forcedeth.c 193 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.63"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/spinlock.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/timer.h>
  54. #include <linux/skbuff.h>
  55. #include <linux/mii.h>
  56. #include <linux/random.h>
  57. #include <linux/init.h>
  58. #include <linux/if_vlan.h>
  59. #include <linux/dma-mapping.h>
  60. #include <asm/irq.h>
  61. #include <asm/io.h>
  62. #include <asm/uaccess.h>
  63. #include <asm/system.h>
  64. #if 0
  65. #define dprintk printk
  66. #else
  67. #define dprintk(x...) do { } while (0)
  68. #endif
  69. #define TX_WORK_PER_LOOP 64
  70. #define RX_WORK_PER_LOOP 64
  71. /*
  72. * Hardware access:
  73. */
  74. #define DEV_NEED_TIMERIRQ 0x000001 /* set the timer irq flag in the irq mask */
  75. #define DEV_NEED_LINKTIMER 0x000002 /* poll link settings. Relies on the timer irq */
  76. #define DEV_HAS_LARGEDESC 0x000004 /* device supports jumbo frames and needs packet format 2 */
  77. #define DEV_HAS_HIGH_DMA 0x000008 /* device supports 64bit dma */
  78. #define DEV_HAS_CHECKSUM 0x000010 /* device supports tx and rx checksum offloads */
  79. #define DEV_HAS_VLAN 0x000020 /* device supports vlan tagging and striping */
  80. #define DEV_HAS_MSI 0x000040 /* device supports MSI */
  81. #define DEV_HAS_MSI_X 0x000080 /* device supports MSI-X */
  82. #define DEV_HAS_POWER_CNTRL 0x000100 /* device supports power savings */
  83. #define DEV_HAS_STATISTICS_V1 0x000200 /* device supports hw statistics version 1 */
  84. #define DEV_HAS_STATISTICS_V2 0x000600 /* device supports hw statistics version 2 */
  85. #define DEV_HAS_STATISTICS_V3 0x000e00 /* device supports hw statistics version 3 */
  86. #define DEV_HAS_TEST_EXTENDED 0x001000 /* device supports extended diagnostic test */
  87. #define DEV_HAS_MGMT_UNIT 0x002000 /* device supports management unit */
  88. #define DEV_HAS_CORRECT_MACADDR 0x004000 /* device supports correct mac address order */
  89. #define DEV_HAS_COLLISION_FIX 0x008000 /* device supports tx collision fix */
  90. #define DEV_HAS_PAUSEFRAME_TX_V1 0x010000 /* device supports tx pause frames version 1 */
  91. #define DEV_HAS_PAUSEFRAME_TX_V2 0x020000 /* device supports tx pause frames version 2 */
  92. #define DEV_HAS_PAUSEFRAME_TX_V3 0x040000 /* device supports tx pause frames version 3 */
  93. #define DEV_NEED_TX_LIMIT 0x080000 /* device needs to limit tx */
  94. #define DEV_HAS_GEAR_MODE 0x100000 /* device supports gear mode */
  95. enum {
  96. NvRegIrqStatus = 0x000,
  97. #define NVREG_IRQSTAT_MIIEVENT 0x040
  98. #define NVREG_IRQSTAT_MASK 0x83ff
  99. NvRegIrqMask = 0x004,
  100. #define NVREG_IRQ_RX_ERROR 0x0001
  101. #define NVREG_IRQ_RX 0x0002
  102. #define NVREG_IRQ_RX_NOBUF 0x0004
  103. #define NVREG_IRQ_TX_ERR 0x0008
  104. #define NVREG_IRQ_TX_OK 0x0010
  105. #define NVREG_IRQ_TIMER 0x0020
  106. #define NVREG_IRQ_LINK 0x0040
  107. #define NVREG_IRQ_RX_FORCED 0x0080
  108. #define NVREG_IRQ_TX_FORCED 0x0100
  109. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  110. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  111. #define NVREG_IRQMASK_CPU 0x0060
  112. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  113. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  114. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  115. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  116. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  117. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  118. NvRegUnknownSetupReg6 = 0x008,
  119. #define NVREG_UNKSETUP6_VAL 3
  120. /*
  121. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  122. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  123. */
  124. NvRegPollingInterval = 0x00c,
  125. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  126. #define NVREG_POLL_DEFAULT_CPU 13
  127. NvRegMSIMap0 = 0x020,
  128. NvRegMSIMap1 = 0x024,
  129. NvRegMSIIrqMask = 0x030,
  130. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  131. NvRegMisc1 = 0x080,
  132. #define NVREG_MISC1_PAUSE_TX 0x01
  133. #define NVREG_MISC1_HD 0x02
  134. #define NVREG_MISC1_FORCE 0x3b0f3c
  135. NvRegMacReset = 0x34,
  136. #define NVREG_MAC_RESET_ASSERT 0x0F3
  137. NvRegTransmitterControl = 0x084,
  138. #define NVREG_XMITCTL_START 0x01
  139. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  140. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  141. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  142. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  143. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  144. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  145. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  146. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  147. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  148. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  149. #define NVREG_XMITCTL_DATA_START 0x00100000
  150. #define NVREG_XMITCTL_DATA_READY 0x00010000
  151. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  152. NvRegTransmitterStatus = 0x088,
  153. #define NVREG_XMITSTAT_BUSY 0x01
  154. NvRegPacketFilterFlags = 0x8c,
  155. #define NVREG_PFF_PAUSE_RX 0x08
  156. #define NVREG_PFF_ALWAYS 0x7F0000
  157. #define NVREG_PFF_PROMISC 0x80
  158. #define NVREG_PFF_MYADDR 0x20
  159. #define NVREG_PFF_LOOPBACK 0x10
  160. NvRegOffloadConfig = 0x90,
  161. #define NVREG_OFFLOAD_HOMEPHY 0x601
  162. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  163. NvRegReceiverControl = 0x094,
  164. #define NVREG_RCVCTL_START 0x01
  165. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  166. NvRegReceiverStatus = 0x98,
  167. #define NVREG_RCVSTAT_BUSY 0x01
  168. NvRegSlotTime = 0x9c,
  169. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  170. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  171. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  172. #define NVREG_SLOTTIME_HALF 0x0000ff00
  173. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  174. #define NVREG_SLOTTIME_MASK 0x000000ff
  175. NvRegTxDeferral = 0xA0,
  176. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  177. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  178. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  179. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  180. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  181. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  182. NvRegRxDeferral = 0xA4,
  183. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  184. NvRegMacAddrA = 0xA8,
  185. NvRegMacAddrB = 0xAC,
  186. NvRegMulticastAddrA = 0xB0,
  187. #define NVREG_MCASTADDRA_FORCE 0x01
  188. NvRegMulticastAddrB = 0xB4,
  189. NvRegMulticastMaskA = 0xB8,
  190. #define NVREG_MCASTMASKA_NONE 0xffffffff
  191. NvRegMulticastMaskB = 0xBC,
  192. #define NVREG_MCASTMASKB_NONE 0xffff
  193. NvRegPhyInterface = 0xC0,
  194. #define PHY_RGMII 0x10000000
  195. NvRegBackOffControl = 0xC4,
  196. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  197. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  198. #define NVREG_BKOFFCTRL_SELECT 24
  199. #define NVREG_BKOFFCTRL_GEAR 12
  200. NvRegTxRingPhysAddr = 0x100,
  201. NvRegRxRingPhysAddr = 0x104,
  202. NvRegRingSizes = 0x108,
  203. #define NVREG_RINGSZ_TXSHIFT 0
  204. #define NVREG_RINGSZ_RXSHIFT 16
  205. NvRegTransmitPoll = 0x10c,
  206. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  207. NvRegLinkSpeed = 0x110,
  208. #define NVREG_LINKSPEED_FORCE 0x10000
  209. #define NVREG_LINKSPEED_10 1000
  210. #define NVREG_LINKSPEED_100 100
  211. #define NVREG_LINKSPEED_1000 50
  212. #define NVREG_LINKSPEED_MASK (0xFFF)
  213. NvRegUnknownSetupReg5 = 0x130,
  214. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  215. NvRegTxWatermark = 0x13c,
  216. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  217. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  218. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  219. NvRegTxRxControl = 0x144,
  220. #define NVREG_TXRXCTL_KICK 0x0001
  221. #define NVREG_TXRXCTL_BIT1 0x0002
  222. #define NVREG_TXRXCTL_BIT2 0x0004
  223. #define NVREG_TXRXCTL_IDLE 0x0008
  224. #define NVREG_TXRXCTL_RESET 0x0010
  225. #define NVREG_TXRXCTL_RXCHECK 0x0400
  226. #define NVREG_TXRXCTL_DESC_1 0
  227. #define NVREG_TXRXCTL_DESC_2 0x002100
  228. #define NVREG_TXRXCTL_DESC_3 0xc02200
  229. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  230. #define NVREG_TXRXCTL_VLANINS 0x00080
  231. NvRegTxRingPhysAddrHigh = 0x148,
  232. NvRegRxRingPhysAddrHigh = 0x14C,
  233. NvRegTxPauseFrame = 0x170,
  234. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  235. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  236. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  237. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  238. NvRegTxPauseFrameLimit = 0x174,
  239. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  240. NvRegMIIStatus = 0x180,
  241. #define NVREG_MIISTAT_ERROR 0x0001
  242. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  243. #define NVREG_MIISTAT_MASK_RW 0x0007
  244. #define NVREG_MIISTAT_MASK_ALL 0x000f
  245. NvRegMIIMask = 0x184,
  246. #define NVREG_MII_LINKCHANGE 0x0008
  247. NvRegAdapterControl = 0x188,
  248. #define NVREG_ADAPTCTL_START 0x02
  249. #define NVREG_ADAPTCTL_LINKUP 0x04
  250. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  251. #define NVREG_ADAPTCTL_RUNNING 0x100000
  252. #define NVREG_ADAPTCTL_PHYSHIFT 24
  253. NvRegMIISpeed = 0x18c,
  254. #define NVREG_MIISPEED_BIT8 (1<<8)
  255. #define NVREG_MIIDELAY 5
  256. NvRegMIIControl = 0x190,
  257. #define NVREG_MIICTL_INUSE 0x08000
  258. #define NVREG_MIICTL_WRITE 0x00400
  259. #define NVREG_MIICTL_ADDRSHIFT 5
  260. NvRegMIIData = 0x194,
  261. NvRegTxUnicast = 0x1a0,
  262. NvRegTxMulticast = 0x1a4,
  263. NvRegTxBroadcast = 0x1a8,
  264. NvRegWakeUpFlags = 0x200,
  265. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  266. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  267. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  268. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  269. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  270. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  271. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  272. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  273. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  274. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  275. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  276. NvRegMgmtUnitGetVersion = 0x204,
  277. #define NVREG_MGMTUNITGETVERSION 0x01
  278. NvRegMgmtUnitVersion = 0x208,
  279. #define NVREG_MGMTUNITVERSION 0x08
  280. NvRegPowerCap = 0x268,
  281. #define NVREG_POWERCAP_D3SUPP (1<<30)
  282. #define NVREG_POWERCAP_D2SUPP (1<<26)
  283. #define NVREG_POWERCAP_D1SUPP (1<<25)
  284. NvRegPowerState = 0x26c,
  285. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  286. #define NVREG_POWERSTATE_VALID 0x0100
  287. #define NVREG_POWERSTATE_MASK 0x0003
  288. #define NVREG_POWERSTATE_D0 0x0000
  289. #define NVREG_POWERSTATE_D1 0x0001
  290. #define NVREG_POWERSTATE_D2 0x0002
  291. #define NVREG_POWERSTATE_D3 0x0003
  292. NvRegMgmtUnitControl = 0x278,
  293. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  294. NvRegTxCnt = 0x280,
  295. NvRegTxZeroReXmt = 0x284,
  296. NvRegTxOneReXmt = 0x288,
  297. NvRegTxManyReXmt = 0x28c,
  298. NvRegTxLateCol = 0x290,
  299. NvRegTxUnderflow = 0x294,
  300. NvRegTxLossCarrier = 0x298,
  301. NvRegTxExcessDef = 0x29c,
  302. NvRegTxRetryErr = 0x2a0,
  303. NvRegRxFrameErr = 0x2a4,
  304. NvRegRxExtraByte = 0x2a8,
  305. NvRegRxLateCol = 0x2ac,
  306. NvRegRxRunt = 0x2b0,
  307. NvRegRxFrameTooLong = 0x2b4,
  308. NvRegRxOverflow = 0x2b8,
  309. NvRegRxFCSErr = 0x2bc,
  310. NvRegRxFrameAlignErr = 0x2c0,
  311. NvRegRxLenErr = 0x2c4,
  312. NvRegRxUnicast = 0x2c8,
  313. NvRegRxMulticast = 0x2cc,
  314. NvRegRxBroadcast = 0x2d0,
  315. NvRegTxDef = 0x2d4,
  316. NvRegTxFrame = 0x2d8,
  317. NvRegRxCnt = 0x2dc,
  318. NvRegTxPause = 0x2e0,
  319. NvRegRxPause = 0x2e4,
  320. NvRegRxDropFrame = 0x2e8,
  321. NvRegVlanControl = 0x300,
  322. #define NVREG_VLANCONTROL_ENABLE 0x2000
  323. NvRegMSIXMap0 = 0x3e0,
  324. NvRegMSIXMap1 = 0x3e4,
  325. NvRegMSIXIrqStatus = 0x3f0,
  326. NvRegPowerState2 = 0x600,
  327. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  328. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  329. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  330. };
  331. /* Big endian: should work, but is untested */
  332. struct ring_desc {
  333. __le32 buf;
  334. __le32 flaglen;
  335. };
  336. struct ring_desc_ex {
  337. __le32 bufhigh;
  338. __le32 buflow;
  339. __le32 txvlan;
  340. __le32 flaglen;
  341. };
  342. union ring_type {
  343. struct ring_desc* orig;
  344. struct ring_desc_ex* ex;
  345. };
  346. #define FLAG_MASK_V1 0xffff0000
  347. #define FLAG_MASK_V2 0xffffc000
  348. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  349. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  350. #define NV_TX_LASTPACKET (1<<16)
  351. #define NV_TX_RETRYERROR (1<<19)
  352. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  353. #define NV_TX_FORCED_INTERRUPT (1<<24)
  354. #define NV_TX_DEFERRED (1<<26)
  355. #define NV_TX_CARRIERLOST (1<<27)
  356. #define NV_TX_LATECOLLISION (1<<28)
  357. #define NV_TX_UNDERFLOW (1<<29)
  358. #define NV_TX_ERROR (1<<30)
  359. #define NV_TX_VALID (1<<31)
  360. #define NV_TX2_LASTPACKET (1<<29)
  361. #define NV_TX2_RETRYERROR (1<<18)
  362. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  363. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  364. #define NV_TX2_DEFERRED (1<<25)
  365. #define NV_TX2_CARRIERLOST (1<<26)
  366. #define NV_TX2_LATECOLLISION (1<<27)
  367. #define NV_TX2_UNDERFLOW (1<<28)
  368. /* error and valid are the same for both */
  369. #define NV_TX2_ERROR (1<<30)
  370. #define NV_TX2_VALID (1<<31)
  371. #define NV_TX2_TSO (1<<28)
  372. #define NV_TX2_TSO_SHIFT 14
  373. #define NV_TX2_TSO_MAX_SHIFT 14
  374. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  375. #define NV_TX2_CHECKSUM_L3 (1<<27)
  376. #define NV_TX2_CHECKSUM_L4 (1<<26)
  377. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  378. #define NV_RX_DESCRIPTORVALID (1<<16)
  379. #define NV_RX_MISSEDFRAME (1<<17)
  380. #define NV_RX_SUBSTRACT1 (1<<18)
  381. #define NV_RX_ERROR1 (1<<23)
  382. #define NV_RX_ERROR2 (1<<24)
  383. #define NV_RX_ERROR3 (1<<25)
  384. #define NV_RX_ERROR4 (1<<26)
  385. #define NV_RX_CRCERR (1<<27)
  386. #define NV_RX_OVERFLOW (1<<28)
  387. #define NV_RX_FRAMINGERR (1<<29)
  388. #define NV_RX_ERROR (1<<30)
  389. #define NV_RX_AVAIL (1<<31)
  390. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  391. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  392. #define NV_RX2_CHECKSUM_IP (0x10000000)
  393. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  394. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  395. #define NV_RX2_DESCRIPTORVALID (1<<29)
  396. #define NV_RX2_SUBSTRACT1 (1<<25)
  397. #define NV_RX2_ERROR1 (1<<18)
  398. #define NV_RX2_ERROR2 (1<<19)
  399. #define NV_RX2_ERROR3 (1<<20)
  400. #define NV_RX2_ERROR4 (1<<21)
  401. #define NV_RX2_CRCERR (1<<22)
  402. #define NV_RX2_OVERFLOW (1<<23)
  403. #define NV_RX2_FRAMINGERR (1<<24)
  404. /* error and avail are the same for both */
  405. #define NV_RX2_ERROR (1<<30)
  406. #define NV_RX2_AVAIL (1<<31)
  407. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  408. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  409. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  410. /* Miscelaneous hardware related defines: */
  411. #define NV_PCI_REGSZ_VER1 0x270
  412. #define NV_PCI_REGSZ_VER2 0x2d4
  413. #define NV_PCI_REGSZ_VER3 0x604
  414. #define NV_PCI_REGSZ_MAX 0x604
  415. /* various timeout delays: all in usec */
  416. #define NV_TXRX_RESET_DELAY 4
  417. #define NV_TXSTOP_DELAY1 10
  418. #define NV_TXSTOP_DELAY1MAX 500000
  419. #define NV_TXSTOP_DELAY2 100
  420. #define NV_RXSTOP_DELAY1 10
  421. #define NV_RXSTOP_DELAY1MAX 500000
  422. #define NV_RXSTOP_DELAY2 100
  423. #define NV_SETUP5_DELAY 5
  424. #define NV_SETUP5_DELAYMAX 50000
  425. #define NV_POWERUP_DELAY 5
  426. #define NV_POWERUP_DELAYMAX 5000
  427. #define NV_MIIBUSY_DELAY 50
  428. #define NV_MIIPHY_DELAY 10
  429. #define NV_MIIPHY_DELAYMAX 10000
  430. #define NV_MAC_RESET_DELAY 64
  431. #define NV_WAKEUPPATTERNS 5
  432. #define NV_WAKEUPMASKENTRIES 4
  433. /* General driver defaults */
  434. #define NV_WATCHDOG_TIMEO (5*HZ)
  435. #define RX_RING_DEFAULT 128
  436. #define TX_RING_DEFAULT 256
  437. #define RX_RING_MIN 128
  438. #define TX_RING_MIN 64
  439. #define RING_MAX_DESC_VER_1 1024
  440. #define RING_MAX_DESC_VER_2_3 16384
  441. /* rx/tx mac addr + type + vlan + align + slack*/
  442. #define NV_RX_HEADERS (64)
  443. /* even more slack. */
  444. #define NV_RX_ALLOC_PAD (64)
  445. /* maximum mtu size */
  446. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  447. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  448. #define OOM_REFILL (1+HZ/20)
  449. #define POLL_WAIT (1+HZ/100)
  450. #define LINK_TIMEOUT (3*HZ)
  451. #define STATS_INTERVAL (10*HZ)
  452. /*
  453. * desc_ver values:
  454. * The nic supports three different descriptor types:
  455. * - DESC_VER_1: Original
  456. * - DESC_VER_2: support for jumbo frames.
  457. * - DESC_VER_3: 64-bit format.
