kvm_main.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/pgtable.h>
  46. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  47. #include "coalesced_mmio.h"
  48. #endif
  49. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  50. #include <linux/pci.h>
  51. #include <linux/interrupt.h>
  52. #include "irq.h"
  53. #endif
  54. MODULE_AUTHOR("Qumranet");
  55. MODULE_LICENSE("GPL");
  56. DEFINE_SPINLOCK(kvm_lock);
  57. LIST_HEAD(vm_list);
  58. static cpumask_t cpus_hardware_enabled;
  59. struct kmem_cache *kvm_vcpu_cache;
  60. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  61. static __read_mostly struct preempt_ops kvm_preempt_ops;
  62. struct dentry *kvm_debugfs_dir;
  63. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  64. unsigned long arg);
  65. bool kvm_rebooting;
  66. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  67. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  68. int assigned_dev_id)
  69. {
  70. struct list_head *ptr;
  71. struct kvm_assigned_dev_kernel *match;
  72. list_for_each(ptr, head) {
  73. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  74. if (match->assigned_dev_id == assigned_dev_id)
  75. return match;
  76. }
  77. return NULL;
  78. }
  79. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  80. {
  81. struct kvm_assigned_dev_kernel *assigned_dev;
  82. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  83. interrupt_work);
  84. /* This is taken to safely inject irq inside the guest. When
  85. * the interrupt injection (or the ioapic code) uses a
  86. * finer-grained lock, update this
  87. */
  88. mutex_lock(&assigned_dev->kvm->lock);
  89. kvm_set_irq(assigned_dev->kvm,
  90. assigned_dev->guest_irq, 1);
  91. mutex_unlock(&assigned_dev->kvm->lock);
  92. kvm_put_kvm(assigned_dev->kvm);
  93. }
  94. /* FIXME: Implement the OR logic needed to make shared interrupts on
  95. * this line behave properly
  96. */
  97. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  98. {
  99. struct kvm_assigned_dev_kernel *assigned_dev =
  100. (struct kvm_assigned_dev_kernel *) dev_id;
  101. kvm_get_kvm(assigned_dev->kvm);
  102. schedule_work(&assigned_dev->interrupt_work);
  103. disable_irq_nosync(irq);
  104. return IRQ_HANDLED;
  105. }
  106. /* Ack the irq line for an assigned device */
  107. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  108. {
  109. struct kvm_assigned_dev_kernel *dev;
  110. if (kian->gsi == -1)
  111. return;
  112. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  113. ack_notifier);
  114. kvm_set_irq(dev->kvm, dev->guest_irq, 0);
  115. enable_irq(dev->host_irq);
  116. }
  117. static void kvm_free_assigned_device(struct kvm *kvm,
  118. struct kvm_assigned_dev_kernel
  119. *assigned_dev)
  120. {
  121. if (irqchip_in_kernel(kvm) && assigned_dev->irq_requested)
  122. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  123. kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
  124. if (cancel_work_sync(&assigned_dev->interrupt_work))
  125. /* We had pending work. That means we will have to take
  126. * care of kvm_put_kvm.
  127. */
  128. kvm_put_kvm(kvm);
  129. pci_release_regions(assigned_dev->dev);
  130. pci_disable_device(assigned_dev->dev);
  131. pci_dev_put(assigned_dev->dev);
  132. list_del(&assigned_dev->list);
  133. kfree(assigned_dev);
  134. }
  135. void kvm_free_all_assigned_devices(struct kvm *kvm)
  136. {
  137. struct list_head *ptr, *ptr2;
  138. struct kvm_assigned_dev_kernel *assigned_dev;
  139. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  140. assigned_dev = list_entry(ptr,
  141. struct kvm_assigned_dev_kernel,
  142. list);
  143. kvm_free_assigned_device(kvm, assigned_dev);
  144. }
  145. }
  146. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  147. struct kvm_assigned_irq
  148. *assigned_irq)
  149. {
  150. int r = 0;
  151. struct kvm_assigned_dev_kernel *match;
  152. mutex_lock(&kvm->lock);
  153. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  154. assigned_irq->assigned_dev_id);
  155. if (!match) {
  156. mutex_unlock(&kvm->lock);
  157. return -EINVAL;
  158. }
  159. if (match->irq_requested) {
  160. match->guest_irq = assigned_irq->guest_irq;
  161. match->ack_notifier.gsi = assigned_irq->guest_irq;
  162. mutex_unlock(&kvm->lock);
  163. return 0;
  164. }
  165. INIT_WORK(&match->interrupt_work,
  166. kvm_assigned_dev_interrupt_work_handler);
  167. if (irqchip_in_kernel(kvm)) {
  168. if (!capable(CAP_SYS_RAWIO)) {
  169. r = -EPERM;
  170. goto out_release;
  171. }
  172. if (assigned_irq->host_irq)
  173. match->host_irq = assigned_irq->host_irq;
  174. else
  175. match->host_irq = match->dev->irq;
  176. match->guest_irq = assigned_irq->guest_irq;
  177. match->ack_notifier.gsi = assigned_irq->guest_irq;
  178. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  179. kvm_register_irq_ack_notifier(kvm, &match->ack_notifier);
  180. /* Even though this is PCI, we don't want to use shared
  181. * interrupts. Sharing host devices with guest-assigned devices
  182. * on the same interrupt line is not a happy situation: there
  183. * are going to be long delays in accepting, acking, etc.
