vmalloc.c 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684
  1. /*
  2. * linux/mm/vmalloc.c
  3. *
  4. * Copyright (C) 1993 Linus Torvalds
  5. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  6. * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
  7. * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
  8. * Numa awareness, Christoph Lameter, SGI, June 2005
  9. */
  10. #include <linux/vmalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/module.h>
  13. #include <linux/highmem.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/debugobjects.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/list.h>
  23. #include <linux/rbtree.h>
  24. #include <linux/radix-tree.h>
  25. #include <linux/rcupdate.h>
  26. #include <linux/pfn.h>
  27. #include <linux/kmemleak.h>
  28. #include <linux/atomic.h>
  29. #include <linux/llist.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/shmparam.h>
  33. struct vfree_deferred {
  34. struct llist_head list;
  35. struct work_struct wq;
  36. };
  37. static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  38. static void __vunmap(const void *, int);
  39. static void free_work(struct work_struct *w)
  40. {
  41. struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  42. struct llist_node *llnode = llist_del_all(&p->list);
  43. while (llnode) {
  44. void *p = llnode;
  45. llnode = llist_next(llnode);
  46. __vunmap(p, 1);
  47. }
  48. }
  49. /*** Page table manipulation functions ***/
  50. static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  51. {
  52. pte_t *pte;
  53. pte = pte_offset_kernel(pmd, addr);
  54. do {
  55. pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  56. WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  57. } while (pte++, addr += PAGE_SIZE, addr != end);
  58. }
  59. static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  60. {
  61. pmd_t *pmd;
  62. unsigned long next;
  63. pmd = pmd_offset(pud, addr);
  64. do {
  65. next = pmd_addr_end(addr, end);
  66. if (pmd_none_or_clear_bad(pmd))
  67. continue;
  68. vunmap_pte_range(pmd, addr, next);
  69. } while (pmd++, addr = next, addr != end);
  70. }
  71. static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
  72. {
  73. pud_t *pud;
  74. unsigned long next;
  75. pud = pud_offset(pgd, addr);
  76. do {
  77. next = pud_addr_end(addr, end);
  78. if (pud_none_or_clear_bad(pud))
  79. continue;
  80. vunmap_pmd_range(pud, addr, next);
  81. } while (pud++, addr = next, addr != end);
  82. }
  83. static void vunmap_page_range(unsigned long addr, unsigned long end)
  84. {
  85. pgd_t *pgd;
  86. unsigned long next;
  87. BUG_ON(addr >= end);
  88. pgd = pgd_offset_k(addr);
  89. do {
  90. next = pgd_addr_end(addr, end);
  91. if (pgd_none_or_clear_bad(pgd))
  92. continue;
  93. vunmap_pud_range(pgd, addr, next);
  94. } while (pgd++, addr = next, addr != end);
  95. }
  96. static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
  97. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  98. {
  99. pte_t *pte;
  100. /*
  101. * nr is a running index into the array which helps higher level
  102. * callers keep track of where we're up to.
  103. */
  104. pte = pte_alloc_kernel(pmd, addr);
  105. if (!pte)
  106. return -ENOMEM;
  107. do {
  108. struct page *page = pages[*nr];
  109. if (WARN_ON(!pte_none(*pte)))
  110. return -EBUSY;
  111. if (WARN_ON(!page))
  112. return -ENOMEM;
  113. set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
  114. (*nr)++;
  115. } while (pte++, addr += PAGE_SIZE, addr != end);
  116. return 0;
  117. }
  118. static int vmap_pmd_range(pud_t *pud, unsigned long addr,
  119. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  120. {
  121. pmd_t *pmd;
  122. unsigned long next;
  123. pmd = pmd_alloc(&init_mm, pud, addr);
  124. if (!pmd)
  125. return -ENOMEM;
  126. do {
  127. next = pmd_addr_end(addr, end);
  128. if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
  129. return -ENOMEM;
  130. } while (pmd++, addr = next, addr != end);
  131. return 0;
  132. }
  133. static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
  134. unsigned long end, pgprot_t prot, struct page **pages, int *nr)
  135. {
  136. pud_t *pud;
  137. unsigned long next;
  138. pud = pud_alloc(&init_mm, pgd, addr);
  139. if (!pud)
  140. return -ENOMEM;
  141. do {
  142. next = pud_addr_end(addr, end);
  143. if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
  144. return -ENOMEM;
  145. } while (pud++, addr = next, addr != end);
  146. return 0;
  147. }
  148. /*
  149. * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
  150. * will have pfns corresponding to the "pages" array.
  151. *
  152. * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
  153. */
  154. static int vmap_page_range_noflush(unsigned long start, unsigned long end,
  155. pgprot_t prot, struct page **pages)
  156. {
  157. pgd_t *pgd;
  158. unsigned long next;
  159. unsigned long addr = start;
  160. int err = 0;
  161. int nr = 0;
  162. BUG_ON(addr >= end);
  163. pgd = pgd_offset_k(addr);
  164. do {
  165. next = pgd_addr_end(addr, end);
  166. err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
  167. if (err)
  168. return err;
  169. } while (pgd++, addr = next, addr != end);
  170. return nr;
  171. }
  172. static int vmap_page_range(unsigned long start, unsigned long end,
  173. pgprot_t prot, struct page **pages)
  174. {
  175. int ret;
  176. ret = vmap_page_range_noflush(start, end, prot, pages);
  177. flush_cache_vmap(start, end);
  178. return ret;
  179. }
  180. int is_vmalloc_or_module_addr(const void *x)
  181. {
  182. /*
  183. * ARM, x86-64 and sparc64 put modules in a special place,
  184. * and fall back on vmalloc() if that fails. Others
  185. * just put it in the vmalloc space.
  186. */
  187. #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
  188. unsigned long addr = (unsigned long)x;
  189. if (addr >= MODULES_VADDR && addr < MODULES_END)
  190. return 1;
  191. #endif
  192. return is_vmalloc_addr(x);
  193. }
  194. /*
  195. * Walk a vmap address to the struct page it maps.
  196. */
  197. struct page *vmalloc_to_page(const void *vmalloc_addr)
  198. {
  199. unsigned long addr = (unsigned long) vmalloc_addr;
  200. struct page *page = NULL;
  201. pgd_t *pgd = pgd_offset_k(addr);
  202. /*
  203. * XXX we might need to change this if we add VIRTUAL_BUG_ON for
  204. * architectures that do not vmalloc module space
  205. */
  206. VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
  207. if (!pgd_none(*pgd)) {
  208. pud_t *pud = pud_offset(pgd, addr);
  209. if (!pud_none(*pud)) {
  210. pmd_t *pmd = pmd_offset(pud, addr);
  211. if (!pmd_none(*pmd)) {
  212. pte_t *ptep, pte;
  213. ptep = pte_offset_map(pmd, addr);
  214. pte = *ptep;
  215. if (pte_present(pte))
  216. page = pte_page(pte);
  217. pte_unmap(ptep);
  218. }
  219. }
  220. }
  221. return page;
  222. }
  223. EXPORT_SYMBOL(vmalloc_to_page);
  224. /*
  225. * Map a vmalloc()-space virtual address to the physical page frame number.
  226. */
  227. unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
  228. {
  229. return page_to_pfn(vmalloc_to_page(vmalloc_addr));
  230. }
  231. EXPORT_SYMBOL(vmalloc_to_pfn);
  232. /*** Global kva allocator ***/
  233. #define VM_LAZY_FREE 0x01
  234. #define VM_LAZY_FREEING 0x02
  235. #define VM_VM_AREA 0x04
  236. struct vmap_area {
  237. unsigned long va_start;
  238. unsigned long va_end;
  239. unsigned long flags;
  240. struct rb_node rb_node; /* address sorted rbtree */
  241. struct list_head list; /* address sorted list */
  242. struct list_head purge_list; /* "lazy purge" list */
  243. struct vm_struct *vm;
  244. struct rcu_head rcu_head;
  245. };
  246. static DEFINE_SPINLOCK(vmap_area_lock);
  247. static LIST_HEAD(vmap_area_list);
  248. static struct rb_root vmap_area_root = RB_ROOT;
  249. /* The vmap cache globals are protected by vmap_area_lock */
  250. static struct rb_node *free_vmap_cache;
  251. static unsigned long cached_hole_size;
  252. static unsigned long cached_vstart;
  253. static unsigned long cached_align;
  254. static unsigned long vmap_area_pcpu_hole;
  255. static struct vmap_area *__find_vmap_area(unsigned long addr)
  256. {
  257. struct rb_node *n = vmap_area_root.rb_node;
  258. while (n) {
  259. struct vmap_area *va;
  260. va = rb_entry(n, struct vmap_area, rb_node);
  261. if (addr < va->va_start)
  262. n = n->rb_left;
  263. else if (addr > va->va_start)
  264. n = n->rb_right;
  265. else
  266. return va;
  267. }
  268. return NULL;
  269. }
  270. static void __insert_vmap_area(struct vmap_area *va)
  271. {
  272. struct rb_node **p = &vmap_area_root.rb_node;
  273. struct rb_node *parent = NULL;
  274. struct rb_node *tmp;
  275. while (*p) {
  276. struct vmap_area *tmp_va;
  277. parent = *p;
  278. tmp_va = rb_entry(parent, struct vmap_area, rb_node);
  279. if (va->va_start < tmp_va->va_end)
  280. p = &(*p)->rb_left;
  281. else if (va->va_end > tmp_va->va_start)
  282. p = &(*p)->rb_right;
  283. else
  284. BUG();
  285. }
  286. rb_link_node(&va->rb_node, parent, p);
  287. rb_insert_color(&va->rb_node, &vmap_area_root);
  288. /* address-sort this list so it is usable like the vmlist */
  289. tmp = rb_prev(&va->rb_node);
  290. if (tmp) {
  291. struct vmap_area *prev;
  292. prev = rb_entry(tmp, struct vmap_area, rb_node);
  293. list_add_rcu(&va->list, &prev->list);
  294. } else
  295. list_add_rcu(&va->list, &vmap_area_list);
  296. }
  297. static void purge_vmap_area_lazy(void);
  298. /*
  299. * Allocate a region of KVA of the specified size and alignment, within the
  300. * vstart and vend.
