inode.c 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  16. * (jj@sunsite.ms.mff.cuni.cz)
  17. *
  18. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19. */
  20. #include <linux/module.h>
  21. #include <linux/fs.h>
  22. #include <linux/time.h>
  23. #include <linux/jbd2.h>
  24. #include <linux/highuid.h>
  25. #include <linux/pagemap.h>
  26. #include <linux/quotaops.h>
  27. #include <linux/string.h>
  28. #include <linux/buffer_head.h>
  29. #include <linux/writeback.h>
  30. #include <linux/pagevec.h>
  31. #include <linux/mpage.h>
  32. #include <linux/namei.h>
  33. #include <linux/uio.h>
  34. #include <linux/bio.h>
  35. #include <linux/workqueue.h>
  36. #include <linux/kernel.h>
  37. #include <linux/printk.h>
  38. #include <linux/slab.h>
  39. #include <linux/ratelimit.h>
  40. #include "ext4_jbd2.h"
  41. #include "xattr.h"
  42. #include "acl.h"
  43. #include "ext4_extents.h"
  44. #include "truncate.h"
  45. #include <trace/events/ext4.h>
  46. #define MPAGE_DA_EXTENT_TAIL 0x01
  47. static inline int ext4_begin_ordered_truncate(struct inode *inode,
  48. loff_t new_size)
  49. {
  50. trace_ext4_begin_ordered_truncate(inode, new_size);
  51. /*
  52. * If jinode is zero, then we never opened the file for
  53. * writing, so there's no need to call
  54. * jbd2_journal_begin_ordered_truncate() since there's no
  55. * outstanding writes we need to flush.
  56. */
  57. if (!EXT4_I(inode)->jinode)
  58. return 0;
  59. return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
  60. EXT4_I(inode)->jinode,
  61. new_size);
  62. }
  63. static void ext4_invalidatepage(struct page *page, unsigned long offset);
  64. static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  65. struct buffer_head *bh_result, int create);
  66. static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
  67. static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
  68. static int __ext4_journalled_writepage(struct page *page, unsigned int len);
  69. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
  70. /*
  71. * Test whether an inode is a fast symlink.
  72. */
  73. static int ext4_inode_is_fast_symlink(struct inode *inode)
  74. {
  75. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  76. (inode->i_sb->s_blocksize >> 9) : 0;
  77. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  78. }
  79. /*
  80. * Restart the transaction associated with *handle. This does a commit,
  81. * so before we call here everything must be consistently dirtied against
  82. * this transaction.
  83. */
  84. int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
  85. int nblocks)
  86. {
  87. int ret;
  88. /*
  89. * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
  90. * moment, get_block can be called only for blocks inside i_size since
  91. * page cache has been already dropped and writes are blocked by
  92. * i_mutex. So we can safely drop the i_data_sem here.
  93. */
  94. BUG_ON(EXT4_JOURNAL(inode) == NULL);
  95. jbd_debug(2, "restarting handle %p\n", handle);
  96. up_write(&EXT4_I(inode)->i_data_sem);
  97. ret = ext4_journal_restart(handle, nblocks);
  98. down_write(&EXT4_I(inode)->i_data_sem);
  99. ext4_discard_preallocations(inode);
  100. return ret;
  101. }
  102. /*
  103. * Called at the last iput() if i_nlink is zero.
  104. */
  105. void ext4_evict_inode(struct inode *inode)
  106. {
  107. handle_t *handle;
  108. int err;
  109. trace_ext4_evict_inode(inode);
  110. ext4_ioend_wait(inode);
  111. if (inode->i_nlink) {
  112. /*
  113. * When journalling data dirty buffers are tracked only in the
  114. * journal. So although mm thinks everything is clean and
  115. * ready for reaping the inode might still have some pages to
  116. * write in the running transaction or waiting to be
  117. * checkpointed. Thus calling jbd2_journal_invalidatepage()
  118. * (via truncate_inode_pages()) to discard these buffers can
  119. * cause data loss. Also even if we did not discard these
  120. * buffers, we would have no way to find them after the inode
  121. * is reaped and thus user could see stale data if he tries to
  122. * read them before the transaction is checkpointed. So be
  123. * careful and force everything to disk here... We use
  124. * ei->i_datasync_tid to store the newest transaction
  125. * containing inode's data.
  126. *
  127. * Note that directories do not have this problem because they
  128. * don't use page cache.
  129. */
  130. if (ext4_should_journal_data(inode) &&
  131. (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
  132. journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
  133. tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
  134. jbd2_log_start_commit(journal, commit_tid);
  135. jbd2_log_wait_commit(journal, commit_tid);
  136. filemap_write_and_wait(&inode->i_data);
  137. }
  138. truncate_inode_pages(&inode->i_data, 0);
  139. goto no_delete;
  140. }
  141. if (!is_bad_inode(inode))
  142. dquot_initialize(inode);
  143. if (ext4_should_order_data(inode))
  144. ext4_begin_ordered_truncate(inode, 0);
  145. truncate_inode_pages(&inode->i_data, 0);
  146. if (is_bad_inode(inode))
  147. goto no_delete;
  148. handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
  149. if (IS_ERR(handle)) {
  150. ext4_std_error(inode->i_sb, PTR_ERR(handle));
  151. /*
  152. * If we're going to skip the normal cleanup, we still need to
  153. * make sure that the in-core orphan linked list is properly
  154. * cleaned up.
  155. */
  156. ext4_orphan_del(NULL, inode);
  157. goto no_delete;
  158. }
  159. if (IS_SYNC(inode))
  160. ext4_handle_sync(handle);
  161. inode->i_size = 0;
  162. err = ext4_mark_inode_dirty(handle, inode);
  163. if (err) {
  164. ext4_warning(inode->i_sb,
  165. "couldn't mark inode dirty (err %d)", err);
  166. goto stop_handle;
  167. }
  168. if (inode->i_blocks)
  169. ext4_truncate(inode);
  170. /*
  171. * ext4_ext_truncate() doesn't reserve any slop when it
  172. * restarts journal transactions; therefore there may not be
  173. * enough credits left in the handle to remove the inode from
  174. * the orphan list and set the dtime field.
  175. */
  176. if (!ext4_handle_has_enough_credits(handle, 3)) {
  177. err = ext4_journal_extend(handle, 3);
  178. if (err > 0)
  179. err = ext4_journal_restart(handle, 3);
  180. if (err != 0) {
  181. ext4_warning(inode->i_sb,
  182. "couldn't extend journal (err %d)", err);
  183. stop_handle:
  184. ext4_journal_stop(handle);
  185. ext4_orphan_del(NULL, inode);
  186. goto no_delete;
  187. }
  188. }
  189. /*
  190. * Kill off the orphan record which ext4_truncate created.
  191. * AKPM: I think this can be inside the above `if'.
  192. * Note that ext4_orphan_del() has to be able to cope with the
  193. * deletion of a non-existent orphan - this is because we don't
  194. * know if ext4_truncate() actually created an orphan record.
  195. * (Well, we could do this if we need to, but heck - it works)
  196. */
  197. ext4_orphan_del(handle, inode);
  198. EXT4_I(inode)->i_dtime = get_seconds();
  199. /*
  200. * One subtle ordering requirement: if anything has gone wrong
  201. * (transaction abort, IO errors, whatever), then we can still
  202. * do these next steps (the fs will already have been marked as
  203. * having errors), but we can't free the inode if the mark_dirty
  204. * fails.
  205. */
  206. if (ext4_mark_inode_dirty(handle, inode))
  207. /* If that failed, just do the required in-core inode clear. */
  208. ext4_clear_inode(inode);
  209. else
  210. ext4_free_inode(handle, inode);
  211. ext4_journal_stop(handle);
  212. return;
  213. no_delete:
  214. ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
  215. }
  216. #ifdef CONFIG_QUOTA
  217. qsize_t *ext4_get_reserved_space(struct inode *inode)
  218. {
  219. return &EXT4_I(inode)->i_reserved_quota;
  220. }
  221. #endif
  222. /*
  223. * Calculate the number of metadata blocks need to reserve
  224. * to allocate a block located at @lblock
  225. */
  226. static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
  227. {
  228. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  229. return ext4_ext_calc_metadata_amount(inode, lblock);
  230. return ext4_ind_calc_metadata_amount(inode, lblock);
  231. }
  232. /*
  233. * Called with i_data_sem down, which is important since we can call
  234. * ext4_discard_preallocations() from here.
  235. */
  236. void ext4_da_update_reserve_space(struct inode *inode,
  237. int used, int quota_claim)
  238. {
  239. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  240. struct ext4_inode_info *ei = EXT4_I(inode);
  241. spin_lock(&ei->i_block_reservation_lock);
  242. trace_ext4_da_update_reserve_space(inode, used);
  243. if (unlikely(used > ei->i_reserved_data_blocks)) {
  244. ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
  245. "with only %d reserved data blocks\n",
  246. __func__, inode->i_ino, used,
  247. ei->i_reserved_data_blocks);
  248. WARN_ON(1);
  249. used = ei->i_reserved_data_blocks;
  250. }
  251. /* Update per-inode reservations */
  252. ei->i_reserved_data_blocks -= used;
  253. ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
  254. percpu_counter_sub(&sbi->s_dirtyblocks_counter,
  255. used + ei->i_allocated_meta_blocks);
  256. ei->i_allocated_meta_blocks = 0;
  257. if (ei->i_reserved_data_blocks == 0) {
  258. /*
  259. * We can release all of the reserved metadata blocks
  260. * only when we have written all of the delayed
  261. * allocation blocks.
  262. */
  263. percpu_counter_sub(&sbi->s_dirtyblocks_counter,
  264. ei->i_reserved_meta_blocks);
  265. ei->i_reserved_meta_blocks = 0;
  266. ei->i_da_metadata_calc_len = 0;
  267. }
  268. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  269. /* Update quota subsystem for data blocks */
  270. if (quota_claim)
  271. dquot_claim_block(inode, used);
  272. else {
  273. /*
  274. * We did fallocate with an offset that is already delayed
  275. * allocated. So on delayed allocated writeback we should
  276. * not re-claim the quota for fallocated blocks.
  277. */
  278. dquot_release_reservation_block(inode, used);
  279. }
  280. /*
  281. * If we have done all the pending block allocations and if
  282. * there aren't any writers on the inode, we can discard the
  283. * inode's preallocations.
  284. */
  285. if ((ei->i_reserved_data_blocks == 0) &&
  286. (atomic_read(&inode->i_writecount) == 0))
  287. ext4_discard_preallocations(inode);
  288. }
  289. static int __check_block_validity(struct inode *inode, const char *func,
  290. unsigned int line,
  291. struct ext4_map_blocks *map)
  292. {
  293. if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
  294. map->m_len)) {
  295. ext4_error_inode(inode, func, line, map->m_pblk,
  296. "lblock %lu mapped to illegal pblock "
  297. "(length %d)", (unsigned long) map->m_lblk,
  298. map->m_len);
  299. return -EIO;
  300. }
  301. return 0;
  302. }
  303. #define check_block_validity(inode, map) \
  304. __check_block_validity((inode), __func__, __LINE__, (map))
  305. /*
  306. * Return the number of contiguous dirty pages in a given inode
  307. * starting at page frame idx.
  308. */
  309. static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
  310. unsigned int max_pages)
  311. {
  312. struct address_space *mapping = inode->i_mapping;
  313. pgoff_t index;
  314. struct pagevec pvec;
  315. pgoff_t num = 0;
  316. int i, nr_pages, done = 0;
  317. if (max_pages == 0)
  318. return 0;
  319. pagevec_init(&pvec, 0);
  320. while (!done) {
  321. index = idx;
  322. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  323. PAGECACHE_TAG_DIRTY,
  324. (pgoff_t)PAGEVEC_SIZE);
  325. if (nr_pages == 0)
  326. break;
  327. for (i = 0; i < nr_pages; i++) {
  328. struct page *page = pvec.pages[i];
  329. struct buffer_head *bh, *head;
  330. lock_page(page);
  331. if (unlikely(page->mapping != mapping) ||
  332. !PageDirty(page) ||
  333. PageWriteback(page) ||
  334. page->index != idx) {
  335. done = 1;
  336. unlock_page(page);
  337. break;
  338. }
  339. if (page_has_buffers(page)) {
  340. bh = head = page_buffers(page);
  341. do {
  342. if (!buffer_delay(bh) &&
  343. !buffer_unwritten(bh))
  344. done = 1;
  345. bh = bh->b_this_page;
  346. } while (!done && (bh != head));
  347. }
  348. unlock_page(page);
  349. if (done)
  350. break;
  351. idx++;
  352. num++;
  353. if (num >= max_pages) {
  354. done = 1;
  355. break;
  356. }
  357. }
  358. pagevec_release(&pvec);
  359. }
  360. return num;
  361. }
  362. /*
  363. * The ext4_map_blocks() function tries to look up the requested blocks,
  364. * and returns if the blocks are already mapped.
  365. *
  366. * Otherwise it takes the write lock of the i_data_sem and allocate blocks
  367. * and store the allocated blocks in the result buffer head and mark it
  368. * mapped.
  369. *
  370. * If file type is extents based, it will call ext4_ext_map_blocks(),
  371. * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
  372. * based files
  373. *
  374. * On success, it returns the number of blocks being mapped or allocate.
  375. * if create==0 and the blocks are pre-allocated and uninitialized block,
  376. * the result buffer head is unmapped. If the create ==1, it will make sure
  377. * the buffer head is mapped.
  378. *
  379. * It returns 0 if plain look up failed (blocks have not been allocated), in
  380. * that casem, buffer head is unmapped
  381. *
  382. * It returns the error in case of allocation failure.
  383. */
  384. int ext4_map_blocks(handle_t *handle, struct inode *inode,
  385. struct ext4_map_blocks *map, int flags)
  386. {
  387. int retval;
  388. map->m_flags = 0;
  389. ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
  390. "logical block %lu\n", inode->i_ino, flags, map->m_len,
  391. (unsigned long) map->m_lblk);
  392. /*
  393. * Try to see if we can get the block without requesting a new
  394. * file system block.
  395. */
  396. down_read((&EXT4_I(inode)->i_data_sem));
  397. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  398. retval = ext4_ext_map_blocks(handle, inode, map, 0);
  399. } else {
  400. retval = ext4_ind_map_blocks(handle, inode, map, 0);
  401. }
  402. up_read((&EXT4_I(inode)->i_data_sem));
  403. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  404. int ret = check_block_validity(inode, map);
  405. if (ret != 0)
  406. return ret;
  407. }
  408. /* If it is only a block(s) look up */
  409. if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
  410. return retval;
  411. /*
  412. * Returns if the blocks have already allocated
  413. *
  414. * Note that if blocks have been preallocated
  415. * ext4_ext_get_block() returns th create = 0
  416. * with buffer head unmapped.
  417. */
  418. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
  419. return retval;
  420. /*
  421. * When we call get_blocks without the create flag, the
  422. * BH_Unwritten flag could have gotten set if the blocks
  423. * requested were part of a uninitialized extent. We need to
  424. * clear this flag now that we are committed to convert all or
  425. * part of the uninitialized extent to be an initialized
  426. * extent. This is because we need to avoid the combination
  427. * of BH_Unwritten and BH_Mapped flags being simultaneously
  428. * set on the buffer_head.
  429. */
  430. map->m_flags &= ~EXT4_MAP_UNWRITTEN;
  431. /*
  432. * New blocks allocate and/or writing to uninitialized extent
  433. * will possibly result in updating i_data, so we take
  434. * the write lock of i_data_sem, and call get_blocks()
  435. * with create == 1 flag.
  436. */
  437. down_write((&EXT4_I(inode)->i_data_sem));
  438. /*
  439. * if the caller is from delayed allocation writeout path
  440. * we have already reserved fs blocks for allocation
  441. * let the underlying get_block() function know to
  442. * avoid double accounting
  443. */
  444. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  445. ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
  446. /*
  447. * We need to check for EXT4 here because migrate
  448. * could have changed the inode type in between
  449. */
  450. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  451. retval = ext4_ext_map_blocks(handle, inode, map, flags);
  452. } else {
  453. retval = ext4_ind_map_blocks(handle, inode, map, flags);
  454. if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
  455. /*
  456. * We allocated new blocks which will result in
  457. * i_data's format changing. Force the migrate
  458. * to fail by clearing migrate flags
  459. */
  460. ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
  461. }
  462. /*
  463. * Update reserved blocks/metadata blocks after successful
  464. * block allocation which had been deferred till now. We don't
  465. * support fallocate for non extent files. So we can update
  466. * reserve space here.
  467. */
  468. if ((retval > 0) &&
  469. (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
  470. ext4_da_update_reserve_space(inode, retval, 1);
  471. }
  472. if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
  473. ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
  474. up_write((&EXT4_I(inode)->i_data_sem));
  475. if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
  476. int ret = check_block_validity(inode, map);
  477. if (ret != 0)
  478. return ret;
  479. }
  480. return retval;
  481. }
  482. /* Maximum number of blocks we map for direct IO at once. */
  483. #define DIO_MAX_BLOCKS 4096
  484. static int _ext4_get_block(struct inode *inode, sector_t iblock,
  485. struct buffer_head *bh, int flags)
  486. {
  487. handle_t *handle = ext4_journal_current_handle();
  488. struct ext4_map_blocks map;
  489. int ret = 0, started = 0;
  490. int dio_credits;
  491. map.m_lblk = iblock;
  492. map.m_len = bh->b_size >> inode->i_blkbits;
  493. if (flags && !handle) {
  494. /* Direct IO write... */
  495. if (map.m_len > DIO_MAX_BLOCKS)
  496. map.m_len = DIO_MAX_BLOCKS;
  497. dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
  498. handle = ext4_journal_start(inode, dio_credits);
  499. if (IS_ERR(handle)) {
  500. ret = PTR_ERR(handle);
  501. return ret;
  502. }
  503. started = 1;
  504. }
  505. ret = ext4_map_blocks(handle, inode, &map, flags);
  506. if (ret > 0) {
  507. map_bh(bh, inode->i_sb, map.m_pblk);
  508. bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
  509. bh->b_size = inode->i_sb->s_blocksize * map.m_len;
  510. ret = 0;
  511. }
  512. if (started)
  513. ext4_journal_stop(handle);
  514. return ret;
  515. }
  516. int ext4_get_block(struct inode *inode, sector_t iblock,
  517. struct buffer_head *bh, int create)
  518. {
  519. return _ext4_get_block(inode, iblock, bh,
  520. create ? EXT4_GET_BLOCKS_CREATE : 0);
  521. }
  522. /*
  523. * `handle' can be NULL if create is zero
  524. */
  525. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  526. ext4_lblk_t block, int create, int *errp)
  527. {
  528. struct ext4_map_blocks map;
  529. struct buffer_head *bh;
  530. int fatal = 0, err;
  531. J_ASSERT(handle != NULL || create == 0);
  532. map.m_lblk = block;
  533. map.m_len = 1;
  534. err = ext4_map_blocks(handle, inode, &map,
  535. create ? EXT4_GET_BLOCKS_CREATE : 0);
  536. if (err < 0)
  537. *errp = err;
  538. if (err <= 0)
  539. return NULL;
  540. *errp = 0;
  541. bh = sb_getblk(inode->i_sb, map.m_pblk);
  542. if (!bh) {
  543. *errp = -EIO;
  544. return NULL;
  545. }
  546. if (map.m_flags & EXT4_MAP_NEW) {
  547. J_ASSERT(create != 0);
  548. J_ASSERT(handle != NULL);
  549. /*
  550. * Now that we do not always journal data, we should
  551. * keep in mind whether this should always journal the
  552. * new buffer as metadata. For now, regular file
  553. * writes use ext4_get_block instead, so it's not a
  554. * problem.
