1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026 |
- /*
- * linux/mm/percpu.c - percpu memory allocator
- *
- * Copyright (C) 2009 SUSE Linux Products GmbH
- * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
- *
- * This file is released under the GPLv2.
- *
- * This is percpu allocator which can handle both static and dynamic
- * areas. Percpu areas are allocated in chunks in vmalloc area. Each
- * chunk is consisted of boot-time determined number of units and the
- * first chunk is used for static percpu variables in the kernel image
- * (special boot time alloc/init handling necessary as these areas
- * need to be brought up before allocation services are running).
- * Unit grows as necessary and all units grow or shrink in unison.
- * When a chunk is filled up, another chunk is allocated. ie. in
- * vmalloc area
- *
- * c0 c1 c2
- * ------------------- ------------------- ------------
- * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
- * ------------------- ...... ------------------- .... ------------
- *
- * Allocation is done in offset-size areas of single unit space. Ie,
- * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
- * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
- * cpus. On NUMA, the mapping can be non-linear and even sparse.
- * Percpu access can be done by configuring percpu base registers
- * according to cpu to unit mapping and pcpu_unit_size.
- *
- * There are usually many small percpu allocations many of them being
- * as small as 4 bytes. The allocator organizes chunks into lists
- * according to free size and tries to allocate from the fullest one.
- * Each chunk keeps the maximum contiguous area size hint which is
- * guaranteed to be eqaul to or larger than the maximum contiguous
- * area in the chunk. This helps the allocator not to iterate the
- * chunk maps unnecessarily.
- *
- * Allocation state in each chunk is kept using an array of integers
- * on chunk->map. A positive value in the map represents a free
- * region and negative allocated. Allocation inside a chunk is done
- * by scanning this map sequentially and serving the first matching
- * entry. This is mostly copied from the percpu_modalloc() allocator.
- * Chunks can be determined from the address using the index field
- * in the page struct. The index field contains a pointer to the chunk.
- *
- * To use this allocator, arch code should do the followings.
- *
- * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
- *
- * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
- * regular address to percpu pointer and back if they need to be
- * different from the default
- *
- * - use pcpu_setup_first_chunk() during percpu area initialization to
- * setup the first chunk containing the kernel static percpu area
- */
- #include <linux/bitmap.h>
- #include <linux/bootmem.h>
- #include <linux/list.h>
- #include <linux/log2.h>
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/mutex.h>
- #include <linux/percpu.h>
- #include <linux/pfn.h>
- #include <linux/slab.h>
- #include <linux/spinlock.h>
- #include <linux/vmalloc.h>
- #include <linux/workqueue.h>
- #include <asm/cacheflush.h>
- #include <asm/sections.h>
- #include <asm/tlbflush.h>
- #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
- #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
- /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
- #ifndef __addr_to_pcpu_ptr
- #define __addr_to_pcpu_ptr(addr) \
- (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
- + (unsigned long)__per_cpu_start)
- #endif
- #ifndef __pcpu_ptr_to_addr
- #define __pcpu_ptr_to_addr(ptr) \
- (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
- - (unsigned long)__per_cpu_start)
- #endif
- struct pcpu_chunk {
- struct list_head list; /* linked to pcpu_slot lists */
- int free_size; /* free bytes in the chunk */
- int contig_hint; /* max contiguous size hint */
- struct vm_struct *vm; /* mapped vmalloc region */
- int map_used; /* # of map entries used */
- int map_alloc; /* # of map entries allocated */
- int *map; /* allocation map */
- bool immutable; /* no [de]population allowed */
- unsigned long populated[]; /* populated bitmap */
- };
- static int pcpu_unit_pages __read_mostly;
- static int pcpu_unit_size __read_mostly;
- static int pcpu_nr_units __read_mostly;
- static int pcpu_chunk_size __read_mostly;
- static int pcpu_nr_slots __read_mostly;
- static size_t pcpu_chunk_struct_size __read_mostly;
- /* cpus with the lowest and highest unit numbers */
- static unsigned int pcpu_first_unit_cpu __read_mostly;
- static unsigned int pcpu_last_unit_cpu __read_mostly;
- /* the address of the first chunk which starts with the kernel static area */
- void *pcpu_base_addr __read_mostly;
- EXPORT_SYMBOL_GPL(pcpu_base_addr);
- /* cpu -> unit map */
- const int *pcpu_unit_map __read_mostly;
- /*
- * The first chunk which always exists. Note that unlike other
- * chunks, this one can be allocated and mapped in several different
- * ways and thus often doesn't live in the vmalloc area.
- */
- static struct pcpu_chunk *pcpu_first_chunk;
- /*
- * Optional reserved chunk. This chunk reserves part of the first
- * chunk and serves it for reserved allocations. The amount of
- * reserved offset is in pcpu_reserved_chunk_limit. When reserved
- * area doesn't exist, the following variables contain NULL and 0
- * respectively.
- */
- static struct pcpu_chunk *pcpu_reserved_chunk;
- static int pcpu_reserved_chunk_limit;
- /*
- * Synchronization rules.
- *
- * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
- * protects allocation/reclaim paths, chunks, populated bitmap and
- * vmalloc mapping. The latter is a spinlock and protects the index
- * data structures - chunk slots, chunks and area maps in chunks.
- *
- * During allocation, pcpu_alloc_mutex is kept locked all the time and
- * pcpu_lock is grabbed and released as necessary. All actual memory
- * allocations are done using GFP_KERNEL with pcpu_lock released.
- *
- * Free path accesses and alters only the index data structures, so it
- * can be safely called from atomic context. When memory needs to be
- * returned to the system, free path schedules reclaim_work which
- * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
- * reclaimed, release both locks and frees the chunks. Note that it's
- * necessary to grab both locks to remove a chunk from circulation as
- * allocation path might be referencing the chunk with only
- * pcpu_alloc_mutex locked.
- */
- static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
- static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
- static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
- /* reclaim work to release fully free chunks, scheduled from free path */
- static void pcpu_reclaim(struct work_struct *work);
- static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
- static int __pcpu_size_to_slot(int size)
- {
- int highbit = fls(size); /* size is in bytes */
- return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
- }
- static int pcpu_size_to_slot(int size)
- {
- if (size == pcpu_unit_size)
- return pcpu_nr_slots - 1;
- return __pcpu_size_to_slot(size);
- }
- static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
- {
- if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
- return 0;
- return pcpu_size_to_slot(chunk->free_size);
- }
- static int pcpu_page_idx(unsigned int cpu, int page_idx)
- {
- return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
- }
- static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
- unsigned int cpu, int page_idx)
- {
- return (unsigned long)chunk->vm->addr +
- (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
- }
- static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
- unsigned int cpu, int page_idx)
- {
- /* must not be used on pre-mapped chunk */
- WARN_ON(chunk->immutable);
- return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
- }
- /* set the pointer to a chunk in a page struct */
- static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
- {
- page->index = (unsigned long)pcpu;
- }
- /* obtain pointer to a chunk from a page struct */
- static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
- {
- return (struct pcpu_chunk *)page->index;
- }
- static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
- {
- *rs = find_next_zero_bit(chunk->populated, end, *rs);
- *re = find_next_bit(chunk->populated, end, *rs + 1);
- }
- static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
- {
- *rs = find_next_bit(chunk->populated, end, *rs);
- *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
- }
- /*
- * (Un)populated page region iterators. Iterate over (un)populated
- * page regions betwen @start and @end in @chunk. @rs and @re should
- * be integer variables and will be set to start and end page index of
- * the current region.