  458. */
  459. #define DESC_VER_1 1
  460. #define DESC_VER_2 2
  461. #define DESC_VER_3 3
  462. /* PHY defines */
  463. #define PHY_OUI_MARVELL 0x5043
  464. #define PHY_OUI_CICADA 0x03f1
  465. #define PHY_OUI_VITESSE 0x01c1
  466. #define PHY_OUI_REALTEK 0x0732
  467. #define PHY_OUI_REALTEK2 0x0020
  468. #define PHYID1_OUI_MASK 0x03ff
  469. #define PHYID1_OUI_SHFT 6
  470. #define PHYID2_OUI_MASK 0xfc00
  471. #define PHYID2_OUI_SHFT 10
  472. #define PHYID2_MODEL_MASK 0x03f0
  473. #define PHY_MODEL_REALTEK_8211 0x0110
  474. #define PHY_REV_MASK 0x0001
  475. #define PHY_REV_REALTEK_8211B 0x0000
  476. #define PHY_REV_REALTEK_8211C 0x0001
  477. #define PHY_MODEL_REALTEK_8201 0x0200
  478. #define PHY_MODEL_MARVELL_E3016 0x0220
  479. #define PHY_MARVELL_E3016_INITMASK 0x0300
  480. #define PHY_CICADA_INIT1 0x0f000
  481. #define PHY_CICADA_INIT2 0x0e00
  482. #define PHY_CICADA_INIT3 0x01000
  483. #define PHY_CICADA_INIT4 0x0200
  484. #define PHY_CICADA_INIT5 0x0004
  485. #define PHY_CICADA_INIT6 0x02000
  486. #define PHY_VITESSE_INIT_REG1 0x1f
  487. #define PHY_VITESSE_INIT_REG2 0x10
  488. #define PHY_VITESSE_INIT_REG3 0x11
  489. #define PHY_VITESSE_INIT_REG4 0x12
  490. #define PHY_VITESSE_INIT_MSK1 0xc
  491. #define PHY_VITESSE_INIT_MSK2 0x0180
  492. #define PHY_VITESSE_INIT1 0x52b5
  493. #define PHY_VITESSE_INIT2 0xaf8a
  494. #define PHY_VITESSE_INIT3 0x8
  495. #define PHY_VITESSE_INIT4 0x8f8a
  496. #define PHY_VITESSE_INIT5 0xaf86
  497. #define PHY_VITESSE_INIT6 0x8f86
  498. #define PHY_VITESSE_INIT7 0xaf82
  499. #define PHY_VITESSE_INIT8 0x0100
  500. #define PHY_VITESSE_INIT9 0x8f82
  501. #define PHY_VITESSE_INIT10 0x0
  502. #define PHY_REALTEK_INIT_REG1 0x1f
  503. #define PHY_REALTEK_INIT_REG2 0x19
  504. #define PHY_REALTEK_INIT_REG3 0x13
  505. #define PHY_REALTEK_INIT_REG4 0x14
  506. #define PHY_REALTEK_INIT_REG5 0x18
  507. #define PHY_REALTEK_INIT_REG6 0x11
  508. #define PHY_REALTEK_INIT_REG7 0x01
  509. #define PHY_REALTEK_INIT1 0x0000
  510. #define PHY_REALTEK_INIT2 0x8e00
  511. #define PHY_REALTEK_INIT3 0x0001
  512. #define PHY_REALTEK_INIT4 0xad17
  513. #define PHY_REALTEK_INIT5 0xfb54
  514. #define PHY_REALTEK_INIT6 0xf5c7
  515. #define PHY_REALTEK_INIT7 0x1000
  516. #define PHY_REALTEK_INIT8 0x0003
  517. #define PHY_REALTEK_INIT9 0x0008
  518. #define PHY_REALTEK_INIT10 0x0005
  519. #define PHY_REALTEK_INIT11 0x0200
  520. #define PHY_REALTEK_INIT_MSK1 0x0003
  521. #define PHY_GIGABIT 0x0100
  522. #define PHY_TIMEOUT 0x1
  523. #define PHY_ERROR 0x2
  524. #define PHY_100 0x1
  525. #define PHY_1000 0x2
  526. #define PHY_HALF 0x100
  527. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  528. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  529. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  530. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  531. #define NV_PAUSEFRAME_RX_REQ 0x0010
  532. #define NV_PAUSEFRAME_TX_REQ 0x0020
  533. #define NV_PAUSEFRAME_AUTONEG 0x0040
  534. /* MSI/MSI-X defines */
  535. #define NV_MSI_X_MAX_VECTORS 8
  536. #define NV_MSI_X_VECTORS_MASK 0x000f
  537. #define NV_MSI_CAPABLE 0x0010
  538. #define NV_MSI_X_CAPABLE 0x0020
  539. #define NV_MSI_ENABLED 0x0040
  540. #define NV_MSI_X_ENABLED 0x0080
  541. #define NV_MSI_X_VECTOR_ALL 0x0
  542. #define NV_MSI_X_VECTOR_RX 0x0
  543. #define NV_MSI_X_VECTOR_TX 0x1
  544. #define NV_MSI_X_VECTOR_OTHER 0x2
  545. #define NV_MSI_PRIV_OFFSET 0x68
  546. #define NV_MSI_PRIV_VALUE 0xffffffff
  547. #define NV_RESTART_TX 0x1
  548. #define NV_RESTART_RX 0x2
  549. #define NV_TX_LIMIT_COUNT 16
  550. /* statistics */
  551. struct nv_ethtool_str {
  552. char name[ETH_GSTRING_LEN];
  553. };
  554. static const struct nv_ethtool_str nv_estats_str[] = {
  555. { "tx_bytes" },
  556. { "tx_zero_rexmt" },
  557. { "tx_one_rexmt" },
  558. { "tx_many_rexmt" },
  559. { "tx_late_collision" },
  560. { "tx_fifo_errors" },
  561. { "tx_carrier_errors" },
  562. { "tx_excess_deferral" },
  563. { "tx_retry_error" },
  564. { "rx_frame_error" },
  565. { "rx_extra_byte" },
  566. { "rx_late_collision" },
  567. { "rx_runt" },
  568. { "rx_frame_too_long" },
  569. { "rx_over_errors" },
  570. { "rx_crc_errors" },
  571. { "rx_frame_align_error" },
  572. { "rx_length_error" },
  573. { "rx_unicast" },
  574. { "rx_multicast" },
  575. { "rx_broadcast" },
  576. { "rx_packets" },
  577. { "rx_errors_total" },
  578. { "tx_errors_total" },
  579. /* version 2 stats */
  580. { "tx_deferral" },
  581. { "tx_packets" },
  582. { "rx_bytes" },
  583. { "tx_pause" },
  584. { "rx_pause" },
  585. { "rx_drop_frame" },
  586. /* version 3 stats */
  587. { "tx_unicast" },
  588. { "tx_multicast" },
  589. { "tx_broadcast" }
  590. };
  591. struct nv_ethtool_stats {
  592. u64 tx_bytes;
  593. u64 tx_zero_rexmt;
  594. u64 tx_one_rexmt;
  595. u64 tx_many_rexmt;
  596. u64 tx_late_collision;
  597. u64 tx_fifo_errors;
  598. u64 tx_carrier_errors;
  599. u64 tx_excess_deferral;
  600. u64 tx_retry_error;
  601. u64 rx_frame_error;
  602. u64 rx_extra_byte;
  603. u64 rx_late_collision;
  604. u64 rx_runt;
  605. u64 rx_frame_too_long;
  606. u64 rx_over_errors;
  607. u64 rx_crc_errors;
  608. u64 rx_frame_align_error;
  609. u64 rx_length_error;
  610. u64 rx_unicast;
  611. u64 rx_multicast;
  612. u64 rx_broadcast;
  613. u64 rx_packets;
  614. u64 rx_errors_total;
  615. u64 tx_errors_total;
  616. /* version 2 stats */
  617. u64 tx_deferral;
  618. u64 tx_packets;
  619. u64 rx_bytes;
  620. u64 tx_pause;
  621. u64 rx_pause;
  622. u64 rx_drop_frame;
  623. /* version 3 stats */
  624. u64 tx_unicast;
  625. u64 tx_multicast;
  626. u64 tx_broadcast;
  627. };
  628. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  629. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  630. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  631. /* diagnostics */
  632. #define NV_TEST_COUNT_BASE 3
  633. #define NV_TEST_COUNT_EXTENDED 4
  634. static const struct nv_ethtool_str nv_etests_str[] = {
  635. { "link (online/offline)" },
  636. { "register (offline) " },
  637. { "interrupt (offline) " },
  638. { "loopback (offline) " }
  639. };
  640. struct register_test {
  641. __u32 reg;
  642. __u32 mask;
  643. };
  644. static const struct register_test nv_registers_test[] = {
  645. { NvRegUnknownSetupReg6, 0x01 },
  646. { NvRegMisc1, 0x03c },
  647. { NvRegOffloadConfig, 0x03ff },
  648. { NvRegMulticastAddrA, 0xffffffff },
  649. { NvRegTxWatermark, 0x0ff },
  650. { NvRegWakeUpFlags, 0x07777 },
  651. { 0,0 }
  652. };
  653. struct nv_skb_map {
  654. struct sk_buff *skb;
  655. dma_addr_t dma;
  656. unsigned int dma_len;
  657. struct ring_desc_ex *first_tx_desc;
  658. struct nv_skb_map *next_tx_ctx;
  659. };
  660. /*
  661. * SMP locking:
  662. * All hardware access under netdev_priv(dev)->lock, except the performance
  663. * critical parts:
  664. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  665. * by the arch code for interrupts.
  666. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  667. * needs netdev_priv(dev)->lock :-(
  668. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  669. */
  670. /* in dev: base, irq */
  671. struct fe_priv {
  672. spinlock_t lock;
  673. struct net_device *dev;
  674. struct napi_struct napi;
  675. /* General data:
  676. * Locking: spin_lock(&np->lock); */
  677. struct nv_ethtool_stats estats;
  678. int in_shutdown;
  679. u32 linkspeed;
  680. int duplex;
  681. int autoneg;
  682. int fixed_mode;
  683. int phyaddr;
  684. int wolenabled;
  685. unsigned int phy_oui;
  686. unsigned int phy_model;
  687. unsigned int phy_rev;
  688. u16 gigabit;
  689. int intr_test;
  690. int recover_error;
  691. /* General data: RO fields */
  692. dma_addr_t ring_addr;
  693. struct pci_dev *pci_dev;
  694. u32 orig_mac[2];
  695. u32 irqmask;
  696. u32 desc_ver;
  697. u32 txrxctl_bits;
  698. u32 vlanctl_bits;
  699. u32 driver_data;
  700. u32 device_id;
  701. u32 register_size;
  702. int rx_csum;
  703. u32 mac_in_use;
  704. int mgmt_version;
  705. int mgmt_sema;
  706. void __iomem *base;
  707. /* rx specific fields.
  708. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  709. */
  710. union ring_type get_rx, put_rx, first_rx, last_rx;
  711. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  712. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  713. struct nv_skb_map *rx_skb;
  714. union ring_type rx_ring;
  715. unsigned int rx_buf_sz;
  716. unsigned int pkt_limit;
  717. struct timer_list oom_kick;
  718. struct timer_list nic_poll;
  719. struct timer_list stats_poll;
  720. u32 nic_poll_irq;
  721. int rx_ring_size;
  722. /* media detection workaround.
  723. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  724. */
  725. int need_linktimer;
  726. unsigned long link_timeout;
  727. /*
  728. * tx specific fields.
  729. */
  730. union ring_type get_tx, put_tx, first_tx, last_tx;
  731. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  732. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  733. struct nv_skb_map *tx_skb;
  734. union ring_type tx_ring;
  735. u32 tx_flags;
  736. int tx_ring_size;
  737. int tx_limit;
  738. u32 tx_pkts_in_progress;
  739. struct nv_skb_map *tx_change_owner;
  740. struct nv_skb_map *tx_end_flip;
  741. int tx_stop;
  742. /* vlan fields */
  743. struct vlan_group *vlangrp;
  744. /* msi/msi-x fields */
  745. u32 msi_flags;
  746. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  747. /* flow control */
  748. u32 pause_flags;
  749. /* power saved state */
  750. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  751. /* for different msi-x irq type */
  752. char name_rx[IFNAMSIZ + 3]; /* -rx */
  753. char name_tx[IFNAMSIZ + 3]; /* -tx */
  754. char name_other[IFNAMSIZ + 6]; /* -other */
  755. };
  756. /*
  757. * Maximum number of loops until we assume that a bit in the irq mask
  758. * is stuck. Overridable with module param.
  759. */
  760. static int max_interrupt_work = 15;
  761. /*
  762. * Optimization can be either throuput mode or cpu mode
  763. *
  764. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  765. * CPU Mode: Interrupts are controlled by a timer.
  766. */
  767. enum {
  768. NV_OPTIMIZATION_MODE_THROUGHPUT,
  769. NV_OPTIMIZATION_MODE_CPU
  770. };
  771. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  772. /*
  773. * Poll interval for timer irq
  774. *
  775. * This interval determines how frequent an interrupt is generated.
  776. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  777. * Min = 0, and Max = 65535
  778. */
  779. static int poll_interval = -1;
  780. /*
  781. * MSI interrupts
  782. */
  783. enum {
  784. NV_MSI_INT_DISABLED,
  785. NV_MSI_INT_ENABLED
  786. };
  787. static int msi = NV_MSI_INT_ENABLED;
  788. /*
  789. * MSIX interrupts
  790. */
  791. enum {
  792. NV_MSIX_INT_DISABLED,
  793. NV_MSIX_INT_ENABLED
  794. };
  795. static int msix = NV_MSIX_INT_ENABLED;
  796. /*
  797. * DMA 64bit
  798. */
  799. enum {
  800. NV_DMA_64BIT_DISABLED,
  801. NV_DMA_64BIT_ENABLED
  802. };
  803. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  804. /*
  805. * Crossover Detection
  806. * Realtek 8201 phy + some OEM boards do not work properly.
  807. */
  808. enum {
  809. NV_CROSSOVER_DETECTION_DISABLED,
  810. NV_CROSSOVER_DETECTION_ENABLED
  811. };
  812. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  813. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  814. {
  815. return netdev_priv(dev);
  816. }
  817. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  818. {
  819. return ((struct fe_priv *)netdev_priv(dev))->base;
  820. }
  821. static inline void pci_push(u8 __iomem *base)
  822. {
  823. /* force out pending posted writes */
  824. readl(base);
  825. }
  826. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  827. {
  828. return le32_to_cpu(prd->flaglen)
  829. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  830. }
  831. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  832. {
  833. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  834. }
  835. static bool nv_optimized(struct fe_priv *np)
  836. {
  837. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  838. return false;
  839. return true;
  840. }
  841. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  842. int delay, int delaymax, const char *msg)
  843. {
  844. u8 __iomem *base = get_hwbase(dev);
  845. pci_push(base);
  846. do {
  847. udelay(delay);
  848. delaymax -= delay;
  849. if (delaymax < 0) {
  850. if (msg)
  851. printk("%s", msg);
  852. return 1;
  853. }
  854. } while ((readl(base + offset) & mask) != target);
  855. return 0;
  856. }
  857. #define NV_SETUP_RX_RING 0x01
  858. #define NV_SETUP_TX_RING 0x02
  859. static inline u32 dma_low(dma_addr_t addr)
  860. {
  861. return addr;
  862. }
  863. static inline u32 dma_high(dma_addr_t addr)
  864. {
  865. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  866. }
  867. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  868. {
  869. struct fe_priv *np = get_nvpriv(dev);
  870. u8 __iomem *base = get_hwbase(dev);
  871. if (!nv_optimized(np)) {
  872. if (rxtx_flags & NV_SETUP_RX_RING) {
  873. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  874. }
  875. if (rxtx_flags & NV_SETUP_TX_RING) {
  876. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  877. }
  878. } else {
  879. if (rxtx_flags & NV_SETUP_RX_RING) {
  880. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  881. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  882. }
  883. if (rxtx_flags & NV_SETUP_TX_RING) {
  884. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  885. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  886. }
  887. }
  888. }
  889. static void free_rings(struct net_device *dev)
  890. {
  891. struct fe_priv *np = get_nvpriv(dev);
  892. if (!nv_optimized(np)) {
  893. if (np->rx_ring.orig)
  894. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  895. np->rx_ring.orig, np->ring_addr);
  896. } else {
  897. if (np->rx_ring.ex)
  898. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  899. np->rx_ring.ex, np->ring_addr);
  900. }
  901. if (np->rx_skb)
  902. kfree(np->rx_skb);
  903. if (np->tx_skb)
  904. kfree(np->tx_skb);
  905. }
  906. static int using_multi_irqs(struct net_device *dev)
  907. {
  908. struct fe_priv *np = get_nvpriv(dev);
  909. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  910. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  911. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  912. return 0;
  913. else
  914. return 1;
  915. }
  916. static void nv_enable_irq(struct net_device *dev)
  917. {
  918. struct fe_priv *np = get_nvpriv(dev);
  919. if (!using_multi_irqs(dev)) {
  920. if (np->msi_flags & NV_MSI_X_ENABLED)
  921. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  922. else
  923. enable_irq(np->pci_dev->irq);
  924. } else {
  925. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  926. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  927. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  928. }
  929. }
  930. static void nv_disable_irq(struct net_device *dev)
  931. {
  932. struct fe_priv *np = get_nvpriv(dev);
  933. if (!using_multi_irqs(dev)) {
  934. if (np->msi_flags & NV_MSI_X_ENABLED)
  935. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  936. else
  937. disable_irq(np->pci_dev->irq);
  938. } else {
  939. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  940. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  941. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  942. }
  943. }
  944. /* In MSIX mode, a write to irqmask behaves as XOR */
  945. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  946. {
  947. u8 __iomem *base = get_hwbase(dev);
  948. writel(mask, base + NvRegIrqMask);
  949. }
  950. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  951. {
  952. struct fe_priv *np = get_nvpriv(dev);
  953. u8 __iomem *base = get_hwbase(dev);
  954. if (np->msi_flags & NV_MSI_X_ENABLED) {
  955. writel(mask, base + NvRegIrqMask);
  956. } else {
  957. if (np->msi_flags & NV_MSI_ENABLED)
  958. writel(0, base + NvRegMSIIrqMask);
  959. writel(0, base + NvRegIrqMask);
  960. }
  961. }
  962. static void nv_napi_enable(struct net_device *dev)
  963. {
  964. #ifdef CONFIG_FORCEDETH_NAPI
  965. struct fe_priv *np = get_nvpriv(dev);
  966. napi_enable(&np->napi);
  967. #endif
  968. }
  969. static void nv_napi_disable(struct net_device *dev)
  970. {
  971. #ifdef CONFIG_FORCEDETH_NAPI
  972. struct fe_priv *np = get_nvpriv(dev);
  973. napi_disable(&np->napi);
  974. #endif
  975. }
  976. #define MII_READ (-1)
  977. /* mii_rw: read/write a register on the PHY.
  978. *
  979. * Caller must guarantee serialization
  980. */
  981. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  982. {
  983. u8 __iomem *base = get_hwbase(dev);
  984. u32 reg;
  985. int retval;
  986. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  987. reg = readl(base + NvRegMIIControl);
  988. if (reg & NVREG_MIICTL_INUSE) {
  989. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  990. udelay(NV_MIIBUSY_DELAY);
  991. }
  992. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  993. if (value != MII_READ) {
  994. writel(value, base + NvRegMIIData);
  995. reg |= NVREG_MIICTL_WRITE;
  996. }
  997. writel(reg, base + NvRegMIIControl);
  998. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  999. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  1000. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  1001. dev->name, miireg, addr);
  1002. retval = -1;
  1003. } else if (value != MII_READ) {
  1004. /* it was a write operation - fewer failures are detectable */
  1005. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1006. dev->name, value, miireg, addr);
  1007. retval = 0;
  1008. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1009. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1010. dev->name, miireg, addr);
  1011. retval = -1;
  1012. } else {
  1013. retval = readl(base + NvRegMIIData);
  1014. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1015. dev->name, miireg, addr, retval);
  1016. }
  1017. return retval;
  1018. }
  1019. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1020. {
  1021. struct fe_priv *np = netdev_priv(dev);
  1022. u32 miicontrol;
  1023. unsigned int tries = 0;
  1024. miicontrol = BMCR_RESET | bmcr_setup;
  1025. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1026. return -1;
  1027. }
  1028. /* wait for 500ms */
  1029. msleep(500);
  1030. /* must wait till reset is deasserted */
  1031. while (miicontrol & BMCR_RESET) {
  1032. msleep(10);
  1033. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1034. /* FIXME: 100 tries seem excessive */
  1035. if (tries++ > 100)
  1036. return -1;
  1037. }
  1038. return 0;
  1039. }
  1040. static int phy_init(struct net_device *dev)
  1041. {
  1042. struct fe_priv *np = get_nvpriv(dev);
  1043. u8 __iomem *base = get_hwbase(dev);
  1044. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1045. /* phy errata for E3016 phy */
  1046. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1047. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1048. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1049. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1050. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1051. return PHY_ERROR;
  1052. }
  1053. }
  1054. if (np->phy_oui == PHY_OUI_REALTEK) {
  1055. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1056. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1057. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1058. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1059. return PHY_ERROR;
  1060. }
  1061. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1062. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1063. return PHY_ERROR;
  1064. }
  1065. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1066. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1067. return PHY_ERROR;
  1068. }
  1069. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1070. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1071. return PHY_ERROR;
  1072. }
  1073. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1074. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1075. return PHY_ERROR;
  1076. }
  1077. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1078. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1079. return PHY_ERROR;
  1080. }
  1081. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1082. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1083. return PHY_ERROR;
  1084. }
  1085. }
  1086. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1087. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1088. u32 powerstate = readl(base + NvRegPowerState2);
  1089. /* need to perform hw phy reset */
  1090. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1091. writel(powerstate, base + NvRegPowerState2);
  1092. msleep(25);
  1093. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1094. writel(powerstate, base + NvRegPowerState2);
  1095. msleep(25);
  1096. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1097. reg |= PHY_REALTEK_INIT9;
  1098. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1099. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1100. return PHY_ERROR;
  1101. }
  1102. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1103. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1104. return PHY_ERROR;
  1105. }
  1106. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1107. if (!(reg & PHY_REALTEK_INIT11)) {
  1108. reg |= PHY_REALTEK_INIT11;
  1109. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1110. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1111. return PHY_ERROR;
  1112. }
  1113. }
  1114. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1115. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1116. return PHY_ERROR;
  1117. }
  1118. }
  1119. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1120. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1121. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1122. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1123. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1124. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1125. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1126. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1127. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1128. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1129. phy_reserved |= PHY_REALTEK_INIT7;
  1130. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1131. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1132. return PHY_ERROR;
  1133. }
  1134. }
  1135. }
  1136. }
  1137. /* set advertise register */
  1138. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1139. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1140. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1141. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1142. return PHY_ERROR;
  1143. }
  1144. /* get phy interface type */
  1145. phyinterface = readl(base + NvRegPhyInterface);
  1146. /* see if gigabit phy */
  1147. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1148. if (mii_status & PHY_GIGABIT) {
  1149. np->gigabit = PHY_GIGABIT;
  1150. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1151. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1152. if (phyinterface & PHY_RGMII)
  1153. mii_control_1000 |= ADVERTISE_1000FULL;
  1154. else
  1155. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1156. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1157. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1158. return PHY_ERROR;
  1159. }
  1160. }
  1161. else
  1162. np->gigabit = 0;
  1163. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1164. mii_control |= BMCR_ANENABLE;
  1165. if (np->phy_oui == PHY_OUI_REALTEK &&
  1166. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1167. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1168. /* start autoneg since we already performed hw reset above */
  1169. mii_control |= BMCR_ANRESTART;
  1170. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1171. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1172. return PHY_ERROR;
  1173. }
  1174. } else {
  1175. /* reset the phy
  1176. * (certain phys need bmcr to be setup with reset)
  1177. */
  1178. if (phy_reset(dev, mii_control)) {
  1179. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1180. return PHY_ERROR;
  1181. }
  1182. }
  1183. /* phy vendor specific configuration */
  1184. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1185. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1186. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1187. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1188. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1189. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1190. return PHY_ERROR;
  1191. }
  1192. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1193. phy_reserved |= PHY_CICADA_INIT5;
  1194. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1195. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1196. return PHY_ERROR;
  1197. }
  1198. }
  1199. if (np->phy_oui == PHY_OUI_CICADA) {
  1200. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1201. phy_reserved |= PHY_CICADA_INIT6;
  1202. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1203. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1204. return PHY_ERROR;
  1205. }
  1206. }
  1207. if (np->phy_oui == PHY_OUI_VITESSE) {
  1208. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1209. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1210. return PHY_ERROR;
  1211. }
  1212. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1213. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1214. return PHY_ERROR;
  1215. }
  1216. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1217. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1218. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1219. return PHY_ERROR;
  1220. }
  1221. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1222. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1223. phy_reserved |= PHY_VITESSE_INIT3;
  1224. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1225. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1226. return PHY_ERROR;
  1227. }
  1228. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1229. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1230. return PHY_ERROR;
  1231. }
  1232. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1233. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1234. return PHY_ERROR;
  1235. }
  1236. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1237. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1238. phy_reserved |= PHY_VITESSE_INIT3;
  1239. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1240. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1241. return PHY_ERROR;
  1242. }
  1243. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1244. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1245. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1246. return PHY_ERROR;
  1247. }
  1248. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1249. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1250. return PHY_ERROR;
  1251. }
  1252. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1253. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1254. return PHY_ERROR;
  1255. }
  1256. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1257. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1258. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1259. return PHY_ERROR;
  1260. }
  1261. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1262. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1263. phy_reserved |= PHY_VITESSE_INIT8;
  1264. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1265. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1266. return PHY_ERROR;
  1267. }
  1268. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1269. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1270. return PHY_ERROR;
  1271. }
  1272. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1273. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1274. return PHY_ERROR;
  1275. }
  1276. }
  1277. if (np->phy_oui == PHY_OUI_REALTEK) {
  1278. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1279. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1280. /* reset could have cleared these out, set them back */
  1281. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1282. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1283. return PHY_ERROR;
  1284. }
  1285. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1286. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1287. return PHY_ERROR;
  1288. }
  1289. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1290. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1291. return PHY_ERROR;
  1292. }
  1293. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1294. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1295. return PHY_ERROR;
  1296. }
  1297. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1298. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1299. return PHY_ERROR;
  1300. }
  1301. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1302. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1303. return PHY_ERROR;
  1304. }
  1305. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1306. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1307. return PHY_ERROR;
  1308. }
  1309. }
  1310. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1311. if (np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  1312. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  1313. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  1314. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  1315. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  1316. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  1317. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  1318. np->device_id == PCI_DEVICE_ID_NVIDIA_NVENET_39) {
  1319. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1320. phy_reserved |= PHY_REALTEK_INIT7;
  1321. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1322. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1323. return PHY_ERROR;
  1324. }
  1325. }
  1326. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1327. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1328. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1329. return PHY_ERROR;
  1330. }
  1331. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1332. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1333. phy_reserved |= PHY_REALTEK_INIT3;
  1334. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1335. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1336. return PHY_ERROR;
  1337. }
  1338. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1339. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1340. return PHY_ERROR;
  1341. }
  1342. }
  1343. }
  1344. }
  1345. /* some phys clear out pause advertisment on reset, set it back */
  1346. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1347. /* restart auto negotiation, power down phy */
  1348. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1349. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE | BMCR_PDOWN);
  1350. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1351. return PHY_ERROR;
  1352. }
  1353. return 0;
  1354. }
  1355. static void nv_start_rx(struct net_device *dev)
  1356. {
  1357. struct fe_priv *np = netdev_priv(dev);
  1358. u8 __iomem *base = get_hwbase(dev);
  1359. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1360. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1361. /* Already running? Stop it. */
  1362. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1363. rx_ctrl &= ~NVREG_RCVCTL_START;
  1364. writel(rx_ctrl, base + NvRegReceiverControl);
  1365. pci_push(base);
  1366. }
  1367. writel(np->linkspeed, base + NvRegLinkSpeed);
  1368. pci_push(base);
  1369. rx_ctrl |= NVREG_RCVCTL_START;
  1370. if (np->mac_in_use)
  1371. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1372. writel(rx_ctrl, base + NvRegReceiverControl);
  1373. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1374. dev->name, np->duplex, np->linkspeed);
  1375. pci_push(base);
  1376. }
  1377. static void nv_stop_rx(struct net_device *dev)
  1378. {
  1379. struct fe_priv *np = netdev_priv(dev);
  1380. u8 __iomem *base = get_hwbase(dev);
  1381. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1382. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1383. if (!np->mac_in_use)
  1384. rx_ctrl &= ~NVREG_RCVCTL_START;
  1385. else
  1386. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1387. writel(rx_ctrl, base + NvRegReceiverControl);
  1388. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1389. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1390. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1391. udelay(NV_RXSTOP_DELAY2);
  1392. if (!np->mac_in_use)
  1393. writel(0, base + NvRegLinkSpeed);
  1394. }
  1395. static void nv_start_tx(struct net_device *dev)
  1396. {
  1397. struct fe_priv *np = netdev_priv(dev);
  1398. u8 __iomem *base = get_hwbase(dev);
  1399. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1400. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1401. tx_ctrl |= NVREG_XMITCTL_START;
  1402. if (np->mac_in_use)
  1403. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1404. writel(tx_ctrl, base + NvRegTransmitterControl);
  1405. pci_push(base);
  1406. }
  1407. static void nv_stop_tx(struct net_device *dev)
  1408. {
  1409. struct fe_priv *np = netdev_priv(dev);
  1410. u8 __iomem *base = get_hwbase(dev);
  1411. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1412. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1413. if (!np->mac_in_use)
  1414. tx_ctrl &= ~NVREG_XMITCTL_START;
  1415. else
  1416. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1417. writel(tx_ctrl, base + NvRegTransmitterControl);
  1418. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1419. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1420. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1421. udelay(NV_TXSTOP_DELAY2);
  1422. if (!np->mac_in_use)
  1423. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1424. base + NvRegTransmitPoll);
  1425. }
  1426. static void nv_start_rxtx(struct net_device *dev)
  1427. {
  1428. nv_start_rx(dev);
  1429. nv_start_tx(dev);
  1430. }
  1431. static void nv_stop_rxtx(struct net_device *dev)
  1432. {
  1433. nv_stop_rx(dev);
  1434. nv_stop_tx(dev);
  1435. }
  1436. static void nv_txrx_reset(struct net_device *dev)
  1437. {
  1438. struct fe_priv *np = netdev_priv(dev);
  1439. u8 __iomem *base = get_hwbase(dev);
  1440. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1441. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1442. pci_push(base);
  1443. udelay(NV_TXRX_RESET_DELAY);
  1444. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1445. pci_push(base);
  1446. }
  1447. static void nv_mac_reset(struct net_device *dev)
  1448. {
  1449. struct fe_priv *np = netdev_priv(dev);
  1450. u8 __iomem *base = get_hwbase(dev);
  1451. u32 temp1, temp2, temp3;
  1452. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1453. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1454. pci_push(base);
  1455. /* save registers since they will be cleared on reset */
  1456. temp1 = readl(base + NvRegMacAddrA);
  1457. temp2 = readl(base + NvRegMacAddrB);
  1458. temp3 = readl(base + NvRegTransmitPoll);
  1459. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1460. pci_push(base);
  1461. udelay(NV_MAC_RESET_DELAY);
  1462. writel(0, base + NvRegMacReset);
  1463. pci_push(base);
  1464. udelay(NV_MAC_RESET_DELAY);
  1465. /* restore saved registers */
  1466. writel(temp1, base + NvRegMacAddrA);
  1467. writel(temp2, base + NvRegMacAddrB);
  1468. writel(temp3, base + NvRegTransmitPoll);
  1469. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1470. pci_push(base);
  1471. }
  1472. static void nv_get_hw_stats(struct net_device *dev)
  1473. {
  1474. struct fe_priv *np = netdev_priv(dev);
  1475. u8 __iomem *base = get_hwbase(dev);
  1476. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1477. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1478. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1479. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1480. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1481. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1482. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1483. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1484. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1485. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1486. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1487. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1488. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1489. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1490. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1491. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1492. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1493. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1494. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1495. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1496. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1497. np->estats.rx_packets =
  1498. np->estats.rx_unicast +
  1499. np->estats.rx_multicast +
  1500. np->estats.rx_broadcast;
  1501. np->estats.rx_errors_total =
  1502. np->estats.rx_crc_errors +
  1503. np->estats.rx_over_errors +
  1504. np->estats.rx_frame_error +
  1505. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1506. np->estats.rx_late_collision +
  1507. np->estats.rx_runt +
  1508. np->estats.rx_frame_too_long;
  1509. np->estats.tx_errors_total =
  1510. np->estats.tx_late_collision +
  1511. np->estats.tx_fifo_errors +
  1512. np->estats.tx_carrier_errors +
  1513. np->estats.tx_excess_deferral +
  1514. np->estats.tx_retry_error;
  1515. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1516. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1517. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1518. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1519. np->estats.tx_pause += readl(base + NvRegTxPause);
  1520. np->estats.rx_pause += readl(base + NvRegRxPause);
  1521. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1522. }
  1523. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1524. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1525. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1526. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1527. }
  1528. }
  1529. /*
  1530. * nv_get_stats: dev->get_stats function
  1531. * Get latest stats value from the nic.