  555. */
  556. lock_buffer(bh);
  557. BUFFER_TRACE(bh, "call get_create_access");
  558. fatal = ext4_journal_get_create_access(handle, bh);
  559. if (!fatal && !buffer_uptodate(bh)) {
  560. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  561. set_buffer_uptodate(bh);
  562. }
  563. unlock_buffer(bh);
  564. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  565. err = ext4_handle_dirty_metadata(handle, inode, bh);
  566. if (!fatal)
  567. fatal = err;
  568. } else {
  569. BUFFER_TRACE(bh, "not a new buffer");
  570. }
  571. if (fatal) {
  572. *errp = fatal;
  573. brelse(bh);
  574. bh = NULL;
  575. }
  576. return bh;
  577. }
  578. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  579. ext4_lblk_t block, int create, int *err)
  580. {
  581. struct buffer_head *bh;
  582. bh = ext4_getblk(handle, inode, block, create, err);
  583. if (!bh)
  584. return bh;
  585. if (buffer_uptodate(bh))
  586. return bh;
  587. ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
  588. wait_on_buffer(bh);
  589. if (buffer_uptodate(bh))
  590. return bh;
  591. put_bh(bh);
  592. *err = -EIO;
  593. return NULL;
  594. }
  595. static int walk_page_buffers(handle_t *handle,
  596. struct buffer_head *head,
  597. unsigned from,
  598. unsigned to,
  599. int *partial,
  600. int (*fn)(handle_t *handle,
  601. struct buffer_head *bh))
  602. {
  603. struct buffer_head *bh;
  604. unsigned block_start, block_end;
  605. unsigned blocksize = head->b_size;
  606. int err, ret = 0;
  607. struct buffer_head *next;
  608. for (bh = head, block_start = 0;
  609. ret == 0 && (bh != head || !block_start);
  610. block_start = block_end, bh = next) {
  611. next = bh->b_this_page;
  612. block_end = block_start + blocksize;
  613. if (block_end <= from || block_start >= to) {
  614. if (partial && !buffer_uptodate(bh))
  615. *partial = 1;
  616. continue;
  617. }
  618. err = (*fn)(handle, bh);
  619. if (!ret)
  620. ret = err;
  621. }
  622. return ret;
  623. }
  624. /*
  625. * To preserve ordering, it is essential that the hole instantiation and
  626. * the data write be encapsulated in a single transaction. We cannot
  627. * close off a transaction and start a new one between the ext4_get_block()
  628. * and the commit_write(). So doing the jbd2_journal_start at the start of
  629. * prepare_write() is the right place.
  630. *
  631. * Also, this function can nest inside ext4_writepage() ->
  632. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  633. * has generated enough buffer credits to do the whole page. So we won't
  634. * block on the journal in that case, which is good, because the caller may
  635. * be PF_MEMALLOC.
  636. *
  637. * By accident, ext4 can be reentered when a transaction is open via
  638. * quota file writes. If we were to commit the transaction while thus
  639. * reentered, there can be a deadlock - we would be holding a quota
  640. * lock, and the commit would never complete if another thread had a
  641. * transaction open and was blocking on the quota lock - a ranking
  642. * violation.
  643. *
  644. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  645. * will _not_ run commit under these circumstances because handle->h_ref
  646. * is elevated. We'll still have enough credits for the tiny quotafile
  647. * write.
  648. */
  649. static int do_journal_get_write_access(handle_t *handle,
  650. struct buffer_head *bh)
  651. {
  652. int dirty = buffer_dirty(bh);
  653. int ret;
  654. if (!buffer_mapped(bh) || buffer_freed(bh))
  655. return 0;
  656. /*
  657. * __block_write_begin() could have dirtied some buffers. Clean
  658. * the dirty bit as jbd2_journal_get_write_access() could complain
  659. * otherwise about fs integrity issues. Setting of the dirty bit
  660. * by __block_write_begin() isn't a real problem here as we clear
  661. * the bit before releasing a page lock and thus writeback cannot
  662. * ever write the buffer.
  663. */
  664. if (dirty)
  665. clear_buffer_dirty(bh);
  666. ret = ext4_journal_get_write_access(handle, bh);
  667. if (!ret && dirty)
  668. ret = ext4_handle_dirty_metadata(handle, NULL, bh);
  669. return ret;
  670. }
  671. static int ext4_get_block_write(struct inode *inode, sector_t iblock,
  672. struct buffer_head *bh_result, int create);
  673. static int ext4_write_begin(struct file *file, struct address_space *mapping,
  674. loff_t pos, unsigned len, unsigned flags,
  675. struct page **pagep, void **fsdata)
  676. {
  677. struct inode *inode = mapping->host;
  678. int ret, needed_blocks;
  679. handle_t *handle;
  680. int retries = 0;
  681. struct page *page;
  682. pgoff_t index;
  683. unsigned from, to;
  684. trace_ext4_write_begin(inode, pos, len, flags);
  685. /*
  686. * Reserve one block more for addition to orphan list in case
  687. * we allocate blocks but write fails for some reason
  688. */
  689. needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
  690. index = pos >> PAGE_CACHE_SHIFT;
  691. from = pos & (PAGE_CACHE_SIZE - 1);
  692. to = from + len;
  693. retry:
  694. handle = ext4_journal_start(inode, needed_blocks);
  695. if (IS_ERR(handle)) {
  696. ret = PTR_ERR(handle);
  697. goto out;
  698. }
  699. /* We cannot recurse into the filesystem as the transaction is already
  700. * started */
  701. flags |= AOP_FLAG_NOFS;
  702. page = grab_cache_page_write_begin(mapping, index, flags);
  703. if (!page) {
  704. ext4_journal_stop(handle);
  705. ret = -ENOMEM;
  706. goto out;
  707. }
  708. *pagep = page;
  709. if (ext4_should_dioread_nolock(inode))
  710. ret = __block_write_begin(page, pos, len, ext4_get_block_write);
  711. else
  712. ret = __block_write_begin(page, pos, len, ext4_get_block);
  713. if (!ret && ext4_should_journal_data(inode)) {
  714. ret = walk_page_buffers(handle, page_buffers(page),
  715. from, to, NULL, do_journal_get_write_access);
  716. }
  717. if (ret) {
  718. unlock_page(page);
  719. page_cache_release(page);
  720. /*
  721. * __block_write_begin may have instantiated a few blocks
  722. * outside i_size. Trim these off again. Don't need
  723. * i_size_read because we hold i_mutex.
  724. *
  725. * Add inode to orphan list in case we crash before
  726. * truncate finishes
  727. */
  728. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  729. ext4_orphan_add(handle, inode);
  730. ext4_journal_stop(handle);
  731. if (pos + len > inode->i_size) {
  732. ext4_truncate_failed_write(inode);
  733. /*
  734. * If truncate failed early the inode might
  735. * still be on the orphan list; we need to
  736. * make sure the inode is removed from the
  737. * orphan list in that case.
  738. */
  739. if (inode->i_nlink)
  740. ext4_orphan_del(NULL, inode);
  741. }
  742. }
  743. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  744. goto retry;
  745. out:
  746. return ret;
  747. }
  748. /* For write_end() in data=journal mode */
  749. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  750. {
  751. if (!buffer_mapped(bh) || buffer_freed(bh))
  752. return 0;
  753. set_buffer_uptodate(bh);
  754. return ext4_handle_dirty_metadata(handle, NULL, bh);
  755. }
  756. static int ext4_generic_write_end(struct file *file,
  757. struct address_space *mapping,
  758. loff_t pos, unsigned len, unsigned copied,
  759. struct page *page, void *fsdata)
  760. {
  761. int i_size_changed = 0;
  762. struct inode *inode = mapping->host;
  763. handle_t *handle = ext4_journal_current_handle();
  764. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  765. /*
  766. * No need to use i_size_read() here, the i_size
  767. * cannot change under us because we hold i_mutex.
  768. *
  769. * But it's important to update i_size while still holding page lock:
  770. * page writeout could otherwise come in and zero beyond i_size.
  771. */
  772. if (pos + copied > inode->i_size) {
  773. i_size_write(inode, pos + copied);
  774. i_size_changed = 1;
  775. }
  776. if (pos + copied > EXT4_I(inode)->i_disksize) {
  777. /* We need to mark inode dirty even if
  778. * new_i_size is less that inode->i_size
  779. * bu greater than i_disksize.(hint delalloc)
  780. */
  781. ext4_update_i_disksize(inode, (pos + copied));
  782. i_size_changed = 1;
  783. }
  784. unlock_page(page);
  785. page_cache_release(page);
  786. /*
  787. * Don't mark the inode dirty under page lock. First, it unnecessarily
  788. * makes the holding time of page lock longer. Second, it forces lock
  789. * ordering of page lock and transaction start for journaling
  790. * filesystems.
  791. */
  792. if (i_size_changed)
  793. ext4_mark_inode_dirty(handle, inode);
  794. return copied;
  795. }
  796. /*
  797. * We need to pick up the new inode size which generic_commit_write gave us
  798. * `file' can be NULL - eg, when called from page_symlink().
  799. *
  800. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  801. * buffers are managed internally.
  802. */
  803. static int ext4_ordered_write_end(struct file *file,
  804. struct address_space *mapping,
  805. loff_t pos, unsigned len, unsigned copied,
  806. struct page *page, void *fsdata)
  807. {
  808. handle_t *handle = ext4_journal_current_handle();
  809. struct inode *inode = mapping->host;
  810. int ret = 0, ret2;
  811. trace_ext4_ordered_write_end(inode, pos, len, copied);
  812. ret = ext4_jbd2_file_inode(handle, inode);
  813. if (ret == 0) {
  814. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  815. page, fsdata);
  816. copied = ret2;
  817. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  818. /* if we have allocated more blocks and copied
  819. * less. We will have blocks allocated outside
  820. * inode->i_size. So truncate them
  821. */
  822. ext4_orphan_add(handle, inode);
  823. if (ret2 < 0)
  824. ret = ret2;
  825. }
  826. ret2 = ext4_journal_stop(handle);
  827. if (!ret)
  828. ret = ret2;
  829. if (pos + len > inode->i_size) {
  830. ext4_truncate_failed_write(inode);
  831. /*
  832. * If truncate failed early the inode might still be
  833. * on the orphan list; we need to make sure the inode
  834. * is removed from the orphan list in that case.
  835. */
  836. if (inode->i_nlink)
  837. ext4_orphan_del(NULL, inode);
  838. }
  839. return ret ? ret : copied;
  840. }
  841. static int ext4_writeback_write_end(struct file *file,
  842. struct address_space *mapping,
  843. loff_t pos, unsigned len, unsigned copied,
  844. struct page *page, void *fsdata)
  845. {
  846. handle_t *handle = ext4_journal_current_handle();
  847. struct inode *inode = mapping->host;
  848. int ret = 0, ret2;
  849. trace_ext4_writeback_write_end(inode, pos, len, copied);
  850. ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
  851. page, fsdata);
  852. copied = ret2;
  853. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  854. /* if we have allocated more blocks and copied
  855. * less. We will have blocks allocated outside
  856. * inode->i_size. So truncate them
  857. */
  858. ext4_orphan_add(handle, inode);
  859. if (ret2 < 0)
  860. ret = ret2;
  861. ret2 = ext4_journal_stop(handle);
  862. if (!ret)
  863. ret = ret2;
  864. if (pos + len > inode->i_size) {
  865. ext4_truncate_failed_write(inode);
  866. /*
  867. * If truncate failed early the inode might still be
  868. * on the orphan list; we need to make sure the inode
  869. * is removed from the orphan list in that case.
  870. */
  871. if (inode->i_nlink)
  872. ext4_orphan_del(NULL, inode);
  873. }
  874. return ret ? ret : copied;
  875. }
  876. static int ext4_journalled_write_end(struct file *file,
  877. struct address_space *mapping,
  878. loff_t pos, unsigned len, unsigned copied,
  879. struct page *page, void *fsdata)
  880. {
  881. handle_t *handle = ext4_journal_current_handle();
  882. struct inode *inode = mapping->host;
  883. int ret = 0, ret2;
  884. int partial = 0;
  885. unsigned from, to;
  886. loff_t new_i_size;
  887. trace_ext4_journalled_write_end(inode, pos, len, copied);
  888. from = pos & (PAGE_CACHE_SIZE - 1);
  889. to = from + len;
  890. BUG_ON(!ext4_handle_valid(handle));
  891. if (copied < len) {
  892. if (!PageUptodate(page))
  893. copied = 0;
  894. page_zero_new_buffers(page, from+copied, to);
  895. }
  896. ret = walk_page_buffers(handle, page_buffers(page), from,
  897. to, &partial, write_end_fn);
  898. if (!partial)
  899. SetPageUptodate(page);
  900. new_i_size = pos + copied;
  901. if (new_i_size > inode->i_size)
  902. i_size_write(inode, pos+copied);
  903. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  904. EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
  905. if (new_i_size > EXT4_I(inode)->i_disksize) {
  906. ext4_update_i_disksize(inode, new_i_size);
  907. ret2 = ext4_mark_inode_dirty(handle, inode);
  908. if (!ret)
  909. ret = ret2;
  910. }
  911. unlock_page(page);
  912. page_cache_release(page);
  913. if (pos + len > inode->i_size && ext4_can_truncate(inode))
  914. /* if we have allocated more blocks and copied
  915. * less. We will have blocks allocated outside
  916. * inode->i_size. So truncate them
  917. */
  918. ext4_orphan_add(handle, inode);
  919. ret2 = ext4_journal_stop(handle);
  920. if (!ret)
  921. ret = ret2;
  922. if (pos + len > inode->i_size) {
  923. ext4_truncate_failed_write(inode);
  924. /*
  925. * If truncate failed early the inode might still be
  926. * on the orphan list; we need to make sure the inode
  927. * is removed from the orphan list in that case.
  928. */
  929. if (inode->i_nlink)
  930. ext4_orphan_del(NULL, inode);
  931. }
  932. return ret ? ret : copied;
  933. }
  934. /*
  935. * Reserve a single block located at lblock
  936. */
  937. static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
  938. {
  939. int retries = 0;
  940. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  941. struct ext4_inode_info *ei = EXT4_I(inode);
  942. unsigned long md_needed;
  943. int ret;
  944. /*
  945. * recalculate the amount of metadata blocks to reserve
  946. * in order to allocate nrblocks
  947. * worse case is one extent per block
  948. */
  949. repeat:
  950. spin_lock(&ei->i_block_reservation_lock);
  951. md_needed = ext4_calc_metadata_amount(inode, lblock);
  952. trace_ext4_da_reserve_space(inode, md_needed);
  953. spin_unlock(&ei->i_block_reservation_lock);
  954. /*
  955. * We will charge metadata quota at writeout time; this saves
  956. * us from metadata over-estimation, though we may go over by
  957. * a small amount in the end. Here we just reserve for data.
  958. */
  959. ret = dquot_reserve_block(inode, 1);
  960. if (ret)
  961. return ret;
  962. /*
  963. * We do still charge estimated metadata to the sb though;
  964. * we cannot afford to run out of free blocks.
  965. */
  966. if (ext4_claim_free_blocks(sbi, md_needed + 1, 0)) {
  967. dquot_release_reservation_block(inode, 1);
  968. if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
  969. yield();
  970. goto repeat;
  971. }
  972. return -ENOSPC;
  973. }
  974. spin_lock(&ei->i_block_reservation_lock);
  975. ei->i_reserved_data_blocks++;
  976. ei->i_reserved_meta_blocks += md_needed;
  977. spin_unlock(&ei->i_block_reservation_lock);
  978. return 0; /* success */
  979. }
  980. static void ext4_da_release_space(struct inode *inode, int to_free)
  981. {
  982. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  983. struct ext4_inode_info *ei = EXT4_I(inode);
  984. if (!to_free)
  985. return; /* Nothing to release, exit */
  986. spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
  987. trace_ext4_da_release_space(inode, to_free);
  988. if (unlikely(to_free > ei->i_reserved_data_blocks)) {
  989. /*
  990. * if there aren't enough reserved blocks, then the
  991. * counter is messed up somewhere. Since this
  992. * function is called from invalidate page, it's
  993. * harmless to return without any action.
  994. */
  995. ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
  996. "ino %lu, to_free %d with only %d reserved "
  997. "data blocks\n", inode->i_ino, to_free,
  998. ei->i_reserved_data_blocks);
  999. WARN_ON(1);
  1000. to_free = ei->i_reserved_data_blocks;
  1001. }
  1002. ei->i_reserved_data_blocks -= to_free;
  1003. if (ei->i_reserved_data_blocks == 0) {
  1004. /*
  1005. * We can release all of the reserved metadata blocks
  1006. * only when we have written all of the delayed
  1007. * allocation blocks.
  1008. */
  1009. percpu_counter_sub(&sbi->s_dirtyblocks_counter,
  1010. ei->i_reserved_meta_blocks);
  1011. ei->i_reserved_meta_blocks = 0;
  1012. ei->i_da_metadata_calc_len = 0;
  1013. }
  1014. /* update fs dirty data blocks counter */
  1015. percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
  1016. spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
  1017. dquot_release_reservation_block(inode, to_free);
  1018. }
  1019. static void ext4_da_page_release_reservation(struct page *page,
  1020. unsigned long offset)
  1021. {
  1022. int to_release = 0;
  1023. struct buffer_head *head, *bh;
  1024. unsigned int curr_off = 0;
  1025. head = page_buffers(page);
  1026. bh = head;
  1027. do {
  1028. unsigned int next_off = curr_off + bh->b_size;
  1029. if ((offset <= curr_off) && (buffer_delay(bh))) {
  1030. to_release++;
  1031. clear_buffer_delay(bh);
  1032. }
  1033. curr_off = next_off;
  1034. } while ((bh = bh->b_this_page) != head);
  1035. ext4_da_release_space(page->mapping->host, to_release);
  1036. }
  1037. /*
  1038. * Delayed allocation stuff
  1039. */
  1040. /*
  1041. * mpage_da_submit_io - walks through extent of pages and try to write
  1042. * them with writepage() call back
  1043. *
  1044. * @mpd->inode: inode
  1045. * @mpd->first_page: first page of the extent
  1046. * @mpd->next_page: page after the last page of the extent
  1047. *
  1048. * By the time mpage_da_submit_io() is called we expect all blocks
  1049. * to be allocated. this may be wrong if allocation failed.