  184. */
  185. if (request_irq(match->host_irq, kvm_assigned_dev_intr, 0,
  186. "kvm_assigned_device", (void *)match)) {
  187. r = -EIO;
  188. goto out_release;
  189. }
  190. }
  191. match->irq_requested = true;
  192. mutex_unlock(&kvm->lock);
  193. return r;
  194. out_release:
  195. mutex_unlock(&kvm->lock);
  196. kvm_free_assigned_device(kvm, match);
  197. return r;
  198. }
  199. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  200. struct kvm_assigned_pci_dev *assigned_dev)
  201. {
  202. int r = 0;
  203. struct kvm_assigned_dev_kernel *match;
  204. struct pci_dev *dev;
  205. mutex_lock(&kvm->lock);
  206. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  207. assigned_dev->assigned_dev_id);
  208. if (match) {
  209. /* device already assigned */
  210. r = -EINVAL;
  211. goto out;
  212. }
  213. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  214. if (match == NULL) {
  215. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  216. __func__);
  217. r = -ENOMEM;
  218. goto out;
  219. }
  220. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  221. assigned_dev->devfn);
  222. if (!dev) {
  223. printk(KERN_INFO "%s: host device not found\n", __func__);
  224. r = -EINVAL;
  225. goto out_free;
  226. }
  227. if (pci_enable_device(dev)) {
  228. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  229. r = -EBUSY;
  230. goto out_put;
  231. }
  232. r = pci_request_regions(dev, "kvm_assigned_device");
  233. if (r) {
  234. printk(KERN_INFO "%s: Could not get access to device regions\n",
  235. __func__);
  236. goto out_disable;
  237. }
  238. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  239. match->host_busnr = assigned_dev->busnr;
  240. match->host_devfn = assigned_dev->devfn;
  241. match->dev = dev;
  242. match->kvm = kvm;
  243. list_add(&match->list, &kvm->arch.assigned_dev_head);
  244. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  245. r = kvm_iommu_map_guest(kvm, match);
  246. if (r)
  247. goto out_list_del;
  248. }
  249. out:
  250. mutex_unlock(&kvm->lock);
  251. return r;
  252. out_list_del:
  253. list_del(&match->list);
  254. pci_release_regions(dev);
  255. out_disable:
  256. pci_disable_device(dev);
  257. out_put:
  258. pci_dev_put(dev);
  259. out_free:
  260. kfree(match);
  261. mutex_unlock(&kvm->lock);
  262. return r;
  263. }
  264. #endif
  265. static inline int valid_vcpu(int n)
  266. {
  267. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  268. }
  269. inline int kvm_is_mmio_pfn(pfn_t pfn)
  270. {
  271. if (pfn_valid(pfn))
  272. return PageReserved(pfn_to_page(pfn));
  273. return true;
  274. }
  275. /*
  276. * Switches to specified vcpu, until a matching vcpu_put()
  277. */
  278. void vcpu_load(struct kvm_vcpu *vcpu)
  279. {
  280. int cpu;
  281. mutex_lock(&vcpu->mutex);
  282. cpu = get_cpu();
  283. preempt_notifier_register(&vcpu->preempt_notifier);
  284. kvm_arch_vcpu_load(vcpu, cpu);
  285. put_cpu();
  286. }
  287. void vcpu_put(struct kvm_vcpu *vcpu)
  288. {
  289. preempt_disable();
  290. kvm_arch_vcpu_put(vcpu);
  291. preempt_notifier_unregister(&vcpu->preempt_notifier);
  292. preempt_enable();
  293. mutex_unlock(&vcpu->mutex);
  294. }
  295. static void ack_flush(void *_completed)
  296. {
  297. }
  298. void kvm_flush_remote_tlbs(struct kvm *kvm)
  299. {
  300. int i, cpu, me;
  301. cpumask_t cpus;
  302. struct kvm_vcpu *vcpu;
  303. me = get_cpu();
  304. cpus_clear(cpus);
  305. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  306. vcpu = kvm->vcpus[i];
  307. if (!vcpu)
  308. continue;
  309. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  310. continue;
  311. cpu = vcpu->cpu;
  312. if (cpu != -1 && cpu != me)
  313. cpu_set(cpu, cpus);
  314. }
  315. if (cpus_empty(cpus))
  316. goto out;
  317. ++kvm->stat.remote_tlb_flush;
  318. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  319. out:
  320. put_cpu();
  321. }
  322. void kvm_reload_remote_mmus(struct kvm *kvm)
  323. {
  324. int i, cpu, me;
  325. cpumask_t cpus;
  326. struct kvm_vcpu *vcpu;
  327. me = get_cpu();
  328. cpus_clear(cpus);
  329. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  330. vcpu = kvm->vcpus[i];
  331. if (!vcpu)
  332. continue;
  333. if (test_and_set_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  334. continue;
  335. cpu = vcpu->cpu;
  336. if (cpu != -1 && cpu != me)
  337. cpu_set(cpu, cpus);
  338. }
  339. if (cpus_empty(cpus))
  340. goto out;
  341. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  342. out:
  343. put_cpu();
  344. }
  345. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  346. {
  347. struct page *page;
  348. int r;
  349. mutex_init(&vcpu->mutex);
  350. vcpu->cpu = -1;
  351. vcpu->kvm = kvm;
  352. vcpu->vcpu_id = id;
  353. init_waitqueue_head(&vcpu->wq);
  354. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  355. if (!page) {
  356. r = -ENOMEM;
  357. goto fail;
  358. }
  359. vcpu->run = page_address(page);
  360. r = kvm_arch_vcpu_init(vcpu);
  361. if (r < 0)
  362. goto fail_free_run;
  363. return 0;
  364. fail_free_run:
  365. free_page((unsigned long)vcpu->run);
  366. fail:
  367. return r;
  368. }
  369. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  370. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  371. {
  372. kvm_arch_vcpu_uninit(vcpu);
  373. free_page((unsigned long)vcpu->run);
  374. }
  375. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  376. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  377. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  378. {
  379. return container_of(mn, struct kvm, mmu_notifier);
  380. }
  381. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  382. struct mm_struct *mm,
  383. unsigned long address)
  384. {
  385. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  386. int need_tlb_flush;
  387. /*
  388. * When ->invalidate_page runs, the linux pte has been zapped
  389. * already but the page is still allocated until
  390. * ->invalidate_page returns. So if we increase the sequence
  391. * here the kvm page fault will notice if the spte can't be
  392. * established because the page is going to be freed. If
  393. * instead the kvm page fault establishes the spte before
  394. * ->invalidate_page runs, kvm_unmap_hva will release it
  395. * before returning.
  396. *
  397. * The sequence increase only need to be seen at spin_unlock
  398. * time, and not at spin_lock time.
  399. *
  400. * Increasing the sequence after the spin_unlock would be
  401. * unsafe because the kvm page fault could then establish the
  402. * pte after kvm_unmap_hva returned, without noticing the page
  403. * is going to be freed.
  404. */
  405. spin_lock(&kvm->mmu_lock);
  406. kvm->mmu_notifier_seq++;
  407. need_tlb_flush = kvm_unmap_hva(kvm, address);
  408. spin_unlock(&kvm->mmu_lock);
  409. /* we've to flush the tlb before the pages can be freed */
  410. if (need_tlb_flush)
  411. kvm_flush_remote_tlbs(kvm);
  412. }
  413. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  414. struct mm_struct *mm,
  415. unsigned long start,
  416. unsigned long end)
  417. {
  418. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  419. int need_tlb_flush = 0;
  420. spin_lock(&kvm->mmu_lock);
  421. /*
  422. * The count increase must become visible at unlock time as no
  423. * spte can be established without taking the mmu_lock and
  424. * count is also read inside the mmu_lock critical section.
  425. */
  426. kvm->mmu_notifier_count++;
  427. for (; start < end; start += PAGE_SIZE)
  428. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  429. spin_unlock(&kvm->mmu_lock);
  430. /* we've to flush the tlb before the pages can be freed */
  431. if (need_tlb_flush)
  432. kvm_flush_remote_tlbs(kvm);
  433. }
  434. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  435. struct mm_struct *mm,
  436. unsigned long start,
  437. unsigned long end)
  438. {
  439. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  440. spin_lock(&kvm->mmu_lock);
  441. /*
  442. * This sequence increase will notify the kvm page fault that
  443. * the page that is going to be mapped in the spte could have
  444. * been freed.
  445. */
  446. kvm->mmu_notifier_seq++;
  447. /*
  448. * The above sequence increase must be visible before the
  449. * below count decrease but both values are read by the kvm
  450. * page fault under mmu_lock spinlock so we don't need to add
  451. * a smb_wmb() here in between the two.
