atl1.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734
  1. /*
  2. * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
  3. * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
  4. * Copyright(c) 2006 Jay Cliburn <jcliburn@gmail.com>
  5. *
  6. * Derived from Intel e1000 driver
  7. * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify it
  10. * under the terms of the GNU General Public License as published by the Free
  11. * Software Foundation; either version 2 of the License, or (at your option)
  12. * any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program; if not, write to the Free Software Foundation, Inc., 59
  21. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  22. *
  23. * The full GNU General Public License is included in this distribution in the
  24. * file called COPYING.
  25. *
  26. * Contact Information:
  27. * Xiong Huang <xiong_huang@attansic.com>
  28. * Attansic Technology Corp. 3F 147, Xianzheng 9th Road, Zhubei,
  29. * Xinzhu 302, TAIWAN, REPUBLIC OF CHINA
  30. *
  31. * Chris Snook <csnook@redhat.com>
  32. * Jay Cliburn <jcliburn@gmail.com>
  33. *
  34. * This version is adapted from the Attansic reference driver for
  35. * inclusion in the Linux kernel. It is currently under heavy development.
  36. * A very incomplete list of things that need to be dealt with:
  37. *
  38. * TODO:
  39. * Wake on LAN.
  40. * Add more ethtool functions.
  41. * Fix abstruse irq enable/disable condition described here:
  42. * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
  43. *
  44. * NEEDS TESTING:
  45. * VLAN
  46. * multicast
  47. * promiscuous mode
  48. * interrupt coalescing
  49. * SMP torture testing
  50. */
  51. #include <asm/atomic.h>
  52. #include <asm/byteorder.h>
  53. #include <linux/compiler.h>
  54. #include <linux/crc32.h>
  55. #include <linux/delay.h>
  56. #include <linux/dma-mapping.h>
  57. #include <linux/etherdevice.h>
  58. #include <linux/hardirq.h>
  59. #include <linux/if_ether.h>
  60. #include <linux/if_vlan.h>
  61. #include <linux/in.h>
  62. #include <linux/interrupt.h>
  63. #include <linux/ip.h>
  64. #include <linux/irqflags.h>
  65. #include <linux/irqreturn.h>
  66. #include <linux/jiffies.h>
  67. #include <linux/mii.h>
  68. #include <linux/module.h>
  69. #include <linux/moduleparam.h>
  70. #include <linux/net.h>
  71. #include <linux/netdevice.h>
  72. #include <linux/pci.h>
  73. #include <linux/pci_ids.h>
  74. #include <linux/pm.h>
  75. #include <linux/skbuff.h>
  76. #include <linux/slab.h>
  77. #include <linux/spinlock.h>
  78. #include <linux/string.h>
  79. #include <linux/tcp.h>
  80. #include <linux/timer.h>
  81. #include <linux/types.h>
  82. #include <linux/workqueue.h>
  83. #include <net/checksum.h>
  84. #include "atl1.h"
  85. /* Temporary hack for merging atl1 and atl2 */
  86. #include "atlx.c"
  87. /*
  88. * This is the only thing that needs to be changed to adjust the
  89. * maximum number of ports that the driver can manage.
  90. */
  91. #define ATL1_MAX_NIC 4
  92. #define OPTION_UNSET -1
  93. #define OPTION_DISABLED 0
  94. #define OPTION_ENABLED 1
  95. #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
  96. /*
  97. * Interrupt Moderate Timer in units of 2 us
  98. *
  99. * Valid Range: 10-65535
  100. *
  101. * Default Value: 100 (200us)
  102. */
  103. static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
  104. static int num_int_mod_timer;
  105. module_param_array_named(int_mod_timer, int_mod_timer, int,
  106. &num_int_mod_timer, 0);
  107. MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
  108. #define DEFAULT_INT_MOD_CNT 100 /* 200us */
  109. #define MAX_INT_MOD_CNT 65000
  110. #define MIN_INT_MOD_CNT 50
  111. struct atl1_option {
  112. enum { enable_option, range_option, list_option } type;
  113. char *name;
  114. char *err;
  115. int def;
  116. union {
  117. struct { /* range_option info */
  118. int min;
  119. int max;
  120. } r;
  121. struct { /* list_option info */
  122. int nr;
  123. struct atl1_opt_list {
  124. int i;
  125. char *str;
  126. } *p;
  127. } l;
  128. } arg;
  129. };
  130. static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
  131. struct pci_dev *pdev)
  132. {
  133. if (*value == OPTION_UNSET) {
  134. *value = opt->def;
  135. return 0;
  136. }
  137. switch (opt->type) {
  138. case enable_option:
  139. switch (*value) {
  140. case OPTION_ENABLED:
  141. dev_info(&pdev->dev, "%s enabled\n", opt->name);
  142. return 0;
  143. case OPTION_DISABLED:
  144. dev_info(&pdev->dev, "%s disabled\n", opt->name);
  145. return 0;
  146. }
  147. break;
  148. case range_option:
  149. if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
  150. dev_info(&pdev->dev, "%s set to %i\n", opt->name,
  151. *value);
  152. return 0;
  153. }
  154. break;
  155. case list_option:{
  156. int i;
  157. struct atl1_opt_list *ent;
  158. for (i = 0; i < opt->arg.l.nr; i++) {
  159. ent = &opt->arg.l.p[i];
  160. if (*value == ent->i) {
  161. if (ent->str[0] != '\0')
  162. dev_info(&pdev->dev, "%s\n",
  163. ent->str);
  164. return 0;
  165. }
  166. }
  167. }
  168. break;
  169. default:
  170. break;
  171. }
  172. dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
  173. opt->name, *value, opt->err);
  174. *value = opt->def;
  175. return -1;
  176. }
  177. /*
  178. * atl1_check_options - Range Checking for Command Line Parameters
  179. * @adapter: board private structure
  180. *
  181. * This routine checks all command line parameters for valid user
  182. * input. If an invalid value is given, or if no user specified
  183. * value exists, a default value is used. The final value is stored
  184. * in a variable in the adapter structure.
  185. */
  186. void __devinit atl1_check_options(struct atl1_adapter *adapter)
  187. {
  188. struct pci_dev *pdev = adapter->pdev;
  189. int bd = adapter->bd_number;
  190. if (bd >= ATL1_MAX_NIC) {
  191. dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
  192. dev_notice(&pdev->dev, "using defaults for all values\n");
  193. }
  194. { /* Interrupt Moderate Timer */
  195. struct atl1_option opt = {
  196. .type = range_option,
  197. .name = "Interrupt Moderator Timer",
  198. .err = "using default of "
  199. __MODULE_STRING(DEFAULT_INT_MOD_CNT),
  200. .def = DEFAULT_INT_MOD_CNT,
  201. .arg = {.r = {.min = MIN_INT_MOD_CNT,
  202. .max = MAX_INT_MOD_CNT} }
  203. };
  204. int val;
  205. if (num_int_mod_timer > bd) {
  206. val = int_mod_timer[bd];
  207. atl1_validate_option(&val, &opt, pdev);
  208. adapter->imt = (u16) val;
  209. } else
  210. adapter->imt = (u16) (opt.def);
  211. }
  212. }
  213. /*
  214. * atl1_pci_tbl - PCI Device ID Table
  215. */
  216. static const struct pci_device_id atl1_pci_tbl[] = {
  217. {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
  218. /* required last entry */
  219. {0,}
  220. };
  221. MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
  222. static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
  223. NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
  224. static int debug = -1;
  225. module_param(debug, int, 0);
  226. MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
  227. /*
  228. * Reset the transmit and receive units; mask and clear all interrupts.
  229. * hw - Struct containing variables accessed by shared code
  230. * return : 0 or idle status (if error)
  231. */
  232. static s32 atl1_reset_hw(struct atl1_hw *hw)
  233. {
  234. struct pci_dev *pdev = hw->back->pdev;
  235. struct atl1_adapter *adapter = hw->back;
  236. u32 icr;
  237. int i;
  238. /*
  239. * Clear Interrupt mask to stop board from generating
  240. * interrupts & Clear any pending interrupt events
  241. */
  242. /*
  243. * iowrite32(0, hw->hw_addr + REG_IMR);
  244. * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
  245. */
  246. /*
  247. * Issue Soft Reset to the MAC. This will reset the chip's
  248. * transmit, receive, DMA. It will not effect
  249. * the current PCI configuration. The global reset bit is self-
  250. * clearing, and should clear within a microsecond.
  251. */
  252. iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
  253. ioread32(hw->hw_addr + REG_MASTER_CTRL);
  254. iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
  255. ioread16(hw->hw_addr + REG_PHY_ENABLE);
  256. /* delay about 1ms */
  257. msleep(1);
  258. /* Wait at least 10ms for All module to be Idle */
  259. for (i = 0; i < 10; i++) {
  260. icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
  261. if (!icr)
  262. break;
  263. /* delay 1 ms */
  264. msleep(1);
  265. /* FIXME: still the right way to do this? */
  266. cpu_relax();
  267. }
  268. if (icr) {
  269. if (netif_msg_hw(adapter))
  270. dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
  271. return icr;
  272. }
  273. return 0;
  274. }
  275. /* function about EEPROM
  276. *
  277. * check_eeprom_exist
  278. * return 0 if eeprom exist
  279. */
  280. static int atl1_check_eeprom_exist(struct atl1_hw *hw)
  281. {
  282. u32 value;
  283. value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  284. if (value & SPI_FLASH_CTRL_EN_VPD) {
  285. value &= ~SPI_FLASH_CTRL_EN_VPD;
  286. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  287. }
  288. value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
  289. return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
  290. }
  291. static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
  292. {
  293. int i;
  294. u32 control;
  295. if (offset & 3)
  296. /* address do not align */
  297. return false;
  298. iowrite32(0, hw->hw_addr + REG_VPD_DATA);
  299. control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
  300. iowrite32(control, hw->hw_addr + REG_VPD_CAP);
  301. ioread32(hw->hw_addr + REG_VPD_CAP);
  302. for (i = 0; i < 10; i++) {
  303. msleep(2);
  304. control = ioread32(hw->hw_addr + REG_VPD_CAP);
  305. if (control & VPD_CAP_VPD_FLAG)
  306. break;
  307. }
  308. if (control & VPD_CAP_VPD_FLAG) {
  309. *p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
  310. return true;
  311. }
  312. /* timeout */
  313. return false;
  314. }
  315. /*
  316. * Reads the value from a PHY register
  317. * hw - Struct containing variables accessed by shared code
  318. * reg_addr - address of the PHY register to read
  319. */
  320. s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
  321. {
  322. u32 val;
  323. int i;
  324. val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
  325. MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
  326. MDIO_CLK_SEL_SHIFT;
  327. iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
  328. ioread32(hw->hw_addr + REG_MDIO_CTRL);
  329. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  330. udelay(2);
  331. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  332. if (!(val & (MDIO_START | MDIO_BUSY)))
  333. break;
  334. }
  335. if (!(val & (MDIO_START | MDIO_BUSY))) {
  336. *phy_data = (u16) val;
  337. return 0;
  338. }
  339. return ATLX_ERR_PHY;
  340. }
  341. #define CUSTOM_SPI_CS_SETUP 2
  342. #define CUSTOM_SPI_CLK_HI 2
  343. #define CUSTOM_SPI_CLK_LO 2
  344. #define CUSTOM_SPI_CS_HOLD 2
  345. #define CUSTOM_SPI_CS_HI 3
  346. static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
  347. {
  348. int i;
  349. u32 value;
  350. iowrite32(0, hw->hw_addr + REG_SPI_DATA);
  351. iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
  352. value = SPI_FLASH_CTRL_WAIT_READY |
  353. (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
  354. SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
  355. SPI_FLASH_CTRL_CLK_HI_MASK) <<
  356. SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
  357. SPI_FLASH_CTRL_CLK_LO_MASK) <<
  358. SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
  359. SPI_FLASH_CTRL_CS_HOLD_MASK) <<
  360. SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
  361. SPI_FLASH_CTRL_CS_HI_MASK) <<
  362. SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
  363. SPI_FLASH_CTRL_INS_SHIFT;
  364. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  365. value |= SPI_FLASH_CTRL_START;
  366. iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
  367. ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  368. for (i = 0; i < 10; i++) {
  369. msleep(1);
  370. value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
  371. if (!(value & SPI_FLASH_CTRL_START))
  372. break;
  373. }
  374. if (value & SPI_FLASH_CTRL_START)
  375. return false;
  376. *buf = ioread32(hw->hw_addr + REG_SPI_DATA);
  377. return true;
  378. }
  379. /*
  380. * get_permanent_address
  381. * return 0 if get valid mac address,
  382. */
  383. static int atl1_get_permanent_address(struct atl1_hw *hw)
  384. {
  385. u32 addr[2];
  386. u32 i, control;
  387. u16 reg;
  388. u8 eth_addr[ETH_ALEN];
  389. bool key_valid;
  390. if (is_valid_ether_addr(hw->perm_mac_addr))
  391. return 0;
  392. /* init */
  393. addr[0] = addr[1] = 0;
  394. if (!atl1_check_eeprom_exist(hw)) {
  395. reg = 0;
  396. key_valid = false;
  397. /* Read out all EEPROM content */
  398. i = 0;
  399. while (1) {
  400. if (atl1_read_eeprom(hw, i + 0x100, &control)) {
  401. if (key_valid) {
  402. if (reg == REG_MAC_STA_ADDR)
  403. addr[0] = control;
  404. else if (reg == (REG_MAC_STA_ADDR + 4))
  405. addr[1] = control;
  406. key_valid = false;
  407. } else if ((control & 0xff) == 0x5A) {
  408. key_valid = true;
  409. reg = (u16) (control >> 16);
  410. } else
  411. break;
  412. } else
  413. /* read error */
  414. break;
  415. i += 4;
  416. }
  417. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  418. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  419. if (is_valid_ether_addr(eth_addr)) {
  420. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  421. return 0;
  422. }
  423. return 1;
  424. }
  425. /* see if SPI FLAGS exist ? */
  426. addr[0] = addr[1] = 0;
  427. reg = 0;
  428. key_valid = false;
  429. i = 0;
  430. while (1) {
  431. if (atl1_spi_read(hw, i + 0x1f000, &control)) {
  432. if (key_valid) {
  433. if (reg == REG_MAC_STA_ADDR)
  434. addr[0] = control;
  435. else if (reg == (REG_MAC_STA_ADDR + 4))
  436. addr[1] = control;
  437. key_valid = false;
  438. } else if ((control & 0xff) == 0x5A) {
  439. key_valid = true;
  440. reg = (u16) (control >> 16);
  441. } else
  442. /* data end */
  443. break;
  444. } else
  445. /* read error */
  446. break;
  447. i += 4;
  448. }
  449. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  450. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  451. if (is_valid_ether_addr(eth_addr)) {
  452. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  453. return 0;
  454. }
  455. /*
  456. * On some motherboards, the MAC address is written by the
  457. * BIOS directly to the MAC register during POST, and is
  458. * not stored in eeprom. If all else thus far has failed
  459. * to fetch the permanent MAC address, try reading it directly.