  301. */
  302. static struct vmap_area *alloc_vmap_area(unsigned long size,
  303. unsigned long align,
  304. unsigned long vstart, unsigned long vend,
  305. int node, gfp_t gfp_mask)
  306. {
  307. struct vmap_area *va;
  308. struct rb_node *n;
  309. unsigned long addr;
  310. int purged = 0;
  311. struct vmap_area *first;
  312. BUG_ON(!size);
  313. BUG_ON(size & ~PAGE_MASK);
  314. BUG_ON(!is_power_of_2(align));
  315. va = kmalloc_node(sizeof(struct vmap_area),
  316. gfp_mask & GFP_RECLAIM_MASK, node);
  317. if (unlikely(!va))
  318. return ERR_PTR(-ENOMEM);
  319. retry:
  320. spin_lock(&vmap_area_lock);
  321. /*
  322. * Invalidate cache if we have more permissive parameters.
  323. * cached_hole_size notes the largest hole noticed _below_
  324. * the vmap_area cached in free_vmap_cache: if size fits
  325. * into that hole, we want to scan from vstart to reuse
  326. * the hole instead of allocating above free_vmap_cache.
  327. * Note that __free_vmap_area may update free_vmap_cache
  328. * without updating cached_hole_size or cached_align.
  329. */
  330. if (!free_vmap_cache ||
  331. size < cached_hole_size ||
  332. vstart < cached_vstart ||
  333. align < cached_align) {
  334. nocache:
  335. cached_hole_size = 0;
  336. free_vmap_cache = NULL;
  337. }
  338. /* record if we encounter less permissive parameters */
  339. cached_vstart = vstart;
  340. cached_align = align;
  341. /* find starting point for our search */
  342. if (free_vmap_cache) {
  343. first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  344. addr = ALIGN(first->va_end, align);
  345. if (addr < vstart)
  346. goto nocache;
  347. if (addr + size - 1 < addr)
  348. goto overflow;
  349. } else {
  350. addr = ALIGN(vstart, align);
  351. if (addr + size - 1 < addr)
  352. goto overflow;
  353. n = vmap_area_root.rb_node;
  354. first = NULL;
  355. while (n) {
  356. struct vmap_area *tmp;
  357. tmp = rb_entry(n, struct vmap_area, rb_node);
  358. if (tmp->va_end >= addr) {
  359. first = tmp;
  360. if (tmp->va_start <= addr)
  361. break;
  362. n = n->rb_left;
  363. } else
  364. n = n->rb_right;
  365. }
  366. if (!first)
  367. goto found;
  368. }
  369. /* from the starting point, walk areas until a suitable hole is found */
  370. while (addr + size > first->va_start && addr + size <= vend) {
  371. if (addr + cached_hole_size < first->va_start)
  372. cached_hole_size = first->va_start - addr;
  373. addr = ALIGN(first->va_end, align);
  374. if (addr + size - 1 < addr)
  375. goto overflow;
  376. if (list_is_last(&first->list, &vmap_area_list))
  377. goto found;
  378. first = list_entry(first->list.next,
  379. struct vmap_area, list);
  380. }
  381. found:
  382. if (addr + size > vend)
  383. goto overflow;
  384. va->va_start = addr;
  385. va->va_end = addr + size;
  386. va->flags = 0;
  387. __insert_vmap_area(va);
  388. free_vmap_cache = &va->rb_node;
  389. spin_unlock(&vmap_area_lock);
  390. BUG_ON(va->va_start & (align-1));
  391. BUG_ON(va->va_start < vstart);
  392. BUG_ON(va->va_end > vend);
  393. return va;
  394. overflow:
  395. spin_unlock(&vmap_area_lock);
  396. if (!purged) {
  397. purge_vmap_area_lazy();
  398. purged = 1;
  399. goto retry;
  400. }
  401. if (printk_ratelimit())
  402. printk(KERN_WARNING
  403. "vmap allocation for size %lu failed: "
  404. "use vmalloc=<size> to increase size.\n", size);
  405. kfree(va);
  406. return ERR_PTR(-EBUSY);
  407. }
  408. static void __free_vmap_area(struct vmap_area *va)
  409. {
  410. BUG_ON(RB_EMPTY_NODE(&va->rb_node));
  411. if (free_vmap_cache) {
  412. if (va->va_end < cached_vstart) {
  413. free_vmap_cache = NULL;
  414. } else {
  415. struct vmap_area *cache;
  416. cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
  417. if (va->va_start <= cache->va_start) {
  418. free_vmap_cache = rb_prev(&va->rb_node);
  419. /*
  420. * We don't try to update cached_hole_size or
  421. * cached_align, but it won't go very wrong.
  422. */
  423. }
  424. }
  425. }
  426. rb_erase(&va->rb_node, &vmap_area_root);
  427. RB_CLEAR_NODE(&va->rb_node);
  428. list_del_rcu(&va->list);
  429. /*
  430. * Track the highest possible candidate for pcpu area
  431. * allocation. Areas outside of vmalloc area can be returned
  432. * here too, consider only end addresses which fall inside
  433. * vmalloc area proper.
  434. */
  435. if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
  436. vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
  437. kfree_rcu(va, rcu_head);
  438. }
  439. /*
  440. * Free a region of KVA allocated by alloc_vmap_area
  441. */
  442. static void free_vmap_area(struct vmap_area *va)
  443. {
  444. spin_lock(&vmap_area_lock);
  445. __free_vmap_area(va);
  446. spin_unlock(&vmap_area_lock);
  447. }
  448. /*
  449. * Clear the pagetable entries of a given vmap_area
  450. */
  451. static void unmap_vmap_area(struct vmap_area *va)
  452. {
  453. vunmap_page_range(va->va_start, va->va_end);
  454. }
  455. static void vmap_debug_free_range(unsigned long start, unsigned long end)
  456. {
  457. /*
  458. * Unmap page tables and force a TLB flush immediately if
  459. * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
  460. * bugs similarly to those in linear kernel virtual address
  461. * space after a page has been freed.
  462. *
  463. * All the lazy freeing logic is still retained, in order to
  464. * minimise intrusiveness of this debugging feature.
  465. *
  466. * This is going to be *slow* (linear kernel virtual address
  467. * debugging doesn't do a broadcast TLB flush so it is a lot
  468. * faster).
  469. */
  470. #ifdef CONFIG_DEBUG_PAGEALLOC
  471. vunmap_page_range(start, end);
  472. flush_tlb_kernel_range(start, end);
  473. #endif
  474. }
  475. /*
  476. * lazy_max_pages is the maximum amount of virtual address space we gather up
  477. * before attempting to purge with a TLB flush.
  478. *
  479. * There is a tradeoff here: a larger number will cover more kernel page tables
  480. * and take slightly longer to purge, but it will linearly reduce the number of
  481. * global TLB flushes that must be performed. It would seem natural to scale
  482. * this number up linearly with the number of CPUs (because vmapping activity
  483. * could also scale linearly with the number of CPUs), however it is likely
  484. * that in practice, workloads might be constrained in other ways that mean
  485. * vmap activity will not scale linearly with CPUs. Also, I want to be
  486. * conservative and not introduce a big latency on huge systems, so go with
  487. * a less aggressive log scale. It will still be an improvement over the old
  488. * code, and it will be simple to change the scale factor if we find that it
  489. * becomes a problem on bigger systems.
  490. */
  491. static unsigned long lazy_max_pages(void)
  492. {
  493. unsigned int log;
  494. log = fls(num_online_cpus());
  495. return log * (32UL * 1024 * 1024 / PAGE_SIZE);
  496. }
  497. static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
  498. /* for per-CPU blocks */
  499. static void purge_fragmented_blocks_allcpus(void);
  500. /*
  501. * called before a call to iounmap() if the caller wants vm_area_struct's
  502. * immediately freed.
  503. */
  504. void set_iounmap_nonlazy(void)
  505. {
  506. atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
  507. }
  508. /*
  509. * Purges all lazily-freed vmap areas.
  510. *
  511. * If sync is 0 then don't purge if there is already a purge in progress.
  512. * If force_flush is 1, then flush kernel TLBs between *start and *end even
  513. * if we found no lazy vmap areas to unmap (callers can use this to optimise
  514. * their own TLB flushing).
  515. * Returns with *start = min(*start, lowest purged address)
  516. * *end = max(*end, highest purged address)
  517. */
  518. static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
  519. int sync, int force_flush)
  520. {
  521. static DEFINE_SPINLOCK(purge_lock);
  522. LIST_HEAD(valist);
  523. struct vmap_area *va;
  524. struct vmap_area *n_va;
  525. int nr = 0;
  526. /*
  527. * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
  528. * should not expect such behaviour. This just simplifies locking for
  529. * the case that isn't actually used at the moment anyway.
  530. */
  531. if (!sync && !force_flush) {
  532. if (!spin_trylock(&purge_lock))
  533. return;
  534. } else
  535. spin_lock(&purge_lock);
  536. if (sync)
  537. purge_fragmented_blocks_allcpus();
  538. rcu_read_lock();
  539. list_for_each_entry_rcu(va, &vmap_area_list, list) {
  540. if (va->flags & VM_LAZY_FREE) {
  541. if (va->va_start < *start)
  542. *start = va->va_start;
  543. if (va->va_end > *end)
  544. *end = va->va_end;
  545. nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
  546. list_add_tail(&va->purge_list, &valist);
  547. va->flags |= VM_LAZY_FREEING;
  548. va->flags &= ~VM_LAZY_FREE;
  549. }
  550. }
  551. rcu_read_unlock();
  552. if (nr)
  553. atomic_sub(nr, &vmap_lazy_nr);
  554. if (nr || force_flush)
  555. flush_tlb_kernel_range(*start, *end);
  556. if (nr) {
  557. spin_lock(&vmap_area_lock);
  558. list_for_each_entry_safe(va, n_va, &valist, purge_list)
  559. __free_vmap_area(va);
  560. spin_unlock(&vmap_area_lock);
  561. }
  562. spin_unlock(&purge_lock);
  563. }
  564. /*
  565. * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
  566. * is already purging.
  567. */
  568. static void try_purge_vmap_area_lazy(void)
  569. {
  570. unsigned long start = ULONG_MAX, end = 0;
  571. __purge_vmap_area_lazy(&start, &end, 0, 0);
  572. }
  573. /*
  574. * Kick off a purge of the outstanding lazy areas.
  575. */
  576. static void purge_vmap_area_lazy(void)
  577. {
  578. unsigned long start = ULONG_MAX, end = 0;
  579. __purge_vmap_area_lazy(&start, &end, 1, 0);
  580. }
  581. /*
  582. * Free a vmap area, caller ensuring that the area has been unmapped
  583. * and flush_cache_vunmap had been called for the correct range
  584. * previously.