  452. */
  453. kvm->mmu_notifier_count--;
  454. spin_unlock(&kvm->mmu_lock);
  455. BUG_ON(kvm->mmu_notifier_count < 0);
  456. }
  457. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  458. struct mm_struct *mm,
  459. unsigned long address)
  460. {
  461. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  462. int young;
  463. spin_lock(&kvm->mmu_lock);
  464. young = kvm_age_hva(kvm, address);
  465. spin_unlock(&kvm->mmu_lock);
  466. if (young)
  467. kvm_flush_remote_tlbs(kvm);
  468. return young;
  469. }
  470. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  471. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  472. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  473. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  474. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  475. };
  476. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  477. static struct kvm *kvm_create_vm(void)
  478. {
  479. struct kvm *kvm = kvm_arch_create_vm();
  480. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  481. struct page *page;
  482. #endif
  483. if (IS_ERR(kvm))
  484. goto out;
  485. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  486. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  487. if (!page) {
  488. kfree(kvm);
  489. return ERR_PTR(-ENOMEM);
  490. }
  491. kvm->coalesced_mmio_ring =
  492. (struct kvm_coalesced_mmio_ring *)page_address(page);
  493. #endif
  494. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  495. {
  496. int err;
  497. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  498. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  499. if (err) {
  500. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  501. put_page(page);
  502. #endif
  503. kfree(kvm);
  504. return ERR_PTR(err);
  505. }
  506. }
  507. #endif
  508. kvm->mm = current->mm;
  509. atomic_inc(&kvm->mm->mm_count);
  510. spin_lock_init(&kvm->mmu_lock);
  511. kvm_io_bus_init(&kvm->pio_bus);
  512. mutex_init(&kvm->lock);
  513. kvm_io_bus_init(&kvm->mmio_bus);
  514. init_rwsem(&kvm->slots_lock);
  515. atomic_set(&kvm->users_count, 1);
  516. spin_lock(&kvm_lock);
  517. list_add(&kvm->vm_list, &vm_list);
  518. spin_unlock(&kvm_lock);
  519. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  520. kvm_coalesced_mmio_init(kvm);
  521. #endif
  522. out:
  523. return kvm;
  524. }
  525. /*
  526. * Free any memory in @free but not in @dont.
  527. */
  528. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  529. struct kvm_memory_slot *dont)
  530. {
  531. if (!dont || free->rmap != dont->rmap)
  532. vfree(free->rmap);
  533. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  534. vfree(free->dirty_bitmap);
  535. if (!dont || free->lpage_info != dont->lpage_info)
  536. vfree(free->lpage_info);
  537. free->npages = 0;
  538. free->dirty_bitmap = NULL;
  539. free->rmap = NULL;
  540. free->lpage_info = NULL;
  541. }
  542. void kvm_free_physmem(struct kvm *kvm)
  543. {
  544. int i;
  545. for (i = 0; i < kvm->nmemslots; ++i)
  546. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  547. }
  548. static void kvm_destroy_vm(struct kvm *kvm)
  549. {
  550. struct mm_struct *mm = kvm->mm;
  551. spin_lock(&kvm_lock);
  552. list_del(&kvm->vm_list);
  553. spin_unlock(&kvm_lock);
  554. kvm_io_bus_destroy(&kvm->pio_bus);
  555. kvm_io_bus_destroy(&kvm->mmio_bus);
  556. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  557. if (kvm->coalesced_mmio_ring != NULL)
  558. free_page((unsigned long)kvm->coalesced_mmio_ring);
  559. #endif
  560. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  561. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  562. #endif
  563. kvm_arch_destroy_vm(kvm);
  564. mmdrop(mm);
  565. }
  566. void kvm_get_kvm(struct kvm *kvm)
  567. {
  568. atomic_inc(&kvm->users_count);
  569. }
  570. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  571. void kvm_put_kvm(struct kvm *kvm)
  572. {
  573. if (atomic_dec_and_test(&kvm->users_count))
  574. kvm_destroy_vm(kvm);
  575. }
  576. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  577. static int kvm_vm_release(struct inode *inode, struct file *filp)
  578. {
  579. struct kvm *kvm = filp->private_data;
  580. kvm_put_kvm(kvm);
  581. return 0;
  582. }
  583. /*
  584. * Allocate some memory and give it an address in the guest physical address
  585. * space.
  586. *
  587. * Discontiguous memory is allowed, mostly for framebuffers.
  588. *
  589. * Must be called holding mmap_sem for write.
  590. */
  591. int __kvm_set_memory_region(struct kvm *kvm,
  592. struct kvm_userspace_memory_region *mem,
  593. int user_alloc)
  594. {
  595. int r;
  596. gfn_t base_gfn;
  597. unsigned long npages;
  598. unsigned long i;
  599. struct kvm_memory_slot *memslot;
  600. struct kvm_memory_slot old, new;
  601. r = -EINVAL;
  602. /* General sanity checks */
  603. if (mem->memory_size & (PAGE_SIZE - 1))
  604. goto out;
  605. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  606. goto out;
  607. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  608. goto out;
  609. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  610. goto out;
  611. memslot = &kvm->memslots[mem->slot];
  612. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  613. npages = mem->memory_size >> PAGE_SHIFT;
  614. if (!npages)
  615. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  616. new = old = *memslot;
  617. new.base_gfn = base_gfn;
  618. new.npages = npages;
  619. new.flags = mem->flags;
  620. /* Disallow changing a memory slot's size. */
  621. r = -EINVAL;
  622. if (npages && old.npages && npages != old.npages)
  623. goto out_free;
  624. /* Check for overlaps */
  625. r = -EEXIST;
  626. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  627. struct kvm_memory_slot *s = &kvm->memslots[i];
  628. if (s == memslot)
  629. continue;
  630. if (!((base_gfn + npages <= s->base_gfn) ||
  631. (base_gfn >= s->base_gfn + s->npages)))
  632. goto out_free;
  633. }
  634. /* Free page dirty bitmap if unneeded */
  635. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  636. new.dirty_bitmap = NULL;
  637. r = -ENOMEM;
  638. /* Allocate if a slot is being created */
  639. #ifndef CONFIG_S390
  640. if (npages && !new.rmap) {
  641. new.rmap = vmalloc(npages * sizeof(struct page *));
  642. if (!new.rmap)
  643. goto out_free;
  644. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  645. new.user_alloc = user_alloc;
  646. /*
  647. * hva_to_rmmap() serialzies with the mmu_lock and to be
  648. * safe it has to ignore memslots with !user_alloc &&
  649. * !userspace_addr.
