ctatc.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include "cttimer.h"
  25. #include <linux/delay.h>
  26. #include <sound/pcm.h>
  27. #include <sound/control.h>
  28. #include <sound/asoundef.h>
  29. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  30. #define DAIONUM 7
  31. #define MAX_MULTI_CHN 8
  32. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  33. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  34. | ((IEC958_AES1_CON_MIXER \
  35. | IEC958_AES1_CON_ORIGINAL) << 8) \
  36. | (0x10 << 16) \
  37. | ((IEC958_AES3_CON_FS_48000) << 24))
  38. static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = {
  39. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
  40. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
  41. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
  42. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
  43. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000,
  44. "UAA", CTUAA),
  45. SND_PCI_QUIRK_VENDOR(PCI_VENDOR_ID_CREATIVE,
  46. "Unknown", CT20K1_UNKNOWN),
  47. { } /* terminator */
  48. };
  49. static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = {
  50. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  51. "SB0760", CTSB0760),
  52. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  53. "SB0880", CTSB0880),
  54. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  55. "SB0880", CTSB0880),
  56. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  57. "SB0880", CTSB0880),
  58. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000,
  59. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX",
  60. CTHENDRIX),
  61. { } /* terminator */
  62. };
  63. static const char *ct_subsys_name[NUM_CTCARDS] = {
  64. [CTSB055X] = "SB055x",
  65. [CTSB073X] = "SB073x",
  66. [CTSB0760] = "SB076x",
  67. [CTUAA] = "UAA",
  68. [CT20K1_UNKNOWN] = "Unknown",
  69. [CTHENDRIX] = "Hendrix",
  70. [CTSB0880] = "SB0880",
  71. };
  72. static struct {
  73. int (*create)(struct ct_atc *atc,
  74. enum CTALSADEVS device, const char *device_name);
  75. int (*destroy)(void *alsa_dev);
  76. const char *public_name;
  77. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  78. [FRONT] = { .create = ct_alsa_pcm_create,
  79. .destroy = NULL,
  80. .public_name = "Front/WaveIn"},
  81. [SURROUND] = { .create = ct_alsa_pcm_create,
  82. .destroy = NULL,
  83. .public_name = "Surround"},
  84. [CLFE] = { .create = ct_alsa_pcm_create,
  85. .destroy = NULL,
  86. .public_name = "Center/LFE"},
  87. [SIDE] = { .create = ct_alsa_pcm_create,
  88. .destroy = NULL,
  89. .public_name = "Side"},
  90. [IEC958] = { .create = ct_alsa_pcm_create,
  91. .destroy = NULL,
  92. .public_name = "IEC958 Non-audio"},
  93. [MIXER] = { .create = ct_alsa_mix_create,
  94. .destroy = NULL,
  95. .public_name = "Mixer"}
  96. };
  97. typedef int (*create_t)(void *, void **);
  98. typedef int (*destroy_t)(void *);
  99. static struct {
  100. int (*create)(void *hw, void **rmgr);
  101. int (*destroy)(void *mgr);
  102. } rsc_mgr_funcs[NUM_RSCTYP] = {
  103. [SRC] = { .create = (create_t)src_mgr_create,
  104. .destroy = (destroy_t)src_mgr_destroy },
  105. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  106. .destroy = (destroy_t)srcimp_mgr_destroy },
  107. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  108. .destroy = (destroy_t)amixer_mgr_destroy },
  109. [SUM] = { .create = (create_t)sum_mgr_create,
  110. .destroy = (destroy_t)sum_mgr_destroy },
  111. [DAIO] = { .create = (create_t)daio_mgr_create,
  112. .destroy = (destroy_t)daio_mgr_destroy }
  113. };
  114. static int
  115. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  116. /* *
  117. * Only mono and interleaved modes are supported now.
  118. * Always allocates a contiguous channel block.
  119. * */
  120. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  121. {
  122. struct snd_pcm_runtime *runtime;
  123. struct ct_vm *vm;
  124. if (NULL == apcm->substream)
  125. return 0;
  126. runtime = apcm->substream->runtime;
  127. vm = atc->vm;
  128. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  129. if (NULL == apcm->vm_block)
  130. return -ENOENT;
  131. return 0;
  132. }
  133. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  134. {
  135. struct ct_vm *vm;
  136. if (NULL == apcm->vm_block)
  137. return;
  138. vm = atc->vm;
  139. vm->unmap(vm, apcm->vm_block);
  140. apcm->vm_block = NULL;
  141. }
  142. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  143. {
  144. struct ct_vm *vm;
  145. void *kvirt_addr;
  146. unsigned long phys_addr;
  147. vm = atc->vm;
  148. kvirt_addr = vm->get_ptp_virt(vm, index);
  149. if (kvirt_addr == NULL)
  150. phys_addr = (~0UL);
  151. else
  152. phys_addr = virt_to_phys(kvirt_addr);
  153. return phys_addr;
  154. }
  155. static unsigned int convert_format(snd_pcm_format_t snd_format)
  156. {
  157. switch (snd_format) {
  158. case SNDRV_PCM_FORMAT_U8:
  159. return SRC_SF_U8;
  160. case SNDRV_PCM_FORMAT_S16_LE:
  161. return SRC_SF_S16;
  162. case SNDRV_PCM_FORMAT_S24_3LE:
  163. return SRC_SF_S24;
  164. case SNDRV_PCM_FORMAT_S32_LE:
  165. return SRC_SF_S32;
  166. case SNDRV_PCM_FORMAT_FLOAT_LE:
  167. return SRC_SF_F32;
  168. default:
  169. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  170. snd_format);
  171. return SRC_SF_S16;
  172. }
  173. }
  174. static unsigned int
  175. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  176. {
  177. unsigned int pitch;
  178. int b;
  179. /* get pitch and convert to fixed-point 8.24 format. */
  180. pitch = (input_rate / output_rate) << 24;
  181. input_rate %= output_rate;
  182. input_rate /= 100;
  183. output_rate /= 100;
  184. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  185. b--;