  1050. *
  1051. * As pages are already locked by write_cache_pages(), we can't use it
  1052. */
  1053. static int mpage_da_submit_io(struct mpage_da_data *mpd,
  1054. struct ext4_map_blocks *map)
  1055. {
  1056. struct pagevec pvec;
  1057. unsigned long index, end;
  1058. int ret = 0, err, nr_pages, i;
  1059. struct inode *inode = mpd->inode;
  1060. struct address_space *mapping = inode->i_mapping;
  1061. loff_t size = i_size_read(inode);
  1062. unsigned int len, block_start;
  1063. struct buffer_head *bh, *page_bufs = NULL;
  1064. int journal_data = ext4_should_journal_data(inode);
  1065. sector_t pblock = 0, cur_logical = 0;
  1066. struct ext4_io_submit io_submit;
  1067. BUG_ON(mpd->next_page <= mpd->first_page);
  1068. memset(&io_submit, 0, sizeof(io_submit));
  1069. /*
  1070. * We need to start from the first_page to the next_page - 1
  1071. * to make sure we also write the mapped dirty buffer_heads.
  1072. * If we look at mpd->b_blocknr we would only be looking
  1073. * at the currently mapped buffer_heads.
  1074. */
  1075. index = mpd->first_page;
  1076. end = mpd->next_page - 1;
  1077. pagevec_init(&pvec, 0);
  1078. while (index <= end) {
  1079. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1080. if (nr_pages == 0)
  1081. break;
  1082. for (i = 0; i < nr_pages; i++) {
  1083. int commit_write = 0, skip_page = 0;
  1084. struct page *page = pvec.pages[i];
  1085. index = page->index;
  1086. if (index > end)
  1087. break;
  1088. if (index == size >> PAGE_CACHE_SHIFT)
  1089. len = size & ~PAGE_CACHE_MASK;
  1090. else
  1091. len = PAGE_CACHE_SIZE;
  1092. if (map) {
  1093. cur_logical = index << (PAGE_CACHE_SHIFT -
  1094. inode->i_blkbits);
  1095. pblock = map->m_pblk + (cur_logical -
  1096. map->m_lblk);
  1097. }
  1098. index++;
  1099. BUG_ON(!PageLocked(page));
  1100. BUG_ON(PageWriteback(page));
  1101. /*
  1102. * If the page does not have buffers (for
  1103. * whatever reason), try to create them using
  1104. * __block_write_begin. If this fails,
  1105. * skip the page and move on.
  1106. */
  1107. if (!page_has_buffers(page)) {
  1108. if (__block_write_begin(page, 0, len,
  1109. noalloc_get_block_write)) {
  1110. skip_page:
  1111. unlock_page(page);
  1112. continue;
  1113. }
  1114. commit_write = 1;
  1115. }
  1116. bh = page_bufs = page_buffers(page);
  1117. block_start = 0;
  1118. do {
  1119. if (!bh)
  1120. goto skip_page;
  1121. if (map && (cur_logical >= map->m_lblk) &&
  1122. (cur_logical <= (map->m_lblk +
  1123. (map->m_len - 1)))) {
  1124. if (buffer_delay(bh)) {
  1125. clear_buffer_delay(bh);
  1126. bh->b_blocknr = pblock;
  1127. }
  1128. if (buffer_unwritten(bh) ||
  1129. buffer_mapped(bh))
  1130. BUG_ON(bh->b_blocknr != pblock);
  1131. if (map->m_flags & EXT4_MAP_UNINIT)
  1132. set_buffer_uninit(bh);
  1133. clear_buffer_unwritten(bh);
  1134. }
  1135. /* skip page if block allocation undone */
  1136. if (buffer_delay(bh) || buffer_unwritten(bh))
  1137. skip_page = 1;
  1138. bh = bh->b_this_page;
  1139. block_start += bh->b_size;
  1140. cur_logical++;
  1141. pblock++;
  1142. } while (bh != page_bufs);
  1143. if (skip_page)
  1144. goto skip_page;
  1145. if (commit_write)
  1146. /* mark the buffer_heads as dirty & uptodate */
  1147. block_commit_write(page, 0, len);
  1148. clear_page_dirty_for_io(page);
  1149. /*
  1150. * Delalloc doesn't support data journalling,
  1151. * but eventually maybe we'll lift this
  1152. * restriction.
  1153. */
  1154. if (unlikely(journal_data && PageChecked(page)))
  1155. err = __ext4_journalled_writepage(page, len);
  1156. else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
  1157. err = ext4_bio_write_page(&io_submit, page,
  1158. len, mpd->wbc);
  1159. else if (buffer_uninit(page_bufs)) {
  1160. ext4_set_bh_endio(page_bufs, inode);
  1161. err = block_write_full_page_endio(page,
  1162. noalloc_get_block_write,
  1163. mpd->wbc, ext4_end_io_buffer_write);
  1164. } else
  1165. err = block_write_full_page(page,
  1166. noalloc_get_block_write, mpd->wbc);
  1167. if (!err)
  1168. mpd->pages_written++;
  1169. /*
  1170. * In error case, we have to continue because
  1171. * remaining pages are still locked
  1172. */
  1173. if (ret == 0)
  1174. ret = err;
  1175. }
  1176. pagevec_release(&pvec);
  1177. }
  1178. ext4_io_submit(&io_submit);
  1179. return ret;
  1180. }
  1181. static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
  1182. {
  1183. int nr_pages, i;
  1184. pgoff_t index, end;
  1185. struct pagevec pvec;
  1186. struct inode *inode = mpd->inode;
  1187. struct address_space *mapping = inode->i_mapping;
  1188. index = mpd->first_page;
  1189. end = mpd->next_page - 1;
  1190. while (index <= end) {
  1191. nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
  1192. if (nr_pages == 0)
  1193. break;
  1194. for (i = 0; i < nr_pages; i++) {
  1195. struct page *page = pvec.pages[i];
  1196. if (page->index > end)
  1197. break;
  1198. BUG_ON(!PageLocked(page));
  1199. BUG_ON(PageWriteback(page));
  1200. block_invalidatepage(page, 0);
  1201. ClearPageUptodate(page);
  1202. unlock_page(page);
  1203. }
  1204. index = pvec.pages[nr_pages - 1]->index + 1;
  1205. pagevec_release(&pvec);
  1206. }
  1207. return;
  1208. }
  1209. static void ext4_print_free_blocks(struct inode *inode)
  1210. {
  1211. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  1212. printk(KERN_CRIT "Total free blocks count %lld\n",
  1213. ext4_count_free_blocks(inode->i_sb));
  1214. printk(KERN_CRIT "Free/Dirty block details\n");
  1215. printk(KERN_CRIT "free_blocks=%lld\n",
  1216. (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
  1217. printk(KERN_CRIT "dirty_blocks=%lld\n",
  1218. (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
  1219. printk(KERN_CRIT "Block reservation details\n");
  1220. printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
  1221. EXT4_I(inode)->i_reserved_data_blocks);
  1222. printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
  1223. EXT4_I(inode)->i_reserved_meta_blocks);
  1224. return;
  1225. }
  1226. /*
  1227. * mpage_da_map_and_submit - go through given space, map them
  1228. * if necessary, and then submit them for I/O
  1229. *
  1230. * @mpd - bh describing space
  1231. *
  1232. * The function skips space we know is already mapped to disk blocks.
  1233. *
  1234. */
  1235. static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
  1236. {
  1237. int err, blks, get_blocks_flags;
  1238. struct ext4_map_blocks map, *mapp = NULL;
  1239. sector_t next = mpd->b_blocknr;
  1240. unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
  1241. loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
  1242. handle_t *handle = NULL;
  1243. /*
  1244. * If the blocks are mapped already, or we couldn't accumulate
  1245. * any blocks, then proceed immediately to the submission stage.
  1246. */
  1247. if ((mpd->b_size == 0) ||
  1248. ((mpd->b_state & (1 << BH_Mapped)) &&
  1249. !(mpd->b_state & (1 << BH_Delay)) &&
  1250. !(mpd->b_state & (1 << BH_Unwritten))))
  1251. goto submit_io;
  1252. handle = ext4_journal_current_handle();
  1253. BUG_ON(!handle);
  1254. /*
  1255. * Call ext4_map_blocks() to allocate any delayed allocation
  1256. * blocks, or to convert an uninitialized extent to be
  1257. * initialized (in the case where we have written into
  1258. * one or more preallocated blocks).
  1259. *
  1260. * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
  1261. * indicate that we are on the delayed allocation path. This
  1262. * affects functions in many different parts of the allocation
  1263. * call path. This flag exists primarily because we don't
  1264. * want to change *many* call functions, so ext4_map_blocks()
  1265. * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
  1266. * inode's allocation semaphore is taken.
  1267. *
  1268. * If the blocks in questions were delalloc blocks, set
  1269. * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
  1270. * variables are updated after the blocks have been allocated.
  1271. */
  1272. map.m_lblk = next;
  1273. map.m_len = max_blocks;
  1274. get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
  1275. if (ext4_should_dioread_nolock(mpd->inode))
  1276. get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
  1277. if (mpd->b_state & (1 << BH_Delay))
  1278. get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
  1279. blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
  1280. if (blks < 0) {
  1281. struct super_block *sb = mpd->inode->i_sb;
  1282. err = blks;
  1283. /*
  1284. * If get block returns EAGAIN or ENOSPC and there
  1285. * appears to be free blocks we will just let
  1286. * mpage_da_submit_io() unlock all of the pages.
  1287. */
  1288. if (err == -EAGAIN)
  1289. goto submit_io;
  1290. if (err == -ENOSPC &&
  1291. ext4_count_free_blocks(sb)) {
  1292. mpd->retval = err;
  1293. goto submit_io;
  1294. }
  1295. /*
  1296. * get block failure will cause us to loop in
  1297. * writepages, because a_ops->writepage won't be able
  1298. * to make progress. The page will be redirtied by
  1299. * writepage and writepages will again try to write
  1300. * the same.
  1301. */
  1302. if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
  1303. ext4_msg(sb, KERN_CRIT,
  1304. "delayed block allocation failed for inode %lu "
  1305. "at logical offset %llu with max blocks %zd "
  1306. "with error %d", mpd->inode->i_ino,
  1307. (unsigned long long) next,
  1308. mpd->b_size >> mpd->inode->i_blkbits, err);
  1309. ext4_msg(sb, KERN_CRIT,
  1310. "This should not happen!! Data will be lost\n");
  1311. if (err == -ENOSPC)
  1312. ext4_print_free_blocks(mpd->inode);
  1313. }
  1314. /* invalidate all the pages */
  1315. ext4_da_block_invalidatepages(mpd);
  1316. /* Mark this page range as having been completed */
  1317. mpd->io_done = 1;
  1318. return;
  1319. }
  1320. BUG_ON(blks == 0);
  1321. mapp = &map;
  1322. if (map.m_flags & EXT4_MAP_NEW) {
  1323. struct block_device *bdev = mpd->inode->i_sb->s_bdev;
  1324. int i;
  1325. for (i = 0; i < map.m_len; i++)
  1326. unmap_underlying_metadata(bdev, map.m_pblk + i);
  1327. }
  1328. if (ext4_should_order_data(mpd->inode)) {
  1329. err = ext4_jbd2_file_inode(handle, mpd->inode);
  1330. if (err)
  1331. /* This only happens if the journal is aborted */
  1332. return;
  1333. }
  1334. /*
  1335. * Update on-disk size along with block allocation.
  1336. */
  1337. disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
  1338. if (disksize > i_size_read(mpd->inode))
  1339. disksize = i_size_read(mpd->inode);
  1340. if (disksize > EXT4_I(mpd->inode)->i_disksize) {
  1341. ext4_update_i_disksize(mpd->inode, disksize);
  1342. err = ext4_mark_inode_dirty(handle, mpd->inode);
  1343. if (err)
  1344. ext4_error(mpd->inode->i_sb,
  1345. "Failed to mark inode %lu dirty",
  1346. mpd->inode->i_ino);
  1347. }
  1348. submit_io:
  1349. mpage_da_submit_io(mpd, mapp);
  1350. mpd->io_done = 1;
  1351. }
  1352. #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
  1353. (1 << BH_Delay) | (1 << BH_Unwritten))
  1354. /*
  1355. * mpage_add_bh_to_extent - try to add one more block to extent of blocks
  1356. *
  1357. * @mpd->lbh - extent of blocks
  1358. * @logical - logical number of the block in the file
  1359. * @bh - bh of the block (used to access block's state)
  1360. *
  1361. * the function is used to collect contig. blocks in same state
  1362. */
  1363. static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
  1364. sector_t logical, size_t b_size,
  1365. unsigned long b_state)
  1366. {
  1367. sector_t next;
  1368. int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
  1369. /*
  1370. * XXX Don't go larger than mballoc is willing to allocate
  1371. * This is a stopgap solution. We eventually need to fold
  1372. * mpage_da_submit_io() into this function and then call
  1373. * ext4_map_blocks() multiple times in a loop
  1374. */
  1375. if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
  1376. goto flush_it;
  1377. /* check if thereserved journal credits might overflow */
  1378. if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
  1379. if (nrblocks >= EXT4_MAX_TRANS_DATA) {
  1380. /*
  1381. * With non-extent format we are limited by the journal
  1382. * credit available. Total credit needed to insert
  1383. * nrblocks contiguous blocks is dependent on the
  1384. * nrblocks. So limit nrblocks.
  1385. */
  1386. goto flush_it;
  1387. } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
  1388. EXT4_MAX_TRANS_DATA) {
  1389. /*
  1390. * Adding the new buffer_head would make it cross the
  1391. * allowed limit for which we have journal credit
  1392. * reserved. So limit the new bh->b_size
  1393. */
  1394. b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
  1395. mpd->inode->i_blkbits;
  1396. /* we will do mpage_da_submit_io in the next loop */
  1397. }
  1398. }
  1399. /*
  1400. * First block in the extent
  1401. */
  1402. if (mpd->b_size == 0) {
  1403. mpd->b_blocknr = logical;
  1404. mpd->b_size = b_size;
  1405. mpd->b_state = b_state & BH_FLAGS;
  1406. return;
  1407. }
  1408. next = mpd->b_blocknr + nrblocks;
  1409. /*
  1410. * Can we merge the block to our big extent?
  1411. */
  1412. if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
  1413. mpd->b_size += b_size;
  1414. return;
  1415. }
  1416. flush_it:
  1417. /*
  1418. * We couldn't merge the block to our extent, so we
  1419. * need to flush current extent and start new one
  1420. */
  1421. mpage_da_map_and_submit(mpd);
  1422. return;
  1423. }
  1424. static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
  1425. {
  1426. return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
  1427. }
  1428. /*
  1429. * This is a special get_blocks_t callback which is used by
  1430. * ext4_da_write_begin(). It will either return mapped block or
  1431. * reserve space for a single block.
  1432. *
  1433. * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
  1434. * We also have b_blocknr = -1 and b_bdev initialized properly
  1435. *
  1436. * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
  1437. * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
  1438. * initialized properly.
  1439. */
  1440. static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
  1441. struct buffer_head *bh, int create)
  1442. {
  1443. struct ext4_map_blocks map;
  1444. int ret = 0;
  1445. sector_t invalid_block = ~((sector_t) 0xffff);
  1446. if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
  1447. invalid_block = ~0;
  1448. BUG_ON(create == 0);
  1449. BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
  1450. map.m_lblk = iblock;
  1451. map.m_len = 1;
  1452. /*
  1453. * first, we need to know whether the block is allocated already
  1454. * preallocated blocks are unmapped but should treated
  1455. * the same as allocated blocks.
  1456. */
  1457. ret = ext4_map_blocks(NULL, inode, &map, 0);
  1458. if (ret < 0)
  1459. return ret;
  1460. if (ret == 0) {
  1461. if (buffer_delay(bh))
  1462. return 0; /* Not sure this could or should happen */
  1463. /*
  1464. * XXX: __block_write_begin() unmaps passed block, is it OK?
  1465. */
  1466. ret = ext4_da_reserve_space(inode, iblock);
  1467. if (ret)
  1468. /* not enough space to reserve */
  1469. return ret;
  1470. map_bh(bh, inode->i_sb, invalid_block);
  1471. set_buffer_new(bh);
  1472. set_buffer_delay(bh);
  1473. return 0;
  1474. }
  1475. map_bh(bh, inode->i_sb, map.m_pblk);
  1476. bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
  1477. if (buffer_unwritten(bh)) {
  1478. /* A delayed write to unwritten bh should be marked
  1479. * new and mapped. Mapped ensures that we don't do
  1480. * get_block multiple times when we write to the same
  1481. * offset and new ensures that we do proper zero out
  1482. * for partial write.
  1483. */
  1484. set_buffer_new(bh);
  1485. set_buffer_mapped(bh);
  1486. }
  1487. return 0;
  1488. }
  1489. /*
  1490. * This function is used as a standard get_block_t calback function
  1491. * when there is no desire to allocate any blocks. It is used as a
  1492. * callback function for block_write_begin() and block_write_full_page().
  1493. * These functions should only try to map a single block at a time.
  1494. *
  1495. * Since this function doesn't do block allocations even if the caller
  1496. * requests it by passing in create=1, it is critically important that
  1497. * any caller checks to make sure that any buffer heads are returned
  1498. * by this function are either all already mapped or marked for
  1499. * delayed allocation before calling block_write_full_page(). Otherwise,
  1500. * b_blocknr could be left unitialized, and the page write functions will
  1501. * be taken by surprise.
  1502. */
  1503. static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
  1504. struct buffer_head *bh_result, int create)
  1505. {
  1506. BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
  1507. return _ext4_get_block(inode, iblock, bh_result, 0);
  1508. }
  1509. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1510. {
  1511. get_bh(bh);
  1512. return 0;
  1513. }
  1514. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1515. {
  1516. put_bh(bh);
  1517. return 0;
  1518. }
  1519. static int __ext4_journalled_writepage(struct page *page,
  1520. unsigned int len)
  1521. {
  1522. struct address_space *mapping = page->mapping;
  1523. struct inode *inode = mapping->host;
  1524. struct buffer_head *page_bufs;
  1525. handle_t *handle = NULL;
  1526. int ret = 0;
  1527. int err;
  1528. ClearPageChecked(page);
  1529. page_bufs = page_buffers(page);
  1530. BUG_ON(!page_bufs);
  1531. walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
  1532. /* As soon as we unlock the page, it can go away, but we have
  1533. * references to buffers so we are safe */
  1534. unlock_page(page);
  1535. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1536. if (IS_ERR(handle)) {
  1537. ret = PTR_ERR(handle);
  1538. goto out;
  1539. }
  1540. BUG_ON(!ext4_handle_valid(handle));
  1541. ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
  1542. do_journal_get_write_access);
  1543. err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
  1544. write_end_fn);
  1545. if (ret == 0)
  1546. ret = err;
  1547. EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
  1548. err = ext4_journal_stop(handle);
  1549. if (!ret)
  1550. ret = err;
  1551. walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
  1552. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  1553. out:
  1554. return ret;
  1555. }
  1556. static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
  1557. static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
  1558. /*
  1559. * Note that we don't need to start a transaction unless we're journaling data
  1560. * because we should have holes filled from ext4_page_mkwrite(). We even don't
  1561. * need to file the inode to the transaction's list in ordered mode because if
  1562. * we are writing back data added by write(), the inode is already there and if
  1563. * we are writing back data modified via mmap(), no one guarantees in which
  1564. * transaction the data will hit the disk. In case we are journaling data, we
  1565. * cannot start transaction directly because transaction start ranks above page
  1566. * lock so we have to do some magic.