  650. */
  651. if (user_alloc)
  652. new.userspace_addr = mem->userspace_addr;
  653. else
  654. new.userspace_addr = 0;
  655. }
  656. if (npages && !new.lpage_info) {
  657. int largepages = npages / KVM_PAGES_PER_HPAGE;
  658. if (npages % KVM_PAGES_PER_HPAGE)
  659. largepages++;
  660. if (base_gfn % KVM_PAGES_PER_HPAGE)
  661. largepages++;
  662. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  663. if (!new.lpage_info)
  664. goto out_free;
  665. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  666. if (base_gfn % KVM_PAGES_PER_HPAGE)
  667. new.lpage_info[0].write_count = 1;
  668. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  669. new.lpage_info[largepages-1].write_count = 1;
  670. }
  671. /* Allocate page dirty bitmap if needed */
  672. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  673. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  674. new.dirty_bitmap = vmalloc(dirty_bytes);
  675. if (!new.dirty_bitmap)
  676. goto out_free;
  677. memset(new.dirty_bitmap, 0, dirty_bytes);
  678. }
  679. #endif /* not defined CONFIG_S390 */
  680. if (!npages)
  681. kvm_arch_flush_shadow(kvm);
  682. spin_lock(&kvm->mmu_lock);
  683. if (mem->slot >= kvm->nmemslots)
  684. kvm->nmemslots = mem->slot + 1;
  685. *memslot = new;
  686. spin_unlock(&kvm->mmu_lock);
  687. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  688. if (r) {
  689. spin_lock(&kvm->mmu_lock);
  690. *memslot = old;
  691. spin_unlock(&kvm->mmu_lock);
  692. goto out_free;
  693. }
  694. kvm_free_physmem_slot(&old, &new);
  695. #ifdef CONFIG_DMAR
  696. /* map the pages in iommu page table */
  697. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  698. if (r)
  699. goto out;
  700. #endif
  701. return 0;
  702. out_free:
  703. kvm_free_physmem_slot(&new, &old);
  704. out:
  705. return r;
  706. }
  707. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  708. int kvm_set_memory_region(struct kvm *kvm,
  709. struct kvm_userspace_memory_region *mem,
  710. int user_alloc)
  711. {
  712. int r;
  713. down_write(&kvm->slots_lock);
  714. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  715. up_write(&kvm->slots_lock);
  716. return r;
  717. }
  718. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  719. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  720. struct
  721. kvm_userspace_memory_region *mem,
  722. int user_alloc)
  723. {
  724. if (mem->slot >= KVM_MEMORY_SLOTS)
  725. return -EINVAL;
  726. return kvm_set_memory_region(kvm, mem, user_alloc);
  727. }
  728. int kvm_get_dirty_log(struct kvm *kvm,
  729. struct kvm_dirty_log *log, int *is_dirty)
  730. {
  731. struct kvm_memory_slot *memslot;
  732. int r, i;
  733. int n;
  734. unsigned long any = 0;
  735. r = -EINVAL;
  736. if (log->slot >= KVM_MEMORY_SLOTS)
  737. goto out;
  738. memslot = &kvm->memslots[log->slot];
  739. r = -ENOENT;
  740. if (!memslot->dirty_bitmap)
  741. goto out;
  742. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  743. for (i = 0; !any && i < n/sizeof(long); ++i)
  744. any = memslot->dirty_bitmap[i];
  745. r = -EFAULT;
  746. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  747. goto out;
  748. if (any)
  749. *is_dirty = 1;
  750. r = 0;
  751. out:
  752. return r;
  753. }
  754. int is_error_page(struct page *page)
  755. {
  756. return page == bad_page;
  757. }
  758. EXPORT_SYMBOL_GPL(is_error_page);
  759. int is_error_pfn(pfn_t pfn)
  760. {
  761. return pfn == bad_pfn;
  762. }
  763. EXPORT_SYMBOL_GPL(is_error_pfn);
  764. static inline unsigned long bad_hva(void)
  765. {
  766. return PAGE_OFFSET;
  767. }
  768. int kvm_is_error_hva(unsigned long addr)
  769. {
  770. return addr == bad_hva();
  771. }
  772. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  773. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  774. {
  775. int i;
  776. for (i = 0; i < kvm->nmemslots; ++i) {
  777. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  778. if (gfn >= memslot->base_gfn
  779. && gfn < memslot->base_gfn + memslot->npages)
  780. return memslot;
  781. }
  782. return NULL;
  783. }
  784. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  785. {
  786. gfn = unalias_gfn(kvm, gfn);
  787. return __gfn_to_memslot(kvm, gfn);
  788. }
  789. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  790. {
  791. int i;
  792. gfn = unalias_gfn(kvm, gfn);
  793. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  794. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  795. if (gfn >= memslot->base_gfn
  796. && gfn < memslot->base_gfn + memslot->npages)
  797. return 1;
  798. }
  799. return 0;
  800. }
  801. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  802. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  803. {
  804. struct kvm_memory_slot *slot;
  805. gfn = unalias_gfn(kvm, gfn);
  806. slot = __gfn_to_memslot(kvm, gfn);
  807. if (!slot)
  808. return bad_hva();
  809. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  810. }
  811. EXPORT_SYMBOL_GPL(gfn_to_hva);
  812. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  813. {
  814. struct page *page[1];
  815. unsigned long addr;
  816. int npages;
  817. pfn_t pfn;
  818. might_sleep();
  819. addr = gfn_to_hva(kvm, gfn);
  820. if (kvm_is_error_hva(addr)) {
  821. get_page(bad_page);
  822. return page_to_pfn(bad_page);
  823. }
  824. npages = get_user_pages_fast(addr, 1, 1, page);
  825. if (unlikely(npages != 1)) {
  826. struct vm_area_struct *vma;
  827. down_read(&current->mm->mmap_sem);
  828. vma = find_vma(current->mm, addr);
  829. if (vma == NULL || addr < vma->vm_start ||
  830. !(vma->vm_flags & VM_PFNMAP)) {
  831. up_read(&current->mm->mmap_sem);
  832. get_page(bad_page);
  833. return page_to_pfn(bad_page);
  834. }
  835. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  836. up_read(&current->mm->mmap_sem);
  837. BUG_ON(!kvm_is_mmio_pfn(pfn));
  838. } else
  839. pfn = page_to_pfn(page[0]);
  840. return pfn;
  841. }
  842. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  843. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  844. {
  845. pfn_t pfn;
  846. pfn = gfn_to_pfn(kvm, gfn);
  847. if (!kvm_is_mmio_pfn(pfn))
  848. return pfn_to_page(pfn);
  849. WARN_ON(kvm_is_mmio_pfn(pfn));
  850. get_page(bad_page);
  851. return bad_page;
  852. }
  853. EXPORT_SYMBOL_GPL(gfn_to_page);
  854. void kvm_release_page_clean(struct page *page)
  855. {
  856. kvm_release_pfn_clean(page_to_pfn(page));
  857. }
  858. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  859. void kvm_release_pfn_clean(pfn_t pfn)
  860. {
  861. if (!kvm_is_mmio_pfn(pfn))
  862. put_page(pfn_to_page(pfn));
  863. }
  864. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  865. void kvm_release_page_dirty(struct page *page)
  866. {
  867. kvm_release_pfn_dirty(page_to_pfn(page));
  868. }
  869. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  870. void kvm_release_pfn_dirty(pfn_t pfn)
  871. {
  872. kvm_set_pfn_dirty(pfn);
  873. kvm_release_pfn_clean(pfn);