  186. if (b >= 0) {
  187. input_rate <<= (31 - b);
  188. input_rate /= output_rate;
  189. b = 24 - (31 - b);
  190. if (b >= 0)
  191. input_rate <<= b;
  192. else
  193. input_rate >>= -b;
  194. pitch |= input_rate;
  195. }
  196. return pitch;
  197. }
  198. static int select_rom(unsigned int pitch)
  199. {
  200. if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
  201. /* 0.26 <= pitch <= 1.72 */
  202. return 1;
  203. } else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
  204. /* pitch == 1.8375 */
  205. return 2;
  206. } else if (0x02000000 == pitch) {
  207. /* pitch == 2 */
  208. return 3;
  209. } else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
  210. /* 0 <= pitch <= 8 */
  211. return 0;
  212. } else {
  213. return -ENOENT;
  214. }
  215. }
  216. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  217. {
  218. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  219. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  220. struct src_desc desc = {0};
  221. struct amixer_desc mix_dsc = {0};
  222. struct src *src;
  223. struct amixer *amixer;
  224. int err;
  225. int n_amixer = apcm->substream->runtime->channels, i = 0;
  226. int device = apcm->substream->pcm->device;
  227. unsigned int pitch;
  228. unsigned long flags;
  229. if (NULL != apcm->src) {
  230. /* Prepared pcm playback */
  231. return 0;
  232. }
  233. /* first release old resources */
  234. atc->pcm_release_resources(atc, apcm);
  235. /* Get SRC resource */
  236. desc.multi = apcm->substream->runtime->channels;
  237. desc.msr = atc->msr;
  238. desc.mode = MEMRD;
  239. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  240. if (err)
  241. goto error1;
  242. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  243. (atc->rsr * atc->msr));
  244. src = apcm->src;
  245. src->ops->set_pitch(src, pitch);
  246. src->ops->set_rom(src, select_rom(pitch));
  247. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  248. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  249. /* Get AMIXER resource */
  250. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  251. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  252. if (NULL == apcm->amixers) {
  253. err = -ENOMEM;
  254. goto error1;
  255. }
  256. mix_dsc.msr = atc->msr;
  257. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  258. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  259. (struct amixer **)&apcm->amixers[i]);
  260. if (err)
  261. goto error1;
  262. apcm->n_amixer++;
  263. }
  264. /* Set up device virtual mem map */
  265. err = ct_map_audio_buffer(atc, apcm);
  266. if (err < 0)
  267. goto error1;
  268. /* Connect resources */
  269. src = apcm->src;
  270. for (i = 0; i < n_amixer; i++) {
  271. amixer = apcm->amixers[i];
  272. spin_lock_irqsave(&atc->atc_lock, flags);
  273. amixer->ops->setup(amixer, &src->rsc,
  274. INIT_VOL, atc->pcm[i+device*2]);
  275. spin_unlock_irqrestore(&atc->atc_lock, flags);
  276. src = src->ops->next_interleave(src);
  277. if (NULL == src)
  278. src = apcm->src;
  279. }
  280. ct_timer_prepare(apcm->timer);
  281. return 0;
  282. error1:
  283. atc_pcm_release_resources(atc, apcm);
  284. return err;
  285. }
  286. static int
  287. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  288. {
  289. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  290. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  291. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  292. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  293. struct srcimp *srcimp;
  294. int i;
  295. if (NULL != apcm->srcimps) {
  296. for (i = 0; i < apcm->n_srcimp; i++) {
  297. srcimp = apcm->srcimps[i];
  298. srcimp->ops->unmap(srcimp);
  299. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  300. apcm->srcimps[i] = NULL;
  301. }
  302. kfree(apcm->srcimps);
  303. apcm->srcimps = NULL;
  304. }
  305. if (NULL != apcm->srccs) {
  306. for (i = 0; i < apcm->n_srcc; i++) {
  307. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  308. apcm->srccs[i] = NULL;
  309. }
  310. kfree(apcm->srccs);
  311. apcm->srccs = NULL;
  312. }
  313. if (NULL != apcm->amixers) {
  314. for (i = 0; i < apcm->n_amixer; i++) {
  315. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  316. apcm->amixers[i] = NULL;
  317. }
  318. kfree(apcm->amixers);
  319. apcm->amixers = NULL;
  320. }
  321. if (NULL != apcm->mono) {
  322. sum_mgr->put_sum(sum_mgr, apcm->mono);
  323. apcm->mono = NULL;
  324. }
  325. if (NULL != apcm->src) {
  326. src_mgr->put_src(src_mgr, apcm->src);
  327. apcm->src = NULL;
  328. }
  329. if (NULL != apcm->vm_block) {
  330. /* Undo device virtual mem map */
  331. ct_unmap_audio_buffer(atc, apcm);
  332. apcm->vm_block = NULL;
  333. }
  334. return 0;
  335. }
  336. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  337. {
  338. unsigned int max_cisz;
  339. struct src *src = apcm->src;
  340. max_cisz = src->multi * src->rsc.msr;
  341. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  342. src->ops->set_sa(src, apcm->vm_block->addr);
  343. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  344. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  345. src->ops->set_cisz(src, max_cisz);
  346. src->ops->set_bm(src, 1);
  347. src->ops->set_state(src, SRC_STATE_INIT);
  348. src->ops->commit_write(src);
  349. ct_timer_start(apcm->timer);
  350. return 0;
  351. }
  352. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  353. {
  354. struct src *src;
  355. int i;
  356. ct_timer_stop(apcm->timer);
  357. src = apcm->src;
  358. src->ops->set_bm(src, 0);
  359. src->ops->set_state(src, SRC_STATE_OFF);
  360. src->ops->commit_write(src);
  361. if (NULL != apcm->srccs) {