  1567. *
  1568. * This function can get called via...
  1569. * - ext4_da_writepages after taking page lock (have journal handle)
  1570. * - journal_submit_inode_data_buffers (no journal handle)
  1571. * - shrink_page_list via pdflush (no journal handle)
  1572. * - grab_page_cache when doing write_begin (have journal handle)
  1573. *
  1574. * We don't do any block allocation in this function. If we have page with
  1575. * multiple blocks we need to write those buffer_heads that are mapped. This
  1576. * is important for mmaped based write. So if we do with blocksize 1K
  1577. * truncate(f, 1024);
  1578. * a = mmap(f, 0, 4096);
  1579. * a[0] = 'a';
  1580. * truncate(f, 4096);
  1581. * we have in the page first buffer_head mapped via page_mkwrite call back
  1582. * but other bufer_heads would be unmapped but dirty(dirty done via the
  1583. * do_wp_page). So writepage should write the first block. If we modify
  1584. * the mmap area beyond 1024 we will again get a page_fault and the
  1585. * page_mkwrite callback will do the block allocation and mark the
  1586. * buffer_heads mapped.
  1587. *
  1588. * We redirty the page if we have any buffer_heads that is either delay or
  1589. * unwritten in the page.
  1590. *
  1591. * We can get recursively called as show below.
  1592. *
  1593. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1594. * ext4_writepage()
  1595. *
  1596. * But since we don't do any block allocation we should not deadlock.
  1597. * Page also have the dirty flag cleared so we don't get recurive page_lock.
  1598. */
  1599. static int ext4_writepage(struct page *page,
  1600. struct writeback_control *wbc)
  1601. {
  1602. int ret = 0, commit_write = 0;
  1603. loff_t size;
  1604. unsigned int len;
  1605. struct buffer_head *page_bufs = NULL;
  1606. struct inode *inode = page->mapping->host;
  1607. trace_ext4_writepage(page);
  1608. size = i_size_read(inode);
  1609. if (page->index == size >> PAGE_CACHE_SHIFT)
  1610. len = size & ~PAGE_CACHE_MASK;
  1611. else
  1612. len = PAGE_CACHE_SIZE;
  1613. /*
  1614. * If the page does not have buffers (for whatever reason),
  1615. * try to create them using __block_write_begin. If this
  1616. * fails, redirty the page and move on.
  1617. */
  1618. if (!page_has_buffers(page)) {
  1619. if (__block_write_begin(page, 0, len,
  1620. noalloc_get_block_write)) {
  1621. redirty_page:
  1622. redirty_page_for_writepage(wbc, page);
  1623. unlock_page(page);
  1624. return 0;
  1625. }
  1626. commit_write = 1;
  1627. }
  1628. page_bufs = page_buffers(page);
  1629. if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
  1630. ext4_bh_delay_or_unwritten)) {
  1631. /*
  1632. * We don't want to do block allocation, so redirty
  1633. * the page and return. We may reach here when we do
  1634. * a journal commit via journal_submit_inode_data_buffers.
  1635. * We can also reach here via shrink_page_list but it
  1636. * should never be for direct reclaim so warn if that
  1637. * happens
  1638. */
  1639. WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
  1640. PF_MEMALLOC);
  1641. goto redirty_page;
  1642. }
  1643. if (commit_write)
  1644. /* now mark the buffer_heads as dirty and uptodate */
  1645. block_commit_write(page, 0, len);
  1646. if (PageChecked(page) && ext4_should_journal_data(inode))
  1647. /*
  1648. * It's mmapped pagecache. Add buffers and journal it. There
  1649. * doesn't seem much point in redirtying the page here.
  1650. */
  1651. return __ext4_journalled_writepage(page, len);
  1652. if (buffer_uninit(page_bufs)) {
  1653. ext4_set_bh_endio(page_bufs, inode);
  1654. ret = block_write_full_page_endio(page, noalloc_get_block_write,
  1655. wbc, ext4_end_io_buffer_write);
  1656. } else
  1657. ret = block_write_full_page(page, noalloc_get_block_write,
  1658. wbc);
  1659. return ret;
  1660. }
  1661. /*
  1662. * This is called via ext4_da_writepages() to
  1663. * calculate the total number of credits to reserve to fit
  1664. * a single extent allocation into a single transaction,
  1665. * ext4_da_writpeages() will loop calling this before
  1666. * the block allocation.
  1667. */
  1668. static int ext4_da_writepages_trans_blocks(struct inode *inode)
  1669. {
  1670. int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  1671. /*
  1672. * With non-extent format the journal credit needed to
  1673. * insert nrblocks contiguous block is dependent on
  1674. * number of contiguous block. So we will limit
  1675. * number of contiguous block to a sane value
  1676. */
  1677. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
  1678. (max_blocks > EXT4_MAX_TRANS_DATA))
  1679. max_blocks = EXT4_MAX_TRANS_DATA;
  1680. return ext4_chunk_trans_blocks(inode, max_blocks);
  1681. }
  1682. /*
  1683. * write_cache_pages_da - walk the list of dirty pages of the given
  1684. * address space and accumulate pages that need writing, and call
  1685. * mpage_da_map_and_submit to map a single contiguous memory region
  1686. * and then write them.
  1687. */
  1688. static int write_cache_pages_da(struct address_space *mapping,
  1689. struct writeback_control *wbc,
  1690. struct mpage_da_data *mpd,
  1691. pgoff_t *done_index)
  1692. {
  1693. struct buffer_head *bh, *head;
  1694. struct inode *inode = mapping->host;
  1695. struct pagevec pvec;
  1696. unsigned int nr_pages;
  1697. sector_t logical;
  1698. pgoff_t index, end;
  1699. long nr_to_write = wbc->nr_to_write;
  1700. int i, tag, ret = 0;
  1701. memset(mpd, 0, sizeof(struct mpage_da_data));
  1702. mpd->wbc = wbc;
  1703. mpd->inode = inode;
  1704. pagevec_init(&pvec, 0);
  1705. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1706. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1707. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1708. tag = PAGECACHE_TAG_TOWRITE;
  1709. else
  1710. tag = PAGECACHE_TAG_DIRTY;
  1711. *done_index = index;
  1712. while (index <= end) {
  1713. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1714. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1715. if (nr_pages == 0)
  1716. return 0;
  1717. for (i = 0; i < nr_pages; i++) {
  1718. struct page *page = pvec.pages[i];
  1719. /*
  1720. * At this point, the page may be truncated or
  1721. * invalidated (changing page->mapping to NULL), or
  1722. * even swizzled back from swapper_space to tmpfs file
  1723. * mapping. However, page->index will not change
  1724. * because we have a reference on the page.
  1725. */
  1726. if (page->index > end)
  1727. goto out;
  1728. *done_index = page->index + 1;
  1729. /*
  1730. * If we can't merge this page, and we have
  1731. * accumulated an contiguous region, write it
  1732. */
  1733. if ((mpd->next_page != page->index) &&
  1734. (mpd->next_page != mpd->first_page)) {
  1735. mpage_da_map_and_submit(mpd);
  1736. goto ret_extent_tail;
  1737. }
  1738. lock_page(page);
  1739. /*
  1740. * If the page is no longer dirty, or its
  1741. * mapping no longer corresponds to inode we
  1742. * are writing (which means it has been
  1743. * truncated or invalidated), or the page is
  1744. * already under writeback and we are not
  1745. * doing a data integrity writeback, skip the page
  1746. */
  1747. if (!PageDirty(page) ||
  1748. (PageWriteback(page) &&
  1749. (wbc->sync_mode == WB_SYNC_NONE)) ||
  1750. unlikely(page->mapping != mapping)) {
  1751. unlock_page(page);
  1752. continue;
  1753. }
  1754. wait_on_page_writeback(page);
  1755. BUG_ON(PageWriteback(page));
  1756. if (mpd->next_page != page->index)
  1757. mpd->first_page = page->index;
  1758. mpd->next_page = page->index + 1;
  1759. logical = (sector_t) page->index <<
  1760. (PAGE_CACHE_SHIFT - inode->i_blkbits);
  1761. if (!page_has_buffers(page)) {
  1762. mpage_add_bh_to_extent(mpd, logical,
  1763. PAGE_CACHE_SIZE,
  1764. (1 << BH_Dirty) | (1 << BH_Uptodate));
  1765. if (mpd->io_done)
  1766. goto ret_extent_tail;
  1767. } else {
  1768. /*
  1769. * Page with regular buffer heads,
  1770. * just add all dirty ones
  1771. */
  1772. head = page_buffers(page);
  1773. bh = head;
  1774. do {
  1775. BUG_ON(buffer_locked(bh));
  1776. /*
  1777. * We need to try to allocate
  1778. * unmapped blocks in the same page.
  1779. * Otherwise we won't make progress
  1780. * with the page in ext4_writepage
  1781. */
  1782. if (ext4_bh_delay_or_unwritten(NULL, bh)) {
  1783. mpage_add_bh_to_extent(mpd, logical,
  1784. bh->b_size,
  1785. bh->b_state);
  1786. if (mpd->io_done)
  1787. goto ret_extent_tail;
  1788. } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
  1789. /*
  1790. * mapped dirty buffer. We need
  1791. * to update the b_state
  1792. * because we look at b_state
  1793. * in mpage_da_map_blocks. We
  1794. * don't update b_size because
  1795. * if we find an unmapped
  1796. * buffer_head later we need to
  1797. * use the b_state flag of that
  1798. * buffer_head.
  1799. */
  1800. if (mpd->b_size == 0)
  1801. mpd->b_state = bh->b_state & BH_FLAGS;
  1802. }
  1803. logical++;
  1804. } while ((bh = bh->b_this_page) != head);
  1805. }
  1806. if (nr_to_write > 0) {
  1807. nr_to_write--;
  1808. if (nr_to_write == 0 &&
  1809. wbc->sync_mode == WB_SYNC_NONE)
  1810. /*
  1811. * We stop writing back only if we are
  1812. * not doing integrity sync. In case of
  1813. * integrity sync we have to keep going
  1814. * because someone may be concurrently
  1815. * dirtying pages, and we might have
  1816. * synced a lot of newly appeared dirty
  1817. * pages, but have not synced all of the
  1818. * old dirty pages.
  1819. */
  1820. goto out;
  1821. }
  1822. }
  1823. pagevec_release(&pvec);
  1824. cond_resched();
  1825. }
  1826. return 0;
  1827. ret_extent_tail:
  1828. ret = MPAGE_DA_EXTENT_TAIL;
  1829. out:
  1830. pagevec_release(&pvec);
  1831. cond_resched();
  1832. return ret;
  1833. }
  1834. static int ext4_da_writepages(struct address_space *mapping,
  1835. struct writeback_control *wbc)
  1836. {
  1837. pgoff_t index;
  1838. int range_whole = 0;
  1839. handle_t *handle = NULL;
  1840. struct mpage_da_data mpd;
  1841. struct inode *inode = mapping->host;
  1842. int pages_written = 0;
  1843. unsigned int max_pages;
  1844. int range_cyclic, cycled = 1, io_done = 0;
  1845. int needed_blocks, ret = 0;
  1846. long desired_nr_to_write, nr_to_writebump = 0;
  1847. loff_t range_start = wbc->range_start;
  1848. struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
  1849. pgoff_t done_index = 0;
  1850. pgoff_t end;
  1851. trace_ext4_da_writepages(inode, wbc);
  1852. /*
  1853. * No pages to write? This is mainly a kludge to avoid starting
  1854. * a transaction for special inodes like journal inode on last iput()
  1855. * because that could violate lock ordering on umount
  1856. */
  1857. if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
  1858. return 0;
  1859. /*
  1860. * If the filesystem has aborted, it is read-only, so return
  1861. * right away instead of dumping stack traces later on that
  1862. * will obscure the real source of the problem. We test
  1863. * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
  1864. * the latter could be true if the filesystem is mounted
  1865. * read-only, and in that case, ext4_da_writepages should
  1866. * *never* be called, so if that ever happens, we would want
  1867. * the stack trace.
  1868. */
  1869. if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
  1870. return -EROFS;
  1871. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1872. range_whole = 1;
  1873. range_cyclic = wbc->range_cyclic;
  1874. if (wbc->range_cyclic) {
  1875. index = mapping->writeback_index;
  1876. if (index)
  1877. cycled = 0;
  1878. wbc->range_start = index << PAGE_CACHE_SHIFT;
  1879. wbc->range_end = LLONG_MAX;
  1880. wbc->range_cyclic = 0;
  1881. end = -1;
  1882. } else {
  1883. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1884. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1885. }
  1886. /*
  1887. * This works around two forms of stupidity. The first is in
  1888. * the writeback code, which caps the maximum number of pages
  1889. * written to be 1024 pages. This is wrong on multiple
  1890. * levels; different architectues have a different page size,
  1891. * which changes the maximum amount of data which gets
  1892. * written. Secondly, 4 megabytes is way too small. XFS
  1893. * forces this value to be 16 megabytes by multiplying
  1894. * nr_to_write parameter by four, and then relies on its
  1895. * allocator to allocate larger extents to make them
  1896. * contiguous. Unfortunately this brings us to the second
  1897. * stupidity, which is that ext4's mballoc code only allocates
  1898. * at most 2048 blocks. So we force contiguous writes up to
  1899. * the number of dirty blocks in the inode, or
  1900. * sbi->max_writeback_mb_bump whichever is smaller.
  1901. */
  1902. max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
  1903. if (!range_cyclic && range_whole) {
  1904. if (wbc->nr_to_write == LONG_MAX)
  1905. desired_nr_to_write = wbc->nr_to_write;
  1906. else
  1907. desired_nr_to_write = wbc->nr_to_write * 8;
  1908. } else
  1909. desired_nr_to_write = ext4_num_dirty_pages(inode, index,
  1910. max_pages);
  1911. if (desired_nr_to_write > max_pages)
  1912. desired_nr_to_write = max_pages;
  1913. if (wbc->nr_to_write < desired_nr_to_write) {
  1914. nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
  1915. wbc->nr_to_write = desired_nr_to_write;
  1916. }
  1917. retry:
  1918. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1919. tag_pages_for_writeback(mapping, index, end);
  1920. while (!ret && wbc->nr_to_write > 0) {
  1921. /*
  1922. * we insert one extent at a time. So we need
  1923. * credit needed for single extent allocation.
  1924. * journalled mode is currently not supported
  1925. * by delalloc
  1926. */
  1927. BUG_ON(ext4_should_journal_data(inode));
  1928. needed_blocks = ext4_da_writepages_trans_blocks(inode);
  1929. /* start a new transaction*/
  1930. handle = ext4_journal_start(inode, needed_blocks);
  1931. if (IS_ERR(handle)) {
  1932. ret = PTR_ERR(handle);
  1933. ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
  1934. "%ld pages, ino %lu; err %d", __func__,
  1935. wbc->nr_to_write, inode->i_ino, ret);
  1936. goto out_writepages;
  1937. }
  1938. /*
  1939. * Now call write_cache_pages_da() to find the next
  1940. * contiguous region of logical blocks that need
  1941. * blocks to be allocated by ext4 and submit them.
  1942. */
  1943. ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
  1944. /*
  1945. * If we have a contiguous extent of pages and we
  1946. * haven't done the I/O yet, map the blocks and submit
  1947. * them for I/O.
  1948. */
  1949. if (!mpd.io_done && mpd.next_page != mpd.first_page) {
  1950. mpage_da_map_and_submit(&mpd);
  1951. ret = MPAGE_DA_EXTENT_TAIL;
  1952. }
  1953. trace_ext4_da_write_pages(inode, &mpd);
  1954. wbc->nr_to_write -= mpd.pages_written;
  1955. ext4_journal_stop(handle);
  1956. if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
  1957. /* commit the transaction which would
  1958. * free blocks released in the transaction
  1959. * and try again
  1960. */
  1961. jbd2_journal_force_commit_nested(sbi->s_journal);
  1962. ret = 0;
  1963. } else if (ret == MPAGE_DA_EXTENT_TAIL) {
  1964. /*
  1965. * got one extent now try with
  1966. * rest of the pages
  1967. */
  1968. pages_written += mpd.pages_written;
  1969. ret = 0;
  1970. io_done = 1;
  1971. } else if (wbc->nr_to_write)
  1972. /*
  1973. * There is no more writeout needed
  1974. * or we requested for a noblocking writeout
  1975. * and we found the device congested
  1976. */
  1977. break;
  1978. }
  1979. if (!io_done && !cycled) {
  1980. cycled = 1;
  1981. index = 0;
  1982. wbc->range_start = index << PAGE_CACHE_SHIFT;
  1983. wbc->range_end = mapping->writeback_index - 1;
  1984. goto retry;
  1985. }
  1986. /* Update index */
  1987. wbc->range_cyclic = range_cyclic;
  1988. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1989. /*
  1990. * set the writeback_index so that range_cyclic
  1991. * mode will write it back later
  1992. */
  1993. mapping->writeback_index = done_index;
  1994. out_writepages:
  1995. wbc->nr_to_write -= nr_to_writebump;
  1996. wbc->range_start = range_start;
  1997. trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
  1998. return ret;
  1999. }
  2000. #define FALL_BACK_TO_NONDELALLOC 1
  2001. static int ext4_nonda_switch(struct super_block *sb)
  2002. {
  2003. s64 free_blocks, dirty_blocks;
  2004. struct ext4_sb_info *sbi = EXT4_SB(sb);
  2005. /*
  2006. * switch to non delalloc mode if we are running low
  2007. * on free block. The free block accounting via percpu
  2008. * counters can get slightly wrong with percpu_counter_batch getting
  2009. * accumulated on each CPU without updating global counters
  2010. * Delalloc need an accurate free block accounting. So switch
  2011. * to non delalloc when we are near to error range.
  2012. */
  2013. free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
  2014. dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
  2015. if (2 * free_blocks < 3 * dirty_blocks ||
  2016. free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
  2017. /*
  2018. * free block count is less than 150% of dirty blocks
  2019. * or free blocks is less than watermark
  2020. */
  2021. return 1;
  2022. }
  2023. /*
  2024. * Even if we don't switch but are nearing capacity,
  2025. * start pushing delalloc when 1/2 of free blocks are dirty.