  874. }
  875. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  876. void kvm_set_page_dirty(struct page *page)
  877. {
  878. kvm_set_pfn_dirty(page_to_pfn(page));
  879. }
  880. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  881. void kvm_set_pfn_dirty(pfn_t pfn)
  882. {
  883. if (!kvm_is_mmio_pfn(pfn)) {
  884. struct page *page = pfn_to_page(pfn);
  885. if (!PageReserved(page))
  886. SetPageDirty(page);
  887. }
  888. }
  889. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  890. void kvm_set_pfn_accessed(pfn_t pfn)
  891. {
  892. if (!kvm_is_mmio_pfn(pfn))
  893. mark_page_accessed(pfn_to_page(pfn));
  894. }
  895. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  896. void kvm_get_pfn(pfn_t pfn)
  897. {
  898. if (!kvm_is_mmio_pfn(pfn))
  899. get_page(pfn_to_page(pfn));
  900. }
  901. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  902. static int next_segment(unsigned long len, int offset)
  903. {
  904. if (len > PAGE_SIZE - offset)
  905. return PAGE_SIZE - offset;
  906. else
  907. return len;
  908. }
  909. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  910. int len)
  911. {
  912. int r;
  913. unsigned long addr;
  914. addr = gfn_to_hva(kvm, gfn);
  915. if (kvm_is_error_hva(addr))
  916. return -EFAULT;
  917. r = copy_from_user(data, (void __user *)addr + offset, len);
  918. if (r)
  919. return -EFAULT;
  920. return 0;
  921. }
  922. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  923. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  924. {
  925. gfn_t gfn = gpa >> PAGE_SHIFT;
  926. int seg;
  927. int offset = offset_in_page(gpa);
  928. int ret;
  929. while ((seg = next_segment(len, offset)) != 0) {
  930. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  931. if (ret < 0)
  932. return ret;
  933. offset = 0;
  934. len -= seg;
  935. data += seg;
  936. ++gfn;
  937. }
  938. return 0;
  939. }
  940. EXPORT_SYMBOL_GPL(kvm_read_guest);
  941. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  942. unsigned long len)
  943. {
  944. int r;
  945. unsigned long addr;
  946. gfn_t gfn = gpa >> PAGE_SHIFT;
  947. int offset = offset_in_page(gpa);
  948. addr = gfn_to_hva(kvm, gfn);
  949. if (kvm_is_error_hva(addr))
  950. return -EFAULT;
  951. pagefault_disable();
  952. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  953. pagefault_enable();
  954. if (r)
  955. return -EFAULT;
  956. return 0;
  957. }
  958. EXPORT_SYMBOL(kvm_read_guest_atomic);
  959. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  960. int offset, int len)
  961. {
  962. int r;
  963. unsigned long addr;
  964. addr = gfn_to_hva(kvm, gfn);
  965. if (kvm_is_error_hva(addr))
  966. return -EFAULT;
  967. r = copy_to_user((void __user *)addr + offset, data, len);
  968. if (r)
  969. return -EFAULT;
  970. mark_page_dirty(kvm, gfn);
  971. return 0;
  972. }
  973. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  974. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  975. unsigned long len)
  976. {
  977. gfn_t gfn = gpa >> PAGE_SHIFT;
  978. int seg;
  979. int offset = offset_in_page(gpa);
  980. int ret;
  981. while ((seg = next_segment(len, offset)) != 0) {
  982. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  983. if (ret < 0)
  984. return ret;
  985. offset = 0;
  986. len -= seg;
  987. data += seg;
  988. ++gfn;
  989. }
  990. return 0;
  991. }
  992. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  993. {
  994. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  995. }
  996. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  997. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  998. {
  999. gfn_t gfn = gpa >> PAGE_SHIFT;
  1000. int seg;
  1001. int offset = offset_in_page(gpa);
  1002. int ret;
  1003. while ((seg = next_segment(len, offset)) != 0) {
  1004. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1005. if (ret < 0)
  1006. return ret;
  1007. offset = 0;
  1008. len -= seg;
  1009. ++gfn;
  1010. }
  1011. return 0;
  1012. }
  1013. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1014. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1015. {
  1016. struct kvm_memory_slot *memslot;
  1017. gfn = unalias_gfn(kvm, gfn);
  1018. memslot = __gfn_to_memslot(kvm, gfn);
  1019. if (memslot && memslot->dirty_bitmap) {
  1020. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1021. /* avoid RMW */
  1022. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1023. set_bit(rel_gfn, memslot->dirty_bitmap);
  1024. }
  1025. }
  1026. /*
  1027. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1028. */
  1029. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1030. {
  1031. DEFINE_WAIT(wait);
  1032. for (;;) {
  1033. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1034. if (kvm_cpu_has_interrupt(vcpu) ||
  1035. kvm_cpu_has_pending_timer(vcpu) ||
  1036. kvm_arch_vcpu_runnable(vcpu)) {
  1037. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1038. break;
  1039. }
  1040. if (signal_pending(current))
  1041. break;
  1042. vcpu_put(vcpu);
  1043. schedule();
  1044. vcpu_load(vcpu);
  1045. }
  1046. finish_wait(&vcpu->wq, &wait);
  1047. }
  1048. void kvm_resched(struct kvm_vcpu *vcpu)
  1049. {
  1050. if (!need_resched())
  1051. return;
  1052. cond_resched();
  1053. }
  1054. EXPORT_SYMBOL_GPL(kvm_resched);
  1055. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1056. {
  1057. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1058. struct page *page;
  1059. if (vmf->pgoff == 0)
  1060. page = virt_to_page(vcpu->run);
  1061. #ifdef CONFIG_X86
  1062. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1063. page = virt_to_page(vcpu->arch.pio_data);
  1064. #endif
  1065. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1066. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1067. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1068. #endif
  1069. else
  1070. return VM_FAULT_SIGBUS;
  1071. get_page(page);
  1072. vmf->page = page;
  1073. return 0;
  1074. }
  1075. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1076. .fault = kvm_vcpu_fault,
  1077. };
  1078. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1079. {
  1080. vma->vm_ops = &kvm_vcpu_vm_ops;
  1081. return 0;
  1082. }
  1083. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1084. {
  1085. struct kvm_vcpu *vcpu = filp->private_data;
  1086. kvm_put_kvm(vcpu->kvm);
  1087. return 0;
  1088. }
  1089. static const struct file_operations kvm_vcpu_fops = {
  1090. .release = kvm_vcpu_release,
  1091. .unlocked_ioctl = kvm_vcpu_ioctl,
  1092. .compat_ioctl = kvm_vcpu_ioctl,
  1093. .mmap = kvm_vcpu_mmap,
  1094. };
  1095. /*
  1096. * Allocates an inode for the vcpu.
  1097. */
  1098. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1099. {
  1100. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1101. if (fd < 0)
  1102. kvm_put_kvm(vcpu->kvm);
  1103. return fd;
  1104. }
  1105. /*
  1106. * Creates some virtual cpus. Good luck creating more than one.