  362. for (i = 0; i < apcm->n_srcc; i++) {
  363. src = apcm->srccs[i];
  364. src->ops->set_bm(src, 0);
  365. src->ops->set_state(src, SRC_STATE_OFF);
  366. src->ops->commit_write(src);
  367. }
  368. }
  369. apcm->started = 0;
  370. return 0;
  371. }
  372. static int
  373. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  374. {
  375. struct src *src = apcm->src;
  376. u32 size, max_cisz;
  377. int position;
  378. position = src->ops->get_ca(src);
  379. size = apcm->vm_block->size;
  380. max_cisz = src->multi * src->rsc.msr;
  381. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  382. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  383. }
  384. struct src_node_conf_t {
  385. unsigned int pitch;
  386. unsigned int msr:8;
  387. unsigned int mix_msr:8;
  388. unsigned int imp_msr:8;
  389. unsigned int vo:1;
  390. };
  391. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  392. struct src_node_conf_t *conf, int *n_srcc)
  393. {
  394. unsigned int pitch;
  395. /* get pitch and convert to fixed-point 8.24 format. */
  396. pitch = atc_get_pitch((atc->rsr * atc->msr),
  397. apcm->substream->runtime->rate);
  398. *n_srcc = 0;
  399. if (1 == atc->msr) {
  400. *n_srcc = apcm->substream->runtime->channels;
  401. conf[0].pitch = pitch;
  402. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  403. conf[0].vo = 1;
  404. } else if (2 == atc->msr) {
  405. if (0x8000000 < pitch) {
  406. /* Need two-stage SRCs, SRCIMPs and
  407. * AMIXERs for converting format */
  408. conf[0].pitch = (atc->msr << 24);
  409. conf[0].msr = conf[0].mix_msr = 1;
  410. conf[0].imp_msr = atc->msr;
  411. conf[0].vo = 0;
  412. conf[1].pitch = atc_get_pitch(atc->rsr,
  413. apcm->substream->runtime->rate);
  414. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  415. conf[1].vo = 1;
  416. *n_srcc = apcm->substream->runtime->channels * 2;
  417. } else if (0x1000000 < pitch) {
  418. /* Need one-stage SRCs, SRCIMPs and
  419. * AMIXERs for converting format */
  420. conf[0].pitch = pitch;
  421. conf[0].msr = conf[0].mix_msr
  422. = conf[0].imp_msr = atc->msr;
  423. conf[0].vo = 1;
  424. *n_srcc = apcm->substream->runtime->channels;
  425. }
  426. }
  427. }
  428. static int
  429. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  430. {
  431. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  432. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  433. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  434. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  435. struct src_desc src_dsc = {0};
  436. struct src *src;
  437. struct srcimp_desc srcimp_dsc = {0};
  438. struct srcimp *srcimp;
  439. struct amixer_desc mix_dsc = {0};
  440. struct sum_desc sum_dsc = {0};
  441. unsigned int pitch;
  442. int multi, err, i;
  443. int n_srcimp, n_amixer, n_srcc, n_sum;
  444. struct src_node_conf_t src_node_conf[2] = {{0} };
  445. /* first release old resources */
  446. atc->pcm_release_resources(atc, apcm);
  447. /* The numbers of converting SRCs and SRCIMPs should be determined
  448. * by pitch value. */
  449. multi = apcm->substream->runtime->channels;
  450. /* get pitch and convert to fixed-point 8.24 format. */
  451. pitch = atc_get_pitch((atc->rsr * atc->msr),
  452. apcm->substream->runtime->rate);
  453. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  454. n_sum = (1 == multi) ? 1 : 0;
  455. n_amixer = n_sum * 2 + n_srcc;
  456. n_srcimp = n_srcc;
  457. if ((multi > 1) && (0x8000000 >= pitch)) {
  458. /* Need extra AMIXERs and SRCIMPs for special treatment
  459. * of interleaved recording of conjugate channels */
  460. n_amixer += multi * atc->msr;
  461. n_srcimp += multi * atc->msr;
  462. } else {
  463. n_srcimp += multi;
  464. }
  465. if (n_srcc) {
  466. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  467. if (NULL == apcm->srccs)
  468. return -ENOMEM;
  469. }
  470. if (n_amixer) {
  471. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  472. if (NULL == apcm->amixers) {
  473. err = -ENOMEM;
  474. goto error1;
  475. }
  476. }
  477. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  478. if (NULL == apcm->srcimps) {
  479. err = -ENOMEM;
  480. goto error1;
  481. }
  482. /* Allocate SRCs for sample rate conversion if needed */
  483. src_dsc.multi = 1;
  484. src_dsc.mode = ARCRW;
  485. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  486. src_dsc.msr = src_node_conf[i/multi].msr;
  487. err = src_mgr->get_src(src_mgr, &src_dsc,
  488. (struct src **)&apcm->srccs[i]);
  489. if (err)
  490. goto error1;
  491. src = apcm->srccs[i];
  492. pitch = src_node_conf[i/multi].pitch;
  493. src->ops->set_pitch(src, pitch);
  494. src->ops->set_rom(src, select_rom(pitch));
  495. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  496. apcm->n_srcc++;
  497. }
  498. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  499. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  500. if (i < (n_sum*2))
  501. mix_dsc.msr = atc->msr;
  502. else if (i < (n_sum*2+n_srcc))
  503. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  504. else
  505. mix_dsc.msr = 1;
  506. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  507. (struct amixer **)&apcm->amixers[i]);
  508. if (err)
  509. goto error1;
  510. apcm->n_amixer++;
  511. }
  512. /* Allocate a SUM resource to mix all input channels together */
  513. sum_dsc.msr = atc->msr;
  514. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  515. if (err)
  516. goto error1;
  517. pitch = atc_get_pitch((atc->rsr * atc->msr),
  518. apcm->substream->runtime->rate);
  519. /* Allocate SRCIMP resources */
  520. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  521. if (i < (n_srcc))
  522. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  523. else if (1 == multi)