- */
- #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
- for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
- (rs) < (re); \
- (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
- #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
- for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
- (rs) < (re); \
- (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
- /**
- * pcpu_mem_alloc - allocate memory
- * @size: bytes to allocate
- *
- * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
- * kzalloc() is used; otherwise, vmalloc() is used. The returned
- * memory is always zeroed.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Pointer to the allocated area on success, NULL on failure.
- */
- static void *pcpu_mem_alloc(size_t size)
- {
- if (size <= PAGE_SIZE)
- return kzalloc(size, GFP_KERNEL);
- else {
- void *ptr = vmalloc(size);
- if (ptr)
- memset(ptr, 0, size);
- return ptr;
- }
- }
- /**
- * pcpu_mem_free - free memory
- * @ptr: memory to free
- * @size: size of the area
- *
- * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
- */
- static void pcpu_mem_free(void *ptr, size_t size)
- {
- if (size <= PAGE_SIZE)
- kfree(ptr);
- else
- vfree(ptr);
- }
- /**
- * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
- * @chunk: chunk of interest
- * @oslot: the previous slot it was on
- *
- * This function is called after an allocation or free changed @chunk.
- * New slot according to the changed state is determined and @chunk is
- * moved to the slot. Note that the reserved chunk is never put on
- * chunk slots.
- *
- * CONTEXT:
- * pcpu_lock.
- */
- static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
- {
- int nslot = pcpu_chunk_slot(chunk);
- if (chunk != pcpu_reserved_chunk && oslot != nslot) {
- if (oslot < nslot)
- list_move(&chunk->list, &pcpu_slot[nslot]);
- else
- list_move_tail(&chunk->list, &pcpu_slot[nslot]);
- }
- }
- /**
- * pcpu_chunk_addr_search - determine chunk containing specified address
- * @addr: address for which the chunk needs to be determined.
- *
- * RETURNS:
- * The address of the found chunk.
- */
- static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
- {
- void *first_start = pcpu_first_chunk->vm->addr;
- /* is it in the first chunk? */
- if (addr >= first_start && addr < first_start + pcpu_unit_size) {
- /* is it in the reserved area? */
- if (addr < first_start + pcpu_reserved_chunk_limit)
- return pcpu_reserved_chunk;
- return pcpu_first_chunk;
- }
- /*
- * The address is relative to unit0 which might be unused and
- * thus unmapped. Offset the address to the unit space of the
- * current processor before looking it up in the vmalloc
- * space. Note that any possible cpu id can be used here, so
- * there's no need to worry about preemption or cpu hotplug.
- */
- addr += pcpu_unit_map[smp_processor_id()] * pcpu_unit_size;
- return pcpu_get_page_chunk(vmalloc_to_page(addr));
- }
- /**
- * pcpu_extend_area_map - extend area map for allocation
- * @chunk: target chunk
- *
- * Extend area map of @chunk so that it can accomodate an allocation.
- * A single allocation can split an area into three areas, so this
- * function makes sure that @chunk->map has at least two extra slots.
- *
- * CONTEXT:
- * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
- * if area map is extended.
- *
- * RETURNS:
- * 0 if noop, 1 if successfully extended, -errno on failure.
- */
- static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
- {
- int new_alloc;
- int *new;
- size_t size;
- /* has enough? */
- if (chunk->map_alloc >= chunk->map_used + 2)
- return 0;
- spin_unlock_irq(&pcpu_lock);
- new_alloc = PCPU_DFL_MAP_ALLOC;
- while (new_alloc < chunk->map_used + 2)
- new_alloc *= 2;
- new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
- if (!new) {
- spin_lock_irq(&pcpu_lock);
- return -ENOMEM;
- }
- /*
- * Acquire pcpu_lock and switch to new area map. Only free
- * could have happened inbetween, so map_used couldn't have
- * grown.
- */
- spin_lock_irq(&pcpu_lock);
- BUG_ON(new_alloc < chunk->map_used + 2);
- size = chunk->map_alloc * sizeof(chunk->map[0]);
- memcpy(new, chunk->map, size);
- /*
- * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
- * one of the first chunks and still using static map.
- */
- if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
- pcpu_mem_free(chunk->map, size);
- chunk->map_alloc = new_alloc;
- chunk->map = new;
- return 0;
- }
- /**
- * pcpu_split_block - split a map block
- * @chunk: chunk of interest
- * @i: index of map block to split
- * @head: head size in bytes (can be 0)
- * @tail: tail size in bytes (can be 0)
- *
- * Split the @i'th map block into two or three blocks. If @head is
- * non-zero, @head bytes block is inserted before block @i moving it
- * to @i+1 and reducing its size by @head bytes.
- *
- * If @tail is non-zero, the target block, which can be @i or @i+1
- * depending on @head, is reduced by @tail bytes and @tail byte block
- * is inserted after the target block.
- *
- * @chunk->map must have enough free slots to accomodate the split.
- *
- * CONTEXT:
- * pcpu_lock.
- */
- static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
- int head, int tail)
- {
- int nr_extra = !!head + !!tail;
- BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
- /* insert new subblocks */
- memmove(&chunk->map[i + nr_extra], &chunk->map[i],
- sizeof(chunk->map[0]) * (chunk->map_used - i));
- chunk->map_used += nr_extra;
- if (head) {
- chunk->map[i + 1] = chunk->map[i] - head;
- chunk->map[i++] = head;
- }
- if (tail) {
- chunk->map[i++] -= tail;
- chunk->map[i] = tail;
- }
- }
- /**
- * pcpu_alloc_area - allocate area from a pcpu_chunk
- * @chunk: chunk of interest
- * @size: wanted size in bytes
- * @align: wanted align
- *
- * Try to allocate @size bytes area aligned at @align from @chunk.
- * Note that this function only allocates the offset. It doesn't
- * populate or map the area.
- *
- * @chunk->map must have at least two free slots.
- *
- * CONTEXT:
- * pcpu_lock.
- *
- * RETURNS:
- * Allocated offset in @chunk on success, -1 if no matching area is
- * found.
- */
- static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
- {
- int oslot = pcpu_chunk_slot(chunk);
- int max_contig = 0;
- int i, off;
- for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
- bool is_last = i + 1 == chunk->map_used;
- int head, tail;
- /* extra for alignment requirement */
- head = ALIGN(off, align) - off;
- BUG_ON(i == 0 && head != 0);
- if (chunk->map[i] < 0)
- continue;
- if (chunk->map[i] < head + size) {
- max_contig = max(chunk->map[i], max_contig);
- continue;
- }
- /*
- * If head is small or the previous block is free,
- * merge'em. Note that 'small' is defined as smaller
- * than sizeof(int), which is very small but isn't too
- * uncommon for percpu allocations.