  2026. */
  2027. if (free_blocks < 2 * dirty_blocks)
  2028. writeback_inodes_sb_if_idle(sb);
  2029. return 0;
  2030. }
  2031. static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
  2032. loff_t pos, unsigned len, unsigned flags,
  2033. struct page **pagep, void **fsdata)
  2034. {
  2035. int ret, retries = 0;
  2036. struct page *page;
  2037. pgoff_t index;
  2038. struct inode *inode = mapping->host;
  2039. handle_t *handle;
  2040. index = pos >> PAGE_CACHE_SHIFT;
  2041. if (ext4_nonda_switch(inode->i_sb)) {
  2042. *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
  2043. return ext4_write_begin(file, mapping, pos,
  2044. len, flags, pagep, fsdata);
  2045. }
  2046. *fsdata = (void *)0;
  2047. trace_ext4_da_write_begin(inode, pos, len, flags);
  2048. retry:
  2049. /*
  2050. * With delayed allocation, we don't log the i_disksize update
  2051. * if there is delayed block allocation. But we still need
  2052. * to journalling the i_disksize update if writes to the end
  2053. * of file which has an already mapped buffer.
  2054. */
  2055. handle = ext4_journal_start(inode, 1);
  2056. if (IS_ERR(handle)) {
  2057. ret = PTR_ERR(handle);
  2058. goto out;
  2059. }
  2060. /* We cannot recurse into the filesystem as the transaction is already
  2061. * started */
  2062. flags |= AOP_FLAG_NOFS;
  2063. page = grab_cache_page_write_begin(mapping, index, flags);
  2064. if (!page) {
  2065. ext4_journal_stop(handle);
  2066. ret = -ENOMEM;
  2067. goto out;
  2068. }
  2069. *pagep = page;
  2070. ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
  2071. if (ret < 0) {
  2072. unlock_page(page);
  2073. ext4_journal_stop(handle);
  2074. page_cache_release(page);
  2075. /*
  2076. * block_write_begin may have instantiated a few blocks
  2077. * outside i_size. Trim these off again. Don't need
  2078. * i_size_read because we hold i_mutex.
  2079. */
  2080. if (pos + len > inode->i_size)
  2081. ext4_truncate_failed_write(inode);
  2082. }
  2083. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  2084. goto retry;
  2085. out:
  2086. return ret;
  2087. }
  2088. /*
  2089. * Check if we should update i_disksize
  2090. * when write to the end of file but not require block allocation
  2091. */
  2092. static int ext4_da_should_update_i_disksize(struct page *page,
  2093. unsigned long offset)
  2094. {
  2095. struct buffer_head *bh;
  2096. struct inode *inode = page->mapping->host;
  2097. unsigned int idx;
  2098. int i;
  2099. bh = page_buffers(page);
  2100. idx = offset >> inode->i_blkbits;
  2101. for (i = 0; i < idx; i++)
  2102. bh = bh->b_this_page;
  2103. if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
  2104. return 0;
  2105. return 1;
  2106. }
  2107. static int ext4_da_write_end(struct file *file,
  2108. struct address_space *mapping,
  2109. loff_t pos, unsigned len, unsigned copied,
  2110. struct page *page, void *fsdata)
  2111. {
  2112. struct inode *inode = mapping->host;
  2113. int ret = 0, ret2;
  2114. handle_t *handle = ext4_journal_current_handle();
  2115. loff_t new_i_size;
  2116. unsigned long start, end;
  2117. int write_mode = (int)(unsigned long)fsdata;
  2118. if (write_mode == FALL_BACK_TO_NONDELALLOC) {
  2119. if (ext4_should_order_data(inode)) {
  2120. return ext4_ordered_write_end(file, mapping, pos,
  2121. len, copied, page, fsdata);
  2122. } else if (ext4_should_writeback_data(inode)) {
  2123. return ext4_writeback_write_end(file, mapping, pos,
  2124. len, copied, page, fsdata);
  2125. } else {
  2126. BUG();
  2127. }
  2128. }
  2129. trace_ext4_da_write_end(inode, pos, len, copied);
  2130. start = pos & (PAGE_CACHE_SIZE - 1);
  2131. end = start + copied - 1;
  2132. /*
  2133. * generic_write_end() will run mark_inode_dirty() if i_size
  2134. * changes. So let's piggyback the i_disksize mark_inode_dirty
  2135. * into that.
  2136. */
  2137. new_i_size = pos + copied;
  2138. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2139. if (ext4_da_should_update_i_disksize(page, end)) {
  2140. down_write(&EXT4_I(inode)->i_data_sem);
  2141. if (new_i_size > EXT4_I(inode)->i_disksize) {
  2142. /*
  2143. * Updating i_disksize when extending file
  2144. * without needing block allocation
  2145. */
  2146. if (ext4_should_order_data(inode))
  2147. ret = ext4_jbd2_file_inode(handle,
  2148. inode);
  2149. EXT4_I(inode)->i_disksize = new_i_size;
  2150. }
  2151. up_write(&EXT4_I(inode)->i_data_sem);
  2152. /* We need to mark inode dirty even if
  2153. * new_i_size is less that inode->i_size
  2154. * bu greater than i_disksize.(hint delalloc)
  2155. */
  2156. ext4_mark_inode_dirty(handle, inode);
  2157. }
  2158. }
  2159. ret2 = generic_write_end(file, mapping, pos, len, copied,
  2160. page, fsdata);
  2161. copied = ret2;
  2162. if (ret2 < 0)
  2163. ret = ret2;
  2164. ret2 = ext4_journal_stop(handle);
  2165. if (!ret)
  2166. ret = ret2;
  2167. return ret ? ret : copied;
  2168. }
  2169. static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
  2170. {
  2171. /*
  2172. * Drop reserved blocks
  2173. */
  2174. BUG_ON(!PageLocked(page));
  2175. if (!page_has_buffers(page))
  2176. goto out;
  2177. ext4_da_page_release_reservation(page, offset);
  2178. out:
  2179. ext4_invalidatepage(page, offset);
  2180. return;
  2181. }
  2182. /*
  2183. * Force all delayed allocation blocks to be allocated for a given inode.
  2184. */
  2185. int ext4_alloc_da_blocks(struct inode *inode)
  2186. {
  2187. trace_ext4_alloc_da_blocks(inode);
  2188. if (!EXT4_I(inode)->i_reserved_data_blocks &&
  2189. !EXT4_I(inode)->i_reserved_meta_blocks)
  2190. return 0;
  2191. /*
  2192. * We do something simple for now. The filemap_flush() will
  2193. * also start triggering a write of the data blocks, which is
  2194. * not strictly speaking necessary (and for users of
  2195. * laptop_mode, not even desirable). However, to do otherwise
  2196. * would require replicating code paths in:
  2197. *
  2198. * ext4_da_writepages() ->
  2199. * write_cache_pages() ---> (via passed in callback function)
  2200. * __mpage_da_writepage() -->
  2201. * mpage_add_bh_to_extent()
  2202. * mpage_da_map_blocks()
  2203. *
  2204. * The problem is that write_cache_pages(), located in
  2205. * mm/page-writeback.c, marks pages clean in preparation for
  2206. * doing I/O, which is not desirable if we're not planning on
  2207. * doing I/O at all.
  2208. *
  2209. * We could call write_cache_pages(), and then redirty all of
  2210. * the pages by calling redirty_page_for_writepage() but that
  2211. * would be ugly in the extreme. So instead we would need to
  2212. * replicate parts of the code in the above functions,
  2213. * simplifying them because we wouldn't actually intend to
  2214. * write out the pages, but rather only collect contiguous
  2215. * logical block extents, call the multi-block allocator, and
  2216. * then update the buffer heads with the block allocations.
  2217. *
  2218. * For now, though, we'll cheat by calling filemap_flush(),
  2219. * which will map the blocks, and start the I/O, but not
  2220. * actually wait for the I/O to complete.
  2221. */
  2222. return filemap_flush(inode->i_mapping);
  2223. }
  2224. /*
  2225. * bmap() is special. It gets used by applications such as lilo and by
  2226. * the swapper to find the on-disk block of a specific piece of data.
  2227. *
  2228. * Naturally, this is dangerous if the block concerned is still in the
  2229. * journal. If somebody makes a swapfile on an ext4 data-journaling
  2230. * filesystem and enables swap, then they may get a nasty shock when the
  2231. * data getting swapped to that swapfile suddenly gets overwritten by
  2232. * the original zero's written out previously to the journal and
  2233. * awaiting writeback in the kernel's buffer cache.
  2234. *
  2235. * So, if we see any bmap calls here on a modified, data-journaled file,
  2236. * take extra steps to flush any blocks which might be in the cache.
  2237. */
  2238. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  2239. {
  2240. struct inode *inode = mapping->host;
  2241. journal_t *journal;
  2242. int err;
  2243. if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
  2244. test_opt(inode->i_sb, DELALLOC)) {
  2245. /*
  2246. * With delalloc we want to sync the file
  2247. * so that we can make sure we allocate
  2248. * blocks for file
  2249. */
  2250. filemap_write_and_wait(mapping);
  2251. }
  2252. if (EXT4_JOURNAL(inode) &&
  2253. ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
  2254. /*
  2255. * This is a REALLY heavyweight approach, but the use of
  2256. * bmap on dirty files is expected to be extremely rare:
  2257. * only if we run lilo or swapon on a freshly made file
  2258. * do we expect this to happen.
  2259. *
  2260. * (bmap requires CAP_SYS_RAWIO so this does not
  2261. * represent an unprivileged user DOS attack --- we'd be
  2262. * in trouble if mortal users could trigger this path at
  2263. * will.)
  2264. *
  2265. * NB. EXT4_STATE_JDATA is not set on files other than
  2266. * regular files. If somebody wants to bmap a directory
  2267. * or symlink and gets confused because the buffer
  2268. * hasn't yet been flushed to disk, they deserve
  2269. * everything they get.
  2270. */
  2271. ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
  2272. journal = EXT4_JOURNAL(inode);
  2273. jbd2_journal_lock_updates(journal);
  2274. err = jbd2_journal_flush(journal);
  2275. jbd2_journal_unlock_updates(journal);
  2276. if (err)
  2277. return 0;
  2278. }
  2279. return generic_block_bmap(mapping, block, ext4_get_block);
  2280. }
  2281. static int ext4_readpage(struct file *file, struct page *page)
  2282. {
  2283. trace_ext4_readpage(page);
  2284. return mpage_readpage(page, ext4_get_block);
  2285. }
  2286. static int
  2287. ext4_readpages(struct file *file, struct address_space *mapping,
  2288. struct list_head *pages, unsigned nr_pages)
  2289. {
  2290. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  2291. }
  2292. static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
  2293. {
  2294. struct buffer_head *head, *bh;
  2295. unsigned int curr_off = 0;
  2296. if (!page_has_buffers(page))
  2297. return;
  2298. head = bh = page_buffers(page);
  2299. do {
  2300. if (offset <= curr_off && test_clear_buffer_uninit(bh)
  2301. && bh->b_private) {
  2302. ext4_free_io_end(bh->b_private);
  2303. bh->b_private = NULL;
  2304. bh->b_end_io = NULL;
  2305. }
  2306. curr_off = curr_off + bh->b_size;
  2307. bh = bh->b_this_page;
  2308. } while (bh != head);
  2309. }
  2310. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  2311. {
  2312. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2313. trace_ext4_invalidatepage(page, offset);
  2314. /*
  2315. * free any io_end structure allocated for buffers to be discarded
  2316. */
  2317. if (ext4_should_dioread_nolock(page->mapping->host))
  2318. ext4_invalidatepage_free_endio(page, offset);
  2319. /*
  2320. * If it's a full truncate we just forget about the pending dirtying
  2321. */
  2322. if (offset == 0)
  2323. ClearPageChecked(page);
  2324. if (journal)
  2325. jbd2_journal_invalidatepage(journal, page, offset);
  2326. else
  2327. block_invalidatepage(page, offset);
  2328. }
  2329. static int ext4_releasepage(struct page *page, gfp_t wait)
  2330. {
  2331. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  2332. trace_ext4_releasepage(page);
  2333. WARN_ON(PageChecked(page));
  2334. if (!page_has_buffers(page))
  2335. return 0;
  2336. if (journal)
  2337. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  2338. else
  2339. return try_to_free_buffers(page);
  2340. }
  2341. /*
  2342. * ext4_get_block used when preparing for a DIO write or buffer write.
  2343. * We allocate an uinitialized extent if blocks haven't been allocated.
  2344. * The extent will be converted to initialized after the IO is complete.
  2345. */
  2346. static int ext4_get_block_write(struct inode *inode, sector_t iblock,
  2347. struct buffer_head *bh_result, int create)
  2348. {
  2349. ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
  2350. inode->i_ino, create);
  2351. return _ext4_get_block(inode, iblock, bh_result,
  2352. EXT4_GET_BLOCKS_IO_CREATE_EXT);
  2353. }
  2354. static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
  2355. ssize_t size, void *private, int ret,
  2356. bool is_async)
  2357. {
  2358. struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
  2359. ext4_io_end_t *io_end = iocb->private;
  2360. struct workqueue_struct *wq;
  2361. unsigned long flags;
  2362. struct ext4_inode_info *ei;
  2363. /* if not async direct IO or dio with 0 bytes write, just return */
  2364. if (!io_end || !size)
  2365. goto out;
  2366. ext_debug("ext4_end_io_dio(): io_end 0x%p"
  2367. "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
  2368. iocb->private, io_end->inode->i_ino, iocb, offset,
  2369. size);
  2370. /* if not aio dio with unwritten extents, just free io and return */
  2371. if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
  2372. ext4_free_io_end(io_end);
  2373. iocb->private = NULL;
  2374. out:
  2375. if (is_async)
  2376. aio_complete(iocb, ret, 0);
  2377. inode_dio_done(inode);
  2378. return;
  2379. }
  2380. io_end->offset = offset;
  2381. io_end->size = size;
  2382. if (is_async) {
  2383. io_end->iocb = iocb;
  2384. io_end->result = ret;
  2385. }
  2386. wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
  2387. /* Add the io_end to per-inode completed aio dio list*/
  2388. ei = EXT4_I(io_end->inode);
  2389. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  2390. list_add_tail(&io_end->list, &ei->i_completed_io_list);
  2391. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  2392. /* queue the work to convert unwritten extents to written */
  2393. queue_work(wq, &io_end->work);
  2394. iocb->private = NULL;
  2395. /* XXX: probably should move into the real I/O completion handler */
  2396. inode_dio_done(inode);
  2397. }
  2398. static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
  2399. {
  2400. ext4_io_end_t *io_end = bh->b_private;
  2401. struct workqueue_struct *wq;
  2402. struct inode *inode;
  2403. unsigned long flags;
  2404. if (!test_clear_buffer_uninit(bh) || !io_end)
  2405. goto out;
  2406. if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
  2407. printk("sb umounted, discard end_io request for inode %lu\n",
  2408. io_end->inode->i_ino);
  2409. ext4_free_io_end(io_end);
  2410. goto out;
  2411. }
  2412. /*
  2413. * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
  2414. * but being more careful is always safe for the future change.
  2415. */
  2416. inode = io_end->inode;
  2417. if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
  2418. io_end->flag |= EXT4_IO_END_UNWRITTEN;
  2419. atomic_inc(&EXT4_I(inode)->i_aiodio_unwritten);
  2420. }
  2421. /* Add the io_end to per-inode completed io list*/
  2422. spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
  2423. list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
  2424. spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
  2425. wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
  2426. /* queue the work to convert unwritten extents to written */
  2427. queue_work(wq, &io_end->work);
  2428. out:
  2429. bh->b_private = NULL;
  2430. bh->b_end_io = NULL;
  2431. clear_buffer_uninit(bh);
  2432. end_buffer_async_write(bh, uptodate);
  2433. }
  2434. static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
  2435. {
  2436. ext4_io_end_t *io_end;
  2437. struct page *page = bh->b_page;
  2438. loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
  2439. size_t size = bh->b_size;
  2440. retry:
  2441. io_end = ext4_init_io_end(inode, GFP_ATOMIC);
  2442. if (!io_end) {
  2443. pr_warn_ratelimited("%s: allocation fail\n", __func__);
  2444. schedule();
  2445. goto retry;
  2446. }
  2447. io_end->offset = offset;
  2448. io_end->size = size;
  2449. /*
  2450. * We need to hold a reference to the page to make sure it
  2451. * doesn't get evicted before ext4_end_io_work() has a chance
  2452. * to convert the extent from written to unwritten.
  2453. */
  2454. io_end->page = page;
  2455. get_page(io_end->page);
  2456. bh->b_private = io_end;
  2457. bh->b_end_io = ext4_end_io_buffer_write;
  2458. return 0;
  2459. }
  2460. /*
  2461. * For ext4 extent files, ext4 will do direct-io write to holes,
  2462. * preallocated extents, and those write extend the file, no need to
  2463. * fall back to buffered IO.
  2464. *
  2465. * For holes, we fallocate those blocks, mark them as uninitialized
  2466. * If those blocks were preallocated, we mark sure they are splited, but
  2467. * still keep the range to write as uninitialized.
  2468. *
  2469. * The unwrritten extents will be converted to written when DIO is completed.
  2470. * For async direct IO, since the IO may still pending when return, we
  2471. * set up an end_io call back function, which will do the conversion
  2472. * when async direct IO completed.
  2473. *
  2474. * If the O_DIRECT write will extend the file then add this inode to the
  2475. * orphan list. So recovery will truncate it back to the original size
  2476. * if the machine crashes during the write.
  2477. *
  2478. */
  2479. static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
  2480. const struct iovec *iov, loff_t offset,
  2481. unsigned long nr_segs)
  2482. {
  2483. struct file *file = iocb->ki_filp;
  2484. struct inode *inode = file->f_mapping->host;
  2485. ssize_t ret;
  2486. size_t count = iov_length(iov, nr_segs);
  2487. loff_t final_size = offset + count;
  2488. if (rw == WRITE && final_size <= inode->i_size) {
  2489. /*
  2490. * We could direct write to holes and fallocate.
  2491. *
  2492. * Allocated blocks to fill the hole are marked as uninitialized
  2493. * to prevent parallel buffered read to expose the stale data
  2494. * before DIO complete the data IO.
  2495. *
  2496. * As to previously fallocated extents, ext4 get_block
  2497. * will just simply mark the buffer mapped but still
  2498. * keep the extents uninitialized.
  2499. *
  2500. * for non AIO case, we will convert those unwritten extents
  2501. * to written after return back from blockdev_direct_IO.
  2502. *
  2503. * for async DIO, the conversion needs to be defered when
  2504. * the IO is completed. The ext4 end_io callback function
  2505. * will be called to take care of the conversion work.
  2506. * Here for async case, we allocate an io_end structure to
  2507. * hook to the iocb.
  2508. */
  2509. iocb->private = NULL;
  2510. EXT4_I(inode)->cur_aio_dio = NULL;
  2511. if (!is_sync_kiocb(iocb)) {
  2512. iocb->private = ext4_init_io_end(inode, GFP_NOFS);
  2513. if (!iocb->private)
  2514. return -ENOMEM;
  2515. /*
  2516. * we save the io structure for current async
  2517. * direct IO, so that later ext4_map_blocks()
  2518. * could flag the io structure whether there
  2519. * is a unwritten extents needs to be converted
  2520. * when IO is completed.