  1107. */
  1108. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1109. {
  1110. int r;
  1111. struct kvm_vcpu *vcpu;
  1112. if (!valid_vcpu(n))
  1113. return -EINVAL;
  1114. vcpu = kvm_arch_vcpu_create(kvm, n);
  1115. if (IS_ERR(vcpu))
  1116. return PTR_ERR(vcpu);
  1117. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1118. r = kvm_arch_vcpu_setup(vcpu);
  1119. if (r)
  1120. return r;
  1121. mutex_lock(&kvm->lock);
  1122. if (kvm->vcpus[n]) {
  1123. r = -EEXIST;
  1124. goto vcpu_destroy;
  1125. }
  1126. kvm->vcpus[n] = vcpu;
  1127. mutex_unlock(&kvm->lock);
  1128. /* Now it's all set up, let userspace reach it */
  1129. kvm_get_kvm(kvm);
  1130. r = create_vcpu_fd(vcpu);
  1131. if (r < 0)
  1132. goto unlink;
  1133. return r;
  1134. unlink:
  1135. mutex_lock(&kvm->lock);
  1136. kvm->vcpus[n] = NULL;
  1137. vcpu_destroy:
  1138. mutex_unlock(&kvm->lock);
  1139. kvm_arch_vcpu_destroy(vcpu);
  1140. return r;
  1141. }
  1142. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1143. {
  1144. if (sigset) {
  1145. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1146. vcpu->sigset_active = 1;
  1147. vcpu->sigset = *sigset;
  1148. } else
  1149. vcpu->sigset_active = 0;
  1150. return 0;
  1151. }
  1152. static long kvm_vcpu_ioctl(struct file *filp,
  1153. unsigned int ioctl, unsigned long arg)
  1154. {
  1155. struct kvm_vcpu *vcpu = filp->private_data;
  1156. void __user *argp = (void __user *)arg;
  1157. int r;
  1158. struct kvm_fpu *fpu = NULL;
  1159. struct kvm_sregs *kvm_sregs = NULL;
  1160. if (vcpu->kvm->mm != current->mm)
  1161. return -EIO;
  1162. switch (ioctl) {
  1163. case KVM_RUN:
  1164. r = -EINVAL;
  1165. if (arg)
  1166. goto out;
  1167. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1168. break;
  1169. case KVM_GET_REGS: {
  1170. struct kvm_regs *kvm_regs;
  1171. r = -ENOMEM;
  1172. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1173. if (!kvm_regs)
  1174. goto out;
  1175. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1176. if (r)
  1177. goto out_free1;
  1178. r = -EFAULT;
  1179. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1180. goto out_free1;
  1181. r = 0;
  1182. out_free1:
  1183. kfree(kvm_regs);
  1184. break;
  1185. }
  1186. case KVM_SET_REGS: {
  1187. struct kvm_regs *kvm_regs;
  1188. r = -ENOMEM;
  1189. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1190. if (!kvm_regs)
  1191. goto out;
  1192. r = -EFAULT;
  1193. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1194. goto out_free2;
  1195. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1196. if (r)
  1197. goto out_free2;
  1198. r = 0;
  1199. out_free2:
  1200. kfree(kvm_regs);
  1201. break;
  1202. }
  1203. case KVM_GET_SREGS: {
  1204. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1205. r = -ENOMEM;
  1206. if (!kvm_sregs)
  1207. goto out;
  1208. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1209. if (r)
  1210. goto out;
  1211. r = -EFAULT;
  1212. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1213. goto out;
  1214. r = 0;
  1215. break;
  1216. }
  1217. case KVM_SET_SREGS: {
  1218. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1219. r = -ENOMEM;
  1220. if (!kvm_sregs)
  1221. goto out;
  1222. r = -EFAULT;
  1223. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1224. goto out;
  1225. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1226. if (r)
  1227. goto out;
  1228. r = 0;
  1229. break;
  1230. }
  1231. case KVM_GET_MP_STATE: {
  1232. struct kvm_mp_state mp_state;
  1233. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1234. if (r)
  1235. goto out;
  1236. r = -EFAULT;
  1237. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1238. goto out;
  1239. r = 0;
  1240. break;
  1241. }
  1242. case KVM_SET_MP_STATE: {
  1243. struct kvm_mp_state mp_state;
  1244. r = -EFAULT;
  1245. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1246. goto out;
  1247. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1248. if (r)
  1249. goto out;
  1250. r = 0;
  1251. break;
  1252. }
  1253. case KVM_TRANSLATE: {
  1254. struct kvm_translation tr;
  1255. r = -EFAULT;
  1256. if (copy_from_user(&tr, argp, sizeof tr))
  1257. goto out;
  1258. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1259. if (r)
  1260. goto out;
  1261. r = -EFAULT;
  1262. if (copy_to_user(argp, &tr, sizeof tr))
  1263. goto out;
  1264. r = 0;
  1265. break;
  1266. }
  1267. case KVM_DEBUG_GUEST: {
  1268. struct kvm_debug_guest dbg;
  1269. r = -EFAULT;
  1270. if (copy_from_user(&dbg, argp, sizeof dbg))
  1271. goto out;
  1272. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  1273. if (r)
  1274. goto out;
  1275. r = 0;
  1276. break;
  1277. }
  1278. case KVM_SET_SIGNAL_MASK: {
  1279. struct kvm_signal_mask __user *sigmask_arg = argp;
  1280. struct kvm_signal_mask kvm_sigmask;
  1281. sigset_t sigset, *p;
  1282. p = NULL;
  1283. if (argp) {
  1284. r = -EFAULT;
  1285. if (copy_from_user(&kvm_sigmask, argp,
  1286. sizeof kvm_sigmask))
  1287. goto out;
  1288. r = -EINVAL;
  1289. if (kvm_sigmask.len != sizeof sigset)
  1290. goto out;
  1291. r = -EFAULT;
  1292. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1293. sizeof sigset))
  1294. goto out;
  1295. p = &sigset;
  1296. }
  1297. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1298. break;
  1299. }
  1300. case KVM_GET_FPU: {
  1301. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1302. r = -ENOMEM;
  1303. if (!fpu)
  1304. goto out;
  1305. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1306. if (r)
  1307. goto out;
  1308. r = -EFAULT;
  1309. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1310. goto out;
  1311. r = 0;
  1312. break;
  1313. }
  1314. case KVM_SET_FPU: {
  1315. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1316. r = -ENOMEM;
  1317. if (!fpu)
  1318. goto out;
  1319. r = -EFAULT;
  1320. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1321. goto out;
  1322. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1323. if (r)
  1324. goto out;
  1325. r = 0;
  1326. break;
  1327. }
  1328. default:
  1329. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1330. }
  1331. out:
  1332. kfree(fpu);
  1333. kfree(kvm_sregs);
  1334. return r;
  1335. }
  1336. static long kvm_vm_ioctl(struct file *filp,
  1337. unsigned int ioctl, unsigned long arg)
  1338. {
  1339. struct kvm *kvm = filp->private_data;
  1340. void __user *argp = (void __user *)arg;
  1341. int r;
  1342. if (kvm->mm != current->mm)
  1343. return -EIO;
  1344. switch (ioctl) {
  1345. case KVM_CREATE_VCPU:
  1346. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1347. if (r < 0)