  1532. * Called with read_lock(&dev_base_lock) held for read -
  1533. * only synchronized against unregister_netdevice.
  1534. */
  1535. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1536. {
  1537. struct fe_priv *np = netdev_priv(dev);
  1538. /* If the nic supports hw counters then retrieve latest values */
  1539. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1540. nv_get_hw_stats(dev);
  1541. /* copy to net_device stats */
  1542. dev->stats.tx_bytes = np->estats.tx_bytes;
  1543. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1544. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1545. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1546. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1547. dev->stats.rx_errors = np->estats.rx_errors_total;
  1548. dev->stats.tx_errors = np->estats.tx_errors_total;
  1549. }
  1550. return &dev->stats;
  1551. }
  1552. /*
  1553. * nv_alloc_rx: fill rx ring entries.
  1554. * Return 1 if the allocations for the skbs failed and the
  1555. * rx engine is without Available descriptors
  1556. */
  1557. static int nv_alloc_rx(struct net_device *dev)
  1558. {
  1559. struct fe_priv *np = netdev_priv(dev);
  1560. struct ring_desc* less_rx;
  1561. less_rx = np->get_rx.orig;
  1562. if (less_rx-- == np->first_rx.orig)
  1563. less_rx = np->last_rx.orig;
  1564. while (np->put_rx.orig != less_rx) {
  1565. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1566. if (skb) {
  1567. np->put_rx_ctx->skb = skb;
  1568. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1569. skb->data,
  1570. skb_tailroom(skb),
  1571. PCI_DMA_FROMDEVICE);
  1572. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1573. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1574. wmb();
  1575. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1576. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1577. np->put_rx.orig = np->first_rx.orig;
  1578. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1579. np->put_rx_ctx = np->first_rx_ctx;
  1580. } else {
  1581. return 1;
  1582. }
  1583. }
  1584. return 0;
  1585. }
  1586. static int nv_alloc_rx_optimized(struct net_device *dev)
  1587. {
  1588. struct fe_priv *np = netdev_priv(dev);
  1589. struct ring_desc_ex* less_rx;
  1590. less_rx = np->get_rx.ex;
  1591. if (less_rx-- == np->first_rx.ex)
  1592. less_rx = np->last_rx.ex;
  1593. while (np->put_rx.ex != less_rx) {
  1594. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1595. if (skb) {
  1596. np->put_rx_ctx->skb = skb;
  1597. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1598. skb->data,
  1599. skb_tailroom(skb),
  1600. PCI_DMA_FROMDEVICE);
  1601. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1602. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1603. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1604. wmb();
  1605. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1606. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1607. np->put_rx.ex = np->first_rx.ex;
  1608. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1609. np->put_rx_ctx = np->first_rx_ctx;
  1610. } else {
  1611. return 1;
  1612. }
  1613. }
  1614. return 0;
  1615. }
  1616. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1617. #ifdef CONFIG_FORCEDETH_NAPI
  1618. static void nv_do_rx_refill(unsigned long data)
  1619. {
  1620. struct net_device *dev = (struct net_device *) data;
  1621. struct fe_priv *np = netdev_priv(dev);
  1622. /* Just reschedule NAPI rx processing */
  1623. napi_schedule(&np->napi);
  1624. }
  1625. #else
  1626. static void nv_do_rx_refill(unsigned long data)
  1627. {
  1628. struct net_device *dev = (struct net_device *) data;
  1629. struct fe_priv *np = netdev_priv(dev);
  1630. int retcode;
  1631. if (!using_multi_irqs(dev)) {
  1632. if (np->msi_flags & NV_MSI_X_ENABLED)
  1633. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1634. else
  1635. disable_irq(np->pci_dev->irq);
  1636. } else {
  1637. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1638. }
  1639. if (!nv_optimized(np))
  1640. retcode = nv_alloc_rx(dev);
  1641. else
  1642. retcode = nv_alloc_rx_optimized(dev);
  1643. if (retcode) {
  1644. spin_lock_irq(&np->lock);
  1645. if (!np->in_shutdown)
  1646. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1647. spin_unlock_irq(&np->lock);
  1648. }
  1649. if (!using_multi_irqs(dev)) {
  1650. if (np->msi_flags & NV_MSI_X_ENABLED)
  1651. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1652. else
  1653. enable_irq(np->pci_dev->irq);
  1654. } else {
  1655. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1656. }
  1657. }
  1658. #endif
  1659. static void nv_init_rx(struct net_device *dev)
  1660. {
  1661. struct fe_priv *np = netdev_priv(dev);
  1662. int i;
  1663. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1664. if (!nv_optimized(np))
  1665. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1666. else
  1667. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1668. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1669. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1670. for (i = 0; i < np->rx_ring_size; i++) {
  1671. if (!nv_optimized(np)) {
  1672. np->rx_ring.orig[i].flaglen = 0;
  1673. np->rx_ring.orig[i].buf = 0;
  1674. } else {
  1675. np->rx_ring.ex[i].flaglen = 0;
  1676. np->rx_ring.ex[i].txvlan = 0;
  1677. np->rx_ring.ex[i].bufhigh = 0;
  1678. np->rx_ring.ex[i].buflow = 0;
  1679. }
  1680. np->rx_skb[i].skb = NULL;
  1681. np->rx_skb[i].dma = 0;
  1682. }
  1683. }
  1684. static void nv_init_tx(struct net_device *dev)
  1685. {
  1686. struct fe_priv *np = netdev_priv(dev);
  1687. int i;
  1688. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1689. if (!nv_optimized(np))
  1690. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1691. else
  1692. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1693. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1694. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1695. np->tx_pkts_in_progress = 0;
  1696. np->tx_change_owner = NULL;
  1697. np->tx_end_flip = NULL;
  1698. for (i = 0; i < np->tx_ring_size; i++) {
  1699. if (!nv_optimized(np)) {
  1700. np->tx_ring.orig[i].flaglen = 0;
  1701. np->tx_ring.orig[i].buf = 0;
  1702. } else {
  1703. np->tx_ring.ex[i].flaglen = 0;
  1704. np->tx_ring.ex[i].txvlan = 0;
  1705. np->tx_ring.ex[i].bufhigh = 0;
  1706. np->tx_ring.ex[i].buflow = 0;
  1707. }
  1708. np->tx_skb[i].skb = NULL;
  1709. np->tx_skb[i].dma = 0;
  1710. np->tx_skb[i].dma_len = 0;
  1711. np->tx_skb[i].first_tx_desc = NULL;
  1712. np->tx_skb[i].next_tx_ctx = NULL;
  1713. }
  1714. }
  1715. static int nv_init_ring(struct net_device *dev)
  1716. {
  1717. struct fe_priv *np = netdev_priv(dev);
  1718. nv_init_tx(dev);
  1719. nv_init_rx(dev);
  1720. if (!nv_optimized(np))
  1721. return nv_alloc_rx(dev);
  1722. else
  1723. return nv_alloc_rx_optimized(dev);
  1724. }
  1725. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1726. {
  1727. struct fe_priv *np = netdev_priv(dev);
  1728. if (tx_skb->dma) {
  1729. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1730. tx_skb->dma_len,
  1731. PCI_DMA_TODEVICE);
  1732. tx_skb->dma = 0;
  1733. }
  1734. if (tx_skb->skb) {
  1735. dev_kfree_skb_any(tx_skb->skb);
  1736. tx_skb->skb = NULL;
  1737. return 1;
  1738. } else {
  1739. return 0;
  1740. }
  1741. }
  1742. static void nv_drain_tx(struct net_device *dev)
  1743. {
  1744. struct fe_priv *np = netdev_priv(dev);
  1745. unsigned int i;
  1746. for (i = 0; i < np->tx_ring_size; i++) {
  1747. if (!nv_optimized(np)) {
  1748. np->tx_ring.orig[i].flaglen = 0;
  1749. np->tx_ring.orig[i].buf = 0;
  1750. } else {
  1751. np->tx_ring.ex[i].flaglen = 0;
  1752. np->tx_ring.ex[i].txvlan = 0;
  1753. np->tx_ring.ex[i].bufhigh = 0;
  1754. np->tx_ring.ex[i].buflow = 0;
  1755. }
  1756. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1757. dev->stats.tx_dropped++;
  1758. np->tx_skb[i].dma = 0;
  1759. np->tx_skb[i].dma_len = 0;
  1760. np->tx_skb[i].first_tx_desc = NULL;
  1761. np->tx_skb[i].next_tx_ctx = NULL;
  1762. }
  1763. np->tx_pkts_in_progress = 0;
  1764. np->tx_change_owner = NULL;
  1765. np->tx_end_flip = NULL;
  1766. }
  1767. static void nv_drain_rx(struct net_device *dev)
  1768. {
  1769. struct fe_priv *np = netdev_priv(dev);
  1770. int i;
  1771. for (i = 0; i < np->rx_ring_size; i++) {
  1772. if (!nv_optimized(np)) {
  1773. np->rx_ring.orig[i].flaglen = 0;
  1774. np->rx_ring.orig[i].buf = 0;
  1775. } else {
  1776. np->rx_ring.ex[i].flaglen = 0;
  1777. np->rx_ring.ex[i].txvlan = 0;
  1778. np->rx_ring.ex[i].bufhigh = 0;
  1779. np->rx_ring.ex[i].buflow = 0;
  1780. }
  1781. wmb();
  1782. if (np->rx_skb[i].skb) {
  1783. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1784. (skb_end_pointer(np->rx_skb[i].skb) -
  1785. np->rx_skb[i].skb->data),
  1786. PCI_DMA_FROMDEVICE);
  1787. dev_kfree_skb(np->rx_skb[i].skb);
  1788. np->rx_skb[i].skb = NULL;
  1789. }
  1790. }
  1791. }
  1792. static void nv_drain_rxtx(struct net_device *dev)
  1793. {
  1794. nv_drain_tx(dev);
  1795. nv_drain_rx(dev);
  1796. }
  1797. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1798. {
  1799. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1800. }
  1801. static void nv_legacybackoff_reseed(struct net_device *dev)
  1802. {
  1803. u8 __iomem *base = get_hwbase(dev);
  1804. u32 reg;
  1805. u32 low;
  1806. int tx_status = 0;
  1807. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1808. get_random_bytes(&low, sizeof(low));
  1809. reg |= low & NVREG_SLOTTIME_MASK;
  1810. /* Need to stop tx before change takes effect.
  1811. * Caller has already gained np->lock.
  1812. */
  1813. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1814. if (tx_status)
  1815. nv_stop_tx(dev);
  1816. nv_stop_rx(dev);
  1817. writel(reg, base + NvRegSlotTime);
  1818. if (tx_status)
  1819. nv_start_tx(dev);
  1820. nv_start_rx(dev);
  1821. }
  1822. /* Gear Backoff Seeds */
  1823. #define BACKOFF_SEEDSET_ROWS 8
  1824. #define BACKOFF_SEEDSET_LFSRS 15
  1825. /* Known Good seed sets */
  1826. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1827. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1828. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1829. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1830. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1831. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1832. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1833. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1834. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1835. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1836. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1837. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1838. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1839. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1840. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1841. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1842. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1843. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1844. static void nv_gear_backoff_reseed(struct net_device *dev)
  1845. {
  1846. u8 __iomem *base = get_hwbase(dev);
  1847. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1848. u32 temp, seedset, combinedSeed;
  1849. int i;
  1850. /* Setup seed for free running LFSR */
  1851. /* We are going to read the time stamp counter 3 times
  1852. and swizzle bits around to increase randomness */
  1853. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1854. miniseed1 &= 0x0fff;
  1855. if (miniseed1 == 0)
  1856. miniseed1 = 0xabc;
  1857. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1858. miniseed2 &= 0x0fff;
  1859. if (miniseed2 == 0)
  1860. miniseed2 = 0xabc;
  1861. miniseed2_reversed =
  1862. ((miniseed2 & 0xF00) >> 8) |
  1863. (miniseed2 & 0x0F0) |
  1864. ((miniseed2 & 0x00F) << 8);
  1865. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1866. miniseed3 &= 0x0fff;
  1867. if (miniseed3 == 0)
  1868. miniseed3 = 0xabc;
  1869. miniseed3_reversed =
  1870. ((miniseed3 & 0xF00) >> 8) |
  1871. (miniseed3 & 0x0F0) |
  1872. ((miniseed3 & 0x00F) << 8);
  1873. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1874. (miniseed2 ^ miniseed3_reversed);
  1875. /* Seeds can not be zero */
  1876. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1877. combinedSeed |= 0x08;
  1878. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1879. combinedSeed |= 0x8000;
  1880. /* No need to disable tx here */
  1881. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1882. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1883. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1884. writel(temp,base + NvRegBackOffControl);
  1885. /* Setup seeds for all gear LFSRs. */
  1886. get_random_bytes(&seedset, sizeof(seedset));
  1887. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1888. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1889. {
  1890. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1891. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1892. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1893. writel(temp, base + NvRegBackOffControl);
  1894. }
  1895. }
  1896. /*
  1897. * nv_start_xmit: dev->hard_start_xmit function
  1898. * Called with netif_tx_lock held.
