req = list_entry(head->next, struct migration_req, list);
  6248. list_del_init(head->next);
  6249. if (req->task != NULL) {
  6250. raw_spin_unlock(&rq->lock);
  6251. __migrate_task(req->task, cpu, req->dest_cpu);
  6252. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  6253. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  6254. raw_spin_unlock(&rq->lock);
  6255. } else {
  6256. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  6257. raw_spin_unlock(&rq->lock);
  6258. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  6259. }
  6260. local_irq_enable();
  6261. complete(&req->done);
  6262. }
  6263. __set_current_state(TASK_RUNNING);
  6264. return 0;
  6265. }
  6266. #ifdef CONFIG_HOTPLUG_CPU
  6267. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6268. {
  6269. int ret;
  6270. local_irq_disable();
  6271. ret = __migrate_task(p, src_cpu, dest_cpu);
  6272. local_irq_enable();
  6273. return ret;
  6274. }
  6275. /*
  6276. * Figure out where task on dead CPU should go, use force if necessary.
  6277. */
  6278. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6279. {
  6280. int dest_cpu;
  6281. again:
  6282. dest_cpu = select_fallback_rq(dead_cpu, p);
  6283. /* It can have affinity changed while we were choosing. */
  6284. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6285. goto again;
  6286. }
  6287. /*
  6288. * While a dead CPU has no uninterruptible tasks queued at this point,
  6289. * it might still have a nonzero ->nr_uninterruptible counter, because
  6290. * for performance reasons the counter is not stricly tracking tasks to
  6291. * their home CPUs. So we just add the counter to another CPU's counter,
  6292. * to keep the global sum constant after CPU-down:
  6293. */
  6294. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6295. {
  6296. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  6297. unsigned long flags;
  6298. local_irq_save(flags);
  6299. double_rq_lock(rq_src, rq_dest);
  6300. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6301. rq_src->nr_uninterruptible = 0;
  6302. double_rq_unlock(rq_src, rq_dest);
  6303. local_irq_restore(flags);
  6304. }
  6305. /* Run through task list and migrate tasks from the dead cpu. */
  6306. static void migrate_live_tasks(int src_cpu)
  6307. {
  6308. struct task_struct *p, *t;
  6309. read_lock(&tasklist_lock);
  6310. do_each_thread(t, p) {
  6311. if (p == current)
  6312. continue;
  6313. if (task_cpu(p) == src_cpu)
  6314. move_task_off_dead_cpu(src_cpu, p);
  6315. } while_each_thread(t, p);
  6316. read_unlock(&tasklist_lock);
  6317. }
  6318. /*
  6319. * Schedules idle task to be the next runnable task on current CPU.
  6320. * It does so by boosting its priority to highest possible.
  6321. * Used by CPU offline code.
  6322. */
  6323. void sched_idle_next(void)
  6324. {
  6325. int this_cpu = smp_processor_id();
  6326. struct rq *rq = cpu_rq(this_cpu);
  6327. struct task_struct *p = rq->idle;
  6328. unsigned long flags;
  6329. /* cpu has to be offline */
  6330. BUG_ON(cpu_online(this_cpu));
  6331. /*
  6332. * Strictly not necessary since rest of the CPUs are stopped by now
  6333. * and interrupts disabled on the current cpu.
  6334. */
  6335. raw_spin_lock_irqsave(&rq->lock, flags);
  6336. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6337. update_rq_clock(rq);
  6338. activate_task(rq, p, 0);
  6339. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6340. }
  6341. /*
  6342. * Ensures that the idle task is using init_mm right before its cpu goes
  6343. * offline.
  6344. */
  6345. void idle_task_exit(void)
  6346. {
  6347. struct mm_struct *mm = current->active_mm;
  6348. BUG_ON(cpu_online(smp_processor_id()));
  6349. if (mm != &init_mm)
  6350. switch_mm(mm, &init_mm, current);
  6351. mmdrop(mm);
  6352. }
  6353. /* called under rq->lock with disabled interrupts */
  6354. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6355. {
  6356. struct rq *rq = cpu_rq(dead_cpu);
  6357. /* Must be exiting, otherwise would be on tasklist. */
  6358. BUG_ON(!p->exit_state);
  6359. /* Cannot have done final schedule yet: would have vanished. */
  6360. BUG_ON(p->state == TASK_DEAD);
  6361. get_task_struct(p);
  6362. /*
  6363. * Drop lock around migration; if someone else moves it,
  6364. * that's OK. No task can be added to this CPU, so iteration is
  6365. * fine.
  6366. */
  6367. raw_spin_unlock_irq(&rq->lock);
  6368. move_task_off_dead_cpu(dead_cpu, p);
  6369. raw_spin_lock_irq(&rq->lock);
  6370. put_task_struct(p);
  6371. }
  6372. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6373. static void migrate_dead_tasks(unsigned int dead_cpu)
  6374. {
  6375. struct rq *rq = cpu_rq(dead_cpu);
  6376. struct task_struct *next;
  6377. for ( ; ; ) {
  6378. if (!rq->nr_running)
  6379. break;
  6380. update_rq_clock(rq);
  6381. next = pick_next_task(rq);
  6382. if (!next)
  6383. break;
  6384. next->sched_class->put_prev_task(rq, next);
  6385. migrate_dead(dead_cpu, next);
  6386. }
  6387. }
  6388. /*
  6389. * remove the tasks which were accounted by rq from calc_load_tasks.
  6390. */
  6391. static void calc_global_load_remove(struct rq *rq)
  6392. {
  6393. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6394. rq->calc_load_active = 0;
  6395. }
  6396. #endif /* CONFIG_HOTPLUG_CPU */
  6397. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6398. static struct ctl_table sd_ctl_dir[] = {
  6399. {
  6400. .procname = "sched_domain",
  6401. .mode = 0555,
  6402. },
  6403. {}
  6404. };
  6405. static struct ctl_table sd_ctl_root[] = {
  6406. {
  6407. .procname = "kernel",
  6408. .mode = 0555,
  6409. .child = sd_ctl_dir,
  6410. },
  6411. {}
  6412. };
  6413. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6414. {
  6415. struct ctl_table *entry =
  6416. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6417. return entry;
  6418. }
  6419. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6420. {
  6421. struct ctl_table *entry;
  6422. /*
  6423. * In the intermediate directories, both the child directory and
  6424. * procname are dynamically allocated and could fail but the mode
  6425. * will always be set. In the lowest directory the names are
  6426. * static strings and all have proc handlers.
  6427. */
  6428. for (entry = *tablep; entry->mode; entry++) {
  6429. if (entry->child)
  6430. sd_free_ctl_entry(&entry->child);
  6431. if (entry->proc_handler == NULL)
  6432. kfree(entry->procname);
  6433. }
  6434. kfree(*tablep);
  6435. *tablep = NULL;
  6436. }
  6437. static void
  6438. set_table_entry(struct ctl_table *entry,
  6439. const char *procname, void *data, int maxlen,
  6440. mode_t mode, proc_handler *proc_handler)
  6441. {
  6442. entry->procname = procname;
  6443. entry->data = data;
  6444. entry->maxlen = maxlen;
  6445. entry->mode = mode;
  6446. entry->proc_handler = proc_handler;
  6447. }
  6448. static struct ctl_table *
  6449. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6450. {
  6451. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6452. if (table == NULL)
  6453. return NULL;
  6454. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6455. sizeof(long), 0644, proc_doulongvec_minmax);
  6456. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6457. sizeof(long), 0644, proc_doulongvec_minmax);
  6458. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6459. sizeof(int), 0644, proc_dointvec_minmax);
  6460. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6461. sizeof(int), 0644, proc_dointvec_minmax);
  6462. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6463. sizeof(int), 0644, proc_dointvec_minmax);
  6464. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6465. sizeof(int), 0644, proc_dointvec_minmax);
  6466. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6467. sizeof(int), 0644, proc_dointvec_minmax);
  6468. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6469. sizeof(int), 0644, proc_dointvec_minmax);
  6470. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6471. sizeof(int), 0644, proc_dointvec_minmax);
  6472. set_table_entry(&table[9], "cache_nice_tries",
  6473. &sd->cache_nice_tries,
  6474. sizeof(int), 0644, proc_dointvec_minmax);
  6475. set_table_entry(&table[10], "flags", &sd->flags,
  6476. sizeof(int), 0644, proc_dointvec_minmax);
  6477. set_table_entry(&table[11], "name", sd->name,
  6478. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6479. /* &table[12] is terminator */
  6480. return table;
  6481. }
  6482. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6483. {
  6484. struct ctl_table *entry, *table;
  6485. struct sched_domain *sd;
  6486. int domain_num = 0, i;
  6487. char buf[32];
  6488. for_each_domain(cpu, sd)
  6489. domain_num++;
  6490. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6491. if (table == NULL)
  6492. return NULL;
  6493. i = 0;
  6494. for_each_domain(cpu, sd) {
  6495. snprintf(buf, 32, "domain%d", i);
  6496. entry->procname = kstrdup(buf, GFP_KERNEL);
  6497. entry->mode = 0555;
  6498. entry->child = sd_alloc_ctl_domain_table(sd);
  6499. entry++;
  6500. i++;
  6501. }
  6502. return table;
  6503. }
  6504. static struct ctl_table_header *sd_sysctl_header;
  6505. static void register_sched_domain_sysctl(void)
  6506. {
  6507. int i, cpu_num = num_possible_cpus();
  6508. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6509. char buf[32];
  6510. WARN_ON(sd_ctl_dir[0].child);
  6511. sd_ctl_dir[0].child = entry;
  6512. if (entry == NULL)
  6513. return;
  6514. for_each_possible_cpu(i) {
  6515. snprintf(buf, 32, "cpu%d", i);
  6516. entry->procname = kstrdup(buf, GFP_KERNEL);
  6517. entry->mode = 0555;
  6518. entry->child = sd_alloc_ctl_cpu_table(i);
  6519. entry++;
  6520. }
  6521. WARN_ON(sd_sysctl_header);
  6522. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6523. }
  6524. /* may be called multiple times per register */
  6525. static void unregister_sched_domain_sysctl(void)
  6526. {
  6527. if (sd_sysctl_header)
  6528. unregister_sysctl_table(sd_sysctl_header);
  6529. sd_sysctl_header = NULL;
  6530. if (sd_ctl_dir[0].child)
  6531. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6532. }
  6533. #else
  6534. static void register_sched_domain_sysctl(void)
  6535. {
  6536. }
  6537. static void unregister_sched_domain_sysctl(void)
  6538. {
  6539. }
  6540. #endif
  6541. static void set_rq_online(struct rq *rq)
  6542. {
  6543. if (!rq->online) {
  6544. const struct sched_class *class;
  6545. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6546. rq->online = 1;
  6547. for_each_class(class) {
  6548. if (class->rq_online)
  6549. class->rq_online(rq);
  6550. }
  6551. }
  6552. }
  6553. static void set_rq_offline(struct rq *rq)
  6554. {
  6555. if (rq->online) {
  6556. const struct sched_class *class;
  6557. for_each_class(class) {
  6558. if (class->rq_offline)
  6559. class->rq_offline(rq);
  6560. }
  6561. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6562. rq->online = 0;
  6563. }
  6564. }
  6565. /*
  6566. * migration_call - callback that gets triggered when a CPU is added.
  6567. * Here we can start up the necessary migration thread for the new CPU.
  6568. */
  6569. static int __cpuinit
  6570. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6571. {
  6572. struct task_struct *p;
  6573. int cpu = (long)hcpu;
  6574. unsigned long flags;
  6575. struct rq *rq;
  6576. switch (action) {
  6577. case CPU_UP_PREPARE:
  6578. case CPU_UP_PREPARE_FROZEN:
  6579. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6580. if (IS_ERR(p))
  6581. return NOTIFY_BAD;
  6582. kthread_bind(p, cpu);
  6583. /* Must be high prio: stop_machine expects to yield to it. */
  6584. rq = task_rq_lock(p, &flags);
  6585. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6586. task_rq_unlock(rq, &flags);
  6587. get_task_struct(p);
  6588. cpu_rq(cpu)->migration_thread = p;
  6589. rq->calc_load_update = calc_load_update;
  6590. break;
  6591. case CPU_ONLINE:
  6592. case CPU_ONLINE_FROZEN:
  6593. /* Strictly unnecessary, as first user will wake it. */
  6594. wake_up_process(cpu_rq(cpu)->migration_thread);
  6595. /* Update our root-domain */
  6596. rq = cpu_rq(cpu);
  6597. raw_spin_lock_irqsave(&rq->lock, flags);
  6598. if (rq->rd) {
  6599. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6600. set_rq_online(rq);
  6601. }
  6602. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6603. break;
  6604. #ifdef CONFIG_HOTPLUG_CPU
  6605. case CPU_UP_CANCELED:
  6606. case CPU_UP_CANCELED_FROZEN:
  6607. if (!cpu_rq(cpu)->migration_thread)
  6608. break;
  6609. /* Unbind it from offline cpu so it can run. Fall thru. */
  6610. kthread_bind(cpu_rq(cpu)->migration_thread,
  6611. cpumask_any(cpu_online_mask));
  6612. kthread_stop(cpu_rq(cpu)->migration_thread);
  6613. put_task_struct(cpu_rq(cpu)->migration_thread);
  6614. cpu_rq(cpu)->migration_thread = NULL;
  6615. break;
  6616. case CPU_DEAD:
  6617. case CPU_DEAD_FROZEN:
  6618. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6619. migrate_live_tasks(cpu);
  6620. rq = cpu_rq(cpu);
  6621. kthread_stop(rq->migration_thread);
  6622. put_task_struct(rq->migration_thread);
  6623. rq->migration_thread = NULL;
  6624. /* Idle task back to normal (off runqueue, low prio) */
  6625. raw_spin_lock_irq(&rq->lock);
  6626. update_rq_clock(rq);
  6627. deactivate_task(rq, rq->idle, 0);
  6628. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6629. rq->idle->sched_class = &idle_sched_class;
  6630. migrate_dead_tasks(cpu);
  6631. raw_spin_unlock_irq(&rq->lock);
  6632. cpuset_unlock();
  6633. migrate_nr_uninterruptible(rq);
  6634. BUG_ON(rq->nr_running != 0);
  6635. calc_global_load_remove(rq);
  6636. /*
  6637. * No need to migrate the tasks: it was best-effort if
  6638. * they didn't take sched_hotcpu_mutex. Just wake up
  6639. * the requestors.