  1348. goto out;
  1349. break;
  1350. case KVM_SET_USER_MEMORY_REGION: {
  1351. struct kvm_userspace_memory_region kvm_userspace_mem;
  1352. r = -EFAULT;
  1353. if (copy_from_user(&kvm_userspace_mem, argp,
  1354. sizeof kvm_userspace_mem))
  1355. goto out;
  1356. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1357. if (r)
  1358. goto out;
  1359. break;
  1360. }
  1361. case KVM_GET_DIRTY_LOG: {
  1362. struct kvm_dirty_log log;
  1363. r = -EFAULT;
  1364. if (copy_from_user(&log, argp, sizeof log))
  1365. goto out;
  1366. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1367. if (r)
  1368. goto out;
  1369. break;
  1370. }
  1371. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1372. case KVM_REGISTER_COALESCED_MMIO: {
  1373. struct kvm_coalesced_mmio_zone zone;
  1374. r = -EFAULT;
  1375. if (copy_from_user(&zone, argp, sizeof zone))
  1376. goto out;
  1377. r = -ENXIO;
  1378. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1379. if (r)
  1380. goto out;
  1381. r = 0;
  1382. break;
  1383. }
  1384. case KVM_UNREGISTER_COALESCED_MMIO: {
  1385. struct kvm_coalesced_mmio_zone zone;
  1386. r = -EFAULT;
  1387. if (copy_from_user(&zone, argp, sizeof zone))
  1388. goto out;
  1389. r = -ENXIO;
  1390. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1391. if (r)
  1392. goto out;
  1393. r = 0;
  1394. break;
  1395. }
  1396. #endif
  1397. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1398. case KVM_ASSIGN_PCI_DEVICE: {
  1399. struct kvm_assigned_pci_dev assigned_dev;
  1400. r = -EFAULT;
  1401. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1402. goto out;
  1403. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1404. if (r)
  1405. goto out;
  1406. break;
  1407. }
  1408. case KVM_ASSIGN_IRQ: {
  1409. struct kvm_assigned_irq assigned_irq;
  1410. r = -EFAULT;
  1411. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1412. goto out;
  1413. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1414. if (r)
  1415. goto out;
  1416. break;
  1417. }
  1418. #endif
  1419. default:
  1420. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1421. }
  1422. out:
  1423. return r;
  1424. }
  1425. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1426. {
  1427. struct page *page[1];
  1428. unsigned long addr;
  1429. int npages;
  1430. gfn_t gfn = vmf->pgoff;
  1431. struct kvm *kvm = vma->vm_file->private_data;
  1432. addr = gfn_to_hva(kvm, gfn);
  1433. if (kvm_is_error_hva(addr))
  1434. return VM_FAULT_SIGBUS;
  1435. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1436. NULL);
  1437. if (unlikely(npages != 1))
  1438. return VM_FAULT_SIGBUS;
  1439. vmf->page = page[0];
  1440. return 0;
  1441. }
  1442. static struct vm_operations_struct kvm_vm_vm_ops = {
  1443. .fault = kvm_vm_fault,
  1444. };
  1445. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1446. {
  1447. vma->vm_ops = &kvm_vm_vm_ops;
  1448. return 0;
  1449. }
  1450. static const struct file_operations kvm_vm_fops = {
  1451. .release = kvm_vm_release,
  1452. .unlocked_ioctl = kvm_vm_ioctl,
  1453. .compat_ioctl = kvm_vm_ioctl,
  1454. .mmap = kvm_vm_mmap,
  1455. };
  1456. static int kvm_dev_ioctl_create_vm(void)
  1457. {
  1458. int fd;
  1459. struct kvm *kvm;
  1460. kvm = kvm_create_vm();
  1461. if (IS_ERR(kvm))
  1462. return PTR_ERR(kvm);
  1463. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1464. if (fd < 0)
  1465. kvm_put_kvm(kvm);
  1466. return fd;
  1467. }
  1468. static long kvm_dev_ioctl(struct file *filp,
  1469. unsigned int ioctl, unsigned long arg)
  1470. {
  1471. long r = -EINVAL;
  1472. switch (ioctl) {
  1473. case KVM_GET_API_VERSION:
  1474. r = -EINVAL;
  1475. if (arg)
  1476. goto out;
  1477. r = KVM_API_VERSION;
  1478. break;
  1479. case KVM_CREATE_VM:
  1480. r = -EINVAL;
  1481. if (arg)
  1482. goto out;
  1483. r = kvm_dev_ioctl_create_vm();
  1484. break;
  1485. case KVM_CHECK_EXTENSION:
  1486. r = kvm_dev_ioctl_check_extension(arg);
  1487. break;
  1488. case KVM_GET_VCPU_MMAP_SIZE:
  1489. r = -EINVAL;
  1490. if (arg)
  1491. goto out;
  1492. r = PAGE_SIZE; /* struct kvm_run */
  1493. #ifdef CONFIG_X86
  1494. r += PAGE_SIZE; /* pio data page */
  1495. #endif
  1496. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1497. r += PAGE_SIZE; /* coalesced mmio ring page */
  1498. #endif
  1499. break;
  1500. case KVM_TRACE_ENABLE:
  1501. case KVM_TRACE_PAUSE:
  1502. case KVM_TRACE_DISABLE:
  1503. r = kvm_trace_ioctl(ioctl, arg);
  1504. break;
  1505. default:
  1506. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1507. }
  1508. out:
  1509. return r;
  1510. }
  1511. static struct file_operations kvm_chardev_ops = {
  1512. .unlocked_ioctl = kvm_dev_ioctl,
  1513. .compat_ioctl = kvm_dev_ioctl,
  1514. };
  1515. static struct miscdevice kvm_dev = {
  1516. KVM_MINOR,
  1517. "kvm",
  1518. &kvm_chardev_ops,
  1519. };
  1520. static void hardware_enable(void *junk)
  1521. {
  1522. int cpu = raw_smp_processor_id();
  1523. if (cpu_isset(cpu, cpus_hardware_enabled))
  1524. return;
  1525. cpu_set(cpu, cpus_hardware_enabled);
  1526. kvm_arch_hardware_enable(NULL);
  1527. }
  1528. static void hardware_disable(void *junk)
  1529. {
  1530. int cpu = raw_smp_processor_id();
  1531. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1532. return;
  1533. cpu_clear(cpu, cpus_hardware_enabled);
  1534. kvm_arch_hardware_disable(NULL);
  1535. }
  1536. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1537. void *v)
  1538. {
  1539. int cpu = (long)v;
  1540. val &= ~CPU_TASKS_FROZEN;
  1541. switch (val) {
  1542. case CPU_DYING:
  1543. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1544. cpu);
  1545. hardware_disable(NULL);
  1546. break;
  1547. case CPU_UP_CANCELED:
  1548. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1549. cpu);
  1550. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  1551. break;
  1552. case CPU_ONLINE:
  1553. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1554. cpu);
  1555. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  1556. break;
  1557. }
  1558. return NOTIFY_OK;
  1559. }
  1560. asmlinkage void kvm_handle_fault_on_reboot(void)
  1561. {
  1562. if (kvm_rebooting)
  1563. /* spin while reset goes on */
  1564. while (true)
  1565. ;
  1566. /* Fault while not rebooting. We want the trace. */
  1567. BUG();
  1568. }
  1569. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1570. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1571. void *v)
  1572. {
  1573. if (val == SYS_RESTART) {
  1574. /*
  1575. * Some (well, at least mine) BIOSes hang on reboot if
  1576. * in vmx root mode.