  1899. */
  1900. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1901. {
  1902. struct fe_priv *np = netdev_priv(dev);
  1903. u32 tx_flags = 0;
  1904. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1905. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1906. unsigned int i;
  1907. u32 offset = 0;
  1908. u32 bcnt;
  1909. u32 size = skb->len-skb->data_len;
  1910. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1911. u32 empty_slots;
  1912. struct ring_desc* put_tx;
  1913. struct ring_desc* start_tx;
  1914. struct ring_desc* prev_tx;
  1915. struct nv_skb_map* prev_tx_ctx;
  1916. unsigned long flags;
  1917. /* add fragments to entries count */
  1918. for (i = 0; i < fragments; i++) {
  1919. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1920. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1921. }
  1922. spin_lock_irqsave(&np->lock, flags);
  1923. empty_slots = nv_get_empty_tx_slots(np);
  1924. if (unlikely(empty_slots <= entries)) {
  1925. netif_stop_queue(dev);
  1926. np->tx_stop = 1;
  1927. spin_unlock_irqrestore(&np->lock, flags);
  1928. return NETDEV_TX_BUSY;
  1929. }
  1930. spin_unlock_irqrestore(&np->lock, flags);
  1931. start_tx = put_tx = np->put_tx.orig;
  1932. /* setup the header buffer */
  1933. do {
  1934. prev_tx = put_tx;
  1935. prev_tx_ctx = np->put_tx_ctx;
  1936. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1937. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1938. PCI_DMA_TODEVICE);
  1939. np->put_tx_ctx->dma_len = bcnt;
  1940. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1941. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1942. tx_flags = np->tx_flags;
  1943. offset += bcnt;
  1944. size -= bcnt;
  1945. if (unlikely(put_tx++ == np->last_tx.orig))
  1946. put_tx = np->first_tx.orig;
  1947. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1948. np->put_tx_ctx = np->first_tx_ctx;
  1949. } while (size);
  1950. /* setup the fragments */
  1951. for (i = 0; i < fragments; i++) {
  1952. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1953. u32 size = frag->size;
  1954. offset = 0;
  1955. do {
  1956. prev_tx = put_tx;
  1957. prev_tx_ctx = np->put_tx_ctx;
  1958. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1959. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1960. PCI_DMA_TODEVICE);
  1961. np->put_tx_ctx->dma_len = bcnt;
  1962. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1963. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1964. offset += bcnt;
  1965. size -= bcnt;
  1966. if (unlikely(put_tx++ == np->last_tx.orig))
  1967. put_tx = np->first_tx.orig;
  1968. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1969. np->put_tx_ctx = np->first_tx_ctx;
  1970. } while (size);
  1971. }
  1972. /* set last fragment flag */
  1973. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1974. /* save skb in this slot's context area */
  1975. prev_tx_ctx->skb = skb;
  1976. if (skb_is_gso(skb))
  1977. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1978. else
  1979. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1980. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1981. spin_lock_irqsave(&np->lock, flags);
  1982. /* set tx flags */
  1983. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1984. np->put_tx.orig = put_tx;
  1985. spin_unlock_irqrestore(&np->lock, flags);
  1986. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1987. dev->name, entries, tx_flags_extra);
  1988. {
  1989. int j;
  1990. for (j=0; j<64; j++) {
  1991. if ((j%16) == 0)
  1992. dprintk("\n%03x:", j);
  1993. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1994. }
  1995. dprintk("\n");
  1996. }
  1997. dev->trans_start = jiffies;
  1998. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1999. return NETDEV_TX_OK;
  2000. }
  2001. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  2002. {
  2003. struct fe_priv *np = netdev_priv(dev);
  2004. u32 tx_flags = 0;
  2005. u32 tx_flags_extra;
  2006. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2007. unsigned int i;
  2008. u32 offset = 0;
  2009. u32 bcnt;
  2010. u32 size = skb->len-skb->data_len;
  2011. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2012. u32 empty_slots;
  2013. struct ring_desc_ex* put_tx;
  2014. struct ring_desc_ex* start_tx;
  2015. struct ring_desc_ex* prev_tx;
  2016. struct nv_skb_map* prev_tx_ctx;
  2017. struct nv_skb_map* start_tx_ctx;
  2018. unsigned long flags;
  2019. /* add fragments to entries count */
  2020. for (i = 0; i < fragments; i++) {
  2021. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2022. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2023. }
  2024. spin_lock_irqsave(&np->lock, flags);
  2025. empty_slots = nv_get_empty_tx_slots(np);
  2026. if (unlikely(empty_slots <= entries)) {
  2027. netif_stop_queue(dev);
  2028. np->tx_stop = 1;
  2029. spin_unlock_irqrestore(&np->lock, flags);
  2030. return NETDEV_TX_BUSY;
  2031. }
  2032. spin_unlock_irqrestore(&np->lock, flags);
  2033. start_tx = put_tx = np->put_tx.ex;
  2034. start_tx_ctx = np->put_tx_ctx;
  2035. /* setup the header buffer */
  2036. do {
  2037. prev_tx = put_tx;
  2038. prev_tx_ctx = np->put_tx_ctx;
  2039. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2040. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2041. PCI_DMA_TODEVICE);
  2042. np->put_tx_ctx->dma_len = bcnt;
  2043. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2044. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2045. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2046. tx_flags = NV_TX2_VALID;
  2047. offset += bcnt;
  2048. size -= bcnt;
  2049. if (unlikely(put_tx++ == np->last_tx.ex))
  2050. put_tx = np->first_tx.ex;
  2051. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2052. np->put_tx_ctx = np->first_tx_ctx;
  2053. } while (size);
  2054. /* setup the fragments */
  2055. for (i = 0; i < fragments; i++) {
  2056. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2057. u32 size = frag->size;
  2058. offset = 0;
  2059. do {
  2060. prev_tx = put_tx;
  2061. prev_tx_ctx = np->put_tx_ctx;
  2062. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2063. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2064. PCI_DMA_TODEVICE);
  2065. np->put_tx_ctx->dma_len = bcnt;
  2066. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2067. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2068. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2069. offset += bcnt;
  2070. size -= bcnt;
  2071. if (unlikely(put_tx++ == np->last_tx.ex))
  2072. put_tx = np->first_tx.ex;
  2073. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2074. np->put_tx_ctx = np->first_tx_ctx;
  2075. } while (size);
  2076. }
  2077. /* set last fragment flag */
  2078. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2079. /* save skb in this slot's context area */
  2080. prev_tx_ctx->skb = skb;
  2081. if (skb_is_gso(skb))
  2082. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2083. else
  2084. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2085. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2086. /* vlan tag */
  2087. if (likely(!np->vlangrp)) {
  2088. start_tx->txvlan = 0;
  2089. } else {
  2090. if (vlan_tx_tag_present(skb))
  2091. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2092. else
  2093. start_tx->txvlan = 0;
  2094. }
  2095. spin_lock_irqsave(&np->lock, flags);
  2096. if (np->tx_limit) {
  2097. /* Limit the number of outstanding tx. Setup all fragments, but
  2098. * do not set the VALID bit on the first descriptor. Save a pointer
  2099. * to that descriptor and also for next skb_map element.
  2100. */
  2101. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2102. if (!np->tx_change_owner)
  2103. np->tx_change_owner = start_tx_ctx;
  2104. /* remove VALID bit */
  2105. tx_flags &= ~NV_TX2_VALID;
  2106. start_tx_ctx->first_tx_desc = start_tx;
  2107. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2108. np->tx_end_flip = np->put_tx_ctx;
  2109. } else {
  2110. np->tx_pkts_in_progress++;
  2111. }
  2112. }
  2113. /* set tx flags */
  2114. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2115. np->put_tx.ex = put_tx;
  2116. spin_unlock_irqrestore(&np->lock, flags);
  2117. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2118. dev->name, entries, tx_flags_extra);
  2119. {
  2120. int j;
  2121. for (j=0; j<64; j++) {
  2122. if ((j%16) == 0)
  2123. dprintk("\n%03x:", j);
  2124. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2125. }
  2126. dprintk("\n");
  2127. }
  2128. dev->trans_start = jiffies;
  2129. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2130. return NETDEV_TX_OK;
  2131. }
  2132. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2133. {
  2134. struct fe_priv *np = netdev_priv(dev);
  2135. np->tx_pkts_in_progress--;
  2136. if (np->tx_change_owner) {
  2137. np->tx_change_owner->first_tx_desc->flaglen |=
  2138. cpu_to_le32(NV_TX2_VALID);
  2139. np->tx_pkts_in_progress++;
  2140. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2141. if (np->tx_change_owner == np->tx_end_flip)
  2142. np->tx_change_owner = NULL;
  2143. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2144. }
  2145. }
  2146. /*
  2147. * nv_tx_done: check for completed packets, release the skbs.
  2148. *
  2149. * Caller must own np->lock.
  2150. */
  2151. static void nv_tx_done(struct net_device *dev)
  2152. {
  2153. struct fe_priv *np = netdev_priv(dev);
  2154. u32 flags;
  2155. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2156. while ((np->get_tx.orig != np->put_tx.orig) &&
  2157. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  2158. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2159. dev->name, flags);
  2160. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2161. np->get_tx_ctx->dma_len,
  2162. PCI_DMA_TODEVICE);
  2163. np->get_tx_ctx->dma = 0;
  2164. if (np->desc_ver == DESC_VER_1) {
  2165. if (flags & NV_TX_LASTPACKET) {
  2166. if (flags & NV_TX_ERROR) {
  2167. if (flags & NV_TX_UNDERFLOW)
  2168. dev->stats.tx_fifo_errors++;
  2169. if (flags & NV_TX_CARRIERLOST)
  2170. dev->stats.tx_carrier_errors++;
  2171. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2172. nv_legacybackoff_reseed(dev);
  2173. dev->stats.tx_errors++;
  2174. } else {
  2175. dev->stats.tx_packets++;
  2176. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2177. }
  2178. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2179. np->get_tx_ctx->skb = NULL;
  2180. }
  2181. } else {
  2182. if (flags & NV_TX2_LASTPACKET) {
  2183. if (flags & NV_TX2_ERROR) {
  2184. if (flags & NV_TX2_UNDERFLOW)
  2185. dev->stats.tx_fifo_errors++;
  2186. if (flags & NV_TX2_CARRIERLOST)
  2187. dev->stats.tx_carrier_errors++;
  2188. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2189. nv_legacybackoff_reseed(dev);
  2190. dev->stats.tx_errors++;
  2191. } else {
  2192. dev->stats.tx_packets++;
  2193. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2194. }
  2195. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2196. np->get_tx_ctx->skb = NULL;
  2197. }
  2198. }
  2199. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2200. np->get_tx.orig = np->first_tx.orig;
  2201. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2202. np->get_tx_ctx = np->first_tx_ctx;
  2203. }
  2204. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2205. np->tx_stop = 0;
  2206. netif_wake_queue(dev);
  2207. }
  2208. }
  2209. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  2210. {
  2211. struct fe_priv *np = netdev_priv(dev);
  2212. u32 flags;
  2213. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2214. while ((np->get_tx.ex != np->put_tx.ex) &&
  2215. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2216. (limit-- > 0)) {
  2217. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2218. dev->name, flags);
  2219. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  2220. np->get_tx_ctx->dma_len,
  2221. PCI_DMA_TODEVICE);
  2222. np->get_tx_ctx->dma = 0;
  2223. if (flags & NV_TX2_LASTPACKET) {
  2224. if (!(flags & NV_TX2_ERROR))
  2225. dev->stats.tx_packets++;
  2226. else {
  2227. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2228. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2229. nv_gear_backoff_reseed(dev);
  2230. else
  2231. nv_legacybackoff_reseed(dev);
  2232. }
  2233. }
  2234. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2235. np->get_tx_ctx->skb = NULL;
  2236. if (np->tx_limit) {
  2237. nv_tx_flip_ownership(dev);
  2238. }
  2239. }
  2240. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2241. np->get_tx.ex = np->first_tx.ex;
  2242. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2243. np->get_tx_ctx = np->first_tx_ctx;
  2244. }
  2245. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2246. np->tx_stop = 0;
  2247. netif_wake_queue(dev);
  2248. }
  2249. }
  2250. /*
  2251. * nv_tx_timeout: dev->tx_timeout function
  2252. * Called with netif_tx_lock held.
  2253. */
  2254. static void nv_tx_timeout(struct net_device *dev)
  2255. {
  2256. struct fe_priv *np = netdev_priv(dev);
  2257. u8 __iomem *base = get_hwbase(dev);
  2258. u32 status;
  2259. if (np->msi_flags & NV_MSI_X_ENABLED)
  2260. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2261. else
  2262. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2263. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2264. {
  2265. int i;
  2266. printk(KERN_INFO "%s: Ring at %lx\n",
  2267. dev->name, (unsigned long)np->ring_addr);
  2268. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2269. for (i=0;i<=np->register_size;i+= 32) {
  2270. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2271. i,
  2272. readl(base + i + 0), readl(base + i + 4),
  2273. readl(base + i + 8), readl(base + i + 12),
  2274. readl(base + i + 16), readl(base + i + 20),
  2275. readl(base + i + 24), readl(base + i + 28));
  2276. }
  2277. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2278. for (i=0;i<np->tx_ring_size;i+= 4) {
  2279. if (!nv_optimized(np)) {
  2280. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2281. i,
  2282. le32_to_cpu(np->tx_ring.orig[i].buf),
  2283. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2284. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2285. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2286. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2287. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2288. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2289. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2290. } else {
  2291. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2292. i,
  2293. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2294. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2295. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2296. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2297. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2298. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2299. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2300. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2301. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2302. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2303. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2304. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2305. }
  2306. }
  2307. }
  2308. spin_lock_irq(&np->lock);
  2309. /* 1) stop tx engine */
  2310. nv_stop_tx(dev);
  2311. /* 2) check that the packets were not sent already: */
  2312. if (!nv_optimized(np))
  2313. nv_tx_done(dev);
  2314. else
  2315. nv_tx_done_optimized(dev, np->tx_ring_size);
  2316. /* 3) if there are dead entries: clear everything */
  2317. if (np->get_tx_ctx != np->put_tx_ctx) {
  2318. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2319. nv_drain_tx(dev);
  2320. nv_init_tx(dev);
  2321. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2322. }
  2323. netif_wake_queue(dev);
  2324. /* 4) restart tx engine */
  2325. nv_start_tx(dev);
  2326. spin_unlock_irq(&np->lock);
  2327. }
  2328. /*
  2329. * Called when the nic notices a mismatch between the actual data len on the
  2330. * wire and the len indicated in the 802 header
  2331. */
  2332. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2333. {
  2334. int hdrlen; /* length of the 802 header */
  2335. int protolen; /* length as stored in the proto field */
  2336. /* 1) calculate len according to header */
  2337. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2338. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2339. hdrlen = VLAN_HLEN;
  2340. } else {
  2341. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2342. hdrlen = ETH_HLEN;
  2343. }
  2344. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2345. dev->name, datalen, protolen, hdrlen);
  2346. if (protolen > ETH_DATA_LEN)
  2347. return datalen; /* Value in proto field not a len, no checks possible */
  2348. protolen += hdrlen;
  2349. /* consistency checks: */
  2350. if (datalen > ETH_ZLEN) {
  2351. if (datalen >= protolen) {
  2352. /* more data on wire than in 802 header, trim of
  2353. * additional data.
  2354. */
  2355. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2356. dev->name, protolen);
  2357. return protolen;
  2358. } else {
  2359. /* less data on wire than mentioned in header.
  2360. * Discard the packet.
  2361. */
  2362. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2363. dev->name);
  2364. return -1;
  2365. }
  2366. } else {
  2367. /* short packet. Accept only if 802 values are also short */
  2368. if (protolen > ETH_ZLEN) {
  2369. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2370. dev->name);
  2371. return -1;
  2372. }
  2373. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2374. dev->name, datalen);
  2375. return datalen;
  2376. }
  2377. }
  2378. static int nv_rx_process(struct net_device *dev, int limit)
  2379. {
  2380. struct fe_priv *np = netdev_priv(dev);
  2381. u32 flags;
  2382. int rx_work = 0;
  2383. struct sk_buff *skb;
  2384. int len;
  2385. while((np->get_rx.orig != np->put_rx.orig) &&
  2386. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2387. (rx_work < limit)) {
  2388. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2389. dev->name, flags);
  2390. /*
  2391. * the packet is for us - immediately tear down the pci mapping.
  2392. * TODO: check if a prefetch of the first cacheline improves
  2393. * the performance.
  2394. */
  2395. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2396. np->get_rx_ctx->dma_len,
  2397. PCI_DMA_FROMDEVICE);
  2398. skb = np->get_rx_ctx->skb;
  2399. np->get_rx_ctx->skb = NULL;
  2400. {
  2401. int j;
  2402. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2403. for (j=0; j<64; j++) {
  2404. if ((j%16) == 0)
  2405. dprintk("\n%03x:", j);
  2406. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2407. }
  2408. dprintk("\n");
  2409. }
  2410. /* look at what we actually got: */
  2411. if (np->desc_ver == DESC_VER_1) {
  2412. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2413. len = flags & LEN_MASK_V1;
  2414. if (unlikely(flags & NV_RX_ERROR)) {
  2415. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2416. len = nv_getlen(dev, skb->data, len);
  2417. if (len < 0) {
  2418. dev->stats.rx_errors++;
  2419. dev_kfree_skb(skb);
  2420. goto next_pkt;
  2421. }
  2422. }
  2423. /* framing errors are soft errors */
  2424. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2425. if (flags & NV_RX_SUBSTRACT1) {
  2426. len--;
  2427. }
  2428. }
  2429. /* the rest are hard errors */
  2430. else {
  2431. if (flags & NV_RX_MISSEDFRAME)
  2432. dev->stats.rx_missed_errors++;
  2433. if (flags & NV_RX_CRCERR)
  2434. dev->stats.rx_crc_errors++;
  2435. if (flags & NV_RX_OVERFLOW)
  2436. dev->stats.rx_over_errors++;
  2437. dev->stats.rx_errors++;
  2438. dev_kfree_skb(skb);
  2439. goto next_pkt;
  2440. }
  2441. }
  2442. } else {
  2443. dev_kfree_skb(skb);
  2444. goto next_pkt;
  2445. }
  2446. } else {
  2447. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2448. len = flags & LEN_MASK_V2;
  2449. if (unlikely(flags & NV_RX2_ERROR)) {
  2450. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2451. len = nv_getlen(dev, skb->data, len);
  2452. if (len < 0) {
  2453. dev->stats.rx_errors++;
  2454. dev_kfree_skb(skb);
  2455. goto next_pkt;
  2456. }
  2457. }
  2458. /* framing errors are soft errors */
  2459. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2460. if (flags & NV_RX2_SUBSTRACT1) {
  2461. len--;
  2462. }
  2463. }
  2464. /* the rest are hard errors */
  2465. else {
  2466. if (flags & NV_RX2_CRCERR)
  2467. dev->stats.rx_crc_errors++;
  2468. if (flags & NV_RX2_OVERFLOW)
  2469. dev->stats.rx_over_errors++;
  2470. dev->stats.rx_errors++;
  2471. dev_kfree_skb(skb);
  2472. goto next_pkt;
  2473. }
  2474. }
  2475. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2476. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2477. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2478. } else {
  2479. dev_kfree_skb(skb);
  2480. goto next_pkt;
  2481. }
  2482. }
  2483. /* got a valid packet - forward it to the network core */
  2484. skb_put(skb, len);
  2485. skb->protocol = eth_type_trans(skb, dev);
  2486. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2487. dev->name, len, skb->protocol);
  2488. #ifdef CONFIG_FORCEDETH_NAPI
  2489. netif_receive_skb(skb);
  2490. #else
  2491. netif_rx(skb);
  2492. #endif
  2493. dev->stats.rx_packets++;
  2494. dev->stats.rx_bytes += len;
  2495. next_pkt:
  2496. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2497. np->get_rx.orig = np->first_rx.orig;
  2498. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2499. np->get_rx_ctx = np->first_rx_ctx;
  2500. rx_work++;
  2501. }
  2502. return rx_work;
  2503. }
  2504. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2505. {
  2506. struct fe_priv *np = netdev_priv(dev);
  2507. u32 flags;
  2508. u32 vlanflags = 0;
  2509. int rx_work = 0;
  2510. struct sk_buff *skb;
  2511. int len;
  2512. while((np->get_rx.ex != np->put_rx.ex) &&
  2513. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2514. (rx_work < limit)) {
  2515. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2516. dev->name, flags);
  2517. /*
  2518. * the packet is for us - immediately tear down the pci mapping.
  2519. * TODO: check if a prefetch of the first cacheline improves
  2520. * the performance.
  2521. */
  2522. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2523. np->get_rx_ctx->dma_len,
  2524. PCI_DMA_FROMDEVICE);
  2525. skb = np->get_rx_ctx->skb;
  2526. np->get_rx_ctx->skb = NULL;
  2527. {
  2528. int j;
  2529. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2530. for (j=0; j<64; j++) {
  2531. if ((j%16) == 0)
  2532. dprintk("\n%03x:", j);
  2533. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2534. }
  2535. dprintk("\n");
  2536. }
  2537. /* look at what we actually got: */
  2538. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2539. len = flags & LEN_MASK_V2;
  2540. if (unlikely(flags & NV_RX2_ERROR)) {
  2541. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2542. len = nv_getlen(dev, skb->data, len);
  2543. if (len < 0) {
  2544. dev_kfree_skb(skb);
  2545. goto next_pkt;
  2546. }
  2547. }
  2548. /* framing errors are soft errors */
  2549. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2550. if (flags & NV_RX2_SUBSTRACT1) {
  2551. len--;
  2552. }
  2553. }
  2554. /* the rest are hard errors */
  2555. else {
  2556. dev_kfree_skb(skb);
  2557. goto next_pkt;
  2558. }
  2559. }
  2560. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2561. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2562. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2563. /* got a valid packet - forward it to the network core */
  2564. skb_put(skb, len);
  2565. skb->protocol = eth_type_trans(skb, dev);
  2566. prefetch(skb->data);
  2567. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2568. dev->name, len, skb->protocol);
  2569. if (likely(!np->vlangrp)) {
  2570. #ifdef CONFIG_FORCEDETH_NAPI
  2571. netif_receive_skb(skb);
  2572. #else
  2573. netif_rx(skb);
  2574. #endif
  2575. } else {
  2576. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2577. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2578. #ifdef CONFIG_FORCEDETH_NAPI
  2579. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2580. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2581. #else
  2582. vlan_hwaccel_rx(skb, np->vlangrp,
  2583. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2584. #endif
  2585. } else {
  2586. #ifdef CONFIG_FORCEDETH_NAPI
  2587. netif_receive_skb(skb);
  2588. #else
  2589. netif_rx(skb);
  2590. #endif
  2591. }
  2592. }
  2593. dev->stats.rx_packets++;
  2594. dev->stats.rx_bytes += len;
  2595. } else {
  2596. dev_kfree_skb(skb);
  2597. }
  2598. next_pkt:
  2599. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2600. np->get_rx.ex = np->first_rx.ex;
  2601. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2602. np->get_rx_ctx = np->first_rx_ctx;
  2603. rx_work++;
  2604. }
  2605. return rx_work;
  2606. }
  2607. static void set_bufsize(struct net_device *dev)
  2608. {
  2609. struct fe_priv *np = netdev_priv(dev);
  2610. if (dev->mtu <= ETH_DATA_LEN)
  2611. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2612. else
  2613. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2614. }
  2615. /*
  2616. * nv_change_mtu: dev->change_mtu function
  2617. * Called with dev_base_lock held for read.
  2618. */
  2619. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2620. {
  2621. struct fe_priv *np = netdev_priv(dev);
  2622. int old_mtu;
  2623. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2624. return -EINVAL;
  2625. old_mtu = dev->mtu;
  2626. dev->mtu = new_mtu;
  2627. /* return early if the buffer sizes will not change */
  2628. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2629. return 0;
  2630. if (old_mtu == new_mtu)
  2631. return 0;
  2632. /* synchronized against open : rtnl_lock() held by caller */
  2633. if (netif_running(dev)) {
  2634. u8 __iomem *base = get_hwbase(dev);
  2635. /*
  2636. * It seems that the nic preloads valid ring entries into an
  2637. * internal buffer. The procedure for flushing everything is
  2638. * guessed, there is probably a simpler approach.
  2639. * Changing the MTU is a rare event, it shouldn't matter.
  2640. */
  2641. nv_disable_irq(dev);
  2642. nv_napi_disable(dev);
  2643. netif_tx_lock_bh(dev);
  2644. netif_addr_lock(dev);
  2645. spin_lock(&np->lock);
  2646. /* stop engines */
  2647. nv_stop_rxtx(dev);
  2648. nv_txrx_reset(dev);
  2649. /* drain rx queue */
  2650. nv_drain_rxtx(dev);
  2651. /* reinit driver view of the rx queue */
  2652. set_bufsize(dev);
  2653. if (nv_init_ring(dev)) {
  2654. if (!np->in_shutdown)
  2655. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2656. }
  2657. /* reinit nic view of the rx queue */
  2658. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2659. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2660. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2661. base + NvRegRingSizes);
  2662. pci_push(base);
  2663. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2664. pci_push(base);
  2665. /* restart rx engine */
  2666. nv_start_rxtx(dev);
  2667. spin_unlock(&np->lock);
  2668. netif_addr_unlock(dev);
  2669. netif_tx_unlock_bh(dev);
  2670. nv_napi_enable(dev);
  2671. nv_enable_irq(dev);
  2672. }
  2673. return 0;
  2674. }
  2675. static void nv_copy_mac_to_hw(struct net_device *dev)
  2676. {
  2677. u8 __iomem *base = get_hwbase(dev);
  2678. u32 mac[2];
  2679. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2680. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2681. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2682. writel(mac[0], base + NvRegMacAddrA);
  2683. writel(mac[1], base + NvRegMacAddrB);
  2684. }
  2685. /*
  2686. * nv_set_mac_address: dev->set_mac_address function
  2687. * Called with rtnl_lock() held.