  6640. */
  6641. raw_spin_lock_irq(&rq->lock);
  6642. while (!list_empty(&rq->migration_queue)) {
  6643. struct migration_req *req;
  6644. req = list_entry(rq->migration_queue.next,
  6645. struct migration_req, list);
  6646. list_del_init(&req->list);
  6647. raw_spin_unlock_irq(&rq->lock);
  6648. complete(&req->done);
  6649. raw_spin_lock_irq(&rq->lock);
  6650. }
  6651. raw_spin_unlock_irq(&rq->lock);
  6652. break;
  6653. case CPU_DYING:
  6654. case CPU_DYING_FROZEN:
  6655. /* Update our root-domain */
  6656. rq = cpu_rq(cpu);
  6657. raw_spin_lock_irqsave(&rq->lock, flags);
  6658. if (rq->rd) {
  6659. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6660. set_rq_offline(rq);
  6661. }
  6662. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6663. break;
  6664. #endif
  6665. }
  6666. return NOTIFY_OK;
  6667. }
  6668. /*
  6669. * Register at high priority so that task migration (migrate_all_tasks)
  6670. * happens before everything else. This has to be lower priority than
  6671. * the notifier in the perf_event subsystem, though.
  6672. */
  6673. static struct notifier_block __cpuinitdata migration_notifier = {
  6674. .notifier_call = migration_call,
  6675. .priority = 10
  6676. };
  6677. static int __init migration_init(void)
  6678. {
  6679. void *cpu = (void *)(long)smp_processor_id();
  6680. int err;
  6681. /* Start one for the boot CPU: */
  6682. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6683. BUG_ON(err == NOTIFY_BAD);
  6684. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6685. register_cpu_notifier(&migration_notifier);
  6686. return 0;
  6687. }
  6688. early_initcall(migration_init);
  6689. #endif
  6690. #ifdef CONFIG_SMP
  6691. #ifdef CONFIG_SCHED_DEBUG
  6692. static __read_mostly int sched_domain_debug_enabled;
  6693. static int __init sched_domain_debug_setup(char *str)
  6694. {
  6695. sched_domain_debug_enabled = 1;
  6696. return 0;
  6697. }
  6698. early_param("sched_debug", sched_domain_debug_setup);
  6699. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6700. struct cpumask *groupmask)
  6701. {
  6702. struct sched_group *group = sd->groups;
  6703. char str[256];
  6704. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6705. cpumask_clear(groupmask);
  6706. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6707. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6708. printk("does not load-balance\n");
  6709. if (sd->parent)
  6710. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6711. " has parent");
  6712. return -1;
  6713. }
  6714. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6715. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6716. printk(KERN_ERR "ERROR: domain->span does not contain "
  6717. "CPU%d\n", cpu);
  6718. }
  6719. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6720. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6721. " CPU%d\n", cpu);
  6722. }
  6723. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6724. do {
  6725. if (!group) {
  6726. printk("\n");
  6727. printk(KERN_ERR "ERROR: group is NULL\n");
  6728. break;
  6729. }
  6730. if (!group->cpu_power) {
  6731. printk(KERN_CONT "\n");
  6732. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6733. "set\n");
  6734. break;
  6735. }
  6736. if (!cpumask_weight(sched_group_cpus(group))) {
  6737. printk(KERN_CONT "\n");
  6738. printk(KERN_ERR "ERROR: empty group\n");
  6739. break;
  6740. }
  6741. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6742. printk(KERN_CONT "\n");
  6743. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6744. break;
  6745. }
  6746. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6747. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6748. printk(KERN_CONT " %s", str);
  6749. if (group->cpu_power != SCHED_LOAD_SCALE) {
  6750. printk(KERN_CONT " (cpu_power = %d)",
  6751. group->cpu_power);
  6752. }
  6753. group = group->next;
  6754. } while (group != sd->groups);
  6755. printk(KERN_CONT "\n");
  6756. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6757. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6758. if (sd->parent &&
  6759. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6760. printk(KERN_ERR "ERROR: parent span is not a superset "
  6761. "of domain->span\n");
  6762. return 0;
  6763. }
  6764. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6765. {
  6766. cpumask_var_t groupmask;
  6767. int level = 0;
  6768. if (!sched_domain_debug_enabled)
  6769. return;
  6770. if (!sd) {
  6771. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6772. return;
  6773. }
  6774. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6775. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6776. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6777. return;
  6778. }
  6779. for (;;) {
  6780. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6781. break;
  6782. level++;
  6783. sd = sd->parent;
  6784. if (!sd)
  6785. break;
  6786. }
  6787. free_cpumask_var(groupmask);
  6788. }
  6789. #else /* !CONFIG_SCHED_DEBUG */
  6790. # define sched_domain_debug(sd, cpu) do { } while (0)
  6791. #endif /* CONFIG_SCHED_DEBUG */
  6792. static int sd_degenerate(struct sched_domain *sd)
  6793. {
  6794. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6795. return 1;
  6796. /* Following flags need at least 2 groups */
  6797. if (sd->flags & (SD_LOAD_BALANCE |
  6798. SD_BALANCE_NEWIDLE |
  6799. SD_BALANCE_FORK |
  6800. SD_BALANCE_EXEC |
  6801. SD_SHARE_CPUPOWER |
  6802. SD_SHARE_PKG_RESOURCES)) {
  6803. if (sd->groups != sd->groups->next)
  6804. return 0;
  6805. }
  6806. /* Following flags don't use groups */
  6807. if (sd->flags & (SD_WAKE_AFFINE))
  6808. return 0;
  6809. return 1;
  6810. }
  6811. static int
  6812. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6813. {
  6814. unsigned long cflags = sd->flags, pflags = parent->flags;
  6815. if (sd_degenerate(parent))
  6816. return 1;
  6817. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6818. return 0;
  6819. /* Flags needing groups don't count if only 1 group in parent */
  6820. if (parent->groups == parent->groups->next) {
  6821. pflags &= ~(SD_LOAD_BALANCE |
  6822. SD_BALANCE_NEWIDLE |
  6823. SD_BALANCE_FORK |
  6824. SD_BALANCE_EXEC |
  6825. SD_SHARE_CPUPOWER |
  6826. SD_SHARE_PKG_RESOURCES);
  6827. if (nr_node_ids == 1)
  6828. pflags &= ~SD_SERIALIZE;
  6829. }
  6830. if (~cflags & pflags)
  6831. return 0;
  6832. return 1;
  6833. }
  6834. static void free_rootdomain(struct root_domain *rd)
  6835. {
  6836. synchronize_sched();
  6837. cpupri_cleanup(&rd->cpupri);
  6838. free_cpumask_var(rd->rto_mask);
  6839. free_cpumask_var(rd->online);
  6840. free_cpumask_var(rd->span);
  6841. kfree(rd);
  6842. }
  6843. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6844. {
  6845. struct root_domain *old_rd = NULL;
  6846. unsigned long flags;
  6847. raw_spin_lock_irqsave(&rq->lock, flags);
  6848. if (rq->rd) {
  6849. old_rd = rq->rd;
  6850. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6851. set_rq_offline(rq);
  6852. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6853. /*
  6854. * If we dont want to free the old_rt yet then
  6855. * set old_rd to NULL to skip the freeing later
  6856. * in this function:
  6857. */
  6858. if (!atomic_dec_and_test(&old_rd->refcount))
  6859. old_rd = NULL;
  6860. }
  6861. atomic_inc(&rd->refcount);
  6862. rq->rd = rd;
  6863. cpumask_set_cpu(rq->cpu, rd->span);
  6864. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  6865. set_rq_online(rq);
  6866. raw_spin_unlock_irqrestore(&rq->lock, flags);
  6867. if (old_rd)
  6868. free_rootdomain(old_rd);
  6869. }
  6870. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  6871. {
  6872. gfp_t gfp = GFP_KERNEL;
  6873. memset(rd, 0, sizeof(*rd));
  6874. if (bootmem)
  6875. gfp = GFP_NOWAIT;
  6876. if (!alloc_cpumask_var(&rd->span, gfp))
  6877. goto out;
  6878. if (!alloc_cpumask_var(&rd->online, gfp))
  6879. goto free_span;
  6880. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6881. goto free_online;
  6882. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6883. goto free_rto_mask;
  6884. return 0;
  6885. free_rto_mask:
  6886. free_cpumask_var(rd->rto_mask);
  6887. free_online:
  6888. free_cpumask_var(rd->online);
  6889. free_span:
  6890. free_cpumask_var(rd->span);
  6891. out:
  6892. return -ENOMEM;
  6893. }
  6894. static void init_defrootdomain(void)
  6895. {
  6896. init_rootdomain(&def_root_domain, true);
  6897. atomic_set(&def_root_domain.refcount, 1);
  6898. }
  6899. static struct root_domain *alloc_rootdomain(void)
  6900. {
  6901. struct root_domain *rd;
  6902. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6903. if (!rd)
  6904. return NULL;
  6905. if (init_rootdomain(rd, false) != 0) {
  6906. kfree(rd);
  6907. return NULL;
  6908. }
  6909. return rd;
  6910. }
  6911. /*
  6912. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6913. * hold the hotplug lock.
  6914. */
  6915. static void
  6916. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6917. {
  6918. struct rq *rq = cpu_rq(cpu);
  6919. struct sched_domain *tmp;
  6920. /* Remove the sched domains which do not contribute to scheduling. */
  6921. for (tmp = sd; tmp; ) {
  6922. struct sched_domain *parent = tmp->parent;
  6923. if (!parent)
  6924. break;
  6925. if (sd_parent_degenerate(tmp, parent)) {
  6926. tmp->parent = parent->parent;
  6927. if (parent->parent)
  6928. parent->parent->child = tmp;
  6929. } else
  6930. tmp = tmp->parent;
  6931. }
  6932. if (sd && sd_degenerate(sd)) {
  6933. sd = sd->parent;
  6934. if (sd)
  6935. sd->child = NULL;
  6936. }
  6937. sched_domain_debug(sd, cpu);
  6938. rq_attach_root(rq, rd);
  6939. rcu_assign_pointer(rq->sd, sd);
  6940. }
  6941. /* cpus with isolated domains */
  6942. static cpumask_var_t cpu_isolated_map;
  6943. /* Setup the mask of cpus configured for isolated domains */
  6944. static int __init isolated_cpu_setup(char *str)
  6945. {
  6946. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  6947. cpulist_parse(str, cpu_isolated_map);
  6948. return 1;
  6949. }
  6950. __setup("isolcpus=", isolated_cpu_setup);
  6951. /*
  6952. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6953. * to a function which identifies what group(along with sched group) a CPU
  6954. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6955. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6956. *
  6957. * init_sched_build_groups will build a circular linked list of the groups
  6958. * covered by the given span, and will set each group's ->cpumask correctly,
  6959. * and ->cpu_power to 0.
  6960. */
  6961. static void
  6962. init_sched_build_groups(const struct cpumask *span,
  6963. const struct cpumask *cpu_map,
  6964. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6965. struct sched_group **sg,
  6966. struct cpumask *tmpmask),
  6967. struct cpumask *covered, struct cpumask *tmpmask)
  6968. {
  6969. struct sched_group *first = NULL, *last = NULL;
  6970. int i;
  6971. cpumask_clear(covered);
  6972. for_each_cpu(i, span) {
  6973. struct sched_group *sg;
  6974. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6975. int j;
  6976. if (cpumask_test_cpu(i, covered))
  6977. continue;
  6978. cpumask_clear(sched_group_cpus(sg));
  6979. sg->cpu_power = 0;
  6980. for_each_cpu(j, span) {
  6981. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6982. continue;
  6983. cpumask_set_cpu(j, covered);
  6984. cpumask_set_cpu(j, sched_group_cpus(sg));
  6985. }
  6986. if (!first)
  6987. first = sg;
  6988. if (last)
  6989. last->next = sg;
  6990. last = sg;
  6991. }
  6992. last->next = first;
  6993. }
  6994. #define SD_NODES_PER_DOMAIN 16
  6995. #ifdef CONFIG_NUMA
  6996. /**
  6997. * find_next_best_node - find the next node to include in a sched_domain
  6998. * @node: node whose sched_domain we're building
  6999. * @used_nodes: nodes already in the sched_domain
  7000. *
  7001. * Find the next node to include in a given scheduling domain. Simply
  7002. * finds the closest node not already in the @used_nodes map.
  7003. *
  7004. * Should use nodemask_t.
  7005. */
  7006. static int find_next_best_node(int node, nodemask_t *used_nodes)
  7007. {
  7008. int i, n, val, min_val, best_node = 0;
  7009. min_val = INT_MAX;
  7010. for (i = 0; i < nr_node_ids; i++) {
  7011. /* Start at @node */
  7012. n = (node + i) % nr_node_ids;
  7013. if (!nr_cpus_node(n))
  7014. continue;
  7015. /* Skip already used nodes */
  7016. if (node_isset(n, *used_nodes))
  7017. continue;
  7018. /* Simple min distance search */
  7019. val = node_distance(node, n);
  7020. if (val < min_val) {
  7021. min_val = val;
  7022. best_node = n;
  7023. }
  7024. }
  7025. node_set(best_node, *used_nodes);
  7026. return best_node;
  7027. }
  7028. /**
  7029. * sched_domain_node_span - get a cpumask for a node's sched_domain
  7030. * @node: node whose cpumask we're constructing
  7031. * @span: resulting cpumask
  7032. *
  7033. * Given a node, construct a good cpumask for its sched_domain to span. It
  7034. * should be one that prevents unnecessary balancing, but also spreads tasks
  7035. * out optimally.