  2521. */
  2522. EXT4_I(inode)->cur_aio_dio = iocb->private;
  2523. }
  2524. ret = __blockdev_direct_IO(rw, iocb, inode,
  2525. inode->i_sb->s_bdev, iov,
  2526. offset, nr_segs,
  2527. ext4_get_block_write,
  2528. ext4_end_io_dio,
  2529. NULL,
  2530. DIO_LOCKING | DIO_SKIP_HOLES);
  2531. if (iocb->private)
  2532. EXT4_I(inode)->cur_aio_dio = NULL;
  2533. /*
  2534. * The io_end structure takes a reference to the inode,
  2535. * that structure needs to be destroyed and the
  2536. * reference to the inode need to be dropped, when IO is
  2537. * complete, even with 0 byte write, or failed.
  2538. *
  2539. * In the successful AIO DIO case, the io_end structure will be
  2540. * desctroyed and the reference to the inode will be dropped
  2541. * after the end_io call back function is called.
  2542. *
  2543. * In the case there is 0 byte write, or error case, since
  2544. * VFS direct IO won't invoke the end_io call back function,
  2545. * we need to free the end_io structure here.
  2546. */
  2547. if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
  2548. ext4_free_io_end(iocb->private);
  2549. iocb->private = NULL;
  2550. } else if (ret > 0 && ext4_test_inode_state(inode,
  2551. EXT4_STATE_DIO_UNWRITTEN)) {
  2552. int err;
  2553. /*
  2554. * for non AIO case, since the IO is already
  2555. * completed, we could do the conversion right here
  2556. */
  2557. err = ext4_convert_unwritten_extents(inode,
  2558. offset, ret);
  2559. if (err < 0)
  2560. ret = err;
  2561. ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
  2562. }
  2563. return ret;
  2564. }
  2565. /* for write the the end of file case, we fall back to old way */
  2566. return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  2567. }
  2568. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  2569. const struct iovec *iov, loff_t offset,
  2570. unsigned long nr_segs)
  2571. {
  2572. struct file *file = iocb->ki_filp;
  2573. struct inode *inode = file->f_mapping->host;
  2574. ssize_t ret;
  2575. trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
  2576. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  2577. ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
  2578. else
  2579. ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
  2580. trace_ext4_direct_IO_exit(inode, offset,
  2581. iov_length(iov, nr_segs), rw, ret);
  2582. return ret;
  2583. }
  2584. /*
  2585. * Pages can be marked dirty completely asynchronously from ext4's journalling
  2586. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  2587. * much here because ->set_page_dirty is called under VFS locks. The page is
  2588. * not necessarily locked.
  2589. *
  2590. * We cannot just dirty the page and leave attached buffers clean, because the
  2591. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  2592. * or jbddirty because all the journalling code will explode.
  2593. *
  2594. * So what we do is to mark the page "pending dirty" and next time writepage
  2595. * is called, propagate that into the buffers appropriately.
  2596. */
  2597. static int ext4_journalled_set_page_dirty(struct page *page)
  2598. {
  2599. SetPageChecked(page);
  2600. return __set_page_dirty_nobuffers(page);
  2601. }
  2602. static const struct address_space_operations ext4_ordered_aops = {
  2603. .readpage = ext4_readpage,
  2604. .readpages = ext4_readpages,
  2605. .writepage = ext4_writepage,
  2606. .write_begin = ext4_write_begin,
  2607. .write_end = ext4_ordered_write_end,
  2608. .bmap = ext4_bmap,
  2609. .invalidatepage = ext4_invalidatepage,
  2610. .releasepage = ext4_releasepage,
  2611. .direct_IO = ext4_direct_IO,
  2612. .migratepage = buffer_migrate_page,
  2613. .is_partially_uptodate = block_is_partially_uptodate,
  2614. .error_remove_page = generic_error_remove_page,
  2615. };
  2616. static const struct address_space_operations ext4_writeback_aops = {
  2617. .readpage = ext4_readpage,
  2618. .readpages = ext4_readpages,
  2619. .writepage = ext4_writepage,
  2620. .write_begin = ext4_write_begin,
  2621. .write_end = ext4_writeback_write_end,
  2622. .bmap = ext4_bmap,
  2623. .invalidatepage = ext4_invalidatepage,
  2624. .releasepage = ext4_releasepage,
  2625. .direct_IO = ext4_direct_IO,
  2626. .migratepage = buffer_migrate_page,
  2627. .is_partially_uptodate = block_is_partially_uptodate,
  2628. .error_remove_page = generic_error_remove_page,
  2629. };
  2630. static const struct address_space_operations ext4_journalled_aops = {
  2631. .readpage = ext4_readpage,
  2632. .readpages = ext4_readpages,
  2633. .writepage = ext4_writepage,
  2634. .write_begin = ext4_write_begin,
  2635. .write_end = ext4_journalled_write_end,
  2636. .set_page_dirty = ext4_journalled_set_page_dirty,
  2637. .bmap = ext4_bmap,
  2638. .invalidatepage = ext4_invalidatepage,
  2639. .releasepage = ext4_releasepage,
  2640. .is_partially_uptodate = block_is_partially_uptodate,
  2641. .error_remove_page = generic_error_remove_page,
  2642. };
  2643. static const struct address_space_operations ext4_da_aops = {
  2644. .readpage = ext4_readpage,
  2645. .readpages = ext4_readpages,
  2646. .writepage = ext4_writepage,
  2647. .writepages = ext4_da_writepages,
  2648. .write_begin = ext4_da_write_begin,
  2649. .write_end = ext4_da_write_end,
  2650. .bmap = ext4_bmap,
  2651. .invalidatepage = ext4_da_invalidatepage,
  2652. .releasepage = ext4_releasepage,
  2653. .direct_IO = ext4_direct_IO,
  2654. .migratepage = buffer_migrate_page,
  2655. .is_partially_uptodate = block_is_partially_uptodate,
  2656. .error_remove_page = generic_error_remove_page,
  2657. };
  2658. void ext4_set_aops(struct inode *inode)
  2659. {
  2660. if (ext4_should_order_data(inode) &&
  2661. test_opt(inode->i_sb, DELALLOC))
  2662. inode->i_mapping->a_ops = &ext4_da_aops;
  2663. else if (ext4_should_order_data(inode))
  2664. inode->i_mapping->a_ops = &ext4_ordered_aops;
  2665. else if (ext4_should_writeback_data(inode) &&
  2666. test_opt(inode->i_sb, DELALLOC))
  2667. inode->i_mapping->a_ops = &ext4_da_aops;
  2668. else if (ext4_should_writeback_data(inode))
  2669. inode->i_mapping->a_ops = &ext4_writeback_aops;
  2670. else
  2671. inode->i_mapping->a_ops = &ext4_journalled_aops;
  2672. }
  2673. /*
  2674. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  2675. * up to the end of the block which corresponds to `from'.
  2676. * This required during truncate. We need to physically zero the tail end
  2677. * of that block so it doesn't yield old data if the file is later grown.
  2678. */
  2679. int ext4_block_truncate_page(handle_t *handle,
  2680. struct address_space *mapping, loff_t from)
  2681. {
  2682. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  2683. unsigned length;
  2684. unsigned blocksize;
  2685. struct inode *inode = mapping->host;
  2686. blocksize = inode->i_sb->s_blocksize;
  2687. length = blocksize - (offset & (blocksize - 1));
  2688. return ext4_block_zero_page_range(handle, mapping, from, length);
  2689. }
  2690. /*
  2691. * ext4_block_zero_page_range() zeros out a mapping of length 'length'
  2692. * starting from file offset 'from'. The range to be zero'd must
  2693. * be contained with in one block. If the specified range exceeds
  2694. * the end of the block it will be shortened to end of the block
  2695. * that cooresponds to 'from'
  2696. */
  2697. int ext4_block_zero_page_range(handle_t *handle,
  2698. struct address_space *mapping, loff_t from, loff_t length)
  2699. {
  2700. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  2701. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  2702. unsigned blocksize, max, pos;
  2703. ext4_lblk_t iblock;
  2704. struct inode *inode = mapping->host;
  2705. struct buffer_head *bh;
  2706. struct page *page;
  2707. int err = 0;
  2708. page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
  2709. mapping_gfp_mask(mapping) & ~__GFP_FS);
  2710. if (!page)
  2711. return -EINVAL;
  2712. blocksize = inode->i_sb->s_blocksize;
  2713. max = blocksize - (offset & (blocksize - 1));
  2714. /*
  2715. * correct length if it does not fall between
  2716. * 'from' and the end of the block
  2717. */
  2718. if (length > max || length < 0)
  2719. length = max;
  2720. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  2721. if (!page_has_buffers(page))
  2722. create_empty_buffers(page, blocksize, 0);
  2723. /* Find the buffer that contains "offset" */
  2724. bh = page_buffers(page);
  2725. pos = blocksize;
  2726. while (offset >= pos) {
  2727. bh = bh->b_this_page;
  2728. iblock++;
  2729. pos += blocksize;
  2730. }
  2731. err = 0;
  2732. if (buffer_freed(bh)) {
  2733. BUFFER_TRACE(bh, "freed: skip");
  2734. goto unlock;
  2735. }
  2736. if (!buffer_mapped(bh)) {
  2737. BUFFER_TRACE(bh, "unmapped");
  2738. ext4_get_block(inode, iblock, bh, 0);
  2739. /* unmapped? It's a hole - nothing to do */
  2740. if (!buffer_mapped(bh)) {
  2741. BUFFER_TRACE(bh, "still unmapped");
  2742. goto unlock;
  2743. }
  2744. }
  2745. /* Ok, it's mapped. Make sure it's up-to-date */
  2746. if (PageUptodate(page))
  2747. set_buffer_uptodate(bh);
  2748. if (!buffer_uptodate(bh)) {
  2749. err = -EIO;
  2750. ll_rw_block(READ, 1, &bh);
  2751. wait_on_buffer(bh);
  2752. /* Uhhuh. Read error. Complain and punt. */
  2753. if (!buffer_uptodate(bh))
  2754. goto unlock;
  2755. }
  2756. if (ext4_should_journal_data(inode)) {
  2757. BUFFER_TRACE(bh, "get write access");
  2758. err = ext4_journal_get_write_access(handle, bh);
  2759. if (err)
  2760. goto unlock;
  2761. }
  2762. zero_user(page, offset, length);
  2763. BUFFER_TRACE(bh, "zeroed end of block");
  2764. err = 0;
  2765. if (ext4_should_journal_data(inode)) {
  2766. err = ext4_handle_dirty_metadata(handle, inode, bh);
  2767. } else {
  2768. if (ext4_should_order_data(inode) && EXT4_I(inode)->jinode)
  2769. err = ext4_jbd2_file_inode(handle, inode);
  2770. mark_buffer_dirty(bh);
  2771. }
  2772. unlock:
  2773. unlock_page(page);
  2774. page_cache_release(page);
  2775. return err;
  2776. }
  2777. int ext4_can_truncate(struct inode *inode)
  2778. {
  2779. if (S_ISREG(inode->i_mode))
  2780. return 1;
  2781. if (S_ISDIR(inode->i_mode))
  2782. return 1;
  2783. if (S_ISLNK(inode->i_mode))
  2784. return !ext4_inode_is_fast_symlink(inode);
  2785. return 0;
  2786. }
  2787. /*
  2788. * ext4_punch_hole: punches a hole in a file by releaseing the blocks
  2789. * associated with the given offset and length
  2790. *
  2791. * @inode: File inode
  2792. * @offset: The offset where the hole will begin
  2793. * @len: The length of the hole
  2794. *
  2795. * Returns: 0 on sucess or negative on failure
  2796. */
  2797. int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
  2798. {
  2799. struct inode *inode = file->f_path.dentry->d_inode;
  2800. if (!S_ISREG(inode->i_mode))
  2801. return -ENOTSUPP;
  2802. if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  2803. /* TODO: Add support for non extent hole punching */
  2804. return -ENOTSUPP;
  2805. }
  2806. return ext4_ext_punch_hole(file, offset, length);
  2807. }
  2808. /*
  2809. * ext4_truncate()
  2810. *
  2811. * We block out ext4_get_block() block instantiations across the entire
  2812. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  2813. * simultaneously on behalf of the same inode.
  2814. *
  2815. * As we work through the truncate and commmit bits of it to the journal there
  2816. * is one core, guiding principle: the file's tree must always be consistent on
  2817. * disk. We must be able to restart the truncate after a crash.
  2818. *
  2819. * The file's tree may be transiently inconsistent in memory (although it
  2820. * probably isn't), but whenever we close off and commit a journal transaction,
  2821. * the contents of (the filesystem + the journal) must be consistent and
  2822. * restartable. It's pretty simple, really: bottom up, right to left (although
  2823. * left-to-right works OK too).
  2824. *
  2825. * Note that at recovery time, journal replay occurs *before* the restart of
  2826. * truncate against the orphan inode list.
  2827. *
  2828. * The committed inode has the new, desired i_size (which is the same as
  2829. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  2830. * that this inode's truncate did not complete and it will again call
  2831. * ext4_truncate() to have another go. So there will be instantiated blocks
  2832. * to the right of the truncation point in a crashed ext4 filesystem. But
  2833. * that's fine - as long as they are linked from the inode, the post-crash
  2834. * ext4_truncate() run will find them and release them.
  2835. */
  2836. void ext4_truncate(struct inode *inode)
  2837. {
  2838. trace_ext4_truncate_enter(inode);
  2839. if (!ext4_can_truncate(inode))
  2840. return;
  2841. ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
  2842. if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
  2843. ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
  2844. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
  2845. ext4_ext_truncate(inode);
  2846. else
  2847. ext4_ind_truncate(inode);
  2848. trace_ext4_truncate_exit(inode);
  2849. }
  2850. /*
  2851. * ext4_get_inode_loc returns with an extra refcount against the inode's
  2852. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2853. * data in memory that is needed to recreate the on-disk version of this
  2854. * inode.
  2855. */
  2856. static int __ext4_get_inode_loc(struct inode *inode,
  2857. struct ext4_iloc *iloc, int in_mem)
  2858. {
  2859. struct ext4_group_desc *gdp;
  2860. struct buffer_head *bh;
  2861. struct super_block *sb = inode->i_sb;
  2862. ext4_fsblk_t block;
  2863. int inodes_per_block, inode_offset;
  2864. iloc->bh = NULL;
  2865. if (!ext4_valid_inum(sb, inode->i_ino))
  2866. return -EIO;
  2867. iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
  2868. gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
  2869. if (!gdp)
  2870. return -EIO;
  2871. /*
  2872. * Figure out the offset within the block group inode table
  2873. */
  2874. inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
  2875. inode_offset = ((inode->i_ino - 1) %
  2876. EXT4_INODES_PER_GROUP(sb));
  2877. block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
  2878. iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
  2879. bh = sb_getblk(sb, block);
  2880. if (!bh) {
  2881. EXT4_ERROR_INODE_BLOCK(inode, block,
  2882. "unable to read itable block");
  2883. return -EIO;
  2884. }
  2885. if (!buffer_uptodate(bh)) {
  2886. lock_buffer(bh);
  2887. /*
  2888. * If the buffer has the write error flag, we have failed
  2889. * to write out another inode in the same block. In this
  2890. * case, we don't have to read the block because we may
  2891. * read the old inode data successfully.
  2892. */
  2893. if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
  2894. set_buffer_uptodate(bh);
  2895. if (buffer_uptodate(bh)) {
  2896. /* someone brought it uptodate while we waited */
  2897. unlock_buffer(bh);
  2898. goto has_buffer;
  2899. }
  2900. /*
  2901. * If we have all information of the inode in memory and this
  2902. * is the only valid inode in the block, we need not read the
  2903. * block.
  2904. */
  2905. if (in_mem) {
  2906. struct buffer_head *bitmap_bh;
  2907. int i, start;
  2908. start = inode_offset & ~(inodes_per_block - 1);
  2909. /* Is the inode bitmap in cache? */
  2910. bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
  2911. if (!bitmap_bh)
  2912. goto make_io;
  2913. /*
  2914. * If the inode bitmap isn't in cache then the
  2915. * optimisation may end up performing two reads instead
  2916. * of one, so skip it.
  2917. */
  2918. if (!buffer_uptodate(bitmap_bh)) {
  2919. brelse(bitmap_bh);
  2920. goto make_io;
  2921. }
  2922. for (i = start; i < start + inodes_per_block; i++) {
  2923. if (i == inode_offset)
  2924. continue;
  2925. if (ext4_test_bit(i, bitmap_bh->b_data))
  2926. break;
  2927. }
  2928. brelse(bitmap_bh);
  2929. if (i == start + inodes_per_block) {
  2930. /* all other inodes are free, so skip I/O */
  2931. memset(bh->b_data, 0, bh->b_size);
  2932. set_buffer_uptodate(bh);
  2933. unlock_buffer(bh);
  2934. goto has_buffer;
  2935. }
  2936. }
  2937. make_io:
  2938. /*
  2939. * If we need to do any I/O, try to pre-readahead extra
  2940. * blocks from the inode table.
  2941. */
  2942. if (EXT4_SB(sb)->s_inode_readahead_blks) {
  2943. ext4_fsblk_t b, end, table;
  2944. unsigned num;
  2945. table = ext4_inode_table(sb, gdp);
  2946. /* s_inode_readahead_blks is always a power of 2 */
  2947. b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
  2948. if (table > b)
  2949. b = table;
  2950. end = b + EXT4_SB(sb)->s_inode_readahead_blks;
  2951. num = EXT4_INODES_PER_GROUP(sb);
  2952. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2953. EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
  2954. num -= ext4_itable_unused_count(sb, gdp);
  2955. table += num / inodes_per_block;
  2956. if (end > table)
  2957. end = table;
  2958. while (b <= end)
  2959. sb_breadahead(sb, b++);
  2960. }
  2961. /*
  2962. * There are other valid inodes in the buffer, this inode
  2963. * has in-inode xattrs, or we don't have this inode in memory.
  2964. * Read the block from disk.
