page_alloc.c 134 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/page_cgroup.h>
  47. #include <linux/debugobjects.h>
  48. #include <linux/kmemleak.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/div64.h>
  51. #include "internal.h"
  52. /*
  53. * Array of node states.
  54. */
  55. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  56. [N_POSSIBLE] = NODE_MASK_ALL,
  57. [N_ONLINE] = { { [0] = 1UL } },
  58. #ifndef CONFIG_NUMA
  59. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  60. #ifdef CONFIG_HIGHMEM
  61. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  62. #endif
  63. [N_CPU] = { { [0] = 1UL } },
  64. #endif /* NUMA */
  65. };
  66. EXPORT_SYMBOL(node_states);
  67. unsigned long totalram_pages __read_mostly;
  68. unsigned long totalreserve_pages __read_mostly;
  69. unsigned long highest_memmap_pfn __read_mostly;
  70. int percpu_pagelist_fraction;
  71. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  72. int pageblock_order __read_mostly;
  73. #endif
  74. static void __free_pages_ok(struct page *page, unsigned int order);
  75. /*
  76. * results with 256, 32 in the lowmem_reserve sysctl:
  77. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  78. * 1G machine -> (16M dma, 784M normal, 224M high)
  79. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  80. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  81. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  82. *
  83. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  84. * don't need any ZONE_NORMAL reservation
  85. */
  86. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  87. #ifdef CONFIG_ZONE_DMA
  88. 256,
  89. #endif
  90. #ifdef CONFIG_ZONE_DMA32
  91. 256,
  92. #endif
  93. #ifdef CONFIG_HIGHMEM
  94. 32,
  95. #endif
  96. 32,
  97. };
  98. EXPORT_SYMBOL(totalram_pages);
  99. static char * const zone_names[MAX_NR_ZONES] = {
  100. #ifdef CONFIG_ZONE_DMA
  101. "DMA",
  102. #endif
  103. #ifdef CONFIG_ZONE_DMA32
  104. "DMA32",
  105. #endif
  106. "Normal",
  107. #ifdef CONFIG_HIGHMEM
  108. "HighMem",
  109. #endif
  110. "Movable",
  111. };
  112. int min_free_kbytes = 1024;
  113. unsigned long __meminitdata nr_kernel_pages;
  114. unsigned long __meminitdata nr_all_pages;
  115. static unsigned long __meminitdata dma_reserve;
  116. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  117. /*
  118. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  119. * ranges of memory (RAM) that may be registered with add_active_range().
  120. * Ranges passed to add_active_range() will be merged if possible
  121. * so the number of times add_active_range() can be called is
  122. * related to the number of nodes and the number of holes
  123. */
  124. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  125. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  126. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  127. #else
  128. #if MAX_NUMNODES >= 32
  129. /* If there can be many nodes, allow up to 50 holes per node */
  130. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  131. #else
  132. /* By default, allow up to 256 distinct regions */
  133. #define MAX_ACTIVE_REGIONS 256
  134. #endif
  135. #endif
  136. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  137. static int __meminitdata nr_nodemap_entries;
  138. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  139. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  140. static unsigned long __initdata required_kernelcore;
  141. static unsigned long __initdata required_movablecore;
  142. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  143. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  144. int movable_zone;
  145. EXPORT_SYMBOL(movable_zone);
  146. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  147. #if MAX_NUMNODES > 1
  148. int nr_node_ids __read_mostly = MAX_NUMNODES;
  149. int nr_online_nodes __read_mostly = 1;
  150. EXPORT_SYMBOL(nr_node_ids);
  151. EXPORT_SYMBOL(nr_online_nodes);
  152. #endif
  153. int page_group_by_mobility_disabled __read_mostly;
  154. static void set_pageblock_migratetype(struct page *page, int migratetype)
  155. {
  156. if (unlikely(page_group_by_mobility_disabled))
  157. migratetype = MIGRATE_UNMOVABLE;
  158. set_pageblock_flags_group(page, (unsigned long)migratetype,
  159. PB_migrate, PB_migrate_end);
  160. }
  161. #ifdef CONFIG_DEBUG_VM
  162. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  163. {
  164. int ret = 0;
  165. unsigned seq;
  166. unsigned long pfn = page_to_pfn(page);
  167. do {
  168. seq = zone_span_seqbegin(zone);
  169. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  170. ret = 1;
  171. else if (pfn < zone->zone_start_pfn)
  172. ret = 1;
  173. } while (zone_span_seqretry(zone, seq));
  174. return ret;
  175. }
  176. static int page_is_consistent(struct zone *zone, struct page *page)
  177. {
  178. if (!pfn_valid_within(page_to_pfn(page)))
  179. return 0;
  180. if (zone != page_zone(page))
  181. return 0;
  182. return 1;
  183. }
  184. /*
  185. * Temporary debugging check for pages not lying within a given zone.
  186. */
  187. static int bad_range(struct zone *zone, struct page *page)
  188. {
  189. if (page_outside_zone_boundaries(zone, page))
  190. return 1;
  191. if (!page_is_consistent(zone, page))
  192. return 1;
  193. return 0;
  194. }
  195. #else
  196. static inline int bad_range(struct zone *zone, struct page *page)
  197. {
  198. return 0;
  199. }
  200. #endif
  201. static void bad_page(struct page *page)
  202. {
  203. static unsigned long resume;
  204. static unsigned long nr_shown;
  205. static unsigned long nr_unshown;
  206. /*
  207. * Allow a burst of 60 reports, then keep quiet for that minute;
  208. * or allow a steady drip of one report per second.
  209. */
  210. if (nr_shown == 60) {
  211. if (time_before(jiffies, resume)) {
  212. nr_unshown++;
  213. goto out;
  214. }
  215. if (nr_unshown) {
  216. printk(KERN_ALERT
  217. "BUG: Bad page state: %lu messages suppressed\n",
  218. nr_unshown);
  219. nr_unshown = 0;
  220. }
  221. nr_shown = 0;
  222. }
  223. if (nr_shown++ == 0)
  224. resume = jiffies + 60 * HZ;
  225. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  226. current->comm, page_to_pfn(page));
  227. printk(KERN_ALERT
  228. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  229. page, (void *)page->flags, page_count(page),
  230. page_mapcount(page), page->mapping, page->index);
  231. dump_stack();
  232. out:
  233. /* Leave bad fields for debug, except PageBuddy could make trouble */
  234. __ClearPageBuddy(page);
  235. add_taint(TAINT_BAD_PAGE);
  236. }
  237. /*
  238. * Higher-order pages are called "compound pages". They are structured thusly:
  239. *
  240. * The first PAGE_SIZE page is called the "head page".
  241. *
  242. * The remaining PAGE_SIZE pages are called "tail pages".
  243. *
  244. * All pages have PG_compound set. All pages have their ->private pointing at
  245. * the head page (even the head page has this).
  246. *
  247. * The first tail page's ->lru.next holds the address of the compound page's
  248. * put_page() function. Its ->lru.prev holds the order of allocation.
  249. * This usage means that zero-order pages may not be compound.
  250. */
  251. static void free_compound_page(struct page *page)
  252. {
  253. __free_pages_ok(page, compound_order(page));
  254. }
  255. void prep_compound_page(struct page *page, unsigned long order)
  256. {
  257. int i;
  258. int nr_pages = 1 << order;
  259. set_compound_page_dtor(page, free_compound_page);
  260. set_compound_order(page, order);
  261. __SetPageHead(page);
  262. for (i = 1; i < nr_pages; i++) {
  263. struct page *p = page + i;
  264. __SetPageTail(p);
  265. p->first_page = page;
  266. }
  267. }
  268. #ifdef CONFIG_HUGETLBFS
  269. void prep_compound_gigantic_page(struct page *page, unsigned long order)
  270. {
  271. int i;
  272. int nr_pages = 1 << order;
  273. struct page *p = page + 1;
  274. set_compound_page_dtor(page, free_compound_page);
  275. set_compound_order(page, order);
  276. __SetPageHead(page);
  277. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  278. __SetPageTail(p);
  279. p->first_page = page;
  280. }
  281. }
  282. #endif
  283. static int destroy_compound_page(struct page *page, unsigned long order)
  284. {
  285. int i;
  286. int nr_pages = 1 << order;
  287. int bad = 0;
  288. if (unlikely(compound_order(page) != order) ||
  289. unlikely(!PageHead(page))) {
  290. bad_page(page);
  291. bad++;
  292. }
  293. __ClearPageHead(page);
  294. for (i = 1; i < nr_pages; i++) {
  295. struct page *p = page + i;
  296. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  297. bad_page(page);
  298. bad++;
  299. }
  300. __ClearPageTail(p);
  301. }
  302. return bad;
  303. }
  304. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  305. {
  306. int i;
  307. /*
  308. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  309. * and __GFP_HIGHMEM from hard or soft interrupt context.
  310. */
  311. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  312. for (i = 0; i < (1 << order); i++)
  313. clear_highpage(page + i);
  314. }
  315. static inline void set_page_order(struct page *page, int order)
  316. {
  317. set_page_private(page, order);
  318. __SetPageBuddy(page);
  319. }
  320. static inline void rmv_page_order(struct page *page)
  321. {
  322. __ClearPageBuddy(page);
  323. set_page_private(page, 0);
  324. }
  325. /*
  326. * Locate the struct page for both the matching buddy in our
  327. * pair (buddy1) and the combined O(n+1) page they form (page).
  328. *
  329. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  330. * the following equation:
  331. * B2 = B1 ^ (1 << O)
  332. * For example, if the starting buddy (buddy2) is #8 its order
  333. * 1 buddy is #10:
  334. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  335. *
  336. * 2) Any buddy B will have an order O+1 parent P which
  337. * satisfies the following equation:
  338. * P = B & ~(1 << O)
  339. *
  340. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  341. */
  342. static inline struct page *
  343. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  344. {
  345. unsigned long buddy_idx = page_idx ^ (1 << order);
  346. return page + (buddy_idx - page_idx);
  347. }
  348. static inline unsigned long
  349. __find_combined_index(unsigned long page_idx, unsigned int order)
  350. {
  351. return (page_idx & ~(1 << order));
  352. }
  353. /*
  354. * This function checks whether a page is free && is the buddy
  355. * we can do coalesce a page and its buddy if
  356. * (a) the buddy is not in a hole &&
  357. * (b) the buddy is in the buddy system &&
  358. * (c) a page and its buddy have the same order &&
  359. * (d) a page and its buddy are in the same zone.
  360. *
  361. * For recording whether a page is in the buddy system, we use PG_buddy.
  362. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  363. *
  364. * For recording page's order, we use page_private(page).
  365. */
  366. static inline int page_is_buddy(struct page *page, struct page *buddy,
  367. int order)
  368. {
  369. if (!pfn_valid_within(page_to_pfn(buddy)))
  370. return 0;
  371. if (page_zone_id(page) != page_zone_id(buddy))
  372. return 0;
  373. if (PageBuddy(buddy) && page_order(buddy) == order) {
  374. VM_BUG_ON(page_count(buddy) != 0);
  375. return 1;
  376. }
  377. return 0;
  378. }
  379. /*
  380. * Freeing function for a buddy system allocator.
  381. *
  382. * The concept of a buddy system is to maintain direct-mapped table
  383. * (containing bit values) for memory blocks of various "orders".
  384. * The bottom level table contains the map for the smallest allocatable
  385. * units of memory (here, pages), and each level above it describes
  386. * pairs of units from the levels below, hence, "buddies".
  387. * At a high level, all that happens here is marking the table entry
  388. * at the bottom level available, and propagating the changes upward
  389. * as necessary, plus some accounting needed to play nicely with other
  390. * parts of the VM system.
  391. * At each level, we keep a list of pages, which are heads of continuous
  392. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  393. * order is recorded in page_private(page) field.
  394. * So when we are allocating or freeing one, we can derive the state of the
  395. * other. That is, if we allocate a small block, and both were
  396. * free, the remainder of the region must be split into blocks.
  397. * If a block is freed, and its buddy is also free, then this
  398. * triggers coalescing into a block of larger size.
  399. *
  400. * -- wli
  401. */
  402. static inline void __free_one_page(struct page *page,
  403. struct zone *zone, unsigned int order,
  404. int migratetype)
  405. {
  406. unsigned long page_idx;
  407. if (unlikely(PageCompound(page)))
  408. if (unlikely(destroy_compound_page(page, order)))
  409. return;
  410. VM_BUG_ON(migratetype == -1);
  411. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  412. VM_BUG_ON(page_idx & ((1 << order) - 1));
  413. VM_BUG_ON(bad_range(zone, page));
  414. while (order < MAX_ORDER-1) {
  415. unsigned long combined_idx;
  416. struct page *buddy;
  417. buddy = __page_find_buddy(page, page_idx, order);
  418. if (!page_is_buddy(page, buddy, order))
  419. break;
  420. /* Our buddy is free, merge with it and move up one order. */
  421. list_del(&buddy->lru);
  422. zone->free_area[order].nr_free--;
  423. rmv_page_order(buddy);
  424. combined_idx = __find_combined_index(page_idx, order);
  425. page = page + (combined_idx - page_idx);
  426. page_idx = combined_idx;
  427. order++;
  428. }
  429. set_page_order(page, order);
  430. list_add(&page->lru,
  431. &zone->free_area[order].free_list[migratetype]);
  432. zone->free_area[order].nr_free++;
  433. }
  434. #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
  435. /*
  436. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  437. * Page should not be on lru, so no need to fix that up.
  438. * free_pages_check() will verify...
  439. */
  440. static inline void free_page_mlock(struct page *page)
  441. {
  442. __ClearPageMlocked(page);
  443. __dec_zone_page_state(page, NR_MLOCK);
  444. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  445. }
  446. #else
  447. static void free_page_mlock(struct page *page) { }
  448. #endif
  449. static inline int free_pages_check(struct page *page)
  450. {
  451. if (unlikely(page_mapcount(page) |
  452. (page->mapping != NULL) |
  453. (atomic_read(&page->_count) != 0) |
  454. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  455. bad_page(page);
  456. return 1;
  457. }
  458. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  459. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  460. return 0;
  461. }
  462. /*
  463. * Frees a list of pages.
  464. * Assumes all pages on list are in same zone, and of same order.
  465. * count is the number of pages to free.
  466. *
  467. * If the zone was previously in an "all pages pinned" state then look to
  468. * see if this freeing clears that state.
  469. *
  470. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  471. * pinned" detection logic.
  472. */
  473. static void free_pages_bulk(struct zone *zone, int count,
  474. struct list_head *list, int order)
  475. {
  476. spin_lock(&zone->lock);
  477. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  478. zone->pages_scanned = 0;
  479. __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
  480. while (count--) {
  481. struct page *page;
  482. VM_BUG_ON(list_empty(list));
  483. page = list_entry(list->prev, struct page, lru);
  484. /* have to delete it as __free_one_page list manipulates */
  485. list_del(&page->lru);
  486. __free_one_page(page, zone, order, page_private(page));
  487. }
  488. spin_unlock(&zone->lock);
  489. }
  490. static void free_one_page(struct zone *zone, struct page *page, int order,
  491. int migratetype)
  492. {
  493. spin_lock(&zone->lock);
  494. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  495. zone->pages_scanned = 0;
  496. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  497. __free_one_page(page, zone, order, migratetype);
  498. spin_unlock(&zone->lock);
  499. }
  500. static void __free_pages_ok(struct page *page, unsigned int order)
  501. {
  502. unsigned long flags;
  503. int i;
  504. int bad = 0;
  505. int clearMlocked = PageMlocked(page);
  506. for (i = 0 ; i < (1 << order) ; ++i)
  507. bad += free_pages_check(page + i);
  508. if (bad)
  509. return;
  510. if (!PageHighMem(page)) {
  511. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  512. debug_check_no_obj_freed(page_address(page),
  513. PAGE_SIZE << order);
  514. }
  515. arch_free_page(page, order);
  516. kernel_map_pages(page, 1 << order, 0);
  517. local_irq_save(flags);
  518. if (unlikely(clearMlocked))
  519. free_page_mlock(page);
  520. __count_vm_events(PGFREE, 1 << order);
  521. free_one_page(page_zone(page), page, order,
  522. get_pageblock_migratetype(page));
  523. local_irq_restore(flags);
  524. }
  525. /*
  526. * permit the bootmem allocator to evade page validation on high-order frees
  527. */
  528. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  529. {
  530. if (order == 0) {
  531. __ClearPageReserved(page);
  532. set_page_count(page, 0);
  533. set_page_refcounted(page);
  534. __free_page(page);
  535. } else {
  536. int loop;
  537. prefetchw(page);
  538. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  539. struct page *p = &page[loop];
  540. if (loop + 1 < BITS_PER_LONG)
  541. prefetchw(p + 1);
  542. __ClearPageReserved(p);
  543. set_page_count(p, 0);
  544. }
  545. set_page_refcounted(page);
  546. __free_pages(page, order);
  547. }
  548. }
  549. /*
  550. * The order of subdivision here is critical for the IO subsystem.
  551. * Please do not alter this order without good reasons and regression
  552. * testing. Specifically, as large blocks of memory are subdivided,
  553. * the order in which smaller blocks are delivered depends on the order
  554. * they're subdivided in this function. This is the primary factor
  555. * influencing the order in which pages are delivered to the IO
  556. * subsystem according to empirical testing, and this is also justified
  557. * by considering the behavior of a buddy system containing a single
  558. * large block of memory acted on by a series of small allocations.
  559. * This behavior is a critical factor in sglist merging's success.