  460. */
  461. addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
  462. addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
  463. *(u32 *) &eth_addr[2] = swab32(addr[0]);
  464. *(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
  465. if (is_valid_ether_addr(eth_addr)) {
  466. memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
  467. return 0;
  468. }
  469. return 1;
  470. }
  471. /*
  472. * Reads the adapter's MAC address from the EEPROM
  473. * hw - Struct containing variables accessed by shared code
  474. */
  475. s32 atl1_read_mac_addr(struct atl1_hw *hw)
  476. {
  477. u16 i;
  478. if (atl1_get_permanent_address(hw))
  479. random_ether_addr(hw->perm_mac_addr);
  480. for (i = 0; i < ETH_ALEN; i++)
  481. hw->mac_addr[i] = hw->perm_mac_addr[i];
  482. return 0;
  483. }
  484. /*
  485. * Hashes an address to determine its location in the multicast table
  486. * hw - Struct containing variables accessed by shared code
  487. * mc_addr - the multicast address to hash
  488. *
  489. * atl1_hash_mc_addr
  490. * purpose
  491. * set hash value for a multicast address
  492. * hash calcu processing :
  493. * 1. calcu 32bit CRC for multicast address
  494. * 2. reverse crc with MSB to LSB
  495. */
  496. u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
  497. {
  498. u32 crc32, value = 0;
  499. int i;
  500. crc32 = ether_crc_le(6, mc_addr);
  501. for (i = 0; i < 32; i++)
  502. value |= (((crc32 >> i) & 1) << (31 - i));
  503. return value;
  504. }
  505. /*
  506. * Sets the bit in the multicast table corresponding to the hash value.
  507. * hw - Struct containing variables accessed by shared code
  508. * hash_value - Multicast address hash value
  509. */
  510. void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
  511. {
  512. u32 hash_bit, hash_reg;
  513. u32 mta;
  514. /*
  515. * The HASH Table is a register array of 2 32-bit registers.
  516. * It is treated like an array of 64 bits. We want to set
  517. * bit BitArray[hash_value]. So we figure out what register
  518. * the bit is in, read it, OR in the new bit, then write
  519. * back the new value. The register is determined by the
  520. * upper 7 bits of the hash value and the bit within that
  521. * register are determined by the lower 5 bits of the value.
  522. */
  523. hash_reg = (hash_value >> 31) & 0x1;
  524. hash_bit = (hash_value >> 26) & 0x1F;
  525. mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
  526. mta |= (1 << hash_bit);
  527. iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
  528. }
  529. /*
  530. * Writes a value to a PHY register
  531. * hw - Struct containing variables accessed by shared code
  532. * reg_addr - address of the PHY register to write
  533. * data - data to write to the PHY
  534. */
  535. static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
  536. {
  537. int i;
  538. u32 val;
  539. val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
  540. (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
  541. MDIO_SUP_PREAMBLE |
  542. MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
  543. iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
  544. ioread32(hw->hw_addr + REG_MDIO_CTRL);
  545. for (i = 0; i < MDIO_WAIT_TIMES; i++) {
  546. udelay(2);
  547. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  548. if (!(val & (MDIO_START | MDIO_BUSY)))
  549. break;
  550. }
  551. if (!(val & (MDIO_START | MDIO_BUSY)))
  552. return 0;
  553. return ATLX_ERR_PHY;
  554. }
  555. /*
  556. * Make L001's PHY out of Power Saving State (bug)
  557. * hw - Struct containing variables accessed by shared code
  558. * when power on, L001's PHY always on Power saving State
  559. * (Gigabit Link forbidden)
  560. */
  561. static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
  562. {
  563. s32 ret;
  564. ret = atl1_write_phy_reg(hw, 29, 0x0029);
  565. if (ret)
  566. return ret;
  567. return atl1_write_phy_reg(hw, 30, 0);
  568. }
  569. /*
  570. * Force the PHY into power saving mode using vendor magic.
  571. */
  572. #ifdef CONFIG_PM
  573. static void atl1_phy_enter_power_saving(struct atl1_hw *hw)
  574. {
  575. atl1_write_phy_reg(hw, MII_DBG_ADDR, 0);
  576. atl1_write_phy_reg(hw, MII_DBG_DATA, 0x124E);
  577. atl1_write_phy_reg(hw, MII_DBG_ADDR, 2);
  578. atl1_write_phy_reg(hw, MII_DBG_DATA, 0x3000);
  579. atl1_write_phy_reg(hw, MII_DBG_ADDR, 3);
  580. atl1_write_phy_reg(hw, MII_DBG_DATA, 0);
  581. }
  582. #endif
  583. /*
  584. * Resets the PHY and make all config validate
  585. * hw - Struct containing variables accessed by shared code
  586. *
  587. * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
  588. */
  589. static s32 atl1_phy_reset(struct atl1_hw *hw)
  590. {
  591. struct pci_dev *pdev = hw->back->pdev;
  592. struct atl1_adapter *adapter = hw->back;
  593. s32 ret_val;
  594. u16 phy_data;
  595. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  596. hw->media_type == MEDIA_TYPE_1000M_FULL)
  597. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  598. else {
  599. switch (hw->media_type) {
  600. case MEDIA_TYPE_100M_FULL:
  601. phy_data =
  602. MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  603. MII_CR_RESET;
  604. break;
  605. case MEDIA_TYPE_100M_HALF:
  606. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  607. break;
  608. case MEDIA_TYPE_10M_FULL:
  609. phy_data =
  610. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  611. break;
  612. default:
  613. /* MEDIA_TYPE_10M_HALF: */
  614. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  615. break;
  616. }
  617. }
  618. ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  619. if (ret_val) {
  620. u32 val;
  621. int i;
  622. /* pcie serdes link may be down! */
  623. if (netif_msg_hw(adapter))
  624. dev_dbg(&pdev->dev, "pcie phy link down\n");
  625. for (i = 0; i < 25; i++) {
  626. msleep(1);
  627. val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
  628. if (!(val & (MDIO_START | MDIO_BUSY)))
  629. break;
  630. }
  631. if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
  632. if (netif_msg_hw(adapter))
  633. dev_warn(&pdev->dev,
  634. "pcie link down at least 25ms\n");
  635. return ret_val;
  636. }
  637. }
  638. return 0;
  639. }
  640. /*
  641. * Configures PHY autoneg and flow control advertisement settings
  642. * hw - Struct containing variables accessed by shared code
  643. */
  644. static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
  645. {
  646. s32 ret_val;
  647. s16 mii_autoneg_adv_reg;
  648. s16 mii_1000t_ctrl_reg;
  649. /* Read the MII Auto-Neg Advertisement Register (Address 4). */
  650. mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
  651. /* Read the MII 1000Base-T Control Register (Address 9). */
  652. mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
  653. /*
  654. * First we clear all the 10/100 mb speed bits in the Auto-Neg
  655. * Advertisement Register (Address 4) and the 1000 mb speed bits in
  656. * the 1000Base-T Control Register (Address 9).
  657. */
  658. mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
  659. mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
  660. /*
  661. * Need to parse media_type and set up
  662. * the appropriate PHY registers.
  663. */
  664. switch (hw->media_type) {
  665. case MEDIA_TYPE_AUTO_SENSOR:
  666. mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
  667. MII_AR_10T_FD_CAPS |
  668. MII_AR_100TX_HD_CAPS |
  669. MII_AR_100TX_FD_CAPS);
  670. mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
  671. break;
  672. case MEDIA_TYPE_1000M_FULL:
  673. mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
  674. break;
  675. case MEDIA_TYPE_100M_FULL:
  676. mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
  677. break;
  678. case MEDIA_TYPE_100M_HALF:
  679. mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
  680. break;
  681. case MEDIA_TYPE_10M_FULL:
  682. mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
  683. break;
  684. default:
  685. mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
  686. break;
  687. }
  688. /* flow control fixed to enable all */
  689. mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
  690. hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
  691. hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
  692. ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
  693. if (ret_val)
  694. return ret_val;
  695. ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
  696. if (ret_val)
  697. return ret_val;
  698. return 0;
  699. }
  700. /*
  701. * Configures link settings.
  702. * hw - Struct containing variables accessed by shared code
  703. * Assumes the hardware has previously been reset and the
  704. * transmitter and receiver are not enabled.
  705. */
  706. static s32 atl1_setup_link(struct atl1_hw *hw)
  707. {
  708. struct pci_dev *pdev = hw->back->pdev;
  709. struct atl1_adapter *adapter = hw->back;
  710. s32 ret_val;
  711. /*
  712. * Options:
  713. * PHY will advertise value(s) parsed from
  714. * autoneg_advertised and fc
  715. * no matter what autoneg is , We will not wait link result.
  716. */
  717. ret_val = atl1_phy_setup_autoneg_adv(hw);
  718. if (ret_val) {
  719. if (netif_msg_link(adapter))
  720. dev_dbg(&pdev->dev,
  721. "error setting up autonegotiation\n");
  722. return ret_val;
  723. }
  724. /* SW.Reset , En-Auto-Neg if needed */
  725. ret_val = atl1_phy_reset(hw);
  726. if (ret_val) {
  727. if (netif_msg_link(adapter))
  728. dev_dbg(&pdev->dev, "error resetting phy\n");
  729. return ret_val;
  730. }
  731. hw->phy_configured = true;
  732. return ret_val;
  733. }
  734. static void atl1_init_flash_opcode(struct atl1_hw *hw)
  735. {
  736. if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
  737. /* Atmel */
  738. hw->flash_vendor = 0;
  739. /* Init OP table */
  740. iowrite8(flash_table[hw->flash_vendor].cmd_program,
  741. hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
  742. iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
  743. hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
  744. iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
  745. hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
  746. iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
  747. hw->hw_addr + REG_SPI_FLASH_OP_RDID);
  748. iowrite8(flash_table[hw->flash_vendor].cmd_wren,
  749. hw->hw_addr + REG_SPI_FLASH_OP_WREN);
  750. iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
  751. hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
  752. iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
  753. hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
  754. iowrite8(flash_table[hw->flash_vendor].cmd_read,
  755. hw->hw_addr + REG_SPI_FLASH_OP_READ);
  756. }
  757. /*
  758. * Performs basic configuration of the adapter.
  759. * hw - Struct containing variables accessed by shared code
  760. * Assumes that the controller has previously been reset and is in a
  761. * post-reset uninitialized state. Initializes multicast table,
  762. * and Calls routines to setup link
  763. * Leaves the transmit and receive units disabled and uninitialized.
  764. */
  765. static s32 atl1_init_hw(struct atl1_hw *hw)
  766. {
  767. u32 ret_val = 0;
  768. /* Zero out the Multicast HASH table */
  769. iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
  770. /* clear the old settings from the multicast hash table */
  771. iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
  772. atl1_init_flash_opcode(hw);
  773. if (!hw->phy_configured) {
  774. /* enable GPHY LinkChange Interrrupt */
  775. ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
  776. if (ret_val)
  777. return ret_val;
  778. /* make PHY out of power-saving state */
  779. ret_val = atl1_phy_leave_power_saving(hw);
  780. if (ret_val)
  781. return ret_val;
  782. /* Call a subroutine to configure the link */
  783. ret_val = atl1_setup_link(hw);
  784. }
  785. return ret_val;
  786. }
  787. /*
  788. * Detects the current speed and duplex settings of the hardware.
  789. * hw - Struct containing variables accessed by shared code
  790. * speed - Speed of the connection
  791. * duplex - Duplex setting of the connection
  792. */
  793. static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
  794. {
  795. struct pci_dev *pdev = hw->back->pdev;
  796. struct atl1_adapter *adapter = hw->back;
  797. s32 ret_val;
  798. u16 phy_data;
  799. /* ; --- Read PHY Specific Status Register (17) */
  800. ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
  801. if (ret_val)
  802. return ret_val;
  803. if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
  804. return ATLX_ERR_PHY_RES;
  805. switch (phy_data & MII_ATLX_PSSR_SPEED) {
  806. case MII_ATLX_PSSR_1000MBS:
  807. *speed = SPEED_1000;
  808. break;
  809. case MII_ATLX_PSSR_100MBS:
  810. *speed = SPEED_100;
  811. break;
  812. case MII_ATLX_PSSR_10MBS:
  813. *speed = SPEED_10;
  814. break;
  815. default:
  816. if (netif_msg_hw(adapter))
  817. dev_dbg(&pdev->dev, "error getting speed\n");
  818. return ATLX_ERR_PHY_SPEED;
  819. break;
  820. }
  821. if (phy_data & MII_ATLX_PSSR_DPLX)
  822. *duplex = FULL_DUPLEX;
  823. else
  824. *duplex = HALF_DUPLEX;
  825. return 0;
  826. }
  827. void atl1_set_mac_addr(struct atl1_hw *hw)
  828. {
  829. u32 value;
  830. /*
  831. * 00-0B-6A-F6-00-DC
  832. * 0: 6AF600DC 1: 000B
  833. * low dword
  834. */
  835. value = (((u32) hw->mac_addr[2]) << 24) |
  836. (((u32) hw->mac_addr[3]) << 16) |
  837. (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
  838. iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
  839. /* high dword */
  840. value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
  841. iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
  842. }
  843. /*
  844. * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
  845. * @adapter: board private structure to initialize
  846. *
  847. * atl1_sw_init initializes the Adapter private data structure.
  848. * Fields are initialized based on PCI device information and
  849. * OS network device settings (MTU size).
  850. */
  851. static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
  852. {
  853. struct atl1_hw *hw = &adapter->hw;
  854. struct net_device *netdev = adapter->netdev;
  855. hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  856. hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
  857. adapter->wol = 0;
  858. adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
  859. adapter->ict = 50000; /* 100ms */
  860. adapter->link_speed = SPEED_0; /* hardware init */
  861. adapter->link_duplex = FULL_DUPLEX;
  862. hw->phy_configured = false;
  863. hw->preamble_len = 7;
  864. hw->ipgt = 0x60;
  865. hw->min_ifg = 0x50;
  866. hw->ipgr1 = 0x40;
  867. hw->ipgr2 = 0x60;
  868. hw->max_retry = 0xf;
  869. hw->lcol = 0x37;
  870. hw->jam_ipg = 7;
  871. hw->rfd_burst = 8;
  872. hw->rrd_burst = 8;
  873. hw->rfd_fetch_gap = 1;
  874. hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
  875. hw->rx_jumbo_lkah = 1;
  876. hw->rrd_ret_timer = 16;
  877. hw->tpd_burst = 4;
  878. hw->tpd_fetch_th = 16;
  879. hw->txf_burst = 0x100;
  880. hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
  881. hw->tpd_fetch_gap = 1;
  882. hw->rcb_value = atl1_rcb_64;
  883. hw->dma_ord = atl1_dma_ord_enh;
  884. hw->dmar_block = atl1_dma_req_256;
  885. hw->dmaw_block = atl1_dma_req_256;
  886. hw->cmb_rrd = 4;
  887. hw->cmb_tpd = 4;
  888. hw->cmb_rx_timer = 1; /* about 2us */
  889. hw->cmb_tx_timer = 1; /* about 2us */
  890. hw->smb_timer = 100000; /* about 200ms */
  891. spin_lock_init(&adapter->lock);
  892. spin_lock_init(&adapter->mb_lock);
  893. return 0;
  894. }
  895. static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
  896. {
  897. struct atl1_adapter *adapter = netdev_priv(netdev);
  898. u16 result;
  899. atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
  900. return result;
  901. }
  902. static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
  903. int val)
  904. {
  905. struct atl1_adapter *adapter = netdev_priv(netdev);
  906. atl1_write_phy_reg(&adapter->hw, reg_num, val);
  907. }
  908. /*
  909. * atl1_mii_ioctl -
  910. * @netdev:
  911. * @ifreq:
  912. * @cmd:
  913. */
  914. static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  915. {
  916. struct atl1_adapter *adapter = netdev_priv(netdev);
  917. unsigned long flags;
  918. int retval;
  919. if (!netif_running(netdev))
  920. return -EINVAL;
  921. spin_lock_irqsave(&adapter->lock, flags);
  922. retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
  923. spin_unlock_irqrestore(&adapter->lock, flags);
  924. return retval;
  925. }
  926. /*
  927. * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
  928. * @adapter: board private structure
  929. *
  930. * Return 0 on success, negative on failure
  931. */
  932. static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
  933. {
  934. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  935. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  936. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  937. struct atl1_ring_header *ring_header = &adapter->ring_header;
  938. struct pci_dev *pdev = adapter->pdev;
  939. int size;
  940. u8 offset = 0;
  941. size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
  942. tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
  943. if (unlikely(!tpd_ring->buffer_info)) {
  944. if (netif_msg_drv(adapter))
  945. dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
  946. size);
  947. goto err_nomem;
  948. }
  949. rfd_ring->buffer_info =
  950. (struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
  951. /*
  952. * real ring DMA buffer
  953. * each ring/block may need up to 8 bytes for alignment, hence the
  954. * additional 40 bytes tacked onto the end.