- */
- if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
- if (chunk->map[i - 1] > 0)
- chunk->map[i - 1] += head;
- else {
- chunk->map[i - 1] -= head;
- chunk->free_size -= head;
- }
- chunk->map[i] -= head;
- off += head;
- head = 0;
- }
- /* if tail is small, just keep it around */
- tail = chunk->map[i] - head - size;
- if (tail < sizeof(int))
- tail = 0;
- /* split if warranted */
- if (head || tail) {
- pcpu_split_block(chunk, i, head, tail);
- if (head) {
- i++;
- off += head;
- max_contig = max(chunk->map[i - 1], max_contig);
- }
- if (tail)
- max_contig = max(chunk->map[i + 1], max_contig);
- }
- /* update hint and mark allocated */
- if (is_last)
- chunk->contig_hint = max_contig; /* fully scanned */
- else
- chunk->contig_hint = max(chunk->contig_hint,
- max_contig);
- chunk->free_size -= chunk->map[i];
- chunk->map[i] = -chunk->map[i];
- pcpu_chunk_relocate(chunk, oslot);
- return off;
- }
- chunk->contig_hint = max_contig; /* fully scanned */
- pcpu_chunk_relocate(chunk, oslot);
- /* tell the upper layer that this chunk has no matching area */
- return -1;
- }
- /**
- * pcpu_free_area - free area to a pcpu_chunk
- * @chunk: chunk of interest
- * @freeme: offset of area to free
- *
- * Free area starting from @freeme to @chunk. Note that this function
- * only modifies the allocation map. It doesn't depopulate or unmap
- * the area.
- *
- * CONTEXT:
- * pcpu_lock.
- */
- static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
- {
- int oslot = pcpu_chunk_slot(chunk);
- int i, off;
- for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
- if (off == freeme)
- break;
- BUG_ON(off != freeme);
- BUG_ON(chunk->map[i] > 0);
- chunk->map[i] = -chunk->map[i];
- chunk->free_size += chunk->map[i];
- /* merge with previous? */
- if (i > 0 && chunk->map[i - 1] >= 0) {
- chunk->map[i - 1] += chunk->map[i];
- chunk->map_used--;
- memmove(&chunk->map[i], &chunk->map[i + 1],
- (chunk->map_used - i) * sizeof(chunk->map[0]));
- i--;
- }
- /* merge with next? */
- if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
- chunk->map[i] += chunk->map[i + 1];
- chunk->map_used--;
- memmove(&chunk->map[i + 1], &chunk->map[i + 2],
- (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
- }
- chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
- pcpu_chunk_relocate(chunk, oslot);
- }
- /**
- * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
- * @chunk: chunk of interest
- * @bitmapp: output parameter for bitmap
- * @may_alloc: may allocate the array
- *
- * Returns pointer to array of pointers to struct page and bitmap,
- * both of which can be indexed with pcpu_page_idx(). The returned
- * array is cleared to zero and *@bitmapp is copied from
- * @chunk->populated. Note that there is only one array and bitmap
- * and access exclusion is the caller's responsibility.
- *
- * CONTEXT:
- * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
- * Otherwise, don't care.
- *
- * RETURNS:
- * Pointer to temp pages array on success, NULL on failure.
- */
- static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
- unsigned long **bitmapp,
- bool may_alloc)
- {
- static struct page **pages;
- static unsigned long *bitmap;
- size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
- size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
- sizeof(unsigned long);
- if (!pages || !bitmap) {
- if (may_alloc && !pages)
- pages = pcpu_mem_alloc(pages_size);
- if (may_alloc && !bitmap)
- bitmap = pcpu_mem_alloc(bitmap_size);
- if (!pages || !bitmap)
- return NULL;
- }
- memset(pages, 0, pages_size);
- bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
- *bitmapp = bitmap;
- return pages;
- }
- /**
- * pcpu_free_pages - free pages which were allocated for @chunk
- * @chunk: chunk pages were allocated for
- * @pages: array of pages to be freed, indexed by pcpu_page_idx()
- * @populated: populated bitmap
- * @page_start: page index of the first page to be freed
- * @page_end: page index of the last page to be freed + 1
- *
- * Free pages [@page_start and @page_end) in @pages for all units.
- * The pages were allocated for @chunk.
- */
- static void pcpu_free_pages(struct pcpu_chunk *chunk,
- struct page **pages, unsigned long *populated,
- int page_start, int page_end)
- {
- unsigned int cpu;
- int i;
- for_each_possible_cpu(cpu) {
- for (i = page_start; i < page_end; i++) {
- struct page *page = pages[pcpu_page_idx(cpu, i)];
- if (page)
- __free_page(page);
- }
- }
- }
- /**
- * pcpu_alloc_pages - allocates pages for @chunk
- * @chunk: target chunk
- * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
- * @populated: populated bitmap
- * @page_start: page index of the first page to be allocated
- * @page_end: page index of the last page to be allocated + 1
- *
- * Allocate pages [@page_start,@page_end) into @pages for all units.
- * The allocation is for @chunk. Percpu core doesn't care about the
- * content of @pages and will pass it verbatim to pcpu_map_pages().
- */
- static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
- struct page **pages, unsigned long *populated,
- int page_start, int page_end)
- {
- const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
- unsigned int cpu;
- int i;
- for_each_possible_cpu(cpu) {
- for (i = page_start; i < page_end; i++) {
- struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
- *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
- if (!*pagep) {
- pcpu_free_pages(chunk, pages, populated,
- page_start, page_end);
- return -ENOMEM;
- }
- }
- }
- return 0;
- }
- /**
- * pcpu_pre_unmap_flush - flush cache prior to unmapping
- * @chunk: chunk the regions to be flushed belongs to
- * @page_start: page index of the first page to be flushed
- * @page_end: page index of the last page to be flushed + 1
- *
- * Pages in [@page_start,@page_end) of @chunk are about to be
- * unmapped. Flush cache. As each flushing trial can be very
- * expensive, issue flush on the whole region at once rather than
- * doing it for each cpu. This could be an overkill but is more
- * scalable.
- */
- static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
- int page_start, int page_end)
- {
- flush_cache_vunmap(
- pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
- pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
- }
- static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
- {
- unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
- }
- /**
- * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
- * @chunk: chunk of interest
- * @pages: pages array which can be used to pass information to free
- * @populated: populated bitmap
- * @page_start: page index of the first page to unmap
- * @page_end: page index of the last page to unmap + 1
- *
- * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
- * Corresponding elements in @pages were cleared by the caller and can
- * be used to carry information to pcpu_free_pages() which will be
- * called after all unmaps are finished. The caller should call
- * proper pre/post flush functions.
- */
- static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
- struct page **pages, unsigned long *populated,
- int page_start, int page_end)
- {
- unsigned int cpu;
- int i;
- for_each_possible_cpu(cpu) {
- for (i = page_start; i < page_end; i++) {
- struct page *page;
- page = pcpu_chunk_page(chunk, cpu, i);
- WARN_ON(!page);
- pages[pcpu_page_idx(cpu, i)] = page;
- }
- __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
- page_end - page_start);
- }
- for (i = page_start; i < page_end; i++)
- __clear_bit(i, populated);
- }
- /**
- * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
- * @chunk: pcpu_chunk the regions to be flushed belong to
- * @page_start: page index of the first page to be flushed
- * @page_end: page index of the last page to be flushed + 1
- *
- * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
- * TLB for the regions. This can be skipped if the area is to be
- * returned to vmalloc as vmalloc will handle TLB flushing lazily.
- *
- * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
- * for the whole region.
- */
- static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
- int page_start, int page_end)
- {
- flush_tlb_kernel_range(
- pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
- pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
- }
- static int __pcpu_map_pages(unsigned long addr, struct page **pages,
- int nr_pages)
- {
- return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
- PAGE_KERNEL, pages);
- }
- /**
- * pcpu_map_pages - map pages into a pcpu_chunk
- * @chunk: chunk of interest
- * @pages: pages array containing pages to be mapped
- * @populated: populated bitmap
- * @page_start: page index of the first page to map
- * @page_end: page index of the last page to map + 1
- *
- * For each cpu, map pages [@page_start,@page_end) into @chunk. The
- * caller is responsible for calling pcpu_post_map_flush() after all
- * mappings are complete.