  585. */
  586. static void free_vmap_area_noflush(struct vmap_area *va)
  587. {
  588. va->flags |= VM_LAZY_FREE;
  589. atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
  590. if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
  591. try_purge_vmap_area_lazy();
  592. }
  593. /*
  594. * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
  595. * called for the correct range previously.
  596. */
  597. static void free_unmap_vmap_area_noflush(struct vmap_area *va)
  598. {
  599. unmap_vmap_area(va);
  600. free_vmap_area_noflush(va);
  601. }
  602. /*
  603. * Free and unmap a vmap area
  604. */
  605. static void free_unmap_vmap_area(struct vmap_area *va)
  606. {
  607. flush_cache_vunmap(va->va_start, va->va_end);
  608. free_unmap_vmap_area_noflush(va);
  609. }
  610. static struct vmap_area *find_vmap_area(unsigned long addr)
  611. {
  612. struct vmap_area *va;
  613. spin_lock(&vmap_area_lock);
  614. va = __find_vmap_area(addr);
  615. spin_unlock(&vmap_area_lock);
  616. return va;
  617. }
  618. static void free_unmap_vmap_area_addr(unsigned long addr)
  619. {
  620. struct vmap_area *va;
  621. va = find_vmap_area(addr);
  622. BUG_ON(!va);
  623. free_unmap_vmap_area(va);
  624. }
  625. /*** Per cpu kva allocator ***/
  626. /*
  627. * vmap space is limited especially on 32 bit architectures. Ensure there is
  628. * room for at least 16 percpu vmap blocks per CPU.
  629. */
  630. /*
  631. * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
  632. * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
  633. * instead (we just need a rough idea)
  634. */
  635. #if BITS_PER_LONG == 32
  636. #define VMALLOC_SPACE (128UL*1024*1024)
  637. #else
  638. #define VMALLOC_SPACE (128UL*1024*1024*1024)
  639. #endif
  640. #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
  641. #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
  642. #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
  643. #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
  644. #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
  645. #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
  646. #define VMAP_BBMAP_BITS \
  647. VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
  648. VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
  649. VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
  650. #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
  651. static bool vmap_initialized __read_mostly = false;
  652. struct vmap_block_queue {
  653. spinlock_t lock;
  654. struct list_head free;
  655. };
  656. struct vmap_block {
  657. spinlock_t lock;
  658. struct vmap_area *va;
  659. struct vmap_block_queue *vbq;
  660. unsigned long free, dirty;
  661. DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
  662. DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
  663. struct list_head free_list;
  664. struct rcu_head rcu_head;
  665. struct list_head purge;
  666. };
  667. /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
  668. static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
  669. /*
  670. * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
  671. * in the free path. Could get rid of this if we change the API to return a
  672. * "cookie" from alloc, to be passed to free. But no big deal yet.
  673. */
  674. static DEFINE_SPINLOCK(vmap_block_tree_lock);
  675. static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
  676. /*
  677. * We should probably have a fallback mechanism to allocate virtual memory
  678. * out of partially filled vmap blocks. However vmap block sizing should be
  679. * fairly reasonable according to the vmalloc size, so it shouldn't be a
  680. * big problem.
  681. */
  682. static unsigned long addr_to_vb_idx(unsigned long addr)
  683. {
  684. addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
  685. addr /= VMAP_BLOCK_SIZE;
  686. return addr;
  687. }
  688. static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
  689. {
  690. struct vmap_block_queue *vbq;
  691. struct vmap_block *vb;
  692. struct vmap_area *va;
  693. unsigned long vb_idx;
  694. int node, err;
  695. node = numa_node_id();
  696. vb = kmalloc_node(sizeof(struct vmap_block),
  697. gfp_mask & GFP_RECLAIM_MASK, node);
  698. if (unlikely(!vb))
  699. return ERR_PTR(-ENOMEM);
  700. va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
  701. VMALLOC_START, VMALLOC_END,
  702. node, gfp_mask);
  703. if (IS_ERR(va)) {
  704. kfree(vb);
  705. return ERR_CAST(va);
  706. }
  707. err = radix_tree_preload(gfp_mask);
  708. if (unlikely(err)) {
  709. kfree(vb);
  710. free_vmap_area(va);
  711. return ERR_PTR(err);
  712. }
  713. spin_lock_init(&vb->lock);
  714. vb->va = va;
  715. vb->free = VMAP_BBMAP_BITS;
  716. vb->dirty = 0;
  717. bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
  718. bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
  719. INIT_LIST_HEAD(&vb->free_list);
  720. vb_idx = addr_to_vb_idx(va->va_start);
  721. spin_lock(&vmap_block_tree_lock);
  722. err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
  723. spin_unlock(&vmap_block_tree_lock);
  724. BUG_ON(err);
  725. radix_tree_preload_end();
  726. vbq = &get_cpu_var(vmap_block_queue);
  727. vb->vbq = vbq;
  728. spin_lock(&vbq->lock);
  729. list_add_rcu(&vb->free_list, &vbq->free);
  730. spin_unlock(&vbq->lock);
  731. put_cpu_var(vmap_block_queue);
  732. return vb;
  733. }
  734. static void free_vmap_block(struct vmap_block *vb)
  735. {
  736. struct vmap_block *tmp;
  737. unsigned long vb_idx;
  738. vb_idx = addr_to_vb_idx(vb->va->va_start);
  739. spin_lock(&vmap_block_tree_lock);
  740. tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
  741. spin_unlock(&vmap_block_tree_lock);
  742. BUG_ON(tmp != vb);
  743. free_vmap_area_noflush(vb->va);
  744. kfree_rcu(vb, rcu_head);
  745. }
  746. static void purge_fragmented_blocks(int cpu)
  747. {
  748. LIST_HEAD(purge);
  749. struct vmap_block *vb;
  750. struct vmap_block *n_vb;
  751. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  752. rcu_read_lock();
  753. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  754. if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
  755. continue;
  756. spin_lock(&vb->lock);
  757. if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
  758. vb->free = 0; /* prevent further allocs after releasing lock */
  759. vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
  760. bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
  761. bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
  762. spin_lock(&vbq->lock);
  763. list_del_rcu(&vb->free_list);
  764. spin_unlock(&vbq->lock);
  765. spin_unlock(&vb->lock);
  766. list_add_tail(&vb->purge, &purge);
  767. } else
  768. spin_unlock(&vb->lock);
  769. }
  770. rcu_read_unlock();
  771. list_for_each_entry_safe(vb, n_vb, &purge, purge) {
  772. list_del(&vb->purge);
  773. free_vmap_block(vb);
  774. }
  775. }
  776. static void purge_fragmented_blocks_thiscpu(void)
  777. {
  778. purge_fragmented_blocks(smp_processor_id());
  779. }
  780. static void purge_fragmented_blocks_allcpus(void)
  781. {
  782. int cpu;
  783. for_each_possible_cpu(cpu)
  784. purge_fragmented_blocks(cpu);
  785. }
  786. static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
  787. {
  788. struct vmap_block_queue *vbq;
  789. struct vmap_block *vb;
  790. unsigned long addr = 0;
  791. unsigned int order;
  792. int purge = 0;
  793. BUG_ON(size & ~PAGE_MASK);
  794. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  795. if (WARN_ON(size == 0)) {
  796. /*
  797. * Allocating 0 bytes isn't what caller wants since
  798. * get_order(0) returns funny result. Just warn and terminate
  799. * early.
  800. */
  801. return NULL;
  802. }
  803. order = get_order(size);
  804. again:
  805. rcu_read_lock();
  806. vbq = &get_cpu_var(vmap_block_queue);
  807. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  808. int i;
  809. spin_lock(&vb->lock);
  810. if (vb->free < 1UL << order)
  811. goto next;
  812. i = bitmap_find_free_region(vb->alloc_map,
  813. VMAP_BBMAP_BITS, order);
  814. if (i < 0) {
  815. if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
  816. /* fragmented and no outstanding allocations */
  817. BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
  818. purge = 1;
  819. }
  820. goto next;
  821. }
  822. addr = vb->va->va_start + (i << PAGE_SHIFT);
  823. BUG_ON(addr_to_vb_idx(addr) !=
  824. addr_to_vb_idx(vb->va->va_start));
  825. vb->free -= 1UL << order;
  826. if (vb->free == 0) {
  827. spin_lock(&vbq->lock);
  828. list_del_rcu(&vb->free_list);
  829. spin_unlock(&vbq->lock);
  830. }
  831. spin_unlock(&vb->lock);
  832. break;
  833. next:
  834. spin_unlock(&vb->lock);
  835. }
  836. if (purge)
  837. purge_fragmented_blocks_thiscpu();
  838. put_cpu_var(vmap_block_queue);
  839. rcu_read_unlock();
  840. if (!addr) {
  841. vb = new_vmap_block(gfp_mask);
  842. if (IS_ERR(vb))
  843. return vb;
  844. goto again;
  845. }
  846. return (void *)addr;
  847. }
  848. static void vb_free(const void *addr, unsigned long size)
  849. {
  850. unsigned long offset;
  851. unsigned long vb_idx;
  852. unsigned int order;
  853. struct vmap_block *vb;
  854. BUG_ON(size & ~PAGE_MASK);
  855. BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
  856. flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
  857. order = get_order(size);
  858. offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
  859. vb_idx = addr_to_vb_idx((unsigned long)addr);
  860. rcu_read_lock();
  861. vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
  862. rcu_read_unlock();
  863. BUG_ON(!vb);
  864. vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
  865. spin_lock(&vb->lock);
  866. BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
  867. vb->dirty += 1UL << order;
  868. if (vb->dirty == VMAP_BBMAP_BITS) {
  869. BUG_ON(vb->free);
  870. spin_unlock(&vb->lock);
  871. free_vmap_block(vb);
  872. } else
  873. spin_unlock(&vb->lock);
  874. }
  875. /**
  876. * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
  877. *
  878. * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
  879. * to amortize TLB flushing overheads. What this means is that any page you
  880. * have now, may, in a former life, have been mapped into kernel virtual
  881. * address by the vmap layer and so there might be some CPUs with TLB entries
  882. * still referencing that page (additional to the regular 1:1 kernel mapping).
  883. *
  884. * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
  885. * be sure that none of the pages we have control over will have any aliases
  886. * from the vmap layer.