  955. */
  956. ring_header->size = size =
  957. sizeof(struct tx_packet_desc) * tpd_ring->count
  958. + sizeof(struct rx_free_desc) * rfd_ring->count
  959. + sizeof(struct rx_return_desc) * rrd_ring->count
  960. + sizeof(struct coals_msg_block)
  961. + sizeof(struct stats_msg_block)
  962. + 40;
  963. ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
  964. &ring_header->dma);
  965. if (unlikely(!ring_header->desc)) {
  966. if (netif_msg_drv(adapter))
  967. dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
  968. goto err_nomem;
  969. }
  970. memset(ring_header->desc, 0, ring_header->size);
  971. /* init TPD ring */
  972. tpd_ring->dma = ring_header->dma;
  973. offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
  974. tpd_ring->dma += offset;
  975. tpd_ring->desc = (u8 *) ring_header->desc + offset;
  976. tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
  977. /* init RFD ring */
  978. rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
  979. offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
  980. rfd_ring->dma += offset;
  981. rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
  982. rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
  983. /* init RRD ring */
  984. rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
  985. offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
  986. rrd_ring->dma += offset;
  987. rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
  988. rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
  989. /* init CMB */
  990. adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
  991. offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
  992. adapter->cmb.dma += offset;
  993. adapter->cmb.cmb = (struct coals_msg_block *)
  994. ((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
  995. /* init SMB */
  996. adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
  997. offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
  998. adapter->smb.dma += offset;
  999. adapter->smb.smb = (struct stats_msg_block *)
  1000. ((u8 *) adapter->cmb.cmb +
  1001. (sizeof(struct coals_msg_block) + offset));
  1002. return 0;
  1003. err_nomem:
  1004. kfree(tpd_ring->buffer_info);
  1005. return -ENOMEM;
  1006. }
  1007. static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
  1008. {
  1009. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1010. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1011. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1012. atomic_set(&tpd_ring->next_to_use, 0);
  1013. atomic_set(&tpd_ring->next_to_clean, 0);
  1014. rfd_ring->next_to_clean = 0;
  1015. atomic_set(&rfd_ring->next_to_use, 0);
  1016. rrd_ring->next_to_use = 0;
  1017. atomic_set(&rrd_ring->next_to_clean, 0);
  1018. }
  1019. /*
  1020. * atl1_clean_rx_ring - Free RFD Buffers
  1021. * @adapter: board private structure
  1022. */
  1023. static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
  1024. {
  1025. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1026. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1027. struct atl1_buffer *buffer_info;
  1028. struct pci_dev *pdev = adapter->pdev;
  1029. unsigned long size;
  1030. unsigned int i;
  1031. /* Free all the Rx ring sk_buffs */
  1032. for (i = 0; i < rfd_ring->count; i++) {
  1033. buffer_info = &rfd_ring->buffer_info[i];
  1034. if (buffer_info->dma) {
  1035. pci_unmap_page(pdev, buffer_info->dma,
  1036. buffer_info->length, PCI_DMA_FROMDEVICE);
  1037. buffer_info->dma = 0;
  1038. }
  1039. if (buffer_info->skb) {
  1040. dev_kfree_skb(buffer_info->skb);
  1041. buffer_info->skb = NULL;
  1042. }
  1043. }
  1044. size = sizeof(struct atl1_buffer) * rfd_ring->count;
  1045. memset(rfd_ring->buffer_info, 0, size);
  1046. /* Zero out the descriptor ring */
  1047. memset(rfd_ring->desc, 0, rfd_ring->size);
  1048. rfd_ring->next_to_clean = 0;
  1049. atomic_set(&rfd_ring->next_to_use, 0);
  1050. rrd_ring->next_to_use = 0;
  1051. atomic_set(&rrd_ring->next_to_clean, 0);
  1052. }
  1053. /*
  1054. * atl1_clean_tx_ring - Free Tx Buffers
  1055. * @adapter: board private structure
  1056. */
  1057. static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
  1058. {
  1059. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1060. struct atl1_buffer *buffer_info;
  1061. struct pci_dev *pdev = adapter->pdev;
  1062. unsigned long size;
  1063. unsigned int i;
  1064. /* Free all the Tx ring sk_buffs */
  1065. for (i = 0; i < tpd_ring->count; i++) {
  1066. buffer_info = &tpd_ring->buffer_info[i];
  1067. if (buffer_info->dma) {
  1068. pci_unmap_page(pdev, buffer_info->dma,
  1069. buffer_info->length, PCI_DMA_TODEVICE);
  1070. buffer_info->dma = 0;
  1071. }
  1072. }
  1073. for (i = 0; i < tpd_ring->count; i++) {
  1074. buffer_info = &tpd_ring->buffer_info[i];
  1075. if (buffer_info->skb) {
  1076. dev_kfree_skb_any(buffer_info->skb);
  1077. buffer_info->skb = NULL;
  1078. }
  1079. }
  1080. size = sizeof(struct atl1_buffer) * tpd_ring->count;
  1081. memset(tpd_ring->buffer_info, 0, size);
  1082. /* Zero out the descriptor ring */
  1083. memset(tpd_ring->desc, 0, tpd_ring->size);
  1084. atomic_set(&tpd_ring->next_to_use, 0);
  1085. atomic_set(&tpd_ring->next_to_clean, 0);
  1086. }
  1087. /*
  1088. * atl1_free_ring_resources - Free Tx / RX descriptor Resources
  1089. * @adapter: board private structure
  1090. *
  1091. * Free all transmit software resources
  1092. */
  1093. static void atl1_free_ring_resources(struct atl1_adapter *adapter)
  1094. {
  1095. struct pci_dev *pdev = adapter->pdev;
  1096. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1097. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1098. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1099. struct atl1_ring_header *ring_header = &adapter->ring_header;
  1100. atl1_clean_tx_ring(adapter);
  1101. atl1_clean_rx_ring(adapter);
  1102. kfree(tpd_ring->buffer_info);
  1103. pci_free_consistent(pdev, ring_header->size, ring_header->desc,
  1104. ring_header->dma);
  1105. tpd_ring->buffer_info = NULL;
  1106. tpd_ring->desc = NULL;
  1107. tpd_ring->dma = 0;
  1108. rfd_ring->buffer_info = NULL;
  1109. rfd_ring->desc = NULL;
  1110. rfd_ring->dma = 0;
  1111. rrd_ring->desc = NULL;
  1112. rrd_ring->dma = 0;
  1113. }
  1114. static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
  1115. {
  1116. u32 value;
  1117. struct atl1_hw *hw = &adapter->hw;
  1118. struct net_device *netdev = adapter->netdev;
  1119. /* Config MAC CTRL Register */
  1120. value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
  1121. /* duplex */
  1122. if (FULL_DUPLEX == adapter->link_duplex)
  1123. value |= MAC_CTRL_DUPLX;
  1124. /* speed */
  1125. value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
  1126. MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
  1127. MAC_CTRL_SPEED_SHIFT);
  1128. /* flow control */
  1129. value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
  1130. /* PAD & CRC */
  1131. value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
  1132. /* preamble length */
  1133. value |= (((u32) adapter->hw.preamble_len
  1134. & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
  1135. /* vlan */
  1136. if (adapter->vlgrp)
  1137. value |= MAC_CTRL_RMV_VLAN;
  1138. /* rx checksum
  1139. if (adapter->rx_csum)
  1140. value |= MAC_CTRL_RX_CHKSUM_EN;
  1141. */
  1142. /* filter mode */
  1143. value |= MAC_CTRL_BC_EN;
  1144. if (netdev->flags & IFF_PROMISC)
  1145. value |= MAC_CTRL_PROMIS_EN;
  1146. else if (netdev->flags & IFF_ALLMULTI)
  1147. value |= MAC_CTRL_MC_ALL_EN;
  1148. /* value |= MAC_CTRL_LOOPBACK; */
  1149. iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
  1150. }
  1151. static u32 atl1_check_link(struct atl1_adapter *adapter)
  1152. {
  1153. struct atl1_hw *hw = &adapter->hw;
  1154. struct net_device *netdev = adapter->netdev;
  1155. u32 ret_val;
  1156. u16 speed, duplex, phy_data;
  1157. int reconfig = 0;
  1158. /* MII_BMSR must read twice */
  1159. atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
  1160. atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
  1161. if (!(phy_data & BMSR_LSTATUS)) {
  1162. /* link down */
  1163. if (netif_carrier_ok(netdev)) {
  1164. /* old link state: Up */
  1165. if (netif_msg_link(adapter))
  1166. dev_info(&adapter->pdev->dev, "link is down\n");
  1167. adapter->link_speed = SPEED_0;
  1168. netif_carrier_off(netdev);
  1169. netif_stop_queue(netdev);
  1170. }
  1171. return 0;
  1172. }
  1173. /* Link Up */
  1174. ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
  1175. if (ret_val)
  1176. return ret_val;
  1177. switch (hw->media_type) {
  1178. case MEDIA_TYPE_1000M_FULL:
  1179. if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
  1180. reconfig = 1;
  1181. break;
  1182. case MEDIA_TYPE_100M_FULL:
  1183. if (speed != SPEED_100 || duplex != FULL_DUPLEX)
  1184. reconfig = 1;
  1185. break;
  1186. case MEDIA_TYPE_100M_HALF:
  1187. if (speed != SPEED_100 || duplex != HALF_DUPLEX)
  1188. reconfig = 1;
  1189. break;
  1190. case MEDIA_TYPE_10M_FULL:
  1191. if (speed != SPEED_10 || duplex != FULL_DUPLEX)
  1192. reconfig = 1;
  1193. break;
  1194. case MEDIA_TYPE_10M_HALF:
  1195. if (speed != SPEED_10 || duplex != HALF_DUPLEX)
  1196. reconfig = 1;
  1197. break;
  1198. }
  1199. /* link result is our setting */
  1200. if (!reconfig) {
  1201. if (adapter->link_speed != speed
  1202. || adapter->link_duplex != duplex) {
  1203. adapter->link_speed = speed;
  1204. adapter->link_duplex = duplex;
  1205. atl1_setup_mac_ctrl(adapter);
  1206. if (netif_msg_link(adapter))
  1207. dev_info(&adapter->pdev->dev,
  1208. "%s link is up %d Mbps %s\n",
  1209. netdev->name, adapter->link_speed,
  1210. adapter->link_duplex == FULL_DUPLEX ?
  1211. "full duplex" : "half duplex");
  1212. }
  1213. if (!netif_carrier_ok(netdev)) {
  1214. /* Link down -> Up */
  1215. netif_carrier_on(netdev);
  1216. netif_wake_queue(netdev);
  1217. }
  1218. return 0;
  1219. }
  1220. /* change original link status */
  1221. if (netif_carrier_ok(netdev)) {
  1222. adapter->link_speed = SPEED_0;
  1223. netif_carrier_off(netdev);
  1224. netif_stop_queue(netdev);
  1225. }
  1226. if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
  1227. hw->media_type != MEDIA_TYPE_1000M_FULL) {
  1228. switch (hw->media_type) {
  1229. case MEDIA_TYPE_100M_FULL:
  1230. phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  1231. MII_CR_RESET;
  1232. break;
  1233. case MEDIA_TYPE_100M_HALF:
  1234. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  1235. break;
  1236. case MEDIA_TYPE_10M_FULL:
  1237. phy_data =
  1238. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  1239. break;
  1240. default:
  1241. /* MEDIA_TYPE_10M_HALF: */
  1242. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  1243. break;
  1244. }
  1245. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  1246. return 0;
  1247. }
  1248. /* auto-neg, insert timer to re-config phy */
  1249. if (!adapter->phy_timer_pending) {
  1250. adapter->phy_timer_pending = true;
  1251. mod_timer(&adapter->phy_config_timer, jiffies + 3 * HZ);
  1252. }
  1253. return 0;
  1254. }
  1255. static void set_flow_ctrl_old(struct atl1_adapter *adapter)
  1256. {
  1257. u32 hi, lo, value;
  1258. /* RFD Flow Control */
  1259. value = adapter->rfd_ring.count;
  1260. hi = value / 16;
  1261. if (hi < 2)
  1262. hi = 2;
  1263. lo = value * 7 / 8;
  1264. value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
  1265. ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
  1266. iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
  1267. /* RRD Flow Control */
  1268. value = adapter->rrd_ring.count;
  1269. lo = value / 16;
  1270. hi = value * 7 / 8;
  1271. if (lo < 2)
  1272. lo = 2;
  1273. value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
  1274. ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
  1275. iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
  1276. }
  1277. static void set_flow_ctrl_new(struct atl1_hw *hw)
  1278. {
  1279. u32 hi, lo, value;
  1280. /* RXF Flow Control */
  1281. value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
  1282. lo = value / 16;
  1283. if (lo < 192)
  1284. lo = 192;
  1285. hi = value * 7 / 8;
  1286. if (hi < lo)
  1287. hi = lo + 16;
  1288. value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
  1289. ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
  1290. iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
  1291. /* RRD Flow Control */
  1292. value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
  1293. lo = value / 8;
  1294. hi = value * 7 / 8;
  1295. if (lo < 2)
  1296. lo = 2;
  1297. if (hi < lo)
  1298. hi = lo + 3;
  1299. value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
  1300. ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
  1301. iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
  1302. }
  1303. /*
  1304. * atl1_configure - Configure Transmit&Receive Unit after Reset
  1305. * @adapter: board private structure
  1306. *
  1307. * Configure the Tx /Rx unit of the MAC after a reset.