- *
- * This function is responsible for setting corresponding bits in
- * @chunk->populated bitmap and whatever is necessary for reverse
- * lookup (addr -> chunk).
- */
- static int pcpu_map_pages(struct pcpu_chunk *chunk,
- struct page **pages, unsigned long *populated,
- int page_start, int page_end)
- {
- unsigned int cpu, tcpu;
- int i, err;
- for_each_possible_cpu(cpu) {
- err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
- &pages[pcpu_page_idx(cpu, page_start)],
- page_end - page_start);
- if (err < 0)
- goto err;
- }
- /* mapping successful, link chunk and mark populated */
- for (i = page_start; i < page_end; i++) {
- for_each_possible_cpu(cpu)
- pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
- chunk);
- __set_bit(i, populated);
- }
- return 0;
- err:
- for_each_possible_cpu(tcpu) {
- if (tcpu == cpu)
- break;
- __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
- page_end - page_start);
- }
- return err;
- }
- /**
- * pcpu_post_map_flush - flush cache after mapping
- * @chunk: pcpu_chunk the regions to be flushed belong to
- * @page_start: page index of the first page to be flushed
- * @page_end: page index of the last page to be flushed + 1
- *
- * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
- * cache.
- *
- * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
- * for the whole region.
- */
- static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
- int page_start, int page_end)
- {
- flush_cache_vmap(
- pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
- pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
- }
- /**
- * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
- * @chunk: chunk to depopulate
- * @off: offset to the area to depopulate
- * @size: size of the area to depopulate in bytes
- * @flush: whether to flush cache and tlb or not
- *
- * For each cpu, depopulate and unmap pages [@page_start,@page_end)
- * from @chunk. If @flush is true, vcache is flushed before unmapping
- * and tlb after.
- *
- * CONTEXT:
- * pcpu_alloc_mutex.
- */
- static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
- {
- int page_start = PFN_DOWN(off);
- int page_end = PFN_UP(off + size);
- struct page **pages;
- unsigned long *populated;
- int rs, re;
- /* quick path, check whether it's empty already */
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
- if (rs == page_start && re == page_end)
- return;
- break;
- }
- /* immutable chunks can't be depopulated */
- WARN_ON(chunk->immutable);
- /*
- * If control reaches here, there must have been at least one
- * successful population attempt so the temp pages array must
- * be available now.
- */
- pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
- BUG_ON(!pages);
- /* unmap and free */
- pcpu_pre_unmap_flush(chunk, page_start, page_end);
- pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
- pcpu_unmap_pages(chunk, pages, populated, rs, re);
- /* no need to flush tlb, vmalloc will handle it lazily */
- pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
- pcpu_free_pages(chunk, pages, populated, rs, re);
- /* commit new bitmap */
- bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
- }
- /**
- * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
- * @chunk: chunk of interest
- * @off: offset to the area to populate
- * @size: size of the area to populate in bytes
- *
- * For each cpu, populate and map pages [@page_start,@page_end) into
- * @chunk. The area is cleared on return.
- *
- * CONTEXT:
- * pcpu_alloc_mutex, does GFP_KERNEL allocation.
- */
- static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
- {
- int page_start = PFN_DOWN(off);
- int page_end = PFN_UP(off + size);
- int free_end = page_start, unmap_end = page_start;
- struct page **pages;
- unsigned long *populated;
- unsigned int cpu;
- int rs, re, rc;
- /* quick path, check whether all pages are already there */
- pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
- if (rs == page_start && re == page_end)
- goto clear;
- break;
- }
- /* need to allocate and map pages, this chunk can't be immutable */
- WARN_ON(chunk->immutable);
- pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
- if (!pages)
- return -ENOMEM;
- /* alloc and map */
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
- rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
- if (rc)
- goto err_free;
- free_end = re;
- }
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
- rc = pcpu_map_pages(chunk, pages, populated, rs, re);
- if (rc)
- goto err_unmap;
- unmap_end = re;
- }
- pcpu_post_map_flush(chunk, page_start, page_end);
- /* commit new bitmap */
- bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
- clear:
- for_each_possible_cpu(cpu)
- memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
- return 0;
- err_unmap:
- pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
- pcpu_unmap_pages(chunk, pages, populated, rs, re);
- pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
- err_free:
- pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
- pcpu_free_pages(chunk, pages, populated, rs, re);
- return rc;
- }
- static void free_pcpu_chunk(struct pcpu_chunk *chunk)
- {
- if (!chunk)
- return;
- if (chunk->vm)
- free_vm_area(chunk->vm);
- pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
- kfree(chunk);
- }
- static struct pcpu_chunk *alloc_pcpu_chunk(void)
- {
- struct pcpu_chunk *chunk;
- chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
- if (!chunk)
- return NULL;
- chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
- chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
- chunk->map[chunk->map_used++] = pcpu_unit_size;
- chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC);
- if (!chunk->vm) {
- free_pcpu_chunk(chunk);
- return NULL;
- }
- INIT_LIST_HEAD(&chunk->list);
- chunk->free_size = pcpu_unit_size;
- chunk->contig_hint = pcpu_unit_size;
- return chunk;
- }
- /**
- * pcpu_alloc - the percpu allocator
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- * @reserved: allocate from the reserved chunk if available
- *
- * Allocate percpu area of @size bytes aligned at @align.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- static void *pcpu_alloc(size_t size, size_t align, bool reserved)
- {
- struct pcpu_chunk *chunk;
- int slot, off;
- if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
- WARN(true, "illegal size (%zu) or align (%zu) for "
- "percpu allocation\n", size, align);
- return NULL;
- }
- mutex_lock(&pcpu_alloc_mutex);
- spin_lock_irq(&pcpu_lock);
- /* serve reserved allocations from the reserved chunk if available */
- if (reserved && pcpu_reserved_chunk) {
- chunk = pcpu_reserved_chunk;
- if (size > chunk->contig_hint ||
- pcpu_extend_area_map(chunk) < 0)
- goto fail_unlock;
- off = pcpu_alloc_area(chunk, size, align);
- if (off >= 0)
- goto area_found;
- goto fail_unlock;
- }
- restart:
- /* search through normal chunks */
- for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
- list_for_each_entry(chunk, &pcpu_slot[slot], list) {
- if (size > chunk->contig_hint)
- continue;
- switch (pcpu_extend_area_map(chunk)) {
- case 0:
- break;
- case 1:
- goto restart; /* pcpu_lock dropped, restart */
- default:
- goto fail_unlock;
- }
- off = pcpu_alloc_area(chunk, size, align);
- if (off >= 0)
- goto area_found;
- }
- }
- /* hmmm... no space left, create a new chunk */
- spin_unlock_irq(&pcpu_lock);
- chunk = alloc_pcpu_chunk();
- if (!chunk)
- goto fail_unlock_mutex;
- spin_lock_irq(&pcpu_lock);
- pcpu_chunk_relocate(chunk, -1);
- goto restart;
- area_found:
- spin_unlock_irq(&pcpu_lock);
- /* populate, map and clear the area */
- if (pcpu_populate_chunk(chunk, off, size)) {
- spin_lock_irq(&pcpu_lock);
- pcpu_free_area(chunk, off);
- goto fail_unlock;
- }
- mutex_unlock(&pcpu_alloc_mutex);
- /* return address relative to unit0 */
- return __addr_to_pcpu_ptr(chunk->vm->addr + off);
- fail_unlock:
- spin_unlock_irq(&pcpu_lock);
- fail_unlock_mutex:
- mutex_unlock(&pcpu_alloc_mutex);
- return NULL;
- }
- /**
- * __alloc_percpu - allocate dynamic percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- *
- * Allocate percpu area of @size bytes aligned at @align. Might
- * sleep. Might trigger writeouts.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- void *__alloc_percpu(size_t size, size_t align)
- {
- return pcpu_alloc(size, align, false);
- }
- EXPORT_SYMBOL_GPL(__alloc_percpu);
- /**
- * __alloc_reserved_percpu - allocate reserved percpu area
- * @size: size of area to allocate in bytes
- * @align: alignment of area (max PAGE_SIZE)
- *
- * Allocate percpu area of @size bytes aligned at @align from reserved
- * percpu area if arch has set it up; otherwise, allocation is served
- * from the same dynamic area. Might sleep. Might trigger writeouts.