  524. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  525. else
  526. srcimp_dsc.msr = 1;
  527. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  528. if (err)
  529. goto error1;
  530. apcm->srcimps[i] = srcimp;
  531. apcm->n_srcimp++;
  532. }
  533. /* Allocate a SRC for writing data to host memory */
  534. src_dsc.multi = apcm->substream->runtime->channels;
  535. src_dsc.msr = 1;
  536. src_dsc.mode = MEMWR;
  537. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  538. if (err)
  539. goto error1;
  540. src = apcm->src;
  541. src->ops->set_pitch(src, pitch);
  542. /* Set up device virtual mem map */
  543. err = ct_map_audio_buffer(atc, apcm);
  544. if (err < 0)
  545. goto error1;
  546. return 0;
  547. error1:
  548. atc_pcm_release_resources(atc, apcm);
  549. return err;
  550. }
  551. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  552. {
  553. struct src *src;
  554. struct amixer *amixer;
  555. struct srcimp *srcimp;
  556. struct ct_mixer *mixer = atc->mixer;
  557. struct sum *mono;
  558. struct rsc *out_ports[8] = {NULL};
  559. int err, i, j, n_sum, multi;
  560. unsigned int pitch;
  561. int mix_base = 0, imp_base = 0;
  562. if (NULL != apcm->src) {
  563. /* Prepared pcm capture */
  564. return 0;
  565. }
  566. /* Get needed resources. */
  567. err = atc_pcm_capture_get_resources(atc, apcm);
  568. if (err)
  569. return err;
  570. /* Connect resources */
  571. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  572. &out_ports[0], &out_ports[1]);
  573. multi = apcm->substream->runtime->channels;
  574. if (1 == multi) {
  575. mono = apcm->mono;
  576. for (i = 0; i < 2; i++) {
  577. amixer = apcm->amixers[i];
  578. amixer->ops->setup(amixer, out_ports[i],
  579. MONO_SUM_SCALE, mono);
  580. }
  581. out_ports[0] = &mono->rsc;
  582. n_sum = 1;
  583. mix_base = n_sum * 2;
  584. }
  585. for (i = 0; i < apcm->n_srcc; i++) {
  586. src = apcm->srccs[i];
  587. srcimp = apcm->srcimps[imp_base+i];
  588. amixer = apcm->amixers[mix_base+i];
  589. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  590. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  591. out_ports[i%multi] = &amixer->rsc;
  592. }
  593. pitch = atc_get_pitch((atc->rsr * atc->msr),
  594. apcm->substream->runtime->rate);
  595. if ((multi > 1) && (pitch <= 0x8000000)) {
  596. /* Special connection for interleaved
  597. * recording with conjugate channels */
  598. for (i = 0; i < multi; i++) {
  599. out_ports[i]->ops->master(out_ports[i]);
  600. for (j = 0; j < atc->msr; j++) {
  601. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  602. amixer->ops->set_input(amixer, out_ports[i]);
  603. amixer->ops->set_scale(amixer, INIT_VOL);
  604. amixer->ops->set_sum(amixer, NULL);
  605. amixer->ops->commit_raw_write(amixer);
  606. out_ports[i]->ops->next_conj(out_ports[i]);
  607. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  608. srcimp->ops->map(srcimp, apcm->src,
  609. &amixer->rsc);
  610. }
  611. }
  612. } else {
  613. for (i = 0; i < multi; i++) {
  614. srcimp = apcm->srcimps[apcm->n_srcc+i];
  615. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  616. }
  617. }
  618. ct_timer_prepare(apcm->timer);
  619. return 0;
  620. }
  621. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  622. {
  623. struct src *src;
  624. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  625. int i, multi;
  626. if (apcm->started)
  627. return 0;
  628. apcm->started = 1;
  629. multi = apcm->substream->runtime->channels;
  630. /* Set up converting SRCs */
  631. for (i = 0; i < apcm->n_srcc; i++) {
  632. src = apcm->srccs[i];
  633. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  634. src_mgr->src_disable(src_mgr, src);
  635. }
  636. /* Set up recording SRC */
  637. src = apcm->src;
  638. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  639. src->ops->set_sa(src, apcm->vm_block->addr);
  640. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  641. src->ops->set_ca(src, apcm->vm_block->addr);
  642. src_mgr->src_disable(src_mgr, src);
  643. /* Disable relevant SRCs firstly */
  644. src_mgr->commit_write(src_mgr);
  645. /* Enable SRCs respectively */
  646. for (i = 0; i < apcm->n_srcc; i++) {
  647. src = apcm->srccs[i];
  648. src->ops->set_state(src, SRC_STATE_RUN);
  649. src->ops->commit_write(src);
  650. src_mgr->src_enable_s(src_mgr, src);
  651. }
  652. src = apcm->src;
  653. src->ops->set_bm(src, 1);
  654. src->ops->set_state(src, SRC_STATE_RUN);
  655. src->ops->commit_write(src);
  656. src_mgr->src_enable_s(src_mgr, src);
  657. /* Enable relevant SRCs synchronously */
  658. src_mgr->commit_write(src_mgr);
  659. ct_timer_start(apcm->timer);
  660. return 0;
  661. }
  662. static int
  663. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  664. {
  665. struct src *src = apcm->src;
  666. return src->ops->get_ca(src) - apcm->vm_block->addr;
  667. }
  668. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  669. struct ct_atc_pcm *apcm)
  670. {
  671. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  672. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  673. struct src_desc desc = {0};
  674. struct amixer_desc mix_dsc = {0};
  675. struct src *src;
  676. int err;
  677. int n_amixer = apcm->substream->runtime->channels, i;
  678. unsigned int pitch, rsr = atc->pll_rate;
  679. /* first release old resources */
  680. atc->pcm_release_resources(atc, apcm);
  681. /* Get SRC resource */
  682. desc.multi = apcm->substream->runtime->channels;
  683. desc.msr = 1;
  684. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  685. desc.msr <<= 1;
  686. desc.mode = MEMRD;
  687. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  688. if (err)