  7036. */
  7037. static void sched_domain_node_span(int node, struct cpumask *span)
  7038. {
  7039. nodemask_t used_nodes;
  7040. int i;
  7041. cpumask_clear(span);
  7042. nodes_clear(used_nodes);
  7043. cpumask_or(span, span, cpumask_of_node(node));
  7044. node_set(node, used_nodes);
  7045. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  7046. int next_node = find_next_best_node(node, &used_nodes);
  7047. cpumask_or(span, span, cpumask_of_node(next_node));
  7048. }
  7049. }
  7050. #endif /* CONFIG_NUMA */
  7051. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  7052. /*
  7053. * The cpus mask in sched_group and sched_domain hangs off the end.
  7054. *
  7055. * ( See the the comments in include/linux/sched.h:struct sched_group
  7056. * and struct sched_domain. )
  7057. */
  7058. struct static_sched_group {
  7059. struct sched_group sg;
  7060. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  7061. };
  7062. struct static_sched_domain {
  7063. struct sched_domain sd;
  7064. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  7065. };
  7066. struct s_data {
  7067. #ifdef CONFIG_NUMA
  7068. int sd_allnodes;
  7069. cpumask_var_t domainspan;
  7070. cpumask_var_t covered;
  7071. cpumask_var_t notcovered;
  7072. #endif
  7073. cpumask_var_t nodemask;
  7074. cpumask_var_t this_sibling_map;
  7075. cpumask_var_t this_core_map;
  7076. cpumask_var_t send_covered;
  7077. cpumask_var_t tmpmask;
  7078. struct sched_group **sched_group_nodes;
  7079. struct root_domain *rd;
  7080. };
  7081. enum s_alloc {
  7082. sa_sched_groups = 0,
  7083. sa_rootdomain,
  7084. sa_tmpmask,
  7085. sa_send_covered,
  7086. sa_this_core_map,
  7087. sa_this_sibling_map,
  7088. sa_nodemask,
  7089. sa_sched_group_nodes,
  7090. #ifdef CONFIG_NUMA
  7091. sa_notcovered,
  7092. sa_covered,
  7093. sa_domainspan,
  7094. #endif
  7095. sa_none,
  7096. };
  7097. /*
  7098. * SMT sched-domains:
  7099. */
  7100. #ifdef CONFIG_SCHED_SMT
  7101. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  7102. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  7103. static int
  7104. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  7105. struct sched_group **sg, struct cpumask *unused)
  7106. {
  7107. if (sg)
  7108. *sg = &per_cpu(sched_groups, cpu).sg;
  7109. return cpu;
  7110. }
  7111. #endif /* CONFIG_SCHED_SMT */
  7112. /*
  7113. * multi-core sched-domains:
  7114. */
  7115. #ifdef CONFIG_SCHED_MC
  7116. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  7117. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  7118. #endif /* CONFIG_SCHED_MC */
  7119. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  7120. static int
  7121. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7122. struct sched_group **sg, struct cpumask *mask)
  7123. {
  7124. int group;
  7125. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7126. group = cpumask_first(mask);
  7127. if (sg)
  7128. *sg = &per_cpu(sched_group_core, group).sg;
  7129. return group;
  7130. }
  7131. #elif defined(CONFIG_SCHED_MC)
  7132. static int
  7133. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  7134. struct sched_group **sg, struct cpumask *unused)
  7135. {
  7136. if (sg)
  7137. *sg = &per_cpu(sched_group_core, cpu).sg;
  7138. return cpu;
  7139. }
  7140. #endif
  7141. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  7142. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  7143. static int
  7144. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  7145. struct sched_group **sg, struct cpumask *mask)
  7146. {
  7147. int group;
  7148. #ifdef CONFIG_SCHED_MC
  7149. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  7150. group = cpumask_first(mask);
  7151. #elif defined(CONFIG_SCHED_SMT)
  7152. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  7153. group = cpumask_first(mask);
  7154. #else
  7155. group = cpu;
  7156. #endif
  7157. if (sg)
  7158. *sg = &per_cpu(sched_group_phys, group).sg;
  7159. return group;
  7160. }
  7161. #ifdef CONFIG_NUMA
  7162. /*
  7163. * The init_sched_build_groups can't handle what we want to do with node
  7164. * groups, so roll our own. Now each node has its own list of groups which
  7165. * gets dynamically allocated.
  7166. */
  7167. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  7168. static struct sched_group ***sched_group_nodes_bycpu;
  7169. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  7170. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  7171. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  7172. struct sched_group **sg,
  7173. struct cpumask *nodemask)
  7174. {
  7175. int group;
  7176. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  7177. group = cpumask_first(nodemask);
  7178. if (sg)
  7179. *sg = &per_cpu(sched_group_allnodes, group).sg;
  7180. return group;
  7181. }
  7182. static void init_numa_sched_groups_power(struct sched_group *group_head)
  7183. {
  7184. struct sched_group *sg = group_head;
  7185. int j;
  7186. if (!sg)
  7187. return;
  7188. do {
  7189. for_each_cpu(j, sched_group_cpus(sg)) {
  7190. struct sched_domain *sd;
  7191. sd = &per_cpu(phys_domains, j).sd;
  7192. if (j != group_first_cpu(sd->groups)) {
  7193. /*
  7194. * Only add "power" once for each
  7195. * physical package.
  7196. */
  7197. continue;
  7198. }
  7199. sg->cpu_power += sd->groups->cpu_power;
  7200. }
  7201. sg = sg->next;
  7202. } while (sg != group_head);
  7203. }
  7204. static int build_numa_sched_groups(struct s_data *d,
  7205. const struct cpumask *cpu_map, int num)
  7206. {
  7207. struct sched_domain *sd;
  7208. struct sched_group *sg, *prev;
  7209. int n, j;
  7210. cpumask_clear(d->covered);
  7211. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  7212. if (cpumask_empty(d->nodemask)) {
  7213. d->sched_group_nodes[num] = NULL;
  7214. goto out;
  7215. }
  7216. sched_domain_node_span(num, d->domainspan);
  7217. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  7218. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7219. GFP_KERNEL, num);
  7220. if (!sg) {
  7221. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  7222. num);
  7223. return -ENOMEM;
  7224. }
  7225. d->sched_group_nodes[num] = sg;
  7226. for_each_cpu(j, d->nodemask) {
  7227. sd = &per_cpu(node_domains, j).sd;
  7228. sd->groups = sg;
  7229. }
  7230. sg->cpu_power = 0;
  7231. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  7232. sg->next = sg;
  7233. cpumask_or(d->covered, d->covered, d->nodemask);
  7234. prev = sg;
  7235. for (j = 0; j < nr_node_ids; j++) {
  7236. n = (num + j) % nr_node_ids;
  7237. cpumask_complement(d->notcovered, d->covered);
  7238. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  7239. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  7240. if (cpumask_empty(d->tmpmask))
  7241. break;
  7242. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  7243. if (cpumask_empty(d->tmpmask))
  7244. continue;
  7245. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7246. GFP_KERNEL, num);
  7247. if (!sg) {
  7248. printk(KERN_WARNING
  7249. "Can not alloc domain group for node %d\n", j);
  7250. return -ENOMEM;
  7251. }
  7252. sg->cpu_power = 0;
  7253. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  7254. sg->next = prev->next;
  7255. cpumask_or(d->covered, d->covered, d->tmpmask);
  7256. prev->next = sg;
  7257. prev = sg;
  7258. }
  7259. out:
  7260. return 0;
  7261. }
  7262. #endif /* CONFIG_NUMA */
  7263. #ifdef CONFIG_NUMA
  7264. /* Free memory allocated for various sched_group structures */
  7265. static void free_sched_groups(const struct cpumask *cpu_map,
  7266. struct cpumask *nodemask)
  7267. {
  7268. int cpu, i;
  7269. for_each_cpu(cpu, cpu_map) {
  7270. struct sched_group **sched_group_nodes
  7271. = sched_group_nodes_bycpu[cpu];
  7272. if (!sched_group_nodes)
  7273. continue;
  7274. for (i = 0; i < nr_node_ids; i++) {
  7275. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7276. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7277. if (cpumask_empty(nodemask))
  7278. continue;
  7279. if (sg == NULL)
  7280. continue;
  7281. sg = sg->next;
  7282. next_sg:
  7283. oldsg = sg;
  7284. sg = sg->next;
  7285. kfree(oldsg);
  7286. if (oldsg != sched_group_nodes[i])
  7287. goto next_sg;
  7288. }
  7289. kfree(sched_group_nodes);
  7290. sched_group_nodes_bycpu[cpu] = NULL;
  7291. }
  7292. }
  7293. #else /* !CONFIG_NUMA */
  7294. static void free_sched_groups(const struct cpumask *cpu_map,
  7295. struct cpumask *nodemask)
  7296. {
  7297. }
  7298. #endif /* CONFIG_NUMA */
  7299. /*
  7300. * Initialize sched groups cpu_power.
  7301. *
  7302. * cpu_power indicates the capacity of sched group, which is used while
  7303. * distributing the load between different sched groups in a sched domain.
  7304. * Typically cpu_power for all the groups in a sched domain will be same unless
  7305. * there are asymmetries in the topology. If there are asymmetries, group
  7306. * having more cpu_power will pickup more load compared to the group having
  7307. * less cpu_power.
  7308. */
  7309. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7310. {
  7311. struct sched_domain *child;
  7312. struct sched_group *group;
  7313. long power;
  7314. int weight;
  7315. WARN_ON(!sd || !sd->groups);
  7316. if (cpu != group_first_cpu(sd->groups))
  7317. return;
  7318. child = sd->child;
  7319. sd->groups->cpu_power = 0;
  7320. if (!child) {
  7321. power = SCHED_LOAD_SCALE;
  7322. weight = cpumask_weight(sched_domain_span(sd));
  7323. /*
  7324. * SMT siblings share the power of a single core.
  7325. * Usually multiple threads get a better yield out of
  7326. * that one core than a single thread would have,
  7327. * reflect that in sd->smt_gain.
  7328. */
  7329. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  7330. power *= sd->smt_gain;
  7331. power /= weight;
  7332. power >>= SCHED_LOAD_SHIFT;
  7333. }
  7334. sd->groups->cpu_power += power;
  7335. return;
  7336. }
  7337. /*
  7338. * Add cpu_power of each child group to this groups cpu_power.