- *
- * CONTEXT:
- * Does GFP_KERNEL allocation.
- *
- * RETURNS:
- * Percpu pointer to the allocated area on success, NULL on failure.
- */
- void *__alloc_reserved_percpu(size_t size, size_t align)
- {
- return pcpu_alloc(size, align, true);
- }
- /**
- * pcpu_reclaim - reclaim fully free chunks, workqueue function
- * @work: unused
- *
- * Reclaim all fully free chunks except for the first one.
- *
- * CONTEXT:
- * workqueue context.
- */
- static void pcpu_reclaim(struct work_struct *work)
- {
- LIST_HEAD(todo);
- struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
- struct pcpu_chunk *chunk, *next;
- mutex_lock(&pcpu_alloc_mutex);
- spin_lock_irq(&pcpu_lock);
- list_for_each_entry_safe(chunk, next, head, list) {
- WARN_ON(chunk->immutable);
- /* spare the first one */
- if (chunk == list_first_entry(head, struct pcpu_chunk, list))
- continue;
- list_move(&chunk->list, &todo);
- }
- spin_unlock_irq(&pcpu_lock);
- list_for_each_entry_safe(chunk, next, &todo, list) {
- pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
- free_pcpu_chunk(chunk);
- }
- mutex_unlock(&pcpu_alloc_mutex);
- }
- /**
- * free_percpu - free percpu area
- * @ptr: pointer to area to free
- *
- * Free percpu area @ptr.
- *
- * CONTEXT:
- * Can be called from atomic context.
- */
- void free_percpu(void *ptr)
- {
- void *addr = __pcpu_ptr_to_addr(ptr);
- struct pcpu_chunk *chunk;
- unsigned long flags;
- int off;
- if (!ptr)
- return;
- spin_lock_irqsave(&pcpu_lock, flags);
- chunk = pcpu_chunk_addr_search(addr);
- off = addr - chunk->vm->addr;
- pcpu_free_area(chunk, off);
- /* if there are more than one fully free chunks, wake up grim reaper */
- if (chunk->free_size == pcpu_unit_size) {
- struct pcpu_chunk *pos;
- list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
- if (pos != chunk) {
- schedule_work(&pcpu_reclaim_work);
- break;
- }
- }
- spin_unlock_irqrestore(&pcpu_lock, flags);
- }
- EXPORT_SYMBOL_GPL(free_percpu);
- /**
- * pcpu_setup_first_chunk - initialize the first percpu chunk
- * @static_size: the size of static percpu area in bytes
- * @reserved_size: the size of reserved percpu area in bytes, 0 for none
- * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
- * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE
- * @base_addr: mapped address
- * @unit_map: cpu -> unit map, NULL for sequential mapping
- *
- * Initialize the first percpu chunk which contains the kernel static
- * perpcu area. This function is to be called from arch percpu area
- * setup path.
- *
- * @reserved_size, if non-zero, specifies the amount of bytes to
- * reserve after the static area in the first chunk. This reserves
- * the first chunk such that it's available only through reserved
- * percpu allocation. This is primarily used to serve module percpu
- * static areas on architectures where the addressing model has
- * limited offset range for symbol relocations to guarantee module
- * percpu symbols fall inside the relocatable range.
- *
- * @dyn_size, if non-negative, determines the number of bytes
- * available for dynamic allocation in the first chunk. Specifying
- * non-negative value makes percpu leave alone the area beyond
- * @static_size + @reserved_size + @dyn_size.
- *
- * @unit_size specifies unit size and must be aligned to PAGE_SIZE and
- * equal to or larger than @static_size + @reserved_size + if
- * non-negative, @dyn_size.
- *
- * The caller should have mapped the first chunk at @base_addr and
- * copied static data to each unit.
- *
- * If the first chunk ends up with both reserved and dynamic areas, it
- * is served by two chunks - one to serve the core static and reserved
- * areas and the other for the dynamic area. They share the same vm
- * and page map but uses different area allocation map to stay away
- * from each other. The latter chunk is circulated in the chunk slots
- * and available for dynamic allocation like any other chunks.
- *
- * RETURNS:
- * The determined pcpu_unit_size which can be used to initialize
- * percpu access.
- */
- size_t __init pcpu_setup_first_chunk(size_t static_size, size_t reserved_size,
- ssize_t dyn_size, size_t unit_size,
- void *base_addr, const int *unit_map)
- {
- static struct vm_struct first_vm;
- static int smap[2], dmap[2];
- size_t size_sum = static_size + reserved_size +
- (dyn_size >= 0 ? dyn_size : 0);
- struct pcpu_chunk *schunk, *dchunk = NULL;
- unsigned int cpu, tcpu;
- int i;
- /* sanity checks */
- BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
- ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
- BUG_ON(!static_size);
- BUG_ON(!base_addr);
- BUG_ON(unit_size < size_sum);
- BUG_ON(unit_size & ~PAGE_MASK);
- BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
- /* determine number of units and verify and initialize pcpu_unit_map */
- if (unit_map) {
- int first_unit = INT_MAX, last_unit = INT_MIN;
- for_each_possible_cpu(cpu) {
- int unit = unit_map[cpu];
- BUG_ON(unit < 0);
- for_each_possible_cpu(tcpu) {
- if (tcpu == cpu)
- break;
- /* the mapping should be one-to-one */
- BUG_ON(unit_map[tcpu] == unit);
- }
- if (unit < first_unit) {
- pcpu_first_unit_cpu = cpu;
- first_unit = unit;
- }
- if (unit > last_unit) {
- pcpu_last_unit_cpu = cpu;
- last_unit = unit;
- }
- }
- pcpu_nr_units = last_unit + 1;
- pcpu_unit_map = unit_map;
- } else {
- int *identity_map;
- /* #units == #cpus, identity mapped */
- identity_map = alloc_bootmem(nr_cpu_ids *
- sizeof(identity_map[0]));
- for_each_possible_cpu(cpu)
- identity_map[cpu] = cpu;
- pcpu_first_unit_cpu = 0;
- pcpu_last_unit_cpu = pcpu_nr_units - 1;
- pcpu_nr_units = nr_cpu_ids;
- pcpu_unit_map = identity_map;
- }
- /* determine basic parameters */
- pcpu_unit_pages = unit_size >> PAGE_SHIFT;
- pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
- pcpu_chunk_size = pcpu_nr_units * pcpu_unit_size;
- pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
- BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
- if (dyn_size < 0)
- dyn_size = pcpu_unit_size - static_size - reserved_size;
- first_vm.flags = VM_ALLOC;
- first_vm.size = pcpu_chunk_size;
- first_vm.addr = base_addr;
- /*
- * Allocate chunk slots. The additional last slot is for
- * empty chunks.