  689. goto error1;
  690. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  691. src = apcm->src;
  692. src->ops->set_pitch(src, pitch);
  693. src->ops->set_rom(src, select_rom(pitch));
  694. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  695. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  696. src->ops->set_bp(src, 1);
  697. /* Get AMIXER resource */
  698. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  699. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  700. if (NULL == apcm->amixers) {
  701. err = -ENOMEM;
  702. goto error1;
  703. }
  704. mix_dsc.msr = desc.msr;
  705. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  706. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  707. (struct amixer **)&apcm->amixers[i]);
  708. if (err)
  709. goto error1;
  710. apcm->n_amixer++;
  711. }
  712. /* Set up device virtual mem map */
  713. err = ct_map_audio_buffer(atc, apcm);
  714. if (err < 0)
  715. goto error1;
  716. return 0;
  717. error1:
  718. atc_pcm_release_resources(atc, apcm);
  719. return err;
  720. }
  721. static int atc_pll_init(struct ct_atc *atc, int rate)
  722. {
  723. struct hw *hw = atc->hw;
  724. int err;
  725. err = hw->pll_init(hw, rate);
  726. atc->pll_rate = err ? 0 : rate;
  727. return err;
  728. }
  729. static int
  730. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  731. {
  732. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  733. unsigned long flags;
  734. unsigned int rate = apcm->substream->runtime->rate;
  735. unsigned int status;
  736. int err;
  737. unsigned char iec958_con_fs;
  738. switch (rate) {
  739. case 48000:
  740. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  741. break;
  742. case 44100:
  743. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  744. break;
  745. case 32000:
  746. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  747. break;
  748. default:
  749. return -ENOENT;
  750. }
  751. spin_lock_irqsave(&atc->atc_lock, flags);
  752. dao->ops->get_spos(dao, &status);
  753. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  754. status &= ((~IEC958_AES3_CON_FS) << 24);
  755. status |= (iec958_con_fs << 24);
  756. dao->ops->set_spos(dao, status);
  757. dao->ops->commit_write(dao);
  758. }
  759. if ((rate != atc->pll_rate) && (32000 != rate))
  760. err = atc_pll_init(atc, rate);
  761. spin_unlock_irqrestore(&atc->atc_lock, flags);
  762. return err;
  763. }
  764. static int
  765. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  766. {
  767. struct src *src;
  768. struct amixer *amixer;
  769. struct dao *dao;
  770. int err;
  771. int i;
  772. unsigned long flags;
  773. if (NULL != apcm->src)
  774. return 0;
  775. /* Configure SPDIFOO and PLL to passthrough mode;
  776. * determine pll_rate. */
  777. err = spdif_passthru_playback_setup(atc, apcm);
  778. if (err)
  779. return err;
  780. /* Get needed resources. */
  781. err = spdif_passthru_playback_get_resources(atc, apcm);
  782. if (err)
  783. return err;
  784. /* Connect resources */
  785. src = apcm->src;
  786. for (i = 0; i < apcm->n_amixer; i++) {
  787. amixer = apcm->amixers[i];
  788. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  789. src = src->ops->next_interleave(src);
  790. if (NULL == src)
  791. src = apcm->src;
  792. }
  793. /* Connect to SPDIFOO */
  794. spin_lock_irqsave(&atc->atc_lock, flags);
  795. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  796. amixer = apcm->amixers[0];
  797. dao->ops->set_left_input(dao, &amixer->rsc);
  798. amixer = apcm->amixers[1];
  799. dao->ops->set_right_input(dao, &amixer->rsc);
  800. spin_unlock_irqrestore(&atc->atc_lock, flags);
  801. ct_timer_prepare(apcm->timer);
  802. return 0;
  803. }
  804. static int atc_select_line_in(struct ct_atc *atc)
  805. {
  806. struct hw *hw = atc->hw;
  807. struct ct_mixer *mixer = atc->mixer;
  808. struct src *src;
  809. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  810. return 0;
  811. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  812. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  813. hw->select_adc_source(hw, ADC_LINEIN);
  814. src = atc->srcs[2];
  815. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  816. src = atc->srcs[3];
  817. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  818. return 0;
  819. }
  820. static int atc_select_mic_in(struct ct_atc *atc)
  821. {
  822. struct hw *hw = atc->hw;
  823. struct ct_mixer *mixer = atc->mixer;
  824. struct src *src;
  825. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  826. return 0;
  827. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  828. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  829. hw->select_adc_source(hw, ADC_MICIN);
  830. src = atc->srcs[2];
  831. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  832. src = atc->srcs[3];
  833. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  834. return 0;
  835. }
  836. static int atc_have_digit_io_switch(struct ct_atc *atc)
  837. {
  838. struct hw *hw = atc->hw;
  839. return hw->have_digit_io_switch(hw);
  840. }
  841. static int atc_select_digit_io(struct ct_atc *atc)
  842. {
  843. struct hw *hw = atc->hw;
  844. if (hw->is_adc_source_selected(hw, ADC_NONE))
  845. return 0;
  846. hw->select_adc_source(hw, ADC_NONE);
  847. return 0;
  848. }
  849. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  850. {
  851. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  852. if (state)
  853. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  854. else
  855. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  856. daio_mgr->commit_write(daio_mgr);
  857. return 0;
  858. }
  859. static int