  1308. */
  1309. static u32 atl1_configure(struct atl1_adapter *adapter)
  1310. {
  1311. struct atl1_hw *hw = &adapter->hw;
  1312. u32 value;
  1313. /* clear interrupt status */
  1314. iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
  1315. /* set MAC Address */
  1316. value = (((u32) hw->mac_addr[2]) << 24) |
  1317. (((u32) hw->mac_addr[3]) << 16) |
  1318. (((u32) hw->mac_addr[4]) << 8) |
  1319. (((u32) hw->mac_addr[5]));
  1320. iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
  1321. value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
  1322. iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
  1323. /* tx / rx ring */
  1324. /* HI base address */
  1325. iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
  1326. hw->hw_addr + REG_DESC_BASE_ADDR_HI);
  1327. /* LO base address */
  1328. iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
  1329. hw->hw_addr + REG_DESC_RFD_ADDR_LO);
  1330. iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
  1331. hw->hw_addr + REG_DESC_RRD_ADDR_LO);
  1332. iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
  1333. hw->hw_addr + REG_DESC_TPD_ADDR_LO);
  1334. iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
  1335. hw->hw_addr + REG_DESC_CMB_ADDR_LO);
  1336. iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
  1337. hw->hw_addr + REG_DESC_SMB_ADDR_LO);
  1338. /* element count */
  1339. value = adapter->rrd_ring.count;
  1340. value <<= 16;
  1341. value += adapter->rfd_ring.count;
  1342. iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
  1343. iowrite32(adapter->tpd_ring.count, hw->hw_addr +
  1344. REG_DESC_TPD_RING_SIZE);
  1345. /* Load Ptr */
  1346. iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
  1347. /* config Mailbox */
  1348. value = ((atomic_read(&adapter->tpd_ring.next_to_use)
  1349. & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
  1350. ((atomic_read(&adapter->rrd_ring.next_to_clean)
  1351. & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
  1352. ((atomic_read(&adapter->rfd_ring.next_to_use)
  1353. & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
  1354. iowrite32(value, hw->hw_addr + REG_MAILBOX);
  1355. /* config IPG/IFG */
  1356. value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
  1357. << MAC_IPG_IFG_IPGT_SHIFT) |
  1358. (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
  1359. << MAC_IPG_IFG_MIFG_SHIFT) |
  1360. (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
  1361. << MAC_IPG_IFG_IPGR1_SHIFT) |
  1362. (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
  1363. << MAC_IPG_IFG_IPGR2_SHIFT);
  1364. iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
  1365. /* config Half-Duplex Control */
  1366. value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
  1367. (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
  1368. << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
  1369. MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
  1370. (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
  1371. (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
  1372. << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
  1373. iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
  1374. /* set Interrupt Moderator Timer */
  1375. iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
  1376. iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
  1377. /* set Interrupt Clear Timer */
  1378. iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
  1379. /* set max frame size hw will accept */
  1380. iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
  1381. /* jumbo size & rrd retirement timer */
  1382. value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
  1383. << RXQ_JMBOSZ_TH_SHIFT) |
  1384. (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
  1385. << RXQ_JMBO_LKAH_SHIFT) |
  1386. (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
  1387. << RXQ_RRD_TIMER_SHIFT);
  1388. iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
  1389. /* Flow Control */
  1390. switch (hw->dev_rev) {
  1391. case 0x8001:
  1392. case 0x9001:
  1393. case 0x9002:
  1394. case 0x9003:
  1395. set_flow_ctrl_old(adapter);
  1396. break;
  1397. default:
  1398. set_flow_ctrl_new(hw);
  1399. break;
  1400. }
  1401. /* config TXQ */
  1402. value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
  1403. << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
  1404. (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
  1405. << TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
  1406. (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
  1407. << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
  1408. TXQ_CTRL_EN;
  1409. iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
  1410. /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
  1411. value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
  1412. << TX_JUMBO_TASK_TH_SHIFT) |
  1413. (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
  1414. << TX_TPD_MIN_IPG_SHIFT);
  1415. iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
  1416. /* config RXQ */
  1417. value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
  1418. << RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
  1419. (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
  1420. << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
  1421. (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
  1422. << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
  1423. RXQ_CTRL_EN;
  1424. iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
  1425. /* config DMA Engine */
  1426. value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
  1427. << DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
  1428. ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
  1429. << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
  1430. DMA_CTRL_DMAW_EN;
  1431. value |= (u32) hw->dma_ord;
  1432. if (atl1_rcb_128 == hw->rcb_value)
  1433. value |= DMA_CTRL_RCB_VALUE;
  1434. iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
  1435. /* config CMB / SMB */
  1436. value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
  1437. hw->cmb_tpd : adapter->tpd_ring.count;
  1438. value <<= 16;
  1439. value |= hw->cmb_rrd;
  1440. iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
  1441. value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
  1442. iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
  1443. iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
  1444. /* --- enable CMB / SMB */
  1445. value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
  1446. iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
  1447. value = ioread32(adapter->hw.hw_addr + REG_ISR);
  1448. if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
  1449. value = 1; /* config failed */
  1450. else
  1451. value = 0;
  1452. /* clear all interrupt status */
  1453. iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
  1454. iowrite32(0, adapter->hw.hw_addr + REG_ISR);
  1455. return value;
  1456. }
  1457. /*
  1458. * atl1_pcie_patch - Patch for PCIE module
  1459. */
  1460. static void atl1_pcie_patch(struct atl1_adapter *adapter)
  1461. {
  1462. u32 value;
  1463. /* much vendor magic here */
  1464. value = 0x6500;
  1465. iowrite32(value, adapter->hw.hw_addr + 0x12FC);
  1466. /* pcie flow control mode change */
  1467. value = ioread32(adapter->hw.hw_addr + 0x1008);
  1468. value |= 0x8000;
  1469. iowrite32(value, adapter->hw.hw_addr + 0x1008);
  1470. }
  1471. /*
  1472. * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
  1473. * on PCI Command register is disable.
  1474. * The function enable this bit.
  1475. * Brackett, 2006/03/15
  1476. */
  1477. static void atl1_via_workaround(struct atl1_adapter *adapter)
  1478. {
  1479. unsigned long value;
  1480. value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
  1481. if (value & PCI_COMMAND_INTX_DISABLE)
  1482. value &= ~PCI_COMMAND_INTX_DISABLE;
  1483. iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
  1484. }
  1485. static void atl1_inc_smb(struct atl1_adapter *adapter)
  1486. {
  1487. struct stats_msg_block *smb = adapter->smb.smb;
  1488. /* Fill out the OS statistics structure */
  1489. adapter->soft_stats.rx_packets += smb->rx_ok;
  1490. adapter->soft_stats.tx_packets += smb->tx_ok;
  1491. adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
  1492. adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
  1493. adapter->soft_stats.multicast += smb->rx_mcast;
  1494. adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
  1495. smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
  1496. /* Rx Errors */
  1497. adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
  1498. smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
  1499. smb->rx_rrd_ov + smb->rx_align_err);
  1500. adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
  1501. adapter->soft_stats.rx_length_errors += smb->rx_len_err;
  1502. adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
  1503. adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
  1504. adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
  1505. smb->rx_rxf_ov);
  1506. adapter->soft_stats.rx_pause += smb->rx_pause;
  1507. adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
  1508. adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
  1509. /* Tx Errors */
  1510. adapter->soft_stats.tx_errors += (smb->tx_late_col +
  1511. smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
  1512. adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
  1513. adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
  1514. adapter->soft_stats.tx_window_errors += smb->tx_late_col;
  1515. adapter->soft_stats.excecol += smb->tx_abort_col;
  1516. adapter->soft_stats.deffer += smb->tx_defer;
  1517. adapter->soft_stats.scc += smb->tx_1_col;
  1518. adapter->soft_stats.mcc += smb->tx_2_col;
  1519. adapter->soft_stats.latecol += smb->tx_late_col;
  1520. adapter->soft_stats.tx_underun += smb->tx_underrun;
  1521. adapter->soft_stats.tx_trunc += smb->tx_trunc;
  1522. adapter->soft_stats.tx_pause += smb->tx_pause;
  1523. adapter->net_stats.rx_packets = adapter->soft_stats.rx_packets;
  1524. adapter->net_stats.tx_packets = adapter->soft_stats.tx_packets;
  1525. adapter->net_stats.rx_bytes = adapter->soft_stats.rx_bytes;
  1526. adapter->net_stats.tx_bytes = adapter->soft_stats.tx_bytes;
  1527. adapter->net_stats.multicast = adapter->soft_stats.multicast;
  1528. adapter->net_stats.collisions = adapter->soft_stats.collisions;
  1529. adapter->net_stats.rx_errors = adapter->soft_stats.rx_errors;
  1530. adapter->net_stats.rx_over_errors =
  1531. adapter->soft_stats.rx_missed_errors;
  1532. adapter->net_stats.rx_length_errors =
  1533. adapter->soft_stats.rx_length_errors;
  1534. adapter->net_stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
  1535. adapter->net_stats.rx_frame_errors =
  1536. adapter->soft_stats.rx_frame_errors;
  1537. adapter->net_stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
  1538. adapter->net_stats.rx_missed_errors =
  1539. adapter->soft_stats.rx_missed_errors;
  1540. adapter->net_stats.tx_errors = adapter->soft_stats.tx_errors;
  1541. adapter->net_stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
  1542. adapter->net_stats.tx_aborted_errors =
  1543. adapter->soft_stats.tx_aborted_errors;
  1544. adapter->net_stats.tx_window_errors =
  1545. adapter->soft_stats.tx_window_errors;
  1546. adapter->net_stats.tx_carrier_errors =
  1547. adapter->soft_stats.tx_carrier_errors;
  1548. }
  1549. static void atl1_update_mailbox(struct atl1_adapter *adapter)
  1550. {
  1551. unsigned long flags;
  1552. u32 tpd_next_to_use;
  1553. u32 rfd_next_to_use;
  1554. u32 rrd_next_to_clean;
  1555. u32 value;
  1556. spin_lock_irqsave(&adapter->mb_lock, flags);
  1557. tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
  1558. rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
  1559. rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
  1560. value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
  1561. MB_RFD_PROD_INDX_SHIFT) |
  1562. ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
  1563. MB_RRD_CONS_INDX_SHIFT) |
  1564. ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
  1565. MB_TPD_PROD_INDX_SHIFT);
  1566. iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
  1567. spin_unlock_irqrestore(&adapter->mb_lock, flags);
  1568. }
  1569. static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
  1570. struct rx_return_desc *rrd, u16 offset)
  1571. {
  1572. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1573. while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
  1574. rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
  1575. if (++rfd_ring->next_to_clean == rfd_ring->count) {
  1576. rfd_ring->next_to_clean = 0;
  1577. }
  1578. }
  1579. }
  1580. static void atl1_update_rfd_index(struct atl1_adapter *adapter,
  1581. struct rx_return_desc *rrd)
  1582. {
  1583. u16 num_buf;
  1584. num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
  1585. adapter->rx_buffer_len;
  1586. if (rrd->num_buf == num_buf)
  1587. /* clean alloc flag for bad rrd */
  1588. atl1_clean_alloc_flag(adapter, rrd, num_buf);
  1589. }
  1590. static void atl1_rx_checksum(struct atl1_adapter *adapter,
  1591. struct rx_return_desc *rrd, struct sk_buff *skb)
  1592. {
  1593. struct pci_dev *pdev = adapter->pdev;
  1594. skb->ip_summed = CHECKSUM_NONE;
  1595. if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
  1596. if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
  1597. ERR_FLAG_CODE | ERR_FLAG_OV)) {
  1598. adapter->hw_csum_err++;
  1599. if (netif_msg_rx_err(adapter))
  1600. dev_printk(KERN_DEBUG, &pdev->dev,
  1601. "rx checksum error\n");
  1602. return;
  1603. }
  1604. }
  1605. /* not IPv4 */
  1606. if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
  1607. /* checksum is invalid, but it's not an IPv4 pkt, so ok */
  1608. return;
  1609. /* IPv4 packet */
  1610. if (likely(!(rrd->err_flg &
  1611. (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
  1612. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1613. adapter->hw_csum_good++;
  1614. return;
  1615. }
  1616. /* IPv4, but hardware thinks its checksum is wrong */
  1617. if (netif_msg_rx_err(adapter))
  1618. dev_printk(KERN_DEBUG, &pdev->dev,
  1619. "hw csum wrong, pkt_flag:%x, err_flag:%x\n",
  1620. rrd->pkt_flg, rrd->err_flg);
  1621. skb->ip_summed = CHECKSUM_COMPLETE;
  1622. skb->csum = htons(rrd->xsz.xsum_sz.rx_chksum);
  1623. adapter->hw_csum_err++;
  1624. return;
  1625. }
  1626. /*
  1627. * atl1_alloc_rx_buffers - Replace used receive buffers
  1628. * @adapter: address of board private structure
  1629. */
  1630. static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
  1631. {
  1632. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1633. struct pci_dev *pdev = adapter->pdev;
  1634. struct page *page;
  1635. unsigned long offset;
  1636. struct atl1_buffer *buffer_info, *next_info;
  1637. struct sk_buff *skb;
  1638. u16 num_alloc = 0;
  1639. u16 rfd_next_to_use, next_next;
  1640. struct rx_free_desc *rfd_desc;
  1641. next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
  1642. if (++next_next == rfd_ring->count)
  1643. next_next = 0;
  1644. buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
  1645. next_info = &rfd_ring->buffer_info[next_next];
  1646. while (!buffer_info->alloced && !next_info->alloced) {
  1647. if (buffer_info->skb) {
  1648. buffer_info->alloced = 1;
  1649. goto next;
  1650. }
  1651. rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
  1652. skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN);
  1653. if (unlikely(!skb)) {
  1654. /* Better luck next round */
  1655. adapter->net_stats.rx_dropped++;
  1656. break;
  1657. }
  1658. /*
  1659. * Make buffer alignment 2 beyond a 16 byte boundary
  1660. * this will result in a 16 byte aligned IP header after
  1661. * the 14 byte MAC header is removed
  1662. */
  1663. skb_reserve(skb, NET_IP_ALIGN);
  1664. buffer_info->alloced = 1;
  1665. buffer_info->skb = skb;
  1666. buffer_info->length = (u16) adapter->rx_buffer_len;
  1667. page = virt_to_page(skb->data);
  1668. offset = (unsigned long)skb->data & ~PAGE_MASK;
  1669. buffer_info->dma = pci_map_page(pdev, page, offset,
  1670. adapter->rx_buffer_len,
  1671. PCI_DMA_FROMDEVICE);
  1672. rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  1673. rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
  1674. rfd_desc->coalese = 0;
  1675. next:
  1676. rfd_next_to_use = next_next;
  1677. if (unlikely(++next_next == rfd_ring->count))
  1678. next_next = 0;
  1679. buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
  1680. next_info = &rfd_ring->buffer_info[next_next];
  1681. num_alloc++;
  1682. }
  1683. if (num_alloc) {
  1684. /*
  1685. * Force memory writes to complete before letting h/w
  1686. * know there are new descriptors to fetch. (Only
  1687. * applicable for weak-ordered memory model archs,
  1688. * such as IA-64).