  2965. */
  2966. trace_ext4_load_inode(inode);
  2967. get_bh(bh);
  2968. bh->b_end_io = end_buffer_read_sync;
  2969. submit_bh(READ | REQ_META | REQ_PRIO, bh);
  2970. wait_on_buffer(bh);
  2971. if (!buffer_uptodate(bh)) {
  2972. EXT4_ERROR_INODE_BLOCK(inode, block,
  2973. "unable to read itable block");
  2974. brelse(bh);
  2975. return -EIO;
  2976. }
  2977. }
  2978. has_buffer:
  2979. iloc->bh = bh;
  2980. return 0;
  2981. }
  2982. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  2983. {
  2984. /* We have all inode data except xattrs in memory here. */
  2985. return __ext4_get_inode_loc(inode, iloc,
  2986. !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
  2987. }
  2988. void ext4_set_inode_flags(struct inode *inode)
  2989. {
  2990. unsigned int flags = EXT4_I(inode)->i_flags;
  2991. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2992. if (flags & EXT4_SYNC_FL)
  2993. inode->i_flags |= S_SYNC;
  2994. if (flags & EXT4_APPEND_FL)
  2995. inode->i_flags |= S_APPEND;
  2996. if (flags & EXT4_IMMUTABLE_FL)
  2997. inode->i_flags |= S_IMMUTABLE;
  2998. if (flags & EXT4_NOATIME_FL)
  2999. inode->i_flags |= S_NOATIME;
  3000. if (flags & EXT4_DIRSYNC_FL)
  3001. inode->i_flags |= S_DIRSYNC;
  3002. }
  3003. /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
  3004. void ext4_get_inode_flags(struct ext4_inode_info *ei)
  3005. {
  3006. unsigned int vfs_fl;
  3007. unsigned long old_fl, new_fl;
  3008. do {
  3009. vfs_fl = ei->vfs_inode.i_flags;
  3010. old_fl = ei->i_flags;
  3011. new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
  3012. EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
  3013. EXT4_DIRSYNC_FL);
  3014. if (vfs_fl & S_SYNC)
  3015. new_fl |= EXT4_SYNC_FL;
  3016. if (vfs_fl & S_APPEND)
  3017. new_fl |= EXT4_APPEND_FL;
  3018. if (vfs_fl & S_IMMUTABLE)
  3019. new_fl |= EXT4_IMMUTABLE_FL;
  3020. if (vfs_fl & S_NOATIME)
  3021. new_fl |= EXT4_NOATIME_FL;
  3022. if (vfs_fl & S_DIRSYNC)
  3023. new_fl |= EXT4_DIRSYNC_FL;
  3024. } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
  3025. }
  3026. static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
  3027. struct ext4_inode_info *ei)
  3028. {
  3029. blkcnt_t i_blocks ;
  3030. struct inode *inode = &(ei->vfs_inode);
  3031. struct super_block *sb = inode->i_sb;
  3032. if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3033. EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
  3034. /* we are using combined 48 bit field */
  3035. i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
  3036. le32_to_cpu(raw_inode->i_blocks_lo);
  3037. if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
  3038. /* i_blocks represent file system block size */
  3039. return i_blocks << (inode->i_blkbits - 9);
  3040. } else {
  3041. return i_blocks;
  3042. }
  3043. } else {
  3044. return le32_to_cpu(raw_inode->i_blocks_lo);
  3045. }
  3046. }
  3047. struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
  3048. {
  3049. struct ext4_iloc iloc;
  3050. struct ext4_inode *raw_inode;
  3051. struct ext4_inode_info *ei;
  3052. struct inode *inode;
  3053. journal_t *journal = EXT4_SB(sb)->s_journal;
  3054. long ret;
  3055. int block;
  3056. inode = iget_locked(sb, ino);
  3057. if (!inode)
  3058. return ERR_PTR(-ENOMEM);
  3059. if (!(inode->i_state & I_NEW))
  3060. return inode;
  3061. ei = EXT4_I(inode);
  3062. iloc.bh = NULL;
  3063. ret = __ext4_get_inode_loc(inode, &iloc, 0);
  3064. if (ret < 0)
  3065. goto bad_inode;
  3066. raw_inode = ext4_raw_inode(&iloc);
  3067. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  3068. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  3069. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  3070. if (!(test_opt(inode->i_sb, NO_UID32))) {
  3071. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  3072. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  3073. }
  3074. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  3075. ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
  3076. ei->i_dir_start_lookup = 0;
  3077. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  3078. /* We now have enough fields to check if the inode was active or not.
  3079. * This is needed because nfsd might try to access dead inodes
  3080. * the test is that same one that e2fsck uses
  3081. * NeilBrown 1999oct15
  3082. */
  3083. if (inode->i_nlink == 0) {
  3084. if (inode->i_mode == 0 ||
  3085. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  3086. /* this inode is deleted */
  3087. ret = -ESTALE;
  3088. goto bad_inode;
  3089. }
  3090. /* The only unlinked inodes we let through here have
  3091. * valid i_mode and are being read by the orphan
  3092. * recovery code: that's fine, we're about to complete
  3093. * the process of deleting those. */
  3094. }
  3095. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  3096. inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
  3097. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
  3098. if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
  3099. ei->i_file_acl |=
  3100. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  3101. inode->i_size = ext4_isize(raw_inode);
  3102. ei->i_disksize = inode->i_size;
  3103. #ifdef CONFIG_QUOTA
  3104. ei->i_reserved_quota = 0;
  3105. #endif
  3106. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  3107. ei->i_block_group = iloc.block_group;
  3108. ei->i_last_alloc_group = ~0;
  3109. /*
  3110. * NOTE! The in-memory inode i_data array is in little-endian order
  3111. * even on big-endian machines: we do NOT byteswap the block numbers!
  3112. */
  3113. for (block = 0; block < EXT4_N_BLOCKS; block++)
  3114. ei->i_data[block] = raw_inode->i_block[block];
  3115. INIT_LIST_HEAD(&ei->i_orphan);
  3116. /*
  3117. * Set transaction id's of transactions that have to be committed
  3118. * to finish f[data]sync. We set them to currently running transaction
  3119. * as we cannot be sure that the inode or some of its metadata isn't
  3120. * part of the transaction - the inode could have been reclaimed and
  3121. * now it is reread from disk.
  3122. */
  3123. if (journal) {
  3124. transaction_t *transaction;
  3125. tid_t tid;
  3126. read_lock(&journal->j_state_lock);
  3127. if (journal->j_running_transaction)
  3128. transaction = journal->j_running_transaction;
  3129. else
  3130. transaction = journal->j_committing_transaction;
  3131. if (transaction)
  3132. tid = transaction->t_tid;
  3133. else
  3134. tid = journal->j_commit_sequence;
  3135. read_unlock(&journal->j_state_lock);
  3136. ei->i_sync_tid = tid;
  3137. ei->i_datasync_tid = tid;
  3138. }
  3139. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3140. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  3141. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  3142. EXT4_INODE_SIZE(inode->i_sb)) {
  3143. ret = -EIO;
  3144. goto bad_inode;
  3145. }
  3146. if (ei->i_extra_isize == 0) {
  3147. /* The extra space is currently unused. Use it. */
  3148. ei->i_extra_isize = sizeof(struct ext4_inode) -
  3149. EXT4_GOOD_OLD_INODE_SIZE;
  3150. } else {
  3151. __le32 *magic = (void *)raw_inode +
  3152. EXT4_GOOD_OLD_INODE_SIZE +
  3153. ei->i_extra_isize;
  3154. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  3155. ext4_set_inode_state(inode, EXT4_STATE_XATTR);
  3156. }
  3157. } else
  3158. ei->i_extra_isize = 0;
  3159. EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
  3160. EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
  3161. EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
  3162. EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
  3163. inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
  3164. if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  3165. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  3166. inode->i_version |=
  3167. (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
  3168. }
  3169. ret = 0;
  3170. if (ei->i_file_acl &&
  3171. !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
  3172. EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
  3173. ei->i_file_acl);
  3174. ret = -EIO;
  3175. goto bad_inode;
  3176. } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
  3177. if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  3178. (S_ISLNK(inode->i_mode) &&
  3179. !ext4_inode_is_fast_symlink(inode)))
  3180. /* Validate extent which is part of inode */
  3181. ret = ext4_ext_check_inode(inode);
  3182. } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  3183. (S_ISLNK(inode->i_mode) &&
  3184. !ext4_inode_is_fast_symlink(inode))) {
  3185. /* Validate block references which are part of inode */
  3186. ret = ext4_ind_check_inode(inode);
  3187. }
  3188. if (ret)
  3189. goto bad_inode;
  3190. if (S_ISREG(inode->i_mode)) {
  3191. inode->i_op = &ext4_file_inode_operations;
  3192. inode->i_fop = &ext4_file_operations;
  3193. ext4_set_aops(inode);
  3194. } else if (S_ISDIR(inode->i_mode)) {
  3195. inode->i_op = &ext4_dir_inode_operations;
  3196. inode->i_fop = &ext4_dir_operations;
  3197. } else if (S_ISLNK(inode->i_mode)) {
  3198. if (ext4_inode_is_fast_symlink(inode)) {
  3199. inode->i_op = &ext4_fast_symlink_inode_operations;
  3200. nd_terminate_link(ei->i_data, inode->i_size,
  3201. sizeof(ei->i_data) - 1);
  3202. } else {
  3203. inode->i_op = &ext4_symlink_inode_operations;
  3204. ext4_set_aops(inode);
  3205. }
  3206. } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
  3207. S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
  3208. inode->i_op = &ext4_special_inode_operations;
  3209. if (raw_inode->i_block[0])
  3210. init_special_inode(inode, inode->i_mode,
  3211. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  3212. else
  3213. init_special_inode(inode, inode->i_mode,
  3214. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  3215. } else {
  3216. ret = -EIO;
  3217. EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
  3218. goto bad_inode;
  3219. }
  3220. brelse(iloc.bh);
  3221. ext4_set_inode_flags(inode);
  3222. unlock_new_inode(inode);
  3223. return inode;
  3224. bad_inode:
  3225. brelse(iloc.bh);
  3226. iget_failed(inode);
  3227. return ERR_PTR(ret);
  3228. }
  3229. static int ext4_inode_blocks_set(handle_t *handle,
  3230. struct ext4_inode *raw_inode,
  3231. struct ext4_inode_info *ei)
  3232. {
  3233. struct inode *inode = &(ei->vfs_inode);
  3234. u64 i_blocks = inode->i_blocks;
  3235. struct super_block *sb = inode->i_sb;
  3236. if (i_blocks <= ~0U) {
  3237. /*
  3238. * i_blocks can be represnted in a 32 bit variable
  3239. * as multiple of 512 bytes
  3240. */
  3241. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3242. raw_inode->i_blocks_high = 0;
  3243. ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3244. return 0;
  3245. }
  3246. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
  3247. return -EFBIG;
  3248. if (i_blocks <= 0xffffffffffffULL) {
  3249. /*
  3250. * i_blocks can be represented in a 48 bit variable
  3251. * as multiple of 512 bytes
  3252. */
  3253. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3254. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  3255. ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3256. } else {
  3257. ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
  3258. /* i_block is stored in file system block size */
  3259. i_blocks = i_blocks >> (inode->i_blkbits - 9);
  3260. raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
  3261. raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
  3262. }
  3263. return 0;
  3264. }
  3265. /*
  3266. * Post the struct inode info into an on-disk inode location in the
  3267. * buffer-cache. This gobbles the caller's reference to the
  3268. * buffer_head in the inode location struct.
  3269. *
  3270. * The caller must have write access to iloc->bh.
  3271. */
  3272. static int ext4_do_update_inode(handle_t *handle,
  3273. struct inode *inode,
  3274. struct ext4_iloc *iloc)
  3275. {
  3276. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  3277. struct ext4_inode_info *ei = EXT4_I(inode);
  3278. struct buffer_head *bh = iloc->bh;
  3279. int err = 0, rc, block;
  3280. /* For fields not not tracking in the in-memory inode,
  3281. * initialise them to zero for new inodes. */
  3282. if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
  3283. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  3284. ext4_get_inode_flags(ei);
  3285. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  3286. if (!(test_opt(inode->i_sb, NO_UID32))) {
  3287. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  3288. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  3289. /*
  3290. * Fix up interoperability with old kernels. Otherwise, old inodes get
  3291. * re-used with the upper 16 bits of the uid/gid intact
  3292. */
  3293. if (!ei->i_dtime) {
  3294. raw_inode->i_uid_high =
  3295. cpu_to_le16(high_16_bits(inode->i_uid));
  3296. raw_inode->i_gid_high =
  3297. cpu_to_le16(high_16_bits(inode->i_gid));
  3298. } else {
  3299. raw_inode->i_uid_high = 0;
  3300. raw_inode->i_gid_high = 0;
  3301. }
  3302. } else {
  3303. raw_inode->i_uid_low =
  3304. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  3305. raw_inode->i_gid_low =
  3306. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  3307. raw_inode->i_uid_high = 0;
  3308. raw_inode->i_gid_high = 0;
  3309. }
  3310. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  3311. EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
  3312. EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
  3313. EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
  3314. EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
  3315. if (ext4_inode_blocks_set(handle, raw_inode, ei))
  3316. goto out_brelse;
  3317. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  3318. raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
  3319. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  3320. cpu_to_le32(EXT4_OS_HURD))
  3321. raw_inode->i_file_acl_high =
  3322. cpu_to_le16(ei->i_file_acl >> 32);
  3323. raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
  3324. ext4_isize_set(raw_inode, ei->i_disksize);
  3325. if (ei->i_disksize > 0x7fffffffULL) {
  3326. struct super_block *sb = inode->i_sb;
  3327. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  3328. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  3329. EXT4_SB(sb)->s_es->s_rev_level ==
  3330. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  3331. /* If this is the first large file
  3332. * created, add a flag to the superblock.
  3333. */
  3334. err = ext4_journal_get_write_access(handle,
  3335. EXT4_SB(sb)->s_sbh);
  3336. if (err)
  3337. goto out_brelse;
  3338. ext4_update_dynamic_rev(sb);
  3339. EXT4_SET_RO_COMPAT_FEATURE(sb,
  3340. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  3341. sb->s_dirt = 1;
  3342. ext4_handle_sync(handle);
  3343. err = ext4_handle_dirty_metadata(handle, NULL,
  3344. EXT4_SB(sb)->s_sbh);
  3345. }
  3346. }
  3347. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  3348. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  3349. if (old_valid_dev(inode->i_rdev)) {
  3350. raw_inode->i_block[0] =
  3351. cpu_to_le32(old_encode_dev(inode->i_rdev));
  3352. raw_inode->i_block[1] = 0;
  3353. } else {
  3354. raw_inode->i_block[0] = 0;
  3355. raw_inode->i_block[1] =
  3356. cpu_to_le32(new_encode_dev(inode->i_rdev));
  3357. raw_inode->i_block[2] = 0;
  3358. }
  3359. } else
  3360. for (block = 0; block < EXT4_N_BLOCKS; block++)
  3361. raw_inode->i_block[block] = ei->i_data[block];
  3362. raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
  3363. if (ei->i_extra_isize) {
  3364. if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
  3365. raw_inode->i_version_hi =
  3366. cpu_to_le32(inode->i_version >> 32);
  3367. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  3368. }
  3369. BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
  3370. rc = ext4_handle_dirty_metadata(handle, NULL, bh);
  3371. if (!err)
  3372. err = rc;
  3373. ext4_clear_inode_state(inode, EXT4_STATE_NEW);
  3374. ext4_update_inode_fsync_trans(handle, inode, 0);
  3375. out_brelse:
  3376. brelse(bh);
  3377. ext4_std_error(inode->i_sb, err);
  3378. return err;
  3379. }
  3380. /*
  3381. * ext4_write_inode()
  3382. *
  3383. * We are called from a few places:
  3384. *
  3385. * - Within generic_file_write() for O_SYNC files.
  3386. * Here, there will be no transaction running. We wait for any running
  3387. * trasnaction to commit.
  3388. *
  3389. * - Within sys_sync(), kupdate and such.
  3390. * We wait on commit, if tol to.
  3391. *
  3392. * - Within prune_icache() (PF_MEMALLOC == true)
  3393. * Here we simply return. We can't afford to block kswapd on the
  3394. * journal commit.
  3395. *
  3396. * In all cases it is actually safe for us to return without doing anything,
  3397. * because the inode has been copied into a raw inode buffer in
  3398. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  3399. * knfsd.
  3400. *
  3401. * Note that we are absolutely dependent upon all inode dirtiers doing the
  3402. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  3403. * which we are interested.
  3404. *
  3405. * It would be a bug for them to not do this. The code:
  3406. *
  3407. * mark_inode_dirty(inode)
  3408. * stuff();
  3409. * inode->i_size = expr;
  3410. *
  3411. * is in error because a kswapd-driven write_inode() could occur while
  3412. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  3413. * will no longer be on the superblock's dirty inode list.
  3414. */
  3415. int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
  3416. {
  3417. int err;
  3418. if (current->flags & PF_MEMALLOC)
  3419. return 0;
  3420. if (EXT4_SB(inode->i_sb)->s_journal) {
  3421. if (ext4_journal_current_handle()) {
  3422. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  3423. dump_stack();
  3424. return -EIO;
  3425. }
  3426. if (wbc->sync_mode != WB_SYNC_ALL)
  3427. return 0;
  3428. err = ext4_force_commit(inode->i_sb);
  3429. } else {
  3430. struct ext4_iloc iloc;
  3431. err = __ext4_get_inode_loc(inode, &iloc, 0);
  3432. if (err)
  3433. return err;
  3434. if (wbc->sync_mode == WB_SYNC_ALL)
  3435. sync_dirty_buffer(iloc.bh);
  3436. if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
  3437. EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
  3438. "IO error syncing inode");
  3439. err = -EIO;
  3440. }
  3441. brelse(iloc.bh);
  3442. }
  3443. return err;
  3444. }
  3445. /*
  3446. * ext4_setattr()
  3447. *
  3448. * Called from notify_change.
  3449. *
  3450. * We want to trap VFS attempts to truncate the file as soon as
  3451. * possible. In particular, we want to make sure that when the VFS
  3452. * shrinks i_size, we put the inode on the orphan list and modify
  3453. * i_disksize immediately, so that during the subsequent flushing of
  3454. * dirty pages and freeing of disk blocks, we can guarantee that any
  3455. * commit will leave the blocks being flushed in an unused state on
  3456. * disk. (On recovery, the inode will get truncated and the blocks will
  3457. * be freed, so we have a strong guarantee that no future commit will
  3458. * leave these blocks visible to the user.)
  3459. *
  3460. * Another thing we have to assure is that if we are in ordered mode
  3461. * and inode is still attached to the committing transaction, we must
  3462. * we start writeout of all the dirty pages which are being truncated.
  3463. * This way we are sure that all the data written in the previous
  3464. * transaction are already on disk (truncate waits for pages under
  3465. * writeback).
  3466. *
  3467. * Called with inode->i_mutex down.