  860. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  861. {
  862. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  863. return dao->ops->get_spos(dao, status);
  864. }
  865. static int
  866. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  867. {
  868. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  869. dao->ops->set_spos(dao, status);
  870. dao->ops->commit_write(dao);
  871. return 0;
  872. }
  873. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  874. {
  875. return atc_daio_unmute(atc, state, LINEO1);
  876. }
  877. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  878. {
  879. return atc_daio_unmute(atc, state, LINEO4);
  880. }
  881. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  882. {
  883. return atc_daio_unmute(atc, state, LINEO3);
  884. }
  885. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  886. {
  887. return atc_daio_unmute(atc, state, LINEO2);
  888. }
  889. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  890. {
  891. return atc_daio_unmute(atc, state, LINEIM);
  892. }
  893. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  894. {
  895. return atc_daio_unmute(atc, state, SPDIFOO);
  896. }
  897. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  898. {
  899. return atc_daio_unmute(atc, state, SPDIFIO);
  900. }
  901. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  902. {
  903. return atc_dao_get_status(atc, status, SPDIFOO);
  904. }
  905. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  906. {
  907. return atc_dao_set_status(atc, status, SPDIFOO);
  908. }
  909. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  910. {
  911. unsigned long flags;
  912. struct dao_desc da_dsc = {0};
  913. struct dao *dao;
  914. int err;
  915. struct ct_mixer *mixer = atc->mixer;
  916. struct rsc *rscs[2] = {NULL};
  917. unsigned int spos = 0;
  918. spin_lock_irqsave(&atc->atc_lock, flags);
  919. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  920. da_dsc.msr = state ? 1 : atc->msr;
  921. da_dsc.passthru = state ? 1 : 0;
  922. err = dao->ops->reinit(dao, &da_dsc);
  923. if (state) {
  924. spos = IEC958_DEFAULT_CON;
  925. } else {
  926. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  927. &rscs[0], &rscs[1]);
  928. dao->ops->set_left_input(dao, rscs[0]);
  929. dao->ops->set_right_input(dao, rscs[1]);
  930. /* Restore PLL to atc->rsr if needed. */
  931. if (atc->pll_rate != atc->rsr)
  932. err = atc_pll_init(atc, atc->rsr);
  933. }
  934. dao->ops->set_spos(dao, spos);
  935. dao->ops->commit_write(dao);
  936. spin_unlock_irqrestore(&atc->atc_lock, flags);
  937. return err;
  938. }
  939. static int ct_atc_destroy(struct ct_atc *atc)
  940. {
  941. struct daio_mgr *daio_mgr;
  942. struct dao *dao;
  943. struct dai *dai;
  944. struct daio *daio;
  945. struct sum_mgr *sum_mgr;
  946. struct src_mgr *src_mgr;
  947. struct srcimp_mgr *srcimp_mgr;
  948. struct srcimp *srcimp;
  949. struct ct_mixer *mixer;
  950. int i = 0;
  951. if (NULL == atc)
  952. return 0;
  953. if (atc->timer) {
  954. ct_timer_free(atc->timer);
  955. atc->timer = NULL;
  956. }
  957. /* Stop hardware and disable all interrupts */
  958. if (NULL != atc->hw)
  959. ((struct hw *)atc->hw)->card_stop(atc->hw);
  960. /* Destroy internal mixer objects */
  961. if (NULL != atc->mixer) {
  962. mixer = atc->mixer;
  963. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  964. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  965. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  966. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  967. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  968. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  969. ct_mixer_destroy(atc->mixer);
  970. }
  971. if (NULL != atc->daios) {
  972. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  973. for (i = 0; i < atc->n_daio; i++) {
  974. daio = atc->daios[i];
  975. if (daio->type < LINEIM) {
  976. dao = container_of(daio, struct dao, daio);
  977. dao->ops->clear_left_input(dao);
  978. dao->ops->clear_right_input(dao);
  979. } else {
  980. dai = container_of(daio, struct dai, daio);
  981. /* some thing to do for dai ... */
  982. }
  983. daio_mgr->put_daio(daio_mgr, daio);
  984. }
  985. kfree(atc->daios);
  986. }
  987. if (NULL != atc->pcm) {
  988. sum_mgr = atc->rsc_mgrs[SUM];
  989. for (i = 0; i < atc->n_pcm; i++)
  990. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  991. kfree(atc->pcm);
  992. }
  993. if (NULL != atc->srcs) {
  994. src_mgr = atc->rsc_mgrs[SRC];
  995. for (i = 0; i < atc->n_src; i++)
  996. src_mgr->put_src(src_mgr, atc->srcs[i]);
  997. kfree(atc->srcs);
  998. }
  999. if (NULL != atc->srcimps) {
  1000. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1001. for (i = 0; i < atc->n_srcimp; i++) {
  1002. srcimp = atc->srcimps[i];
  1003. srcimp->ops->unmap(srcimp);
  1004. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  1005. }
  1006. kfree(atc->srcimps);
  1007. }
  1008. for (i = 0; i < NUM_RSCTYP; i++) {
  1009. if ((NULL != rsc_mgr_funcs[i].destroy) &&
  1010. (NULL != atc->rsc_mgrs[i]))
  1011. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  1012. }
  1013. if (NULL != atc->hw)
  1014. destroy_hw_obj((struct hw *)atc->hw);
  1015. /* Destroy device virtual memory manager object */
  1016. if (NULL != atc->vm) {
  1017. ct_vm_destroy(atc->vm);
  1018. atc->vm = NULL;
  1019. }
  1020. kfree(atc);
  1021. return 0;
  1022. }
  1023. static int atc_dev_free(struct snd_device *dev)
  1024. {
  1025. struct ct_atc *atc = dev->device_data;
  1026. return ct_atc_destroy(atc);
  1027. }
  1028. static int __devinit atc_identify_card(struct ct_atc *atc)
  1029. {
  1030. const struct snd_pci_quirk *p;
  1031. const struct snd_pci_quirk *list;