  560. *
  561. * -- wli
  562. */
  563. static inline void expand(struct zone *zone, struct page *page,
  564. int low, int high, struct free_area *area,
  565. int migratetype)
  566. {
  567. unsigned long size = 1 << high;
  568. while (high > low) {
  569. area--;
  570. high--;
  571. size >>= 1;
  572. VM_BUG_ON(bad_range(zone, &page[size]));
  573. list_add(&page[size].lru, &area->free_list[migratetype]);
  574. area->nr_free++;
  575. set_page_order(&page[size], high);
  576. }
  577. }
  578. /*
  579. * This page is about to be returned from the page allocator
  580. */
  581. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  582. {
  583. if (unlikely(page_mapcount(page) |
  584. (page->mapping != NULL) |
  585. (atomic_read(&page->_count) != 0) |
  586. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  587. bad_page(page);
  588. return 1;
  589. }
  590. set_page_private(page, 0);
  591. set_page_refcounted(page);
  592. arch_alloc_page(page, order);
  593. kernel_map_pages(page, 1 << order, 1);
  594. if (gfp_flags & __GFP_ZERO)
  595. prep_zero_page(page, order, gfp_flags);
  596. if (order && (gfp_flags & __GFP_COMP))
  597. prep_compound_page(page, order);
  598. return 0;
  599. }
  600. /*
  601. * Go through the free lists for the given migratetype and remove
  602. * the smallest available page from the freelists
  603. */
  604. static inline
  605. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  606. int migratetype)
  607. {
  608. unsigned int current_order;
  609. struct free_area * area;
  610. struct page *page;
  611. /* Find a page of the appropriate size in the preferred list */
  612. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  613. area = &(zone->free_area[current_order]);
  614. if (list_empty(&area->free_list[migratetype]))
  615. continue;
  616. page = list_entry(area->free_list[migratetype].next,
  617. struct page, lru);
  618. list_del(&page->lru);
  619. rmv_page_order(page);
  620. area->nr_free--;
  621. expand(zone, page, order, current_order, area, migratetype);
  622. return page;
  623. }
  624. return NULL;
  625. }
  626. /*
  627. * This array describes the order lists are fallen back to when
  628. * the free lists for the desirable migrate type are depleted
  629. */
  630. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  631. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  632. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  633. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  634. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  635. };
  636. /*
  637. * Move the free pages in a range to the free lists of the requested type.
  638. * Note that start_page and end_pages are not aligned on a pageblock
  639. * boundary. If alignment is required, use move_freepages_block()
  640. */
  641. static int move_freepages(struct zone *zone,
  642. struct page *start_page, struct page *end_page,
  643. int migratetype)
  644. {
  645. struct page *page;
  646. unsigned long order;
  647. int pages_moved = 0;
  648. #ifndef CONFIG_HOLES_IN_ZONE
  649. /*
  650. * page_zone is not safe to call in this context when
  651. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  652. * anyway as we check zone boundaries in move_freepages_block().
  653. * Remove at a later date when no bug reports exist related to
  654. * grouping pages by mobility
  655. */
  656. BUG_ON(page_zone(start_page) != page_zone(end_page));
  657. #endif
  658. for (page = start_page; page <= end_page;) {
  659. /* Make sure we are not inadvertently changing nodes */
  660. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  661. if (!pfn_valid_within(page_to_pfn(page))) {
  662. page++;
  663. continue;
  664. }
  665. if (!PageBuddy(page)) {
  666. page++;
  667. continue;
  668. }
  669. order = page_order(page);
  670. list_del(&page->lru);
  671. list_add(&page->lru,
  672. &zone->free_area[order].free_list[migratetype]);
  673. page += 1 << order;
  674. pages_moved += 1 << order;
  675. }
  676. return pages_moved;
  677. }
  678. static int move_freepages_block(struct zone *zone, struct page *page,
  679. int migratetype)
  680. {
  681. unsigned long start_pfn, end_pfn;
  682. struct page *start_page, *end_page;
  683. start_pfn = page_to_pfn(page);
  684. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  685. start_page = pfn_to_page(start_pfn);
  686. end_page = start_page + pageblock_nr_pages - 1;
  687. end_pfn = start_pfn + pageblock_nr_pages - 1;
  688. /* Do not cross zone boundaries */
  689. if (start_pfn < zone->zone_start_pfn)
  690. start_page = page;
  691. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  692. return 0;
  693. return move_freepages(zone, start_page, end_page, migratetype);
  694. }
  695. /* Remove an element from the buddy allocator from the fallback list */
  696. static inline struct page *
  697. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  698. {
  699. struct free_area * area;
  700. int current_order;
  701. struct page *page;
  702. int migratetype, i;
  703. /* Find the largest possible block of pages in the other list */
  704. for (current_order = MAX_ORDER-1; current_order >= order;
  705. --current_order) {
  706. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  707. migratetype = fallbacks[start_migratetype][i];
  708. /* MIGRATE_RESERVE handled later if necessary */
  709. if (migratetype == MIGRATE_RESERVE)
  710. continue;
  711. area = &(zone->free_area[current_order]);
  712. if (list_empty(&area->free_list[migratetype]))
  713. continue;
  714. page = list_entry(area->free_list[migratetype].next,
  715. struct page, lru);
  716. area->nr_free--;
  717. /*
  718. * If breaking a large block of pages, move all free
  719. * pages to the preferred allocation list. If falling
  720. * back for a reclaimable kernel allocation, be more
  721. * agressive about taking ownership of free pages
  722. */
  723. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  724. start_migratetype == MIGRATE_RECLAIMABLE) {
  725. unsigned long pages;
  726. pages = move_freepages_block(zone, page,
  727. start_migratetype);
  728. /* Claim the whole block if over half of it is free */
  729. if (pages >= (1 << (pageblock_order-1)))
  730. set_pageblock_migratetype(page,
  731. start_migratetype);
  732. migratetype = start_migratetype;
  733. }
  734. /* Remove the page from the freelists */
  735. list_del(&page->lru);
  736. rmv_page_order(page);
  737. if (current_order == pageblock_order)
  738. set_pageblock_migratetype(page,
  739. start_migratetype);
  740. expand(zone, page, order, current_order, area, migratetype);
  741. return page;
  742. }
  743. }
  744. return NULL;
  745. }
  746. /*
  747. * Do the hard work of removing an element from the buddy allocator.
  748. * Call me with the zone->lock already held.
  749. */
  750. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  751. int migratetype)
  752. {
  753. struct page *page;
  754. retry_reserve:
  755. page = __rmqueue_smallest(zone, order, migratetype);
  756. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  757. page = __rmqueue_fallback(zone, order, migratetype);
  758. /*
  759. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  760. * is used because __rmqueue_smallest is an inline function
  761. * and we want just one call site
  762. */
  763. if (!page) {
  764. migratetype = MIGRATE_RESERVE;
  765. goto retry_reserve;
  766. }
  767. }
  768. return page;
  769. }
  770. /*
  771. * Obtain a specified number of elements from the buddy allocator, all under
  772. * a single hold of the lock, for efficiency. Add them to the supplied list.
  773. * Returns the number of new pages which were placed at *list.
  774. */
  775. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  776. unsigned long count, struct list_head *list,
  777. int migratetype)
  778. {
  779. int i;
  780. spin_lock(&zone->lock);
  781. for (i = 0; i < count; ++i) {
  782. struct page *page = __rmqueue(zone, order, migratetype);
  783. if (unlikely(page == NULL))
  784. break;
  785. /*
  786. * Split buddy pages returned by expand() are received here
  787. * in physical page order. The page is added to the callers and
  788. * list and the list head then moves forward. From the callers
  789. * perspective, the linked list is ordered by page number in
  790. * some conditions. This is useful for IO devices that can
  791. * merge IO requests if the physical pages are ordered
  792. * properly.
  793. */
  794. list_add(&page->lru, list);
  795. set_page_private(page, migratetype);
  796. list = &page->lru;
  797. }
  798. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  799. spin_unlock(&zone->lock);
  800. return i;
  801. }
  802. #ifdef CONFIG_NUMA
  803. /*
  804. * Called from the vmstat counter updater to drain pagesets of this
  805. * currently executing processor on remote nodes after they have
  806. * expired.
  807. *
  808. * Note that this function must be called with the thread pinned to
  809. * a single processor.
  810. */
  811. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  812. {
  813. unsigned long flags;
  814. int to_drain;
  815. local_irq_save(flags);
  816. if (pcp->count >= pcp->batch)
  817. to_drain = pcp->batch;
  818. else
  819. to_drain = pcp->count;
  820. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  821. pcp->count -= to_drain;
  822. local_irq_restore(flags);
  823. }
  824. #endif
  825. /*
  826. * Drain pages of the indicated processor.
  827. *
  828. * The processor must either be the current processor and the
  829. * thread pinned to the current processor or a processor that
  830. * is not online.
  831. */
  832. static void drain_pages(unsigned int cpu)
  833. {
  834. unsigned long flags;
  835. struct zone *zone;
  836. for_each_populated_zone(zone) {
  837. struct per_cpu_pageset *pset;
  838. struct per_cpu_pages *pcp;
  839. pset = zone_pcp(zone, cpu);
  840. pcp = &pset->pcp;
  841. local_irq_save(flags);
  842. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  843. pcp->count = 0;
  844. local_irq_restore(flags);
  845. }
  846. }
  847. /*
  848. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  849. */
  850. void drain_local_pages(void *arg)
  851. {
  852. drain_pages(smp_processor_id());
  853. }
  854. /*
  855. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  856. */
  857. void drain_all_pages(void)
  858. {
  859. on_each_cpu(drain_local_pages, NULL, 1);
  860. }
  861. #ifdef CONFIG_HIBERNATION
  862. void mark_free_pages(struct zone *zone)
  863. {
  864. unsigned long pfn, max_zone_pfn;
  865. unsigned long flags;
  866. int order, t;
  867. struct list_head *curr;
  868. if (!zone->spanned_pages)
  869. return;
  870. spin_lock_irqsave(&zone->lock, flags);
  871. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  872. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  873. if (pfn_valid(pfn)) {
  874. struct page *page = pfn_to_page(pfn);
  875. if (!swsusp_page_is_forbidden(page))
  876. swsusp_unset_page_free(page);
  877. }
  878. for_each_migratetype_order(order, t) {
  879. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  880. unsigned long i;
  881. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  882. for (i = 0; i < (1UL << order); i++)
  883. swsusp_set_page_free(pfn_to_page(pfn + i));
  884. }
  885. }
  886. spin_unlock_irqrestore(&zone->lock, flags);
  887. }
  888. #endif /* CONFIG_PM */
  889. /*
  890. * Free a 0-order page
  891. */
  892. static void free_hot_cold_page(struct page *page, int cold)
  893. {
  894. struct zone *zone = page_zone(page);
  895. struct per_cpu_pages *pcp;
  896. unsigned long flags;
  897. int clearMlocked = PageMlocked(page);
  898. if (PageAnon(page))
  899. page->mapping = NULL;
  900. if (free_pages_check(page))
  901. return;
  902. if (!PageHighMem(page)) {
  903. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  904. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  905. }
  906. arch_free_page(page, 0);
  907. kernel_map_pages(page, 1, 0);
  908. pcp = &zone_pcp(zone, get_cpu())->pcp;
  909. set_page_private(page, get_pageblock_migratetype(page));
  910. local_irq_save(flags);
  911. if (unlikely(clearMlocked))
  912. free_page_mlock(page);
  913. __count_vm_event(PGFREE);
  914. if (cold)
  915. list_add_tail(&page->lru, &pcp->list);
  916. else
  917. list_add(&page->lru, &pcp->list);
  918. pcp->count++;
  919. if (pcp->count >= pcp->high) {
  920. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  921. pcp->count -= pcp->batch;
  922. }
  923. local_irq_restore(flags);
  924. put_cpu();
  925. }
  926. void free_hot_page(struct page *page)
  927. {
  928. free_hot_cold_page(page, 0);
  929. }
  930. void free_cold_page(struct page *page)
  931. {
  932. free_hot_cold_page(page, 1);
  933. }
  934. /*
  935. * split_page takes a non-compound higher-order page, and splits it into
  936. * n (1<<order) sub-pages: page[0..n]
  937. * Each sub-page must be freed individually.
  938. *
  939. * Note: this is probably too low level an operation for use in drivers.
  940. * Please consult with lkml before using this in your driver.
  941. */
  942. void split_page(struct page *page, unsigned int order)
  943. {
  944. int i;
  945. VM_BUG_ON(PageCompound(page));
  946. VM_BUG_ON(!page_count(page));
  947. for (i = 1; i < (1 << order); i++)
  948. set_page_refcounted(page + i);
  949. }
  950. /*
  951. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  952. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  953. * or two.
  954. */
  955. static inline
  956. struct page *buffered_rmqueue(struct zone *preferred_zone,
  957. struct zone *zone, int order, gfp_t gfp_flags,
  958. int migratetype)
  959. {
  960. unsigned long flags;
  961. struct page *page;
  962. int cold = !!(gfp_flags & __GFP_COLD);
  963. int cpu;
  964. again:
  965. cpu = get_cpu();
  966. if (likely(order == 0)) {
  967. struct per_cpu_pages *pcp;
  968. pcp = &zone_pcp(zone, cpu)->pcp;
  969. local_irq_save(flags);
  970. if (!pcp->count) {
  971. pcp->count = rmqueue_bulk(zone, 0,
  972. pcp->batch, &pcp->list, migratetype);
  973. if (unlikely(!pcp->count))
  974. goto failed;
  975. }
  976. /* Find a page of the appropriate migrate type */
  977. if (cold) {
  978. list_for_each_entry_reverse(page, &pcp->list, lru)
  979. if (page_private(page) == migratetype)
  980. break;
  981. } else {
  982. list_for_each_entry(page, &pcp->list, lru)
  983. if (page_private(page) == migratetype)
  984. break;
  985. }
  986. /* Allocate more to the pcp list if necessary */
  987. if (unlikely(&page->lru == &pcp->list)) {
  988. pcp->count += rmqueue_bulk(zone, 0,
  989. pcp->batch, &pcp->list, migratetype);
  990. page = list_entry(pcp->list.next, struct page, lru);
  991. }
  992. list_del(&page->lru);
  993. pcp->count--;
  994. } else {
  995. spin_lock_irqsave(&zone->lock, flags);
  996. page = __rmqueue(zone, order, migratetype);
  997. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  998. spin_unlock(&zone->lock);
  999. if (!page)
  1000. goto failed;
  1001. }
  1002. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1003. zone_statistics(preferred_zone, zone);
  1004. local_irq_restore(flags);
  1005. put_cpu();
  1006. VM_BUG_ON(bad_range(zone, page));
  1007. if (prep_new_page(page, order, gfp_flags))
  1008. goto again;
  1009. return page;
  1010. failed:
  1011. local_irq_restore(flags);
  1012. put_cpu();
  1013. return NULL;
  1014. }
  1015. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1016. #define ALLOC_WMARK_MIN WMARK_MIN
  1017. #define ALLOC_WMARK_LOW WMARK_LOW
  1018. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1019. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1020. /* Mask to get the watermark bits */
  1021. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1022. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1023. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1024. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1025. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1026. static struct fail_page_alloc_attr {
  1027. struct fault_attr attr;
  1028. u32 ignore_gfp_highmem;
  1029. u32 ignore_gfp_wait;
  1030. u32 min_order;
  1031. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1032. struct dentry *ignore_gfp_highmem_file;
  1033. struct dentry *ignore_gfp_wait_file;
  1034. struct dentry *min_order_file;
  1035. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1036. } fail_page_alloc = {
  1037. .attr = FAULT_ATTR_INITIALIZER,
  1038. .ignore_gfp_wait = 1,
  1039. .ignore_gfp_highmem = 1,
  1040. .min_order = 1,
  1041. };
  1042. static int __init setup_fail_page_alloc(char *str)
  1043. {
  1044. return setup_fault_attr(&fail_page_alloc.attr, str);
  1045. }
  1046. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1047. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1048. {
  1049. if (order < fail_page_alloc.min_order)
  1050. return 0;
  1051. if (gfp_mask & __GFP_NOFAIL)
  1052. return 0;
  1053. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1054. return 0;
  1055. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1056. return 0;
  1057. return should_fail(&fail_page_alloc.attr, 1 << order);
  1058. }
  1059. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1060. static int __init fail_page_alloc_debugfs(void)
  1061. {
  1062. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1063. struct dentry *dir;
  1064. int err;
  1065. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1066. "fail_page_alloc");
  1067. if (err)
  1068. return err;
  1069. dir = fail_page_alloc.attr.dentries.dir;
  1070. fail_page_alloc.ignore_gfp_wait_file =
  1071. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1072. &fail_page_alloc.ignore_gfp_wait);
  1073. fail_page_alloc.ignore_gfp_highmem_file =
  1074. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1075. &fail_page_alloc.ignore_gfp_highmem);
  1076. fail_page_alloc.min_order_file =
  1077. debugfs_create_u32("min-order", mode, dir,
  1078. &fail_page_alloc.min_order);
  1079. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1080. !fail_page_alloc.ignore_gfp_highmem_file ||
  1081. !fail_page_alloc.min_order_file) {
  1082. err = -ENOMEM;
  1083. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1084. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1085. debugfs_remove(fail_page_alloc.min_order_file);
  1086. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1087. }
  1088. return err;
  1089. }
  1090. late_initcall(fail_page_alloc_debugfs);
  1091. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1092. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1093. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1094. {
  1095. return 0;
  1096. }
  1097. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1098. /*
  1099. * Return 1 if free pages are above 'mark'. This takes into account the order
  1100. * of the allocation.
  1101. */
  1102. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1103. int classzone_idx, int alloc_flags)
  1104. {
  1105. /* free_pages my go negative - that's OK */
  1106. long min = mark;
  1107. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1108. int o;
  1109. if (alloc_flags & ALLOC_HIGH)
  1110. min -= min / 2;
  1111. if (alloc_flags & ALLOC_HARDER)
  1112. min -= min / 4;
  1113. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1114. return 0;
  1115. for (o = 0; o < order; o++) {
  1116. /* At the next order, this order's pages become unavailable */
  1117. free_pages -= z->free_area[o].nr_free << o;
  1118. /* Require fewer higher order pages to be free */
  1119. min >>= 1;
  1120. if (free_pages <= min)
  1121. return 0;
  1122. }
  1123. return 1;
  1124. }
  1125. #ifdef CONFIG_NUMA
  1126. /*
  1127. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1128. * skip over zones that are not allowed by the cpuset, or that have
  1129. * been recently (in last second) found to be nearly full. See further
  1130. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1131. * that have to skip over a lot of full or unallowed zones.
  1132. *
  1133. * If the zonelist cache is present in the passed in zonelist, then
  1134. * returns a pointer to the allowed node mask (either the current
  1135. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1136. *
  1137. * If the zonelist cache is not available for this zonelist, does
  1138. * nothing and returns NULL.
  1139. *
  1140. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1141. * a second since last zap'd) then we zap it out (clear its bits.)
  1142. *
  1143. * We hold off even calling zlc_setup, until after we've checked the
  1144. * first zone in the zonelist, on the theory that most allocations will
  1145. * be satisfied from that first zone, so best to examine that zone as
  1146. * quickly as we can.