  1577. */
  1578. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1579. kvm_rebooting = true;
  1580. on_each_cpu(hardware_disable, NULL, 1);
  1581. }
  1582. return NOTIFY_OK;
  1583. }
  1584. static struct notifier_block kvm_reboot_notifier = {
  1585. .notifier_call = kvm_reboot,
  1586. .priority = 0,
  1587. };
  1588. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1589. {
  1590. memset(bus, 0, sizeof(*bus));
  1591. }
  1592. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1593. {
  1594. int i;
  1595. for (i = 0; i < bus->dev_count; i++) {
  1596. struct kvm_io_device *pos = bus->devs[i];
  1597. kvm_iodevice_destructor(pos);
  1598. }
  1599. }
  1600. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  1601. gpa_t addr, int len, int is_write)
  1602. {
  1603. int i;
  1604. for (i = 0; i < bus->dev_count; i++) {
  1605. struct kvm_io_device *pos = bus->devs[i];
  1606. if (pos->in_range(pos, addr, len, is_write))
  1607. return pos;
  1608. }
  1609. return NULL;
  1610. }
  1611. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1612. {
  1613. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1614. bus->devs[bus->dev_count++] = dev;
  1615. }
  1616. static struct notifier_block kvm_cpu_notifier = {
  1617. .notifier_call = kvm_cpu_hotplug,
  1618. .priority = 20, /* must be > scheduler priority */
  1619. };
  1620. static int vm_stat_get(void *_offset, u64 *val)
  1621. {
  1622. unsigned offset = (long)_offset;
  1623. struct kvm *kvm;
  1624. *val = 0;
  1625. spin_lock(&kvm_lock);
  1626. list_for_each_entry(kvm, &vm_list, vm_list)
  1627. *val += *(u32 *)((void *)kvm + offset);
  1628. spin_unlock(&kvm_lock);
  1629. return 0;
  1630. }
  1631. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1632. static int vcpu_stat_get(void *_offset, u64 *val)
  1633. {
  1634. unsigned offset = (long)_offset;
  1635. struct kvm *kvm;
  1636. struct kvm_vcpu *vcpu;
  1637. int i;
  1638. *val = 0;
  1639. spin_lock(&kvm_lock);
  1640. list_for_each_entry(kvm, &vm_list, vm_list)
  1641. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1642. vcpu = kvm->vcpus[i];
  1643. if (vcpu)
  1644. *val += *(u32 *)((void *)vcpu + offset);
  1645. }
  1646. spin_unlock(&kvm_lock);
  1647. return 0;
  1648. }
  1649. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1650. static struct file_operations *stat_fops[] = {
  1651. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1652. [KVM_STAT_VM] = &vm_stat_fops,
  1653. };
  1654. static void kvm_init_debug(void)
  1655. {
  1656. struct kvm_stats_debugfs_item *p;
  1657. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1658. for (p = debugfs_entries; p->name; ++p)
  1659. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1660. (void *)(long)p->offset,
  1661. stat_fops[p->kind]);
  1662. }
  1663. static void kvm_exit_debug(void)
  1664. {
  1665. struct kvm_stats_debugfs_item *p;
  1666. for (p = debugfs_entries; p->name; ++p)
  1667. debugfs_remove(p->dentry);
  1668. debugfs_remove(kvm_debugfs_dir);
  1669. }
  1670. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1671. {
  1672. hardware_disable(NULL);
  1673. return 0;
  1674. }
  1675. static int kvm_resume(struct sys_device *dev)
  1676. {
  1677. hardware_enable(NULL);
  1678. return 0;
  1679. }
  1680. static struct sysdev_class kvm_sysdev_class = {
  1681. .name = "kvm",
  1682. .suspend = kvm_suspend,
  1683. .resume = kvm_resume,
  1684. };
  1685. static struct sys_device kvm_sysdev = {
  1686. .id = 0,
  1687. .cls = &kvm_sysdev_class,
  1688. };
  1689. struct page *bad_page;
  1690. pfn_t bad_pfn;
  1691. static inline
  1692. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1693. {
  1694. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1695. }
  1696. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1697. {
  1698. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1699. kvm_arch_vcpu_load(vcpu, cpu);
  1700. }
  1701. static void kvm_sched_out(struct preempt_notifier *pn,
  1702. struct task_struct *next)
  1703. {
  1704. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1705. kvm_arch_vcpu_put(vcpu);
  1706. }
  1707. int kvm_init(void *opaque, unsigned int vcpu_size,
  1708. struct module *module)
  1709. {
  1710. int r;
  1711. int cpu;
  1712. kvm_init_debug();
  1713. r = kvm_arch_init(opaque);
  1714. if (r)
  1715. goto out_fail;
  1716. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1717. if (bad_page == NULL) {
  1718. r = -ENOMEM;
  1719. goto out;
  1720. }
  1721. bad_pfn = page_to_pfn(bad_page);
  1722. r = kvm_arch_hardware_setup();
  1723. if (r < 0)
  1724. goto out_free_0;
  1725. for_each_online_cpu(cpu) {
  1726. smp_call_function_single(cpu,
  1727. kvm_arch_check_processor_compat,
  1728. &r, 1);
  1729. if (r < 0)
  1730. goto out_free_1;
  1731. }
  1732. on_each_cpu(hardware_enable, NULL, 1);
  1733. r = register_cpu_notifier(&kvm_cpu_notifier);
  1734. if (r)
  1735. goto out_free_2;
  1736. register_reboot_notifier(&kvm_reboot_notifier);
  1737. r = sysdev_class_register(&kvm_sysdev_class);
  1738. if (r)
  1739. goto out_free_3;
  1740. r = sysdev_register(&kvm_sysdev);
  1741. if (r)
  1742. goto out_free_4;
  1743. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1744. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1745. __alignof__(struct kvm_vcpu),
  1746. 0, NULL);
  1747. if (!kvm_vcpu_cache) {
  1748. r = -ENOMEM;
  1749. goto out_free_5;
  1750. }
  1751. kvm_chardev_ops.owner = module;
  1752. r = misc_register(&kvm_dev);
  1753. if (r) {
  1754. printk(KERN_ERR "kvm: misc device register failed\n");
  1755. goto out_free;
  1756. }
  1757. kvm_preempt_ops.sched_in = kvm_sched_in;
  1758. kvm_preempt_ops.sched_out = kvm_sched_out;
  1759. return 0;
  1760. out_free:
  1761. kmem_cache_destroy(kvm_vcpu_cache);
  1762. out_free_5:
  1763. sysdev_unregister(&kvm_sysdev);
  1764. out_free_4:
  1765. sysdev_class_unregister(&kvm_sysdev_class);
  1766. out_free_3:
  1767. unregister_reboot_notifier(&kvm_reboot_notifier);
  1768. unregister_cpu_notifier(&kvm_cpu_notifier);
  1769. out_free_2:
  1770. on_each_cpu(hardware_disable, NULL, 1);
  1771. out_free_1:
  1772. kvm_arch_hardware_unsetup();
  1773. out_free_0:
  1774. __free_page(bad_page);
  1775. out:
  1776. kvm_arch_exit();
  1777. kvm_exit_debug();
  1778. out_fail:
  1779. return r;
  1780. }
  1781. EXPORT_SYMBOL_GPL(kvm_init);
  1782. void kvm_exit(void)
  1783. {
  1784. kvm_trace_cleanup();
  1785. misc_deregister(&kvm_dev);
  1786. kmem_cache_destroy(kvm_vcpu_cache);
  1787. sysdev_unregister(&kvm_sysdev);
  1788. sysdev_class_unregister(&kvm_sysdev_class);
  1789. unregister_reboot_notifier(&kvm_reboot_notifier);
  1790. unregister_cpu_notifier(&kvm_cpu_notifier);
  1791. on_each_cpu(hardware_disable, NULL, 1);
  1792. kvm_arch_hardware_unsetup();
  1793. kvm_arch_exit();
  1794. kvm_exit_debug();
  1795. __free_page(bad_page);
  1796. }
  1797. EXPORT_SYMBOL_GPL(kvm_exit);