  1689. */
  1690. wmb();
  1691. atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
  1692. }
  1693. return num_alloc;
  1694. }
  1695. static void atl1_intr_rx(struct atl1_adapter *adapter)
  1696. {
  1697. int i, count;
  1698. u16 length;
  1699. u16 rrd_next_to_clean;
  1700. u32 value;
  1701. struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
  1702. struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
  1703. struct atl1_buffer *buffer_info;
  1704. struct rx_return_desc *rrd;
  1705. struct sk_buff *skb;
  1706. count = 0;
  1707. rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
  1708. while (1) {
  1709. rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
  1710. i = 1;
  1711. if (likely(rrd->xsz.valid)) { /* packet valid */
  1712. chk_rrd:
  1713. /* check rrd status */
  1714. if (likely(rrd->num_buf == 1))
  1715. goto rrd_ok;
  1716. else if (netif_msg_rx_err(adapter)) {
  1717. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1718. "unexpected RRD buffer count\n");
  1719. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1720. "rx_buf_len = %d\n",
  1721. adapter->rx_buffer_len);
  1722. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1723. "RRD num_buf = %d\n",
  1724. rrd->num_buf);
  1725. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1726. "RRD pkt_len = %d\n",
  1727. rrd->xsz.xsum_sz.pkt_size);
  1728. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1729. "RRD pkt_flg = 0x%08X\n",
  1730. rrd->pkt_flg);
  1731. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1732. "RRD err_flg = 0x%08X\n",
  1733. rrd->err_flg);
  1734. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1735. "RRD vlan_tag = 0x%08X\n",
  1736. rrd->vlan_tag);
  1737. }
  1738. /* rrd seems to be bad */
  1739. if (unlikely(i-- > 0)) {
  1740. /* rrd may not be DMAed completely */
  1741. udelay(1);
  1742. goto chk_rrd;
  1743. }
  1744. /* bad rrd */
  1745. if (netif_msg_rx_err(adapter))
  1746. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1747. "bad RRD\n");
  1748. /* see if update RFD index */
  1749. if (rrd->num_buf > 1)
  1750. atl1_update_rfd_index(adapter, rrd);
  1751. /* update rrd */
  1752. rrd->xsz.valid = 0;
  1753. if (++rrd_next_to_clean == rrd_ring->count)
  1754. rrd_next_to_clean = 0;
  1755. count++;
  1756. continue;
  1757. } else { /* current rrd still not be updated */
  1758. break;
  1759. }
  1760. rrd_ok:
  1761. /* clean alloc flag for bad rrd */
  1762. atl1_clean_alloc_flag(adapter, rrd, 0);
  1763. buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
  1764. if (++rfd_ring->next_to_clean == rfd_ring->count)
  1765. rfd_ring->next_to_clean = 0;
  1766. /* update rrd next to clean */
  1767. if (++rrd_next_to_clean == rrd_ring->count)
  1768. rrd_next_to_clean = 0;
  1769. count++;
  1770. if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
  1771. if (!(rrd->err_flg &
  1772. (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
  1773. | ERR_FLAG_LEN))) {
  1774. /* packet error, don't need upstream */
  1775. buffer_info->alloced = 0;
  1776. rrd->xsz.valid = 0;
  1777. continue;
  1778. }
  1779. }
  1780. /* Good Receive */
  1781. pci_unmap_page(adapter->pdev, buffer_info->dma,
  1782. buffer_info->length, PCI_DMA_FROMDEVICE);
  1783. skb = buffer_info->skb;
  1784. length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
  1785. skb_put(skb, length - ETH_FCS_LEN);
  1786. /* Receive Checksum Offload */
  1787. atl1_rx_checksum(adapter, rrd, skb);
  1788. skb->protocol = eth_type_trans(skb, adapter->netdev);
  1789. if (adapter->vlgrp && (rrd->pkt_flg & PACKET_FLAG_VLAN_INS)) {
  1790. u16 vlan_tag = (rrd->vlan_tag >> 4) |
  1791. ((rrd->vlan_tag & 7) << 13) |
  1792. ((rrd->vlan_tag & 8) << 9);
  1793. vlan_hwaccel_rx(skb, adapter->vlgrp, vlan_tag);
  1794. } else
  1795. netif_rx(skb);
  1796. /* let protocol layer free skb */
  1797. buffer_info->skb = NULL;
  1798. buffer_info->alloced = 0;
  1799. rrd->xsz.valid = 0;
  1800. adapter->netdev->last_rx = jiffies;
  1801. }
  1802. atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
  1803. atl1_alloc_rx_buffers(adapter);
  1804. /* update mailbox ? */
  1805. if (count) {
  1806. u32 tpd_next_to_use;
  1807. u32 rfd_next_to_use;
  1808. spin_lock(&adapter->mb_lock);
  1809. tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
  1810. rfd_next_to_use =
  1811. atomic_read(&adapter->rfd_ring.next_to_use);
  1812. rrd_next_to_clean =
  1813. atomic_read(&adapter->rrd_ring.next_to_clean);
  1814. value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
  1815. MB_RFD_PROD_INDX_SHIFT) |
  1816. ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
  1817. MB_RRD_CONS_INDX_SHIFT) |
  1818. ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
  1819. MB_TPD_PROD_INDX_SHIFT);
  1820. iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
  1821. spin_unlock(&adapter->mb_lock);
  1822. }
  1823. }
  1824. static void atl1_intr_tx(struct atl1_adapter *adapter)
  1825. {
  1826. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1827. struct atl1_buffer *buffer_info;
  1828. u16 sw_tpd_next_to_clean;
  1829. u16 cmb_tpd_next_to_clean;
  1830. sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
  1831. cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
  1832. while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
  1833. struct tx_packet_desc *tpd;
  1834. tpd = ATL1_TPD_DESC(tpd_ring, sw_tpd_next_to_clean);
  1835. buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
  1836. if (buffer_info->dma) {
  1837. pci_unmap_page(adapter->pdev, buffer_info->dma,
  1838. buffer_info->length, PCI_DMA_TODEVICE);
  1839. buffer_info->dma = 0;
  1840. }
  1841. if (buffer_info->skb) {
  1842. dev_kfree_skb_irq(buffer_info->skb);
  1843. buffer_info->skb = NULL;
  1844. }
  1845. if (++sw_tpd_next_to_clean == tpd_ring->count)
  1846. sw_tpd_next_to_clean = 0;
  1847. }
  1848. atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
  1849. if (netif_queue_stopped(adapter->netdev)
  1850. && netif_carrier_ok(adapter->netdev))
  1851. netif_wake_queue(adapter->netdev);
  1852. }
  1853. static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
  1854. {
  1855. u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
  1856. u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
  1857. return ((next_to_clean > next_to_use) ?
  1858. next_to_clean - next_to_use - 1 :
  1859. tpd_ring->count + next_to_clean - next_to_use - 1);
  1860. }
  1861. static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
  1862. struct tx_packet_desc *ptpd)
  1863. {
  1864. /* spinlock held */
  1865. u8 hdr_len, ip_off;
  1866. u32 real_len;
  1867. int err;
  1868. if (skb_shinfo(skb)->gso_size) {
  1869. if (skb_header_cloned(skb)) {
  1870. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1871. if (unlikely(err))
  1872. return -1;
  1873. }
  1874. if (skb->protocol == ntohs(ETH_P_IP)) {
  1875. struct iphdr *iph = ip_hdr(skb);
  1876. real_len = (((unsigned char *)iph - skb->data) +
  1877. ntohs(iph->tot_len));
  1878. if (real_len < skb->len)
  1879. pskb_trim(skb, real_len);
  1880. hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
  1881. if (skb->len == hdr_len) {
  1882. iph->check = 0;
  1883. tcp_hdr(skb)->check =
  1884. ~csum_tcpudp_magic(iph->saddr,
  1885. iph->daddr, tcp_hdrlen(skb),
  1886. IPPROTO_TCP, 0);
  1887. ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
  1888. TPD_IPHL_SHIFT;
  1889. ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
  1890. TPD_TCPHDRLEN_MASK) <<
  1891. TPD_TCPHDRLEN_SHIFT;
  1892. ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
  1893. ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
  1894. return 1;
  1895. }
  1896. iph->check = 0;
  1897. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1898. iph->daddr, 0, IPPROTO_TCP, 0);
  1899. ip_off = (unsigned char *)iph -
  1900. (unsigned char *) skb_network_header(skb);
  1901. if (ip_off == 8) /* 802.3-SNAP frame */
  1902. ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
  1903. else if (ip_off != 0)
  1904. return -2;
  1905. ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
  1906. TPD_IPHL_SHIFT;
  1907. ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
  1908. TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
  1909. ptpd->word3 |= (skb_shinfo(skb)->gso_size &
  1910. TPD_MSS_MASK) << TPD_MSS_SHIFT;
  1911. ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
  1912. return 3;
  1913. }
  1914. }
  1915. return false;
  1916. }
  1917. static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
  1918. struct tx_packet_desc *ptpd)
  1919. {
  1920. u8 css, cso;
  1921. if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
  1922. css = (u8) (skb->csum_start - skb_headroom(skb));
  1923. cso = css + (u8) skb->csum_offset;
  1924. if (unlikely(css & 0x1)) {
  1925. /* L1 hardware requires an even number here */
  1926. if (netif_msg_tx_err(adapter))
  1927. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  1928. "payload offset not an even number\n");
  1929. return -1;
  1930. }
  1931. ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
  1932. TPD_PLOADOFFSET_SHIFT;
  1933. ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
  1934. TPD_CCSUMOFFSET_SHIFT;
  1935. ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
  1936. return true;
  1937. }
  1938. return 0;
  1939. }
  1940. static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
  1941. struct tx_packet_desc *ptpd)
  1942. {
  1943. /* spinlock held */
  1944. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  1945. struct atl1_buffer *buffer_info;
  1946. u16 buf_len = skb->len;
  1947. struct page *page;
  1948. unsigned long offset;
  1949. unsigned int nr_frags;
  1950. unsigned int f;
  1951. int retval;
  1952. u16 next_to_use;
  1953. u16 data_len;
  1954. u8 hdr_len;
  1955. buf_len -= skb->data_len;
  1956. nr_frags = skb_shinfo(skb)->nr_frags;
  1957. next_to_use = atomic_read(&tpd_ring->next_to_use);
  1958. buffer_info = &tpd_ring->buffer_info[next_to_use];
  1959. if (unlikely(buffer_info->skb))
  1960. BUG();
  1961. /* put skb in last TPD */
  1962. buffer_info->skb = NULL;
  1963. retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
  1964. if (retval) {
  1965. /* TSO */
  1966. hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1967. buffer_info->length = hdr_len;
  1968. page = virt_to_page(skb->data);
  1969. offset = (unsigned long)skb->data & ~PAGE_MASK;
  1970. buffer_info->dma = pci_map_page(adapter->pdev, page,
  1971. offset, hdr_len,
  1972. PCI_DMA_TODEVICE);
  1973. if (++next_to_use == tpd_ring->count)
  1974. next_to_use = 0;
  1975. if (buf_len > hdr_len) {
  1976. int i, nseg;
  1977. data_len = buf_len - hdr_len;
  1978. nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
  1979. ATL1_MAX_TX_BUF_LEN;
  1980. for (i = 0; i < nseg; i++) {
  1981. buffer_info =
  1982. &tpd_ring->buffer_info[next_to_use];
  1983. buffer_info->skb = NULL;
  1984. buffer_info->length =
  1985. (ATL1_MAX_TX_BUF_LEN >=
  1986. data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
  1987. data_len -= buffer_info->length;
  1988. page = virt_to_page(skb->data +
  1989. (hdr_len + i * ATL1_MAX_TX_BUF_LEN));
  1990. offset = (unsigned long)(skb->data +
  1991. (hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
  1992. ~PAGE_MASK;
  1993. buffer_info->dma = pci_map_page(adapter->pdev,
  1994. page, offset, buffer_info->length,
  1995. PCI_DMA_TODEVICE);
  1996. if (++next_to_use == tpd_ring->count)
  1997. next_to_use = 0;
  1998. }
  1999. }
  2000. } else {
  2001. /* not TSO */
  2002. buffer_info->length = buf_len;
  2003. page = virt_to_page(skb->data);
  2004. offset = (unsigned long)skb->data & ~PAGE_MASK;
  2005. buffer_info->dma = pci_map_page(adapter->pdev, page,
  2006. offset, buf_len, PCI_DMA_TODEVICE);
  2007. if (++next_to_use == tpd_ring->count)
  2008. next_to_use = 0;
  2009. }
  2010. for (f = 0; f < nr_frags; f++) {
  2011. struct skb_frag_struct *frag;
  2012. u16 i, nseg;
  2013. frag = &skb_shinfo(skb)->frags[f];
  2014. buf_len = frag->size;
  2015. nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
  2016. ATL1_MAX_TX_BUF_LEN;
  2017. for (i = 0; i < nseg; i++) {
  2018. buffer_info = &tpd_ring->buffer_info[next_to_use];
  2019. if (unlikely(buffer_info->skb))
  2020. BUG();
  2021. buffer_info->skb = NULL;
  2022. buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
  2023. ATL1_MAX_TX_BUF_LEN : buf_len;
  2024. buf_len -= buffer_info->length;
  2025. buffer_info->dma = pci_map_page(adapter->pdev,
  2026. frag->page,
  2027. frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
  2028. buffer_info->length, PCI_DMA_TODEVICE);
  2029. if (++next_to_use == tpd_ring->count)
  2030. next_to_use = 0;
  2031. }
  2032. }
  2033. /* last tpd's buffer-info */
  2034. buffer_info->skb = skb;
  2035. }
  2036. static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
  2037. struct tx_packet_desc *ptpd)
  2038. {
  2039. /* spinlock held */
  2040. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  2041. struct atl1_buffer *buffer_info;
  2042. struct tx_packet_desc *tpd;
  2043. u16 j;
  2044. u32 val;
  2045. u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
  2046. for (j = 0; j < count; j++) {
  2047. buffer_info = &tpd_ring->buffer_info[next_to_use];
  2048. tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
  2049. if (tpd != ptpd)
  2050. memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
  2051. tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
  2052. tpd->word2 = (cpu_to_le16(buffer_info->length) &
  2053. TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
  2054. /*
  2055. * if this is the first packet in a TSO chain, set
  2056. * TPD_HDRFLAG, otherwise, clear it.
  2057. */
  2058. val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
  2059. TPD_SEGMENT_EN_MASK;
  2060. if (val) {
  2061. if (!j)
  2062. tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
  2063. else
  2064. tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
  2065. }
  2066. if (j == (count - 1))
  2067. tpd->word3 |= 1 << TPD_EOP_SHIFT;
  2068. if (++next_to_use == tpd_ring->count)
  2069. next_to_use = 0;
  2070. }
  2071. /*
  2072. * Force memory writes to complete before letting h/w
  2073. * know there are new descriptors to fetch. (Only
  2074. * applicable for weak-ordered memory model archs,
  2075. * such as IA-64).