  1147. */
  1148. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1149. {
  1150. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1151. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1152. zlc = zonelist->zlcache_ptr;
  1153. if (!zlc)
  1154. return NULL;
  1155. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1156. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1157. zlc->last_full_zap = jiffies;
  1158. }
  1159. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1160. &cpuset_current_mems_allowed :
  1161. &node_states[N_HIGH_MEMORY];
  1162. return allowednodes;
  1163. }
  1164. /*
  1165. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1166. * if it is worth looking at further for free memory:
  1167. * 1) Check that the zone isn't thought to be full (doesn't have its
  1168. * bit set in the zonelist_cache fullzones BITMAP).
  1169. * 2) Check that the zones node (obtained from the zonelist_cache
  1170. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1171. * Return true (non-zero) if zone is worth looking at further, or
  1172. * else return false (zero) if it is not.
  1173. *
  1174. * This check -ignores- the distinction between various watermarks,
  1175. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1176. * found to be full for any variation of these watermarks, it will
  1177. * be considered full for up to one second by all requests, unless
  1178. * we are so low on memory on all allowed nodes that we are forced
  1179. * into the second scan of the zonelist.
  1180. *
  1181. * In the second scan we ignore this zonelist cache and exactly
  1182. * apply the watermarks to all zones, even it is slower to do so.
  1183. * We are low on memory in the second scan, and should leave no stone
  1184. * unturned looking for a free page.
  1185. */
  1186. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1187. nodemask_t *allowednodes)
  1188. {
  1189. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1190. int i; /* index of *z in zonelist zones */
  1191. int n; /* node that zone *z is on */
  1192. zlc = zonelist->zlcache_ptr;
  1193. if (!zlc)
  1194. return 1;
  1195. i = z - zonelist->_zonerefs;
  1196. n = zlc->z_to_n[i];
  1197. /* This zone is worth trying if it is allowed but not full */
  1198. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1199. }
  1200. /*
  1201. * Given 'z' scanning a zonelist, set the corresponding bit in
  1202. * zlc->fullzones, so that subsequent attempts to allocate a page
  1203. * from that zone don't waste time re-examining it.
  1204. */
  1205. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1206. {
  1207. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1208. int i; /* index of *z in zonelist zones */
  1209. zlc = zonelist->zlcache_ptr;
  1210. if (!zlc)
  1211. return;
  1212. i = z - zonelist->_zonerefs;
  1213. set_bit(i, zlc->fullzones);
  1214. }
  1215. #else /* CONFIG_NUMA */
  1216. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1217. {
  1218. return NULL;
  1219. }
  1220. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1221. nodemask_t *allowednodes)
  1222. {
  1223. return 1;
  1224. }
  1225. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1226. {
  1227. }
  1228. #endif /* CONFIG_NUMA */
  1229. /*
  1230. * get_page_from_freelist goes through the zonelist trying to allocate
  1231. * a page.
  1232. */
  1233. static struct page *
  1234. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1235. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1236. struct zone *preferred_zone, int migratetype)
  1237. {
  1238. struct zoneref *z;
  1239. struct page *page = NULL;
  1240. int classzone_idx;
  1241. struct zone *zone;
  1242. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1243. int zlc_active = 0; /* set if using zonelist_cache */
  1244. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1245. if (WARN_ON_ONCE(order >= MAX_ORDER))
  1246. return NULL;
  1247. classzone_idx = zone_idx(preferred_zone);
  1248. zonelist_scan:
  1249. /*
  1250. * Scan zonelist, looking for a zone with enough free.
  1251. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1252. */
  1253. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1254. high_zoneidx, nodemask) {
  1255. if (NUMA_BUILD && zlc_active &&
  1256. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1257. continue;
  1258. if ((alloc_flags & ALLOC_CPUSET) &&
  1259. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1260. goto try_next_zone;
  1261. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1262. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1263. unsigned long mark;
  1264. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1265. if (!zone_watermark_ok(zone, order, mark,
  1266. classzone_idx, alloc_flags)) {
  1267. if (!zone_reclaim_mode ||
  1268. !zone_reclaim(zone, gfp_mask, order))
  1269. goto this_zone_full;
  1270. }
  1271. }
  1272. page = buffered_rmqueue(preferred_zone, zone, order,
  1273. gfp_mask, migratetype);
  1274. if (page)
  1275. break;
  1276. this_zone_full:
  1277. if (NUMA_BUILD)
  1278. zlc_mark_zone_full(zonelist, z);
  1279. try_next_zone:
  1280. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1281. /*
  1282. * we do zlc_setup after the first zone is tried but only
  1283. * if there are multiple nodes make it worthwhile
  1284. */
  1285. allowednodes = zlc_setup(zonelist, alloc_flags);
  1286. zlc_active = 1;
  1287. did_zlc_setup = 1;
  1288. }
  1289. }
  1290. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1291. /* Disable zlc cache for second zonelist scan */
  1292. zlc_active = 0;
  1293. goto zonelist_scan;
  1294. }
  1295. return page;
  1296. }
  1297. static inline int
  1298. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1299. unsigned long pages_reclaimed)
  1300. {
  1301. /* Do not loop if specifically requested */
  1302. if (gfp_mask & __GFP_NORETRY)
  1303. return 0;
  1304. /*
  1305. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1306. * means __GFP_NOFAIL, but that may not be true in other
  1307. * implementations.
  1308. */
  1309. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1310. return 1;
  1311. /*
  1312. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1313. * specified, then we retry until we no longer reclaim any pages
  1314. * (above), or we've reclaimed an order of pages at least as
  1315. * large as the allocation's order. In both cases, if the
  1316. * allocation still fails, we stop retrying.
  1317. */
  1318. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1319. return 1;
  1320. /*
  1321. * Don't let big-order allocations loop unless the caller
  1322. * explicitly requests that.
  1323. */
  1324. if (gfp_mask & __GFP_NOFAIL)
  1325. return 1;
  1326. return 0;
  1327. }
  1328. static inline struct page *
  1329. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1330. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1331. nodemask_t *nodemask, struct zone *preferred_zone,
  1332. int migratetype)
  1333. {
  1334. struct page *page;
  1335. /* Acquire the OOM killer lock for the zones in zonelist */
  1336. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1337. schedule_timeout_uninterruptible(1);
  1338. return NULL;
  1339. }
  1340. /*
  1341. * Go through the zonelist yet one more time, keep very high watermark
  1342. * here, this is only to catch a parallel oom killing, we must fail if
  1343. * we're still under heavy pressure.
  1344. */
  1345. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1346. order, zonelist, high_zoneidx,
  1347. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1348. preferred_zone, migratetype);
  1349. if (page)
  1350. goto out;
  1351. /* The OOM killer will not help higher order allocs */
  1352. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1353. goto out;
  1354. /* Exhausted what can be done so it's blamo time */
  1355. out_of_memory(zonelist, gfp_mask, order);
  1356. out:
  1357. clear_zonelist_oom(zonelist, gfp_mask);
  1358. return page;
  1359. }
  1360. /* The really slow allocator path where we enter direct reclaim */
  1361. static inline struct page *
  1362. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1363. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1364. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1365. int migratetype, unsigned long *did_some_progress)
  1366. {
  1367. struct page *page = NULL;
  1368. struct reclaim_state reclaim_state;
  1369. struct task_struct *p = current;
  1370. cond_resched();
  1371. /* We now go into synchronous reclaim */
  1372. cpuset_memory_pressure_bump();
  1373. /*
  1374. * The task's cpuset might have expanded its set of allowable nodes
  1375. */
  1376. p->flags |= PF_MEMALLOC;
  1377. lockdep_set_current_reclaim_state(gfp_mask);
  1378. reclaim_state.reclaimed_slab = 0;
  1379. p->reclaim_state = &reclaim_state;
  1380. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1381. p->reclaim_state = NULL;
  1382. lockdep_clear_current_reclaim_state();
  1383. p->flags &= ~PF_MEMALLOC;
  1384. cond_resched();
  1385. if (order != 0)
  1386. drain_all_pages();
  1387. if (likely(*did_some_progress))
  1388. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1389. zonelist, high_zoneidx,
  1390. alloc_flags, preferred_zone,
  1391. migratetype);
  1392. return page;
  1393. }
  1394. /*
  1395. * This is called in the allocator slow-path if the allocation request is of
  1396. * sufficient urgency to ignore watermarks and take other desperate measures
  1397. */
  1398. static inline struct page *
  1399. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1400. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1401. nodemask_t *nodemask, struct zone *preferred_zone,
  1402. int migratetype)
  1403. {
  1404. struct page *page;
  1405. do {
  1406. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1407. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1408. preferred_zone, migratetype);
  1409. if (!page && gfp_mask & __GFP_NOFAIL)
  1410. congestion_wait(WRITE, HZ/50);
  1411. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1412. return page;
  1413. }
  1414. static inline
  1415. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1416. enum zone_type high_zoneidx)
  1417. {
  1418. struct zoneref *z;
  1419. struct zone *zone;
  1420. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1421. wakeup_kswapd(zone, order);
  1422. }
  1423. static inline int
  1424. gfp_to_alloc_flags(gfp_t gfp_mask)
  1425. {
  1426. struct task_struct *p = current;
  1427. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1428. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1429. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1430. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1431. /*
  1432. * The caller may dip into page reserves a bit more if the caller
  1433. * cannot run direct reclaim, or if the caller has realtime scheduling
  1434. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1435. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1436. */
  1437. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1438. if (!wait) {
  1439. alloc_flags |= ALLOC_HARDER;
  1440. /*
  1441. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1442. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1443. */
  1444. alloc_flags &= ~ALLOC_CPUSET;
  1445. } else if (unlikely(rt_task(p)))
  1446. alloc_flags |= ALLOC_HARDER;
  1447. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1448. if (!in_interrupt() &&
  1449. ((p->flags & PF_MEMALLOC) ||
  1450. unlikely(test_thread_flag(TIF_MEMDIE))))
  1451. alloc_flags |= ALLOC_NO_WATERMARKS;
  1452. }
  1453. return alloc_flags;
  1454. }
  1455. static inline struct page *
  1456. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1457. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1458. nodemask_t *nodemask, struct zone *preferred_zone,
  1459. int migratetype)
  1460. {
  1461. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1462. struct page *page = NULL;
  1463. int alloc_flags;
  1464. unsigned long pages_reclaimed = 0;
  1465. unsigned long did_some_progress;
  1466. struct task_struct *p = current;
  1467. /*
  1468. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1469. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1470. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1471. * using a larger set of nodes after it has established that the
  1472. * allowed per node queues are empty and that nodes are
  1473. * over allocated.
  1474. */
  1475. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1476. goto nopage;
  1477. wake_all_kswapd(order, zonelist, high_zoneidx);
  1478. /*
  1479. * OK, we're below the kswapd watermark and have kicked background
  1480. * reclaim. Now things get more complex, so set up alloc_flags according
  1481. * to how we want to proceed.
  1482. */
  1483. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1484. restart:
  1485. /* This is the last chance, in general, before the goto nopage. */
  1486. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1487. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1488. preferred_zone, migratetype);
  1489. if (page)
  1490. goto got_pg;
  1491. rebalance:
  1492. /* Allocate without watermarks if the context allows */
  1493. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1494. page = __alloc_pages_high_priority(gfp_mask, order,
  1495. zonelist, high_zoneidx, nodemask,
  1496. preferred_zone, migratetype);
  1497. if (page)
  1498. goto got_pg;
  1499. }
  1500. /* Atomic allocations - we can't balance anything */
  1501. if (!wait)
  1502. goto nopage;
  1503. /* Avoid recursion of direct reclaim */
  1504. if (p->flags & PF_MEMALLOC)
  1505. goto nopage;
  1506. /* Try direct reclaim and then allocating */
  1507. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1508. zonelist, high_zoneidx,
  1509. nodemask,
  1510. alloc_flags, preferred_zone,
  1511. migratetype, &did_some_progress);
  1512. if (page)
  1513. goto got_pg;
  1514. /*
  1515. * If we failed to make any progress reclaiming, then we are
  1516. * running out of options and have to consider going OOM
  1517. */
  1518. if (!did_some_progress) {
  1519. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1520. page = __alloc_pages_may_oom(gfp_mask, order,
  1521. zonelist, high_zoneidx,
  1522. nodemask, preferred_zone,
  1523. migratetype);
  1524. if (page)
  1525. goto got_pg;
  1526. /*
  1527. * The OOM killer does not trigger for high-order allocations
  1528. * but if no progress is being made, there are no other
  1529. * options and retrying is unlikely to help
  1530. */
  1531. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1532. goto nopage;
  1533. goto restart;
  1534. }
  1535. }
  1536. /* Check if we should retry the allocation */
  1537. pages_reclaimed += did_some_progress;
  1538. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1539. /* Wait for some write requests to complete then retry */
  1540. congestion_wait(WRITE, HZ/50);
  1541. goto rebalance;
  1542. }
  1543. nopage:
  1544. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1545. printk(KERN_WARNING "%s: page allocation failure."
  1546. " order:%d, mode:0x%x\n",
  1547. p->comm, order, gfp_mask);
  1548. dump_stack();
  1549. show_mem();
  1550. }
  1551. got_pg:
  1552. return page;
  1553. }
  1554. /*
  1555. * This is the 'heart' of the zoned buddy allocator.
  1556. */
  1557. struct page *
  1558. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1559. struct zonelist *zonelist, nodemask_t *nodemask)
  1560. {
  1561. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1562. struct zone *preferred_zone;
  1563. struct page *page;
  1564. int migratetype = allocflags_to_migratetype(gfp_mask);
  1565. lockdep_trace_alloc(gfp_mask);
  1566. might_sleep_if(gfp_mask & __GFP_WAIT);
  1567. if (should_fail_alloc_page(gfp_mask, order))
  1568. return NULL;
  1569. /*
  1570. * Check the zones suitable for the gfp_mask contain at least one
  1571. * valid zone. It's possible to have an empty zonelist as a result
  1572. * of GFP_THISNODE and a memoryless node
  1573. */
  1574. if (unlikely(!zonelist->_zonerefs->zone))
  1575. return NULL;
  1576. /* The preferred zone is used for statistics later */
  1577. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1578. if (!preferred_zone)
  1579. return NULL;
  1580. /* First allocation attempt */
  1581. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1582. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1583. preferred_zone, migratetype);
  1584. if (unlikely(!page))
  1585. page = __alloc_pages_slowpath(gfp_mask, order,
  1586. zonelist, high_zoneidx, nodemask,
  1587. preferred_zone, migratetype);
  1588. return page;
  1589. }
  1590. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1591. /*
  1592. * Common helper functions.
  1593. */
  1594. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1595. {
  1596. struct page * page;
  1597. page = alloc_pages(gfp_mask, order);
  1598. if (!page)
  1599. return 0;
  1600. return (unsigned long) page_address(page);
  1601. }
  1602. EXPORT_SYMBOL(__get_free_pages);
  1603. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1604. {
  1605. struct page * page;
  1606. /*
  1607. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1608. * a highmem page
  1609. */
  1610. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1611. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1612. if (page)
  1613. return (unsigned long) page_address(page);
  1614. return 0;
  1615. }
  1616. EXPORT_SYMBOL(get_zeroed_page);
  1617. void __pagevec_free(struct pagevec *pvec)
  1618. {
  1619. int i = pagevec_count(pvec);
  1620. while (--i >= 0)
  1621. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1622. }
  1623. void __free_pages(struct page *page, unsigned int order)
  1624. {
  1625. if (put_page_testzero(page)) {
  1626. if (order == 0)
  1627. free_hot_page(page);
  1628. else
  1629. __free_pages_ok(page, order);
  1630. }
  1631. }
  1632. EXPORT_SYMBOL(__free_pages);
  1633. void free_pages(unsigned long addr, unsigned int order)
  1634. {
  1635. if (addr != 0) {
  1636. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1637. __free_pages(virt_to_page((void *)addr), order);
  1638. }
  1639. }
  1640. EXPORT_SYMBOL(free_pages);
  1641. /**
  1642. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1643. * @size: the number of bytes to allocate
  1644. * @gfp_mask: GFP flags for the allocation
  1645. *
  1646. * This function is similar to alloc_pages(), except that it allocates the
  1647. * minimum number of pages to satisfy the request. alloc_pages() can only
  1648. * allocate memory in power-of-two pages.
  1649. *
  1650. * This function is also limited by MAX_ORDER.
  1651. *
  1652. * Memory allocated by this function must be released by free_pages_exact().
  1653. */
  1654. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1655. {
  1656. unsigned int order = get_order(size);
  1657. unsigned long addr;
  1658. addr = __get_free_pages(gfp_mask, order);
  1659. if (addr) {
  1660. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1661. unsigned long used = addr + PAGE_ALIGN(size);
  1662. split_page(virt_to_page(addr), order);
  1663. while (used < alloc_end) {
  1664. free_page(used);
  1665. used += PAGE_SIZE;
  1666. }
  1667. }
  1668. return (void *)addr;
  1669. }
  1670. EXPORT_SYMBOL(alloc_pages_exact);
  1671. /**
  1672. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1673. * @virt: the value returned by alloc_pages_exact.
  1674. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1675. *
  1676. * Release the memory allocated by a previous call to alloc_pages_exact.