  1032. switch (atc->chip_type) {
  1033. case ATC20K1:
  1034. atc->chip_name = "20K1";
  1035. list = subsys_20k1_list;
  1036. break;
  1037. case ATC20K2:
  1038. atc->chip_name = "20K2";
  1039. list = subsys_20k2_list;
  1040. break;
  1041. default:
  1042. return -ENOENT;
  1043. }
  1044. p = snd_pci_quirk_lookup(atc->pci, list);
  1045. if (!p)
  1046. return -ENOENT;
  1047. atc->model = p->value;
  1048. atc->model_name = ct_subsys_name[atc->model];
  1049. snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
  1050. atc->chip_name, atc->model_name,
  1051. atc->pci->subsystem_vendor,
  1052. atc->pci->subsystem_device);
  1053. return 0;
  1054. }
  1055. int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
  1056. {
  1057. enum CTALSADEVS i;
  1058. int err;
  1059. alsa_dev_funcs[MIXER].public_name = atc->chip_name;
  1060. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1061. if (NULL == alsa_dev_funcs[i].create)
  1062. continue;
  1063. err = alsa_dev_funcs[i].create(atc, i,
  1064. alsa_dev_funcs[i].public_name);
  1065. if (err) {
  1066. printk(KERN_ERR "ctxfi: "
  1067. "Creating alsa device %d failed!\n", i);
  1068. return err;
  1069. }
  1070. }
  1071. return 0;
  1072. }
  1073. static int __devinit atc_create_hw_devs(struct ct_atc *atc)
  1074. {
  1075. struct hw *hw;
  1076. struct card_conf info = {0};
  1077. int i, err;
  1078. err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
  1079. if (err) {
  1080. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1081. return err;
  1082. }
  1083. atc->hw = hw;
  1084. /* Initialize card hardware. */
  1085. info.rsr = atc->rsr;
  1086. info.msr = atc->msr;
  1087. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1088. err = hw->card_init(hw, &info);
  1089. if (err < 0)
  1090. return err;
  1091. for (i = 0; i < NUM_RSCTYP; i++) {
  1092. if (NULL == rsc_mgr_funcs[i].create)
  1093. continue;
  1094. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1095. if (err) {
  1096. printk(KERN_ERR "ctxfi: "
  1097. "Failed to create rsc_mgr %d!!!\n", i);
  1098. return err;
  1099. }
  1100. }
  1101. return 0;
  1102. }
  1103. static int __devinit atc_get_resources(struct ct_atc *atc)
  1104. {
  1105. struct daio_desc da_desc = {0};
  1106. struct daio_mgr *daio_mgr;
  1107. struct src_desc src_dsc = {0};
  1108. struct src_mgr *src_mgr;
  1109. struct srcimp_desc srcimp_dsc = {0};
  1110. struct srcimp_mgr *srcimp_mgr;
  1111. struct sum_desc sum_dsc = {0};
  1112. struct sum_mgr *sum_mgr;
  1113. int err, i;
  1114. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1115. if (NULL == atc->daios)
  1116. return -ENOMEM;
  1117. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1118. if (NULL == atc->srcs)
  1119. return -ENOMEM;
  1120. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1121. if (NULL == atc->srcimps)
  1122. return -ENOMEM;
  1123. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1124. if (NULL == atc->pcm)
  1125. return -ENOMEM;
  1126. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1127. da_desc.msr = atc->msr;
  1128. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1129. da_desc.type = i;
  1130. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1131. (struct daio **)&atc->daios[i]);
  1132. if (err) {
  1133. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1134. "resource %d!!!\n", i);
  1135. return err;
  1136. }
  1137. atc->n_daio++;
  1138. }
  1139. if (atc->model == CTSB073X)
  1140. da_desc.type = SPDIFI1;
  1141. else
  1142. da_desc.type = SPDIFIO;
  1143. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1144. (struct daio **)&atc->daios[i]);
  1145. if (err) {
  1146. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1147. return err;
  1148. }
  1149. atc->n_daio++;
  1150. src_mgr = atc->rsc_mgrs[SRC];
  1151. src_dsc.multi = 1;
  1152. src_dsc.msr = atc->msr;
  1153. src_dsc.mode = ARCRW;
  1154. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1155. err = src_mgr->get_src(src_mgr, &src_dsc,
  1156. (struct src **)&atc->srcs[i]);
  1157. if (err)
  1158. return err;
  1159. atc->n_src++;
  1160. }
  1161. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1162. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1163. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1164. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1165. (struct srcimp **)&atc->srcimps[i]);
  1166. if (err)
  1167. return err;
  1168. atc->n_srcimp++;
  1169. }
  1170. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1171. for (i = 0; i < (2*1); i++) {
  1172. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1173. (struct srcimp **)&atc->srcimps[2*1+i]);
  1174. if (err)
  1175. return err;
  1176. atc->n_srcimp++;
  1177. }
  1178. sum_mgr = atc->rsc_mgrs[SUM];
  1179. sum_dsc.msr = atc->msr;
  1180. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1181. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1182. (struct sum **)&atc->pcm[i]);
  1183. if (err)
  1184. return err;
  1185. atc->n_pcm++;
  1186. }
  1187. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1188. if (err) {
  1189. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1190. return err;
  1191. }
  1192. return 0;
  1193. }
  1194. static void __devinit
  1195. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1196. struct src **srcs, struct srcimp **srcimps)
  1197. {
  1198. struct rsc *rscs[2] = {NULL};
  1199. struct src *src;
  1200. struct srcimp *srcimp;
  1201. int i = 0;
  1202. rscs[0] = &dai->daio.rscl;
  1203. rscs[1] = &dai->daio.rscr;
  1204. for (i = 0; i < 2; i++) {
  1205. src = srcs[i];
  1206. srcimp = srcimps[i];
  1207. srcimp->ops->map(srcimp, src, rscs[i]);
  1208. src_mgr->src_disable(src_mgr, src);
  1209. }