  2076. */
  2077. wmb();
  2078. atomic_set(&tpd_ring->next_to_use, next_to_use);
  2079. }
  2080. static int atl1_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2081. {
  2082. struct atl1_adapter *adapter = netdev_priv(netdev);
  2083. struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
  2084. int len = skb->len;
  2085. int tso;
  2086. int count = 1;
  2087. int ret_val;
  2088. struct tx_packet_desc *ptpd;
  2089. u16 frag_size;
  2090. u16 vlan_tag;
  2091. unsigned long flags;
  2092. unsigned int nr_frags = 0;
  2093. unsigned int mss = 0;
  2094. unsigned int f;
  2095. unsigned int proto_hdr_len;
  2096. len -= skb->data_len;
  2097. if (unlikely(skb->len <= 0)) {
  2098. dev_kfree_skb_any(skb);
  2099. return NETDEV_TX_OK;
  2100. }
  2101. nr_frags = skb_shinfo(skb)->nr_frags;
  2102. for (f = 0; f < nr_frags; f++) {
  2103. frag_size = skb_shinfo(skb)->frags[f].size;
  2104. if (frag_size)
  2105. count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
  2106. ATL1_MAX_TX_BUF_LEN;
  2107. }
  2108. mss = skb_shinfo(skb)->gso_size;
  2109. if (mss) {
  2110. if (skb->protocol == ntohs(ETH_P_IP)) {
  2111. proto_hdr_len = (skb_transport_offset(skb) +
  2112. tcp_hdrlen(skb));
  2113. if (unlikely(proto_hdr_len > len)) {
  2114. dev_kfree_skb_any(skb);
  2115. return NETDEV_TX_OK;
  2116. }
  2117. /* need additional TPD ? */
  2118. if (proto_hdr_len != len)
  2119. count += (len - proto_hdr_len +
  2120. ATL1_MAX_TX_BUF_LEN - 1) /
  2121. ATL1_MAX_TX_BUF_LEN;
  2122. }
  2123. }
  2124. if (!spin_trylock_irqsave(&adapter->lock, flags)) {
  2125. /* Can't get lock - tell upper layer to requeue */
  2126. if (netif_msg_tx_queued(adapter))
  2127. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2128. "tx locked\n");
  2129. return NETDEV_TX_LOCKED;
  2130. }
  2131. if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
  2132. /* not enough descriptors */
  2133. netif_stop_queue(netdev);
  2134. spin_unlock_irqrestore(&adapter->lock, flags);
  2135. if (netif_msg_tx_queued(adapter))
  2136. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2137. "tx busy\n");
  2138. return NETDEV_TX_BUSY;
  2139. }
  2140. ptpd = ATL1_TPD_DESC(tpd_ring,
  2141. (u16) atomic_read(&tpd_ring->next_to_use));
  2142. memset(ptpd, 0, sizeof(struct tx_packet_desc));
  2143. if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
  2144. vlan_tag = vlan_tx_tag_get(skb);
  2145. vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
  2146. ((vlan_tag >> 9) & 0x8);
  2147. ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
  2148. ptpd->word3 |= (vlan_tag & TPD_VL_TAGGED_MASK) <<
  2149. TPD_VL_TAGGED_SHIFT;
  2150. }
  2151. tso = atl1_tso(adapter, skb, ptpd);
  2152. if (tso < 0) {
  2153. spin_unlock_irqrestore(&adapter->lock, flags);
  2154. dev_kfree_skb_any(skb);
  2155. return NETDEV_TX_OK;
  2156. }
  2157. if (!tso) {
  2158. ret_val = atl1_tx_csum(adapter, skb, ptpd);
  2159. if (ret_val < 0) {
  2160. spin_unlock_irqrestore(&adapter->lock, flags);
  2161. dev_kfree_skb_any(skb);
  2162. return NETDEV_TX_OK;
  2163. }
  2164. }
  2165. atl1_tx_map(adapter, skb, ptpd);
  2166. atl1_tx_queue(adapter, count, ptpd);
  2167. atl1_update_mailbox(adapter);
  2168. spin_unlock_irqrestore(&adapter->lock, flags);
  2169. netdev->trans_start = jiffies;
  2170. return NETDEV_TX_OK;
  2171. }
  2172. /*
  2173. * atl1_intr - Interrupt Handler
  2174. * @irq: interrupt number
  2175. * @data: pointer to a network interface device structure
  2176. * @pt_regs: CPU registers structure
  2177. */
  2178. static irqreturn_t atl1_intr(int irq, void *data)
  2179. {
  2180. struct atl1_adapter *adapter = netdev_priv(data);
  2181. u32 status;
  2182. int max_ints = 10;
  2183. status = adapter->cmb.cmb->int_stats;
  2184. if (!status)
  2185. return IRQ_NONE;
  2186. do {
  2187. /* clear CMB interrupt status at once */
  2188. adapter->cmb.cmb->int_stats = 0;
  2189. if (status & ISR_GPHY) /* clear phy status */
  2190. atlx_clear_phy_int(adapter);
  2191. /* clear ISR status, and Enable CMB DMA/Disable Interrupt */
  2192. iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
  2193. /* check if SMB intr */
  2194. if (status & ISR_SMB)
  2195. atl1_inc_smb(adapter);
  2196. /* check if PCIE PHY Link down */
  2197. if (status & ISR_PHY_LINKDOWN) {
  2198. if (netif_msg_intr(adapter))
  2199. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2200. "pcie phy link down %x\n", status);
  2201. if (netif_running(adapter->netdev)) { /* reset MAC */
  2202. iowrite32(0, adapter->hw.hw_addr + REG_IMR);
  2203. schedule_work(&adapter->pcie_dma_to_rst_task);
  2204. return IRQ_HANDLED;
  2205. }
  2206. }
  2207. /* check if DMA read/write error ? */
  2208. if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
  2209. if (netif_msg_intr(adapter))
  2210. dev_printk(KERN_DEBUG, &adapter->pdev->dev,
  2211. "pcie DMA r/w error (status = 0x%x)\n",
  2212. status);
  2213. iowrite32(0, adapter->hw.hw_addr + REG_IMR);
  2214. schedule_work(&adapter->pcie_dma_to_rst_task);
  2215. return IRQ_HANDLED;
  2216. }
  2217. /* link event */
  2218. if (status & ISR_GPHY) {
  2219. adapter->soft_stats.tx_carrier_errors++;
  2220. atl1_check_for_link(adapter);
  2221. }
  2222. /* transmit event */
  2223. if (status & ISR_CMB_TX)
  2224. atl1_intr_tx(adapter);
  2225. /* rx exception */
  2226. if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
  2227. ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
  2228. ISR_HOST_RRD_OV | ISR_CMB_RX))) {
  2229. if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
  2230. ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
  2231. ISR_HOST_RRD_OV))
  2232. if (netif_msg_intr(adapter))
  2233. dev_printk(KERN_DEBUG,
  2234. &adapter->pdev->dev,
  2235. "rx exception, ISR = 0x%x\n",
  2236. status);
  2237. atl1_intr_rx(adapter);
  2238. }
  2239. if (--max_ints < 0)
  2240. break;
  2241. } while ((status = adapter->cmb.cmb->int_stats));
  2242. /* re-enable Interrupt */
  2243. iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
  2244. return IRQ_HANDLED;
  2245. }
  2246. /*
  2247. * atl1_watchdog - Timer Call-back
  2248. * @data: pointer to netdev cast into an unsigned long
  2249. */
  2250. static void atl1_watchdog(unsigned long data)
  2251. {
  2252. struct atl1_adapter *adapter = (struct atl1_adapter *)data;
  2253. /* Reset the timer */
  2254. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  2255. }
  2256. /*
  2257. * atl1_phy_config - Timer Call-back
  2258. * @data: pointer to netdev cast into an unsigned long
  2259. */
  2260. static void atl1_phy_config(unsigned long data)
  2261. {
  2262. struct atl1_adapter *adapter = (struct atl1_adapter *)data;
  2263. struct atl1_hw *hw = &adapter->hw;
  2264. unsigned long flags;
  2265. spin_lock_irqsave(&adapter->lock, flags);
  2266. adapter->phy_timer_pending = false;
  2267. atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
  2268. atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
  2269. atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
  2270. spin_unlock_irqrestore(&adapter->lock, flags);
  2271. }
  2272. /*
  2273. * Orphaned vendor comment left intact here:
  2274. * <vendor comment>
  2275. * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
  2276. * will assert. We do soft reset <0x1400=1> according
  2277. * with the SPEC. BUT, it seemes that PCIE or DMA
  2278. * state-machine will not be reset. DMAR_TO_INT will
  2279. * assert again and again.
  2280. * </vendor comment>
  2281. */
  2282. static int atl1_reset(struct atl1_adapter *adapter)
  2283. {
  2284. int ret;
  2285. ret = atl1_reset_hw(&adapter->hw);
  2286. if (ret)
  2287. return ret;
  2288. return atl1_init_hw(&adapter->hw);
  2289. }
  2290. static s32 atl1_up(struct atl1_adapter *adapter)
  2291. {
  2292. struct net_device *netdev = adapter->netdev;
  2293. int err;
  2294. int irq_flags = IRQF_SAMPLE_RANDOM;
  2295. /* hardware has been reset, we need to reload some things */
  2296. atlx_set_multi(netdev);
  2297. atl1_init_ring_ptrs(adapter);
  2298. atlx_restore_vlan(adapter);
  2299. err = atl1_alloc_rx_buffers(adapter);
  2300. if (unlikely(!err))
  2301. /* no RX BUFFER allocated */
  2302. return -ENOMEM;
  2303. if (unlikely(atl1_configure(adapter))) {
  2304. err = -EIO;
  2305. goto err_up;
  2306. }
  2307. err = pci_enable_msi(adapter->pdev);
  2308. if (err) {
  2309. if (netif_msg_ifup(adapter))
  2310. dev_info(&adapter->pdev->dev,
  2311. "Unable to enable MSI: %d\n", err);
  2312. irq_flags |= IRQF_SHARED;
  2313. }
  2314. err = request_irq(adapter->pdev->irq, &atl1_intr, irq_flags,
  2315. netdev->name, netdev);
  2316. if (unlikely(err))
  2317. goto err_up;
  2318. mod_timer(&adapter->watchdog_timer, jiffies);
  2319. atlx_irq_enable(adapter);
  2320. atl1_check_link(adapter);
  2321. return 0;
  2322. err_up:
  2323. pci_disable_msi(adapter->pdev);
  2324. /* free rx_buffers */
  2325. atl1_clean_rx_ring(adapter);
  2326. return err;
  2327. }
  2328. static void atl1_down(struct atl1_adapter *adapter)
  2329. {
  2330. struct net_device *netdev = adapter->netdev;
  2331. del_timer_sync(&adapter->watchdog_timer);
  2332. del_timer_sync(&adapter->phy_config_timer);
  2333. adapter->phy_timer_pending = false;
  2334. atlx_irq_disable(adapter);
  2335. free_irq(adapter->pdev->irq, netdev);
  2336. pci_disable_msi(adapter->pdev);
  2337. atl1_reset_hw(&adapter->hw);
  2338. adapter->cmb.cmb->int_stats = 0;
  2339. adapter->link_speed = SPEED_0;
  2340. adapter->link_duplex = -1;
  2341. netif_carrier_off(netdev);
  2342. netif_stop_queue(netdev);
  2343. atl1_clean_tx_ring(adapter);
  2344. atl1_clean_rx_ring(adapter);
  2345. }
  2346. static void atl1_tx_timeout_task(struct work_struct *work)
  2347. {
  2348. struct atl1_adapter *adapter =
  2349. container_of(work, struct atl1_adapter, tx_timeout_task);
  2350. struct net_device *netdev = adapter->netdev;
  2351. netif_device_detach(netdev);
  2352. atl1_down(adapter);
  2353. atl1_up(adapter);
  2354. netif_device_attach(netdev);
  2355. }
  2356. /*
  2357. * atl1_change_mtu - Change the Maximum Transfer Unit
  2358. * @netdev: network interface device structure
  2359. * @new_mtu: new value for maximum frame size
  2360. *
  2361. * Returns 0 on success, negative on failure
  2362. */
  2363. static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
  2364. {
  2365. struct atl1_adapter *adapter = netdev_priv(netdev);
  2366. int old_mtu = netdev->mtu;
  2367. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  2368. if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
  2369. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  2370. if (netif_msg_link(adapter))
  2371. dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
  2372. return -EINVAL;
  2373. }
  2374. adapter->hw.max_frame_size = max_frame;
  2375. adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
  2376. adapter->rx_buffer_len = (max_frame + 7) & ~7;
  2377. adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
  2378. netdev->mtu = new_mtu;
  2379. if ((old_mtu != new_mtu) && netif_running(netdev)) {
  2380. atl1_down(adapter);
  2381. atl1_up(adapter);
  2382. }
  2383. return 0;
  2384. }
  2385. /*
  2386. * atl1_open - Called when a network interface is made active
  2387. * @netdev: network interface device structure
  2388. *
  2389. * Returns 0 on success, negative value on failure
  2390. *
  2391. * The open entry point is called when a network interface is made
  2392. * active by the system (IFF_UP). At this point all resources needed
  2393. * for transmit and receive operations are allocated, the interrupt
  2394. * handler is registered with the OS, the watchdog timer is started,
  2395. * and the stack is notified that the interface is ready.
  2396. */
  2397. static int atl1_open(struct net_device *netdev)
  2398. {
  2399. struct atl1_adapter *adapter = netdev_priv(netdev);
  2400. int err;
  2401. /* allocate transmit descriptors */
  2402. err = atl1_setup_ring_resources(adapter);
  2403. if (err)
  2404. return err;
  2405. err = atl1_up(adapter);
  2406. if (err)
  2407. goto err_up;
  2408. return 0;
  2409. err_up:
  2410. atl1_reset(adapter);
  2411. return err;
  2412. }
  2413. /*
  2414. * atl1_close - Disables a network interface
  2415. * @netdev: network interface device structure
  2416. *
  2417. * Returns 0, this is not allowed to fail
  2418. *
  2419. * The close entry point is called when an interface is de-activated
  2420. * by the OS. The hardware is still under the drivers control, but
  2421. * needs to be disabled. A global MAC reset is issued to stop the
  2422. * hardware, and all transmit and receive resources are freed.
  2423. */
  2424. static int atl1_close(struct net_device *netdev)
  2425. {
  2426. struct atl1_adapter *adapter = netdev_priv(netdev);
  2427. atl1_down(adapter);
  2428. atl1_free_ring_resources(adapter);
  2429. return 0;
  2430. }
  2431. #ifdef CONFIG_PM
  2432. static int atl1_suspend(struct pci_dev *pdev, pm_message_t state)
  2433. {
  2434. struct net_device *netdev = pci_get_drvdata(pdev);
  2435. struct atl1_adapter *adapter = netdev_priv(netdev);
  2436. struct atl1_hw *hw = &adapter->hw;
  2437. u32 ctrl = 0;
  2438. u32 wufc = adapter->wol;
  2439. u32 val;
  2440. int retval;
  2441. u16 speed;
  2442. u16 duplex;
  2443. netif_device_detach(netdev);
  2444. if (netif_running(netdev))
  2445. atl1_down(adapter);
  2446. retval = pci_save_state(pdev);
  2447. if (retval)
  2448. return retval;
  2449. atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
  2450. atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
  2451. val = ctrl & BMSR_LSTATUS;
  2452. if (val)
  2453. wufc &= ~ATLX_WUFC_LNKC;
  2454. if (val && wufc) {
  2455. val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
  2456. if (val) {
  2457. if (netif_msg_ifdown(adapter))
  2458. dev_printk(KERN_DEBUG, &pdev->dev,
  2459. "error getting speed/duplex\n");
  2460. goto disable_wol;
  2461. }
  2462. ctrl = 0;
  2463. /* enable magic packet WOL */
  2464. if (wufc & ATLX_WUFC_MAG)
  2465. ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
  2466. iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
  2467. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2468. /* configure the mac */
  2469. ctrl = MAC_CTRL_RX_EN;
  2470. ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
  2471. MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
  2472. if (duplex == FULL_DUPLEX)
  2473. ctrl |= MAC_CTRL_DUPLX;
  2474. ctrl |= (((u32)adapter->hw.preamble_len &
  2475. MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
  2476. if (adapter->vlgrp)
  2477. ctrl |= MAC_CTRL_RMV_VLAN;
  2478. if (wufc & ATLX_WUFC_MAG)
  2479. ctrl |= MAC_CTRL_BC_EN;
  2480. iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
  2481. ioread32(hw->hw_addr + REG_MAC_CTRL);
  2482. /* poke the PHY */
  2483. ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2484. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  2485. iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
  2486. ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2487. pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
  2488. goto exit;
  2489. }
  2490. if (!val && wufc) {
  2491. ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
  2492. iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
  2493. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2494. iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
  2495. ioread32(hw->hw_addr + REG_MAC_CTRL);
  2496. hw->phy_configured = false;
  2497. pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
  2498. goto exit;
  2499. }
  2500. disable_wol:
  2501. iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
  2502. ioread32(hw->hw_addr + REG_WOL_CTRL);
  2503. ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2504. ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
  2505. iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
  2506. ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
  2507. atl1_phy_enter_power_saving(hw);
  2508. hw->phy_configured = false;
  2509. pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
  2510. exit:
  2511. if (netif_running(netdev))
  2512. pci_disable_msi(adapter->pdev);
  2513. pci_disable_device(pdev);
  2514. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2515. return 0;
  2516. }
  2517. static int atl1_resume(struct pci_dev *pdev)
  2518. {
  2519. struct net_device *netdev = pci_get_drvdata(pdev);
  2520. struct atl1_adapter *adapter = netdev_priv(netdev);
  2521. u32 err;
  2522. pci_set_power_state(pdev, PCI_D0);
  2523. pci_restore_state(pdev);
  2524. err = pci_enable_device(pdev);
  2525. if (err) {
  2526. if (netif_msg_ifup(adapter))
  2527. dev_printk(KERN_DEBUG, &pdev->dev,
  2528. "error enabling pci device\n");
  2529. return err;
  2530. }
  2531. pci_set_master(pdev);
  2532. iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
  2533. pci_enable_wake(pdev, PCI_D3hot, 0);
  2534. pci_enable_wake(pdev, PCI_D3cold, 0);
  2535. atl1_reset_hw(&adapter->hw);
  2536. adapter->cmb.cmb->int_stats = 0;
  2537. if (netif_running(netdev))
  2538. atl1_up(adapter);
  2539. netif_device_attach(netdev);
  2540. return 0;
  2541. }
  2542. #else
  2543. #define atl1_suspend NULL
  2544. #define atl1_resume NULL
  2545. #endif
  2546. #ifdef CONFIG_NET_POLL_CONTROLLER
  2547. static void atl1_poll_controller(struct net_device *netdev)
  2548. {
  2549. disable_irq(netdev->irq);
  2550. atl1_intr(netdev->irq, netdev);
  2551. enable_irq(netdev->irq);
  2552. }
  2553. #endif
  2554. /*
  2555. * atl1_probe - Device Initialization Routine
  2556. * @pdev: PCI device information struct
  2557. * @ent: entry in atl1_pci_tbl
  2558. *
  2559. * Returns 0 on success, negative on failure
  2560. *
  2561. * atl1_probe initializes an adapter identified by a pci_dev structure.