  7339. */
  7340. group = child->groups;
  7341. do {
  7342. sd->groups->cpu_power += group->cpu_power;
  7343. group = group->next;
  7344. } while (group != child->groups);
  7345. }
  7346. /*
  7347. * Initializers for schedule domains
  7348. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7349. */
  7350. #ifdef CONFIG_SCHED_DEBUG
  7351. # define SD_INIT_NAME(sd, type) sd->name = #type
  7352. #else
  7353. # define SD_INIT_NAME(sd, type) do { } while (0)
  7354. #endif
  7355. #define SD_INIT(sd, type) sd_init_##type(sd)
  7356. #define SD_INIT_FUNC(type) \
  7357. static noinline void sd_init_##type(struct sched_domain *sd) \
  7358. { \
  7359. memset(sd, 0, sizeof(*sd)); \
  7360. *sd = SD_##type##_INIT; \
  7361. sd->level = SD_LV_##type; \
  7362. SD_INIT_NAME(sd, type); \
  7363. }
  7364. SD_INIT_FUNC(CPU)
  7365. #ifdef CONFIG_NUMA
  7366. SD_INIT_FUNC(ALLNODES)
  7367. SD_INIT_FUNC(NODE)
  7368. #endif
  7369. #ifdef CONFIG_SCHED_SMT
  7370. SD_INIT_FUNC(SIBLING)
  7371. #endif
  7372. #ifdef CONFIG_SCHED_MC
  7373. SD_INIT_FUNC(MC)
  7374. #endif
  7375. static int default_relax_domain_level = -1;
  7376. static int __init setup_relax_domain_level(char *str)
  7377. {
  7378. unsigned long val;
  7379. val = simple_strtoul(str, NULL, 0);
  7380. if (val < SD_LV_MAX)
  7381. default_relax_domain_level = val;
  7382. return 1;
  7383. }
  7384. __setup("relax_domain_level=", setup_relax_domain_level);
  7385. static void set_domain_attribute(struct sched_domain *sd,
  7386. struct sched_domain_attr *attr)
  7387. {
  7388. int request;
  7389. if (!attr || attr->relax_domain_level < 0) {
  7390. if (default_relax_domain_level < 0)
  7391. return;
  7392. else
  7393. request = default_relax_domain_level;
  7394. } else
  7395. request = attr->relax_domain_level;
  7396. if (request < sd->level) {
  7397. /* turn off idle balance on this domain */
  7398. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7399. } else {
  7400. /* turn on idle balance on this domain */
  7401. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  7402. }
  7403. }
  7404. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  7405. const struct cpumask *cpu_map)
  7406. {
  7407. switch (what) {
  7408. case sa_sched_groups:
  7409. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  7410. d->sched_group_nodes = NULL;
  7411. case sa_rootdomain:
  7412. free_rootdomain(d->rd); /* fall through */
  7413. case sa_tmpmask:
  7414. free_cpumask_var(d->tmpmask); /* fall through */
  7415. case sa_send_covered:
  7416. free_cpumask_var(d->send_covered); /* fall through */
  7417. case sa_this_core_map:
  7418. free_cpumask_var(d->this_core_map); /* fall through */
  7419. case sa_this_sibling_map:
  7420. free_cpumask_var(d->this_sibling_map); /* fall through */
  7421. case sa_nodemask:
  7422. free_cpumask_var(d->nodemask); /* fall through */
  7423. case sa_sched_group_nodes:
  7424. #ifdef CONFIG_NUMA
  7425. kfree(d->sched_group_nodes); /* fall through */
  7426. case sa_notcovered:
  7427. free_cpumask_var(d->notcovered); /* fall through */
  7428. case sa_covered:
  7429. free_cpumask_var(d->covered); /* fall through */
  7430. case sa_domainspan:
  7431. free_cpumask_var(d->domainspan); /* fall through */
  7432. #endif
  7433. case sa_none:
  7434. break;
  7435. }
  7436. }
  7437. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  7438. const struct cpumask *cpu_map)
  7439. {
  7440. #ifdef CONFIG_NUMA
  7441. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  7442. return sa_none;
  7443. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  7444. return sa_domainspan;
  7445. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  7446. return sa_covered;
  7447. /* Allocate the per-node list of sched groups */
  7448. d->sched_group_nodes = kcalloc(nr_node_ids,
  7449. sizeof(struct sched_group *), GFP_KERNEL);
  7450. if (!d->sched_group_nodes) {
  7451. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7452. return sa_notcovered;
  7453. }
  7454. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  7455. #endif
  7456. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  7457. return sa_sched_group_nodes;
  7458. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  7459. return sa_nodemask;
  7460. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  7461. return sa_this_sibling_map;
  7462. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  7463. return sa_this_core_map;
  7464. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  7465. return sa_send_covered;
  7466. d->rd = alloc_rootdomain();
  7467. if (!d->rd) {
  7468. printk(KERN_WARNING "Cannot alloc root domain\n");
  7469. return sa_tmpmask;
  7470. }
  7471. return sa_rootdomain;
  7472. }
  7473. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  7474. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  7475. {
  7476. struct sched_domain *sd = NULL;
  7477. #ifdef CONFIG_NUMA
  7478. struct sched_domain *parent;
  7479. d->sd_allnodes = 0;
  7480. if (cpumask_weight(cpu_map) >
  7481. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  7482. sd = &per_cpu(allnodes_domains, i).sd;
  7483. SD_INIT(sd, ALLNODES);
  7484. set_domain_attribute(sd, attr);
  7485. cpumask_copy(sched_domain_span(sd), cpu_map);
  7486. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  7487. d->sd_allnodes = 1;
  7488. }
  7489. parent = sd;
  7490. sd = &per_cpu(node_domains, i).sd;
  7491. SD_INIT(sd, NODE);
  7492. set_domain_attribute(sd, attr);
  7493. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7494. sd->parent = parent;
  7495. if (parent)
  7496. parent->child = sd;
  7497. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  7498. #endif
  7499. return sd;
  7500. }
  7501. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  7502. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7503. struct sched_domain *parent, int i)
  7504. {
  7505. struct sched_domain *sd;
  7506. sd = &per_cpu(phys_domains, i).sd;
  7507. SD_INIT(sd, CPU);
  7508. set_domain_attribute(sd, attr);
  7509. cpumask_copy(sched_domain_span(sd), d->nodemask);
  7510. sd->parent = parent;
  7511. if (parent)
  7512. parent->child = sd;
  7513. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  7514. return sd;
  7515. }
  7516. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  7517. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7518. struct sched_domain *parent, int i)
  7519. {
  7520. struct sched_domain *sd = parent;
  7521. #ifdef CONFIG_SCHED_MC
  7522. sd = &per_cpu(core_domains, i).sd;
  7523. SD_INIT(sd, MC);
  7524. set_domain_attribute(sd, attr);
  7525. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  7526. sd->parent = parent;
  7527. parent->child = sd;
  7528. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  7529. #endif
  7530. return sd;
  7531. }
  7532. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  7533. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  7534. struct sched_domain *parent, int i)
  7535. {
  7536. struct sched_domain *sd = parent;
  7537. #ifdef CONFIG_SCHED_SMT
  7538. sd = &per_cpu(cpu_domains, i).sd;
  7539. SD_INIT(sd, SIBLING);
  7540. set_domain_attribute(sd, attr);
  7541. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  7542. sd->parent = parent;
  7543. parent->child = sd;
  7544. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  7545. #endif
  7546. return sd;
  7547. }
  7548. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  7549. const struct cpumask *cpu_map, int cpu)
  7550. {
  7551. switch (l) {
  7552. #ifdef CONFIG_SCHED_SMT
  7553. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  7554. cpumask_and(d->this_sibling_map, cpu_map,
  7555. topology_thread_cpumask(cpu));
  7556. if (cpu == cpumask_first(d->this_sibling_map))
  7557. init_sched_build_groups(d->this_sibling_map, cpu_map,
  7558. &cpu_to_cpu_group,
  7559. d->send_covered, d->tmpmask);
  7560. break;
  7561. #endif
  7562. #ifdef CONFIG_SCHED_MC
  7563. case SD_LV_MC: /* set up multi-core groups */
  7564. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  7565. if (cpu == cpumask_first(d->this_core_map))
  7566. init_sched_build_groups(d->this_core_map, cpu_map,
  7567. &cpu_to_core_group,
  7568. d->send_covered, d->tmpmask);
  7569. break;
  7570. #endif
  7571. case SD_LV_CPU: /* set up physical groups */
  7572. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  7573. if (!cpumask_empty(d->nodemask))
  7574. init_sched_build_groups(d->nodemask, cpu_map,
  7575. &cpu_to_phys_group,
  7576. d->send_covered, d->tmpmask);
  7577. break;
  7578. #ifdef CONFIG_NUMA
  7579. case SD_LV_ALLNODES:
  7580. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  7581. d->send_covered, d->tmpmask);
  7582. break;
  7583. #endif
  7584. default:
  7585. break;
  7586. }
  7587. }
  7588. /*
  7589. * Build sched domains for a given set of cpus and attach the sched domains
  7590. * to the individual cpus
  7591. */
  7592. static int __build_sched_domains(const struct cpumask *cpu_map,
  7593. struct sched_domain_attr *attr)
  7594. {
  7595. enum s_alloc alloc_state = sa_none;
  7596. struct s_data d;
  7597. struct sched_domain *sd;
  7598. int i;
  7599. #ifdef CONFIG_NUMA
  7600. d.sd_allnodes = 0;
  7601. #endif
  7602. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  7603. if (alloc_state != sa_rootdomain)
  7604. goto error;
  7605. alloc_state = sa_sched_groups;
  7606. /*
  7607. * Set up domains for cpus specified by the cpu_map.
  7608. */
  7609. for_each_cpu(i, cpu_map) {
  7610. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  7611. cpu_map);
  7612. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  7613. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  7614. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  7615. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  7616. }
  7617. for_each_cpu(i, cpu_map) {
  7618. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  7619. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  7620. }
  7621. /* Set up physical groups */
  7622. for (i = 0; i < nr_node_ids; i++)
  7623. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  7624. #ifdef CONFIG_NUMA
  7625. /* Set up node groups */
  7626. if (d.sd_allnodes)
  7627. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  7628. for (i = 0; i < nr_node_ids; i++)
  7629. if (build_numa_sched_groups(&d, cpu_map, i))
  7630. goto error;
  7631. #endif
  7632. /* Calculate CPU power for physical packages and nodes */
  7633. #ifdef CONFIG_SCHED_SMT
  7634. for_each_cpu(i, cpu_map) {
  7635. sd = &per_cpu(cpu_domains, i).sd;
  7636. init_sched_groups_power(i, sd);
  7637. }
  7638. #endif
  7639. #ifdef CONFIG_SCHED_MC
  7640. for_each_cpu(i, cpu_map) {
  7641. sd = &per_cpu(core_domains, i).sd;
  7642. init_sched_groups_power(i, sd);
  7643. }
  7644. #endif
  7645. for_each_cpu(i, cpu_map) {
  7646. sd = &per_cpu(phys_domains, i).sd;
  7647. init_sched_groups_power(i, sd);
  7648. }
  7649. #ifdef CONFIG_NUMA
  7650. for (i = 0; i < nr_node_ids; i++)
  7651. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  7652. if (d.sd_allnodes) {
  7653. struct sched_group *sg;
  7654. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7655. d.tmpmask);
  7656. init_numa_sched_groups_power(sg);
  7657. }
  7658. #endif
  7659. /* Attach the domains */
  7660. for_each_cpu(i, cpu_map) {
  7661. #ifdef CONFIG_SCHED_SMT
  7662. sd = &per_cpu(cpu_domains, i).sd;
  7663. #elif defined(CONFIG_SCHED_MC)
  7664. sd = &per_cpu(core_domains, i).sd;
  7665. #else
  7666. sd = &per_cpu(phys_domains, i).sd;
  7667. #endif
  7668. cpu_attach_domain(sd, d.rd, i);
  7669. }
  7670. d.sched_group_nodes = NULL; /* don't free this we still need it */
  7671. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  7672. return 0;
  7673. error:
  7674. __free_domain_allocs(&d, alloc_state, cpu_map);
  7675. return -ENOMEM;
  7676. }
  7677. static int build_sched_domains(const struct cpumask *cpu_map)
  7678. {
  7679. return __build_sched_domains(cpu_map, NULL);
  7680. }
  7681. static cpumask_var_t *doms_cur; /* current sched domains */
  7682. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7683. static struct sched_domain_attr *dattr_cur;
  7684. /* attribues of custom domains in 'doms_cur' */
  7685. /*
  7686. * Special case: If a kmalloc of a doms_cur partition (array of
  7687. * cpumask) fails, then fallback to a single sched domain,
  7688. * as determined by the single cpumask fallback_doms.
  7689. */
  7690. static cpumask_var_t fallback_doms;
  7691. /*
  7692. * arch_update_cpu_topology lets virtualized architectures update the
  7693. * cpu core maps. It is supposed to return 1 if the topology changed
  7694. * or 0 if it stayed the same.
  7695. */
  7696. int __attribute__((weak)) arch_update_cpu_topology(void)
  7697. {
  7698. return 0;
  7699. }
  7700. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  7701. {
  7702. int i;
  7703. cpumask_var_t *doms;
  7704. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  7705. if (!doms)
  7706. return NULL;
  7707. for (i = 0; i < ndoms; i++) {
  7708. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  7709. free_sched_domains(doms, i);
  7710. return NULL;
  7711. }
  7712. }
  7713. return doms;
  7714. }
  7715. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  7716. {
  7717. unsigned int i;
  7718. for (i = 0; i < ndoms; i++)
  7719. free_cpumask_var(doms[i]);
  7720. kfree(doms);
  7721. }
  7722. /*
  7723. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7724. * For now this just excludes isolated cpus, but could be used to
  7725. * exclude other special cases in the future.
  7726. */
  7727. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7728. {
  7729. int err;
  7730. arch_update_cpu_topology();
  7731. ndoms_cur = 1;
  7732. doms_cur = alloc_sched_domains(ndoms_cur);
  7733. if (!doms_cur)
  7734. doms_cur = &fallback_doms;
  7735. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  7736. dattr_cur = NULL;
  7737. err = build_sched_domains(doms_cur[0]);
  7738. register_sched_domain_sysctl();
  7739. return err;
  7740. }
  7741. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7742. struct cpumask *tmpmask)
  7743. {
  7744. free_sched_groups(cpu_map, tmpmask);
  7745. }
  7746. /*
  7747. * Detach sched domains from a group of cpus specified in cpu_map
  7748. * These cpus will now be attached to the NULL domain
  7749. */
  7750. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7751. {
  7752. /* Save because hotplug lock held. */
  7753. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7754. int i;
  7755. for_each_cpu(i, cpu_map)
  7756. cpu_attach_domain(NULL, &def_root_domain, i);
  7757. synchronize_sched();
  7758. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7759. }
  7760. /* handle null as "default" */
  7761. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7762. struct sched_domain_attr *new, int idx_new)
  7763. {
  7764. struct sched_domain_attr tmp;
  7765. /* fast path */
  7766. if (!new && !cur)
  7767. return 1;
  7768. tmp = SD_ATTR_INIT;
  7769. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7770. new ? (new + idx_new) : &tmp,
  7771. sizeof(struct sched_domain_attr));
  7772. }
  7773. /*
  7774. * Partition sched domains as specified by the 'ndoms_new'
  7775. * cpumasks in the array doms_new[] of cpumasks. This compares
  7776. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7777. * It destroys each deleted domain and builds each new domain.
  7778. *
  7779. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  7780. * The masks don't intersect (don't overlap.) We should setup one
  7781. * sched domain for each mask. CPUs not in any of the cpumasks will
  7782. * not be load balanced. If the same cpumask appears both in the
  7783. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7784. * it as it is.
  7785. *
  7786. * The passed in 'doms_new' should be allocated using
  7787. * alloc_sched_domains. This routine takes ownership of it and will
  7788. * free_sched_domains it when done with it. If the caller failed the
  7789. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  7790. * and partition_sched_domains() will fallback to the single partition
  7791. * 'fallback_doms', it also forces the domains to be rebuilt.
  7792. *
  7793. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7794. * ndoms_new == 0 is a special case for destroying existing domains,
  7795. * and it will not create the default domain.