  887. */
  888. void vm_unmap_aliases(void)
  889. {
  890. unsigned long start = ULONG_MAX, end = 0;
  891. int cpu;
  892. int flush = 0;
  893. if (unlikely(!vmap_initialized))
  894. return;
  895. for_each_possible_cpu(cpu) {
  896. struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
  897. struct vmap_block *vb;
  898. rcu_read_lock();
  899. list_for_each_entry_rcu(vb, &vbq->free, free_list) {
  900. int i;
  901. spin_lock(&vb->lock);
  902. i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
  903. while (i < VMAP_BBMAP_BITS) {
  904. unsigned long s, e;
  905. int j;
  906. j = find_next_zero_bit(vb->dirty_map,
  907. VMAP_BBMAP_BITS, i);
  908. s = vb->va->va_start + (i << PAGE_SHIFT);
  909. e = vb->va->va_start + (j << PAGE_SHIFT);
  910. flush = 1;
  911. if (s < start)
  912. start = s;
  913. if (e > end)
  914. end = e;
  915. i = j;
  916. i = find_next_bit(vb->dirty_map,
  917. VMAP_BBMAP_BITS, i);
  918. }
  919. spin_unlock(&vb->lock);
  920. }
  921. rcu_read_unlock();
  922. }
  923. __purge_vmap_area_lazy(&start, &end, 1, flush);
  924. }
  925. EXPORT_SYMBOL_GPL(vm_unmap_aliases);
  926. /**
  927. * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
  928. * @mem: the pointer returned by vm_map_ram
  929. * @count: the count passed to that vm_map_ram call (cannot unmap partial)
  930. */
  931. void vm_unmap_ram(const void *mem, unsigned int count)
  932. {
  933. unsigned long size = count << PAGE_SHIFT;
  934. unsigned long addr = (unsigned long)mem;
  935. BUG_ON(!addr);
  936. BUG_ON(addr < VMALLOC_START);
  937. BUG_ON(addr > VMALLOC_END);
  938. BUG_ON(addr & (PAGE_SIZE-1));
  939. debug_check_no_locks_freed(mem, size);
  940. vmap_debug_free_range(addr, addr+size);
  941. if (likely(count <= VMAP_MAX_ALLOC))
  942. vb_free(mem, size);
  943. else
  944. free_unmap_vmap_area_addr(addr);
  945. }
  946. EXPORT_SYMBOL(vm_unmap_ram);
  947. /**
  948. * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
  949. * @pages: an array of pointers to the pages to be mapped
  950. * @count: number of pages
  951. * @node: prefer to allocate data structures on this node
  952. * @prot: memory protection to use. PAGE_KERNEL for regular RAM
  953. *
  954. * Returns: a pointer to the address that has been mapped, or %NULL on failure
  955. */
  956. void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
  957. {
  958. unsigned long size = count << PAGE_SHIFT;
  959. unsigned long addr;
  960. void *mem;
  961. if (likely(count <= VMAP_MAX_ALLOC)) {
  962. mem = vb_alloc(size, GFP_KERNEL);
  963. if (IS_ERR(mem))
  964. return NULL;
  965. addr = (unsigned long)mem;
  966. } else {
  967. struct vmap_area *va;
  968. va = alloc_vmap_area(size, PAGE_SIZE,
  969. VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
  970. if (IS_ERR(va))
  971. return NULL;
  972. addr = va->va_start;
  973. mem = (void *)addr;
  974. }
  975. if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
  976. vm_unmap_ram(mem, count);
  977. return NULL;
  978. }
  979. return mem;
  980. }
  981. EXPORT_SYMBOL(vm_map_ram);
  982. /**
  983. * vm_area_add_early - add vmap area early during boot
  984. * @vm: vm_struct to add
  985. *
  986. * This function is used to add fixed kernel vm area to vmlist before
  987. * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
  988. * should contain proper values and the other fields should be zero.
  989. *
  990. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  991. */
  992. void __init vm_area_add_early(struct vm_struct *vm)
  993. {
  994. struct vm_struct *tmp, **p;
  995. BUG_ON(vmap_initialized);
  996. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  997. if (tmp->addr >= vm->addr) {
  998. BUG_ON(tmp->addr < vm->addr + vm->size);
  999. break;
  1000. } else
  1001. BUG_ON(tmp->addr + tmp->size > vm->addr);
  1002. }
  1003. vm->next = *p;
  1004. *p = vm;
  1005. }
  1006. /**
  1007. * vm_area_register_early - register vmap area early during boot
  1008. * @vm: vm_struct to register
  1009. * @align: requested alignment
  1010. *
  1011. * This function is used to register kernel vm area before
  1012. * vmalloc_init() is called. @vm->size and @vm->flags should contain
  1013. * proper values on entry and other fields should be zero. On return,
  1014. * vm->addr contains the allocated address.
  1015. *
  1016. * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
  1017. */
  1018. void __init vm_area_register_early(struct vm_struct *vm, size_t align)
  1019. {
  1020. static size_t vm_init_off __initdata;
  1021. unsigned long addr;
  1022. addr = ALIGN(VMALLOC_START + vm_init_off, align);
  1023. vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
  1024. vm->addr = (void *)addr;
  1025. vm_area_add_early(vm);
  1026. }
  1027. void __init vmalloc_init(void)
  1028. {
  1029. struct vmap_area *va;
  1030. struct vm_struct *tmp;
  1031. int i;
  1032. for_each_possible_cpu(i) {
  1033. struct vmap_block_queue *vbq;
  1034. struct vfree_deferred *p;
  1035. vbq = &per_cpu(vmap_block_queue, i);
  1036. spin_lock_init(&vbq->lock);
  1037. INIT_LIST_HEAD(&vbq->free);
  1038. p = &per_cpu(vfree_deferred, i);
  1039. init_llist_head(&p->list);
  1040. INIT_WORK(&p->wq, free_work);
  1041. }
  1042. /* Import existing vmlist entries. */
  1043. for (tmp = vmlist; tmp; tmp = tmp->next) {
  1044. va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
  1045. va->flags = VM_VM_AREA;
  1046. va->va_start = (unsigned long)tmp->addr;
  1047. va->va_end = va->va_start + tmp->size;
  1048. va->vm = tmp;
  1049. __insert_vmap_area(va);
  1050. }
  1051. vmap_area_pcpu_hole = VMALLOC_END;
  1052. vmap_initialized = true;
  1053. }
  1054. /**
  1055. * map_kernel_range_noflush - map kernel VM area with the specified pages
  1056. * @addr: start of the VM area to map
  1057. * @size: size of the VM area to map
  1058. * @prot: page protection flags to use
  1059. * @pages: pages to map
  1060. *
  1061. * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1062. * specify should have been allocated using get_vm_area() and its
  1063. * friends.
  1064. *
  1065. * NOTE:
  1066. * This function does NOT do any cache flushing. The caller is
  1067. * responsible for calling flush_cache_vmap() on to-be-mapped areas
  1068. * before calling this function.
  1069. *
  1070. * RETURNS:
  1071. * The number of pages mapped on success, -errno on failure.
  1072. */
  1073. int map_kernel_range_noflush(unsigned long addr, unsigned long size,
  1074. pgprot_t prot, struct page **pages)
  1075. {
  1076. return vmap_page_range_noflush(addr, addr + size, prot, pages);
  1077. }
  1078. /**
  1079. * unmap_kernel_range_noflush - unmap kernel VM area
  1080. * @addr: start of the VM area to unmap
  1081. * @size: size of the VM area to unmap
  1082. *
  1083. * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
  1084. * specify should have been allocated using get_vm_area() and its
  1085. * friends.
  1086. *
  1087. * NOTE:
  1088. * This function does NOT do any cache flushing. The caller is
  1089. * responsible for calling flush_cache_vunmap() on to-be-mapped areas
  1090. * before calling this function and flush_tlb_kernel_range() after.
  1091. */
  1092. void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
  1093. {
  1094. vunmap_page_range(addr, addr + size);
  1095. }
  1096. EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
  1097. /**
  1098. * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
  1099. * @addr: start of the VM area to unmap
  1100. * @size: size of the VM area to unmap
  1101. *
  1102. * Similar to unmap_kernel_range_noflush() but flushes vcache before
  1103. * the unmapping and tlb after.
  1104. */
  1105. void unmap_kernel_range(unsigned long addr, unsigned long size)
  1106. {
  1107. unsigned long end = addr + size;
  1108. flush_cache_vunmap(addr, end);
  1109. vunmap_page_range(addr, end);
  1110. flush_tlb_kernel_range(addr, end);
  1111. }
  1112. int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
  1113. {
  1114. unsigned long addr = (unsigned long)area->addr;
  1115. unsigned long end = addr + area->size - PAGE_SIZE;
  1116. int err;
  1117. err = vmap_page_range(addr, end, prot, *pages);
  1118. if (err > 0) {
  1119. *pages += err;
  1120. err = 0;
  1121. }
  1122. return err;
  1123. }
  1124. EXPORT_SYMBOL_GPL(map_vm_area);
  1125. /*** Old vmalloc interfaces ***/
  1126. DEFINE_RWLOCK(vmlist_lock);
  1127. struct vm_struct *vmlist;
  1128. static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1129. unsigned long flags, const void *caller)
  1130. {
  1131. vm->flags = flags;
  1132. vm->addr = (void *)va->va_start;
  1133. vm->size = va->va_end - va->va_start;
  1134. vm->caller = caller;
  1135. va->vm = vm;
  1136. va->flags |= VM_VM_AREA;
  1137. }
  1138. static void insert_vmalloc_vmlist(struct vm_struct *vm)
  1139. {
  1140. struct vm_struct *tmp, **p;
  1141. vm->flags &= ~VM_UNLIST;
  1142. write_lock(&vmlist_lock);
  1143. for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
  1144. if (tmp->addr >= vm->addr)
  1145. break;
  1146. }
  1147. vm->next = *p;
  1148. *p = vm;
  1149. write_unlock(&vmlist_lock);
  1150. }
  1151. static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
  1152. unsigned long flags, const void *caller)
  1153. {
  1154. setup_vmalloc_vm(vm, va, flags, caller);
  1155. insert_vmalloc_vmlist(vm);
  1156. }
  1157. static struct vm_struct *__get_vm_area_node(unsigned long size,
  1158. unsigned long align, unsigned long flags, unsigned long start,
  1159. unsigned long end, int node, gfp_t gfp_mask, const void *caller)
  1160. {
  1161. struct vmap_area *va;
  1162. struct vm_struct *area;
  1163. BUG_ON(in_interrupt());
  1164. if (flags & VM_IOREMAP) {
  1165. int bit = fls(size);
  1166. if (bit > IOREMAP_MAX_ORDER)
  1167. bit = IOREMAP_MAX_ORDER;
  1168. else if (bit < PAGE_SHIFT)
  1169. bit = PAGE_SHIFT;
  1170. align = 1ul << bit;
  1171. }
  1172. size = PAGE_ALIGN(size);
  1173. if (unlikely(!size))
  1174. return NULL;
  1175. area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
  1176. if (unlikely(!area))
  1177. return NULL;
  1178. /*
  1179. * We always allocate a guard page.