- */
- pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
- pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
- for (i = 0; i < pcpu_nr_slots; i++)
- INIT_LIST_HEAD(&pcpu_slot[i]);
- /*
- * Initialize static chunk. If reserved_size is zero, the
- * static chunk covers static area + dynamic allocation area
- * in the first chunk. If reserved_size is not zero, it
- * covers static area + reserved area (mostly used for module
- * static percpu allocation).
- */
- schunk = alloc_bootmem(pcpu_chunk_struct_size);
- INIT_LIST_HEAD(&schunk->list);
- schunk->vm = &first_vm;
- schunk->map = smap;
- schunk->map_alloc = ARRAY_SIZE(smap);
- schunk->immutable = true;
- bitmap_fill(schunk->populated, pcpu_unit_pages);
- if (reserved_size) {
- schunk->free_size = reserved_size;
- pcpu_reserved_chunk = schunk;
- pcpu_reserved_chunk_limit = static_size + reserved_size;
- } else {
- schunk->free_size = dyn_size;
- dyn_size = 0; /* dynamic area covered */
- }
- schunk->contig_hint = schunk->free_size;
- schunk->map[schunk->map_used++] = -static_size;
- if (schunk->free_size)
- schunk->map[schunk->map_used++] = schunk->free_size;
- /* init dynamic chunk if necessary */
- if (dyn_size) {
- dchunk = alloc_bootmem(pcpu_chunk_struct_size);
- INIT_LIST_HEAD(&dchunk->list);
- dchunk->vm = &first_vm;
- dchunk->map = dmap;
- dchunk->map_alloc = ARRAY_SIZE(dmap);
- dchunk->immutable = true;
- bitmap_fill(dchunk->populated, pcpu_unit_pages);
- dchunk->contig_hint = dchunk->free_size = dyn_size;
- dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
- dchunk->map[dchunk->map_used++] = dchunk->free_size;
- }
- /* link the first chunk in */
- pcpu_first_chunk = dchunk ?: schunk;
- pcpu_chunk_relocate(pcpu_first_chunk, -1);
- /* we're done */
- pcpu_base_addr = schunk->vm->addr;
- return pcpu_unit_size;
- }
- static inline size_t pcpu_calc_fc_sizes(size_t static_size,
- size_t reserved_size,
- ssize_t *dyn_sizep)
- {
- size_t size_sum;
- size_sum = PFN_ALIGN(static_size + reserved_size +
- (*dyn_sizep >= 0 ? *dyn_sizep : 0));
- if (*dyn_sizep != 0)
- *dyn_sizep = size_sum - static_size - reserved_size;
- return size_sum;
- }
- #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
- !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
- /**
- * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
- * @static_size: the size of static percpu area in bytes
- * @reserved_size: the size of reserved percpu area in bytes
- * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
- *
- * This is a helper to ease setting up embedded first percpu chunk and
- * can be called where pcpu_setup_first_chunk() is expected.
- *
- * If this function is used to setup the first chunk, it is allocated
- * as a contiguous area using bootmem allocator and used as-is without
- * being mapped into vmalloc area. This enables the first chunk to
- * piggy back on the linear physical mapping which often uses larger
- * page size.
- *
- * When @dyn_size is positive, dynamic area might be larger than
- * specified to fill page alignment. When @dyn_size is auto,
- * @dyn_size is just big enough to fill page alignment after static
- * and reserved areas.
- *
- * If the needed size is smaller than the minimum or specified unit
- * size, the leftover is returned to the bootmem allocator.
- *
- * RETURNS:
- * The determined pcpu_unit_size which can be used to initialize
- * percpu access on success, -errno on failure.
- */
- ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
- ssize_t dyn_size)
- {
- size_t size_sum, unit_size, chunk_size;
- void *base;
- unsigned int cpu;
- /* determine parameters and allocate */
- size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
- unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
- chunk_size = unit_size * nr_cpu_ids;
- base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
- __pa(MAX_DMA_ADDRESS));
- if (!base) {
- pr_warning("PERCPU: failed to allocate %zu bytes for "
- "embedding\n", chunk_size);
- return -ENOMEM;
- }
- /* return the leftover and copy */
- for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
- void *ptr = base + cpu * unit_size;
- if (cpu_possible(cpu)) {
- free_bootmem(__pa(ptr + size_sum),
- unit_size - size_sum);
- memcpy(ptr, __per_cpu_load, static_size);
- } else
- free_bootmem(__pa(ptr), unit_size);
- }
- /* we're ready, commit */
- pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
- PFN_DOWN(size_sum), base, static_size, reserved_size, dyn_size,
- unit_size);
- return pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
- unit_size, base, NULL);
- }
- #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
- !CONFIG_HAVE_SETUP_PER_CPU_AREA */
- #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
- /**
- * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
- * @static_size: the size of static percpu area in bytes
- * @reserved_size: the size of reserved percpu area in bytes
- * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
- * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
- * @populate_pte_fn: function to populate pte
- *
- * This is a helper to ease setting up page-remapped first percpu
- * chunk and can be called where pcpu_setup_first_chunk() is expected.
- *
- * This is the basic allocator. Static percpu area is allocated
- * page-by-page into vmalloc area.
- *
- * RETURNS:
- * The determined pcpu_unit_size which can be used to initialize
- * percpu access on success, -errno on failure.
- */
- ssize_t __init pcpu_page_first_chunk(size_t static_size, size_t reserved_size,
- pcpu_fc_alloc_fn_t alloc_fn,
- pcpu_fc_free_fn_t free_fn,
- pcpu_fc_populate_pte_fn_t populate_pte_fn)
- {
- static struct vm_struct vm;
- char psize_str[16];
- int unit_pages;
- size_t pages_size;
- struct page **pages;
- unsigned int cpu;
- int i, j;
- ssize_t ret;
- snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
- unit_pages = PFN_UP(max_t(size_t, static_size + reserved_size,
- PCPU_MIN_UNIT_SIZE));
- /* unaligned allocations can't be freed, round up to page size */
- pages_size = PFN_ALIGN(unit_pages * nr_cpu_ids * sizeof(pages[0]));
- pages = alloc_bootmem(pages_size);
- /* allocate pages */
- j = 0;
- for_each_possible_cpu(cpu)
- for (i = 0; i < unit_pages; i++) {
- void *ptr;
- ptr = alloc_fn(cpu, PAGE_SIZE);
- if (!ptr) {
- pr_warning("PERCPU: failed to allocate %s page "
- "for cpu%u\n", psize_str, cpu);
- goto enomem;
- }
- pages[j++] = virt_to_page(ptr);
- }
- /* allocate vm area, map the pages and copy static data */
- vm.flags = VM_ALLOC;
- vm.size = nr_cpu_ids * unit_pages << PAGE_SHIFT;
- vm_area_register_early(&vm, PAGE_SIZE);
- for_each_possible_cpu(cpu) {
- unsigned long unit_addr = (unsigned long)vm.addr +
- (cpu * unit_pages << PAGE_SHIFT);
- for (i = 0; i < unit_pages; i++)
- populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
- /* pte already populated, the following shouldn't fail */
- ret = __pcpu_map_pages(unit_addr, &pages[cpu * unit_pages],
- unit_pages);
- if (ret < 0)
- panic("failed to map percpu area, err=%zd\n", ret);
- /*
- * FIXME: Archs with virtual cache should flush local
- * cache for the linear mapping here - something
- * equivalent to flush_cache_vmap() on the local cpu.