  7796. *
  7797. * Call with hotplug lock held
  7798. */
  7799. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  7800. struct sched_domain_attr *dattr_new)
  7801. {
  7802. int i, j, n;
  7803. int new_topology;
  7804. mutex_lock(&sched_domains_mutex);
  7805. /* always unregister in case we don't destroy any domains */
  7806. unregister_sched_domain_sysctl();
  7807. /* Let architecture update cpu core mappings. */
  7808. new_topology = arch_update_cpu_topology();
  7809. n = doms_new ? ndoms_new : 0;
  7810. /* Destroy deleted domains */
  7811. for (i = 0; i < ndoms_cur; i++) {
  7812. for (j = 0; j < n && !new_topology; j++) {
  7813. if (cpumask_equal(doms_cur[i], doms_new[j])
  7814. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7815. goto match1;
  7816. }
  7817. /* no match - a current sched domain not in new doms_new[] */
  7818. detach_destroy_domains(doms_cur[i]);
  7819. match1:
  7820. ;
  7821. }
  7822. if (doms_new == NULL) {
  7823. ndoms_cur = 0;
  7824. doms_new = &fallback_doms;
  7825. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  7826. WARN_ON_ONCE(dattr_new);
  7827. }
  7828. /* Build new domains */
  7829. for (i = 0; i < ndoms_new; i++) {
  7830. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7831. if (cpumask_equal(doms_new[i], doms_cur[j])
  7832. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7833. goto match2;
  7834. }
  7835. /* no match - add a new doms_new */
  7836. __build_sched_domains(doms_new[i],
  7837. dattr_new ? dattr_new + i : NULL);
  7838. match2:
  7839. ;
  7840. }
  7841. /* Remember the new sched domains */
  7842. if (doms_cur != &fallback_doms)
  7843. free_sched_domains(doms_cur, ndoms_cur);
  7844. kfree(dattr_cur); /* kfree(NULL) is safe */
  7845. doms_cur = doms_new;
  7846. dattr_cur = dattr_new;
  7847. ndoms_cur = ndoms_new;
  7848. register_sched_domain_sysctl();
  7849. mutex_unlock(&sched_domains_mutex);
  7850. }
  7851. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7852. static void arch_reinit_sched_domains(void)
  7853. {
  7854. get_online_cpus();
  7855. /* Destroy domains first to force the rebuild */
  7856. partition_sched_domains(0, NULL, NULL);
  7857. rebuild_sched_domains();
  7858. put_online_cpus();
  7859. }
  7860. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7861. {
  7862. unsigned int level = 0;
  7863. if (sscanf(buf, "%u", &level) != 1)
  7864. return -EINVAL;
  7865. /*
  7866. * level is always be positive so don't check for
  7867. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7868. * What happens on 0 or 1 byte write,
  7869. * need to check for count as well?
  7870. */
  7871. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7872. return -EINVAL;
  7873. if (smt)
  7874. sched_smt_power_savings = level;
  7875. else
  7876. sched_mc_power_savings = level;
  7877. arch_reinit_sched_domains();
  7878. return count;
  7879. }
  7880. #ifdef CONFIG_SCHED_MC
  7881. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7882. char *page)
  7883. {
  7884. return sprintf(page, "%u\n", sched_mc_power_savings);
  7885. }
  7886. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7887. const char *buf, size_t count)
  7888. {
  7889. return sched_power_savings_store(buf, count, 0);
  7890. }
  7891. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7892. sched_mc_power_savings_show,
  7893. sched_mc_power_savings_store);
  7894. #endif
  7895. #ifdef CONFIG_SCHED_SMT
  7896. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7897. char *page)
  7898. {
  7899. return sprintf(page, "%u\n", sched_smt_power_savings);
  7900. }
  7901. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7902. const char *buf, size_t count)
  7903. {
  7904. return sched_power_savings_store(buf, count, 1);
  7905. }
  7906. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7907. sched_smt_power_savings_show,
  7908. sched_smt_power_savings_store);
  7909. #endif
  7910. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7911. {
  7912. int err = 0;
  7913. #ifdef CONFIG_SCHED_SMT
  7914. if (smt_capable())
  7915. err = sysfs_create_file(&cls->kset.kobj,
  7916. &attr_sched_smt_power_savings.attr);
  7917. #endif
  7918. #ifdef CONFIG_SCHED_MC
  7919. if (!err && mc_capable())
  7920. err = sysfs_create_file(&cls->kset.kobj,
  7921. &attr_sched_mc_power_savings.attr);
  7922. #endif
  7923. return err;
  7924. }
  7925. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7926. #ifndef CONFIG_CPUSETS
  7927. /*
  7928. * Add online and remove offline CPUs from the scheduler domains.
  7929. * When cpusets are enabled they take over this function.
  7930. */
  7931. static int update_sched_domains(struct notifier_block *nfb,
  7932. unsigned long action, void *hcpu)
  7933. {
  7934. switch (action) {
  7935. case CPU_ONLINE:
  7936. case CPU_ONLINE_FROZEN:
  7937. case CPU_DOWN_PREPARE:
  7938. case CPU_DOWN_PREPARE_FROZEN:
  7939. case CPU_DOWN_FAILED:
  7940. case CPU_DOWN_FAILED_FROZEN:
  7941. partition_sched_domains(1, NULL, NULL);
  7942. return NOTIFY_OK;
  7943. default:
  7944. return NOTIFY_DONE;
  7945. }
  7946. }
  7947. #endif
  7948. static int update_runtime(struct notifier_block *nfb,
  7949. unsigned long action, void *hcpu)
  7950. {
  7951. int cpu = (int)(long)hcpu;
  7952. switch (action) {
  7953. case CPU_DOWN_PREPARE:
  7954. case CPU_DOWN_PREPARE_FROZEN:
  7955. disable_runtime(cpu_rq(cpu));
  7956. return NOTIFY_OK;
  7957. case CPU_DOWN_FAILED:
  7958. case CPU_DOWN_FAILED_FROZEN:
  7959. case CPU_ONLINE:
  7960. case CPU_ONLINE_FROZEN:
  7961. enable_runtime(cpu_rq(cpu));
  7962. return NOTIFY_OK;
  7963. default:
  7964. return NOTIFY_DONE;
  7965. }
  7966. }
  7967. void __init sched_init_smp(void)
  7968. {
  7969. cpumask_var_t non_isolated_cpus;
  7970. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7971. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7972. #if defined(CONFIG_NUMA)
  7973. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7974. GFP_KERNEL);
  7975. BUG_ON(sched_group_nodes_bycpu == NULL);
  7976. #endif
  7977. get_online_cpus();
  7978. mutex_lock(&sched_domains_mutex);
  7979. arch_init_sched_domains(cpu_active_mask);
  7980. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7981. if (cpumask_empty(non_isolated_cpus))
  7982. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7983. mutex_unlock(&sched_domains_mutex);
  7984. put_online_cpus();
  7985. #ifndef CONFIG_CPUSETS
  7986. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7987. hotcpu_notifier(update_sched_domains, 0);
  7988. #endif
  7989. /* RT runtime code needs to handle some hotplug events */
  7990. hotcpu_notifier(update_runtime, 0);
  7991. init_hrtick();
  7992. /* Move init over to a non-isolated CPU */
  7993. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7994. BUG();
  7995. sched_init_granularity();
  7996. free_cpumask_var(non_isolated_cpus);
  7997. init_sched_rt_class();
  7998. }
  7999. #else
  8000. void __init sched_init_smp(void)
  8001. {
  8002. sched_init_granularity();
  8003. }
  8004. #endif /* CONFIG_SMP */
  8005. const_debug unsigned int sysctl_timer_migration = 1;
  8006. int in_sched_functions(unsigned long addr)
  8007. {
  8008. return in_lock_functions(addr) ||
  8009. (addr >= (unsigned long)__sched_text_start
  8010. && addr < (unsigned long)__sched_text_end);
  8011. }
  8012. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  8013. {
  8014. cfs_rq->tasks_timeline = RB_ROOT;
  8015. INIT_LIST_HEAD(&cfs_rq->tasks);
  8016. #ifdef CONFIG_FAIR_GROUP_SCHED
  8017. cfs_rq->rq = rq;
  8018. #endif
  8019. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  8020. }
  8021. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  8022. {
  8023. struct rt_prio_array *array;
  8024. int i;
  8025. array = &rt_rq->active;
  8026. for (i = 0; i < MAX_RT_PRIO; i++) {
  8027. INIT_LIST_HEAD(array->queue + i);
  8028. __clear_bit(i, array->bitmap);
  8029. }
  8030. /* delimiter for bitsearch: */
  8031. __set_bit(MAX_RT_PRIO, array->bitmap);
  8032. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  8033. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  8034. #ifdef CONFIG_SMP
  8035. rt_rq->highest_prio.next = MAX_RT_PRIO;
  8036. #endif
  8037. #endif
  8038. #ifdef CONFIG_SMP
  8039. rt_rq->rt_nr_migratory = 0;
  8040. rt_rq->overloaded = 0;
  8041. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  8042. #endif
  8043. rt_rq->rt_time = 0;
  8044. rt_rq->rt_throttled = 0;
  8045. rt_rq->rt_runtime = 0;
  8046. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  8047. #ifdef CONFIG_RT_GROUP_SCHED
  8048. rt_rq->rt_nr_boosted = 0;
  8049. rt_rq->rq = rq;
  8050. #endif
  8051. }
  8052. #ifdef CONFIG_FAIR_GROUP_SCHED
  8053. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  8054. struct sched_entity *se, int cpu, int add,
  8055. struct sched_entity *parent)
  8056. {
  8057. struct rq *rq = cpu_rq(cpu);
  8058. tg->cfs_rq[cpu] = cfs_rq;
  8059. init_cfs_rq(cfs_rq, rq);
  8060. cfs_rq->tg = tg;
  8061. if (add)
  8062. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  8063. tg->se[cpu] = se;
  8064. /* se could be NULL for init_task_group */
  8065. if (!se)
  8066. return;
  8067. if (!parent)
  8068. se->cfs_rq = &rq->cfs;
  8069. else
  8070. se->cfs_rq = parent->my_q;
  8071. se->my_q = cfs_rq;
  8072. se->load.weight = tg->shares;
  8073. se->load.inv_weight = 0;
  8074. se->parent = parent;
  8075. }
  8076. #endif
  8077. #ifdef CONFIG_RT_GROUP_SCHED
  8078. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  8079. struct sched_rt_entity *rt_se, int cpu, int add,
  8080. struct sched_rt_entity *parent)
  8081. {
  8082. struct rq *rq = cpu_rq(cpu);
  8083. tg->rt_rq[cpu] = rt_rq;
  8084. init_rt_rq(rt_rq, rq);
  8085. rt_rq->tg = tg;
  8086. rt_rq->rt_se = rt_se;
  8087. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  8088. if (add)
  8089. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  8090. tg->rt_se[cpu] = rt_se;
  8091. if (!rt_se)
  8092. return;
  8093. if (!parent)
  8094. rt_se->rt_rq = &rq->rt;
  8095. else
  8096. rt_se->rt_rq = parent->my_q;
  8097. rt_se->my_q = rt_rq;
  8098. rt_se->parent = parent;
  8099. INIT_LIST_HEAD(&rt_se->run_list);
  8100. }
  8101. #endif
  8102. void __init sched_init(void)
  8103. {
  8104. int i, j;
  8105. unsigned long alloc_size = 0, ptr;
  8106. #ifdef CONFIG_FAIR_GROUP_SCHED
  8107. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8108. #endif
  8109. #ifdef CONFIG_RT_GROUP_SCHED
  8110. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  8111. #endif
  8112. #ifdef CONFIG_USER_SCHED
  8113. alloc_size *= 2;
  8114. #endif
  8115. #ifdef CONFIG_CPUMASK_OFFSTACK
  8116. alloc_size += num_possible_cpus() * cpumask_size();
  8117. #endif
  8118. if (alloc_size) {
  8119. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  8120. #ifdef CONFIG_FAIR_GROUP_SCHED
  8121. init_task_group.se = (struct sched_entity **)ptr;
  8122. ptr += nr_cpu_ids * sizeof(void **);
  8123. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8124. ptr += nr_cpu_ids * sizeof(void **);
  8125. #ifdef CONFIG_USER_SCHED
  8126. root_task_group.se = (struct sched_entity **)ptr;
  8127. ptr += nr_cpu_ids * sizeof(void **);
  8128. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  8129. ptr += nr_cpu_ids * sizeof(void **);
  8130. #endif /* CONFIG_USER_SCHED */
  8131. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8132. #ifdef CONFIG_RT_GROUP_SCHED
  8133. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8134. ptr += nr_cpu_ids * sizeof(void **);
  8135. init_task_group.rt_rq = (struct rt_rq **)ptr;
  8136. ptr += nr_cpu_ids * sizeof(void **);
  8137. #ifdef CONFIG_USER_SCHED
  8138. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  8139. ptr += nr_cpu_ids * sizeof(void **);
  8140. root_task_group.rt_rq = (struct rt_rq **)ptr;
  8141. ptr += nr_cpu_ids * sizeof(void **);
  8142. #endif /* CONFIG_USER_SCHED */
  8143. #endif /* CONFIG_RT_GROUP_SCHED */
  8144. #ifdef CONFIG_CPUMASK_OFFSTACK
  8145. for_each_possible_cpu(i) {
  8146. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  8147. ptr += cpumask_size();
  8148. }
  8149. #endif /* CONFIG_CPUMASK_OFFSTACK */
  8150. }
  8151. #ifdef CONFIG_SMP
  8152. init_defrootdomain();
  8153. #endif
  8154. init_rt_bandwidth(&def_rt_bandwidth,
  8155. global_rt_period(), global_rt_runtime());
  8156. #ifdef CONFIG_RT_GROUP_SCHED
  8157. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  8158. global_rt_period(), global_rt_runtime());
  8159. #ifdef CONFIG_USER_SCHED
  8160. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  8161. global_rt_period(), RUNTIME_INF);
  8162. #endif /* CONFIG_USER_SCHED */
  8163. #endif /* CONFIG_RT_GROUP_SCHED */
  8164. #ifdef CONFIG_GROUP_SCHED
  8165. list_add(&init_task_group.list, &task_groups);
  8166. INIT_LIST_HEAD(&init_task_group.children);
  8167. #ifdef CONFIG_USER_SCHED
  8168. INIT_LIST_HEAD(&root_task_group.children);
  8169. init_task_group.parent = &root_task_group;
  8170. list_add(&init_task_group.siblings, &root_task_group.children);
  8171. #endif /* CONFIG_USER_SCHED */
  8172. #endif /* CONFIG_GROUP_SCHED */
  8173. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  8174. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  8175. __alignof__(unsigned long));
  8176. #endif
  8177. for_each_possible_cpu(i) {
  8178. struct rq *rq;
  8179. rq = cpu_rq(i);
  8180. raw_spin_lock_init(&rq->lock);
  8181. rq->nr_running = 0;
  8182. rq->calc_load_active = 0;
  8183. rq->calc_load_update = jiffies + LOAD_FREQ;
  8184. init_cfs_rq(&rq->cfs, rq);
  8185. init_rt_rq(&rq->rt, rq);
  8186. #ifdef CONFIG_FAIR_GROUP_SCHED
  8187. init_task_group.shares = init_task_group_load;
  8188. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  8189. #ifdef CONFIG_CGROUP_SCHED
  8190. /*
  8191. * How much cpu bandwidth does init_task_group get?