  1180. */
  1181. size += PAGE_SIZE;
  1182. va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
  1183. if (IS_ERR(va)) {
  1184. kfree(area);
  1185. return NULL;
  1186. }
  1187. /*
  1188. * When this function is called from __vmalloc_node_range,
  1189. * we do not add vm_struct to vmlist here to avoid
  1190. * accessing uninitialized members of vm_struct such as
  1191. * pages and nr_pages fields. They will be set later.
  1192. * To distinguish it from others, we use a VM_UNLIST flag.
  1193. */
  1194. if (flags & VM_UNLIST)
  1195. setup_vmalloc_vm(area, va, flags, caller);
  1196. else
  1197. insert_vmalloc_vm(area, va, flags, caller);
  1198. return area;
  1199. }
  1200. struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
  1201. unsigned long start, unsigned long end)
  1202. {
  1203. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1204. GFP_KERNEL, __builtin_return_address(0));
  1205. }
  1206. EXPORT_SYMBOL_GPL(__get_vm_area);
  1207. struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
  1208. unsigned long start, unsigned long end,
  1209. const void *caller)
  1210. {
  1211. return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
  1212. GFP_KERNEL, caller);
  1213. }
  1214. /**
  1215. * get_vm_area - reserve a contiguous kernel virtual area
  1216. * @size: size of the area
  1217. * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
  1218. *
  1219. * Search an area of @size in the kernel virtual mapping area,
  1220. * and reserved it for out purposes. Returns the area descriptor
  1221. * on success or %NULL on failure.
  1222. */
  1223. struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
  1224. {
  1225. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1226. NUMA_NO_NODE, GFP_KERNEL,
  1227. __builtin_return_address(0));
  1228. }
  1229. struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
  1230. const void *caller)
  1231. {
  1232. return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
  1233. NUMA_NO_NODE, GFP_KERNEL, caller);
  1234. }
  1235. /**
  1236. * find_vm_area - find a continuous kernel virtual area
  1237. * @addr: base address
  1238. *
  1239. * Search for the kernel VM area starting at @addr, and return it.
  1240. * It is up to the caller to do all required locking to keep the returned
  1241. * pointer valid.
  1242. */
  1243. struct vm_struct *find_vm_area(const void *addr)
  1244. {
  1245. struct vmap_area *va;
  1246. va = find_vmap_area((unsigned long)addr);
  1247. if (va && va->flags & VM_VM_AREA)
  1248. return va->vm;
  1249. return NULL;
  1250. }
  1251. /**
  1252. * remove_vm_area - find and remove a continuous kernel virtual area
  1253. * @addr: base address
  1254. *
  1255. * Search for the kernel VM area starting at @addr, and remove it.
  1256. * This function returns the found VM area, but using it is NOT safe
  1257. * on SMP machines, except for its size or flags.
  1258. */
  1259. struct vm_struct *remove_vm_area(const void *addr)
  1260. {
  1261. struct vmap_area *va;
  1262. va = find_vmap_area((unsigned long)addr);
  1263. if (va && va->flags & VM_VM_AREA) {
  1264. struct vm_struct *vm = va->vm;
  1265. if (!(vm->flags & VM_UNLIST)) {
  1266. struct vm_struct *tmp, **p;
  1267. /*
  1268. * remove from list and disallow access to
  1269. * this vm_struct before unmap. (address range
  1270. * confliction is maintained by vmap.)
  1271. */
  1272. write_lock(&vmlist_lock);
  1273. for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
  1274. ;
  1275. *p = tmp->next;
  1276. write_unlock(&vmlist_lock);
  1277. }
  1278. vmap_debug_free_range(va->va_start, va->va_end);
  1279. free_unmap_vmap_area(va);
  1280. vm->size -= PAGE_SIZE;
  1281. return vm;
  1282. }
  1283. return NULL;
  1284. }
  1285. static void __vunmap(const void *addr, int deallocate_pages)
  1286. {
  1287. struct vm_struct *area;
  1288. if (!addr)
  1289. return;
  1290. if ((PAGE_SIZE-1) & (unsigned long)addr) {
  1291. WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
  1292. return;
  1293. }
  1294. area = remove_vm_area(addr);
  1295. if (unlikely(!area)) {
  1296. WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
  1297. addr);
  1298. return;
  1299. }
  1300. debug_check_no_locks_freed(addr, area->size);
  1301. debug_check_no_obj_freed(addr, area->size);
  1302. if (deallocate_pages) {
  1303. int i;
  1304. for (i = 0; i < area->nr_pages; i++) {
  1305. struct page *page = area->pages[i];
  1306. BUG_ON(!page);
  1307. __free_page(page);
  1308. }
  1309. if (area->flags & VM_VPAGES)
  1310. vfree(area->pages);
  1311. else
  1312. kfree(area->pages);
  1313. }
  1314. kfree(area);
  1315. return;
  1316. }
  1317. /**
  1318. * vfree - release memory allocated by vmalloc()
  1319. * @addr: memory base address
  1320. *
  1321. * Free the virtually continuous memory area starting at @addr, as
  1322. * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
  1323. * NULL, no operation is performed.
  1324. *
  1325. * Must not be called in NMI context (strictly speaking, only if we don't
  1326. * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
  1327. * conventions for vfree() arch-depenedent would be a really bad idea)
  1328. *
  1329. */
  1330. void vfree(const void *addr)
  1331. {
  1332. BUG_ON(in_nmi());
  1333. kmemleak_free(addr);
  1334. if (!addr)
  1335. return;
  1336. if (unlikely(in_interrupt())) {
  1337. struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
  1338. llist_add((struct llist_node *)addr, &p->list);
  1339. schedule_work(&p->wq);
  1340. } else
  1341. __vunmap(addr, 1);
  1342. }
  1343. EXPORT_SYMBOL(vfree);
  1344. /**
  1345. * vunmap - release virtual mapping obtained by vmap()
  1346. * @addr: memory base address
  1347. *
  1348. * Free the virtually contiguous memory area starting at @addr,
  1349. * which was created from the page array passed to vmap().
  1350. *
  1351. * Must not be called in interrupt context.
  1352. */
  1353. void vunmap(const void *addr)
  1354. {
  1355. BUG_ON(in_interrupt());
  1356. might_sleep();
  1357. if (addr)
  1358. __vunmap(addr, 0);
  1359. }
  1360. EXPORT_SYMBOL(vunmap);
  1361. /**
  1362. * vmap - map an array of pages into virtually contiguous space
  1363. * @pages: array of page pointers
  1364. * @count: number of pages to map
  1365. * @flags: vm_area->flags
  1366. * @prot: page protection for the mapping
  1367. *
  1368. * Maps @count pages from @pages into contiguous kernel virtual
  1369. * space.
  1370. */
  1371. void *vmap(struct page **pages, unsigned int count,
  1372. unsigned long flags, pgprot_t prot)
  1373. {
  1374. struct vm_struct *area;
  1375. might_sleep();
  1376. if (count > totalram_pages)
  1377. return NULL;
  1378. area = get_vm_area_caller((count << PAGE_SHIFT), flags,
  1379. __builtin_return_address(0));
  1380. if (!area)
  1381. return NULL;
  1382. if (map_vm_area(area, prot, &pages)) {
  1383. vunmap(area->addr);
  1384. return NULL;
  1385. }
  1386. return area->addr;
  1387. }
  1388. EXPORT_SYMBOL(vmap);
  1389. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1390. gfp_t gfp_mask, pgprot_t prot,
  1391. int node, const void *caller);
  1392. static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
  1393. pgprot_t prot, int node, const void *caller)
  1394. {
  1395. const int order = 0;
  1396. struct page **pages;
  1397. unsigned int nr_pages, array_size, i;
  1398. gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
  1399. nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
  1400. array_size = (nr_pages * sizeof(struct page *));
  1401. area->nr_pages = nr_pages;
  1402. /* Please note that the recursion is strictly bounded. */
  1403. if (array_size > PAGE_SIZE) {
  1404. pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
  1405. PAGE_KERNEL, node, caller);
  1406. area->flags |= VM_VPAGES;
  1407. } else {
  1408. pages = kmalloc_node(array_size, nested_gfp, node);
  1409. }
  1410. area->pages = pages;
  1411. area->caller = caller;
  1412. if (!area->pages) {
  1413. remove_vm_area(area->addr);
  1414. kfree(area);
  1415. return NULL;
  1416. }
  1417. for (i = 0; i < area->nr_pages; i++) {
  1418. struct page *page;
  1419. gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
  1420. if (node < 0)
  1421. page = alloc_page(tmp_mask);
  1422. else
  1423. page = alloc_pages_node(node, tmp_mask, order);
  1424. if (unlikely(!page)) {
  1425. /* Successfully allocated i pages, free them in __vunmap() */
  1426. area->nr_pages = i;
  1427. goto fail;
  1428. }
  1429. area->pages[i] = page;
  1430. }
  1431. if (map_vm_area(area, prot, &pages))
  1432. goto fail;
  1433. return area->addr;
  1434. fail:
  1435. warn_alloc_failed(gfp_mask, order,
  1436. "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
  1437. (area->nr_pages*PAGE_SIZE), area->size);
  1438. vfree(area->addr);
  1439. return NULL;
  1440. }
  1441. /**
  1442. * __vmalloc_node_range - allocate virtually contiguous memory
  1443. * @size: allocation size
  1444. * @align: desired alignment
  1445. * @start: vm area range start
  1446. * @end: vm area range end
  1447. * @gfp_mask: flags for the page level allocator
  1448. * @prot: protection mask for the allocated pages
  1449. * @node: node to use for allocation or NUMA_NO_NODE
  1450. * @caller: caller's return address
  1451. *
  1452. * Allocate enough pages to cover @size from the page level
  1453. * allocator with @gfp_mask flags. Map them into contiguous
  1454. * kernel virtual space, using a pagetable protection of @prot.
  1455. */
  1456. void *__vmalloc_node_range(unsigned long size, unsigned long align,
  1457. unsigned long start, unsigned long end, gfp_t gfp_mask,
  1458. pgprot_t prot, int node, const void *caller)
  1459. {
  1460. struct vm_struct *area;
  1461. void *addr;
  1462. unsigned long real_size = size;
  1463. size = PAGE_ALIGN(size);
  1464. if (!size || (size >> PAGE_SHIFT) > totalram_pages)
  1465. goto fail;
  1466. area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
  1467. start, end, node, gfp_mask, caller);
  1468. if (!area)
  1469. goto fail;
  1470. addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
  1471. if (!addr)
  1472. return NULL;
  1473. /*
  1474. * In this function, newly allocated vm_struct is not added
  1475. * to vmlist at __get_vm_area_node(). so, it is added here.