  1677. */
  1678. void free_pages_exact(void *virt, size_t size)
  1679. {
  1680. unsigned long addr = (unsigned long)virt;
  1681. unsigned long end = addr + PAGE_ALIGN(size);
  1682. while (addr < end) {
  1683. free_page(addr);
  1684. addr += PAGE_SIZE;
  1685. }
  1686. }
  1687. EXPORT_SYMBOL(free_pages_exact);
  1688. static unsigned int nr_free_zone_pages(int offset)
  1689. {
  1690. struct zoneref *z;
  1691. struct zone *zone;
  1692. /* Just pick one node, since fallback list is circular */
  1693. unsigned int sum = 0;
  1694. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1695. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1696. unsigned long size = zone->present_pages;
  1697. unsigned long high = high_wmark_pages(zone);
  1698. if (size > high)
  1699. sum += size - high;
  1700. }
  1701. return sum;
  1702. }
  1703. /*
  1704. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1705. */
  1706. unsigned int nr_free_buffer_pages(void)
  1707. {
  1708. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1709. }
  1710. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1711. /*
  1712. * Amount of free RAM allocatable within all zones
  1713. */
  1714. unsigned int nr_free_pagecache_pages(void)
  1715. {
  1716. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1717. }
  1718. static inline void show_node(struct zone *zone)
  1719. {
  1720. if (NUMA_BUILD)
  1721. printk("Node %d ", zone_to_nid(zone));
  1722. }
  1723. void si_meminfo(struct sysinfo *val)
  1724. {
  1725. val->totalram = totalram_pages;
  1726. val->sharedram = 0;
  1727. val->freeram = global_page_state(NR_FREE_PAGES);
  1728. val->bufferram = nr_blockdev_pages();
  1729. val->totalhigh = totalhigh_pages;
  1730. val->freehigh = nr_free_highpages();
  1731. val->mem_unit = PAGE_SIZE;
  1732. }
  1733. EXPORT_SYMBOL(si_meminfo);
  1734. #ifdef CONFIG_NUMA
  1735. void si_meminfo_node(struct sysinfo *val, int nid)
  1736. {
  1737. pg_data_t *pgdat = NODE_DATA(nid);
  1738. val->totalram = pgdat->node_present_pages;
  1739. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1740. #ifdef CONFIG_HIGHMEM
  1741. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1742. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1743. NR_FREE_PAGES);
  1744. #else
  1745. val->totalhigh = 0;
  1746. val->freehigh = 0;
  1747. #endif
  1748. val->mem_unit = PAGE_SIZE;
  1749. }
  1750. #endif
  1751. #define K(x) ((x) << (PAGE_SHIFT-10))
  1752. /*
  1753. * Show free area list (used inside shift_scroll-lock stuff)
  1754. * We also calculate the percentage fragmentation. We do this by counting the
  1755. * memory on each free list with the exception of the first item on the list.
  1756. */
  1757. void show_free_areas(void)
  1758. {
  1759. int cpu;
  1760. struct zone *zone;
  1761. for_each_populated_zone(zone) {
  1762. show_node(zone);
  1763. printk("%s per-cpu:\n", zone->name);
  1764. for_each_online_cpu(cpu) {
  1765. struct per_cpu_pageset *pageset;
  1766. pageset = zone_pcp(zone, cpu);
  1767. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1768. cpu, pageset->pcp.high,
  1769. pageset->pcp.batch, pageset->pcp.count);
  1770. }
  1771. }
  1772. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1773. " inactive_file:%lu"
  1774. //TODO: check/adjust line lengths
  1775. #ifdef CONFIG_UNEVICTABLE_LRU
  1776. " unevictable:%lu"
  1777. #endif
  1778. " dirty:%lu writeback:%lu unstable:%lu\n"
  1779. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1780. global_page_state(NR_ACTIVE_ANON),
  1781. global_page_state(NR_ACTIVE_FILE),
  1782. global_page_state(NR_INACTIVE_ANON),
  1783. global_page_state(NR_INACTIVE_FILE),
  1784. #ifdef CONFIG_UNEVICTABLE_LRU
  1785. global_page_state(NR_UNEVICTABLE),
  1786. #endif
  1787. global_page_state(NR_FILE_DIRTY),
  1788. global_page_state(NR_WRITEBACK),
  1789. global_page_state(NR_UNSTABLE_NFS),
  1790. global_page_state(NR_FREE_PAGES),
  1791. global_page_state(NR_SLAB_RECLAIMABLE) +
  1792. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1793. global_page_state(NR_FILE_MAPPED),
  1794. global_page_state(NR_PAGETABLE),
  1795. global_page_state(NR_BOUNCE));
  1796. for_each_populated_zone(zone) {
  1797. int i;
  1798. show_node(zone);
  1799. printk("%s"
  1800. " free:%lukB"
  1801. " min:%lukB"
  1802. " low:%lukB"
  1803. " high:%lukB"
  1804. " active_anon:%lukB"
  1805. " inactive_anon:%lukB"
  1806. " active_file:%lukB"
  1807. " inactive_file:%lukB"
  1808. #ifdef CONFIG_UNEVICTABLE_LRU
  1809. " unevictable:%lukB"
  1810. #endif
  1811. " present:%lukB"
  1812. " pages_scanned:%lu"
  1813. " all_unreclaimable? %s"
  1814. "\n",
  1815. zone->name,
  1816. K(zone_page_state(zone, NR_FREE_PAGES)),
  1817. K(min_wmark_pages(zone)),
  1818. K(low_wmark_pages(zone)),
  1819. K(high_wmark_pages(zone)),
  1820. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1821. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1822. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1823. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1824. #ifdef CONFIG_UNEVICTABLE_LRU
  1825. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1826. #endif
  1827. K(zone->present_pages),
  1828. zone->pages_scanned,
  1829. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1830. );
  1831. printk("lowmem_reserve[]:");
  1832. for (i = 0; i < MAX_NR_ZONES; i++)
  1833. printk(" %lu", zone->lowmem_reserve[i]);
  1834. printk("\n");
  1835. }
  1836. for_each_populated_zone(zone) {
  1837. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1838. show_node(zone);
  1839. printk("%s: ", zone->name);
  1840. spin_lock_irqsave(&zone->lock, flags);
  1841. for (order = 0; order < MAX_ORDER; order++) {
  1842. nr[order] = zone->free_area[order].nr_free;
  1843. total += nr[order] << order;
  1844. }
  1845. spin_unlock_irqrestore(&zone->lock, flags);
  1846. for (order = 0; order < MAX_ORDER; order++)
  1847. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1848. printk("= %lukB\n", K(total));
  1849. }
  1850. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1851. show_swap_cache_info();
  1852. }
  1853. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1854. {
  1855. zoneref->zone = zone;
  1856. zoneref->zone_idx = zone_idx(zone);
  1857. }
  1858. /*
  1859. * Builds allocation fallback zone lists.
  1860. *
  1861. * Add all populated zones of a node to the zonelist.
  1862. */
  1863. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1864. int nr_zones, enum zone_type zone_type)
  1865. {
  1866. struct zone *zone;
  1867. BUG_ON(zone_type >= MAX_NR_ZONES);
  1868. zone_type++;
  1869. do {
  1870. zone_type--;
  1871. zone = pgdat->node_zones + zone_type;
  1872. if (populated_zone(zone)) {
  1873. zoneref_set_zone(zone,
  1874. &zonelist->_zonerefs[nr_zones++]);
  1875. check_highest_zone(zone_type);
  1876. }
  1877. } while (zone_type);
  1878. return nr_zones;
  1879. }
  1880. /*
  1881. * zonelist_order:
  1882. * 0 = automatic detection of better ordering.
  1883. * 1 = order by ([node] distance, -zonetype)
  1884. * 2 = order by (-zonetype, [node] distance)
  1885. *
  1886. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1887. * the same zonelist. So only NUMA can configure this param.
  1888. */
  1889. #define ZONELIST_ORDER_DEFAULT 0
  1890. #define ZONELIST_ORDER_NODE 1
  1891. #define ZONELIST_ORDER_ZONE 2
  1892. /* zonelist order in the kernel.
  1893. * set_zonelist_order() will set this to NODE or ZONE.
  1894. */
  1895. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1896. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1897. #ifdef CONFIG_NUMA
  1898. /* The value user specified ....changed by config */
  1899. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1900. /* string for sysctl */
  1901. #define NUMA_ZONELIST_ORDER_LEN 16
  1902. char numa_zonelist_order[16] = "default";
  1903. /*
  1904. * interface for configure zonelist ordering.
  1905. * command line option "numa_zonelist_order"
  1906. * = "[dD]efault - default, automatic configuration.
  1907. * = "[nN]ode - order by node locality, then by zone within node
  1908. * = "[zZ]one - order by zone, then by locality within zone
  1909. */
  1910. static int __parse_numa_zonelist_order(char *s)
  1911. {
  1912. if (*s == 'd' || *s == 'D') {
  1913. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1914. } else if (*s == 'n' || *s == 'N') {
  1915. user_zonelist_order = ZONELIST_ORDER_NODE;
  1916. } else if (*s == 'z' || *s == 'Z') {
  1917. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1918. } else {
  1919. printk(KERN_WARNING
  1920. "Ignoring invalid numa_zonelist_order value: "
  1921. "%s\n", s);
  1922. return -EINVAL;
  1923. }
  1924. return 0;
  1925. }
  1926. static __init int setup_numa_zonelist_order(char *s)
  1927. {
  1928. if (s)
  1929. return __parse_numa_zonelist_order(s);
  1930. return 0;
  1931. }
  1932. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1933. /*
  1934. * sysctl handler for numa_zonelist_order
  1935. */
  1936. int numa_zonelist_order_handler(ctl_table *table, int write,
  1937. struct file *file, void __user *buffer, size_t *length,
  1938. loff_t *ppos)
  1939. {
  1940. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1941. int ret;
  1942. if (write)
  1943. strncpy(saved_string, (char*)table->data,
  1944. NUMA_ZONELIST_ORDER_LEN);
  1945. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1946. if (ret)
  1947. return ret;
  1948. if (write) {
  1949. int oldval = user_zonelist_order;
  1950. if (__parse_numa_zonelist_order((char*)table->data)) {
  1951. /*
  1952. * bogus value. restore saved string
  1953. */
  1954. strncpy((char*)table->data, saved_string,
  1955. NUMA_ZONELIST_ORDER_LEN);
  1956. user_zonelist_order = oldval;
  1957. } else if (oldval != user_zonelist_order)
  1958. build_all_zonelists();
  1959. }
  1960. return 0;
  1961. }
  1962. #define MAX_NODE_LOAD (nr_online_nodes)
  1963. static int node_load[MAX_NUMNODES];
  1964. /**
  1965. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1966. * @node: node whose fallback list we're appending
  1967. * @used_node_mask: nodemask_t of already used nodes
  1968. *
  1969. * We use a number of factors to determine which is the next node that should
  1970. * appear on a given node's fallback list. The node should not have appeared
  1971. * already in @node's fallback list, and it should be the next closest node
  1972. * according to the distance array (which contains arbitrary distance values
  1973. * from each node to each node in the system), and should also prefer nodes
  1974. * with no CPUs, since presumably they'll have very little allocation pressure
  1975. * on them otherwise.
  1976. * It returns -1 if no node is found.
  1977. */
  1978. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1979. {
  1980. int n, val;
  1981. int min_val = INT_MAX;
  1982. int best_node = -1;
  1983. const struct cpumask *tmp = cpumask_of_node(0);
  1984. /* Use the local node if we haven't already */
  1985. if (!node_isset(node, *used_node_mask)) {
  1986. node_set(node, *used_node_mask);
  1987. return node;
  1988. }
  1989. for_each_node_state(n, N_HIGH_MEMORY) {
  1990. /* Don't want a node to appear more than once */
  1991. if (node_isset(n, *used_node_mask))
  1992. continue;
  1993. /* Use the distance array to find the distance */
  1994. val = node_distance(node, n);
  1995. /* Penalize nodes under us ("prefer the next node") */
  1996. val += (n < node);
  1997. /* Give preference to headless and unused nodes */
  1998. tmp = cpumask_of_node(n);
  1999. if (!cpumask_empty(tmp))
  2000. val += PENALTY_FOR_NODE_WITH_CPUS;
  2001. /* Slight preference for less loaded node */
  2002. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2003. val += node_load[n];
  2004. if (val < min_val) {
  2005. min_val = val;
  2006. best_node = n;
  2007. }
  2008. }
  2009. if (best_node >= 0)
  2010. node_set(best_node, *used_node_mask);
  2011. return best_node;
  2012. }
  2013. /*
  2014. * Build zonelists ordered by node and zones within node.
  2015. * This results in maximum locality--normal zone overflows into local
  2016. * DMA zone, if any--but risks exhausting DMA zone.
  2017. */
  2018. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2019. {
  2020. int j;
  2021. struct zonelist *zonelist;
  2022. zonelist = &pgdat->node_zonelists[0];
  2023. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2024. ;
  2025. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2026. MAX_NR_ZONES - 1);
  2027. zonelist->_zonerefs[j].zone = NULL;
  2028. zonelist->_zonerefs[j].zone_idx = 0;
  2029. }
  2030. /*
  2031. * Build gfp_thisnode zonelists
  2032. */
  2033. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2034. {
  2035. int j;
  2036. struct zonelist *zonelist;
  2037. zonelist = &pgdat->node_zonelists[1];
  2038. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2039. zonelist->_zonerefs[j].zone = NULL;
  2040. zonelist->_zonerefs[j].zone_idx = 0;
  2041. }
  2042. /*
  2043. * Build zonelists ordered by zone and nodes within zones.
  2044. * This results in conserving DMA zone[s] until all Normal memory is
  2045. * exhausted, but results in overflowing to remote node while memory
  2046. * may still exist in local DMA zone.
  2047. */
  2048. static int node_order[MAX_NUMNODES];
  2049. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2050. {
  2051. int pos, j, node;
  2052. int zone_type; /* needs to be signed */
  2053. struct zone *z;
  2054. struct zonelist *zonelist;
  2055. zonelist = &pgdat->node_zonelists[0];
  2056. pos = 0;
  2057. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2058. for (j = 0; j < nr_nodes; j++) {
  2059. node = node_order[j];
  2060. z = &NODE_DATA(node)->node_zones[zone_type];
  2061. if (populated_zone(z)) {
  2062. zoneref_set_zone(z,
  2063. &zonelist->_zonerefs[pos++]);
  2064. check_highest_zone(zone_type);
  2065. }
  2066. }
  2067. }
  2068. zonelist->_zonerefs[pos].zone = NULL;
  2069. zonelist->_zonerefs[pos].zone_idx = 0;
  2070. }
  2071. static int default_zonelist_order(void)
  2072. {
  2073. int nid, zone_type;
  2074. unsigned long low_kmem_size,total_size;
  2075. struct zone *z;
  2076. int average_size;
  2077. /*
  2078. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2079. * If they are really small and used heavily, the system can fall
  2080. * into OOM very easily.
  2081. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2082. */
  2083. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2084. low_kmem_size = 0;
  2085. total_size = 0;
  2086. for_each_online_node(nid) {
  2087. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2088. z = &NODE_DATA(nid)->node_zones[zone_type];
  2089. if (populated_zone(z)) {
  2090. if (zone_type < ZONE_NORMAL)
  2091. low_kmem_size += z->present_pages;
  2092. total_size += z->present_pages;
  2093. }
  2094. }
  2095. }
  2096. if (!low_kmem_size || /* there are no DMA area. */
  2097. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2098. return ZONELIST_ORDER_NODE;
  2099. /*
  2100. * look into each node's config.
  2101. * If there is a node whose DMA/DMA32 memory is very big area on
  2102. * local memory, NODE_ORDER may be suitable.
  2103. */
  2104. average_size = total_size /
  2105. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2106. for_each_online_node(nid) {
  2107. low_kmem_size = 0;
  2108. total_size = 0;
  2109. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2110. z = &NODE_DATA(nid)->node_zones[zone_type];
  2111. if (populated_zone(z)) {
  2112. if (zone_type < ZONE_NORMAL)
  2113. low_kmem_size += z->present_pages;
  2114. total_size += z->present_pages;
  2115. }
  2116. }
  2117. if (low_kmem_size &&
  2118. total_size > average_size && /* ignore small node */
  2119. low_kmem_size > total_size * 70/100)
  2120. return ZONELIST_ORDER_NODE;
  2121. }
  2122. return ZONELIST_ORDER_ZONE;
  2123. }
  2124. static void set_zonelist_order(void)
  2125. {
  2126. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2127. current_zonelist_order = default_zonelist_order();
  2128. else
  2129. current_zonelist_order = user_zonelist_order;
  2130. }
  2131. static void build_zonelists(pg_data_t *pgdat)
  2132. {
  2133. int j, node, load;
  2134. enum zone_type i;
  2135. nodemask_t used_mask;
  2136. int local_node, prev_node;
  2137. struct zonelist *zonelist;
  2138. int order = current_zonelist_order;
  2139. /* initialize zonelists */
  2140. for (i = 0; i < MAX_ZONELISTS; i++) {
  2141. zonelist = pgdat->node_zonelists + i;
  2142. zonelist->_zonerefs[0].zone = NULL;
  2143. zonelist->_zonerefs[0].zone_idx = 0;
  2144. }
  2145. /* NUMA-aware ordering of nodes */
  2146. local_node = pgdat->node_id;
  2147. load = nr_online_nodes;
  2148. prev_node = local_node;
  2149. nodes_clear(used_mask);
  2150. memset(node_load, 0, sizeof(node_load));
  2151. memset(node_order, 0, sizeof(node_order));
  2152. j = 0;
  2153. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2154. int distance = node_distance(local_node, node);
  2155. /*
  2156. * If another node is sufficiently far away then it is better
  2157. * to reclaim pages in a zone before going off node.
  2158. */
  2159. if (distance > RECLAIM_DISTANCE)
  2160. zone_reclaim_mode = 1;
  2161. /*
  2162. * We don't want to pressure a particular node.
  2163. * So adding penalty to the first node in same
  2164. * distance group to make it round-robin.
  2165. */
  2166. if (distance != node_distance(local_node, prev_node))
  2167. node_load[node] = load;
  2168. prev_node = node;
  2169. load--;
  2170. if (order == ZONELIST_ORDER_NODE)
  2171. build_zonelists_in_node_order(pgdat, node);
  2172. else
  2173. node_order[j++] = node; /* remember order */
  2174. }
  2175. if (order == ZONELIST_ORDER_ZONE) {
  2176. /* calculate node order -- i.e., DMA last! */
  2177. build_zonelists_in_zone_order(pgdat, j);
  2178. }
  2179. build_thisnode_zonelists(pgdat);
  2180. }
  2181. /* Construct the zonelist performance cache - see further mmzone.h */
  2182. static void build_zonelist_cache(pg_data_t *pgdat)
  2183. {
  2184. struct zonelist *zonelist;
  2185. struct zonelist_cache *zlc;
  2186. struct zoneref *z;
  2187. zonelist = &pgdat->node_zonelists[0];
  2188. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2189. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2190. for (z = zonelist->_zonerefs; z->zone; z++)
  2191. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2192. }
  2193. #else /* CONFIG_NUMA */
  2194. static void set_zonelist_order(void)
  2195. {
  2196. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2197. }
  2198. static void build_zonelists(pg_data_t *pgdat)
  2199. {
  2200. int node, local_node;
  2201. enum zone_type j;
  2202. struct zonelist *zonelist;
  2203. local_node = pgdat->node_id;
  2204. zonelist = &pgdat->node_zonelists[0];
  2205. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2206. /*
  2207. * Now we build the zonelist so that it contains the zones
  2208. * of all the other nodes.