  3468. */
  3469. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  3470. {
  3471. struct inode *inode = dentry->d_inode;
  3472. int error, rc = 0;
  3473. int orphan = 0;
  3474. const unsigned int ia_valid = attr->ia_valid;
  3475. error = inode_change_ok(inode, attr);
  3476. if (error)
  3477. return error;
  3478. if (is_quota_modification(inode, attr))
  3479. dquot_initialize(inode);
  3480. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  3481. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  3482. handle_t *handle;
  3483. /* (user+group)*(old+new) structure, inode write (sb,
  3484. * inode block, ? - but truncate inode update has it) */
  3485. handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
  3486. EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
  3487. if (IS_ERR(handle)) {
  3488. error = PTR_ERR(handle);
  3489. goto err_out;
  3490. }
  3491. error = dquot_transfer(inode, attr);
  3492. if (error) {
  3493. ext4_journal_stop(handle);
  3494. return error;
  3495. }
  3496. /* Update corresponding info in inode so that everything is in
  3497. * one transaction */
  3498. if (attr->ia_valid & ATTR_UID)
  3499. inode->i_uid = attr->ia_uid;
  3500. if (attr->ia_valid & ATTR_GID)
  3501. inode->i_gid = attr->ia_gid;
  3502. error = ext4_mark_inode_dirty(handle, inode);
  3503. ext4_journal_stop(handle);
  3504. }
  3505. if (attr->ia_valid & ATTR_SIZE) {
  3506. inode_dio_wait(inode);
  3507. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
  3508. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  3509. if (attr->ia_size > sbi->s_bitmap_maxbytes)
  3510. return -EFBIG;
  3511. }
  3512. }
  3513. if (S_ISREG(inode->i_mode) &&
  3514. attr->ia_valid & ATTR_SIZE &&
  3515. (attr->ia_size < inode->i_size)) {
  3516. handle_t *handle;
  3517. handle = ext4_journal_start(inode, 3);
  3518. if (IS_ERR(handle)) {
  3519. error = PTR_ERR(handle);
  3520. goto err_out;
  3521. }
  3522. if (ext4_handle_valid(handle)) {
  3523. error = ext4_orphan_add(handle, inode);
  3524. orphan = 1;
  3525. }
  3526. EXT4_I(inode)->i_disksize = attr->ia_size;
  3527. rc = ext4_mark_inode_dirty(handle, inode);
  3528. if (!error)
  3529. error = rc;
  3530. ext4_journal_stop(handle);
  3531. if (ext4_should_order_data(inode)) {
  3532. error = ext4_begin_ordered_truncate(inode,
  3533. attr->ia_size);
  3534. if (error) {
  3535. /* Do as much error cleanup as possible */
  3536. handle = ext4_journal_start(inode, 3);
  3537. if (IS_ERR(handle)) {
  3538. ext4_orphan_del(NULL, inode);
  3539. goto err_out;
  3540. }
  3541. ext4_orphan_del(handle, inode);
  3542. orphan = 0;
  3543. ext4_journal_stop(handle);
  3544. goto err_out;
  3545. }
  3546. }
  3547. }
  3548. if (attr->ia_valid & ATTR_SIZE) {
  3549. if (attr->ia_size != i_size_read(inode)) {
  3550. truncate_setsize(inode, attr->ia_size);
  3551. ext4_truncate(inode);
  3552. } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
  3553. ext4_truncate(inode);
  3554. }
  3555. if (!rc) {
  3556. setattr_copy(inode, attr);
  3557. mark_inode_dirty(inode);
  3558. }
  3559. /*
  3560. * If the call to ext4_truncate failed to get a transaction handle at
  3561. * all, we need to clean up the in-core orphan list manually.
  3562. */
  3563. if (orphan && inode->i_nlink)
  3564. ext4_orphan_del(NULL, inode);
  3565. if (!rc && (ia_valid & ATTR_MODE))
  3566. rc = ext4_acl_chmod(inode);
  3567. err_out:
  3568. ext4_std_error(inode->i_sb, error);
  3569. if (!error)
  3570. error = rc;
  3571. return error;
  3572. }
  3573. int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
  3574. struct kstat *stat)
  3575. {
  3576. struct inode *inode;
  3577. unsigned long delalloc_blocks;
  3578. inode = dentry->d_inode;
  3579. generic_fillattr(inode, stat);
  3580. /*
  3581. * We can't update i_blocks if the block allocation is delayed
  3582. * otherwise in the case of system crash before the real block
  3583. * allocation is done, we will have i_blocks inconsistent with
  3584. * on-disk file blocks.
  3585. * We always keep i_blocks updated together with real
  3586. * allocation. But to not confuse with user, stat
  3587. * will return the blocks that include the delayed allocation
  3588. * blocks for this file.
  3589. */
  3590. delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
  3591. stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
  3592. return 0;
  3593. }
  3594. static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  3595. {
  3596. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
  3597. return ext4_ind_trans_blocks(inode, nrblocks, chunk);
  3598. return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
  3599. }
  3600. /*
  3601. * Account for index blocks, block groups bitmaps and block group
  3602. * descriptor blocks if modify datablocks and index blocks
  3603. * worse case, the indexs blocks spread over different block groups
  3604. *
  3605. * If datablocks are discontiguous, they are possible to spread over
  3606. * different block groups too. If they are contiuguous, with flexbg,
  3607. * they could still across block group boundary.
  3608. *
  3609. * Also account for superblock, inode, quota and xattr blocks
  3610. */
  3611. static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
  3612. {
  3613. ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
  3614. int gdpblocks;
  3615. int idxblocks;
  3616. int ret = 0;
  3617. /*
  3618. * How many index blocks need to touch to modify nrblocks?
  3619. * The "Chunk" flag indicating whether the nrblocks is
  3620. * physically contiguous on disk
  3621. *
  3622. * For Direct IO and fallocate, they calls get_block to allocate
  3623. * one single extent at a time, so they could set the "Chunk" flag
  3624. */
  3625. idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
  3626. ret = idxblocks;
  3627. /*
  3628. * Now let's see how many group bitmaps and group descriptors need
  3629. * to account
  3630. */
  3631. groups = idxblocks;
  3632. if (chunk)
  3633. groups += 1;
  3634. else
  3635. groups += nrblocks;
  3636. gdpblocks = groups;
  3637. if (groups > ngroups)
  3638. groups = ngroups;
  3639. if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
  3640. gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
  3641. /* bitmaps and block group descriptor blocks */
  3642. ret += groups + gdpblocks;
  3643. /* Blocks for super block, inode, quota and xattr blocks */
  3644. ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
  3645. return ret;
  3646. }
  3647. /*
  3648. * Calculate the total number of credits to reserve to fit
  3649. * the modification of a single pages into a single transaction,
  3650. * which may include multiple chunks of block allocations.
  3651. *
  3652. * This could be called via ext4_write_begin()
  3653. *
  3654. * We need to consider the worse case, when
  3655. * one new block per extent.
  3656. */
  3657. int ext4_writepage_trans_blocks(struct inode *inode)
  3658. {
  3659. int bpp = ext4_journal_blocks_per_page(inode);
  3660. int ret;
  3661. ret = ext4_meta_trans_blocks(inode, bpp, 0);
  3662. /* Account for data blocks for journalled mode */
  3663. if (ext4_should_journal_data(inode))
  3664. ret += bpp;
  3665. return ret;
  3666. }
  3667. /*
  3668. * Calculate the journal credits for a chunk of data modification.
  3669. *
  3670. * This is called from DIO, fallocate or whoever calling
  3671. * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
  3672. *
  3673. * journal buffers for data blocks are not included here, as DIO
  3674. * and fallocate do no need to journal data buffers.
  3675. */
  3676. int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
  3677. {
  3678. return ext4_meta_trans_blocks(inode, nrblocks, 1);
  3679. }
  3680. /*
  3681. * The caller must have previously called ext4_reserve_inode_write().
  3682. * Give this, we know that the caller already has write access to iloc->bh.
  3683. */
  3684. int ext4_mark_iloc_dirty(handle_t *handle,
  3685. struct inode *inode, struct ext4_iloc *iloc)
  3686. {
  3687. int err = 0;
  3688. if (test_opt(inode->i_sb, I_VERSION))
  3689. inode_inc_iversion(inode);
  3690. /* the do_update_inode consumes one bh->b_count */
  3691. get_bh(iloc->bh);
  3692. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  3693. err = ext4_do_update_inode(handle, inode, iloc);
  3694. put_bh(iloc->bh);
  3695. return err;
  3696. }
  3697. /*
  3698. * On success, We end up with an outstanding reference count against
  3699. * iloc->bh. This _must_ be cleaned up later.
  3700. */
  3701. int
  3702. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  3703. struct ext4_iloc *iloc)
  3704. {
  3705. int err;
  3706. err = ext4_get_inode_loc(inode, iloc);
  3707. if (!err) {
  3708. BUFFER_TRACE(iloc->bh, "get_write_access");
  3709. err = ext4_journal_get_write_access(handle, iloc->bh);
  3710. if (err) {
  3711. brelse(iloc->bh);
  3712. iloc->bh = NULL;
  3713. }
  3714. }
  3715. ext4_std_error(inode->i_sb, err);
  3716. return err;
  3717. }
  3718. /*
  3719. * Expand an inode by new_extra_isize bytes.
  3720. * Returns 0 on success or negative error number on failure.
  3721. */
  3722. static int ext4_expand_extra_isize(struct inode *inode,
  3723. unsigned int new_extra_isize,
  3724. struct ext4_iloc iloc,
  3725. handle_t *handle)
  3726. {
  3727. struct ext4_inode *raw_inode;
  3728. struct ext4_xattr_ibody_header *header;
  3729. if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
  3730. return 0;
  3731. raw_inode = ext4_raw_inode(&iloc);
  3732. header = IHDR(inode, raw_inode);
  3733. /* No extended attributes present */
  3734. if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
  3735. header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
  3736. memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
  3737. new_extra_isize);
  3738. EXT4_I(inode)->i_extra_isize = new_extra_isize;
  3739. return 0;
  3740. }
  3741. /* try to expand with EAs present */
  3742. return ext4_expand_extra_isize_ea(inode, new_extra_isize,
  3743. raw_inode, handle);
  3744. }
  3745. /*
  3746. * What we do here is to mark the in-core inode as clean with respect to inode
  3747. * dirtiness (it may still be data-dirty).
  3748. * This means that the in-core inode may be reaped by prune_icache
  3749. * without having to perform any I/O. This is a very good thing,
  3750. * because *any* task may call prune_icache - even ones which
  3751. * have a transaction open against a different journal.
  3752. *
  3753. * Is this cheating? Not really. Sure, we haven't written the
  3754. * inode out, but prune_icache isn't a user-visible syncing function.
  3755. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  3756. * we start and wait on commits.
  3757. *
  3758. * Is this efficient/effective? Well, we're being nice to the system
  3759. * by cleaning up our inodes proactively so they can be reaped
  3760. * without I/O. But we are potentially leaving up to five seconds'
  3761. * worth of inodes floating about which prune_icache wants us to
  3762. * write out. One way to fix that would be to get prune_icache()
  3763. * to do a write_super() to free up some memory. It has the desired
  3764. * effect.
  3765. */
  3766. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  3767. {
  3768. struct ext4_iloc iloc;
  3769. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  3770. static unsigned int mnt_count;
  3771. int err, ret;
  3772. might_sleep();
  3773. trace_ext4_mark_inode_dirty(inode, _RET_IP_);
  3774. err = ext4_reserve_inode_write(handle, inode, &iloc);
  3775. if (ext4_handle_valid(handle) &&
  3776. EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
  3777. !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
  3778. /*
  3779. * We need extra buffer credits since we may write into EA block
  3780. * with this same handle. If journal_extend fails, then it will
  3781. * only result in a minor loss of functionality for that inode.
  3782. * If this is felt to be critical, then e2fsck should be run to
  3783. * force a large enough s_min_extra_isize.
  3784. */
  3785. if ((jbd2_journal_extend(handle,
  3786. EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
  3787. ret = ext4_expand_extra_isize(inode,
  3788. sbi->s_want_extra_isize,
  3789. iloc, handle);
  3790. if (ret) {
  3791. ext4_set_inode_state(inode,
  3792. EXT4_STATE_NO_EXPAND);
  3793. if (mnt_count !=
  3794. le16_to_cpu(sbi->s_es->s_mnt_count)) {
  3795. ext4_warning(inode->i_sb,
  3796. "Unable to expand inode %lu. Delete"
  3797. " some EAs or run e2fsck.",
  3798. inode->i_ino);
  3799. mnt_count =
  3800. le16_to_cpu(sbi->s_es->s_mnt_count);
  3801. }
  3802. }
  3803. }
  3804. }
  3805. if (!err)
  3806. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  3807. return err;
  3808. }
  3809. /*
  3810. * ext4_dirty_inode() is called from __mark_inode_dirty()
  3811. *
  3812. * We're really interested in the case where a file is being extended.
  3813. * i_size has been changed by generic_commit_write() and we thus need
  3814. * to include the updated inode in the current transaction.
  3815. *
  3816. * Also, dquot_alloc_block() will always dirty the inode when blocks
  3817. * are allocated to the file.
  3818. *
  3819. * If the inode is marked synchronous, we don't honour that here - doing
  3820. * so would cause a commit on atime updates, which we don't bother doing.
  3821. * We handle synchronous inodes at the highest possible level.
  3822. */
  3823. void ext4_dirty_inode(struct inode *inode, int flags)
  3824. {
  3825. handle_t *handle;
  3826. handle = ext4_journal_start(inode, 2);
  3827. if (IS_ERR(handle))
  3828. goto out;
  3829. ext4_mark_inode_dirty(handle, inode);
  3830. ext4_journal_stop(handle);
  3831. out:
  3832. return;
  3833. }
  3834. #if 0
  3835. /*
  3836. * Bind an inode's backing buffer_head into this transaction, to prevent
  3837. * it from being flushed to disk early. Unlike
  3838. * ext4_reserve_inode_write, this leaves behind no bh reference and
  3839. * returns no iloc structure, so the caller needs to repeat the iloc
  3840. * lookup to mark the inode dirty later.
  3841. */
  3842. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  3843. {
  3844. struct ext4_iloc iloc;
  3845. int err = 0;
  3846. if (handle) {
  3847. err = ext4_get_inode_loc(inode, &iloc);
  3848. if (!err) {
  3849. BUFFER_TRACE(iloc.bh, "get_write_access");
  3850. err = jbd2_journal_get_write_access(handle, iloc.bh);
  3851. if (!err)
  3852. err = ext4_handle_dirty_metadata(handle,
  3853. NULL,
  3854. iloc.bh);
  3855. brelse(iloc.bh);
  3856. }
  3857. }
  3858. ext4_std_error(inode->i_sb, err);
  3859. return err;
  3860. }
  3861. #endif
  3862. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  3863. {
  3864. journal_t *journal;
  3865. handle_t *handle;
  3866. int err;
  3867. /*
  3868. * We have to be very careful here: changing a data block's
  3869. * journaling status dynamically is dangerous. If we write a
  3870. * data block to the journal, change the status and then delete
  3871. * that block, we risk forgetting to revoke the old log record
  3872. * from the journal and so a subsequent replay can corrupt data.
  3873. * So, first we make sure that the journal is empty and that
  3874. * nobody is changing anything.
  3875. */
  3876. journal = EXT4_JOURNAL(inode);
  3877. if (!journal)
  3878. return 0;
  3879. if (is_journal_aborted(journal))
  3880. return -EROFS;
  3881. jbd2_journal_lock_updates(journal);
  3882. jbd2_journal_flush(journal);
  3883. /*
  3884. * OK, there are no updates running now, and all cached data is
  3885. * synced to disk. We are now in a completely consistent state
  3886. * which doesn't have anything in the journal, and we know that
  3887. * no filesystem updates are running, so it is safe to modify
  3888. * the inode's in-core data-journaling state flag now.
  3889. */
  3890. if (val)
  3891. ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
  3892. else
  3893. ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
  3894. ext4_set_aops(inode);
  3895. jbd2_journal_unlock_updates(journal);
  3896. /* Finally we can mark the inode as dirty. */
  3897. handle = ext4_journal_start(inode, 1);
  3898. if (IS_ERR(handle))
  3899. return PTR_ERR(handle);
  3900. err = ext4_mark_inode_dirty(handle, inode);
  3901. ext4_handle_sync(handle);
  3902. ext4_journal_stop(handle);
  3903. ext4_std_error(inode->i_sb, err);
  3904. return err;
  3905. }
  3906. static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
  3907. {
  3908. return !buffer_mapped(bh);
  3909. }
  3910. int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
  3911. {
  3912. struct page *page = vmf->page;
  3913. loff_t size;
  3914. unsigned long len;
  3915. int ret;
  3916. struct file *file = vma->vm_file;
  3917. struct inode *inode = file->f_path.dentry->d_inode;
  3918. struct address_space *mapping = inode->i_mapping;
  3919. handle_t *handle;
  3920. get_block_t *get_block;
  3921. int retries = 0;
  3922. /*
  3923. * This check is racy but catches the common case. We rely on
  3924. * __block_page_mkwrite() to do a reliable check.
  3925. */
  3926. vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
  3927. /* Delalloc case is easy... */
  3928. if (test_opt(inode->i_sb, DELALLOC) &&
  3929. !ext4_should_journal_data(inode) &&
  3930. !ext4_nonda_switch(inode->i_sb)) {
  3931. do {
  3932. ret = __block_page_mkwrite(vma, vmf,
  3933. ext4_da_get_block_prep);
  3934. } while (ret == -ENOSPC &&
  3935. ext4_should_retry_alloc(inode->i_sb, &retries));
  3936. goto out_ret;
  3937. }
  3938. lock_page(page);
  3939. size = i_size_read(inode);
  3940. /* Page got truncated from under us? */
  3941. if (page->mapping != mapping || page_offset(page) > size) {
  3942. unlock_page(page);
  3943. ret = VM_FAULT_NOPAGE;
  3944. goto out;
  3945. }
  3946. if (page->index == size >> PAGE_CACHE_SHIFT)
  3947. len = size & ~PAGE_CACHE_MASK;
  3948. else
  3949. len = PAGE_CACHE_SIZE;
  3950. /*
  3951. * Return if we have all the buffers mapped. This avoids the need to do
  3952. * journal_start/journal_stop which can block and take a long time
  3953. */
  3954. if (page_has_buffers(page)) {
  3955. if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
  3956. ext4_bh_unmapped)) {
  3957. /* Wait so that we don't change page under IO */
  3958. wait_on_page_writeback(page);
  3959. ret = VM_FAULT_LOCKED;
  3960. goto out;
  3961. }
  3962. }
  3963. unlock_page(page);
  3964. /* OK, we need to fill the hole... */
  3965. if (ext4_should_dioread_nolock(inode))
  3966. get_block = ext4_get_block_write;
  3967. else
  3968. get_block = ext4_get_block;
  3969. retry_alloc:
  3970. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  3971. if (IS_ERR(handle)) {
  3972. ret = VM_FAULT_SIGBUS;
  3973. goto out;
  3974. }
  3975. ret = __block_page_mkwrite(vma, vmf, get_block);
  3976. if (!ret && ext4_should_journal_data(inode)) {
  3977. if (walk_page_buffers(handle, page_buffers(page), 0,
  3978. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
  3979. unlock_page(page);
  3980. ret = VM_FAULT_SIGBUS;
  3981. goto out;
  3982. }
  3983. ext4_set_inode_state(inode, EXT4_STATE_JDATA);
  3984. }
  3985. ext4_journal_stop(handle);
  3986. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  3987. goto retry_alloc;
  3988. out_ret:
  3989. ret = block_page_mkwrite_return(ret);
  3990. out:
  3991. return ret;
  3992. }