  8192. *
  8193. * In case of task-groups formed thr' the cgroup filesystem, it
  8194. * gets 100% of the cpu resources in the system. This overall
  8195. * system cpu resource is divided among the tasks of
  8196. * init_task_group and its child task-groups in a fair manner,
  8197. * based on each entity's (task or task-group's) weight
  8198. * (se->load.weight).
  8199. *
  8200. * In other words, if init_task_group has 10 tasks of weight
  8201. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  8202. * then A0's share of the cpu resource is:
  8203. *
  8204. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  8205. *
  8206. * We achieve this by letting init_task_group's tasks sit
  8207. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  8208. */
  8209. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  8210. #elif defined CONFIG_USER_SCHED
  8211. root_task_group.shares = NICE_0_LOAD;
  8212. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  8213. /*
  8214. * In case of task-groups formed thr' the user id of tasks,
  8215. * init_task_group represents tasks belonging to root user.
  8216. * Hence it forms a sibling of all subsequent groups formed.
  8217. * In this case, init_task_group gets only a fraction of overall
  8218. * system cpu resource, based on the weight assigned to root
  8219. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  8220. * by letting tasks of init_task_group sit in a separate cfs_rq
  8221. * (init_tg_cfs_rq) and having one entity represent this group of
  8222. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  8223. */
  8224. init_tg_cfs_entry(&init_task_group,
  8225. &per_cpu(init_tg_cfs_rq, i),
  8226. &per_cpu(init_sched_entity, i), i, 1,
  8227. root_task_group.se[i]);
  8228. #endif
  8229. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8230. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  8231. #ifdef CONFIG_RT_GROUP_SCHED
  8232. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  8233. #ifdef CONFIG_CGROUP_SCHED
  8234. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  8235. #elif defined CONFIG_USER_SCHED
  8236. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  8237. init_tg_rt_entry(&init_task_group,
  8238. &per_cpu(init_rt_rq_var, i),
  8239. &per_cpu(init_sched_rt_entity, i), i, 1,
  8240. root_task_group.rt_se[i]);
  8241. #endif
  8242. #endif
  8243. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  8244. rq->cpu_load[j] = 0;
  8245. #ifdef CONFIG_SMP
  8246. rq->sd = NULL;
  8247. rq->rd = NULL;
  8248. rq->post_schedule = 0;
  8249. rq->active_balance = 0;
  8250. rq->next_balance = jiffies;
  8251. rq->push_cpu = 0;
  8252. rq->cpu = i;
  8253. rq->online = 0;
  8254. rq->migration_thread = NULL;
  8255. rq->idle_stamp = 0;
  8256. rq->avg_idle = 2*sysctl_sched_migration_cost;
  8257. INIT_LIST_HEAD(&rq->migration_queue);
  8258. rq_attach_root(rq, &def_root_domain);
  8259. #endif
  8260. init_rq_hrtick(rq);
  8261. atomic_set(&rq->nr_iowait, 0);
  8262. }
  8263. set_load_weight(&init_task);
  8264. #ifdef CONFIG_PREEMPT_NOTIFIERS
  8265. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  8266. #endif
  8267. #ifdef CONFIG_SMP
  8268. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8269. #endif
  8270. #ifdef CONFIG_RT_MUTEXES
  8271. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  8272. #endif
  8273. /*
  8274. * The boot idle thread does lazy MMU switching as well:
  8275. */
  8276. atomic_inc(&init_mm.mm_count);
  8277. enter_lazy_tlb(&init_mm, current);
  8278. /*
  8279. * Make us the idle thread. Technically, schedule() should not be
  8280. * called from this thread, however somewhere below it might be,
  8281. * but because we are the idle thread, we just pick up running again
  8282. * when this runqueue becomes "idle".
  8283. */
  8284. init_idle(current, smp_processor_id());
  8285. calc_load_update = jiffies + LOAD_FREQ;
  8286. /*
  8287. * During early bootup we pretend to be a normal task:
  8288. */
  8289. current->sched_class = &fair_sched_class;
  8290. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8291. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8292. #ifdef CONFIG_SMP
  8293. #ifdef CONFIG_NO_HZ
  8294. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8295. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8296. #endif
  8297. /* May be allocated at isolcpus cmdline parse time */
  8298. if (cpu_isolated_map == NULL)
  8299. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8300. #endif /* SMP */
  8301. perf_event_init();
  8302. scheduler_running = 1;
  8303. }
  8304. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8305. static inline int preempt_count_equals(int preempt_offset)
  8306. {
  8307. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  8308. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  8309. }
  8310. void __might_sleep(char *file, int line, int preempt_offset)
  8311. {
  8312. #ifdef in_atomic
  8313. static unsigned long prev_jiffy; /* ratelimiting */
  8314. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  8315. system_state != SYSTEM_RUNNING || oops_in_progress)
  8316. return;
  8317. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8318. return;
  8319. prev_jiffy = jiffies;
  8320. printk(KERN_ERR
  8321. "BUG: sleeping function called from invalid context at %s:%d\n",
  8322. file, line);
  8323. printk(KERN_ERR
  8324. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8325. in_atomic(), irqs_disabled(),
  8326. current->pid, current->comm);
  8327. debug_show_held_locks(current);
  8328. if (irqs_disabled())
  8329. print_irqtrace_events(current);
  8330. dump_stack();
  8331. #endif
  8332. }
  8333. EXPORT_SYMBOL(__might_sleep);
  8334. #endif
  8335. #ifdef CONFIG_MAGIC_SYSRQ
  8336. static void normalize_task(struct rq *rq, struct task_struct *p)
  8337. {
  8338. int on_rq;
  8339. update_rq_clock(rq);
  8340. on_rq = p->se.on_rq;
  8341. if (on_rq)
  8342. deactivate_task(rq, p, 0);
  8343. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8344. if (on_rq) {
  8345. activate_task(rq, p, 0);
  8346. resched_task(rq->curr);
  8347. }
  8348. }
  8349. void normalize_rt_tasks(void)
  8350. {
  8351. struct task_struct *g, *p;
  8352. unsigned long flags;
  8353. struct rq *rq;
  8354. read_lock_irqsave(&tasklist_lock, flags);
  8355. do_each_thread(g, p) {
  8356. /*
  8357. * Only normalize user tasks:
  8358. */
  8359. if (!p->mm)
  8360. continue;
  8361. p->se.exec_start = 0;
  8362. #ifdef CONFIG_SCHEDSTATS
  8363. p->se.wait_start = 0;
  8364. p->se.sleep_start = 0;
  8365. p->se.block_start = 0;
  8366. #endif
  8367. if (!rt_task(p)) {
  8368. /*
  8369. * Renice negative nice level userspace
  8370. * tasks back to 0:
  8371. */
  8372. if (TASK_NICE(p) < 0 && p->mm)
  8373. set_user_nice(p, 0);
  8374. continue;
  8375. }
  8376. raw_spin_lock(&p->pi_lock);
  8377. rq = __task_rq_lock(p);
  8378. normalize_task(rq, p);
  8379. __task_rq_unlock(rq);
  8380. raw_spin_unlock(&p->pi_lock);
  8381. } while_each_thread(g, p);
  8382. read_unlock_irqrestore(&tasklist_lock, flags);
  8383. }
  8384. #endif /* CONFIG_MAGIC_SYSRQ */
  8385. #ifdef CONFIG_IA64
  8386. /*
  8387. * These functions are only useful for the IA64 MCA handling.
  8388. *
  8389. * They can only be called when the whole system has been
  8390. * stopped - every CPU needs to be quiescent, and no scheduling
  8391. * activity can take place. Using them for anything else would
  8392. * be a serious bug, and as a result, they aren't even visible
  8393. * under any other configuration.
  8394. */
  8395. /**
  8396. * curr_task - return the current task for a given cpu.
  8397. * @cpu: the processor in question.
  8398. *
  8399. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8400. */
  8401. struct task_struct *curr_task(int cpu)
  8402. {
  8403. return cpu_curr(cpu);
  8404. }
  8405. /**
  8406. * set_curr_task - set the current task for a given cpu.
  8407. * @cpu: the processor in question.
  8408. * @p: the task pointer to set.
  8409. *
  8410. * Description: This function must only be used when non-maskable interrupts
  8411. * are serviced on a separate stack. It allows the architecture to switch the
  8412. * notion of the current task on a cpu in a non-blocking manner. This function
  8413. * must be called with all CPU's synchronized, and interrupts disabled, the
  8414. * and caller must save the original value of the current task (see
  8415. * curr_task() above) and restore that value before reenabling interrupts and
  8416. * re-starting the system.
  8417. *
  8418. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8419. */
  8420. void set_curr_task(int cpu, struct task_struct *p)
  8421. {
  8422. cpu_curr(cpu) = p;
  8423. }
  8424. #endif
  8425. #ifdef CONFIG_FAIR_GROUP_SCHED
  8426. static void free_fair_sched_group(struct task_group *tg)
  8427. {
  8428. int i;
  8429. for_each_possible_cpu(i) {
  8430. if (tg->cfs_rq)
  8431. kfree(tg->cfs_rq[i]);
  8432. if (tg->se)
  8433. kfree(tg->se[i]);
  8434. }
  8435. kfree(tg->cfs_rq);
  8436. kfree(tg->se);
  8437. }
  8438. static
  8439. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8440. {
  8441. struct cfs_rq *cfs_rq;
  8442. struct sched_entity *se;
  8443. struct rq *rq;
  8444. int i;
  8445. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8446. if (!tg->cfs_rq)
  8447. goto err;
  8448. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8449. if (!tg->se)
  8450. goto err;
  8451. tg->shares = NICE_0_LOAD;
  8452. for_each_possible_cpu(i) {
  8453. rq = cpu_rq(i);
  8454. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8455. GFP_KERNEL, cpu_to_node(i));
  8456. if (!cfs_rq)
  8457. goto err;
  8458. se = kzalloc_node(sizeof(struct sched_entity),
  8459. GFP_KERNEL, cpu_to_node(i));
  8460. if (!se)
  8461. goto err_free_rq;
  8462. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8463. }
  8464. return 1;
  8465. err_free_rq:
  8466. kfree(cfs_rq);
  8467. err:
  8468. return 0;
  8469. }
  8470. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8471. {
  8472. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8473. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8474. }
  8475. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8476. {
  8477. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8478. }
  8479. #else /* !CONFG_FAIR_GROUP_SCHED */
  8480. static inline void free_fair_sched_group(struct task_group *tg)
  8481. {
  8482. }
  8483. static inline
  8484. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8485. {
  8486. return 1;
  8487. }
  8488. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8489. {
  8490. }
  8491. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8492. {
  8493. }
  8494. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8495. #ifdef CONFIG_RT_GROUP_SCHED
  8496. static void free_rt_sched_group(struct task_group *tg)
  8497. {
  8498. int i;
  8499. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8500. for_each_possible_cpu(i) {
  8501. if (tg->rt_rq)
  8502. kfree(tg->rt_rq[i]);
  8503. if (tg->rt_se)
  8504. kfree(tg->rt_se[i]);
  8505. }
  8506. kfree(tg->rt_rq);
  8507. kfree(tg->rt_se);
  8508. }
  8509. static
  8510. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8511. {
  8512. struct rt_rq *rt_rq;
  8513. struct sched_rt_entity *rt_se;
  8514. struct rq *rq;
  8515. int i;
  8516. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8517. if (!tg->rt_rq)
  8518. goto err;
  8519. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8520. if (!tg->rt_se)
  8521. goto err;
  8522. init_rt_bandwidth(&tg->rt_bandwidth,
  8523. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8524. for_each_possible_cpu(i) {
  8525. rq = cpu_rq(i);
  8526. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8527. GFP_KERNEL, cpu_to_node(i));
  8528. if (!rt_rq)
  8529. goto err;
  8530. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8531. GFP_KERNEL, cpu_to_node(i));
  8532. if (!rt_se)
  8533. goto err_free_rq;
  8534. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8535. }
  8536. return 1;
  8537. err_free_rq:
  8538. kfree(rt_rq);
  8539. err:
  8540. return 0;
  8541. }
  8542. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8543. {
  8544. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8545. &cpu_rq(cpu)->leaf_rt_rq_list);
  8546. }
  8547. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8548. {
  8549. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8550. }
  8551. #else /* !CONFIG_RT_GROUP_SCHED */
  8552. static inline void free_rt_sched_group(struct task_group *tg)
  8553. {
  8554. }
  8555. static inline
  8556. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8557. {
  8558. return 1;
  8559. }
  8560. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8561. {
  8562. }
  8563. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8564. {
  8565. }
  8566. #endif /* CONFIG_RT_GROUP_SCHED */
  8567. #ifdef CONFIG_GROUP_SCHED
  8568. static void free_sched_group(struct task_group *tg)
  8569. {
  8570. free_fair_sched_group(tg);
  8571. free_rt_sched_group(tg);
  8572. kfree(tg);
  8573. }
  8574. /* allocate runqueue etc for a new task group */
  8575. struct task_group *sched_create_group(struct task_group *parent)
  8576. {
  8577. struct task_group *tg;
  8578. unsigned long flags;
  8579. int i;
  8580. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8581. if (!tg)
  8582. return ERR_PTR(-ENOMEM);
  8583. if (!alloc_fair_sched_group(tg, parent))
  8584. goto err;
  8585. if (!alloc_rt_sched_group(tg, parent))
  8586. goto err;
  8587. spin_lock_irqsave(&task_group_lock, flags);
  8588. for_each_possible_cpu(i) {
  8589. register_fair_sched_group(tg, i);
  8590. register_rt_sched_group(tg, i);
  8591. }
  8592. list_add_rcu(&tg->list, &task_groups);
  8593. WARN_ON(!parent); /* root should already exist */
  8594. tg->parent = parent;
  8595. INIT_LIST_HEAD(&tg->children);
  8596. list_add_rcu(&tg->siblings, &parent->children);
  8597. spin_unlock_irqrestore(&task_group_lock, flags);
  8598. return tg;
  8599. err:
  8600. free_sched_group(tg);
  8601. return ERR_PTR(-ENOMEM);
  8602. }
  8603. /* rcu callback to free various structures associated with a task group */
  8604. static void free_sched_group_rcu(struct rcu_head *rhp)
  8605. {
  8606. /* now it should be safe to free those cfs_rqs */
  8607. free_sched_group(container_of(rhp, struct task_group, rcu));
  8608. }
  8609. /* Destroy runqueue etc associated with a task group */
  8610. void sched_destroy_group(struct task_group *tg)
  8611. {
  8612. unsigned long flags;
  8613. int i;
  8614. spin_lock_irqsave(&task_group_lock, flags);
  8615. for_each_possible_cpu(i) {
  8616. unregister_fair_sched_group(tg, i);
  8617. unregister_rt_sched_group(tg, i);
  8618. }
  8619. list_del_rcu(&tg->list);
  8620. list_del_rcu(&tg->siblings);
  8621. spin_unlock_irqrestore(&task_group_lock, flags);
  8622. /* wait for possible concurrent references to cfs_rqs complete */
  8623. call_rcu(&tg->rcu, free_sched_group_rcu);
  8624. }
  8625. /* change task's runqueue when it moves between groups.