  2562. * The OS initialization, configuring of the adapter private structure,
  2563. * and a hardware reset occur.
  2564. */
  2565. static int __devinit atl1_probe(struct pci_dev *pdev,
  2566. const struct pci_device_id *ent)
  2567. {
  2568. struct net_device *netdev;
  2569. struct atl1_adapter *adapter;
  2570. static int cards_found = 0;
  2571. int err;
  2572. err = pci_enable_device(pdev);
  2573. if (err)
  2574. return err;
  2575. /*
  2576. * The atl1 chip can DMA to 64-bit addresses, but it uses a single
  2577. * shared register for the high 32 bits, so only a single, aligned,
  2578. * 4 GB physical address range can be used at a time.
  2579. *
  2580. * Supporting 64-bit DMA on this hardware is more trouble than it's
  2581. * worth. It is far easier to limit to 32-bit DMA than update
  2582. * various kernel subsystems to support the mechanics required by a
  2583. * fixed-high-32-bit system.
  2584. */
  2585. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  2586. if (err) {
  2587. dev_err(&pdev->dev, "no usable DMA configuration\n");
  2588. goto err_dma;
  2589. }
  2590. /*
  2591. * Mark all PCI regions associated with PCI device
  2592. * pdev as being reserved by owner atl1_driver_name
  2593. */
  2594. err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
  2595. if (err)
  2596. goto err_request_regions;
  2597. /*
  2598. * Enables bus-mastering on the device and calls
  2599. * pcibios_set_master to do the needed arch specific settings
  2600. */
  2601. pci_set_master(pdev);
  2602. netdev = alloc_etherdev(sizeof(struct atl1_adapter));
  2603. if (!netdev) {
  2604. err = -ENOMEM;
  2605. goto err_alloc_etherdev;
  2606. }
  2607. SET_NETDEV_DEV(netdev, &pdev->dev);
  2608. pci_set_drvdata(pdev, netdev);
  2609. adapter = netdev_priv(netdev);
  2610. adapter->netdev = netdev;
  2611. adapter->pdev = pdev;
  2612. adapter->hw.back = adapter;
  2613. adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
  2614. adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
  2615. if (!adapter->hw.hw_addr) {
  2616. err = -EIO;
  2617. goto err_pci_iomap;
  2618. }
  2619. /* get device revision number */
  2620. adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
  2621. (REG_MASTER_CTRL + 2));
  2622. if (netif_msg_probe(adapter))
  2623. dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
  2624. /* set default ring resource counts */
  2625. adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
  2626. adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
  2627. adapter->mii.dev = netdev;
  2628. adapter->mii.mdio_read = mdio_read;
  2629. adapter->mii.mdio_write = mdio_write;
  2630. adapter->mii.phy_id_mask = 0x1f;
  2631. adapter->mii.reg_num_mask = 0x1f;
  2632. netdev->open = &atl1_open;
  2633. netdev->stop = &atl1_close;
  2634. netdev->hard_start_xmit = &atl1_xmit_frame;
  2635. netdev->get_stats = &atlx_get_stats;
  2636. netdev->set_multicast_list = &atlx_set_multi;
  2637. netdev->set_mac_address = &atl1_set_mac;
  2638. netdev->change_mtu = &atl1_change_mtu;
  2639. netdev->do_ioctl = &atlx_ioctl;
  2640. netdev->tx_timeout = &atlx_tx_timeout;
  2641. netdev->watchdog_timeo = 5 * HZ;
  2642. #ifdef CONFIG_NET_POLL_CONTROLLER
  2643. netdev->poll_controller = atl1_poll_controller;
  2644. #endif
  2645. netdev->vlan_rx_register = atlx_vlan_rx_register;
  2646. netdev->ethtool_ops = &atl1_ethtool_ops;
  2647. adapter->bd_number = cards_found;
  2648. /* setup the private structure */
  2649. err = atl1_sw_init(adapter);
  2650. if (err)
  2651. goto err_common;
  2652. netdev->features = NETIF_F_HW_CSUM;
  2653. netdev->features |= NETIF_F_SG;
  2654. netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
  2655. netdev->features |= NETIF_F_TSO;
  2656. netdev->features |= NETIF_F_LLTX;
  2657. /*
  2658. * patch for some L1 of old version,
  2659. * the final version of L1 may not need these
  2660. * patches
  2661. */
  2662. /* atl1_pcie_patch(adapter); */
  2663. /* really reset GPHY core */
  2664. iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
  2665. /*
  2666. * reset the controller to
  2667. * put the device in a known good starting state
  2668. */
  2669. if (atl1_reset_hw(&adapter->hw)) {
  2670. err = -EIO;
  2671. goto err_common;
  2672. }
  2673. /* copy the MAC address out of the EEPROM */
  2674. atl1_read_mac_addr(&adapter->hw);
  2675. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  2676. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2677. err = -EIO;
  2678. goto err_common;
  2679. }
  2680. atl1_check_options(adapter);
  2681. /* pre-init the MAC, and setup link */
  2682. err = atl1_init_hw(&adapter->hw);
  2683. if (err) {
  2684. err = -EIO;
  2685. goto err_common;
  2686. }
  2687. atl1_pcie_patch(adapter);
  2688. /* assume we have no link for now */
  2689. netif_carrier_off(netdev);
  2690. netif_stop_queue(netdev);
  2691. init_timer(&adapter->watchdog_timer);
  2692. adapter->watchdog_timer.function = &atl1_watchdog;
  2693. adapter->watchdog_timer.data = (unsigned long)adapter;
  2694. init_timer(&adapter->phy_config_timer);
  2695. adapter->phy_config_timer.function = &atl1_phy_config;
  2696. adapter->phy_config_timer.data = (unsigned long)adapter;
  2697. adapter->phy_timer_pending = false;
  2698. INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
  2699. INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
  2700. INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
  2701. err = register_netdev(netdev);
  2702. if (err)
  2703. goto err_common;
  2704. cards_found++;
  2705. atl1_via_workaround(adapter);
  2706. return 0;
  2707. err_common:
  2708. pci_iounmap(pdev, adapter->hw.hw_addr);
  2709. err_pci_iomap:
  2710. free_netdev(netdev);
  2711. err_alloc_etherdev:
  2712. pci_release_regions(pdev);
  2713. err_dma:
  2714. err_request_regions:
  2715. pci_disable_device(pdev);
  2716. return err;
  2717. }
  2718. /*
  2719. * atl1_remove - Device Removal Routine
  2720. * @pdev: PCI device information struct
  2721. *
  2722. * atl1_remove is called by the PCI subsystem to alert the driver
  2723. * that it should release a PCI device. The could be caused by a
  2724. * Hot-Plug event, or because the driver is going to be removed from
  2725. * memory.
  2726. */
  2727. static void __devexit atl1_remove(struct pci_dev *pdev)
  2728. {
  2729. struct net_device *netdev = pci_get_drvdata(pdev);
  2730. struct atl1_adapter *adapter;
  2731. /* Device not available. Return. */
  2732. if (!netdev)
  2733. return;
  2734. adapter = netdev_priv(netdev);
  2735. /*
  2736. * Some atl1 boards lack persistent storage for their MAC, and get it
  2737. * from the BIOS during POST. If we've been messing with the MAC
  2738. * address, we need to save the permanent one.
  2739. */
  2740. if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
  2741. memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
  2742. ETH_ALEN);
  2743. atl1_set_mac_addr(&adapter->hw);
  2744. }
  2745. iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
  2746. unregister_netdev(netdev);
  2747. pci_iounmap(pdev, adapter->hw.hw_addr);
  2748. pci_release_regions(pdev);
  2749. free_netdev(netdev);
  2750. pci_disable_device(pdev);
  2751. }
  2752. static struct pci_driver atl1_driver = {
  2753. .name = ATLX_DRIVER_NAME,
  2754. .id_table = atl1_pci_tbl,
  2755. .probe = atl1_probe,
  2756. .remove = __devexit_p(atl1_remove),
  2757. .suspend = atl1_suspend,
  2758. .resume = atl1_resume
  2759. };
  2760. /*
  2761. * atl1_exit_module - Driver Exit Cleanup Routine
  2762. *
  2763. * atl1_exit_module is called just before the driver is removed
  2764. * from memory.
  2765. */
  2766. static void __exit atl1_exit_module(void)
  2767. {
  2768. pci_unregister_driver(&atl1_driver);
  2769. }
  2770. /*
  2771. * atl1_init_module - Driver Registration Routine
  2772. *
  2773. * atl1_init_module is the first routine called when the driver is
  2774. * loaded. All it does is register with the PCI subsystem.
  2775. */
  2776. static int __init atl1_init_module(void)
  2777. {
  2778. return pci_register_driver(&atl1_driver);
  2779. }
  2780. module_init(atl1_init_module);
  2781. module_exit(atl1_exit_module);
  2782. struct atl1_stats {
  2783. char stat_string[ETH_GSTRING_LEN];
  2784. int sizeof_stat;
  2785. int stat_offset;
  2786. };
  2787. #define ATL1_STAT(m) \
  2788. sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
  2789. static struct atl1_stats atl1_gstrings_stats[] = {
  2790. {"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
  2791. {"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
  2792. {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
  2793. {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
  2794. {"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
  2795. {"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
  2796. {"rx_dropped", ATL1_STAT(net_stats.rx_dropped)},
  2797. {"tx_dropped", ATL1_STAT(net_stats.tx_dropped)},
  2798. {"multicast", ATL1_STAT(soft_stats.multicast)},
  2799. {"collisions", ATL1_STAT(soft_stats.collisions)},
  2800. {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
  2801. {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
  2802. {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
  2803. {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
  2804. {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
  2805. {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
  2806. {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
  2807. {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
  2808. {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
  2809. {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
  2810. {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
  2811. {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
  2812. {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
  2813. {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
  2814. {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
  2815. {"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
  2816. {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
  2817. {"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
  2818. {"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
  2819. {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
  2820. {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
  2821. };
  2822. static void atl1_get_ethtool_stats(struct net_device *netdev,
  2823. struct ethtool_stats *stats, u64 *data)
  2824. {
  2825. struct atl1_adapter *adapter = netdev_priv(netdev);
  2826. int i;
  2827. char *p;
  2828. for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
  2829. p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
  2830. data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
  2831. sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
  2832. }
  2833. }
  2834. static int atl1_get_sset_count(struct net_device *netdev, int sset)
  2835. {
  2836. switch (sset) {
  2837. case ETH_SS_STATS:
  2838. return ARRAY_SIZE(atl1_gstrings_stats);
  2839. default:
  2840. return -EOPNOTSUPP;
  2841. }
  2842. }
  2843. static int atl1_get_settings(struct net_device *netdev,
  2844. struct ethtool_cmd *ecmd)
  2845. {
  2846. struct atl1_adapter *adapter = netdev_priv(netdev);
  2847. struct atl1_hw *hw = &adapter->hw;
  2848. ecmd->supported = (SUPPORTED_10baseT_Half |
  2849. SUPPORTED_10baseT_Full |
  2850. SUPPORTED_100baseT_Half |
  2851. SUPPORTED_100baseT_Full |
  2852. SUPPORTED_1000baseT_Full |
  2853. SUPPORTED_Autoneg | SUPPORTED_TP);
  2854. ecmd->advertising = ADVERTISED_TP;
  2855. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2856. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  2857. ecmd->advertising |= ADVERTISED_Autoneg;
  2858. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
  2859. ecmd->advertising |= ADVERTISED_Autoneg;
  2860. ecmd->advertising |=
  2861. (ADVERTISED_10baseT_Half |
  2862. ADVERTISED_10baseT_Full |
  2863. ADVERTISED_100baseT_Half |
  2864. ADVERTISED_100baseT_Full |
  2865. ADVERTISED_1000baseT_Full);
  2866. } else
  2867. ecmd->advertising |= (ADVERTISED_1000baseT_Full);
  2868. }
  2869. ecmd->port = PORT_TP;
  2870. ecmd->phy_address = 0;
  2871. ecmd->transceiver = XCVR_INTERNAL;
  2872. if (netif_carrier_ok(adapter->netdev)) {
  2873. u16 link_speed, link_duplex;
  2874. atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
  2875. ecmd->speed = link_speed;
  2876. if (link_duplex == FULL_DUPLEX)
  2877. ecmd->duplex = DUPLEX_FULL;
  2878. else
  2879. ecmd->duplex = DUPLEX_HALF;
  2880. } else {
  2881. ecmd->speed = -1;
  2882. ecmd->duplex = -1;
  2883. }
  2884. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2885. hw->media_type == MEDIA_TYPE_1000M_FULL)
  2886. ecmd->autoneg = AUTONEG_ENABLE;
  2887. else
  2888. ecmd->autoneg = AUTONEG_DISABLE;
  2889. return 0;
  2890. }
  2891. static int atl1_set_settings(struct net_device *netdev,
  2892. struct ethtool_cmd *ecmd)
  2893. {
  2894. struct atl1_adapter *adapter = netdev_priv(netdev);
  2895. struct atl1_hw *hw = &adapter->hw;
  2896. u16 phy_data;
  2897. int ret_val = 0;
  2898. u16 old_media_type = hw->media_type;