  1476. */
  1477. insert_vmalloc_vmlist(area);
  1478. /*
  1479. * A ref_count = 3 is needed because the vm_struct and vmap_area
  1480. * structures allocated in the __get_vm_area_node() function contain
  1481. * references to the virtual address of the vmalloc'ed block.
  1482. */
  1483. kmemleak_alloc(addr, real_size, 3, gfp_mask);
  1484. return addr;
  1485. fail:
  1486. warn_alloc_failed(gfp_mask, 0,
  1487. "vmalloc: allocation failure: %lu bytes\n",
  1488. real_size);
  1489. return NULL;
  1490. }
  1491. /**
  1492. * __vmalloc_node - allocate virtually contiguous memory
  1493. * @size: allocation size
  1494. * @align: desired alignment
  1495. * @gfp_mask: flags for the page level allocator
  1496. * @prot: protection mask for the allocated pages
  1497. * @node: node to use for allocation or NUMA_NO_NODE
  1498. * @caller: caller's return address
  1499. *
  1500. * Allocate enough pages to cover @size from the page level
  1501. * allocator with @gfp_mask flags. Map them into contiguous
  1502. * kernel virtual space, using a pagetable protection of @prot.
  1503. */
  1504. static void *__vmalloc_node(unsigned long size, unsigned long align,
  1505. gfp_t gfp_mask, pgprot_t prot,
  1506. int node, const void *caller)
  1507. {
  1508. return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
  1509. gfp_mask, prot, node, caller);
  1510. }
  1511. void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
  1512. {
  1513. return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
  1514. __builtin_return_address(0));
  1515. }
  1516. EXPORT_SYMBOL(__vmalloc);
  1517. static inline void *__vmalloc_node_flags(unsigned long size,
  1518. int node, gfp_t flags)
  1519. {
  1520. return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
  1521. node, __builtin_return_address(0));
  1522. }
  1523. /**
  1524. * vmalloc - allocate virtually contiguous memory
  1525. * @size: allocation size
  1526. * Allocate enough pages to cover @size from the page level
  1527. * allocator and map them into contiguous kernel virtual space.
  1528. *
  1529. * For tight control over page level allocator and protection flags
  1530. * use __vmalloc() instead.
  1531. */
  1532. void *vmalloc(unsigned long size)
  1533. {
  1534. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1535. GFP_KERNEL | __GFP_HIGHMEM);
  1536. }
  1537. EXPORT_SYMBOL(vmalloc);
  1538. /**
  1539. * vzalloc - allocate virtually contiguous memory with zero fill
  1540. * @size: allocation size
  1541. * Allocate enough pages to cover @size from the page level
  1542. * allocator and map them into contiguous kernel virtual space.
  1543. * The memory allocated is set to zero.
  1544. *
  1545. * For tight control over page level allocator and protection flags
  1546. * use __vmalloc() instead.
  1547. */
  1548. void *vzalloc(unsigned long size)
  1549. {
  1550. return __vmalloc_node_flags(size, NUMA_NO_NODE,
  1551. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1552. }
  1553. EXPORT_SYMBOL(vzalloc);
  1554. /**
  1555. * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
  1556. * @size: allocation size
  1557. *
  1558. * The resulting memory area is zeroed so it can be mapped to userspace
  1559. * without leaking data.
  1560. */
  1561. void *vmalloc_user(unsigned long size)
  1562. {
  1563. struct vm_struct *area;
  1564. void *ret;
  1565. ret = __vmalloc_node(size, SHMLBA,
  1566. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
  1567. PAGE_KERNEL, NUMA_NO_NODE,
  1568. __builtin_return_address(0));
  1569. if (ret) {
  1570. area = find_vm_area(ret);
  1571. area->flags |= VM_USERMAP;
  1572. }
  1573. return ret;
  1574. }
  1575. EXPORT_SYMBOL(vmalloc_user);
  1576. /**
  1577. * vmalloc_node - allocate memory on a specific node
  1578. * @size: allocation size
  1579. * @node: numa node
  1580. *
  1581. * Allocate enough pages to cover @size from the page level
  1582. * allocator and map them into contiguous kernel virtual space.
  1583. *
  1584. * For tight control over page level allocator and protection flags
  1585. * use __vmalloc() instead.
  1586. */
  1587. void *vmalloc_node(unsigned long size, int node)
  1588. {
  1589. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
  1590. node, __builtin_return_address(0));
  1591. }
  1592. EXPORT_SYMBOL(vmalloc_node);
  1593. /**
  1594. * vzalloc_node - allocate memory on a specific node with zero fill
  1595. * @size: allocation size
  1596. * @node: numa node
  1597. *
  1598. * Allocate enough pages to cover @size from the page level
  1599. * allocator and map them into contiguous kernel virtual space.
  1600. * The memory allocated is set to zero.
  1601. *
  1602. * For tight control over page level allocator and protection flags
  1603. * use __vmalloc_node() instead.
  1604. */
  1605. void *vzalloc_node(unsigned long size, int node)
  1606. {
  1607. return __vmalloc_node_flags(size, node,
  1608. GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
  1609. }
  1610. EXPORT_SYMBOL(vzalloc_node);
  1611. #ifndef PAGE_KERNEL_EXEC
  1612. # define PAGE_KERNEL_EXEC PAGE_KERNEL
  1613. #endif
  1614. /**
  1615. * vmalloc_exec - allocate virtually contiguous, executable memory
  1616. * @size: allocation size
  1617. *
  1618. * Kernel-internal function to allocate enough pages to cover @size
  1619. * the page level allocator and map them into contiguous and
  1620. * executable kernel virtual space.
  1621. *
  1622. * For tight control over page level allocator and protection flags
  1623. * use __vmalloc() instead.
  1624. */
  1625. void *vmalloc_exec(unsigned long size)
  1626. {
  1627. return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
  1628. NUMA_NO_NODE, __builtin_return_address(0));
  1629. }
  1630. #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
  1631. #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
  1632. #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
  1633. #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
  1634. #else
  1635. #define GFP_VMALLOC32 GFP_KERNEL
  1636. #endif
  1637. /**
  1638. * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
  1639. * @size: allocation size
  1640. *
  1641. * Allocate enough 32bit PA addressable pages to cover @size from the
  1642. * page level allocator and map them into contiguous kernel virtual space.
  1643. */
  1644. void *vmalloc_32(unsigned long size)
  1645. {
  1646. return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
  1647. NUMA_NO_NODE, __builtin_return_address(0));
  1648. }
  1649. EXPORT_SYMBOL(vmalloc_32);
  1650. /**
  1651. * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
  1652. * @size: allocation size
  1653. *
  1654. * The resulting memory area is 32bit addressable and zeroed so it can be
  1655. * mapped to userspace without leaking data.
  1656. */
  1657. void *vmalloc_32_user(unsigned long size)
  1658. {
  1659. struct vm_struct *area;
  1660. void *ret;
  1661. ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
  1662. NUMA_NO_NODE, __builtin_return_address(0));
  1663. if (ret) {
  1664. area = find_vm_area(ret);
  1665. area->flags |= VM_USERMAP;
  1666. }
  1667. return ret;
  1668. }
  1669. EXPORT_SYMBOL(vmalloc_32_user);
  1670. /*
  1671. * small helper routine , copy contents to buf from addr.
  1672. * If the page is not present, fill zero.
  1673. */
  1674. static int aligned_vread(char *buf, char *addr, unsigned long count)
  1675. {
  1676. struct page *p;
  1677. int copied = 0;
  1678. while (count) {
  1679. unsigned long offset, length;
  1680. offset = (unsigned long)addr & ~PAGE_MASK;
  1681. length = PAGE_SIZE - offset;
  1682. if (length > count)
  1683. length = count;
  1684. p = vmalloc_to_page(addr);
  1685. /*
  1686. * To do safe access to this _mapped_ area, we need
  1687. * lock. But adding lock here means that we need to add
  1688. * overhead of vmalloc()/vfree() calles for this _debug_
  1689. * interface, rarely used. Instead of that, we'll use
  1690. * kmap() and get small overhead in this access function.
  1691. */
  1692. if (p) {
  1693. /*
  1694. * we can expect USER0 is not used (see vread/vwrite's
  1695. * function description)
  1696. */
  1697. void *map = kmap_atomic(p);
  1698. memcpy(buf, map + offset, length);
  1699. kunmap_atomic(map);
  1700. } else
  1701. memset(buf, 0, length);
  1702. addr += length;
  1703. buf += length;
  1704. copied += length;
  1705. count -= length;
  1706. }
  1707. return copied;
  1708. }
  1709. static int aligned_vwrite(char *buf, char *addr, unsigned long count)
  1710. {
  1711. struct page *p;
  1712. int copied = 0;
  1713. while (count) {
  1714. unsigned long offset, length;
  1715. offset = (unsigned long)addr & ~PAGE_MASK;
  1716. length = PAGE_SIZE - offset;
  1717. if (length > count)
  1718. length = count;
  1719. p = vmalloc_to_page(addr);
  1720. /*
  1721. * To do safe access to this _mapped_ area, we need
  1722. * lock. But adding lock here means that we need to add
  1723. * overhead of vmalloc()/vfree() calles for this _debug_
  1724. * interface, rarely used. Instead of that, we'll use
  1725. * kmap() and get small overhead in this access function.
  1726. */
  1727. if (p) {
  1728. /*
  1729. * we can expect USER0 is not used (see vread/vwrite's
  1730. * function description)
  1731. */
  1732. void *map = kmap_atomic(p);
  1733. memcpy(map + offset, buf, length);
  1734. kunmap_atomic(map);
  1735. }
  1736. addr += length;
  1737. buf += length;
  1738. copied += length;
  1739. count -= length;
  1740. }
  1741. return copied;
  1742. }
  1743. /**
  1744. * vread() - read vmalloc area in a safe way.
  1745. * @buf: buffer for reading data
  1746. * @addr: vm address.
  1747. * @count: number of bytes to be read.
  1748. *
  1749. * Returns # of bytes which addr and buf should be increased.
  1750. * (same number to @count). Returns 0 if [addr...addr+count) doesn't
  1751. * includes any intersect with alive vmalloc area.