  8626. * The caller of this function should have put the task in its new group
  8627. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8628. * reflect its new group.
  8629. */
  8630. void sched_move_task(struct task_struct *tsk)
  8631. {
  8632. int on_rq, running;
  8633. unsigned long flags;
  8634. struct rq *rq;
  8635. rq = task_rq_lock(tsk, &flags);
  8636. update_rq_clock(rq);
  8637. running = task_current(rq, tsk);
  8638. on_rq = tsk->se.on_rq;
  8639. if (on_rq)
  8640. dequeue_task(rq, tsk, 0);
  8641. if (unlikely(running))
  8642. tsk->sched_class->put_prev_task(rq, tsk);
  8643. set_task_rq(tsk, task_cpu(tsk));
  8644. #ifdef CONFIG_FAIR_GROUP_SCHED
  8645. if (tsk->sched_class->moved_group)
  8646. tsk->sched_class->moved_group(tsk, on_rq);
  8647. #endif
  8648. if (unlikely(running))
  8649. tsk->sched_class->set_curr_task(rq);
  8650. if (on_rq)
  8651. enqueue_task(rq, tsk, 0);
  8652. task_rq_unlock(rq, &flags);
  8653. }
  8654. #endif /* CONFIG_GROUP_SCHED */
  8655. #ifdef CONFIG_FAIR_GROUP_SCHED
  8656. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8657. {
  8658. struct cfs_rq *cfs_rq = se->cfs_rq;
  8659. int on_rq;
  8660. on_rq = se->on_rq;
  8661. if (on_rq)
  8662. dequeue_entity(cfs_rq, se, 0);
  8663. se->load.weight = shares;
  8664. se->load.inv_weight = 0;
  8665. if (on_rq)
  8666. enqueue_entity(cfs_rq, se, 0);
  8667. }
  8668. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8669. {
  8670. struct cfs_rq *cfs_rq = se->cfs_rq;
  8671. struct rq *rq = cfs_rq->rq;
  8672. unsigned long flags;
  8673. raw_spin_lock_irqsave(&rq->lock, flags);
  8674. __set_se_shares(se, shares);
  8675. raw_spin_unlock_irqrestore(&rq->lock, flags);
  8676. }
  8677. static DEFINE_MUTEX(shares_mutex);
  8678. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8679. {
  8680. int i;
  8681. unsigned long flags;
  8682. /*
  8683. * We can't change the weight of the root cgroup.
  8684. */
  8685. if (!tg->se[0])
  8686. return -EINVAL;
  8687. if (shares < MIN_SHARES)
  8688. shares = MIN_SHARES;
  8689. else if (shares > MAX_SHARES)
  8690. shares = MAX_SHARES;
  8691. mutex_lock(&shares_mutex);
  8692. if (tg->shares == shares)
  8693. goto done;
  8694. spin_lock_irqsave(&task_group_lock, flags);
  8695. for_each_possible_cpu(i)
  8696. unregister_fair_sched_group(tg, i);
  8697. list_del_rcu(&tg->siblings);
  8698. spin_unlock_irqrestore(&task_group_lock, flags);
  8699. /* wait for any ongoing reference to this group to finish */
  8700. synchronize_sched();
  8701. /*
  8702. * Now we are free to modify the group's share on each cpu
  8703. * w/o tripping rebalance_share or load_balance_fair.
  8704. */
  8705. tg->shares = shares;
  8706. for_each_possible_cpu(i) {
  8707. /*
  8708. * force a rebalance
  8709. */
  8710. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8711. set_se_shares(tg->se[i], shares);
  8712. }
  8713. /*
  8714. * Enable load balance activity on this group, by inserting it back on
  8715. * each cpu's rq->leaf_cfs_rq_list.
  8716. */
  8717. spin_lock_irqsave(&task_group_lock, flags);
  8718. for_each_possible_cpu(i)
  8719. register_fair_sched_group(tg, i);
  8720. list_add_rcu(&tg->siblings, &tg->parent->children);
  8721. spin_unlock_irqrestore(&task_group_lock, flags);
  8722. done:
  8723. mutex_unlock(&shares_mutex);
  8724. return 0;
  8725. }
  8726. unsigned long sched_group_shares(struct task_group *tg)
  8727. {
  8728. return tg->shares;
  8729. }
  8730. #endif
  8731. #ifdef CONFIG_RT_GROUP_SCHED
  8732. /*
  8733. * Ensure that the real time constraints are schedulable.
  8734. */
  8735. static DEFINE_MUTEX(rt_constraints_mutex);
  8736. static unsigned long to_ratio(u64 period, u64 runtime)
  8737. {
  8738. if (runtime == RUNTIME_INF)
  8739. return 1ULL << 20;
  8740. return div64_u64(runtime << 20, period);
  8741. }
  8742. /* Must be called with tasklist_lock held */
  8743. static inline int tg_has_rt_tasks(struct task_group *tg)
  8744. {
  8745. struct task_struct *g, *p;
  8746. do_each_thread(g, p) {
  8747. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8748. return 1;
  8749. } while_each_thread(g, p);
  8750. return 0;
  8751. }
  8752. struct rt_schedulable_data {
  8753. struct task_group *tg;
  8754. u64 rt_period;
  8755. u64 rt_runtime;
  8756. };
  8757. static int tg_schedulable(struct task_group *tg, void *data)
  8758. {
  8759. struct rt_schedulable_data *d = data;
  8760. struct task_group *child;
  8761. unsigned long total, sum = 0;
  8762. u64 period, runtime;
  8763. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8764. runtime = tg->rt_bandwidth.rt_runtime;
  8765. if (tg == d->tg) {
  8766. period = d->rt_period;
  8767. runtime = d->rt_runtime;
  8768. }
  8769. #ifdef CONFIG_USER_SCHED
  8770. if (tg == &root_task_group) {
  8771. period = global_rt_period();
  8772. runtime = global_rt_runtime();
  8773. }
  8774. #endif
  8775. /*
  8776. * Cannot have more runtime than the period.
  8777. */
  8778. if (runtime > period && runtime != RUNTIME_INF)
  8779. return -EINVAL;
  8780. /*
  8781. * Ensure we don't starve existing RT tasks.
  8782. */
  8783. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8784. return -EBUSY;
  8785. total = to_ratio(period, runtime);
  8786. /*
  8787. * Nobody can have more than the global setting allows.
  8788. */
  8789. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8790. return -EINVAL;
  8791. /*
  8792. * The sum of our children's runtime should not exceed our own.
  8793. */
  8794. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8795. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8796. runtime = child->rt_bandwidth.rt_runtime;
  8797. if (child == d->tg) {
  8798. period = d->rt_period;
  8799. runtime = d->rt_runtime;
  8800. }
  8801. sum += to_ratio(period, runtime);
  8802. }
  8803. if (sum > total)
  8804. return -EINVAL;
  8805. return 0;
  8806. }
  8807. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8808. {
  8809. struct rt_schedulable_data data = {
  8810. .tg = tg,
  8811. .rt_period = period,
  8812. .rt_runtime = runtime,
  8813. };
  8814. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8815. }
  8816. static int tg_set_bandwidth(struct task_group *tg,
  8817. u64 rt_period, u64 rt_runtime)
  8818. {
  8819. int i, err = 0;
  8820. mutex_lock(&rt_constraints_mutex);
  8821. read_lock(&tasklist_lock);
  8822. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8823. if (err)
  8824. goto unlock;
  8825. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8826. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8827. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8828. for_each_possible_cpu(i) {
  8829. struct rt_rq *rt_rq = tg->rt_rq[i];
  8830. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8831. rt_rq->rt_runtime = rt_runtime;
  8832. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8833. }
  8834. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8835. unlock:
  8836. read_unlock(&tasklist_lock);
  8837. mutex_unlock(&rt_constraints_mutex);
  8838. return err;
  8839. }
  8840. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8841. {
  8842. u64 rt_runtime, rt_period;
  8843. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8844. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8845. if (rt_runtime_us < 0)
  8846. rt_runtime = RUNTIME_INF;
  8847. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8848. }
  8849. long sched_group_rt_runtime(struct task_group *tg)
  8850. {
  8851. u64 rt_runtime_us;
  8852. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8853. return -1;
  8854. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8855. do_div(rt_runtime_us, NSEC_PER_USEC);
  8856. return rt_runtime_us;
  8857. }
  8858. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8859. {
  8860. u64 rt_runtime, rt_period;
  8861. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8862. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8863. if (rt_period == 0)
  8864. return -EINVAL;
  8865. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8866. }
  8867. long sched_group_rt_period(struct task_group *tg)
  8868. {
  8869. u64 rt_period_us;
  8870. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8871. do_div(rt_period_us, NSEC_PER_USEC);
  8872. return rt_period_us;
  8873. }
  8874. static int sched_rt_global_constraints(void)
  8875. {
  8876. u64 runtime, period;
  8877. int ret = 0;
  8878. if (sysctl_sched_rt_period <= 0)
  8879. return -EINVAL;
  8880. runtime = global_rt_runtime();
  8881. period = global_rt_period();
  8882. /*
  8883. * Sanity check on the sysctl variables.
  8884. */
  8885. if (runtime > period && runtime != RUNTIME_INF)
  8886. return -EINVAL;
  8887. mutex_lock(&rt_constraints_mutex);
  8888. read_lock(&tasklist_lock);
  8889. ret = __rt_schedulable(NULL, 0, 0);
  8890. read_unlock(&tasklist_lock);
  8891. mutex_unlock(&rt_constraints_mutex);
  8892. return ret;
  8893. }
  8894. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8895. {
  8896. /* Don't accept realtime tasks when there is no way for them to run */
  8897. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8898. return 0;
  8899. return 1;
  8900. }
  8901. #else /* !CONFIG_RT_GROUP_SCHED */
  8902. static int sched_rt_global_constraints(void)
  8903. {
  8904. unsigned long flags;
  8905. int i;
  8906. if (sysctl_sched_rt_period <= 0)
  8907. return -EINVAL;
  8908. /*
  8909. * There's always some RT tasks in the root group
  8910. * -- migration, kstopmachine etc..