  2209. * We don't want to pressure a particular node, so when
  2210. * building the zones for node N, we make sure that the
  2211. * zones coming right after the local ones are those from
  2212. * node N+1 (modulo N)
  2213. */
  2214. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2215. if (!node_online(node))
  2216. continue;
  2217. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2218. MAX_NR_ZONES - 1);
  2219. }
  2220. for (node = 0; node < local_node; node++) {
  2221. if (!node_online(node))
  2222. continue;
  2223. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2224. MAX_NR_ZONES - 1);
  2225. }
  2226. zonelist->_zonerefs[j].zone = NULL;
  2227. zonelist->_zonerefs[j].zone_idx = 0;
  2228. }
  2229. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2230. static void build_zonelist_cache(pg_data_t *pgdat)
  2231. {
  2232. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2233. }
  2234. #endif /* CONFIG_NUMA */
  2235. /* return values int ....just for stop_machine() */
  2236. static int __build_all_zonelists(void *dummy)
  2237. {
  2238. int nid;
  2239. for_each_online_node(nid) {
  2240. pg_data_t *pgdat = NODE_DATA(nid);
  2241. build_zonelists(pgdat);
  2242. build_zonelist_cache(pgdat);
  2243. }
  2244. return 0;
  2245. }
  2246. void build_all_zonelists(void)
  2247. {
  2248. set_zonelist_order();
  2249. if (system_state == SYSTEM_BOOTING) {
  2250. __build_all_zonelists(NULL);
  2251. mminit_verify_zonelist();
  2252. cpuset_init_current_mems_allowed();
  2253. } else {
  2254. /* we have to stop all cpus to guarantee there is no user
  2255. of zonelist */
  2256. stop_machine(__build_all_zonelists, NULL, NULL);
  2257. /* cpuset refresh routine should be here */
  2258. }
  2259. vm_total_pages = nr_free_pagecache_pages();
  2260. /*
  2261. * Disable grouping by mobility if the number of pages in the
  2262. * system is too low to allow the mechanism to work. It would be
  2263. * more accurate, but expensive to check per-zone. This check is
  2264. * made on memory-hotadd so a system can start with mobility
  2265. * disabled and enable it later
  2266. */
  2267. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2268. page_group_by_mobility_disabled = 1;
  2269. else
  2270. page_group_by_mobility_disabled = 0;
  2271. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2272. "Total pages: %ld\n",
  2273. nr_online_nodes,
  2274. zonelist_order_name[current_zonelist_order],
  2275. page_group_by_mobility_disabled ? "off" : "on",
  2276. vm_total_pages);
  2277. #ifdef CONFIG_NUMA
  2278. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2279. #endif
  2280. }
  2281. /*
  2282. * Helper functions to size the waitqueue hash table.
  2283. * Essentially these want to choose hash table sizes sufficiently
  2284. * large so that collisions trying to wait on pages are rare.
  2285. * But in fact, the number of active page waitqueues on typical
  2286. * systems is ridiculously low, less than 200. So this is even
  2287. * conservative, even though it seems large.
  2288. *
  2289. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2290. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2291. */
  2292. #define PAGES_PER_WAITQUEUE 256
  2293. #ifndef CONFIG_MEMORY_HOTPLUG
  2294. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2295. {
  2296. unsigned long size = 1;
  2297. pages /= PAGES_PER_WAITQUEUE;
  2298. while (size < pages)
  2299. size <<= 1;
  2300. /*
  2301. * Once we have dozens or even hundreds of threads sleeping
  2302. * on IO we've got bigger problems than wait queue collision.
  2303. * Limit the size of the wait table to a reasonable size.
  2304. */
  2305. size = min(size, 4096UL);
  2306. return max(size, 4UL);
  2307. }
  2308. #else
  2309. /*
  2310. * A zone's size might be changed by hot-add, so it is not possible to determine
  2311. * a suitable size for its wait_table. So we use the maximum size now.
  2312. *
  2313. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2314. *
  2315. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2316. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2317. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2318. *
  2319. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2320. * or more by the traditional way. (See above). It equals:
  2321. *
  2322. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2323. * ia64(16K page size) : = ( 8G + 4M)byte.
  2324. * powerpc (64K page size) : = (32G +16M)byte.
  2325. */
  2326. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2327. {
  2328. return 4096UL;
  2329. }
  2330. #endif
  2331. /*
  2332. * This is an integer logarithm so that shifts can be used later
  2333. * to extract the more random high bits from the multiplicative
  2334. * hash function before the remainder is taken.
  2335. */
  2336. static inline unsigned long wait_table_bits(unsigned long size)
  2337. {
  2338. return ffz(~size);
  2339. }
  2340. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2341. /*
  2342. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2343. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2344. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2345. * higher will lead to a bigger reserve which will get freed as contiguous
  2346. * blocks as reclaim kicks in
  2347. */
  2348. static void setup_zone_migrate_reserve(struct zone *zone)
  2349. {
  2350. unsigned long start_pfn, pfn, end_pfn;
  2351. struct page *page;
  2352. unsigned long reserve, block_migratetype;
  2353. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2354. start_pfn = zone->zone_start_pfn;
  2355. end_pfn = start_pfn + zone->spanned_pages;
  2356. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2357. pageblock_order;
  2358. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2359. if (!pfn_valid(pfn))
  2360. continue;
  2361. page = pfn_to_page(pfn);
  2362. /* Watch out for overlapping nodes */
  2363. if (page_to_nid(page) != zone_to_nid(zone))
  2364. continue;
  2365. /* Blocks with reserved pages will never free, skip them. */
  2366. if (PageReserved(page))
  2367. continue;
  2368. block_migratetype = get_pageblock_migratetype(page);
  2369. /* If this block is reserved, account for it */
  2370. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2371. reserve--;
  2372. continue;
  2373. }
  2374. /* Suitable for reserving if this block is movable */
  2375. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2376. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2377. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2378. reserve--;
  2379. continue;
  2380. }
  2381. /*
  2382. * If the reserve is met and this is a previous reserved block,
  2383. * take it back
  2384. */
  2385. if (block_migratetype == MIGRATE_RESERVE) {
  2386. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2387. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2388. }
  2389. }
  2390. }
  2391. /*
  2392. * Initially all pages are reserved - free ones are freed
  2393. * up by free_all_bootmem() once the early boot process is
  2394. * done. Non-atomic initialization, single-pass.
  2395. */
  2396. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2397. unsigned long start_pfn, enum memmap_context context)
  2398. {
  2399. struct page *page;
  2400. unsigned long end_pfn = start_pfn + size;
  2401. unsigned long pfn;
  2402. struct zone *z;
  2403. if (highest_memmap_pfn < end_pfn - 1)
  2404. highest_memmap_pfn = end_pfn - 1;
  2405. z = &NODE_DATA(nid)->node_zones[zone];
  2406. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2407. /*
  2408. * There can be holes in boot-time mem_map[]s
  2409. * handed to this function. They do not
  2410. * exist on hotplugged memory.
  2411. */
  2412. if (context == MEMMAP_EARLY) {
  2413. if (!early_pfn_valid(pfn))
  2414. continue;
  2415. if (!early_pfn_in_nid(pfn, nid))
  2416. continue;
  2417. }
  2418. page = pfn_to_page(pfn);
  2419. set_page_links(page, zone, nid, pfn);
  2420. mminit_verify_page_links(page, zone, nid, pfn);
  2421. init_page_count(page);
  2422. reset_page_mapcount(page);
  2423. SetPageReserved(page);
  2424. /*
  2425. * Mark the block movable so that blocks are reserved for
  2426. * movable at startup. This will force kernel allocations
  2427. * to reserve their blocks rather than leaking throughout
  2428. * the address space during boot when many long-lived
  2429. * kernel allocations are made. Later some blocks near
  2430. * the start are marked MIGRATE_RESERVE by
  2431. * setup_zone_migrate_reserve()
  2432. *
  2433. * bitmap is created for zone's valid pfn range. but memmap
  2434. * can be created for invalid pages (for alignment)
  2435. * check here not to call set_pageblock_migratetype() against
  2436. * pfn out of zone.
  2437. */
  2438. if ((z->zone_start_pfn <= pfn)
  2439. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2440. && !(pfn & (pageblock_nr_pages - 1)))
  2441. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2442. INIT_LIST_HEAD(&page->lru);
  2443. #ifdef WANT_PAGE_VIRTUAL
  2444. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2445. if (!is_highmem_idx(zone))
  2446. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2447. #endif
  2448. }
  2449. }
  2450. static void __meminit zone_init_free_lists(struct zone *zone)
  2451. {
  2452. int order, t;
  2453. for_each_migratetype_order(order, t) {
  2454. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2455. zone->free_area[order].nr_free = 0;
  2456. }
  2457. }
  2458. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2459. #define memmap_init(size, nid, zone, start_pfn) \
  2460. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2461. #endif
  2462. static int zone_batchsize(struct zone *zone)
  2463. {
  2464. #ifdef CONFIG_MMU
  2465. int batch;
  2466. /*
  2467. * The per-cpu-pages pools are set to around 1000th of the
  2468. * size of the zone. But no more than 1/2 of a meg.
  2469. *
  2470. * OK, so we don't know how big the cache is. So guess.
  2471. */
  2472. batch = zone->present_pages / 1024;
  2473. if (batch * PAGE_SIZE > 512 * 1024)
  2474. batch = (512 * 1024) / PAGE_SIZE;
  2475. batch /= 4; /* We effectively *= 4 below */
  2476. if (batch < 1)
  2477. batch = 1;
  2478. /*
  2479. * Clamp the batch to a 2^n - 1 value. Having a power
  2480. * of 2 value was found to be more likely to have
  2481. * suboptimal cache aliasing properties in some cases.
  2482. *
  2483. * For example if 2 tasks are alternately allocating
  2484. * batches of pages, one task can end up with a lot
  2485. * of pages of one half of the possible page colors
  2486. * and the other with pages of the other colors.
  2487. */
  2488. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2489. return batch;
  2490. #else
  2491. /* The deferral and batching of frees should be suppressed under NOMMU
  2492. * conditions.
  2493. *
  2494. * The problem is that NOMMU needs to be able to allocate large chunks
  2495. * of contiguous memory as there's no hardware page translation to
  2496. * assemble apparent contiguous memory from discontiguous pages.
  2497. *
  2498. * Queueing large contiguous runs of pages for batching, however,
  2499. * causes the pages to actually be freed in smaller chunks. As there
  2500. * can be a significant delay between the individual batches being
  2501. * recycled, this leads to the once large chunks of space being
  2502. * fragmented and becoming unavailable for high-order allocations.
  2503. */
  2504. return 0;
  2505. #endif
  2506. }
  2507. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2508. {
  2509. struct per_cpu_pages *pcp;
  2510. memset(p, 0, sizeof(*p));
  2511. pcp = &p->pcp;
  2512. pcp->count = 0;
  2513. pcp->high = 6 * batch;
  2514. pcp->batch = max(1UL, 1 * batch);
  2515. INIT_LIST_HEAD(&pcp->list);
  2516. }
  2517. /*
  2518. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2519. * to the value high for the pageset p.
  2520. */
  2521. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2522. unsigned long high)
  2523. {
  2524. struct per_cpu_pages *pcp;
  2525. pcp = &p->pcp;
  2526. pcp->high = high;
  2527. pcp->batch = max(1UL, high/4);
  2528. if ((high/4) > (PAGE_SHIFT * 8))
  2529. pcp->batch = PAGE_SHIFT * 8;
  2530. }
  2531. #ifdef CONFIG_NUMA
  2532. /*
  2533. * Boot pageset table. One per cpu which is going to be used for all
  2534. * zones and all nodes. The parameters will be set in such a way
  2535. * that an item put on a list will immediately be handed over to
  2536. * the buddy list. This is safe since pageset manipulation is done
  2537. * with interrupts disabled.
  2538. *
  2539. * Some NUMA counter updates may also be caught by the boot pagesets.
  2540. *
  2541. * The boot_pagesets must be kept even after bootup is complete for
  2542. * unused processors and/or zones. They do play a role for bootstrapping
  2543. * hotplugged processors.
  2544. *
  2545. * zoneinfo_show() and maybe other functions do
  2546. * not check if the processor is online before following the pageset pointer.
  2547. * Other parts of the kernel may not check if the zone is available.
  2548. */
  2549. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2550. /*
  2551. * Dynamically allocate memory for the
  2552. * per cpu pageset array in struct zone.
  2553. */
  2554. static int __cpuinit process_zones(int cpu)
  2555. {
  2556. struct zone *zone, *dzone;
  2557. int node = cpu_to_node(cpu);
  2558. node_set_state(node, N_CPU); /* this node has a cpu */
  2559. for_each_populated_zone(zone) {
  2560. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2561. GFP_KERNEL, node);
  2562. if (!zone_pcp(zone, cpu))
  2563. goto bad;
  2564. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2565. if (percpu_pagelist_fraction)
  2566. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2567. (zone->present_pages / percpu_pagelist_fraction));
  2568. }
  2569. return 0;
  2570. bad:
  2571. for_each_zone(dzone) {
  2572. if (!populated_zone(dzone))
  2573. continue;
  2574. if (dzone == zone)
  2575. break;
  2576. kfree(zone_pcp(dzone, cpu));
  2577. zone_pcp(dzone, cpu) = NULL;
  2578. }
  2579. return -ENOMEM;
  2580. }
  2581. static inline void free_zone_pagesets(int cpu)
  2582. {
  2583. struct zone *zone;
  2584. for_each_zone(zone) {
  2585. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2586. /* Free per_cpu_pageset if it is slab allocated */
  2587. if (pset != &boot_pageset[cpu])
  2588. kfree(pset);
  2589. zone_pcp(zone, cpu) = NULL;
  2590. }
  2591. }
  2592. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2593. unsigned long action,
  2594. void *hcpu)
  2595. {
  2596. int cpu = (long)hcpu;
  2597. int ret = NOTIFY_OK;
  2598. switch (action) {
  2599. case CPU_UP_PREPARE:
  2600. case CPU_UP_PREPARE_FROZEN:
  2601. if (process_zones(cpu))
  2602. ret = NOTIFY_BAD;
  2603. break;
  2604. case CPU_UP_CANCELED:
  2605. case CPU_UP_CANCELED_FROZEN:
  2606. case CPU_DEAD:
  2607. case CPU_DEAD_FROZEN:
  2608. free_zone_pagesets(cpu);
  2609. break;
  2610. default:
  2611. break;
  2612. }
  2613. return ret;
  2614. }
  2615. static struct notifier_block __cpuinitdata pageset_notifier =
  2616. { &pageset_cpuup_callback, NULL, 0 };
  2617. void __init setup_per_cpu_pageset(void)
  2618. {
  2619. int err;
  2620. /* Initialize per_cpu_pageset for cpu 0.
  2621. * A cpuup callback will do this for every cpu
  2622. * as it comes online
  2623. */
  2624. err = process_zones(smp_processor_id());
  2625. BUG_ON(err);
  2626. register_cpu_notifier(&pageset_notifier);
  2627. }
  2628. #endif
  2629. static noinline __init_refok
  2630. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2631. {
  2632. int i;
  2633. struct pglist_data *pgdat = zone->zone_pgdat;
  2634. size_t alloc_size;
  2635. /*
  2636. * The per-page waitqueue mechanism uses hashed waitqueues
  2637. * per zone.
  2638. */
  2639. zone->wait_table_hash_nr_entries =
  2640. wait_table_hash_nr_entries(zone_size_pages);
  2641. zone->wait_table_bits =
  2642. wait_table_bits(zone->wait_table_hash_nr_entries);
  2643. alloc_size = zone->wait_table_hash_nr_entries
  2644. * sizeof(wait_queue_head_t);
  2645. if (!slab_is_available()) {
  2646. zone->wait_table = (wait_queue_head_t *)
  2647. alloc_bootmem_node(pgdat, alloc_size);
  2648. } else {
  2649. /*
  2650. * This case means that a zone whose size was 0 gets new memory
  2651. * via memory hot-add.
  2652. * But it may be the case that a new node was hot-added. In
  2653. * this case vmalloc() will not be able to use this new node's
  2654. * memory - this wait_table must be initialized to use this new
  2655. * node itself as well.
  2656. * To use this new node's memory, further consideration will be
  2657. * necessary.