  2688. */
  2689. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2690. {
  2691. struct fe_priv *np = netdev_priv(dev);
  2692. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2693. if (!is_valid_ether_addr(macaddr->sa_data))
  2694. return -EADDRNOTAVAIL;
  2695. /* synchronized against open : rtnl_lock() held by caller */
  2696. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2697. if (netif_running(dev)) {
  2698. netif_tx_lock_bh(dev);
  2699. netif_addr_lock(dev);
  2700. spin_lock_irq(&np->lock);
  2701. /* stop rx engine */
  2702. nv_stop_rx(dev);
  2703. /* set mac address */
  2704. nv_copy_mac_to_hw(dev);
  2705. /* restart rx engine */
  2706. nv_start_rx(dev);
  2707. spin_unlock_irq(&np->lock);
  2708. netif_addr_unlock(dev);
  2709. netif_tx_unlock_bh(dev);
  2710. } else {
  2711. nv_copy_mac_to_hw(dev);
  2712. }
  2713. return 0;
  2714. }
  2715. /*
  2716. * nv_set_multicast: dev->set_multicast function
  2717. * Called with netif_tx_lock held.
  2718. */
  2719. static void nv_set_multicast(struct net_device *dev)
  2720. {
  2721. struct fe_priv *np = netdev_priv(dev);
  2722. u8 __iomem *base = get_hwbase(dev);
  2723. u32 addr[2];
  2724. u32 mask[2];
  2725. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2726. memset(addr, 0, sizeof(addr));
  2727. memset(mask, 0, sizeof(mask));
  2728. if (dev->flags & IFF_PROMISC) {
  2729. pff |= NVREG_PFF_PROMISC;
  2730. } else {
  2731. pff |= NVREG_PFF_MYADDR;
  2732. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2733. u32 alwaysOff[2];
  2734. u32 alwaysOn[2];
  2735. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2736. if (dev->flags & IFF_ALLMULTI) {
  2737. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2738. } else {
  2739. struct dev_mc_list *walk;
  2740. walk = dev->mc_list;
  2741. while (walk != NULL) {
  2742. u32 a, b;
  2743. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2744. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2745. alwaysOn[0] &= a;
  2746. alwaysOff[0] &= ~a;
  2747. alwaysOn[1] &= b;
  2748. alwaysOff[1] &= ~b;
  2749. walk = walk->next;
  2750. }
  2751. }
  2752. addr[0] = alwaysOn[0];
  2753. addr[1] = alwaysOn[1];
  2754. mask[0] = alwaysOn[0] | alwaysOff[0];
  2755. mask[1] = alwaysOn[1] | alwaysOff[1];
  2756. } else {
  2757. mask[0] = NVREG_MCASTMASKA_NONE;
  2758. mask[1] = NVREG_MCASTMASKB_NONE;
  2759. }
  2760. }
  2761. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2762. pff |= NVREG_PFF_ALWAYS;
  2763. spin_lock_irq(&np->lock);
  2764. nv_stop_rx(dev);
  2765. writel(addr[0], base + NvRegMulticastAddrA);
  2766. writel(addr[1], base + NvRegMulticastAddrB);
  2767. writel(mask[0], base + NvRegMulticastMaskA);
  2768. writel(mask[1], base + NvRegMulticastMaskB);
  2769. writel(pff, base + NvRegPacketFilterFlags);
  2770. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2771. dev->name);
  2772. nv_start_rx(dev);
  2773. spin_unlock_irq(&np->lock);
  2774. }
  2775. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2776. {
  2777. struct fe_priv *np = netdev_priv(dev);
  2778. u8 __iomem *base = get_hwbase(dev);
  2779. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2780. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2781. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2782. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2783. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2784. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2785. } else {
  2786. writel(pff, base + NvRegPacketFilterFlags);
  2787. }
  2788. }
  2789. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2790. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2791. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2792. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2793. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2794. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2795. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2796. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2797. /* limit the number of tx pause frames to a default of 8 */
  2798. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2799. }
  2800. writel(pause_enable, base + NvRegTxPauseFrame);
  2801. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2802. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2803. } else {
  2804. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2805. writel(regmisc, base + NvRegMisc1);
  2806. }
  2807. }
  2808. }
  2809. /**
  2810. * nv_update_linkspeed: Setup the MAC according to the link partner
  2811. * @dev: Network device to be configured
  2812. *
  2813. * The function queries the PHY and checks if there is a link partner.
  2814. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2815. * set to 10 MBit HD.
  2816. *
  2817. * The function returns 0 if there is no link partner and 1 if there is
  2818. * a good link partner.
  2819. */
  2820. static int nv_update_linkspeed(struct net_device *dev)
  2821. {
  2822. struct fe_priv *np = netdev_priv(dev);
  2823. u8 __iomem *base = get_hwbase(dev);
  2824. int adv = 0;
  2825. int lpa = 0;
  2826. int adv_lpa, adv_pause, lpa_pause;
  2827. int newls = np->linkspeed;
  2828. int newdup = np->duplex;
  2829. int mii_status;
  2830. int retval = 0;
  2831. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2832. u32 txrxFlags = 0;
  2833. u32 phy_exp;
  2834. /* BMSR_LSTATUS is latched, read it twice:
  2835. * we want the current value.
  2836. */
  2837. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2838. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2839. if (!(mii_status & BMSR_LSTATUS)) {
  2840. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2841. dev->name);
  2842. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2843. newdup = 0;
  2844. retval = 0;
  2845. goto set_speed;
  2846. }
  2847. if (np->autoneg == 0) {
  2848. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2849. dev->name, np->fixed_mode);
  2850. if (np->fixed_mode & LPA_100FULL) {
  2851. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2852. newdup = 1;
  2853. } else if (np->fixed_mode & LPA_100HALF) {
  2854. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2855. newdup = 0;
  2856. } else if (np->fixed_mode & LPA_10FULL) {
  2857. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2858. newdup = 1;
  2859. } else {
  2860. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2861. newdup = 0;
  2862. }
  2863. retval = 1;
  2864. goto set_speed;
  2865. }
  2866. /* check auto negotiation is complete */
  2867. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2868. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2869. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2870. newdup = 0;
  2871. retval = 0;
  2872. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2873. goto set_speed;
  2874. }
  2875. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2876. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2877. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2878. dev->name, adv, lpa);
  2879. retval = 1;
  2880. if (np->gigabit == PHY_GIGABIT) {
  2881. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2882. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2883. if ((control_1000 & ADVERTISE_1000FULL) &&
  2884. (status_1000 & LPA_1000FULL)) {
  2885. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2886. dev->name);
  2887. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2888. newdup = 1;
  2889. goto set_speed;
  2890. }
  2891. }
  2892. /* FIXME: handle parallel detection properly */
  2893. adv_lpa = lpa & adv;
  2894. if (adv_lpa & LPA_100FULL) {
  2895. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2896. newdup = 1;
  2897. } else if (adv_lpa & LPA_100HALF) {
  2898. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2899. newdup = 0;
  2900. } else if (adv_lpa & LPA_10FULL) {
  2901. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2902. newdup = 1;
  2903. } else if (adv_lpa & LPA_10HALF) {
  2904. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2905. newdup = 0;
  2906. } else {
  2907. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2908. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2909. newdup = 0;
  2910. }
  2911. set_speed:
  2912. if (np->duplex == newdup && np->linkspeed == newls)
  2913. return retval;
  2914. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2915. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2916. np->duplex = newdup;
  2917. np->linkspeed = newls;
  2918. /* The transmitter and receiver must be restarted for safe update */
  2919. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2920. txrxFlags |= NV_RESTART_TX;
  2921. nv_stop_tx(dev);
  2922. }
  2923. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2924. txrxFlags |= NV_RESTART_RX;
  2925. nv_stop_rx(dev);
  2926. }
  2927. if (np->gigabit == PHY_GIGABIT) {
  2928. phyreg = readl(base + NvRegSlotTime);
  2929. phyreg &= ~(0x3FF00);
  2930. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2931. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2932. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2933. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2934. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2935. writel(phyreg, base + NvRegSlotTime);
  2936. }
  2937. phyreg = readl(base + NvRegPhyInterface);
  2938. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2939. if (np->duplex == 0)
  2940. phyreg |= PHY_HALF;
  2941. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2942. phyreg |= PHY_100;
  2943. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2944. phyreg |= PHY_1000;
  2945. writel(phyreg, base + NvRegPhyInterface);
  2946. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2947. if (phyreg & PHY_RGMII) {
  2948. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2949. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2950. } else {
  2951. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2952. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2953. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2954. else
  2955. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2956. } else {
  2957. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2958. }
  2959. }
  2960. } else {
  2961. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2962. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2963. else
  2964. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2965. }
  2966. writel(txreg, base + NvRegTxDeferral);
  2967. if (np->desc_ver == DESC_VER_1) {
  2968. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2969. } else {
  2970. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2971. txreg = NVREG_TX_WM_DESC2_3_1000;
  2972. else
  2973. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2974. }
  2975. writel(txreg, base + NvRegTxWatermark);
  2976. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2977. base + NvRegMisc1);
  2978. pci_push(base);
  2979. writel(np->linkspeed, base + NvRegLinkSpeed);
  2980. pci_push(base);
  2981. pause_flags = 0;
  2982. /* setup pause frame */
  2983. if (np->duplex != 0) {
  2984. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2985. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2986. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2987. switch (adv_pause) {
  2988. case ADVERTISE_PAUSE_CAP:
  2989. if (lpa_pause & LPA_PAUSE_CAP) {
  2990. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2991. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2992. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2993. }
  2994. break;
  2995. case ADVERTISE_PAUSE_ASYM:
  2996. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2997. {
  2998. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2999. }
  3000. break;
  3001. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  3002. if (lpa_pause & LPA_PAUSE_CAP)
  3003. {
  3004. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3005. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3006. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3007. }
  3008. if (lpa_pause == LPA_PAUSE_ASYM)
  3009. {
  3010. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3011. }
  3012. break;
  3013. }
  3014. } else {
  3015. pause_flags = np->pause_flags;
  3016. }
  3017. }
  3018. nv_update_pause(dev, pause_flags);
  3019. if (txrxFlags & NV_RESTART_TX)
  3020. nv_start_tx(dev);
  3021. if (txrxFlags & NV_RESTART_RX)
  3022. nv_start_rx(dev);
  3023. return retval;
  3024. }
  3025. static void nv_linkchange(struct net_device *dev)
  3026. {
  3027. if (nv_update_linkspeed(dev)) {
  3028. if (!netif_carrier_ok(dev)) {
  3029. netif_carrier_on(dev);
  3030. printk(KERN_INFO "%s: link up.\n", dev->name);
  3031. nv_start_rx(dev);
  3032. }
  3033. } else {
  3034. if (netif_carrier_ok(dev)) {
  3035. netif_carrier_off(dev);
  3036. printk(KERN_INFO "%s: link down.\n", dev->name);
  3037. nv_stop_rx(dev);
  3038. }
  3039. }
  3040. }
  3041. static void nv_link_irq(struct net_device *dev)
  3042. {
  3043. u8 __iomem *base = get_hwbase(dev);
  3044. u32 miistat;
  3045. miistat = readl(base + NvRegMIIStatus);
  3046. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3047. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3048. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3049. nv_linkchange(dev);
  3050. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3051. }
  3052. static void nv_msi_workaround(struct fe_priv *np)
  3053. {
  3054. /* Need to toggle the msi irq mask within the ethernet device,
  3055. * otherwise, future interrupts will not be detected.
  3056. */
  3057. if (np->msi_flags & NV_MSI_ENABLED) {
  3058. u8 __iomem *base = np->base;
  3059. writel(0, base + NvRegMSIIrqMask);
  3060. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3061. }
  3062. }
  3063. static irqreturn_t nv_nic_irq(int foo, void *data)
  3064. {
  3065. struct net_device *dev = (struct net_device *) data;
  3066. struct fe_priv *np = netdev_priv(dev);
  3067. u8 __iomem *base = get_hwbase(dev);
  3068. u32 events;
  3069. int i;
  3070. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3071. for (i=0; ; i++) {
  3072. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3073. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3074. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3075. } else {
  3076. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3077. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3078. }
  3079. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3080. if (!(events & np->irqmask))
  3081. break;
  3082. nv_msi_workaround(np);
  3083. spin_lock(&np->lock);
  3084. nv_tx_done(dev);
  3085. spin_unlock(&np->lock);
  3086. #ifdef CONFIG_FORCEDETH_NAPI
  3087. if (events & NVREG_IRQ_RX_ALL) {
  3088. spin_lock(&np->lock);
  3089. napi_schedule(&np->napi);
  3090. /* Disable furthur receive irq's */
  3091. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3092. if (np->msi_flags & NV_MSI_X_ENABLED)
  3093. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3094. else
  3095. writel(np->irqmask, base + NvRegIrqMask);
  3096. spin_unlock(&np->lock);
  3097. }
  3098. #else
  3099. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  3100. if (unlikely(nv_alloc_rx(dev))) {
  3101. spin_lock(&np->lock);
  3102. if (!np->in_shutdown)
  3103. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3104. spin_unlock(&np->lock);
  3105. }
  3106. }
  3107. #endif
  3108. if (unlikely(events & NVREG_IRQ_LINK)) {
  3109. spin_lock(&np->lock);
  3110. nv_link_irq(dev);
  3111. spin_unlock(&np->lock);
  3112. }
  3113. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3114. spin_lock(&np->lock);
  3115. nv_linkchange(dev);
  3116. spin_unlock(&np->lock);
  3117. np->link_timeout = jiffies + LINK_TIMEOUT;
  3118. }
  3119. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3120. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3121. dev->name, events);
  3122. }
  3123. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3124. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3125. dev->name, events);
  3126. }
  3127. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3128. spin_lock(&np->lock);
  3129. /* disable interrupts on the nic */
  3130. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3131. writel(0, base + NvRegIrqMask);
  3132. else
  3133. writel(np->irqmask, base + NvRegIrqMask);
  3134. pci_push(base);
  3135. if (!np->in_shutdown) {
  3136. np->nic_poll_irq = np->irqmask;
  3137. np->recover_error = 1;
  3138. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3139. }
  3140. spin_unlock(&np->lock);
  3141. break;
  3142. }
  3143. if (unlikely(i > max_interrupt_work)) {
  3144. spin_lock(&np->lock);
  3145. /* disable interrupts on the nic */
  3146. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3147. writel(0, base + NvRegIrqMask);
  3148. else
  3149. writel(np->irqmask, base + NvRegIrqMask);
  3150. pci_push(base);
  3151. if (!np->in_shutdown) {
  3152. np->nic_poll_irq = np->irqmask;
  3153. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3154. }
  3155. spin_unlock(&np->lock);
  3156. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3157. break;
  3158. }
  3159. }
  3160. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3161. return IRQ_RETVAL(i);
  3162. }
  3163. /**
  3164. * All _optimized functions are used to help increase performance
  3165. * (reduce CPU and increase throughput). They use descripter version 3,
  3166. * compiler directives, and reduce memory accesses.
  3167. */
  3168. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3169. {
  3170. struct net_device *dev = (struct net_device *) data;
  3171. struct fe_priv *np = netdev_priv(dev);
  3172. u8 __iomem *base = get_hwbase(dev);
  3173. u32 events;
  3174. int i;
  3175. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3176. for (i=0; ; i++) {
  3177. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3178. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3179. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3180. } else {
  3181. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3182. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3183. }
  3184. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3185. if (!(events & np->irqmask))
  3186. break;
  3187. nv_msi_workaround(np);
  3188. spin_lock(&np->lock);
  3189. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3190. spin_unlock(&np->lock);
  3191. #ifdef CONFIG_FORCEDETH_NAPI
  3192. if (events & NVREG_IRQ_RX_ALL) {
  3193. spin_lock(&np->lock);
  3194. napi_schedule(&np->napi);
  3195. /* Disable furthur receive irq's */
  3196. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  3197. if (np->msi_flags & NV_MSI_X_ENABLED)
  3198. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3199. else
  3200. writel(np->irqmask, base + NvRegIrqMask);
  3201. spin_unlock(&np->lock);
  3202. }
  3203. #else
  3204. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3205. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3206. spin_lock(&np->lock);
  3207. if (!np->in_shutdown)
  3208. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3209. spin_unlock(&np->lock);
  3210. }
  3211. }
  3212. #endif
  3213. if (unlikely(events & NVREG_IRQ_LINK)) {
  3214. spin_lock(&np->lock);
  3215. nv_link_irq(dev);
  3216. spin_unlock(&np->lock);
  3217. }
  3218. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3219. spin_lock(&np->lock);
  3220. nv_linkchange(dev);
  3221. spin_unlock(&np->lock);
  3222. np->link_timeout = jiffies + LINK_TIMEOUT;
  3223. }
  3224. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3225. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3226. dev->name, events);
  3227. }
  3228. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  3229. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3230. dev->name, events);
  3231. }
  3232. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  3233. spin_lock(&np->lock);
  3234. /* disable interrupts on the nic */
  3235. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3236. writel(0, base + NvRegIrqMask);
  3237. else
  3238. writel(np->irqmask, base + NvRegIrqMask);
  3239. pci_push(base);
  3240. if (!np->in_shutdown) {
  3241. np->nic_poll_irq = np->irqmask;
  3242. np->recover_error = 1;
  3243. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3244. }
  3245. spin_unlock(&np->lock);
  3246. break;
  3247. }
  3248. if (unlikely(i > max_interrupt_work)) {
  3249. spin_lock(&np->lock);
  3250. /* disable interrupts on the nic */
  3251. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3252. writel(0, base + NvRegIrqMask);
  3253. else
  3254. writel(np->irqmask, base + NvRegIrqMask);
  3255. pci_push(base);
  3256. if (!np->in_shutdown) {
  3257. np->nic_poll_irq = np->irqmask;
  3258. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3259. }
  3260. spin_unlock(&np->lock);
  3261. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  3262. break;
  3263. }
  3264. }
  3265. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3266. return IRQ_RETVAL(i);
  3267. }
  3268. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3269. {
  3270. struct net_device *dev = (struct net_device *) data;
  3271. struct fe_priv *np = netdev_priv(dev);
  3272. u8 __iomem *base = get_hwbase(dev);
  3273. u32 events;
  3274. int i;
  3275. unsigned long flags;
  3276. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3277. for (i=0; ; i++) {
  3278. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3279. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3280. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3281. if (!(events & np->irqmask))
  3282. break;
  3283. spin_lock_irqsave(&np->lock, flags);
  3284. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3285. spin_unlock_irqrestore(&np->lock, flags);
  3286. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3287. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3288. dev->name, events);
  3289. }
  3290. if (unlikely(i > max_interrupt_work)) {
  3291. spin_lock_irqsave(&np->lock, flags);
  3292. /* disable interrupts on the nic */
  3293. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3294. pci_push(base);
  3295. if (!np->in_shutdown) {
  3296. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3297. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3298. }
  3299. spin_unlock_irqrestore(&np->lock, flags);
  3300. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3301. break;
  3302. }
  3303. }
  3304. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3305. return IRQ_RETVAL(i);
  3306. }
  3307. #ifdef CONFIG_FORCEDETH_NAPI
  3308. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3309. {
  3310. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3311. struct net_device *dev = np->dev;
  3312. u8 __iomem *base = get_hwbase(dev);
  3313. unsigned long flags;
  3314. int pkts, retcode;
  3315. if (!nv_optimized(np)) {
  3316. pkts = nv_rx_process(dev, budget);
  3317. retcode = nv_alloc_rx(dev);
  3318. } else {
  3319. pkts = nv_rx_process_optimized(dev, budget);
  3320. retcode = nv_alloc_rx_optimized(dev);
  3321. }
  3322. if (retcode) {
  3323. spin_lock_irqsave(&np->lock, flags);
  3324. if (!np->in_shutdown)
  3325. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3326. spin_unlock_irqrestore(&np->lock, flags);
  3327. }
  3328. if (pkts < budget) {
  3329. /* re-enable receive interrupts */
  3330. spin_lock_irqsave(&np->lock, flags);
  3331. __napi_complete(napi);
  3332. np->irqmask |= NVREG_IRQ_RX_ALL;
  3333. if (np->msi_flags & NV_MSI_X_ENABLED)
  3334. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3335. else
  3336. writel(np->irqmask, base + NvRegIrqMask);
  3337. spin_unlock_irqrestore(&np->lock, flags);
  3338. }
  3339. return pkts;
  3340. }
  3341. #endif
  3342. #ifdef CONFIG_FORCEDETH_NAPI
  3343. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3344. {
  3345. struct net_device *dev = (struct net_device *) data;
  3346. struct fe_priv *np = netdev_priv(dev);
  3347. u8 __iomem *base = get_hwbase(dev);
  3348. u32 events;
  3349. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3350. if (events) {
  3351. /* disable receive interrupts on the nic */
  3352. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3353. pci_push(base);
  3354. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3355. napi_schedule(&np->napi);
  3356. }
  3357. return IRQ_HANDLED;
  3358. }
  3359. #else
  3360. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3361. {
  3362. struct net_device *dev = (struct net_device *) data;
  3363. struct fe_priv *np = netdev_priv(dev);
  3364. u8 __iomem *base = get_hwbase(dev);
  3365. u32 events;
  3366. int i;
  3367. unsigned long flags;
  3368. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3369. for (i=0; ; i++) {
  3370. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3371. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3372. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3373. if (!(events & np->irqmask))
  3374. break;
  3375. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3376. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3377. spin_lock_irqsave(&np->lock, flags);
  3378. if (!np->in_shutdown)
  3379. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3380. spin_unlock_irqrestore(&np->lock, flags);
  3381. }
  3382. }
  3383. if (unlikely(i > max_interrupt_work)) {
  3384. spin_lock_irqsave(&np->lock, flags);
  3385. /* disable interrupts on the nic */
  3386. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3387. pci_push(base);
  3388. if (!np->in_shutdown) {
  3389. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3390. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3391. }
  3392. spin_unlock_irqrestore(&np->lock, flags);
  3393. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3394. break;
  3395. }
  3396. }
  3397. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3398. return IRQ_RETVAL(i);
  3399. }
  3400. #endif
  3401. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3402. {
  3403. struct net_device *dev = (struct net_device *) data;
  3404. struct fe_priv *np = netdev_priv(dev);
  3405. u8 __iomem *base = get_hwbase(dev);
  3406. u32 events;
  3407. int i;
  3408. unsigned long flags;
  3409. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3410. for (i=0; ; i++) {
  3411. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3412. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3413. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3414. if (!(events & np->irqmask))
  3415. break;
  3416. /* check tx in case we reached max loop limit in tx isr */
  3417. spin_lock_irqsave(&np->lock, flags);
  3418. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3419. spin_unlock_irqrestore(&np->lock, flags);
  3420. if (events & NVREG_IRQ_LINK) {
  3421. spin_lock_irqsave(&np->lock, flags);
  3422. nv_link_irq(dev);
  3423. spin_unlock_irqrestore(&np->lock, flags);
  3424. }
  3425. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3426. spin_lock_irqsave(&np->lock, flags);
  3427. nv_linkchange(dev);
  3428. spin_unlock_irqrestore(&np->lock, flags);
  3429. np->link_timeout = jiffies + LINK_TIMEOUT;
  3430. }
  3431. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3432. spin_lock_irq(&np->lock);
  3433. /* disable interrupts on the nic */
  3434. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3435. pci_push(base);
  3436. if (!np->in_shutdown) {
  3437. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3438. np->recover_error = 1;
  3439. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3440. }
  3441. spin_unlock_irq(&np->lock);
  3442. break;
  3443. }
  3444. if (events & (NVREG_IRQ_UNKNOWN)) {
  3445. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3446. dev->name, events);
  3447. }
  3448. if (unlikely(i > max_interrupt_work)) {
  3449. spin_lock_irqsave(&np->lock, flags);
  3450. /* disable interrupts on the nic */
  3451. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3452. pci_push(base);
  3453. if (!np->in_shutdown) {
  3454. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3455. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3456. }
  3457. spin_unlock_irqrestore(&np->lock, flags);
  3458. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3459. break;
  3460. }
  3461. }
  3462. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3463. return IRQ_RETVAL(i);
  3464. }
  3465. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3466. {
  3467. struct net_device *dev = (struct net_device *) data;
  3468. struct fe_priv *np = netdev_priv(dev);
  3469. u8 __iomem *base = get_hwbase(dev);
  3470. u32 events;
  3471. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3472. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3473. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3474. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3475. } else {
  3476. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3477. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3478. }
  3479. pci_push(base);
  3480. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3481. if (!(events & NVREG_IRQ_TIMER))
  3482. return IRQ_RETVAL(0);
  3483. nv_msi_workaround(np);
  3484. spin_lock(&np->lock);
  3485. np->intr_test = 1;
  3486. spin_unlock(&np->lock);
  3487. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3488. return IRQ_RETVAL(1);
  3489. }
  3490. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3491. {
  3492. u8 __iomem *base = get_hwbase(dev);
  3493. int i;
  3494. u32 msixmap = 0;
  3495. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3496. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3497. * the remaining 8 interrupts.