- * flush_cache_vmap() can't be used as most supporting
- * data structures are not set up yet.
- */
- /* copy static data */
- memcpy((void *)unit_addr, __per_cpu_load, static_size);
- }
- /* we're ready, commit */
- pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu\n",
- unit_pages, psize_str, vm.addr, static_size, reserved_size);
- ret = pcpu_setup_first_chunk(static_size, reserved_size, -1,
- unit_pages << PAGE_SHIFT, vm.addr, NULL);
- goto out_free_ar;
- enomem:
- while (--j >= 0)
- free_fn(page_address(pages[j]), PAGE_SIZE);
- ret = -ENOMEM;
- out_free_ar:
- free_bootmem(__pa(pages), pages_size);
- return ret;
- }
- #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
- #ifdef CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK
- /**
- * pcpu_lpage_build_unit_map - build unit_map for large page remapping
- * @static_size: the size of static percpu area in bytes
- * @reserved_size: the size of reserved percpu area in bytes
- * @dyn_sizep: in/out parameter for dynamic size, -1 for auto
- * @unit_sizep: out parameter for unit size
- * @unit_map: unit_map to be filled
- * @cpu_distance_fn: callback to determine distance between cpus
- *
- * This function builds cpu -> unit map and determine other parameters
- * considering needed percpu size, large page size and distances
- * between CPUs in NUMA.
- *
- * CPUs which are of LOCAL_DISTANCE both ways are grouped together and
- * may share units in the same large page. The returned configuration
- * is guaranteed to have CPUs on different nodes on different large
- * pages and >=75% usage of allocated virtual address space.
- *
- * RETURNS:
- * On success, fills in @unit_map, sets *@dyn_sizep, *@unit_sizep and
- * returns the number of units to be allocated. -errno on failure.
- */
- int __init pcpu_lpage_build_unit_map(size_t static_size, size_t reserved_size,
- ssize_t *dyn_sizep, size_t *unit_sizep,
- size_t lpage_size, int *unit_map,
- pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
- {
- static int group_map[NR_CPUS] __initdata;
- static int group_cnt[NR_CPUS] __initdata;
- int group_cnt_max = 0;
- size_t size_sum, min_unit_size, alloc_size;
- int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
- int last_allocs;
- unsigned int cpu, tcpu;
- int group, unit;
- /*
- * Determine min_unit_size, alloc_size and max_upa such that
- * alloc_size is multiple of lpage_size and is the smallest
- * which can accomodate 4k aligned segments which are equal to
- * or larger than min_unit_size.
- */
- size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, dyn_sizep);
- min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
- alloc_size = roundup(min_unit_size, lpage_size);
- upa = alloc_size / min_unit_size;
- while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
- upa--;
- max_upa = upa;
- /* group cpus according to their proximity */
- for_each_possible_cpu(cpu) {
- group = 0;
- next_group:
- for_each_possible_cpu(tcpu) {
- if (cpu == tcpu)
- break;
- if (group_map[tcpu] == group &&
- (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
- cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
- group++;
- goto next_group;
- }
- }
- group_map[cpu] = group;
- group_cnt[group]++;
- group_cnt_max = max(group_cnt_max, group_cnt[group]);
- }
- /*
- * Expand unit size until address space usage goes over 75%
- * and then as much as possible without using more address
- * space.
- */
- last_allocs = INT_MAX;
- for (upa = max_upa; upa; upa--) {
- int allocs = 0, wasted = 0;
- if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
- continue;
- for (group = 0; group_cnt[group]; group++) {
- int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
- allocs += this_allocs;
- wasted += this_allocs * upa - group_cnt[group];
- }
- /*
- * Don't accept if wastage is over 25%. The
- * greater-than comparison ensures upa==1 always
- * passes the following check.
- */
- if (wasted > num_possible_cpus() / 3)
- continue;
- /* and then don't consume more memory */
- if (allocs > last_allocs)
- break;
- last_allocs = allocs;
- best_upa = upa;
- }
- *unit_sizep = alloc_size / best_upa;
- /* assign units to cpus accordingly */
- unit = 0;
- for (group = 0; group_cnt[group]; group++) {
- for_each_possible_cpu(cpu)
- if (group_map[cpu] == group)
- unit_map[cpu] = unit++;
- unit = roundup(unit, best_upa);
- }
- return unit; /* unit contains aligned number of units */
- }
- struct pcpul_ent {
- void *ptr;
- void *map_addr;
- };
- static size_t pcpul_size;
- static size_t pcpul_lpage_size;
- static int pcpul_nr_lpages;
- static struct pcpul_ent *pcpul_map;
- static bool __init pcpul_unit_to_cpu(int unit, const int *unit_map,
- unsigned int *cpup)
- {
- unsigned int cpu;
- for_each_possible_cpu(cpu)
- if (unit_map[cpu] == unit) {
- if (cpup)
- *cpup = cpu;
- return true;
- }
- return false;
- }
- static void __init pcpul_lpage_dump_cfg(const char *lvl, size_t static_size,
- size_t reserved_size, size_t dyn_size,
- size_t unit_size, size_t lpage_size,
- const int *unit_map, int nr_units)
- {
- int width = 1, v = nr_units;
- char empty_str[] = "--------";
- int upl, lpl; /* units per lpage, lpage per line */
- unsigned int cpu;
- int lpage, unit;
- while (v /= 10)
- width++;
- empty_str[min_t(int, width, sizeof(empty_str) - 1)] = '\0';
- upl = max_t(int, lpage_size / unit_size, 1);
- lpl = rounddown_pow_of_two(max_t(int, 60 / (upl * (width + 1) + 2), 1));
- printk("%spcpu-lpage: sta/res/dyn=%zu/%zu/%zu unit=%zu lpage=%zu", lvl,
- static_size, reserved_size, dyn_size, unit_size, lpage_size);
- for (lpage = 0, unit = 0; unit < nr_units; unit++) {
- if (!(unit % upl)) {
- if (!(lpage++ % lpl)) {
- printk("\n");
- printk("%spcpu-lpage: ", lvl);
- } else
- printk("| ");
- }
- if (pcpul_unit_to_cpu(unit, unit_map, &cpu))
- printk("%0*d ", width, cpu);
- else
- printk("%s ", empty_str);
- }
- printk("\n");
- }
- /**
- * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
- * @static_size: the size of static percpu area in bytes
- * @reserved_size: the size of reserved percpu area in bytes
- * @dyn_size: free size for dynamic allocation in bytes
- * @unit_size: unit size in bytes
- * @lpage_size: the size of a large page
- * @unit_map: cpu -> unit mapping
- * @nr_units: the number of units
- * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
- * @free_fn: function to free percpu memory, @size <= lpage_size
- * @map_fn: function to map percpu lpage, always called with lpage_size
- *
- * This allocator uses large page to build and map the first chunk.
- * Unlike other helpers, the caller should always specify @dyn_size
- * and @unit_size. These parameters along with @unit_map and
- * @nr_units can be determined using pcpu_lpage_build_unit_map().
- * This two stage initialization is to allow arch code to evaluate the
- * parameters before committing to it.