  2658. */
  2659. zone->wait_table = vmalloc(alloc_size);
  2660. }
  2661. if (!zone->wait_table)
  2662. return -ENOMEM;
  2663. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2664. init_waitqueue_head(zone->wait_table + i);
  2665. return 0;
  2666. }
  2667. static __meminit void zone_pcp_init(struct zone *zone)
  2668. {
  2669. int cpu;
  2670. unsigned long batch = zone_batchsize(zone);
  2671. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2672. #ifdef CONFIG_NUMA
  2673. /* Early boot. Slab allocator not functional yet */
  2674. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2675. setup_pageset(&boot_pageset[cpu],0);
  2676. #else
  2677. setup_pageset(zone_pcp(zone,cpu), batch);
  2678. #endif
  2679. }
  2680. if (zone->present_pages)
  2681. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2682. zone->name, zone->present_pages, batch);
  2683. }
  2684. __meminit int init_currently_empty_zone(struct zone *zone,
  2685. unsigned long zone_start_pfn,
  2686. unsigned long size,
  2687. enum memmap_context context)
  2688. {
  2689. struct pglist_data *pgdat = zone->zone_pgdat;
  2690. int ret;
  2691. ret = zone_wait_table_init(zone, size);
  2692. if (ret)
  2693. return ret;
  2694. pgdat->nr_zones = zone_idx(zone) + 1;
  2695. zone->zone_start_pfn = zone_start_pfn;
  2696. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2697. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2698. pgdat->node_id,
  2699. (unsigned long)zone_idx(zone),
  2700. zone_start_pfn, (zone_start_pfn + size));
  2701. zone_init_free_lists(zone);
  2702. return 0;
  2703. }
  2704. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2705. /*
  2706. * Basic iterator support. Return the first range of PFNs for a node
  2707. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2708. */
  2709. static int __meminit first_active_region_index_in_nid(int nid)
  2710. {
  2711. int i;
  2712. for (i = 0; i < nr_nodemap_entries; i++)
  2713. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2714. return i;
  2715. return -1;
  2716. }
  2717. /*
  2718. * Basic iterator support. Return the next active range of PFNs for a node
  2719. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2720. */
  2721. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2722. {
  2723. for (index = index + 1; index < nr_nodemap_entries; index++)
  2724. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2725. return index;
  2726. return -1;
  2727. }
  2728. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2729. /*
  2730. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2731. * Architectures may implement their own version but if add_active_range()
  2732. * was used and there are no special requirements, this is a convenient
  2733. * alternative
  2734. */
  2735. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2736. {
  2737. int i;
  2738. for (i = 0; i < nr_nodemap_entries; i++) {
  2739. unsigned long start_pfn = early_node_map[i].start_pfn;
  2740. unsigned long end_pfn = early_node_map[i].end_pfn;
  2741. if (start_pfn <= pfn && pfn < end_pfn)
  2742. return early_node_map[i].nid;
  2743. }
  2744. /* This is a memory hole */
  2745. return -1;
  2746. }
  2747. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2748. int __meminit early_pfn_to_nid(unsigned long pfn)
  2749. {
  2750. int nid;
  2751. nid = __early_pfn_to_nid(pfn);
  2752. if (nid >= 0)
  2753. return nid;
  2754. /* just returns 0 */
  2755. return 0;
  2756. }
  2757. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2758. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2759. {
  2760. int nid;
  2761. nid = __early_pfn_to_nid(pfn);
  2762. if (nid >= 0 && nid != node)
  2763. return false;
  2764. return true;
  2765. }
  2766. #endif
  2767. /* Basic iterator support to walk early_node_map[] */
  2768. #define for_each_active_range_index_in_nid(i, nid) \
  2769. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2770. i = next_active_region_index_in_nid(i, nid))
  2771. /**
  2772. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2773. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2774. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2775. *
  2776. * If an architecture guarantees that all ranges registered with
  2777. * add_active_ranges() contain no holes and may be freed, this
  2778. * this function may be used instead of calling free_bootmem() manually.
  2779. */
  2780. void __init free_bootmem_with_active_regions(int nid,
  2781. unsigned long max_low_pfn)
  2782. {
  2783. int i;
  2784. for_each_active_range_index_in_nid(i, nid) {
  2785. unsigned long size_pages = 0;
  2786. unsigned long end_pfn = early_node_map[i].end_pfn;
  2787. if (early_node_map[i].start_pfn >= max_low_pfn)
  2788. continue;
  2789. if (end_pfn > max_low_pfn)
  2790. end_pfn = max_low_pfn;
  2791. size_pages = end_pfn - early_node_map[i].start_pfn;
  2792. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2793. PFN_PHYS(early_node_map[i].start_pfn),
  2794. size_pages << PAGE_SHIFT);
  2795. }
  2796. }
  2797. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2798. {
  2799. int i;
  2800. int ret;
  2801. for_each_active_range_index_in_nid(i, nid) {
  2802. ret = work_fn(early_node_map[i].start_pfn,
  2803. early_node_map[i].end_pfn, data);
  2804. if (ret)
  2805. break;
  2806. }
  2807. }
  2808. /**
  2809. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2810. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2811. *
  2812. * If an architecture guarantees that all ranges registered with
  2813. * add_active_ranges() contain no holes and may be freed, this
  2814. * function may be used instead of calling memory_present() manually.
  2815. */
  2816. void __init sparse_memory_present_with_active_regions(int nid)
  2817. {
  2818. int i;
  2819. for_each_active_range_index_in_nid(i, nid)
  2820. memory_present(early_node_map[i].nid,
  2821. early_node_map[i].start_pfn,
  2822. early_node_map[i].end_pfn);
  2823. }
  2824. /**
  2825. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2826. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2827. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2828. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2829. *
  2830. * It returns the start and end page frame of a node based on information
  2831. * provided by an arch calling add_active_range(). If called for a node
  2832. * with no available memory, a warning is printed and the start and end
  2833. * PFNs will be 0.
  2834. */
  2835. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2836. unsigned long *start_pfn, unsigned long *end_pfn)
  2837. {
  2838. int i;
  2839. *start_pfn = -1UL;
  2840. *end_pfn = 0;
  2841. for_each_active_range_index_in_nid(i, nid) {
  2842. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2843. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2844. }
  2845. if (*start_pfn == -1UL)
  2846. *start_pfn = 0;
  2847. }
  2848. /*
  2849. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2850. * assumption is made that zones within a node are ordered in monotonic
  2851. * increasing memory addresses so that the "highest" populated zone is used
  2852. */
  2853. static void __init find_usable_zone_for_movable(void)
  2854. {
  2855. int zone_index;
  2856. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2857. if (zone_index == ZONE_MOVABLE)
  2858. continue;
  2859. if (arch_zone_highest_possible_pfn[zone_index] >
  2860. arch_zone_lowest_possible_pfn[zone_index])
  2861. break;
  2862. }
  2863. VM_BUG_ON(zone_index == -1);
  2864. movable_zone = zone_index;
  2865. }
  2866. /*
  2867. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2868. * because it is sized independant of architecture. Unlike the other zones,
  2869. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2870. * in each node depending on the size of each node and how evenly kernelcore
  2871. * is distributed. This helper function adjusts the zone ranges
  2872. * provided by the architecture for a given node by using the end of the
  2873. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2874. * zones within a node are in order of monotonic increases memory addresses
  2875. */
  2876. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2877. unsigned long zone_type,
  2878. unsigned long node_start_pfn,
  2879. unsigned long node_end_pfn,
  2880. unsigned long *zone_start_pfn,
  2881. unsigned long *zone_end_pfn)
  2882. {
  2883. /* Only adjust if ZONE_MOVABLE is on this node */
  2884. if (zone_movable_pfn[nid]) {
  2885. /* Size ZONE_MOVABLE */
  2886. if (zone_type == ZONE_MOVABLE) {
  2887. *zone_start_pfn = zone_movable_pfn[nid];
  2888. *zone_end_pfn = min(node_end_pfn,
  2889. arch_zone_highest_possible_pfn[movable_zone]);
  2890. /* Adjust for ZONE_MOVABLE starting within this range */
  2891. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2892. *zone_end_pfn > zone_movable_pfn[nid]) {
  2893. *zone_end_pfn = zone_movable_pfn[nid];
  2894. /* Check if this whole range is within ZONE_MOVABLE */
  2895. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2896. *zone_start_pfn = *zone_end_pfn;
  2897. }
  2898. }
  2899. /*
  2900. * Return the number of pages a zone spans in a node, including holes
  2901. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2902. */
  2903. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2904. unsigned long zone_type,
  2905. unsigned long *ignored)
  2906. {
  2907. unsigned long node_start_pfn, node_end_pfn;
  2908. unsigned long zone_start_pfn, zone_end_pfn;
  2909. /* Get the start and end of the node and zone */
  2910. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2911. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2912. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2913. adjust_zone_range_for_zone_movable(nid, zone_type,
  2914. node_start_pfn, node_end_pfn,
  2915. &zone_start_pfn, &zone_end_pfn);
  2916. /* Check that this node has pages within the zone's required range */
  2917. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2918. return 0;
  2919. /* Move the zone boundaries inside the node if necessary */
  2920. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2921. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2922. /* Return the spanned pages */
  2923. return zone_end_pfn - zone_start_pfn;
  2924. }
  2925. /*
  2926. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2927. * then all holes in the requested range will be accounted for.
  2928. */
  2929. static unsigned long __meminit __absent_pages_in_range(int nid,
  2930. unsigned long range_start_pfn,
  2931. unsigned long range_end_pfn)
  2932. {
  2933. int i = 0;
  2934. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2935. unsigned long start_pfn;
  2936. /* Find the end_pfn of the first active range of pfns in the node */
  2937. i = first_active_region_index_in_nid(nid);
  2938. if (i == -1)
  2939. return 0;
  2940. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2941. /* Account for ranges before physical memory on this node */
  2942. if (early_node_map[i].start_pfn > range_start_pfn)
  2943. hole_pages = prev_end_pfn - range_start_pfn;
  2944. /* Find all holes for the zone within the node */
  2945. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2946. /* No need to continue if prev_end_pfn is outside the zone */
  2947. if (prev_end_pfn >= range_end_pfn)
  2948. break;
  2949. /* Make sure the end of the zone is not within the hole */
  2950. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2951. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2952. /* Update the hole size cound and move on */
  2953. if (start_pfn > range_start_pfn) {
  2954. BUG_ON(prev_end_pfn > start_pfn);
  2955. hole_pages += start_pfn - prev_end_pfn;
  2956. }
  2957. prev_end_pfn = early_node_map[i].end_pfn;
  2958. }
  2959. /* Account for ranges past physical memory on this node */
  2960. if (range_end_pfn > prev_end_pfn)
  2961. hole_pages += range_end_pfn -
  2962. max(range_start_pfn, prev_end_pfn);
  2963. return hole_pages;
  2964. }
  2965. /**
  2966. * absent_pages_in_range - Return number of page frames in holes within a range
  2967. * @start_pfn: The start PFN to start searching for holes
  2968. * @end_pfn: The end PFN to stop searching for holes
  2969. *
  2970. * It returns the number of pages frames in memory holes within a range.
  2971. */
  2972. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2973. unsigned long end_pfn)
  2974. {
  2975. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2976. }
  2977. /* Return the number of page frames in holes in a zone on a node */
  2978. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2979. unsigned long zone_type,
  2980. unsigned long *ignored)
  2981. {
  2982. unsigned long node_start_pfn, node_end_pfn;
  2983. unsigned long zone_start_pfn, zone_end_pfn;
  2984. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2985. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2986. node_start_pfn);
  2987. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2988. node_end_pfn);
  2989. adjust_zone_range_for_zone_movable(nid, zone_type,
  2990. node_start_pfn, node_end_pfn,
  2991. &zone_start_pfn, &zone_end_pfn);
  2992. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2993. }
  2994. #else
  2995. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2996. unsigned long zone_type,
  2997. unsigned long *zones_size)
  2998. {
  2999. return zones_size[zone_type];
  3000. }
  3001. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3002. unsigned long zone_type,
  3003. unsigned long *zholes_size)
  3004. {
  3005. if (!zholes_size)
  3006. return 0;
  3007. return zholes_size[zone_type];
  3008. }
  3009. #endif
  3010. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3011. unsigned long *zones_size, unsigned long *zholes_size)
  3012. {
  3013. unsigned long realtotalpages, totalpages = 0;
  3014. enum zone_type i;
  3015. for (i = 0; i < MAX_NR_ZONES; i++)
  3016. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3017. zones_size);
  3018. pgdat->node_spanned_pages = totalpages;
  3019. realtotalpages = totalpages;
  3020. for (i = 0; i < MAX_NR_ZONES; i++)
  3021. realtotalpages -=
  3022. zone_absent_pages_in_node(pgdat->node_id, i,
  3023. zholes_size);
  3024. pgdat->node_present_pages = realtotalpages;
  3025. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3026. realtotalpages);
  3027. }
  3028. #ifndef CONFIG_SPARSEMEM
  3029. /*
  3030. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3031. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3032. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3033. * round what is now in bits to nearest long in bits, then return it in
  3034. * bytes.
  3035. */
  3036. static unsigned long __init usemap_size(unsigned long zonesize)
  3037. {
  3038. unsigned long usemapsize;
  3039. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3040. usemapsize = usemapsize >> pageblock_order;
  3041. usemapsize *= NR_PAGEBLOCK_BITS;
  3042. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3043. return usemapsize / 8;
  3044. }
  3045. static void __init setup_usemap(struct pglist_data *pgdat,
  3046. struct zone *zone, unsigned long zonesize)
  3047. {
  3048. unsigned long usemapsize = usemap_size(zonesize);
  3049. zone->pageblock_flags = NULL;
  3050. if (usemapsize)
  3051. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3052. }
  3053. #else
  3054. static void inline setup_usemap(struct pglist_data *pgdat,
  3055. struct zone *zone, unsigned long zonesize) {}
  3056. #endif /* CONFIG_SPARSEMEM */
  3057. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3058. /* Return a sensible default order for the pageblock size. */
  3059. static inline int pageblock_default_order(void)
  3060. {
  3061. if (HPAGE_SHIFT > PAGE_SHIFT)
  3062. return HUGETLB_PAGE_ORDER;
  3063. return MAX_ORDER-1;
  3064. }
  3065. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3066. static inline void __init set_pageblock_order(unsigned int order)
  3067. {
  3068. /* Check that pageblock_nr_pages has not already been setup */
  3069. if (pageblock_order)
  3070. return;
  3071. /*
  3072. * Assume the largest contiguous order of interest is a huge page.
  3073. * This value may be variable depending on boot parameters on IA64
  3074. */
  3075. pageblock_order = order;
  3076. }
  3077. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3078. /*
  3079. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3080. * and pageblock_default_order() are unused as pageblock_order is set
  3081. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3082. * pageblock_order based on the kernel config
  3083. */
  3084. static inline int pageblock_default_order(unsigned int order)
  3085. {
  3086. return MAX_ORDER-1;
  3087. }
  3088. #define set_pageblock_order(x) do {} while (0)
  3089. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3090. /*
  3091. * Set up the zone data structures:
  3092. * - mark all pages reserved
  3093. * - mark all memory queues empty
  3094. * - clear the memory bitmaps
  3095. */
  3096. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3097. unsigned long *zones_size, unsigned long *zholes_size)
  3098. {
  3099. enum zone_type j;
  3100. int nid = pgdat->node_id;
  3101. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3102. int ret;
  3103. pgdat_resize_init(pgdat);
  3104. pgdat->nr_zones = 0;
  3105. init_waitqueue_head(&pgdat->kswapd_wait);
  3106. pgdat->kswapd_max_order = 0;
  3107. pgdat_page_cgroup_init(pgdat);
  3108. for (j = 0; j < MAX_NR_ZONES; j++) {
  3109. struct zone *zone = pgdat->node_zones + j;
  3110. unsigned long size, realsize, memmap_pages;
  3111. enum lru_list l;
  3112. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3113. realsize = size - zone_absent_pages_in_node(nid, j,
  3114. zholes_size);
  3115. /*
  3116. * Adjust realsize so that it accounts for how much memory
  3117. * is used by this zone for memmap. This affects the watermark
  3118. * and per-cpu initialisations
  3119. */
  3120. memmap_pages =
  3121. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3122. if (realsize >= memmap_pages) {
  3123. realsize -= memmap_pages;
  3124. if (memmap_pages)
  3125. printk(KERN_DEBUG
  3126. " %s zone: %lu pages used for memmap\n",
  3127. zone_names[j], memmap_pages);
  3128. } else
  3129. printk(KERN_WARNING
  3130. " %s zone: %lu pages exceeds realsize %lu\n",
  3131. zone_names[j], memmap_pages, realsize);
  3132. /* Account for reserved pages */
  3133. if (j == 0 && realsize > dma_reserve) {
  3134. realsize -= dma_reserve;
  3135. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3136. zone_names[0], dma_reserve);
  3137. }
  3138. if (!is_highmem_idx(j))
  3139. nr_kernel_pages += realsize;
  3140. nr_all_pages += realsize;
  3141. zone->spanned_pages = size;
  3142. zone->present_pages = realsize;
  3143. #ifdef CONFIG_NUMA
  3144. zone->node = nid;
  3145. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3146. / 100;
  3147. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3148. #endif
  3149. zone->name = zone_names[j];
  3150. spin_lock_init(&zone->lock);
  3151. spin_lock_init(&zone->lru_lock);
  3152. zone_seqlock_init(zone);
  3153. zone->zone_pgdat = pgdat;
  3154. zone->prev_priority = DEF_PRIORITY;
  3155. zone_pcp_init(zone);
  3156. for_each_lru(l) {
  3157. INIT_LIST_HEAD(&zone->lru[l].list);
  3158. zone->lru[l].nr_scan = 0;
  3159. }
  3160. zone->reclaim_stat.recent_rotated[0] = 0;
  3161. zone->reclaim_stat.recent_rotated[1] = 0;
  3162. zone->reclaim_stat.recent_scanned[0] = 0;
  3163. zone->reclaim_stat.recent_scanned[1] = 0;
  3164. zap_zone_vm_stats(zone);
  3165. zone->flags = 0;
  3166. if (!size)
  3167. continue;
  3168. set_pageblock_order(pageblock_default_order());
  3169. setup_usemap(pgdat, zone, size);
  3170. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3171. size, MEMMAP_EARLY);
  3172. BUG_ON(ret);
  3173. memmap_init(size, nid, j, zone_start_pfn);
  3174. zone_start_pfn += size;
  3175. }
  3176. }
  3177. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3178. {
  3179. /* Skip empty nodes */
  3180. if (!pgdat->node_spanned_pages)
  3181. return;
  3182. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3183. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3184. if (!pgdat->node_mem_map) {
  3185. unsigned long size, start, end;
  3186. struct page *map;
  3187. /*
  3188. * The zone's endpoints aren't required to be MAX_ORDER
  3189. * aligned but the node_mem_map endpoints must be in order
  3190. * for the buddy allocator to function correctly.
  3191. */
  3192. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3193. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3194. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3195. size = (end - start) * sizeof(struct page);
  3196. map = alloc_remap(pgdat->node_id, size);
  3197. if (!map)
  3198. map = alloc_bootmem_node(pgdat, size);
  3199. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3200. }
  3201. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3202. /*
  3203. * With no DISCONTIG, the global mem_map is just set as node 0's
  3204. */
  3205. if (pgdat == NODE_DATA(0)) {
  3206. mem_map = NODE_DATA(0)->node_mem_map;
  3207. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3208. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3209. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3210. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3211. }
  3212. #endif
  3213. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3214. }
  3215. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3216. unsigned long node_start_pfn, unsigned long *zholes_size)
  3217. {
  3218. pg_data_t *pgdat = NODE_DATA(nid);
  3219. pgdat->node_id = nid;
  3220. pgdat->node_start_pfn = node_start_pfn;
  3221. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3222. alloc_node_mem_map(pgdat);
  3223. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3224. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3225. nid, (unsigned long)pgdat,
  3226. (unsigned long)pgdat->node_mem_map);
  3227. #endif
  3228. free_area_init_core(pgdat, zones_size, zholes_size);
  3229. }
  3230. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3231. #if MAX_NUMNODES > 1
  3232. /*
  3233. * Figure out the number of possible node ids.