  1752. *
  1753. * This function checks that addr is a valid vmalloc'ed area, and
  1754. * copy data from that area to a given buffer. If the given memory range
  1755. * of [addr...addr+count) includes some valid address, data is copied to
  1756. * proper area of @buf. If there are memory holes, they'll be zero-filled.
  1757. * IOREMAP area is treated as memory hole and no copy is done.
  1758. *
  1759. * If [addr...addr+count) doesn't includes any intersects with alive
  1760. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1761. *
  1762. * Note: In usual ops, vread() is never necessary because the caller
  1763. * should know vmalloc() area is valid and can use memcpy().
  1764. * This is for routines which have to access vmalloc area without
  1765. * any informaion, as /dev/kmem.
  1766. *
  1767. */
  1768. long vread(char *buf, char *addr, unsigned long count)
  1769. {
  1770. struct vm_struct *tmp;
  1771. char *vaddr, *buf_start = buf;
  1772. unsigned long buflen = count;
  1773. unsigned long n;
  1774. /* Don't allow overflow */
  1775. if ((unsigned long) addr + count < count)
  1776. count = -(unsigned long) addr;
  1777. read_lock(&vmlist_lock);
  1778. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1779. vaddr = (char *) tmp->addr;
  1780. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1781. continue;
  1782. while (addr < vaddr) {
  1783. if (count == 0)
  1784. goto finished;
  1785. *buf = '\0';
  1786. buf++;
  1787. addr++;
  1788. count--;
  1789. }
  1790. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1791. if (n > count)
  1792. n = count;
  1793. if (!(tmp->flags & VM_IOREMAP))
  1794. aligned_vread(buf, addr, n);
  1795. else /* IOREMAP area is treated as memory hole */
  1796. memset(buf, 0, n);
  1797. buf += n;
  1798. addr += n;
  1799. count -= n;
  1800. }
  1801. finished:
  1802. read_unlock(&vmlist_lock);
  1803. if (buf == buf_start)
  1804. return 0;
  1805. /* zero-fill memory holes */
  1806. if (buf != buf_start + buflen)
  1807. memset(buf, 0, buflen - (buf - buf_start));
  1808. return buflen;
  1809. }
  1810. /**
  1811. * vwrite() - write vmalloc area in a safe way.
  1812. * @buf: buffer for source data
  1813. * @addr: vm address.
  1814. * @count: number of bytes to be read.
  1815. *
  1816. * Returns # of bytes which addr and buf should be incresed.
  1817. * (same number to @count).
  1818. * If [addr...addr+count) doesn't includes any intersect with valid
  1819. * vmalloc area, returns 0.
  1820. *
  1821. * This function checks that addr is a valid vmalloc'ed area, and
  1822. * copy data from a buffer to the given addr. If specified range of
  1823. * [addr...addr+count) includes some valid address, data is copied from
  1824. * proper area of @buf. If there are memory holes, no copy to hole.
  1825. * IOREMAP area is treated as memory hole and no copy is done.
  1826. *
  1827. * If [addr...addr+count) doesn't includes any intersects with alive
  1828. * vm_struct area, returns 0. @buf should be kernel's buffer.
  1829. *
  1830. * Note: In usual ops, vwrite() is never necessary because the caller
  1831. * should know vmalloc() area is valid and can use memcpy().
  1832. * This is for routines which have to access vmalloc area without
  1833. * any informaion, as /dev/kmem.
  1834. */
  1835. long vwrite(char *buf, char *addr, unsigned long count)
  1836. {
  1837. struct vm_struct *tmp;
  1838. char *vaddr;
  1839. unsigned long n, buflen;
  1840. int copied = 0;
  1841. /* Don't allow overflow */
  1842. if ((unsigned long) addr + count < count)
  1843. count = -(unsigned long) addr;
  1844. buflen = count;
  1845. read_lock(&vmlist_lock);
  1846. for (tmp = vmlist; count && tmp; tmp = tmp->next) {
  1847. vaddr = (char *) tmp->addr;
  1848. if (addr >= vaddr + tmp->size - PAGE_SIZE)
  1849. continue;
  1850. while (addr < vaddr) {
  1851. if (count == 0)
  1852. goto finished;
  1853. buf++;
  1854. addr++;
  1855. count--;
  1856. }
  1857. n = vaddr + tmp->size - PAGE_SIZE - addr;
  1858. if (n > count)
  1859. n = count;
  1860. if (!(tmp->flags & VM_IOREMAP)) {
  1861. aligned_vwrite(buf, addr, n);
  1862. copied++;
  1863. }
  1864. buf += n;
  1865. addr += n;
  1866. count -= n;
  1867. }
  1868. finished:
  1869. read_unlock(&vmlist_lock);
  1870. if (!copied)
  1871. return 0;
  1872. return buflen;
  1873. }
  1874. /**
  1875. * remap_vmalloc_range - map vmalloc pages to userspace
  1876. * @vma: vma to cover (map full range of vma)
  1877. * @addr: vmalloc memory
  1878. * @pgoff: number of pages into addr before first page to map
  1879. *
  1880. * Returns: 0 for success, -Exxx on failure
  1881. *
  1882. * This function checks that addr is a valid vmalloc'ed area, and
  1883. * that it is big enough to cover the vma. Will return failure if
  1884. * that criteria isn't met.
  1885. *
  1886. * Similar to remap_pfn_range() (see mm/memory.c)
  1887. */
  1888. int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
  1889. unsigned long pgoff)
  1890. {
  1891. struct vm_struct *area;
  1892. unsigned long uaddr = vma->vm_start;
  1893. unsigned long usize = vma->vm_end - vma->vm_start;
  1894. if ((PAGE_SIZE-1) & (unsigned long)addr)
  1895. return -EINVAL;
  1896. area = find_vm_area(addr);
  1897. if (!area)
  1898. return -EINVAL;
  1899. if (!(area->flags & VM_USERMAP))
  1900. return -EINVAL;
  1901. if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
  1902. return -EINVAL;
  1903. addr += pgoff << PAGE_SHIFT;
  1904. do {
  1905. struct page *page = vmalloc_to_page(addr);
  1906. int ret;
  1907. ret = vm_insert_page(vma, uaddr, page);
  1908. if (ret)
  1909. return ret;
  1910. uaddr += PAGE_SIZE;
  1911. addr += PAGE_SIZE;
  1912. usize -= PAGE_SIZE;
  1913. } while (usize > 0);
  1914. vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
  1915. return 0;
  1916. }
  1917. EXPORT_SYMBOL(remap_vmalloc_range);
  1918. /*
  1919. * Implement a stub for vmalloc_sync_all() if the architecture chose not to
  1920. * have one.
  1921. */
  1922. void __attribute__((weak)) vmalloc_sync_all(void)
  1923. {
  1924. }
  1925. static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
  1926. {
  1927. pte_t ***p = data;
  1928. if (p) {
  1929. *(*p) = pte;
  1930. (*p)++;
  1931. }
  1932. return 0;
  1933. }
  1934. /**
  1935. * alloc_vm_area - allocate a range of kernel address space
  1936. * @size: size of the area
  1937. * @ptes: returns the PTEs for the address space
  1938. *
  1939. * Returns: NULL on failure, vm_struct on success
  1940. *
  1941. * This function reserves a range of kernel address space, and
  1942. * allocates pagetables to map that range. No actual mappings
  1943. * are created.
  1944. *
  1945. * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
  1946. * allocated for the VM area are returned.
  1947. */
  1948. struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
  1949. {
  1950. struct vm_struct *area;
  1951. area = get_vm_area_caller(size, VM_IOREMAP,
  1952. __builtin_return_address(0));
  1953. if (area == NULL)
  1954. return NULL;
  1955. /*
  1956. * This ensures that page tables are constructed for this region
  1957. * of kernel virtual address space and mapped into init_mm.
  1958. */
  1959. if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
  1960. size, f, ptes ? &ptes : NULL)) {
  1961. free_vm_area(area);
  1962. return NULL;
  1963. }
  1964. return area;
  1965. }
  1966. EXPORT_SYMBOL_GPL(alloc_vm_area);
  1967. void free_vm_area(struct vm_struct *area)
  1968. {
  1969. struct vm_struct *ret;
  1970. ret = remove_vm_area(area->addr);
  1971. BUG_ON(ret != area);
  1972. kfree(area);
  1973. }
  1974. EXPORT_SYMBOL_GPL(free_vm_area);
  1975. #ifdef CONFIG_SMP
  1976. static struct vmap_area *node_to_va(struct rb_node *n)
  1977. {
  1978. return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
  1979. }
  1980. /**
  1981. * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
  1982. * @end: target address
  1983. * @pnext: out arg for the next vmap_area
  1984. * @pprev: out arg for the previous vmap_area
  1985. *
  1986. * Returns: %true if either or both of next and prev are found,
  1987. * %false if no vmap_area exists
  1988. *
  1989. * Find vmap_areas end addresses of which enclose @end. ie. if not
  1990. * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
  1991. */
  1992. static bool pvm_find_next_prev(unsigned long end,
  1993. struct vmap_area **pnext,
  1994. struct vmap_area **pprev)
  1995. {
  1996. struct rb_node *n = vmap_area_root.rb_node;
  1997. struct vmap_area *va = NULL;
  1998. while (n) {
  1999. va = rb_entry(n, struct vmap_area, rb_node);
  2000. if (end < va->va_end)
  2001. n = n->rb_left;
  2002. else if (end > va->va_end)
  2003. n = n->rb_right;
  2004. else
  2005. break;
  2006. }
  2007. if (!va)
  2008. return false;
  2009. if (va->va_end > end) {
  2010. *pnext = va;
  2011. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2012. } else {
  2013. *pprev = va;
  2014. *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
  2015. }
  2016. return true;
  2017. }
  2018. /**
  2019. * pvm_determine_end - find the highest aligned address between two vmap_areas
  2020. * @pnext: in/out arg for the next vmap_area
  2021. * @pprev: in/out arg for the previous vmap_area
  2022. * @align: alignment
  2023. *
  2024. * Returns: determined end address
  2025. *
  2026. * Find the highest aligned address between *@pnext and *@pprev below
  2027. * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
  2028. * down address is between the end addresses of the two vmap_areas.
  2029. *
  2030. * Please note that the address returned by this function may fall
  2031. * inside *@pnext vmap_area. The caller is responsible for checking
  2032. * that.