  1210. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1211. src = srcs[0];
  1212. src->ops->set_pm(src, 1);
  1213. for (i = 0; i < 2; i++) {
  1214. src = srcs[i];
  1215. src->ops->set_state(src, SRC_STATE_RUN);
  1216. src->ops->commit_write(src);
  1217. src_mgr->src_enable_s(src_mgr, src);
  1218. }
  1219. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1220. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1221. dai->ops->set_enb_src(dai, 1);
  1222. dai->ops->set_enb_srt(dai, 1);
  1223. dai->ops->commit_write(dai);
  1224. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1225. }
  1226. static void __devinit atc_connect_resources(struct ct_atc *atc)
  1227. {
  1228. struct dai *dai;
  1229. struct dao *dao;
  1230. struct src *src;
  1231. struct sum *sum;
  1232. struct ct_mixer *mixer;
  1233. struct rsc *rscs[2] = {NULL};
  1234. int i, j;
  1235. mixer = atc->mixer;
  1236. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1237. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1238. dao = container_of(atc->daios[j], struct dao, daio);
  1239. dao->ops->set_left_input(dao, rscs[0]);
  1240. dao->ops->set_right_input(dao, rscs[1]);
  1241. }
  1242. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1243. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1244. (struct src **)&atc->srcs[2],
  1245. (struct srcimp **)&atc->srcimps[2]);
  1246. src = atc->srcs[2];
  1247. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1248. src = atc->srcs[3];
  1249. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1250. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1251. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1252. (struct src **)&atc->srcs[0],
  1253. (struct srcimp **)&atc->srcimps[0]);
  1254. src = atc->srcs[0];
  1255. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1256. src = atc->srcs[1];
  1257. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1258. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1259. sum = atc->pcm[j];
  1260. mixer->set_input_left(mixer, i, &sum->rsc);
  1261. sum = atc->pcm[j+1];
  1262. mixer->set_input_right(mixer, i, &sum->rsc);
  1263. }
  1264. }
  1265. static struct ct_atc atc_preset __devinitdata = {
  1266. .map_audio_buffer = ct_map_audio_buffer,
  1267. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1268. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1269. .pcm_release_resources = atc_pcm_release_resources,
  1270. .pcm_playback_start = atc_pcm_playback_start,
  1271. .pcm_playback_stop = atc_pcm_stop,
  1272. .pcm_playback_position = atc_pcm_playback_position,
  1273. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1274. .pcm_capture_start = atc_pcm_capture_start,
  1275. .pcm_capture_stop = atc_pcm_stop,
  1276. .pcm_capture_position = atc_pcm_capture_position,
  1277. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1278. .get_ptp_phys = atc_get_ptp_phys,
  1279. .select_line_in = atc_select_line_in,
  1280. .select_mic_in = atc_select_mic_in,
  1281. .select_digit_io = atc_select_digit_io,
  1282. .line_front_unmute = atc_line_front_unmute,
  1283. .line_surround_unmute = atc_line_surround_unmute,
  1284. .line_clfe_unmute = atc_line_clfe_unmute,
  1285. .line_rear_unmute = atc_line_rear_unmute,
  1286. .line_in_unmute = atc_line_in_unmute,
  1287. .spdif_out_unmute = atc_spdif_out_unmute,
  1288. .spdif_in_unmute = atc_spdif_in_unmute,
  1289. .spdif_out_get_status = atc_spdif_out_get_status,
  1290. .spdif_out_set_status = atc_spdif_out_set_status,
  1291. .spdif_out_passthru = atc_spdif_out_passthru,
  1292. .have_digit_io_switch = atc_have_digit_io_switch,
  1293. };
  1294. /**
  1295. * ct_atc_create - create and initialize a hardware manager
  1296. * @card: corresponding alsa card object
  1297. * @pci: corresponding kernel pci device object
  1298. * @ratc: return created object address in it
  1299. *
  1300. * Creates and initializes a hardware manager.
  1301. *
  1302. * Creates kmallocated ct_atc structure. Initializes hardware.
  1303. * Returns 0 if suceeds, or negative error code if fails.
  1304. */
  1305. int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1306. unsigned int rsr, unsigned int msr,
  1307. int chip_type, struct ct_atc **ratc)
  1308. {
  1309. struct ct_atc *atc;
  1310. static struct snd_device_ops ops = {
  1311. .dev_free = atc_dev_free,
  1312. };
  1313. int err;
  1314. *ratc = NULL;
  1315. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1316. if (NULL == atc)
  1317. return -ENOMEM;
  1318. /* Set operations */
  1319. *atc = atc_preset;
  1320. atc->card = card;
  1321. atc->pci = pci;
  1322. atc->rsr = rsr;
  1323. atc->msr = msr;
  1324. atc->chip_type = chip_type;
  1325. spin_lock_init(&atc->atc_lock);
  1326. /* Find card model */
  1327. err = atc_identify_card(atc);
  1328. if (err < 0) {
  1329. printk(KERN_ERR "ctatc: Card not recognised\n");
  1330. goto error1;
  1331. }
  1332. /* Set up device virtual memory management object */
  1333. err = ct_vm_create(&atc->vm);
  1334. if (err < 0)
  1335. goto error1;
  1336. /* Create all atc hw devices */
  1337. err = atc_create_hw_devs(atc);
  1338. if (err < 0)
  1339. goto error1;
  1340. /* Get resources */
  1341. err = atc_get_resources(atc);
  1342. if (err < 0)
  1343. goto error1;
  1344. /* Build topology */
  1345. atc_connect_resources(atc);
  1346. atc->timer = ct_timer_new(atc);
  1347. if (!atc->timer)
  1348. goto error1;
  1349. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1350. if (err < 0)
  1351. goto error1;
  1352. snd_card_set_dev(card, &pci->dev);
  1353. *ratc = atc;
  1354. return 0;
  1355. error1:
  1356. ct_atc_destroy(atc);
  1357. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1358. return err;
  1359. }