  3498. */
  3499. for (i = 0; i < 8; i++) {
  3500. if ((irqmask >> i) & 0x1) {
  3501. msixmap |= vector << (i << 2);
  3502. }
  3503. }
  3504. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3505. msixmap = 0;
  3506. for (i = 0; i < 8; i++) {
  3507. if ((irqmask >> (i + 8)) & 0x1) {
  3508. msixmap |= vector << (i << 2);
  3509. }
  3510. }
  3511. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3512. }
  3513. static int nv_request_irq(struct net_device *dev, int intr_test)
  3514. {
  3515. struct fe_priv *np = get_nvpriv(dev);
  3516. u8 __iomem *base = get_hwbase(dev);
  3517. int ret = 1;
  3518. int i;
  3519. irqreturn_t (*handler)(int foo, void *data);
  3520. if (intr_test) {
  3521. handler = nv_nic_irq_test;
  3522. } else {
  3523. if (nv_optimized(np))
  3524. handler = nv_nic_irq_optimized;
  3525. else
  3526. handler = nv_nic_irq;
  3527. }
  3528. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3529. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3530. np->msi_x_entry[i].entry = i;
  3531. }
  3532. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3533. np->msi_flags |= NV_MSI_X_ENABLED;
  3534. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3535. /* Request irq for rx handling */
  3536. sprintf(np->name_rx, "%s-rx", dev->name);
  3537. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3538. &nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3539. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3540. pci_disable_msix(np->pci_dev);
  3541. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3542. goto out_err;
  3543. }
  3544. /* Request irq for tx handling */
  3545. sprintf(np->name_tx, "%s-tx", dev->name);
  3546. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3547. &nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3548. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3549. pci_disable_msix(np->pci_dev);
  3550. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3551. goto out_free_rx;
  3552. }
  3553. /* Request irq for link and timer handling */
  3554. sprintf(np->name_other, "%s-other", dev->name);
  3555. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3556. &nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3557. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3558. pci_disable_msix(np->pci_dev);
  3559. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3560. goto out_free_tx;
  3561. }
  3562. /* map interrupts to their respective vector */
  3563. writel(0, base + NvRegMSIXMap0);
  3564. writel(0, base + NvRegMSIXMap1);
  3565. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3566. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3567. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3568. } else {
  3569. /* Request irq for all interrupts */
  3570. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3571. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3572. pci_disable_msix(np->pci_dev);
  3573. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3574. goto out_err;
  3575. }
  3576. /* map interrupts to vector 0 */
  3577. writel(0, base + NvRegMSIXMap0);
  3578. writel(0, base + NvRegMSIXMap1);
  3579. }
  3580. }
  3581. }
  3582. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3583. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3584. np->msi_flags |= NV_MSI_ENABLED;
  3585. dev->irq = np->pci_dev->irq;
  3586. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3587. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3588. pci_disable_msi(np->pci_dev);
  3589. np->msi_flags &= ~NV_MSI_ENABLED;
  3590. dev->irq = np->pci_dev->irq;
  3591. goto out_err;
  3592. }
  3593. /* map interrupts to vector 0 */
  3594. writel(0, base + NvRegMSIMap0);
  3595. writel(0, base + NvRegMSIMap1);
  3596. /* enable msi vector 0 */
  3597. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3598. }
  3599. }
  3600. if (ret != 0) {
  3601. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3602. goto out_err;
  3603. }
  3604. return 0;
  3605. out_free_tx:
  3606. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3607. out_free_rx:
  3608. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3609. out_err:
  3610. return 1;
  3611. }
  3612. static void nv_free_irq(struct net_device *dev)
  3613. {
  3614. struct fe_priv *np = get_nvpriv(dev);
  3615. int i;
  3616. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3617. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3618. free_irq(np->msi_x_entry[i].vector, dev);
  3619. }
  3620. pci_disable_msix(np->pci_dev);
  3621. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3622. } else {
  3623. free_irq(np->pci_dev->irq, dev);
  3624. if (np->msi_flags & NV_MSI_ENABLED) {
  3625. pci_disable_msi(np->pci_dev);
  3626. np->msi_flags &= ~NV_MSI_ENABLED;
  3627. }
  3628. }
  3629. }
  3630. static void nv_do_nic_poll(unsigned long data)
  3631. {
  3632. struct net_device *dev = (struct net_device *) data;
  3633. struct fe_priv *np = netdev_priv(dev);
  3634. u8 __iomem *base = get_hwbase(dev);
  3635. u32 mask = 0;
  3636. /*
  3637. * First disable irq(s) and then
  3638. * reenable interrupts on the nic, we have to do this before calling
  3639. * nv_nic_irq because that may decide to do otherwise
  3640. */
  3641. if (!using_multi_irqs(dev)) {
  3642. if (np->msi_flags & NV_MSI_X_ENABLED)
  3643. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3644. else
  3645. disable_irq_lockdep(np->pci_dev->irq);
  3646. mask = np->irqmask;
  3647. } else {
  3648. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3649. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3650. mask |= NVREG_IRQ_RX_ALL;
  3651. }
  3652. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3653. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3654. mask |= NVREG_IRQ_TX_ALL;
  3655. }
  3656. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3657. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3658. mask |= NVREG_IRQ_OTHER;
  3659. }
  3660. }
  3661. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3662. if (np->recover_error) {
  3663. np->recover_error = 0;
  3664. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3665. if (netif_running(dev)) {
  3666. netif_tx_lock_bh(dev);
  3667. netif_addr_lock(dev);
  3668. spin_lock(&np->lock);
  3669. /* stop engines */
  3670. nv_stop_rxtx(dev);
  3671. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3672. nv_mac_reset(dev);
  3673. nv_txrx_reset(dev);
  3674. /* drain rx queue */
  3675. nv_drain_rxtx(dev);
  3676. /* reinit driver view of the rx queue */
  3677. set_bufsize(dev);
  3678. if (nv_init_ring(dev)) {
  3679. if (!np->in_shutdown)
  3680. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3681. }
  3682. /* reinit nic view of the rx queue */
  3683. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3684. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3685. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3686. base + NvRegRingSizes);
  3687. pci_push(base);
  3688. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3689. pci_push(base);
  3690. /* clear interrupts */
  3691. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3692. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3693. else
  3694. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3695. /* restart rx engine */
  3696. nv_start_rxtx(dev);
  3697. spin_unlock(&np->lock);
  3698. netif_addr_unlock(dev);
  3699. netif_tx_unlock_bh(dev);
  3700. }
  3701. }
  3702. writel(mask, base + NvRegIrqMask);
  3703. pci_push(base);
  3704. if (!using_multi_irqs(dev)) {
  3705. np->nic_poll_irq = 0;
  3706. if (nv_optimized(np))
  3707. nv_nic_irq_optimized(0, dev);
  3708. else
  3709. nv_nic_irq(0, dev);
  3710. if (np->msi_flags & NV_MSI_X_ENABLED)
  3711. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3712. else
  3713. enable_irq_lockdep(np->pci_dev->irq);
  3714. } else {
  3715. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3716. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3717. nv_nic_irq_rx(0, dev);
  3718. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3719. }
  3720. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3721. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3722. nv_nic_irq_tx(0, dev);
  3723. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3724. }
  3725. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3726. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3727. nv_nic_irq_other(0, dev);
  3728. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3729. }
  3730. }
  3731. }
  3732. #ifdef CONFIG_NET_POLL_CONTROLLER
  3733. static void nv_poll_controller(struct net_device *dev)
  3734. {
  3735. nv_do_nic_poll((unsigned long) dev);
  3736. }
  3737. #endif
  3738. static void nv_do_stats_poll(unsigned long data)
  3739. {
  3740. struct net_device *dev = (struct net_device *) data;
  3741. struct fe_priv *np = netdev_priv(dev);
  3742. nv_get_hw_stats(dev);
  3743. if (!np->in_shutdown)
  3744. mod_timer(&np->stats_poll,
  3745. round_jiffies(jiffies + STATS_INTERVAL));
  3746. }
  3747. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3748. {
  3749. struct fe_priv *np = netdev_priv(dev);
  3750. strcpy(info->driver, DRV_NAME);
  3751. strcpy(info->version, FORCEDETH_VERSION);
  3752. strcpy(info->bus_info, pci_name(np->pci_dev));
  3753. }
  3754. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3755. {
  3756. struct fe_priv *np = netdev_priv(dev);
  3757. wolinfo->supported = WAKE_MAGIC;
  3758. spin_lock_irq(&np->lock);
  3759. if (np->wolenabled)
  3760. wolinfo->wolopts = WAKE_MAGIC;
  3761. spin_unlock_irq(&np->lock);
  3762. }
  3763. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3764. {
  3765. struct fe_priv *np = netdev_priv(dev);
  3766. u8 __iomem *base = get_hwbase(dev);
  3767. u32 flags = 0;
  3768. if (wolinfo->wolopts == 0) {
  3769. np->wolenabled = 0;
  3770. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3771. np->wolenabled = 1;
  3772. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3773. }
  3774. if (netif_running(dev)) {
  3775. spin_lock_irq(&np->lock);
  3776. writel(flags, base + NvRegWakeUpFlags);
  3777. spin_unlock_irq(&np->lock);
  3778. }
  3779. return 0;
  3780. }
  3781. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3782. {
  3783. struct fe_priv *np = netdev_priv(dev);
  3784. int adv;
  3785. spin_lock_irq(&np->lock);
  3786. ecmd->port = PORT_MII;
  3787. if (!netif_running(dev)) {
  3788. /* We do not track link speed / duplex setting if the
  3789. * interface is disabled. Force a link check */
  3790. if (nv_update_linkspeed(dev)) {
  3791. if (!netif_carrier_ok(dev))
  3792. netif_carrier_on(dev);
  3793. } else {
  3794. if (netif_carrier_ok(dev))
  3795. netif_carrier_off(dev);
  3796. }
  3797. }
  3798. if (netif_carrier_ok(dev)) {
  3799. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3800. case NVREG_LINKSPEED_10:
  3801. ecmd->speed = SPEED_10;
  3802. break;
  3803. case NVREG_LINKSPEED_100:
  3804. ecmd->speed = SPEED_100;
  3805. break;
  3806. case NVREG_LINKSPEED_1000:
  3807. ecmd->speed = SPEED_1000;
  3808. break;
  3809. }
  3810. ecmd->duplex = DUPLEX_HALF;
  3811. if (np->duplex)
  3812. ecmd->duplex = DUPLEX_FULL;
  3813. } else {
  3814. ecmd->speed = -1;
  3815. ecmd->duplex = -1;
  3816. }
  3817. ecmd->autoneg = np->autoneg;
  3818. ecmd->advertising = ADVERTISED_MII;
  3819. if (np->autoneg) {
  3820. ecmd->advertising |= ADVERTISED_Autoneg;
  3821. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3822. if (adv & ADVERTISE_10HALF)
  3823. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3824. if (adv & ADVERTISE_10FULL)
  3825. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3826. if (adv & ADVERTISE_100HALF)
  3827. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3828. if (adv & ADVERTISE_100FULL)
  3829. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3830. if (np->gigabit == PHY_GIGABIT) {
  3831. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3832. if (adv & ADVERTISE_1000FULL)
  3833. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3834. }
  3835. }
  3836. ecmd->supported = (SUPPORTED_Autoneg |
  3837. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3838. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3839. SUPPORTED_MII);
  3840. if (np->gigabit == PHY_GIGABIT)
  3841. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3842. ecmd->phy_address = np->phyaddr;
  3843. ecmd->transceiver = XCVR_EXTERNAL;
  3844. /* ignore maxtxpkt, maxrxpkt for now */
  3845. spin_unlock_irq(&np->lock);
  3846. return 0;
  3847. }
  3848. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3849. {
  3850. struct fe_priv *np = netdev_priv(dev);
  3851. if (ecmd->port != PORT_MII)
  3852. return -EINVAL;
  3853. if (ecmd->transceiver != XCVR_EXTERNAL)
  3854. return -EINVAL;
  3855. if (ecmd->phy_address != np->phyaddr) {
  3856. /* TODO: support switching between multiple phys. Should be
  3857. * trivial, but not enabled due to lack of test hardware. */
  3858. return -EINVAL;
  3859. }
  3860. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3861. u32 mask;
  3862. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3863. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3864. if (np->gigabit == PHY_GIGABIT)
  3865. mask |= ADVERTISED_1000baseT_Full;
  3866. if ((ecmd->advertising & mask) == 0)
  3867. return -EINVAL;
  3868. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3869. /* Note: autonegotiation disable, speed 1000 intentionally
  3870. * forbidden - noone should need that. */
  3871. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3872. return -EINVAL;
  3873. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3874. return -EINVAL;
  3875. } else {
  3876. return -EINVAL;
  3877. }
  3878. netif_carrier_off(dev);
  3879. if (netif_running(dev)) {
  3880. unsigned long flags;
  3881. nv_disable_irq(dev);
  3882. netif_tx_lock_bh(dev);
  3883. netif_addr_lock(dev);
  3884. /* with plain spinlock lockdep complains */
  3885. spin_lock_irqsave(&np->lock, flags);
  3886. /* stop engines */
  3887. /* FIXME:
  3888. * this can take some time, and interrupts are disabled
  3889. * due to spin_lock_irqsave, but let's hope no daemon
  3890. * is going to change the settings very often...
  3891. * Worst case:
  3892. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3893. * + some minor delays, which is up to a second approximately
  3894. */
  3895. nv_stop_rxtx(dev);
  3896. spin_unlock_irqrestore(&np->lock, flags);
  3897. netif_addr_unlock(dev);
  3898. netif_tx_unlock_bh(dev);
  3899. }
  3900. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3901. int adv, bmcr;
  3902. np->autoneg = 1;
  3903. /* advertise only what has been requested */
  3904. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3905. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3906. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3907. adv |= ADVERTISE_10HALF;
  3908. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3909. adv |= ADVERTISE_10FULL;
  3910. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3911. adv |= ADVERTISE_100HALF;
  3912. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3913. adv |= ADVERTISE_100FULL;
  3914. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3915. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3916. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3917. adv |= ADVERTISE_PAUSE_ASYM;
  3918. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3919. if (np->gigabit == PHY_GIGABIT) {
  3920. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3921. adv &= ~ADVERTISE_1000FULL;
  3922. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3923. adv |= ADVERTISE_1000FULL;
  3924. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3925. }
  3926. if (netif_running(dev))
  3927. printk(KERN_INFO "%s: link down.\n", dev->name);
  3928. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3929. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3930. bmcr |= BMCR_ANENABLE;
  3931. /* reset the phy in order for settings to stick,
  3932. * and cause autoneg to start */
  3933. if (phy_reset(dev, bmcr)) {
  3934. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3935. return -EINVAL;
  3936. }
  3937. } else {
  3938. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3939. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3940. }
  3941. } else {
  3942. int adv, bmcr;
  3943. np->autoneg = 0;
  3944. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3945. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3946. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3947. adv |= ADVERTISE_10HALF;
  3948. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3949. adv |= ADVERTISE_10FULL;
  3950. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3951. adv |= ADVERTISE_100HALF;
  3952. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3953. adv |= ADVERTISE_100FULL;
  3954. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3955. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3956. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3957. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3958. }
  3959. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3960. adv |= ADVERTISE_PAUSE_ASYM;
  3961. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3962. }
  3963. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3964. np->fixed_mode = adv;
  3965. if (np->gigabit == PHY_GIGABIT) {
  3966. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3967. adv &= ~ADVERTISE_1000FULL;
  3968. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3969. }
  3970. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3971. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3972. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3973. bmcr |= BMCR_FULLDPLX;
  3974. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3975. bmcr |= BMCR_SPEED100;
  3976. if (np->phy_oui == PHY_OUI_MARVELL) {
  3977. /* reset the phy in order for forced mode settings to stick */
  3978. if (phy_reset(dev, bmcr)) {
  3979. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3980. return -EINVAL;
  3981. }
  3982. } else {
  3983. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3984. if (netif_running(dev)) {
  3985. /* Wait a bit and then reconfigure the nic. */
  3986. udelay(10);
  3987. nv_linkchange(dev);
  3988. }
  3989. }
  3990. }
  3991. if (netif_running(dev)) {
  3992. nv_start_rxtx(dev);
  3993. nv_enable_irq(dev);
  3994. }
  3995. return 0;
  3996. }
  3997. #define FORCEDETH_REGS_VER 1
  3998. static int nv_get_regs_len(struct net_device *dev)
  3999. {
  4000. struct fe_priv *np = netdev_priv(dev);
  4001. return np->register_size;
  4002. }
  4003. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  4004. {
  4005. struct fe_priv *np = netdev_priv(dev);
  4006. u8 __iomem *base = get_hwbase(dev);
  4007. u32 *rbuf = buf;
  4008. int i;
  4009. regs->version = FORCEDETH_REGS_VER;
  4010. spin_lock_irq(&np->lock);
  4011. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  4012. rbuf[i] = readl(base + i*sizeof(u32));
  4013. spin_unlock_irq(&np->lock);
  4014. }
  4015. static int nv_nway_reset(struct net_device *dev)
  4016. {
  4017. struct fe_priv *np = netdev_priv(dev);
  4018. int ret;
  4019. if (np->autoneg) {
  4020. int bmcr;
  4021. netif_carrier_off(dev);
  4022. if (netif_running(dev)) {
  4023. nv_disable_irq(dev);
  4024. netif_tx_lock_bh(dev);
  4025. netif_addr_lock(dev);
  4026. spin_lock(&np->lock);
  4027. /* stop engines */
  4028. nv_stop_rxtx(dev);
  4029. spin_unlock(&np->lock);
  4030. netif_addr_unlock(dev);
  4031. netif_tx_unlock_bh(dev);
  4032. printk(KERN_INFO "%s: link down.\n", dev->name);
  4033. }
  4034. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4035. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4036. bmcr |= BMCR_ANENABLE;
  4037. /* reset the phy in order for settings to stick*/
  4038. if (phy_reset(dev, bmcr)) {
  4039. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4040. return -EINVAL;
  4041. }
  4042. } else {
  4043. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4044. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4045. }
  4046. if (netif_running(dev)) {
  4047. nv_start_rxtx(dev);
  4048. nv_enable_irq(dev);
  4049. }
  4050. ret = 0;
  4051. } else {
  4052. ret = -EINVAL;
  4053. }
  4054. return ret;
  4055. }
  4056. static int nv_set_tso(struct net_device *dev, u32 value)
  4057. {
  4058. struct fe_priv *np = netdev_priv(dev);
  4059. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4060. return ethtool_op_set_tso(dev, value);
  4061. else
  4062. return -EOPNOTSUPP;
  4063. }
  4064. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4065. {
  4066. struct fe_priv *np = netdev_priv(dev);
  4067. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4068. ring->rx_mini_max_pending = 0;
  4069. ring->rx_jumbo_max_pending = 0;
  4070. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4071. ring->rx_pending = np->rx_ring_size;
  4072. ring->rx_mini_pending = 0;
  4073. ring->rx_jumbo_pending = 0;
  4074. ring->tx_pending = np->tx_ring_size;
  4075. }
  4076. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4077. {
  4078. struct fe_priv *np = netdev_priv(dev);
  4079. u8 __iomem *base = get_hwbase(dev);
  4080. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4081. dma_addr_t ring_addr;
  4082. if (ring->rx_pending < RX_RING_MIN ||
  4083. ring->tx_pending < TX_RING_MIN ||
  4084. ring->rx_mini_pending != 0 ||
  4085. ring->rx_jumbo_pending != 0 ||
  4086. (np->desc_ver == DESC_VER_1 &&
  4087. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4088. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4089. (np->desc_ver != DESC_VER_1 &&
  4090. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4091. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4092. return -EINVAL;
  4093. }
  4094. /* allocate new rings */
  4095. if (!nv_optimized(np)) {
  4096. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4097. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4098. &ring_addr);
  4099. } else {
  4100. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4101. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4102. &ring_addr);
  4103. }
  4104. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4105. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4106. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4107. /* fall back to old rings */
  4108. if (!nv_optimized(np)) {
  4109. if (rxtx_ring)
  4110. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4111. rxtx_ring, ring_addr);
  4112. } else {
  4113. if (rxtx_ring)
  4114. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4115. rxtx_ring, ring_addr);
  4116. }
  4117. if (rx_skbuff)
  4118. kfree(rx_skbuff);
  4119. if (tx_skbuff)
  4120. kfree(tx_skbuff);
  4121. goto exit;
  4122. }
  4123. if (netif_running(dev)) {
  4124. nv_disable_irq(dev);
  4125. nv_napi_disable(dev);
  4126. netif_tx_lock_bh(dev);
  4127. netif_addr_lock(dev);
  4128. spin_lock(&np->lock);
  4129. /* stop engines */
  4130. nv_stop_rxtx(dev);
  4131. nv_txrx_reset(dev);
  4132. /* drain queues */
  4133. nv_drain_rxtx(dev);
  4134. /* delete queues */
  4135. free_rings(dev);
  4136. }
  4137. /* set new values */
  4138. np->rx_ring_size = ring->rx_pending;
  4139. np->tx_ring_size = ring->tx_pending;
  4140. if (!nv_optimized(np)) {
  4141. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4142. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4143. } else {
  4144. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4145. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4146. }
  4147. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4148. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4149. np->ring_addr = ring_addr;
  4150. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4151. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4152. if (netif_running(dev)) {
  4153. /* reinit driver view of the queues */
  4154. set_bufsize(dev);
  4155. if (nv_init_ring(dev)) {
  4156. if (!np->in_shutdown)