- *
- * Large pages are allocated as directed by @unit_map and other
- * parameters and mapped to vmalloc space. Unused holes are returned
- * to the page allocator. Note that these holes end up being actively
- * mapped twice - once to the physical mapping and to the vmalloc area
- * for the first percpu chunk. Depending on architecture, this might
- * cause problem when changing page attributes of the returned area.
- * These double mapped areas can be detected using
- * pcpu_lpage_remapped().
- *
- * RETURNS:
- * The determined pcpu_unit_size which can be used to initialize
- * percpu access on success, -errno on failure.
- */
- ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
- size_t dyn_size, size_t unit_size,
- size_t lpage_size, const int *unit_map,
- int nr_units,
- pcpu_fc_alloc_fn_t alloc_fn,
- pcpu_fc_free_fn_t free_fn,
- pcpu_fc_map_fn_t map_fn)
- {
- static struct vm_struct vm;
- size_t chunk_size = unit_size * nr_units;
- size_t map_size;
- unsigned int cpu;
- ssize_t ret;
- int i, j, unit;
- pcpul_lpage_dump_cfg(KERN_DEBUG, static_size, reserved_size, dyn_size,
- unit_size, lpage_size, unit_map, nr_units);
- BUG_ON(chunk_size % lpage_size);
- pcpul_size = static_size + reserved_size + dyn_size;
- pcpul_lpage_size = lpage_size;
- pcpul_nr_lpages = chunk_size / lpage_size;
- /* allocate pointer array and alloc large pages */
- map_size = pcpul_nr_lpages * sizeof(pcpul_map[0]);
- pcpul_map = alloc_bootmem(map_size);
- /* allocate all pages */
- for (i = 0; i < pcpul_nr_lpages; i++) {
- size_t offset = i * lpage_size;
- int first_unit = offset / unit_size;
- int last_unit = (offset + lpage_size - 1) / unit_size;
- void *ptr;
- /* find out which cpu is mapped to this unit */
- for (unit = first_unit; unit <= last_unit; unit++)
- if (pcpul_unit_to_cpu(unit, unit_map, &cpu))
- goto found;
- continue;
- found:
- ptr = alloc_fn(cpu, lpage_size);
- if (!ptr) {
- pr_warning("PERCPU: failed to allocate large page "
- "for cpu%u\n", cpu);
- goto enomem;
- }
- pcpul_map[i].ptr = ptr;
- }
- /* return unused holes */
- for (unit = 0; unit < nr_units; unit++) {
- size_t start = unit * unit_size;
- size_t end = start + unit_size;
- size_t off, next;
- /* don't free used part of occupied unit */
- if (pcpul_unit_to_cpu(unit, unit_map, NULL))
- start += pcpul_size;
- /* unit can span more than one page, punch the holes */
- for (off = start; off < end; off = next) {
- void *ptr = pcpul_map[off / lpage_size].ptr;
- next = min(roundup(off + 1, lpage_size), end);
- if (ptr)
- free_fn(ptr + off % lpage_size, next - off);
- }
- }
- /* allocate address, map and copy */
- vm.flags = VM_ALLOC;
- vm.size = chunk_size;
- vm_area_register_early(&vm, unit_size);
- for (i = 0; i < pcpul_nr_lpages; i++) {
- if (!pcpul_map[i].ptr)
- continue;
- pcpul_map[i].map_addr = vm.addr + i * lpage_size;
- map_fn(pcpul_map[i].ptr, lpage_size, pcpul_map[i].map_addr);
- }
- for_each_possible_cpu(cpu)
- memcpy(vm.addr + unit_map[cpu] * unit_size, __per_cpu_load,
- static_size);
- /* we're ready, commit */
- pr_info("PERCPU: large pages @%p s%zu r%zu d%zu u%zu\n",
- vm.addr, static_size, reserved_size, dyn_size, unit_size);
- ret = pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
- unit_size, vm.addr, unit_map);
- /*
- * Sort pcpul_map array for pcpu_lpage_remapped(). Unmapped
- * lpages are pushed to the end and trimmed.
- */
- for (i = 0; i < pcpul_nr_lpages - 1; i++)
- for (j = i + 1; j < pcpul_nr_lpages; j++) {
- struct pcpul_ent tmp;
- if (!pcpul_map[j].ptr)
- continue;
- if (pcpul_map[i].ptr &&
- pcpul_map[i].ptr < pcpul_map[j].ptr)
- continue;
- tmp = pcpul_map[i];
- pcpul_map[i] = pcpul_map[j];
- pcpul_map[j] = tmp;
- }
- while (pcpul_nr_lpages && !pcpul_map[pcpul_nr_lpages - 1].ptr)
- pcpul_nr_lpages--;
- return ret;
- enomem:
- for (i = 0; i < pcpul_nr_lpages; i++)
- if (pcpul_map[i].ptr)
- free_fn(pcpul_map[i].ptr, lpage_size);
- free_bootmem(__pa(pcpul_map), map_size);
- return -ENOMEM;
- }
- /**
- * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
- * @kaddr: the kernel address in question
- *
- * Determine whether @kaddr falls in the pcpul recycled area. This is
- * used by pageattr to detect VM aliases and break up the pcpu large
- * page mapping such that the same physical page is not mapped under
- * different attributes.
- *
- * The recycled area is always at the tail of a partially used large
- * page.
- *
- * RETURNS:
- * Address of corresponding remapped pcpu address if match is found;
- * otherwise, NULL.
- */
- void *pcpu_lpage_remapped(void *kaddr)
- {
- unsigned long lpage_mask = pcpul_lpage_size - 1;
- void *lpage_addr = (void *)((unsigned long)kaddr & ~lpage_mask);
- unsigned long offset = (unsigned long)kaddr & lpage_mask;
- int left = 0, right = pcpul_nr_lpages - 1;
- int pos;
- /* pcpul in use at all? */
- if (!pcpul_map)
- return NULL;
- /* okay, perform binary search */
- while (left <= right) {
- pos = (left + right) / 2;
- if (pcpul_map[pos].ptr < lpage_addr)
- left = pos + 1;
- else if (pcpul_map[pos].ptr > lpage_addr)
- right = pos - 1;
- else
- return pcpul_map[pos].map_addr + offset;
- }
- return NULL;
- }
- #endif /* CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK */
- /*
- * Generic percpu area setup.
- *
- * The embedding helper is used because its behavior closely resembles
- * the original non-dynamic generic percpu area setup. This is
- * important because many archs have addressing restrictions and might
- * fail if the percpu area is located far away from the previous
- * location. As an added bonus, in non-NUMA cases, embedding is
- * generally a good idea TLB-wise because percpu area can piggy back
- * on the physical linear memory mapping which uses large page
- * mappings on applicable archs.
- */
- #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
- unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
- EXPORT_SYMBOL(__per_cpu_offset);
- void __init setup_per_cpu_areas(void)
- {
- size_t static_size = __per_cpu_end - __per_cpu_start;
- ssize_t unit_size;
- unsigned long delta;
- unsigned int cpu;
- /*
- * Always reserve area for module percpu variables. That's
- * what the legacy allocator did.
- */
- unit_size = pcpu_embed_first_chunk(static_size, PERCPU_MODULE_RESERVE,
- PERCPU_DYNAMIC_RESERVE);
- if (unit_size < 0)
- panic("Failed to initialized percpu areas.");
- delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
- for_each_possible_cpu(cpu)
- __per_cpu_offset[cpu] = delta + cpu * unit_size;
- }
- #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
|