  2033. */
  2034. static unsigned long pvm_determine_end(struct vmap_area **pnext,
  2035. struct vmap_area **pprev,
  2036. unsigned long align)
  2037. {
  2038. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2039. unsigned long addr;
  2040. if (*pnext)
  2041. addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
  2042. else
  2043. addr = vmalloc_end;
  2044. while (*pprev && (*pprev)->va_end > addr) {
  2045. *pnext = *pprev;
  2046. *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
  2047. }
  2048. return addr;
  2049. }
  2050. /**
  2051. * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
  2052. * @offsets: array containing offset of each area
  2053. * @sizes: array containing size of each area
  2054. * @nr_vms: the number of areas to allocate
  2055. * @align: alignment, all entries in @offsets and @sizes must be aligned to this
  2056. *
  2057. * Returns: kmalloc'd vm_struct pointer array pointing to allocated
  2058. * vm_structs on success, %NULL on failure
  2059. *
  2060. * Percpu allocator wants to use congruent vm areas so that it can
  2061. * maintain the offsets among percpu areas. This function allocates
  2062. * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
  2063. * be scattered pretty far, distance between two areas easily going up
  2064. * to gigabytes. To avoid interacting with regular vmallocs, these
  2065. * areas are allocated from top.
  2066. *
  2067. * Despite its complicated look, this allocator is rather simple. It
  2068. * does everything top-down and scans areas from the end looking for
  2069. * matching slot. While scanning, if any of the areas overlaps with
  2070. * existing vmap_area, the base address is pulled down to fit the
  2071. * area. Scanning is repeated till all the areas fit and then all
  2072. * necessary data structres are inserted and the result is returned.
  2073. */
  2074. struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
  2075. const size_t *sizes, int nr_vms,
  2076. size_t align)
  2077. {
  2078. const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
  2079. const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
  2080. struct vmap_area **vas, *prev, *next;
  2081. struct vm_struct **vms;
  2082. int area, area2, last_area, term_area;
  2083. unsigned long base, start, end, last_end;
  2084. bool purged = false;
  2085. /* verify parameters and allocate data structures */
  2086. BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
  2087. for (last_area = 0, area = 0; area < nr_vms; area++) {
  2088. start = offsets[area];
  2089. end = start + sizes[area];
  2090. /* is everything aligned properly? */
  2091. BUG_ON(!IS_ALIGNED(offsets[area], align));
  2092. BUG_ON(!IS_ALIGNED(sizes[area], align));
  2093. /* detect the area with the highest address */
  2094. if (start > offsets[last_area])
  2095. last_area = area;
  2096. for (area2 = 0; area2 < nr_vms; area2++) {
  2097. unsigned long start2 = offsets[area2];
  2098. unsigned long end2 = start2 + sizes[area2];
  2099. if (area2 == area)
  2100. continue;
  2101. BUG_ON(start2 >= start && start2 < end);
  2102. BUG_ON(end2 <= end && end2 > start);
  2103. }
  2104. }
  2105. last_end = offsets[last_area] + sizes[last_area];
  2106. if (vmalloc_end - vmalloc_start < last_end) {
  2107. WARN_ON(true);
  2108. return NULL;
  2109. }
  2110. vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
  2111. vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
  2112. if (!vas || !vms)
  2113. goto err_free2;
  2114. for (area = 0; area < nr_vms; area++) {
  2115. vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
  2116. vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
  2117. if (!vas[area] || !vms[area])
  2118. goto err_free;
  2119. }
  2120. retry:
  2121. spin_lock(&vmap_area_lock);
  2122. /* start scanning - we scan from the top, begin with the last area */
  2123. area = term_area = last_area;
  2124. start = offsets[area];
  2125. end = start + sizes[area];
  2126. if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
  2127. base = vmalloc_end - last_end;
  2128. goto found;
  2129. }
  2130. base = pvm_determine_end(&next, &prev, align) - end;
  2131. while (true) {
  2132. BUG_ON(next && next->va_end <= base + end);
  2133. BUG_ON(prev && prev->va_end > base + end);
  2134. /*
  2135. * base might have underflowed, add last_end before
  2136. * comparing.
  2137. */
  2138. if (base + last_end < vmalloc_start + last_end) {
  2139. spin_unlock(&vmap_area_lock);
  2140. if (!purged) {
  2141. purge_vmap_area_lazy();
  2142. purged = true;
  2143. goto retry;
  2144. }
  2145. goto err_free;
  2146. }
  2147. /*
  2148. * If next overlaps, move base downwards so that it's
  2149. * right below next and then recheck.
  2150. */
  2151. if (next && next->va_start < base + end) {
  2152. base = pvm_determine_end(&next, &prev, align) - end;
  2153. term_area = area;
  2154. continue;
  2155. }
  2156. /*
  2157. * If prev overlaps, shift down next and prev and move
  2158. * base so that it's right below new next and then
  2159. * recheck.
  2160. */
  2161. if (prev && prev->va_end > base + start) {
  2162. next = prev;
  2163. prev = node_to_va(rb_prev(&next->rb_node));
  2164. base = pvm_determine_end(&next, &prev, align) - end;
  2165. term_area = area;
  2166. continue;
  2167. }
  2168. /*
  2169. * This area fits, move on to the previous one. If
  2170. * the previous one is the terminal one, we're done.
  2171. */
  2172. area = (area + nr_vms - 1) % nr_vms;
  2173. if (area == term_area)
  2174. break;
  2175. start = offsets[area];
  2176. end = start + sizes[area];
  2177. pvm_find_next_prev(base + end, &next, &prev);
  2178. }
  2179. found:
  2180. /* we've found a fitting base, insert all va's */
  2181. for (area = 0; area < nr_vms; area++) {
  2182. struct vmap_area *va = vas[area];
  2183. va->va_start = base + offsets[area];
  2184. va->va_end = va->va_start + sizes[area];
  2185. __insert_vmap_area(va);
  2186. }
  2187. vmap_area_pcpu_hole = base + offsets[last_area];
  2188. spin_unlock(&vmap_area_lock);
  2189. /* insert all vm's */
  2190. for (area = 0; area < nr_vms; area++)
  2191. insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
  2192. pcpu_get_vm_areas);
  2193. kfree(vas);
  2194. return vms;
  2195. err_free:
  2196. for (area = 0; area < nr_vms; area++) {
  2197. kfree(vas[area]);
  2198. kfree(vms[area]);
  2199. }
  2200. err_free2:
  2201. kfree(vas);
  2202. kfree(vms);
  2203. return NULL;
  2204. }
  2205. /**
  2206. * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
  2207. * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
  2208. * @nr_vms: the number of allocated areas
  2209. *
  2210. * Free vm_structs and the array allocated by pcpu_get_vm_areas().
  2211. */
  2212. void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
  2213. {
  2214. int i;
  2215. for (i = 0; i < nr_vms; i++)
  2216. free_vm_area(vms[i]);
  2217. kfree(vms);
  2218. }
  2219. #endif /* CONFIG_SMP */
  2220. #ifdef CONFIG_PROC_FS
  2221. static void *s_start(struct seq_file *m, loff_t *pos)
  2222. __acquires(&vmlist_lock)
  2223. {
  2224. loff_t n = *pos;
  2225. struct vm_struct *v;
  2226. read_lock(&vmlist_lock);
  2227. v = vmlist;
  2228. while (n > 0 && v) {
  2229. n--;
  2230. v = v->next;
  2231. }
  2232. if (!n)
  2233. return v;
  2234. return NULL;
  2235. }
  2236. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  2237. {
  2238. struct vm_struct *v = p;
  2239. ++*pos;
  2240. return v->next;
  2241. }
  2242. static void s_stop(struct seq_file *m, void *p)
  2243. __releases(&vmlist_lock)
  2244. {
  2245. read_unlock(&vmlist_lock);
  2246. }
  2247. static void show_numa_info(struct seq_file *m, struct vm_struct *v)
  2248. {
  2249. if (IS_ENABLED(CONFIG_NUMA)) {
  2250. unsigned int nr, *counters = m->private;
  2251. if (!counters)
  2252. return;
  2253. memset(counters, 0, nr_node_ids * sizeof(unsigned int));
  2254. for (nr = 0; nr < v->nr_pages; nr++)
  2255. counters[page_to_nid(v->pages[nr])]++;
  2256. for_each_node_state(nr, N_HIGH_MEMORY)
  2257. if (counters[nr])
  2258. seq_printf(m, " N%u=%u", nr, counters[nr]);
  2259. }
  2260. }
  2261. static int s_show(struct seq_file *m, void *p)
  2262. {
  2263. struct vm_struct *v = p;
  2264. seq_printf(m, "0x%pK-0x%pK %7ld",
  2265. v->addr, v->addr + v->size, v->size);
  2266. if (v->caller)
  2267. seq_printf(m, " %pS", v->caller);
  2268. if (v->nr_pages)
  2269. seq_printf(m, " pages=%d", v->nr_pages);
  2270. if (v->phys_addr)
  2271. seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
  2272. if (v->flags & VM_IOREMAP)
  2273. seq_printf(m, " ioremap");
  2274. if (v->flags & VM_ALLOC)
  2275. seq_printf(m, " vmalloc");
  2276. if (v->flags & VM_MAP)
  2277. seq_printf(m, " vmap");
  2278. if (v->flags & VM_USERMAP)
  2279. seq_printf(m, " user");
  2280. if (v->flags & VM_VPAGES)
  2281. seq_printf(m, " vpages");
  2282. show_numa_info(m, v);
  2283. seq_putc(m, '\n');
  2284. return 0;
  2285. }
  2286. static const struct seq_operations vmalloc_op = {
  2287. .start = s_start,
  2288. .next = s_next,
  2289. .stop = s_stop,
  2290. .show = s_show,
  2291. };
  2292. static int vmalloc_open(struct inode *inode, struct file *file)
  2293. {
  2294. unsigned int *ptr = NULL;
  2295. int ret;
  2296. if (IS_ENABLED(CONFIG_NUMA)) {
  2297. ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
  2298. if (ptr == NULL)
  2299. return -ENOMEM;
  2300. }
  2301. ret = seq_open(file, &vmalloc_op);
  2302. if (!ret) {
  2303. struct seq_file *m = file->private_data;
  2304. m->private = ptr;
  2305. } else
  2306. kfree(ptr);
  2307. return ret;
  2308. }
  2309. static const struct file_operations proc_vmalloc_operations = {
  2310. .open = vmalloc_open,
  2311. .read = seq_read,
  2312. .llseek = seq_lseek,
  2313. .release = seq_release_private,
  2314. };
  2315. static int __init proc_vmalloc_init(void)
  2316. {
  2317. proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
  2318. return 0;
  2319. }
  2320. module_init(proc_vmalloc_init);
  2321. #endif