  4157. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4158. }
  4159. /* reinit nic view of the queues */
  4160. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4161. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4162. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4163. base + NvRegRingSizes);
  4164. pci_push(base);
  4165. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4166. pci_push(base);
  4167. /* restart engines */
  4168. nv_start_rxtx(dev);
  4169. spin_unlock(&np->lock);
  4170. netif_addr_unlock(dev);
  4171. netif_tx_unlock_bh(dev);
  4172. nv_napi_enable(dev);
  4173. nv_enable_irq(dev);
  4174. }
  4175. return 0;
  4176. exit:
  4177. return -ENOMEM;
  4178. }
  4179. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4180. {
  4181. struct fe_priv *np = netdev_priv(dev);
  4182. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4183. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4184. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4185. }
  4186. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4187. {
  4188. struct fe_priv *np = netdev_priv(dev);
  4189. int adv, bmcr;
  4190. if ((!np->autoneg && np->duplex == 0) ||
  4191. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4192. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4193. dev->name);
  4194. return -EINVAL;
  4195. }
  4196. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4197. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4198. return -EINVAL;
  4199. }
  4200. netif_carrier_off(dev);
  4201. if (netif_running(dev)) {
  4202. nv_disable_irq(dev);
  4203. netif_tx_lock_bh(dev);
  4204. netif_addr_lock(dev);
  4205. spin_lock(&np->lock);
  4206. /* stop engines */
  4207. nv_stop_rxtx(dev);
  4208. spin_unlock(&np->lock);
  4209. netif_addr_unlock(dev);
  4210. netif_tx_unlock_bh(dev);
  4211. }
  4212. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4213. if (pause->rx_pause)
  4214. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4215. if (pause->tx_pause)
  4216. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4217. if (np->autoneg && pause->autoneg) {
  4218. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4219. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4220. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4221. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4222. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4223. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4224. adv |= ADVERTISE_PAUSE_ASYM;
  4225. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4226. if (netif_running(dev))
  4227. printk(KERN_INFO "%s: link down.\n", dev->name);
  4228. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4229. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4230. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4231. } else {
  4232. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4233. if (pause->rx_pause)
  4234. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4235. if (pause->tx_pause)
  4236. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4237. if (!netif_running(dev))
  4238. nv_update_linkspeed(dev);
  4239. else
  4240. nv_update_pause(dev, np->pause_flags);
  4241. }
  4242. if (netif_running(dev)) {
  4243. nv_start_rxtx(dev);
  4244. nv_enable_irq(dev);
  4245. }
  4246. return 0;
  4247. }
  4248. static u32 nv_get_rx_csum(struct net_device *dev)
  4249. {
  4250. struct fe_priv *np = netdev_priv(dev);
  4251. return (np->rx_csum) != 0;
  4252. }
  4253. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4254. {
  4255. struct fe_priv *np = netdev_priv(dev);
  4256. u8 __iomem *base = get_hwbase(dev);
  4257. int retcode = 0;
  4258. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4259. if (data) {
  4260. np->rx_csum = 1;
  4261. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4262. } else {
  4263. np->rx_csum = 0;
  4264. /* vlan is dependent on rx checksum offload */
  4265. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4266. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4267. }
  4268. if (netif_running(dev)) {
  4269. spin_lock_irq(&np->lock);
  4270. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4271. spin_unlock_irq(&np->lock);
  4272. }
  4273. } else {
  4274. return -EINVAL;
  4275. }
  4276. return retcode;
  4277. }
  4278. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4279. {
  4280. struct fe_priv *np = netdev_priv(dev);
  4281. if (np->driver_data & DEV_HAS_CHECKSUM)
  4282. return ethtool_op_set_tx_csum(dev, data);
  4283. else
  4284. return -EOPNOTSUPP;
  4285. }
  4286. static int nv_set_sg(struct net_device *dev, u32 data)
  4287. {
  4288. struct fe_priv *np = netdev_priv(dev);
  4289. if (np->driver_data & DEV_HAS_CHECKSUM)
  4290. return ethtool_op_set_sg(dev, data);
  4291. else
  4292. return -EOPNOTSUPP;
  4293. }
  4294. static int nv_get_sset_count(struct net_device *dev, int sset)
  4295. {
  4296. struct fe_priv *np = netdev_priv(dev);
  4297. switch (sset) {
  4298. case ETH_SS_TEST:
  4299. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4300. return NV_TEST_COUNT_EXTENDED;
  4301. else
  4302. return NV_TEST_COUNT_BASE;
  4303. case ETH_SS_STATS:
  4304. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4305. return NV_DEV_STATISTICS_V3_COUNT;
  4306. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4307. return NV_DEV_STATISTICS_V2_COUNT;
  4308. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4309. return NV_DEV_STATISTICS_V1_COUNT;
  4310. else
  4311. return 0;
  4312. default:
  4313. return -EOPNOTSUPP;
  4314. }
  4315. }
  4316. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4317. {
  4318. struct fe_priv *np = netdev_priv(dev);
  4319. /* update stats */
  4320. nv_do_stats_poll((unsigned long)dev);
  4321. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4322. }
  4323. static int nv_link_test(struct net_device *dev)
  4324. {
  4325. struct fe_priv *np = netdev_priv(dev);
  4326. int mii_status;
  4327. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4328. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4329. /* check phy link status */
  4330. if (!(mii_status & BMSR_LSTATUS))
  4331. return 0;
  4332. else
  4333. return 1;
  4334. }
  4335. static int nv_register_test(struct net_device *dev)
  4336. {
  4337. u8 __iomem *base = get_hwbase(dev);
  4338. int i = 0;
  4339. u32 orig_read, new_read;
  4340. do {
  4341. orig_read = readl(base + nv_registers_test[i].reg);
  4342. /* xor with mask to toggle bits */
  4343. orig_read ^= nv_registers_test[i].mask;
  4344. writel(orig_read, base + nv_registers_test[i].reg);
  4345. new_read = readl(base + nv_registers_test[i].reg);
  4346. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4347. return 0;
  4348. /* restore original value */
  4349. orig_read ^= nv_registers_test[i].mask;
  4350. writel(orig_read, base + nv_registers_test[i].reg);
  4351. } while (nv_registers_test[++i].reg != 0);
  4352. return 1;
  4353. }
  4354. static int nv_interrupt_test(struct net_device *dev)
  4355. {
  4356. struct fe_priv *np = netdev_priv(dev);
  4357. u8 __iomem *base = get_hwbase(dev);
  4358. int ret = 1;
  4359. int testcnt;
  4360. u32 save_msi_flags, save_poll_interval = 0;
  4361. if (netif_running(dev)) {
  4362. /* free current irq */
  4363. nv_free_irq(dev);
  4364. save_poll_interval = readl(base+NvRegPollingInterval);
  4365. }
  4366. /* flag to test interrupt handler */
  4367. np->intr_test = 0;
  4368. /* setup test irq */
  4369. save_msi_flags = np->msi_flags;
  4370. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4371. np->msi_flags |= 0x001; /* setup 1 vector */
  4372. if (nv_request_irq(dev, 1))
  4373. return 0;
  4374. /* setup timer interrupt */
  4375. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4376. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4377. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4378. /* wait for at least one interrupt */
  4379. msleep(100);
  4380. spin_lock_irq(&np->lock);
  4381. /* flag should be set within ISR */
  4382. testcnt = np->intr_test;
  4383. if (!testcnt)
  4384. ret = 2;
  4385. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4386. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4387. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4388. else
  4389. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4390. spin_unlock_irq(&np->lock);
  4391. nv_free_irq(dev);
  4392. np->msi_flags = save_msi_flags;
  4393. if (netif_running(dev)) {
  4394. writel(save_poll_interval, base + NvRegPollingInterval);
  4395. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4396. /* restore original irq */
  4397. if (nv_request_irq(dev, 0))
  4398. return 0;
  4399. }
  4400. return ret;
  4401. }
  4402. static int nv_loopback_test(struct net_device *dev)
  4403. {
  4404. struct fe_priv *np = netdev_priv(dev);
  4405. u8 __iomem *base = get_hwbase(dev);
  4406. struct sk_buff *tx_skb, *rx_skb;
  4407. dma_addr_t test_dma_addr;
  4408. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4409. u32 flags;
  4410. int len, i, pkt_len;
  4411. u8 *pkt_data;
  4412. u32 filter_flags = 0;
  4413. u32 misc1_flags = 0;
  4414. int ret = 1;
  4415. if (netif_running(dev)) {
  4416. nv_disable_irq(dev);
  4417. filter_flags = readl(base + NvRegPacketFilterFlags);
  4418. misc1_flags = readl(base + NvRegMisc1);
  4419. } else {
  4420. nv_txrx_reset(dev);
  4421. }
  4422. /* reinit driver view of the rx queue */
  4423. set_bufsize(dev);
  4424. nv_init_ring(dev);
  4425. /* setup hardware for loopback */
  4426. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4427. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4428. /* reinit nic view of the rx queue */
  4429. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4430. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4431. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4432. base + NvRegRingSizes);
  4433. pci_push(base);
  4434. /* restart rx engine */
  4435. nv_start_rxtx(dev);
  4436. /* setup packet for tx */
  4437. pkt_len = ETH_DATA_LEN;
  4438. tx_skb = dev_alloc_skb(pkt_len);
  4439. if (!tx_skb) {
  4440. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4441. " of %s\n", dev->name);
  4442. ret = 0;
  4443. goto out;
  4444. }
  4445. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4446. skb_tailroom(tx_skb),
  4447. PCI_DMA_FROMDEVICE);
  4448. pkt_data = skb_put(tx_skb, pkt_len);
  4449. for (i = 0; i < pkt_len; i++)
  4450. pkt_data[i] = (u8)(i & 0xff);
  4451. if (!nv_optimized(np)) {
  4452. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4453. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4454. } else {
  4455. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4456. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4457. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4458. }
  4459. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4460. pci_push(get_hwbase(dev));
  4461. msleep(500);
  4462. /* check for rx of the packet */
  4463. if (!nv_optimized(np)) {
  4464. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4465. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4466. } else {
  4467. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4468. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4469. }
  4470. if (flags & NV_RX_AVAIL) {
  4471. ret = 0;
  4472. } else if (np->desc_ver == DESC_VER_1) {
  4473. if (flags & NV_RX_ERROR)
  4474. ret = 0;
  4475. } else {
  4476. if (flags & NV_RX2_ERROR) {
  4477. ret = 0;
  4478. }
  4479. }
  4480. if (ret) {
  4481. if (len != pkt_len) {
  4482. ret = 0;
  4483. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4484. dev->name, len, pkt_len);
  4485. } else {
  4486. rx_skb = np->rx_skb[0].skb;
  4487. for (i = 0; i < pkt_len; i++) {
  4488. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4489. ret = 0;
  4490. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4491. dev->name, i);
  4492. break;
  4493. }
  4494. }
  4495. }
  4496. } else {
  4497. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4498. }
  4499. pci_unmap_page(np->pci_dev, test_dma_addr,
  4500. (skb_end_pointer(tx_skb) - tx_skb->data),
  4501. PCI_DMA_TODEVICE);
  4502. dev_kfree_skb_any(tx_skb);
  4503. out:
  4504. /* stop engines */
  4505. nv_stop_rxtx(dev);
  4506. nv_txrx_reset(dev);
  4507. /* drain rx queue */
  4508. nv_drain_rxtx(dev);
  4509. if (netif_running(dev)) {
  4510. writel(misc1_flags, base + NvRegMisc1);
  4511. writel(filter_flags, base + NvRegPacketFilterFlags);
  4512. nv_enable_irq(dev);
  4513. }
  4514. return ret;
  4515. }
  4516. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4517. {
  4518. struct fe_priv *np = netdev_priv(dev);
  4519. u8 __iomem *base = get_hwbase(dev);
  4520. int result;
  4521. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4522. if (!nv_link_test(dev)) {
  4523. test->flags |= ETH_TEST_FL_FAILED;
  4524. buffer[0] = 1;
  4525. }
  4526. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4527. if (netif_running(dev)) {
  4528. netif_stop_queue(dev);
  4529. nv_napi_disable(dev);
  4530. netif_tx_lock_bh(dev);
  4531. netif_addr_lock(dev);
  4532. spin_lock_irq(&np->lock);
  4533. nv_disable_hw_interrupts(dev, np->irqmask);
  4534. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4535. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4536. } else {
  4537. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4538. }
  4539. /* stop engines */
  4540. nv_stop_rxtx(dev);
  4541. nv_txrx_reset(dev);
  4542. /* drain rx queue */
  4543. nv_drain_rxtx(dev);
  4544. spin_unlock_irq(&np->lock);
  4545. netif_addr_unlock(dev);
  4546. netif_tx_unlock_bh(dev);
  4547. }
  4548. if (!nv_register_test(dev)) {
  4549. test->flags |= ETH_TEST_FL_FAILED;
  4550. buffer[1] = 1;
  4551. }
  4552. result = nv_interrupt_test(dev);
  4553. if (result != 1) {
  4554. test->flags |= ETH_TEST_FL_FAILED;
  4555. buffer[2] = 1;
  4556. }
  4557. if (result == 0) {
  4558. /* bail out */
  4559. return;
  4560. }
  4561. if (!nv_loopback_test(dev)) {
  4562. test->flags |= ETH_TEST_FL_FAILED;
  4563. buffer[3] = 1;
  4564. }
  4565. if (netif_running(dev)) {
  4566. /* reinit driver view of the rx queue */
  4567. set_bufsize(dev);
  4568. if (nv_init_ring(dev)) {
  4569. if (!np->in_shutdown)
  4570. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4571. }
  4572. /* reinit nic view of the rx queue */
  4573. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4574. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4575. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4576. base + NvRegRingSizes);
  4577. pci_push(base);
  4578. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4579. pci_push(base);
  4580. /* restart rx engine */
  4581. nv_start_rxtx(dev);
  4582. netif_start_queue(dev);
  4583. nv_napi_enable(dev);
  4584. nv_enable_hw_interrupts(dev, np->irqmask);
  4585. }
  4586. }
  4587. }
  4588. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4589. {
  4590. switch (stringset) {
  4591. case ETH_SS_STATS:
  4592. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4593. break;
  4594. case ETH_SS_TEST:
  4595. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4596. break;
  4597. }
  4598. }
  4599. static const struct ethtool_ops ops = {
  4600. .get_drvinfo = nv_get_drvinfo,
  4601. .get_link = ethtool_op_get_link,
  4602. .get_wol = nv_get_wol,
  4603. .set_wol = nv_set_wol,
  4604. .get_settings = nv_get_settings,
  4605. .set_settings = nv_set_settings,
  4606. .get_regs_len = nv_get_regs_len,
  4607. .get_regs = nv_get_regs,
  4608. .nway_reset = nv_nway_reset,
  4609. .set_tso = nv_set_tso,
  4610. .get_ringparam = nv_get_ringparam,
  4611. .set_ringparam = nv_set_ringparam,
  4612. .get_pauseparam = nv_get_pauseparam,
  4613. .set_pauseparam = nv_set_pauseparam,
  4614. .get_rx_csum = nv_get_rx_csum,
  4615. .set_rx_csum = nv_set_rx_csum,
  4616. .set_tx_csum = nv_set_tx_csum,
  4617. .set_sg = nv_set_sg,
  4618. .get_strings = nv_get_strings,
  4619. .get_ethtool_stats = nv_get_ethtool_stats,
  4620. .get_sset_count = nv_get_sset_count,
  4621. .self_test = nv_self_test,
  4622. };
  4623. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4624. {
  4625. struct fe_priv *np = get_nvpriv(dev);
  4626. spin_lock_irq(&np->lock);
  4627. /* save vlan group */
  4628. np->vlangrp = grp;
  4629. if (grp) {
  4630. /* enable vlan on MAC */
  4631. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4632. } else {
  4633. /* disable vlan on MAC */
  4634. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4635. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4636. }
  4637. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4638. spin_unlock_irq(&np->lock);
  4639. }
  4640. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4641. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4642. {
  4643. struct fe_priv *np = netdev_priv(dev);
  4644. u8 __iomem *base = get_hwbase(dev);
  4645. int i;
  4646. u32 tx_ctrl, mgmt_sema;
  4647. for (i = 0; i < 10; i++) {
  4648. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4649. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4650. break;
  4651. msleep(500);
  4652. }
  4653. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4654. return 0;
  4655. for (i = 0; i < 2; i++) {
  4656. tx_ctrl = readl(base + NvRegTransmitterControl);
  4657. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4658. writel(tx_ctrl, base + NvRegTransmitterControl);
  4659. /* verify that semaphore was acquired */
  4660. tx_ctrl = readl(base + NvRegTransmitterControl);
  4661. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4662. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4663. np->mgmt_sema = 1;
  4664. return 1;
  4665. }
  4666. else
  4667. udelay(50);
  4668. }
  4669. return 0;
  4670. }
  4671. static void nv_mgmt_release_sema(struct net_device *dev)
  4672. {
  4673. struct fe_priv *np = netdev_priv(dev);
  4674. u8 __iomem *base = get_hwbase(dev);
  4675. u32 tx_ctrl;
  4676. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4677. if (np->mgmt_sema) {
  4678. tx_ctrl = readl(base + NvRegTransmitterControl);
  4679. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4680. writel(tx_ctrl, base + NvRegTransmitterControl);
  4681. }
  4682. }
  4683. }
  4684. static int nv_mgmt_get_version(struct net_device *dev)
  4685. {
  4686. struct fe_priv *np = netdev_priv(dev);
  4687. u8 __iomem *base = get_hwbase(dev);
  4688. u32 data_ready = readl(base + NvRegTransmitterControl);
  4689. u32 data_ready2 = 0;
  4690. unsigned long start;
  4691. int ready = 0;
  4692. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4693. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4694. start = jiffies;
  4695. while (time_before(jiffies, start + 5*HZ)) {
  4696. data_ready2 = readl(base + NvRegTransmitterControl);
  4697. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4698. ready = 1;
  4699. break;
  4700. }
  4701. schedule_timeout_uninterruptible(1);
  4702. }
  4703. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4704. return 0;
  4705. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4706. return 1;
  4707. }
  4708. static int nv_open(struct net_device *dev)
  4709. {
  4710. struct fe_priv *np = netdev_priv(dev);
  4711. u8 __iomem *base = get_hwbase(dev);
  4712. int ret = 1;
  4713. int oom, i;
  4714. u32 low;
  4715. dprintk(KERN_DEBUG "nv_open: begin\n");
  4716. /* power up phy */
  4717. mii_rw(dev, np->phyaddr, MII_BMCR,
  4718. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4719. /* erase previous misconfiguration */
  4720. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4721. nv_mac_reset(dev);
  4722. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4723. writel(0, base + NvRegMulticastAddrB);
  4724. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4725. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4726. writel(0, base + NvRegPacketFilterFlags);
  4727. writel(0, base + NvRegTransmitterControl);
  4728. writel(0, base + NvRegReceiverControl);
  4729. writel(0, base + NvRegAdapterControl);
  4730. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4731. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4732. /* initialize descriptor rings */
  4733. set_bufsize(dev);
  4734. oom = nv_init_ring(dev);
  4735. writel(0, base + NvRegLinkSpeed);
  4736. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4737. nv_txrx_reset(dev);
  4738. writel(0, base + NvRegUnknownSetupReg6);
  4739. np->in_shutdown = 0;
  4740. /* give hw rings */
  4741. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4742. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4743. base + NvRegRingSizes);
  4744. writel(np->linkspeed, base + NvRegLinkSpeed);
  4745. if (np->desc_ver == DESC_VER_1)
  4746. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4747. else
  4748. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4749. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4750. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4751. pci_push(base);
  4752. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4753. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4754. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4755. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4756. writel(0, base + NvRegMIIMask);
  4757. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4758. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4759. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4760. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4761. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4762. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4763. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4764. get_random_bytes(&low, sizeof(low));
  4765. low &= NVREG_SLOTTIME_MASK;
  4766. if (np->desc_ver == DESC_VER_1) {
  4767. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4768. } else {
  4769. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4770. /* setup legacy backoff */
  4771. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4772. } else {
  4773. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4774. nv_gear_backoff_reseed(dev);
  4775. }
  4776. }
  4777. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4778. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4779. if (poll_interval == -1) {
  4780. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4781. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4782. else
  4783. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4784. }
  4785. else
  4786. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4787. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4788. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4789. base + NvRegAdapterControl);
  4790. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4791. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4792. if (np->wolenabled)
  4793. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4794. i = readl(base + NvRegPowerState);
  4795. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4796. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4797. pci_push(base);
  4798. udelay(10);
  4799. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4800. nv_disable_hw_interrupts(dev, np->irqmask);
  4801. pci_push(base);
  4802. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4803. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4804. pci_push(base);
  4805. if (nv_request_irq(dev, 0)) {
  4806. goto out_drain;
  4807. }
  4808. /* ask for interrupts */
  4809. nv_enable_hw_interrupts(dev, np->irqmask);
  4810. spin_lock_irq(&np->lock);
  4811. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4812. writel(0, base + NvRegMulticastAddrB);
  4813. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4814. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4815. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4816. /* One manual link speed update: Interrupts are enabled, future link
  4817. * speed changes cause interrupts and are handled by nv_link_irq().