  3234. */
  3235. static void __init setup_nr_node_ids(void)
  3236. {
  3237. unsigned int node;
  3238. unsigned int highest = 0;
  3239. for_each_node_mask(node, node_possible_map)
  3240. highest = node;
  3241. nr_node_ids = highest + 1;
  3242. }
  3243. #else
  3244. static inline void setup_nr_node_ids(void)
  3245. {
  3246. }
  3247. #endif
  3248. /**
  3249. * add_active_range - Register a range of PFNs backed by physical memory
  3250. * @nid: The node ID the range resides on
  3251. * @start_pfn: The start PFN of the available physical memory
  3252. * @end_pfn: The end PFN of the available physical memory
  3253. *
  3254. * These ranges are stored in an early_node_map[] and later used by
  3255. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3256. * range spans a memory hole, it is up to the architecture to ensure
  3257. * the memory is not freed by the bootmem allocator. If possible
  3258. * the range being registered will be merged with existing ranges.
  3259. */
  3260. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3261. unsigned long end_pfn)
  3262. {
  3263. int i;
  3264. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3265. "Entering add_active_range(%d, %#lx, %#lx) "
  3266. "%d entries of %d used\n",
  3267. nid, start_pfn, end_pfn,
  3268. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3269. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3270. /* Merge with existing active regions if possible */
  3271. for (i = 0; i < nr_nodemap_entries; i++) {
  3272. if (early_node_map[i].nid != nid)
  3273. continue;
  3274. /* Skip if an existing region covers this new one */
  3275. if (start_pfn >= early_node_map[i].start_pfn &&
  3276. end_pfn <= early_node_map[i].end_pfn)
  3277. return;
  3278. /* Merge forward if suitable */
  3279. if (start_pfn <= early_node_map[i].end_pfn &&
  3280. end_pfn > early_node_map[i].end_pfn) {
  3281. early_node_map[i].end_pfn = end_pfn;
  3282. return;
  3283. }
  3284. /* Merge backward if suitable */
  3285. if (start_pfn < early_node_map[i].end_pfn &&
  3286. end_pfn >= early_node_map[i].start_pfn) {
  3287. early_node_map[i].start_pfn = start_pfn;
  3288. return;
  3289. }
  3290. }
  3291. /* Check that early_node_map is large enough */
  3292. if (i >= MAX_ACTIVE_REGIONS) {
  3293. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3294. MAX_ACTIVE_REGIONS);
  3295. return;
  3296. }
  3297. early_node_map[i].nid = nid;
  3298. early_node_map[i].start_pfn = start_pfn;
  3299. early_node_map[i].end_pfn = end_pfn;
  3300. nr_nodemap_entries = i + 1;
  3301. }
  3302. /**
  3303. * remove_active_range - Shrink an existing registered range of PFNs
  3304. * @nid: The node id the range is on that should be shrunk
  3305. * @start_pfn: The new PFN of the range
  3306. * @end_pfn: The new PFN of the range
  3307. *
  3308. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3309. * The map is kept near the end physical page range that has already been
  3310. * registered. This function allows an arch to shrink an existing registered
  3311. * range.
  3312. */
  3313. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3314. unsigned long end_pfn)
  3315. {
  3316. int i, j;
  3317. int removed = 0;
  3318. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3319. nid, start_pfn, end_pfn);
  3320. /* Find the old active region end and shrink */
  3321. for_each_active_range_index_in_nid(i, nid) {
  3322. if (early_node_map[i].start_pfn >= start_pfn &&
  3323. early_node_map[i].end_pfn <= end_pfn) {
  3324. /* clear it */
  3325. early_node_map[i].start_pfn = 0;
  3326. early_node_map[i].end_pfn = 0;
  3327. removed = 1;
  3328. continue;
  3329. }
  3330. if (early_node_map[i].start_pfn < start_pfn &&
  3331. early_node_map[i].end_pfn > start_pfn) {
  3332. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3333. early_node_map[i].end_pfn = start_pfn;
  3334. if (temp_end_pfn > end_pfn)
  3335. add_active_range(nid, end_pfn, temp_end_pfn);
  3336. continue;
  3337. }
  3338. if (early_node_map[i].start_pfn >= start_pfn &&
  3339. early_node_map[i].end_pfn > end_pfn &&
  3340. early_node_map[i].start_pfn < end_pfn) {
  3341. early_node_map[i].start_pfn = end_pfn;
  3342. continue;
  3343. }
  3344. }
  3345. if (!removed)
  3346. return;
  3347. /* remove the blank ones */
  3348. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3349. if (early_node_map[i].nid != nid)
  3350. continue;
  3351. if (early_node_map[i].end_pfn)
  3352. continue;
  3353. /* we found it, get rid of it */
  3354. for (j = i; j < nr_nodemap_entries - 1; j++)
  3355. memcpy(&early_node_map[j], &early_node_map[j+1],
  3356. sizeof(early_node_map[j]));
  3357. j = nr_nodemap_entries - 1;
  3358. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3359. nr_nodemap_entries--;
  3360. }
  3361. }
  3362. /**
  3363. * remove_all_active_ranges - Remove all currently registered regions
  3364. *
  3365. * During discovery, it may be found that a table like SRAT is invalid
  3366. * and an alternative discovery method must be used. This function removes
  3367. * all currently registered regions.
  3368. */
  3369. void __init remove_all_active_ranges(void)
  3370. {
  3371. memset(early_node_map, 0, sizeof(early_node_map));
  3372. nr_nodemap_entries = 0;
  3373. }
  3374. /* Compare two active node_active_regions */
  3375. static int __init cmp_node_active_region(const void *a, const void *b)
  3376. {
  3377. struct node_active_region *arange = (struct node_active_region *)a;
  3378. struct node_active_region *brange = (struct node_active_region *)b;
  3379. /* Done this way to avoid overflows */
  3380. if (arange->start_pfn > brange->start_pfn)
  3381. return 1;
  3382. if (arange->start_pfn < brange->start_pfn)
  3383. return -1;
  3384. return 0;
  3385. }
  3386. /* sort the node_map by start_pfn */
  3387. static void __init sort_node_map(void)
  3388. {
  3389. sort(early_node_map, (size_t)nr_nodemap_entries,
  3390. sizeof(struct node_active_region),
  3391. cmp_node_active_region, NULL);
  3392. }
  3393. /* Find the lowest pfn for a node */
  3394. static unsigned long __init find_min_pfn_for_node(int nid)
  3395. {
  3396. int i;
  3397. unsigned long min_pfn = ULONG_MAX;
  3398. /* Assuming a sorted map, the first range found has the starting pfn */
  3399. for_each_active_range_index_in_nid(i, nid)
  3400. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3401. if (min_pfn == ULONG_MAX) {
  3402. printk(KERN_WARNING
  3403. "Could not find start_pfn for node %d\n", nid);
  3404. return 0;
  3405. }
  3406. return min_pfn;
  3407. }
  3408. /**
  3409. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3410. *
  3411. * It returns the minimum PFN based on information provided via
  3412. * add_active_range().
  3413. */
  3414. unsigned long __init find_min_pfn_with_active_regions(void)
  3415. {
  3416. return find_min_pfn_for_node(MAX_NUMNODES);
  3417. }
  3418. /*
  3419. * early_calculate_totalpages()
  3420. * Sum pages in active regions for movable zone.
  3421. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3422. */
  3423. static unsigned long __init early_calculate_totalpages(void)
  3424. {
  3425. int i;
  3426. unsigned long totalpages = 0;
  3427. for (i = 0; i < nr_nodemap_entries; i++) {
  3428. unsigned long pages = early_node_map[i].end_pfn -
  3429. early_node_map[i].start_pfn;
  3430. totalpages += pages;
  3431. if (pages)
  3432. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3433. }
  3434. return totalpages;
  3435. }
  3436. /*
  3437. * Find the PFN the Movable zone begins in each node. Kernel memory
  3438. * is spread evenly between nodes as long as the nodes have enough
  3439. * memory. When they don't, some nodes will have more kernelcore than
  3440. * others
  3441. */
  3442. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3443. {
  3444. int i, nid;
  3445. unsigned long usable_startpfn;
  3446. unsigned long kernelcore_node, kernelcore_remaining;
  3447. unsigned long totalpages = early_calculate_totalpages();
  3448. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3449. /*
  3450. * If movablecore was specified, calculate what size of
  3451. * kernelcore that corresponds so that memory usable for
  3452. * any allocation type is evenly spread. If both kernelcore
  3453. * and movablecore are specified, then the value of kernelcore
  3454. * will be used for required_kernelcore if it's greater than
  3455. * what movablecore would have allowed.
  3456. */
  3457. if (required_movablecore) {
  3458. unsigned long corepages;
  3459. /*
  3460. * Round-up so that ZONE_MOVABLE is at least as large as what
  3461. * was requested by the user
  3462. */
  3463. required_movablecore =
  3464. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3465. corepages = totalpages - required_movablecore;
  3466. required_kernelcore = max(required_kernelcore, corepages);
  3467. }
  3468. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3469. if (!required_kernelcore)
  3470. return;
  3471. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3472. find_usable_zone_for_movable();
  3473. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3474. restart:
  3475. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3476. kernelcore_node = required_kernelcore / usable_nodes;
  3477. for_each_node_state(nid, N_HIGH_MEMORY) {
  3478. /*
  3479. * Recalculate kernelcore_node if the division per node
  3480. * now exceeds what is necessary to satisfy the requested
  3481. * amount of memory for the kernel
  3482. */
  3483. if (required_kernelcore < kernelcore_node)
  3484. kernelcore_node = required_kernelcore / usable_nodes;
  3485. /*
  3486. * As the map is walked, we track how much memory is usable
  3487. * by the kernel using kernelcore_remaining. When it is
  3488. * 0, the rest of the node is usable by ZONE_MOVABLE
  3489. */
  3490. kernelcore_remaining = kernelcore_node;
  3491. /* Go through each range of PFNs within this node */
  3492. for_each_active_range_index_in_nid(i, nid) {
  3493. unsigned long start_pfn, end_pfn;
  3494. unsigned long size_pages;
  3495. start_pfn = max(early_node_map[i].start_pfn,
  3496. zone_movable_pfn[nid]);
  3497. end_pfn = early_node_map[i].end_pfn;
  3498. if (start_pfn >= end_pfn)
  3499. continue;
  3500. /* Account for what is only usable for kernelcore */
  3501. if (start_pfn < usable_startpfn) {
  3502. unsigned long kernel_pages;
  3503. kernel_pages = min(end_pfn, usable_startpfn)
  3504. - start_pfn;
  3505. kernelcore_remaining -= min(kernel_pages,
  3506. kernelcore_remaining);
  3507. required_kernelcore -= min(kernel_pages,
  3508. required_kernelcore);
  3509. /* Continue if range is now fully accounted */
  3510. if (end_pfn <= usable_startpfn) {
  3511. /*
  3512. * Push zone_movable_pfn to the end so
  3513. * that if we have to rebalance
  3514. * kernelcore across nodes, we will
  3515. * not double account here
  3516. */
  3517. zone_movable_pfn[nid] = end_pfn;
  3518. continue;
  3519. }
  3520. start_pfn = usable_startpfn;
  3521. }
  3522. /*
  3523. * The usable PFN range for ZONE_MOVABLE is from
  3524. * start_pfn->end_pfn. Calculate size_pages as the
  3525. * number of pages used as kernelcore
  3526. */
  3527. size_pages = end_pfn - start_pfn;
  3528. if (size_pages > kernelcore_remaining)
  3529. size_pages = kernelcore_remaining;
  3530. zone_movable_pfn[nid] = start_pfn + size_pages;
  3531. /*
  3532. * Some kernelcore has been met, update counts and
  3533. * break if the kernelcore for this node has been
  3534. * satisified
  3535. */
  3536. required_kernelcore -= min(required_kernelcore,
  3537. size_pages);
  3538. kernelcore_remaining -= size_pages;
  3539. if (!kernelcore_remaining)
  3540. break;
  3541. }
  3542. }
  3543. /*
  3544. * If there is still required_kernelcore, we do another pass with one
  3545. * less node in the count. This will push zone_movable_pfn[nid] further
  3546. * along on the nodes that still have memory until kernelcore is
  3547. * satisified
  3548. */
  3549. usable_nodes--;
  3550. if (usable_nodes && required_kernelcore > usable_nodes)
  3551. goto restart;
  3552. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3553. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3554. zone_movable_pfn[nid] =
  3555. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3556. }
  3557. /* Any regular memory on that node ? */
  3558. static void check_for_regular_memory(pg_data_t *pgdat)
  3559. {
  3560. #ifdef CONFIG_HIGHMEM
  3561. enum zone_type zone_type;
  3562. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3563. struct zone *zone = &pgdat->node_zones[zone_type];
  3564. if (zone->present_pages)
  3565. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3566. }
  3567. #endif
  3568. }
  3569. /**
  3570. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3571. * @max_zone_pfn: an array of max PFNs for each zone
  3572. *
  3573. * This will call free_area_init_node() for each active node in the system.
  3574. * Using the page ranges provided by add_active_range(), the size of each
  3575. * zone in each node and their holes is calculated. If the maximum PFN
  3576. * between two adjacent zones match, it is assumed that the zone is empty.
  3577. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3578. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3579. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3580. * at arch_max_dma_pfn.
  3581. */
  3582. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3583. {
  3584. unsigned long nid;
  3585. int i;
  3586. /* Sort early_node_map as initialisation assumes it is sorted */
  3587. sort_node_map();
  3588. /* Record where the zone boundaries are */
  3589. memset(arch_zone_lowest_possible_pfn, 0,
  3590. sizeof(arch_zone_lowest_possible_pfn));
  3591. memset(arch_zone_highest_possible_pfn, 0,
  3592. sizeof(arch_zone_highest_possible_pfn));
  3593. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3594. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3595. for (i = 1; i < MAX_NR_ZONES; i++) {
  3596. if (i == ZONE_MOVABLE)
  3597. continue;
  3598. arch_zone_lowest_possible_pfn[i] =
  3599. arch_zone_highest_possible_pfn[i-1];
  3600. arch_zone_highest_possible_pfn[i] =
  3601. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3602. }
  3603. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3604. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3605. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3606. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3607. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3608. /* Print out the zone ranges */
  3609. printk("Zone PFN ranges:\n");
  3610. for (i = 0; i < MAX_NR_ZONES; i++) {
  3611. if (i == ZONE_MOVABLE)
  3612. continue;
  3613. printk(" %-8s %0#10lx -> %0#10lx\n",
  3614. zone_names[i],
  3615. arch_zone_lowest_possible_pfn[i],
  3616. arch_zone_highest_possible_pfn[i]);
  3617. }
  3618. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3619. printk("Movable zone start PFN for each node\n");
  3620. for (i = 0; i < MAX_NUMNODES; i++) {
  3621. if (zone_movable_pfn[i])
  3622. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3623. }
  3624. /* Print out the early_node_map[] */
  3625. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3626. for (i = 0; i < nr_nodemap_entries; i++)
  3627. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3628. early_node_map[i].start_pfn,
  3629. early_node_map[i].end_pfn);
  3630. /* Initialise every node */
  3631. mminit_verify_pageflags_layout();
  3632. setup_nr_node_ids();
  3633. for_each_online_node(nid) {
  3634. pg_data_t *pgdat = NODE_DATA(nid);
  3635. free_area_init_node(nid, NULL,
  3636. find_min_pfn_for_node(nid), NULL);
  3637. /* Any memory on that node */
  3638. if (pgdat->node_present_pages)
  3639. node_set_state(nid, N_HIGH_MEMORY);
  3640. check_for_regular_memory(pgdat);
  3641. }
  3642. }
  3643. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3644. {
  3645. unsigned long long coremem;
  3646. if (!p)
  3647. return -EINVAL;
  3648. coremem = memparse(p, &p);
  3649. *core = coremem >> PAGE_SHIFT;
  3650. /* Paranoid check that UL is enough for the coremem value */
  3651. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3652. return 0;
  3653. }
  3654. /*
  3655. * kernelcore=size sets the amount of memory for use for allocations that
  3656. * cannot be reclaimed or migrated.
  3657. */
  3658. static int __init cmdline_parse_kernelcore(char *p)
  3659. {
  3660. return cmdline_parse_core(p, &required_kernelcore);
  3661. }
  3662. /*
  3663. * movablecore=size sets the amount of memory for use for allocations that
  3664. * can be reclaimed or migrated.
  3665. */
  3666. static int __init cmdline_parse_movablecore(char *p)
  3667. {
  3668. return cmdline_parse_core(p, &required_movablecore);
  3669. }
  3670. early_param("kernelcore", cmdline_parse_kernelcore);
  3671. early_param("movablecore", cmdline_parse_movablecore);
  3672. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3673. /**
  3674. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3675. * @new_dma_reserve: The number of pages to mark reserved
  3676. *
  3677. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3678. * In the DMA zone, a significant percentage may be consumed by kernel image
  3679. * and other unfreeable allocations which can skew the watermarks badly. This
  3680. * function may optionally be used to account for unfreeable pages in the
  3681. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3682. * smaller per-cpu batchsize.
  3683. */
  3684. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3685. {
  3686. dma_reserve = new_dma_reserve;
  3687. }
  3688. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3689. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3690. EXPORT_SYMBOL(contig_page_data);
  3691. #endif
  3692. void __init free_area_init(unsigned long *zones_size)
  3693. {
  3694. free_area_init_node(0, zones_size,
  3695. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3696. }
  3697. static int page_alloc_cpu_notify(struct notifier_block *self,
  3698. unsigned long action, void *hcpu)
  3699. {
  3700. int cpu = (unsigned long)hcpu;
  3701. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3702. drain_pages(cpu);
  3703. /*
  3704. * Spill the event counters of the dead processor
  3705. * into the current processors event counters.
  3706. * This artificially elevates the count of the current
  3707. * processor.
  3708. */
  3709. vm_events_fold_cpu(cpu);
  3710. /*
  3711. * Zero the differential counters of the dead processor
  3712. * so that the vm statistics are consistent.
  3713. *
  3714. * This is only okay since the processor is dead and cannot
  3715. * race with what we are doing.