  8911. */
  8912. if (sysctl_sched_rt_runtime == 0)
  8913. return -EBUSY;
  8914. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8915. for_each_possible_cpu(i) {
  8916. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8917. raw_spin_lock(&rt_rq->rt_runtime_lock);
  8918. rt_rq->rt_runtime = global_rt_runtime();
  8919. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  8920. }
  8921. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8922. return 0;
  8923. }
  8924. #endif /* CONFIG_RT_GROUP_SCHED */
  8925. int sched_rt_handler(struct ctl_table *table, int write,
  8926. void __user *buffer, size_t *lenp,
  8927. loff_t *ppos)
  8928. {
  8929. int ret;
  8930. int old_period, old_runtime;
  8931. static DEFINE_MUTEX(mutex);
  8932. mutex_lock(&mutex);
  8933. old_period = sysctl_sched_rt_period;
  8934. old_runtime = sysctl_sched_rt_runtime;
  8935. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  8936. if (!ret && write) {
  8937. ret = sched_rt_global_constraints();
  8938. if (ret) {
  8939. sysctl_sched_rt_period = old_period;
  8940. sysctl_sched_rt_runtime = old_runtime;
  8941. } else {
  8942. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8943. def_rt_bandwidth.rt_period =
  8944. ns_to_ktime(global_rt_period());
  8945. }
  8946. }
  8947. mutex_unlock(&mutex);
  8948. return ret;
  8949. }
  8950. #ifdef CONFIG_CGROUP_SCHED
  8951. /* return corresponding task_group object of a cgroup */
  8952. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8953. {
  8954. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8955. struct task_group, css);
  8956. }
  8957. static struct cgroup_subsys_state *
  8958. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8959. {
  8960. struct task_group *tg, *parent;
  8961. if (!cgrp->parent) {
  8962. /* This is early initialization for the top cgroup */
  8963. return &init_task_group.css;
  8964. }
  8965. parent = cgroup_tg(cgrp->parent);
  8966. tg = sched_create_group(parent);
  8967. if (IS_ERR(tg))
  8968. return ERR_PTR(-ENOMEM);
  8969. return &tg->css;
  8970. }
  8971. static void
  8972. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8973. {
  8974. struct task_group *tg = cgroup_tg(cgrp);
  8975. sched_destroy_group(tg);
  8976. }
  8977. static int
  8978. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  8979. {
  8980. #ifdef CONFIG_RT_GROUP_SCHED
  8981. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8982. return -EINVAL;
  8983. #else
  8984. /* We don't support RT-tasks being in separate groups */
  8985. if (tsk->sched_class != &fair_sched_class)
  8986. return -EINVAL;
  8987. #endif
  8988. return 0;
  8989. }
  8990. static int
  8991. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8992. struct task_struct *tsk, bool threadgroup)
  8993. {
  8994. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  8995. if (retval)
  8996. return retval;
  8997. if (threadgroup) {
  8998. struct task_struct *c;
  8999. rcu_read_lock();
  9000. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  9001. retval = cpu_cgroup_can_attach_task(cgrp, c);
  9002. if (retval) {
  9003. rcu_read_unlock();
  9004. return retval;
  9005. }
  9006. }
  9007. rcu_read_unlock();
  9008. }
  9009. return 0;
  9010. }
  9011. static void
  9012. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  9013. struct cgroup *old_cont, struct task_struct *tsk,
  9014. bool threadgroup)
  9015. {
  9016. sched_move_task(tsk);
  9017. if (threadgroup) {
  9018. struct task_struct *c;
  9019. rcu_read_lock();
  9020. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  9021. sched_move_task(c);
  9022. }
  9023. rcu_read_unlock();
  9024. }
  9025. }
  9026. #ifdef CONFIG_FAIR_GROUP_SCHED
  9027. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  9028. u64 shareval)
  9029. {
  9030. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  9031. }
  9032. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  9033. {
  9034. struct task_group *tg = cgroup_tg(cgrp);
  9035. return (u64) tg->shares;
  9036. }
  9037. #endif /* CONFIG_FAIR_GROUP_SCHED */
  9038. #ifdef CONFIG_RT_GROUP_SCHED
  9039. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  9040. s64 val)
  9041. {
  9042. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  9043. }
  9044. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  9045. {
  9046. return sched_group_rt_runtime(cgroup_tg(cgrp));
  9047. }
  9048. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  9049. u64 rt_period_us)
  9050. {
  9051. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  9052. }
  9053. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  9054. {
  9055. return sched_group_rt_period(cgroup_tg(cgrp));
  9056. }
  9057. #endif /* CONFIG_RT_GROUP_SCHED */
  9058. static struct cftype cpu_files[] = {
  9059. #ifdef CONFIG_FAIR_GROUP_SCHED
  9060. {
  9061. .name = "shares",
  9062. .read_u64 = cpu_shares_read_u64,
  9063. .write_u64 = cpu_shares_write_u64,
  9064. },
  9065. #endif
  9066. #ifdef CONFIG_RT_GROUP_SCHED
  9067. {
  9068. .name = "rt_runtime_us",
  9069. .read_s64 = cpu_rt_runtime_read,
  9070. .write_s64 = cpu_rt_runtime_write,
  9071. },
  9072. {
  9073. .name = "rt_period_us",
  9074. .read_u64 = cpu_rt_period_read_uint,
  9075. .write_u64 = cpu_rt_period_write_uint,
  9076. },
  9077. #endif
  9078. };
  9079. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  9080. {
  9081. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  9082. }
  9083. struct cgroup_subsys cpu_cgroup_subsys = {
  9084. .name = "cpu",
  9085. .create = cpu_cgroup_create,
  9086. .destroy = cpu_cgroup_destroy,
  9087. .can_attach = cpu_cgroup_can_attach,
  9088. .attach = cpu_cgroup_attach,
  9089. .populate = cpu_cgroup_populate,
  9090. .subsys_id = cpu_cgroup_subsys_id,
  9091. .early_init = 1,
  9092. };
  9093. #endif /* CONFIG_CGROUP_SCHED */
  9094. #ifdef CONFIG_CGROUP_CPUACCT
  9095. /*
  9096. * CPU accounting code for task groups.
  9097. *
  9098. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  9099. * (balbir@in.ibm.com).
  9100. */
  9101. /* track cpu usage of a group of tasks and its child groups */
  9102. struct cpuacct {
  9103. struct cgroup_subsys_state css;
  9104. /* cpuusage holds pointer to a u64-type object on every cpu */
  9105. u64 *cpuusage;
  9106. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  9107. struct cpuacct *parent;
  9108. };
  9109. struct cgroup_subsys cpuacct_subsys;
  9110. /* return cpu accounting group corresponding to this container */
  9111. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  9112. {
  9113. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  9114. struct cpuacct, css);
  9115. }
  9116. /* return cpu accounting group to which this task belongs */
  9117. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  9118. {
  9119. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  9120. struct cpuacct, css);
  9121. }
  9122. /* create a new cpu accounting group */
  9123. static struct cgroup_subsys_state *cpuacct_create(
  9124. struct cgroup_subsys *ss, struct cgroup *cgrp)
  9125. {
  9126. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  9127. int i;
  9128. if (!ca)
  9129. goto out;
  9130. ca->cpuusage = alloc_percpu(u64);
  9131. if (!ca->cpuusage)
  9132. goto out_free_ca;
  9133. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9134. if (percpu_counter_init(&ca->cpustat[i], 0))
  9135. goto out_free_counters;
  9136. if (cgrp->parent)
  9137. ca->parent = cgroup_ca(cgrp->parent);
  9138. return &ca->css;
  9139. out_free_counters:
  9140. while (--i >= 0)
  9141. percpu_counter_destroy(&ca->cpustat[i]);
  9142. free_percpu(ca->cpuusage);
  9143. out_free_ca:
  9144. kfree(ca);
  9145. out:
  9146. return ERR_PTR(-ENOMEM);
  9147. }
  9148. /* destroy an existing cpu accounting group */
  9149. static void
  9150. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9151. {
  9152. struct cpuacct *ca = cgroup_ca(cgrp);
  9153. int i;
  9154. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  9155. percpu_counter_destroy(&ca->cpustat[i]);
  9156. free_percpu(ca->cpuusage);
  9157. kfree(ca);
  9158. }
  9159. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  9160. {
  9161. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9162. u64 data;
  9163. #ifndef CONFIG_64BIT
  9164. /*
  9165. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  9166. */
  9167. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9168. data = *cpuusage;
  9169. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9170. #else
  9171. data = *cpuusage;
  9172. #endif
  9173. return data;
  9174. }
  9175. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  9176. {
  9177. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9178. #ifndef CONFIG_64BIT
  9179. /*
  9180. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  9181. */
  9182. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  9183. *cpuusage = val;
  9184. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  9185. #else
  9186. *cpuusage = val;
  9187. #endif
  9188. }
  9189. /* return total cpu usage (in nanoseconds) of a group */
  9190. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  9191. {
  9192. struct cpuacct *ca = cgroup_ca(cgrp);
  9193. u64 totalcpuusage = 0;
  9194. int i;
  9195. for_each_present_cpu(i)
  9196. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  9197. return totalcpuusage;
  9198. }
  9199. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  9200. u64 reset)
  9201. {
  9202. struct cpuacct *ca = cgroup_ca(cgrp);
  9203. int err = 0;
  9204. int i;
  9205. if (reset) {
  9206. err = -EINVAL;
  9207. goto out;
  9208. }
  9209. for_each_present_cpu(i)
  9210. cpuacct_cpuusage_write(ca, i, 0);
  9211. out:
  9212. return err;
  9213. }
  9214. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  9215. struct seq_file *m)
  9216. {
  9217. struct cpuacct *ca = cgroup_ca(cgroup);
  9218. u64 percpu;
  9219. int i;
  9220. for_each_present_cpu(i) {
  9221. percpu = cpuacct_cpuusage_read(ca, i);
  9222. seq_printf(m, "%llu ", (unsigned long long) percpu);
  9223. }
  9224. seq_printf(m, "\n");
  9225. return 0;
  9226. }
  9227. static const char *cpuacct_stat_desc[] = {
  9228. [CPUACCT_STAT_USER] = "user",
  9229. [CPUACCT_STAT_SYSTEM] = "system",
  9230. };
  9231. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  9232. struct cgroup_map_cb *cb)
  9233. {
  9234. struct cpuacct *ca = cgroup_ca(cgrp);
  9235. int i;
  9236. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  9237. s64 val = percpu_counter_read(&ca->cpustat[i]);
  9238. val = cputime64_to_clock_t(val);
  9239. cb->fill(cb, cpuacct_stat_desc[i], val);
  9240. }
  9241. return 0;
  9242. }
  9243. static struct cftype files[] = {
  9244. {
  9245. .name = "usage",
  9246. .read_u64 = cpuusage_read,
  9247. .write_u64 = cpuusage_write,
  9248. },
  9249. {
  9250. .name = "usage_percpu",
  9251. .read_seq_string = cpuacct_percpu_seq_read,
  9252. },
  9253. {
  9254. .name = "stat",
  9255. .read_map = cpuacct_stats_show,
  9256. },
  9257. };
  9258. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  9259. {
  9260. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  9261. }
  9262. /*
  9263. * charge this task's execution time to its accounting group.
  9264. *
  9265. * called with rq->lock held.
  9266. */
  9267. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  9268. {
  9269. struct cpuacct *ca;
  9270. int cpu;
  9271. if (unlikely(!cpuacct_subsys.active))
  9272. return;
  9273. cpu = task_cpu(tsk);
  9274. rcu_read_lock();
  9275. ca = task_ca(tsk);
  9276. for (; ca; ca = ca->parent) {
  9277. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  9278. *cpuusage += cputime;
  9279. }
  9280. rcu_read_unlock();
  9281. }
  9282. /*
  9283. * Charge the system/user time to the task's accounting group.
  9284. */
  9285. static void cpuacct_update_stats(struct task_struct *tsk,
  9286. enum cpuacct_stat_index idx, cputime_t val)
  9287. {
  9288. struct cpuacct *ca;
  9289. if (unlikely(!cpuacct_subsys.active))
  9290. return;
  9291. rcu_read_lock();
  9292. ca = task_ca(tsk);
  9293. do {
  9294. percpu_counter_add(&ca->cpustat[idx], val);
  9295. ca = ca->parent;
  9296. } while (ca);
  9297. rcu_read_unlock();
  9298. }
  9299. struct cgroup_subsys cpuacct_subsys = {
  9300. .name = "cpuacct",
  9301. .create = cpuacct_create,
  9302. .destroy = cpuacct_destroy,
  9303. .populate = cpuacct_populate,
  9304. .subsys_id = cpuacct_subsys_id,
  9305. };
  9306. #endif /* CONFIG_CGROUP_CPUACCT */
  9307. #ifndef CONFIG_SMP
  9308. int rcu_expedited_torture_stats(char *page)
  9309. {
  9310. return 0;
  9311. }
  9312. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9313. void synchronize_sched_expedited(void)
  9314. {
  9315. }
  9316. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9317. #else /* #ifndef CONFIG_SMP */
  9318. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  9319. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  9320. #define RCU_EXPEDITED_STATE_POST -2
  9321. #define RCU_EXPEDITED_STATE_IDLE -1
  9322. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9323. int rcu_expedited_torture_stats(char *page)
  9324. {
  9325. int cnt = 0;
  9326. int cpu;
  9327. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  9328. for_each_online_cpu(cpu) {
  9329. cnt += sprintf(&page[cnt], " %d:%d",
  9330. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  9331. }
  9332. cnt += sprintf(&page[cnt], "\n");
  9333. return cnt;
  9334. }
  9335. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  9336. static long synchronize_sched_expedited_count;
  9337. /*
  9338. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  9339. * approach to force grace period to end quickly. This consumes
  9340. * significant time on all CPUs, and is thus not recommended for
  9341. * any sort of common-case code.
  9342. *
  9343. * Note that it is illegal to call this function while holding any
  9344. * lock that is acquired by a CPU-hotplug notifier. Failing to
  9345. * observe this restriction will result in deadlock.
  9346. */
  9347. void synchronize_sched_expedited(void)
  9348. {
  9349. int cpu;
  9350. unsigned long flags;
  9351. bool need_full_sync = 0;
  9352. struct rq *rq;
  9353. struct migration_req *req;
  9354. long snap;
  9355. int trycount = 0;
  9356. smp_mb(); /* ensure prior mod happens before capturing snap. */
  9357. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  9358. get_online_cpus();
  9359. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  9360. put_online_cpus();
  9361. if (trycount++ < 10)
  9362. udelay(trycount * num_online_cpus());
  9363. else {
  9364. synchronize_sched();
  9365. return;
  9366. }
  9367. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  9368. smp_mb(); /* ensure test happens before caller kfree */
  9369. return;
  9370. }
  9371. get_online_cpus();
  9372. }
  9373. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  9374. for_each_online_cpu(cpu) {
  9375. rq = cpu_rq(cpu);
  9376. req = &per_cpu(rcu_migration_req, cpu);
  9377. init_completion(&req->done);
  9378. req->task = NULL;
  9379. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  9380. raw_spin_lock_irqsave(&rq->lock, flags);
  9381. list_add(&req->list, &rq->migration_queue);
  9382. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9383. wake_up_process(rq->migration_thread);
  9384. }
  9385. for_each_online_cpu(cpu) {
  9386. rcu_expedited_state = cpu;
  9387. req = &per_cpu(rcu_migration_req, cpu);
  9388. rq = cpu_rq(cpu);
  9389. wait_for_completion(&req->done);
  9390. raw_spin_lock_irqsave(&rq->lock, flags);
  9391. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  9392. need_full_sync = 1;
  9393. req->dest_cpu = RCU_MIGRATION_IDLE;
  9394. raw_spin_unlock_irqrestore(&rq->lock, flags);
  9395. }
  9396. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  9397. synchronize_sched_expedited_count++;
  9398. mutex_unlock(&rcu_sched_expedited_mutex);
  9399. put_online_cpus();
  9400. if (need_full_sync)
  9401. synchronize_sched();
  9402. }
  9403. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  9404. #endif /* #else #ifndef CONFIG_SMP */