  4818. */
  4819. {
  4820. u32 miistat;
  4821. miistat = readl(base + NvRegMIIStatus);
  4822. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4823. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4824. }
  4825. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4826. * to init hw */
  4827. np->linkspeed = 0;
  4828. ret = nv_update_linkspeed(dev);
  4829. nv_start_rxtx(dev);
  4830. netif_start_queue(dev);
  4831. nv_napi_enable(dev);
  4832. if (ret) {
  4833. netif_carrier_on(dev);
  4834. } else {
  4835. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4836. netif_carrier_off(dev);
  4837. }
  4838. if (oom)
  4839. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4840. /* start statistics timer */
  4841. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4842. mod_timer(&np->stats_poll,
  4843. round_jiffies(jiffies + STATS_INTERVAL));
  4844. spin_unlock_irq(&np->lock);
  4845. return 0;
  4846. out_drain:
  4847. nv_drain_rxtx(dev);
  4848. return ret;
  4849. }
  4850. static int nv_close(struct net_device *dev)
  4851. {
  4852. struct fe_priv *np = netdev_priv(dev);
  4853. u8 __iomem *base;
  4854. spin_lock_irq(&np->lock);
  4855. np->in_shutdown = 1;
  4856. spin_unlock_irq(&np->lock);
  4857. nv_napi_disable(dev);
  4858. synchronize_irq(np->pci_dev->irq);
  4859. del_timer_sync(&np->oom_kick);
  4860. del_timer_sync(&np->nic_poll);
  4861. del_timer_sync(&np->stats_poll);
  4862. netif_stop_queue(dev);
  4863. spin_lock_irq(&np->lock);
  4864. nv_stop_rxtx(dev);
  4865. nv_txrx_reset(dev);
  4866. /* disable interrupts on the nic or we will lock up */
  4867. base = get_hwbase(dev);
  4868. nv_disable_hw_interrupts(dev, np->irqmask);
  4869. pci_push(base);
  4870. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4871. spin_unlock_irq(&np->lock);
  4872. nv_free_irq(dev);
  4873. nv_drain_rxtx(dev);
  4874. if (np->wolenabled) {
  4875. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4876. nv_start_rx(dev);
  4877. } else {
  4878. /* power down phy */
  4879. mii_rw(dev, np->phyaddr, MII_BMCR,
  4880. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4881. }
  4882. /* FIXME: power down nic */
  4883. return 0;
  4884. }
  4885. static const struct net_device_ops nv_netdev_ops = {
  4886. .ndo_open = nv_open,
  4887. .ndo_stop = nv_close,
  4888. .ndo_get_stats = nv_get_stats,
  4889. .ndo_start_xmit = nv_start_xmit,
  4890. .ndo_tx_timeout = nv_tx_timeout,
  4891. .ndo_change_mtu = nv_change_mtu,
  4892. .ndo_validate_addr = eth_validate_addr,
  4893. .ndo_set_mac_address = nv_set_mac_address,
  4894. .ndo_set_multicast_list = nv_set_multicast,
  4895. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4896. #ifdef CONFIG_NET_POLL_CONTROLLER
  4897. .ndo_poll_controller = nv_poll_controller,
  4898. #endif
  4899. };
  4900. static const struct net_device_ops nv_netdev_ops_optimized = {
  4901. .ndo_open = nv_open,
  4902. .ndo_stop = nv_close,
  4903. .ndo_get_stats = nv_get_stats,
  4904. .ndo_start_xmit = nv_start_xmit_optimized,
  4905. .ndo_tx_timeout = nv_tx_timeout,
  4906. .ndo_change_mtu = nv_change_mtu,
  4907. .ndo_validate_addr = eth_validate_addr,
  4908. .ndo_set_mac_address = nv_set_mac_address,
  4909. .ndo_set_multicast_list = nv_set_multicast,
  4910. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4911. #ifdef CONFIG_NET_POLL_CONTROLLER
  4912. .ndo_poll_controller = nv_poll_controller,
  4913. #endif
  4914. };
  4915. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4916. {
  4917. struct net_device *dev;
  4918. struct fe_priv *np;
  4919. unsigned long addr;
  4920. u8 __iomem *base;
  4921. int err, i;
  4922. u32 powerstate, txreg;
  4923. u32 phystate_orig = 0, phystate;
  4924. int phyinitialized = 0;
  4925. static int printed_version;
  4926. if (!printed_version++)
  4927. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4928. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4929. dev = alloc_etherdev(sizeof(struct fe_priv));
  4930. err = -ENOMEM;
  4931. if (!dev)
  4932. goto out;
  4933. np = netdev_priv(dev);
  4934. np->dev = dev;
  4935. np->pci_dev = pci_dev;
  4936. spin_lock_init(&np->lock);
  4937. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4938. init_timer(&np->oom_kick);
  4939. np->oom_kick.data = (unsigned long) dev;
  4940. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4941. init_timer(&np->nic_poll);
  4942. np->nic_poll.data = (unsigned long) dev;
  4943. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4944. init_timer(&np->stats_poll);
  4945. np->stats_poll.data = (unsigned long) dev;
  4946. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4947. err = pci_enable_device(pci_dev);
  4948. if (err)
  4949. goto out_free;
  4950. pci_set_master(pci_dev);
  4951. err = pci_request_regions(pci_dev, DRV_NAME);
  4952. if (err < 0)
  4953. goto out_disable;
  4954. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4955. np->register_size = NV_PCI_REGSZ_VER3;
  4956. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4957. np->register_size = NV_PCI_REGSZ_VER2;
  4958. else
  4959. np->register_size = NV_PCI_REGSZ_VER1;
  4960. err = -EINVAL;
  4961. addr = 0;
  4962. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4963. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4964. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4965. pci_resource_len(pci_dev, i),
  4966. pci_resource_flags(pci_dev, i));
  4967. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4968. pci_resource_len(pci_dev, i) >= np->register_size) {
  4969. addr = pci_resource_start(pci_dev, i);
  4970. break;
  4971. }
  4972. }
  4973. if (i == DEVICE_COUNT_RESOURCE) {
  4974. dev_printk(KERN_INFO, &pci_dev->dev,
  4975. "Couldn't find register window\n");
  4976. goto out_relreg;
  4977. }
  4978. /* copy of driver data */
  4979. np->driver_data = id->driver_data;
  4980. /* copy of device id */
  4981. np->device_id = id->device;
  4982. /* handle different descriptor versions */
  4983. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4984. /* packet format 3: supports 40-bit addressing */
  4985. np->desc_ver = DESC_VER_3;
  4986. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4987. if (dma_64bit) {
  4988. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4989. dev_printk(KERN_INFO, &pci_dev->dev,
  4990. "64-bit DMA failed, using 32-bit addressing\n");
  4991. else
  4992. dev->features |= NETIF_F_HIGHDMA;
  4993. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4994. dev_printk(KERN_INFO, &pci_dev->dev,
  4995. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4996. }
  4997. }
  4998. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4999. /* packet format 2: supports jumbo frames */
  5000. np->desc_ver = DESC_VER_2;
  5001. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  5002. } else {
  5003. /* original packet format */
  5004. np->desc_ver = DESC_VER_1;
  5005. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  5006. }
  5007. np->pkt_limit = NV_PKTLIMIT_1;
  5008. if (id->driver_data & DEV_HAS_LARGEDESC)
  5009. np->pkt_limit = NV_PKTLIMIT_2;
  5010. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5011. np->rx_csum = 1;
  5012. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5013. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5014. dev->features |= NETIF_F_TSO;
  5015. }
  5016. np->vlanctl_bits = 0;
  5017. if (id->driver_data & DEV_HAS_VLAN) {
  5018. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5019. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  5020. }
  5021. np->msi_flags = 0;
  5022. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  5023. np->msi_flags |= NV_MSI_CAPABLE;
  5024. }
  5025. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5026. np->msi_flags |= NV_MSI_X_CAPABLE;
  5027. }
  5028. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5029. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5030. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5031. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5032. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5033. }
  5034. err = -ENOMEM;
  5035. np->base = ioremap(addr, np->register_size);
  5036. if (!np->base)
  5037. goto out_relreg;
  5038. dev->base_addr = (unsigned long)np->base;
  5039. dev->irq = pci_dev->irq;
  5040. np->rx_ring_size = RX_RING_DEFAULT;
  5041. np->tx_ring_size = TX_RING_DEFAULT;
  5042. if (!nv_optimized(np)) {
  5043. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5044. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5045. &np->ring_addr);
  5046. if (!np->rx_ring.orig)
  5047. goto out_unmap;
  5048. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5049. } else {
  5050. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5051. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5052. &np->ring_addr);
  5053. if (!np->rx_ring.ex)
  5054. goto out_unmap;
  5055. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5056. }
  5057. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5058. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5059. if (!np->rx_skb || !np->tx_skb)
  5060. goto out_freering;
  5061. if (!nv_optimized(np))
  5062. dev->netdev_ops = &nv_netdev_ops;
  5063. else
  5064. dev->netdev_ops = &nv_netdev_ops_optimized;
  5065. #ifdef CONFIG_FORCEDETH_NAPI
  5066. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5067. #endif
  5068. SET_ETHTOOL_OPS(dev, &ops);
  5069. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5070. pci_set_drvdata(pci_dev, dev);
  5071. /* read the mac address */
  5072. base = get_hwbase(dev);
  5073. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5074. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5075. /* check the workaround bit for correct mac address order */
  5076. txreg = readl(base + NvRegTransmitPoll);
  5077. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5078. /* mac address is already in correct order */
  5079. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5080. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5081. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5082. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5083. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5084. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5085. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5086. /* mac address is already in correct order */
  5087. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5088. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5089. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5090. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5091. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5092. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5093. /*
  5094. * Set orig mac address back to the reversed version.
  5095. * This flag will be cleared during low power transition.
  5096. * Therefore, we should always put back the reversed address.
  5097. */
  5098. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5099. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5100. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5101. } else {
  5102. /* need to reverse mac address to correct order */
  5103. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5104. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5105. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5106. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5107. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5108. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5109. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5110. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5111. }
  5112. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5113. if (!is_valid_ether_addr(dev->perm_addr)) {
  5114. /*
  5115. * Bad mac address. At least one bios sets the mac address
  5116. * to 01:23:45:67:89:ab
  5117. */
  5118. dev_printk(KERN_ERR, &pci_dev->dev,
  5119. "Invalid Mac address detected: %pM\n",
  5120. dev->dev_addr);
  5121. dev_printk(KERN_ERR, &pci_dev->dev,
  5122. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5123. dev->dev_addr[0] = 0x00;
  5124. dev->dev_addr[1] = 0x00;
  5125. dev->dev_addr[2] = 0x6c;
  5126. get_random_bytes(&dev->dev_addr[3], 3);
  5127. }
  5128. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5129. pci_name(pci_dev), dev->dev_addr);
  5130. /* set mac address */
  5131. nv_copy_mac_to_hw(dev);
  5132. /* Workaround current PCI init glitch: wakeup bits aren't
  5133. * being set from PCI PM capability.
  5134. */
  5135. device_init_wakeup(&pci_dev->dev, 1);
  5136. /* disable WOL */
  5137. writel(0, base + NvRegWakeUpFlags);
  5138. np->wolenabled = 0;
  5139. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5140. /* take phy and nic out of low power mode */
  5141. powerstate = readl(base + NvRegPowerState2);
  5142. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5143. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  5144. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  5145. pci_dev->revision >= 0xA3)
  5146. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5147. writel(powerstate, base + NvRegPowerState2);
  5148. }
  5149. if (np->desc_ver == DESC_VER_1) {
  5150. np->tx_flags = NV_TX_VALID;
  5151. } else {
  5152. np->tx_flags = NV_TX2_VALID;
  5153. }
  5154. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  5155. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5156. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5157. np->msi_flags |= 0x0003;
  5158. } else {
  5159. np->irqmask = NVREG_IRQMASK_CPU;
  5160. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5161. np->msi_flags |= 0x0001;
  5162. }
  5163. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5164. np->irqmask |= NVREG_IRQ_TIMER;
  5165. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5166. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5167. np->need_linktimer = 1;
  5168. np->link_timeout = jiffies + LINK_TIMEOUT;
  5169. } else {
  5170. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5171. np->need_linktimer = 0;
  5172. }
  5173. /* Limit the number of tx's outstanding for hw bug */
  5174. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5175. np->tx_limit = 1;
  5176. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  5177. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  5178. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  5179. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  5180. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  5181. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  5182. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  5183. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  5184. pci_dev->revision >= 0xA2)
  5185. np->tx_limit = 0;
  5186. }
  5187. /* clear phy state and temporarily halt phy interrupts */
  5188. writel(0, base + NvRegMIIMask);
  5189. phystate = readl(base + NvRegAdapterControl);
  5190. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5191. phystate_orig = 1;
  5192. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5193. writel(phystate, base + NvRegAdapterControl);
  5194. }
  5195. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5196. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5197. /* management unit running on the mac? */
  5198. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5199. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5200. nv_mgmt_acquire_sema(dev) &&
  5201. nv_mgmt_get_version(dev)) {
  5202. np->mac_in_use = 1;
  5203. if (np->mgmt_version > 0) {
  5204. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5205. }
  5206. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5207. pci_name(pci_dev), np->mac_in_use);
  5208. /* management unit setup the phy already? */
  5209. if (np->mac_in_use &&
  5210. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5211. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5212. /* phy is inited by mgmt unit */
  5213. phyinitialized = 1;
  5214. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5215. pci_name(pci_dev));
  5216. } else {
  5217. /* we need to init the phy */
  5218. }
  5219. }
  5220. }
  5221. /* find a suitable phy */
  5222. for (i = 1; i <= 32; i++) {
  5223. int id1, id2;
  5224. int phyaddr = i & 0x1F;
  5225. spin_lock_irq(&np->lock);
  5226. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5227. spin_unlock_irq(&np->lock);
  5228. if (id1 < 0 || id1 == 0xffff)
  5229. continue;
  5230. spin_lock_irq(&np->lock);
  5231. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5232. spin_unlock_irq(&np->lock);
  5233. if (id2 < 0 || id2 == 0xffff)
  5234. continue;
  5235. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5236. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5237. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5238. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5239. pci_name(pci_dev), id1, id2, phyaddr);
  5240. np->phyaddr = phyaddr;
  5241. np->phy_oui = id1 | id2;
  5242. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5243. if (np->phy_oui == PHY_OUI_REALTEK2)
  5244. np->phy_oui = PHY_OUI_REALTEK;
  5245. /* Setup phy revision for Realtek */
  5246. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5247. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5248. break;
  5249. }
  5250. if (i == 33) {
  5251. dev_printk(KERN_INFO, &pci_dev->dev,
  5252. "open: Could not find a valid PHY.\n");
  5253. goto out_error;
  5254. }
  5255. if (!phyinitialized) {
  5256. /* reset it */
  5257. phy_init(dev);
  5258. } else {
  5259. /* see if it is a gigabit phy */
  5260. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5261. if (mii_status & PHY_GIGABIT) {
  5262. np->gigabit = PHY_GIGABIT;
  5263. }
  5264. }
  5265. /* set default link speed settings */
  5266. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5267. np->duplex = 0;
  5268. np->autoneg = 1;
  5269. err = register_netdev(dev);
  5270. if (err) {
  5271. dev_printk(KERN_INFO, &pci_dev->dev,
  5272. "unable to register netdev: %d\n", err);
  5273. goto out_error;
  5274. }
  5275. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5276. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5277. dev->name,
  5278. np->phy_oui,
  5279. np->phyaddr,
  5280. dev->dev_addr[0],
  5281. dev->dev_addr[1],
  5282. dev->dev_addr[2],
  5283. dev->dev_addr[3],
  5284. dev->dev_addr[4],
  5285. dev->dev_addr[5]);
  5286. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5287. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5288. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5289. "csum " : "",
  5290. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5291. "vlan " : "",
  5292. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5293. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5294. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5295. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5296. np->need_linktimer ? "lnktim " : "",
  5297. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5298. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5299. np->desc_ver);
  5300. return 0;
  5301. out_error:
  5302. if (phystate_orig)
  5303. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5304. pci_set_drvdata(pci_dev, NULL);
  5305. out_freering:
  5306. free_rings(dev);
  5307. out_unmap:
  5308. iounmap(get_hwbase(dev));
  5309. out_relreg:
  5310. pci_release_regions(pci_dev);
  5311. out_disable:
  5312. pci_disable_device(pci_dev);
  5313. out_free:
  5314. free_netdev(dev);
  5315. out:
  5316. return err;
  5317. }
  5318. static void nv_restore_phy(struct net_device *dev)
  5319. {
  5320. struct fe_priv *np = netdev_priv(dev);
  5321. u16 phy_reserved, mii_control;
  5322. if (np->phy_oui == PHY_OUI_REALTEK &&
  5323. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5324. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5325. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5326. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5327. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5328. phy_reserved |= PHY_REALTEK_INIT8;
  5329. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5330. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5331. /* restart auto negotiation */
  5332. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5333. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5334. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5335. }
  5336. }
  5337. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5338. {
  5339. struct net_device *dev = pci_get_drvdata(pci_dev);
  5340. struct fe_priv *np = netdev_priv(dev);
  5341. u8 __iomem *base = get_hwbase(dev);
  5342. /* special op: write back the misordered MAC address - otherwise
  5343. * the next nv_probe would see a wrong address.
  5344. */
  5345. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5346. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5347. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5348. base + NvRegTransmitPoll);
  5349. }
  5350. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5351. {
  5352. struct net_device *dev = pci_get_drvdata(pci_dev);
  5353. unregister_netdev(dev);
  5354. nv_restore_mac_addr(pci_dev);
  5355. /* restore any phy related changes */
  5356. nv_restore_phy(dev);
  5357. nv_mgmt_release_sema(dev);
  5358. /* free all structures */
  5359. free_rings(dev);
  5360. iounmap(get_hwbase(dev));
  5361. pci_release_regions(pci_dev);
  5362. pci_disable_device(pci_dev);
  5363. free_netdev(dev);
  5364. pci_set_drvdata(pci_dev, NULL);
  5365. }
  5366. #ifdef CONFIG_PM
  5367. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5368. {
  5369. struct net_device *dev = pci_get_drvdata(pdev);
  5370. struct fe_priv *np = netdev_priv(dev);
  5371. u8 __iomem *base = get_hwbase(dev);
  5372. int i;
  5373. if (netif_running(dev)) {
  5374. // Gross.
  5375. nv_close(dev);
  5376. }
  5377. netif_device_detach(dev);
  5378. /* save non-pci configuration space */
  5379. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5380. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5381. pci_save_state(pdev);
  5382. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5383. pci_disable_device(pdev);
  5384. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5385. return 0;
  5386. }
  5387. static int nv_resume(struct pci_dev *pdev)
  5388. {
  5389. struct net_device *dev = pci_get_drvdata(pdev);
  5390. struct fe_priv *np = netdev_priv(dev);
  5391. u8 __iomem *base = get_hwbase(dev);
  5392. int i, rc = 0;
  5393. pci_set_power_state(pdev, PCI_D0);
  5394. pci_restore_state(pdev);
  5395. /* ack any pending wake events, disable PME */
  5396. pci_enable_wake(pdev, PCI_D0, 0);
  5397. /* restore non-pci configuration space */
  5398. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5399. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5400. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5401. netif_device_attach(dev);
  5402. if (netif_running(dev)) {
  5403. rc = nv_open(dev);
  5404. nv_set_multicast(dev);
  5405. }
  5406. return rc;
  5407. }
  5408. static void nv_shutdown(struct pci_dev *pdev)
  5409. {
  5410. struct net_device *dev = pci_get_drvdata(pdev);
  5411. struct fe_priv *np = netdev_priv(dev);
  5412. if (netif_running(dev))
  5413. nv_close(dev);
  5414. /*
  5415. * Restore the MAC so a kernel started by kexec won't get confused.
  5416. * If we really go for poweroff, we must not restore the MAC,
  5417. * otherwise the MAC for WOL will be reversed at least on some boards.
  5418. */
  5419. if (system_state != SYSTEM_POWER_OFF) {
  5420. nv_restore_mac_addr(pdev);
  5421. }
  5422. pci_disable_device(pdev);
  5423. /*
  5424. * Apparently it is not possible to reinitialise from D3 hot,
  5425. * only put the device into D3 if we really go for poweroff.
  5426. */
  5427. if (system_state == SYSTEM_POWER_OFF) {
  5428. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5429. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5430. pci_set_power_state(pdev, PCI_D3hot);
  5431. }
  5432. }
  5433. #else
  5434. #define nv_suspend NULL
  5435. #define nv_shutdown NULL
  5436. #define nv_resume NULL
  5437. #endif /* CONFIG_PM */
  5438. static struct pci_device_id pci_tbl[] = {
  5439. { /* nForce Ethernet Controller */
  5440. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5441. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5442. },
  5443. { /* nForce2 Ethernet Controller */
  5444. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5445. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5446. },
  5447. { /* nForce3 Ethernet Controller */
  5448. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5449. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5450. },
  5451. { /* nForce3 Ethernet Controller */
  5452. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5453. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5454. },
  5455. { /* nForce3 Ethernet Controller */
  5456. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5457. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5458. },
  5459. { /* nForce3 Ethernet Controller */
  5460. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5461. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5462. },
  5463. { /* nForce3 Ethernet Controller */
  5464. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5465. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5466. },
  5467. { /* CK804 Ethernet Controller */
  5468. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5469. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5470. },
  5471. { /* CK804 Ethernet Controller */
  5472. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5473. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5474. },
  5475. { /* MCP04 Ethernet Controller */
  5476. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5477. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5478. },
  5479. { /* MCP04 Ethernet Controller */
  5480. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5481. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5482. },
  5483. { /* MCP51 Ethernet Controller */
  5484. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5485. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5486. },
  5487. { /* MCP51 Ethernet Controller */
  5488. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5489. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5490. },
  5491. { /* MCP55 Ethernet Controller */
  5492. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5493. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5494. },
  5495. { /* MCP55 Ethernet Controller */
  5496. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5497. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5498. },
  5499. { /* MCP61 Ethernet Controller */
  5500. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5501. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5502. },
  5503. { /* MCP61 Ethernet Controller */
  5504. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5505. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5506. },
  5507. { /* MCP61 Ethernet Controller */
  5508. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5509. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5510. },
  5511. { /* MCP61 Ethernet Controller */
  5512. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5513. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5514. },
  5515. { /* MCP65 Ethernet Controller */
  5516. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5517. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5518. },
  5519. { /* MCP65 Ethernet Controller */
  5520. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5521. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5522. },
  5523. { /* MCP65 Ethernet Controller */
  5524. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5525. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5526. },
  5527. { /* MCP65 Ethernet Controller */
  5528. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5529. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5530. },
  5531. { /* MCP67 Ethernet Controller */
  5532. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5533. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5534. },
  5535. { /* MCP67 Ethernet Controller */
  5536. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5537. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5538. },
  5539. { /* MCP67 Ethernet Controller */
  5540. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5541. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5542. },
  5543. { /* MCP67 Ethernet Controller */
  5544. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5545. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE,
  5546. },
  5547. { /* MCP73 Ethernet Controller */
  5548. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5549. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5550. },
  5551. { /* MCP73 Ethernet Controller */
  5552. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5553. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5554. },
  5555. { /* MCP73 Ethernet Controller */
  5556. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5557. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5558. },
  5559. { /* MCP73 Ethernet Controller */
  5560. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5561. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE,
  5562. },
  5563. { /* MCP77 Ethernet Controller */
  5564. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5565. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5566. },
  5567. { /* MCP77 Ethernet Controller */
  5568. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5569. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5570. },
  5571. { /* MCP77 Ethernet Controller */
  5572. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5573. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5574. },
  5575. { /* MCP77 Ethernet Controller */
  5576. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5577. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5578. },
  5579. { /* MCP79 Ethernet Controller */
  5580. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5581. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5582. },
  5583. { /* MCP79 Ethernet Controller */
  5584. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5585. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5586. },
  5587. { /* MCP79 Ethernet Controller */
  5588. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5589. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5590. },
  5591. { /* MCP79 Ethernet Controller */
  5592. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5593. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE,
  5594. },
  5595. {0,},
  5596. };
  5597. static struct pci_driver driver = {
  5598. .name = DRV_NAME,
  5599. .id_table = pci_tbl,
  5600. .probe = nv_probe,
  5601. .remove = __devexit_p(nv_remove),
  5602. .suspend = nv_suspend,
  5603. .resume = nv_resume,
  5604. .shutdown = nv_shutdown,
  5605. };
  5606. static int __init init_nic(void)
  5607. {
  5608. return pci_register_driver(&driver);
  5609. }
  5610. static void __exit exit_nic(void)
  5611. {
  5612. pci_unregister_driver(&driver);
  5613. }
  5614. module_param(max_interrupt_work, int, 0);
  5615. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5616. module_param(optimization_mode, int, 0);
  5617. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5618. module_param(poll_interval, int, 0);
  5619. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5620. module_param(msi, int, 0);
  5621. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5622. module_param(msix, int, 0);
  5623. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5624. module_param(dma_64bit, int, 0);
  5625. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5626. module_param(phy_cross, int, 0);
  5627. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5628. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5629. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5630. MODULE_LICENSE("GPL");
  5631. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5632. module_init(init_nic);
  5633. module_exit(exit_nic);