  3716. */
  3717. refresh_cpu_vm_stats(cpu);
  3718. }
  3719. return NOTIFY_OK;
  3720. }
  3721. void __init page_alloc_init(void)
  3722. {
  3723. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3724. }
  3725. /*
  3726. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3727. * or min_free_kbytes changes.
  3728. */
  3729. static void calculate_totalreserve_pages(void)
  3730. {
  3731. struct pglist_data *pgdat;
  3732. unsigned long reserve_pages = 0;
  3733. enum zone_type i, j;
  3734. for_each_online_pgdat(pgdat) {
  3735. for (i = 0; i < MAX_NR_ZONES; i++) {
  3736. struct zone *zone = pgdat->node_zones + i;
  3737. unsigned long max = 0;
  3738. /* Find valid and maximum lowmem_reserve in the zone */
  3739. for (j = i; j < MAX_NR_ZONES; j++) {
  3740. if (zone->lowmem_reserve[j] > max)
  3741. max = zone->lowmem_reserve[j];
  3742. }
  3743. /* we treat the high watermark as reserved pages. */
  3744. max += high_wmark_pages(zone);
  3745. if (max > zone->present_pages)
  3746. max = zone->present_pages;
  3747. reserve_pages += max;
  3748. }
  3749. }
  3750. totalreserve_pages = reserve_pages;
  3751. }
  3752. /*
  3753. * setup_per_zone_lowmem_reserve - called whenever
  3754. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3755. * has a correct pages reserved value, so an adequate number of
  3756. * pages are left in the zone after a successful __alloc_pages().
  3757. */
  3758. static void setup_per_zone_lowmem_reserve(void)
  3759. {
  3760. struct pglist_data *pgdat;
  3761. enum zone_type j, idx;
  3762. for_each_online_pgdat(pgdat) {
  3763. for (j = 0; j < MAX_NR_ZONES; j++) {
  3764. struct zone *zone = pgdat->node_zones + j;
  3765. unsigned long present_pages = zone->present_pages;
  3766. zone->lowmem_reserve[j] = 0;
  3767. idx = j;
  3768. while (idx) {
  3769. struct zone *lower_zone;
  3770. idx--;
  3771. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3772. sysctl_lowmem_reserve_ratio[idx] = 1;
  3773. lower_zone = pgdat->node_zones + idx;
  3774. lower_zone->lowmem_reserve[j] = present_pages /
  3775. sysctl_lowmem_reserve_ratio[idx];
  3776. present_pages += lower_zone->present_pages;
  3777. }
  3778. }
  3779. }
  3780. /* update totalreserve_pages */
  3781. calculate_totalreserve_pages();
  3782. }
  3783. /**
  3784. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3785. *
  3786. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3787. * with respect to min_free_kbytes.
  3788. */
  3789. void setup_per_zone_pages_min(void)
  3790. {
  3791. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3792. unsigned long lowmem_pages = 0;
  3793. struct zone *zone;
  3794. unsigned long flags;
  3795. /* Calculate total number of !ZONE_HIGHMEM pages */
  3796. for_each_zone(zone) {
  3797. if (!is_highmem(zone))
  3798. lowmem_pages += zone->present_pages;
  3799. }
  3800. for_each_zone(zone) {
  3801. u64 tmp;
  3802. spin_lock_irqsave(&zone->lock, flags);
  3803. tmp = (u64)pages_min * zone->present_pages;
  3804. do_div(tmp, lowmem_pages);
  3805. if (is_highmem(zone)) {
  3806. /*
  3807. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3808. * need highmem pages, so cap pages_min to a small
  3809. * value here.
  3810. *
  3811. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  3812. * deltas controls asynch page reclaim, and so should
  3813. * not be capped for highmem.
  3814. */
  3815. int min_pages;
  3816. min_pages = zone->present_pages / 1024;
  3817. if (min_pages < SWAP_CLUSTER_MAX)
  3818. min_pages = SWAP_CLUSTER_MAX;
  3819. if (min_pages > 128)
  3820. min_pages = 128;
  3821. zone->watermark[WMARK_MIN] = min_pages;
  3822. } else {
  3823. /*
  3824. * If it's a lowmem zone, reserve a number of pages
  3825. * proportionate to the zone's size.
  3826. */
  3827. zone->watermark[WMARK_MIN] = tmp;
  3828. }
  3829. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  3830. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  3831. setup_zone_migrate_reserve(zone);
  3832. spin_unlock_irqrestore(&zone->lock, flags);
  3833. }
  3834. /* update totalreserve_pages */
  3835. calculate_totalreserve_pages();
  3836. }
  3837. /**
  3838. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3839. *
  3840. * The inactive anon list should be small enough that the VM never has to
  3841. * do too much work, but large enough that each inactive page has a chance
  3842. * to be referenced again before it is swapped out.
  3843. *
  3844. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3845. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3846. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3847. * the anonymous pages are kept on the inactive list.
  3848. *
  3849. * total target max
  3850. * memory ratio inactive anon
  3851. * -------------------------------------
  3852. * 10MB 1 5MB
  3853. * 100MB 1 50MB
  3854. * 1GB 3 250MB
  3855. * 10GB 10 0.9GB
  3856. * 100GB 31 3GB
  3857. * 1TB 101 10GB
  3858. * 10TB 320 32GB
  3859. */
  3860. static void setup_per_zone_inactive_ratio(void)
  3861. {
  3862. struct zone *zone;
  3863. for_each_zone(zone) {
  3864. unsigned int gb, ratio;
  3865. /* Zone size in gigabytes */
  3866. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3867. ratio = int_sqrt(10 * gb);
  3868. if (!ratio)
  3869. ratio = 1;
  3870. zone->inactive_ratio = ratio;
  3871. }
  3872. }
  3873. /*
  3874. * Initialise min_free_kbytes.
  3875. *
  3876. * For small machines we want it small (128k min). For large machines
  3877. * we want it large (64MB max). But it is not linear, because network
  3878. * bandwidth does not increase linearly with machine size. We use
  3879. *
  3880. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3881. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3882. *
  3883. * which yields
  3884. *
  3885. * 16MB: 512k
  3886. * 32MB: 724k
  3887. * 64MB: 1024k
  3888. * 128MB: 1448k
  3889. * 256MB: 2048k
  3890. * 512MB: 2896k
  3891. * 1024MB: 4096k
  3892. * 2048MB: 5792k
  3893. * 4096MB: 8192k
  3894. * 8192MB: 11584k
  3895. * 16384MB: 16384k
  3896. */
  3897. static int __init init_per_zone_pages_min(void)
  3898. {
  3899. unsigned long lowmem_kbytes;
  3900. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3901. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3902. if (min_free_kbytes < 128)
  3903. min_free_kbytes = 128;
  3904. if (min_free_kbytes > 65536)
  3905. min_free_kbytes = 65536;
  3906. setup_per_zone_pages_min();
  3907. setup_per_zone_lowmem_reserve();
  3908. setup_per_zone_inactive_ratio();
  3909. return 0;
  3910. }
  3911. module_init(init_per_zone_pages_min)
  3912. /*
  3913. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3914. * that we can call two helper functions whenever min_free_kbytes
  3915. * changes.
  3916. */
  3917. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3918. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3919. {
  3920. proc_dointvec(table, write, file, buffer, length, ppos);
  3921. if (write)
  3922. setup_per_zone_pages_min();
  3923. return 0;
  3924. }
  3925. #ifdef CONFIG_NUMA
  3926. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3927. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3928. {
  3929. struct zone *zone;
  3930. int rc;
  3931. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3932. if (rc)
  3933. return rc;
  3934. for_each_zone(zone)
  3935. zone->min_unmapped_pages = (zone->present_pages *
  3936. sysctl_min_unmapped_ratio) / 100;
  3937. return 0;
  3938. }
  3939. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3940. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3941. {
  3942. struct zone *zone;
  3943. int rc;
  3944. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3945. if (rc)
  3946. return rc;
  3947. for_each_zone(zone)
  3948. zone->min_slab_pages = (zone->present_pages *
  3949. sysctl_min_slab_ratio) / 100;
  3950. return 0;
  3951. }
  3952. #endif
  3953. /*
  3954. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3955. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3956. * whenever sysctl_lowmem_reserve_ratio changes.
  3957. *
  3958. * The reserve ratio obviously has absolutely no relation with the
  3959. * minimum watermarks. The lowmem reserve ratio can only make sense
  3960. * if in function of the boot time zone sizes.
  3961. */
  3962. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3963. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3964. {
  3965. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3966. setup_per_zone_lowmem_reserve();
  3967. return 0;
  3968. }
  3969. /*
  3970. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3971. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3972. * can have before it gets flushed back to buddy allocator.
  3973. */
  3974. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3975. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3976. {
  3977. struct zone *zone;
  3978. unsigned int cpu;
  3979. int ret;
  3980. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3981. if (!write || (ret == -EINVAL))
  3982. return ret;
  3983. for_each_zone(zone) {
  3984. for_each_online_cpu(cpu) {
  3985. unsigned long high;
  3986. high = zone->present_pages / percpu_pagelist_fraction;
  3987. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3988. }
  3989. }
  3990. return 0;
  3991. }
  3992. int hashdist = HASHDIST_DEFAULT;
  3993. #ifdef CONFIG_NUMA
  3994. static int __init set_hashdist(char *str)
  3995. {
  3996. if (!str)
  3997. return 0;
  3998. hashdist = simple_strtoul(str, &str, 0);
  3999. return 1;
  4000. }
  4001. __setup("hashdist=", set_hashdist);
  4002. #endif
  4003. /*
  4004. * allocate a large system hash table from bootmem
  4005. * - it is assumed that the hash table must contain an exact power-of-2
  4006. * quantity of entries
  4007. * - limit is the number of hash buckets, not the total allocation size
  4008. */
  4009. void *__init alloc_large_system_hash(const char *tablename,
  4010. unsigned long bucketsize,
  4011. unsigned long numentries,
  4012. int scale,
  4013. int flags,
  4014. unsigned int *_hash_shift,
  4015. unsigned int *_hash_mask,
  4016. unsigned long limit)
  4017. {
  4018. unsigned long long max = limit;
  4019. unsigned long log2qty, size;
  4020. void *table = NULL;
  4021. /* allow the kernel cmdline to have a say */
  4022. if (!numentries) {
  4023. /* round applicable memory size up to nearest megabyte */
  4024. numentries = nr_kernel_pages;
  4025. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4026. numentries >>= 20 - PAGE_SHIFT;
  4027. numentries <<= 20 - PAGE_SHIFT;
  4028. /* limit to 1 bucket per 2^scale bytes of low memory */
  4029. if (scale > PAGE_SHIFT)
  4030. numentries >>= (scale - PAGE_SHIFT);
  4031. else
  4032. numentries <<= (PAGE_SHIFT - scale);
  4033. /* Make sure we've got at least a 0-order allocation.. */
  4034. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4035. numentries = PAGE_SIZE / bucketsize;
  4036. }
  4037. numentries = roundup_pow_of_two(numentries);
  4038. /* limit allocation size to 1/16 total memory by default */
  4039. if (max == 0) {
  4040. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4041. do_div(max, bucketsize);
  4042. }
  4043. if (numentries > max)
  4044. numentries = max;
  4045. log2qty = ilog2(numentries);
  4046. do {
  4047. size = bucketsize << log2qty;
  4048. if (flags & HASH_EARLY)
  4049. table = alloc_bootmem_nopanic(size);
  4050. else if (hashdist)
  4051. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4052. else {
  4053. unsigned long order = get_order(size);
  4054. if (order < MAX_ORDER)
  4055. table = (void *)__get_free_pages(GFP_ATOMIC,
  4056. order);
  4057. /*
  4058. * If bucketsize is not a power-of-two, we may free
  4059. * some pages at the end of hash table.
  4060. */
  4061. if (table) {
  4062. unsigned long alloc_end = (unsigned long)table +
  4063. (PAGE_SIZE << order);
  4064. unsigned long used = (unsigned long)table +
  4065. PAGE_ALIGN(size);
  4066. split_page(virt_to_page(table), order);
  4067. while (used < alloc_end) {
  4068. free_page(used);
  4069. used += PAGE_SIZE;
  4070. }
  4071. }
  4072. }
  4073. } while (!table && size > PAGE_SIZE && --log2qty);
  4074. if (!table)
  4075. panic("Failed to allocate %s hash table\n", tablename);
  4076. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4077. tablename,
  4078. (1U << log2qty),
  4079. ilog2(size) - PAGE_SHIFT,
  4080. size);
  4081. if (_hash_shift)
  4082. *_hash_shift = log2qty;
  4083. if (_hash_mask)
  4084. *_hash_mask = (1 << log2qty) - 1;
  4085. /*
  4086. * If hashdist is set, the table allocation is done with __vmalloc()
  4087. * which invokes the kmemleak_alloc() callback. This function may also
  4088. * be called before the slab and kmemleak are initialised when
  4089. * kmemleak simply buffers the request to be executed later
  4090. * (GFP_ATOMIC flag ignored in this case).
  4091. */
  4092. if (!hashdist)
  4093. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4094. return table;
  4095. }
  4096. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4097. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4098. unsigned long pfn)
  4099. {
  4100. #ifdef CONFIG_SPARSEMEM
  4101. return __pfn_to_section(pfn)->pageblock_flags;
  4102. #else
  4103. return zone->pageblock_flags;
  4104. #endif /* CONFIG_SPARSEMEM */
  4105. }
  4106. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4107. {
  4108. #ifdef CONFIG_SPARSEMEM
  4109. pfn &= (PAGES_PER_SECTION-1);
  4110. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4111. #else
  4112. pfn = pfn - zone->zone_start_pfn;
  4113. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4114. #endif /* CONFIG_SPARSEMEM */
  4115. }
  4116. /**
  4117. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4118. * @page: The page within the block of interest
  4119. * @start_bitidx: The first bit of interest to retrieve
  4120. * @end_bitidx: The last bit of interest
  4121. * returns pageblock_bits flags
  4122. */
  4123. unsigned long get_pageblock_flags_group(struct page *page,
  4124. int start_bitidx, int end_bitidx)
  4125. {
  4126. struct zone *zone;
  4127. unsigned long *bitmap;
  4128. unsigned long pfn, bitidx;
  4129. unsigned long flags = 0;
  4130. unsigned long value = 1;
  4131. zone = page_zone(page);
  4132. pfn = page_to_pfn(page);
  4133. bitmap = get_pageblock_bitmap(zone, pfn);
  4134. bitidx = pfn_to_bitidx(zone, pfn);
  4135. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4136. if (test_bit(bitidx + start_bitidx, bitmap))
  4137. flags |= value;
  4138. return flags;
  4139. }
  4140. /**
  4141. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4142. * @page: The page within the block of interest
  4143. * @start_bitidx: The first bit of interest
  4144. * @end_bitidx: The last bit of interest
  4145. * @flags: The flags to set
  4146. */
  4147. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4148. int start_bitidx, int end_bitidx)
  4149. {
  4150. struct zone *zone;
  4151. unsigned long *bitmap;
  4152. unsigned long pfn, bitidx;
  4153. unsigned long value = 1;
  4154. zone = page_zone(page);
  4155. pfn = page_to_pfn(page);
  4156. bitmap = get_pageblock_bitmap(zone, pfn);
  4157. bitidx = pfn_to_bitidx(zone, pfn);
  4158. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4159. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4160. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4161. if (flags & value)
  4162. __set_bit(bitidx + start_bitidx, bitmap);
  4163. else
  4164. __clear_bit(bitidx + start_bitidx, bitmap);
  4165. }
  4166. /*
  4167. * This is designed as sub function...plz see page_isolation.c also.
  4168. * set/clear page block's type to be ISOLATE.
  4169. * page allocater never alloc memory from ISOLATE block.
  4170. */
  4171. int set_migratetype_isolate(struct page *page)
  4172. {
  4173. struct zone *zone;
  4174. unsigned long flags;
  4175. int ret = -EBUSY;
  4176. zone = page_zone(page);
  4177. spin_lock_irqsave(&zone->lock, flags);
  4178. /*
  4179. * In future, more migrate types will be able to be isolation target.
  4180. */
  4181. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4182. goto out;
  4183. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4184. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4185. ret = 0;
  4186. out:
  4187. spin_unlock_irqrestore(&zone->lock, flags);
  4188. if (!ret)
  4189. drain_all_pages();
  4190. return ret;
  4191. }
  4192. void unset_migratetype_isolate(struct page *page)
  4193. {
  4194. struct zone *zone;
  4195. unsigned long flags;
  4196. zone = page_zone(page);
  4197. spin_lock_irqsave(&zone->lock, flags);
  4198. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4199. goto out;
  4200. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4201. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4202. out:
  4203. spin_unlock_irqrestore(&zone->lock, flags);
  4204. }
  4205. #ifdef CONFIG_MEMORY_HOTREMOVE
  4206. /*
  4207. * All pages in the range must be isolated before calling this.
  4208. */
  4209. void
  4210. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4211. {
  4212. struct page *page;
  4213. struct zone *zone;
  4214. int order, i;
  4215. unsigned long pfn;
  4216. unsigned long flags;
  4217. /* find the first valid pfn */
  4218. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4219. if (pfn_valid(pfn))
  4220. break;
  4221. if (pfn == end_pfn)
  4222. return;
  4223. zone = page_zone(pfn_to_page(pfn));
  4224. spin_lock_irqsave(&zone->lock, flags);
  4225. pfn = start_pfn;
  4226. while (pfn < end_pfn) {
  4227. if (!pfn_valid(pfn)) {
  4228. pfn++;
  4229. continue;
  4230. }
  4231. page = pfn_to_page(pfn);
  4232. BUG_ON(page_count(page));
  4233. BUG_ON(!PageBuddy(page));
  4234. order = page_order(page);
  4235. #ifdef CONFIG_DEBUG_VM
  4236. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4237. pfn, 1 << order, end_pfn);
  4238. #endif
  4239. list_del(&page->lru);
  4240. rmv_page_order(page);
  4241. zone->free_area[order].nr_free--;
  4242. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4243. - (1UL << order));
  4244. for (i = 0; i < (1 << order); i++)
  4245. SetPageReserved((page+i));
  4246. pfn += (1 << order);
  4247. }
  4248. spin_unlock_irqrestore(&zone->lock, flags);
  4249. }
  4250. #endif