  2899. if (netif_running(adapter->netdev)) {
  2900. if (netif_msg_link(adapter))
  2901. dev_dbg(&adapter->pdev->dev,
  2902. "ethtool shutting down adapter\n");
  2903. atl1_down(adapter);
  2904. }
  2905. if (ecmd->autoneg == AUTONEG_ENABLE)
  2906. hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
  2907. else {
  2908. if (ecmd->speed == SPEED_1000) {
  2909. if (ecmd->duplex != DUPLEX_FULL) {
  2910. if (netif_msg_link(adapter))
  2911. dev_warn(&adapter->pdev->dev,
  2912. "1000M half is invalid\n");
  2913. ret_val = -EINVAL;
  2914. goto exit_sset;
  2915. }
  2916. hw->media_type = MEDIA_TYPE_1000M_FULL;
  2917. } else if (ecmd->speed == SPEED_100) {
  2918. if (ecmd->duplex == DUPLEX_FULL)
  2919. hw->media_type = MEDIA_TYPE_100M_FULL;
  2920. else
  2921. hw->media_type = MEDIA_TYPE_100M_HALF;
  2922. } else {
  2923. if (ecmd->duplex == DUPLEX_FULL)
  2924. hw->media_type = MEDIA_TYPE_10M_FULL;
  2925. else
  2926. hw->media_type = MEDIA_TYPE_10M_HALF;
  2927. }
  2928. }
  2929. switch (hw->media_type) {
  2930. case MEDIA_TYPE_AUTO_SENSOR:
  2931. ecmd->advertising =
  2932. ADVERTISED_10baseT_Half |
  2933. ADVERTISED_10baseT_Full |
  2934. ADVERTISED_100baseT_Half |
  2935. ADVERTISED_100baseT_Full |
  2936. ADVERTISED_1000baseT_Full |
  2937. ADVERTISED_Autoneg | ADVERTISED_TP;
  2938. break;
  2939. case MEDIA_TYPE_1000M_FULL:
  2940. ecmd->advertising =
  2941. ADVERTISED_1000baseT_Full |
  2942. ADVERTISED_Autoneg | ADVERTISED_TP;
  2943. break;
  2944. default:
  2945. ecmd->advertising = 0;
  2946. break;
  2947. }
  2948. if (atl1_phy_setup_autoneg_adv(hw)) {
  2949. ret_val = -EINVAL;
  2950. if (netif_msg_link(adapter))
  2951. dev_warn(&adapter->pdev->dev,
  2952. "invalid ethtool speed/duplex setting\n");
  2953. goto exit_sset;
  2954. }
  2955. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  2956. hw->media_type == MEDIA_TYPE_1000M_FULL)
  2957. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  2958. else {
  2959. switch (hw->media_type) {
  2960. case MEDIA_TYPE_100M_FULL:
  2961. phy_data =
  2962. MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
  2963. MII_CR_RESET;
  2964. break;
  2965. case MEDIA_TYPE_100M_HALF:
  2966. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  2967. break;
  2968. case MEDIA_TYPE_10M_FULL:
  2969. phy_data =
  2970. MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
  2971. break;
  2972. default:
  2973. /* MEDIA_TYPE_10M_HALF: */
  2974. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  2975. break;
  2976. }
  2977. }
  2978. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  2979. exit_sset:
  2980. if (ret_val)
  2981. hw->media_type = old_media_type;
  2982. if (netif_running(adapter->netdev)) {
  2983. if (netif_msg_link(adapter))
  2984. dev_dbg(&adapter->pdev->dev,
  2985. "ethtool starting adapter\n");
  2986. atl1_up(adapter);
  2987. } else if (!ret_val) {
  2988. if (netif_msg_link(adapter))
  2989. dev_dbg(&adapter->pdev->dev,
  2990. "ethtool resetting adapter\n");
  2991. atl1_reset(adapter);
  2992. }
  2993. return ret_val;
  2994. }
  2995. static void atl1_get_drvinfo(struct net_device *netdev,
  2996. struct ethtool_drvinfo *drvinfo)
  2997. {
  2998. struct atl1_adapter *adapter = netdev_priv(netdev);
  2999. strncpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
  3000. strncpy(drvinfo->version, ATLX_DRIVER_VERSION,
  3001. sizeof(drvinfo->version));
  3002. strncpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
  3003. strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
  3004. sizeof(drvinfo->bus_info));
  3005. drvinfo->eedump_len = ATL1_EEDUMP_LEN;
  3006. }
  3007. static void atl1_get_wol(struct net_device *netdev,
  3008. struct ethtool_wolinfo *wol)
  3009. {
  3010. struct atl1_adapter *adapter = netdev_priv(netdev);
  3011. wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
  3012. wol->wolopts = 0;
  3013. if (adapter->wol & ATLX_WUFC_EX)
  3014. wol->wolopts |= WAKE_UCAST;
  3015. if (adapter->wol & ATLX_WUFC_MC)
  3016. wol->wolopts |= WAKE_MCAST;
  3017. if (adapter->wol & ATLX_WUFC_BC)
  3018. wol->wolopts |= WAKE_BCAST;
  3019. if (adapter->wol & ATLX_WUFC_MAG)
  3020. wol->wolopts |= WAKE_MAGIC;
  3021. return;
  3022. }
  3023. static int atl1_set_wol(struct net_device *netdev,
  3024. struct ethtool_wolinfo *wol)
  3025. {
  3026. struct atl1_adapter *adapter = netdev_priv(netdev);
  3027. if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  3028. return -EOPNOTSUPP;
  3029. adapter->wol = 0;
  3030. if (wol->wolopts & WAKE_UCAST)
  3031. adapter->wol |= ATLX_WUFC_EX;
  3032. if (wol->wolopts & WAKE_MCAST)
  3033. adapter->wol |= ATLX_WUFC_MC;
  3034. if (wol->wolopts & WAKE_BCAST)
  3035. adapter->wol |= ATLX_WUFC_BC;
  3036. if (wol->wolopts & WAKE_MAGIC)
  3037. adapter->wol |= ATLX_WUFC_MAG;
  3038. return 0;
  3039. }
  3040. static u32 atl1_get_msglevel(struct net_device *netdev)
  3041. {
  3042. struct atl1_adapter *adapter = netdev_priv(netdev);
  3043. return adapter->msg_enable;
  3044. }
  3045. static void atl1_set_msglevel(struct net_device *netdev, u32 value)
  3046. {
  3047. struct atl1_adapter *adapter = netdev_priv(netdev);
  3048. adapter->msg_enable = value;
  3049. }
  3050. static int atl1_get_regs_len(struct net_device *netdev)
  3051. {
  3052. return ATL1_REG_COUNT * sizeof(u32);
  3053. }
  3054. static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
  3055. void *p)
  3056. {
  3057. struct atl1_adapter *adapter = netdev_priv(netdev);
  3058. struct atl1_hw *hw = &adapter->hw;
  3059. unsigned int i;
  3060. u32 *regbuf = p;
  3061. for (i = 0; i < ATL1_REG_COUNT; i++) {
  3062. /*
  3063. * This switch statement avoids reserved regions
  3064. * of register space.
  3065. */
  3066. switch (i) {
  3067. case 6 ... 9:
  3068. case 14:
  3069. case 29 ... 31:
  3070. case 34 ... 63:
  3071. case 75 ... 127:
  3072. case 136 ... 1023:
  3073. case 1027 ... 1087:
  3074. case 1091 ... 1151:
  3075. case 1194 ... 1195:
  3076. case 1200 ... 1201:
  3077. case 1206 ... 1213:
  3078. case 1216 ... 1279:
  3079. case 1290 ... 1311:
  3080. case 1323 ... 1343:
  3081. case 1358 ... 1359:
  3082. case 1368 ... 1375:
  3083. case 1378 ... 1383:
  3084. case 1388 ... 1391:
  3085. case 1393 ... 1395:
  3086. case 1402 ... 1403:
  3087. case 1410 ... 1471:
  3088. case 1522 ... 1535:
  3089. /* reserved region; don't read it */
  3090. regbuf[i] = 0;
  3091. break;
  3092. default:
  3093. /* unreserved region */
  3094. regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
  3095. }
  3096. }
  3097. }
  3098. static void atl1_get_ringparam(struct net_device *netdev,
  3099. struct ethtool_ringparam *ring)
  3100. {
  3101. struct atl1_adapter *adapter = netdev_priv(netdev);
  3102. struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
  3103. struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
  3104. ring->rx_max_pending = ATL1_MAX_RFD;
  3105. ring->tx_max_pending = ATL1_MAX_TPD;
  3106. ring->rx_mini_max_pending = 0;
  3107. ring->rx_jumbo_max_pending = 0;
  3108. ring->rx_pending = rxdr->count;
  3109. ring->tx_pending = txdr->count;
  3110. ring->rx_mini_pending = 0;
  3111. ring->rx_jumbo_pending = 0;
  3112. }
  3113. static int atl1_set_ringparam(struct net_device *netdev,
  3114. struct ethtool_ringparam *ring)
  3115. {
  3116. struct atl1_adapter *adapter = netdev_priv(netdev);
  3117. struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
  3118. struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
  3119. struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
  3120. struct atl1_tpd_ring tpd_old, tpd_new;
  3121. struct atl1_rfd_ring rfd_old, rfd_new;
  3122. struct atl1_rrd_ring rrd_old, rrd_new;
  3123. struct atl1_ring_header rhdr_old, rhdr_new;
  3124. int err;
  3125. tpd_old = adapter->tpd_ring;
  3126. rfd_old = adapter->rfd_ring;
  3127. rrd_old = adapter->rrd_ring;
  3128. rhdr_old = adapter->ring_header;
  3129. if (netif_running(adapter->netdev))
  3130. atl1_down(adapter);
  3131. rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
  3132. rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
  3133. rfdr->count;
  3134. rfdr->count = (rfdr->count + 3) & ~3;
  3135. rrdr->count = rfdr->count;
  3136. tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
  3137. tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
  3138. tpdr->count;
  3139. tpdr->count = (tpdr->count + 3) & ~3;
  3140. if (netif_running(adapter->netdev)) {
  3141. /* try to get new resources before deleting old */
  3142. err = atl1_setup_ring_resources(adapter);
  3143. if (err)
  3144. goto err_setup_ring;
  3145. /*
  3146. * save the new, restore the old in order to free it,
  3147. * then restore the new back again
  3148. */
  3149. rfd_new = adapter->rfd_ring;
  3150. rrd_new = adapter->rrd_ring;
  3151. tpd_new = adapter->tpd_ring;
  3152. rhdr_new = adapter->ring_header;
  3153. adapter->rfd_ring = rfd_old;
  3154. adapter->rrd_ring = rrd_old;
  3155. adapter->tpd_ring = tpd_old;
  3156. adapter->ring_header = rhdr_old;
  3157. atl1_free_ring_resources(adapter);
  3158. adapter->rfd_ring = rfd_new;
  3159. adapter->rrd_ring = rrd_new;
  3160. adapter->tpd_ring = tpd_new;
  3161. adapter->ring_header = rhdr_new;
  3162. err = atl1_up(adapter);
  3163. if (err)
  3164. return err;
  3165. }
  3166. return 0;
  3167. err_setup_ring:
  3168. adapter->rfd_ring = rfd_old;
  3169. adapter->rrd_ring = rrd_old;
  3170. adapter->tpd_ring = tpd_old;
  3171. adapter->ring_header = rhdr_old;
  3172. atl1_up(adapter);
  3173. return err;
  3174. }
  3175. static void atl1_get_pauseparam(struct net_device *netdev,
  3176. struct ethtool_pauseparam *epause)
  3177. {
  3178. struct atl1_adapter *adapter = netdev_priv(netdev);
  3179. struct atl1_hw *hw = &adapter->hw;
  3180. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3181. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3182. epause->autoneg = AUTONEG_ENABLE;
  3183. } else {
  3184. epause->autoneg = AUTONEG_DISABLE;
  3185. }
  3186. epause->rx_pause = 1;
  3187. epause->tx_pause = 1;
  3188. }
  3189. static int atl1_set_pauseparam(struct net_device *netdev,
  3190. struct ethtool_pauseparam *epause)
  3191. {
  3192. struct atl1_adapter *adapter = netdev_priv(netdev);
  3193. struct atl1_hw *hw = &adapter->hw;
  3194. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3195. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3196. epause->autoneg = AUTONEG_ENABLE;
  3197. } else {
  3198. epause->autoneg = AUTONEG_DISABLE;
  3199. }
  3200. epause->rx_pause = 1;
  3201. epause->tx_pause = 1;
  3202. return 0;
  3203. }
  3204. /* FIXME: is this right? -- CHS */
  3205. static u32 atl1_get_rx_csum(struct net_device *netdev)
  3206. {
  3207. return 1;
  3208. }
  3209. static void atl1_get_strings(struct net_device *netdev, u32 stringset,
  3210. u8 *data)
  3211. {
  3212. u8 *p = data;
  3213. int i;
  3214. switch (stringset) {
  3215. case ETH_SS_STATS:
  3216. for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
  3217. memcpy(p, atl1_gstrings_stats[i].stat_string,
  3218. ETH_GSTRING_LEN);
  3219. p += ETH_GSTRING_LEN;
  3220. }
  3221. break;
  3222. }
  3223. }
  3224. static int atl1_nway_reset(struct net_device *netdev)
  3225. {
  3226. struct atl1_adapter *adapter = netdev_priv(netdev);
  3227. struct atl1_hw *hw = &adapter->hw;
  3228. if (netif_running(netdev)) {
  3229. u16 phy_data;
  3230. atl1_down(adapter);
  3231. if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
  3232. hw->media_type == MEDIA_TYPE_1000M_FULL) {
  3233. phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
  3234. } else {
  3235. switch (hw->media_type) {
  3236. case MEDIA_TYPE_100M_FULL:
  3237. phy_data = MII_CR_FULL_DUPLEX |
  3238. MII_CR_SPEED_100 | MII_CR_RESET;
  3239. break;
  3240. case MEDIA_TYPE_100M_HALF:
  3241. phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
  3242. break;
  3243. case MEDIA_TYPE_10M_FULL:
  3244. phy_data = MII_CR_FULL_DUPLEX |
  3245. MII_CR_SPEED_10 | MII_CR_RESET;
  3246. break;
  3247. default:
  3248. /* MEDIA_TYPE_10M_HALF */
  3249. phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
  3250. }
  3251. }
  3252. atl1_write_phy_reg(hw, MII_BMCR, phy_data);
  3253. atl1_up(adapter);
  3254. }
  3255. return 0;
  3256. }
  3257. const struct ethtool_ops atl1_ethtool_ops = {
  3258. .get_settings = atl1_get_settings,
  3259. .set_settings = atl1_set_settings,
  3260. .get_drvinfo = atl1_get_drvinfo,
  3261. .get_wol = atl1_get_wol,
  3262. .set_wol = atl1_set_wol,
  3263. .get_msglevel = atl1_get_msglevel,
  3264. .set_msglevel = atl1_set_msglevel,
  3265. .get_regs_len = atl1_get_regs_len,
  3266. .get_regs = atl1_get_regs,
  3267. .get_ringparam = atl1_get_ringparam,
  3268. .set_ringparam = atl1_set_ringparam,
  3269. .get_pauseparam = atl1_get_pauseparam,
  3270. .set_pauseparam = atl1_set_pauseparam,
  3271. .get_rx_csum = atl1_get_rx_csum,
  3272. .set_tx_csum = ethtool_op_set_tx_hw_csum,
  3273. .get_link = ethtool_op_get_link,
  3274. .set_sg = ethtool_op_set_sg,
  3275. .get_strings = atl1_get_strings,
  3276. .nway_reset = atl1_nway_reset,
  3277. .get_ethtool_stats = atl1_get_ethtool_stats,
  3278. .get_sset_count = atl1_get_sset_count,
  3279. .set_tso = ethtool_op_set_tso,
  3280. };