vmx.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int __read_mostly bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, S_IRUGO);
  37. static int __read_mostly enable_vpid = 1;
  38. module_param_named(vpid, enable_vpid, bool, 0444);
  39. static int __read_mostly flexpriority_enabled = 1;
  40. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  41. static int __read_mostly enable_ept = 1;
  42. module_param_named(ept, enable_ept, bool, S_IRUGO);
  43. static int __read_mostly emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. enum emulation_result invalid_state_emulation_result;
  83. /* Support for vnmi-less CPUs */
  84. int soft_vnmi_blocked;
  85. ktime_t entry_time;
  86. s64 vnmi_blocked_time;
  87. };
  88. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  89. {
  90. return container_of(vcpu, struct vcpu_vmx, vcpu);
  91. }
  92. static int init_rmode(struct kvm *kvm);
  93. static u64 construct_eptp(unsigned long root_hpa);
  94. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  95. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  96. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  97. static unsigned long *vmx_io_bitmap_a;
  98. static unsigned long *vmx_io_bitmap_b;
  99. static unsigned long *vmx_msr_bitmap_legacy;
  100. static unsigned long *vmx_msr_bitmap_longmode;
  101. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  102. static DEFINE_SPINLOCK(vmx_vpid_lock);
  103. static struct vmcs_config {
  104. int size;
  105. int order;
  106. u32 revision_id;
  107. u32 pin_based_exec_ctrl;
  108. u32 cpu_based_exec_ctrl;
  109. u32 cpu_based_2nd_exec_ctrl;
  110. u32 vmexit_ctrl;
  111. u32 vmentry_ctrl;
  112. } vmcs_config;
  113. static struct vmx_capability {
  114. u32 ept;
  115. u32 vpid;
  116. } vmx_capability;
  117. #define VMX_SEGMENT_FIELD(seg) \
  118. [VCPU_SREG_##seg] = { \
  119. .selector = GUEST_##seg##_SELECTOR, \
  120. .base = GUEST_##seg##_BASE, \
  121. .limit = GUEST_##seg##_LIMIT, \
  122. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  123. }
  124. static struct kvm_vmx_segment_field {
  125. unsigned selector;
  126. unsigned base;
  127. unsigned limit;
  128. unsigned ar_bytes;
  129. } kvm_vmx_segment_fields[] = {
  130. VMX_SEGMENT_FIELD(CS),
  131. VMX_SEGMENT_FIELD(DS),
  132. VMX_SEGMENT_FIELD(ES),
  133. VMX_SEGMENT_FIELD(FS),
  134. VMX_SEGMENT_FIELD(GS),
  135. VMX_SEGMENT_FIELD(SS),
  136. VMX_SEGMENT_FIELD(TR),
  137. VMX_SEGMENT_FIELD(LDTR),
  138. };
  139. /*
  140. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  141. * away by decrementing the array size.
  142. */
  143. static const u32 vmx_msr_index[] = {
  144. #ifdef CONFIG_X86_64
  145. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  146. #endif
  147. MSR_EFER, MSR_K6_STAR,
  148. };
  149. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  150. static void load_msrs(struct kvm_msr_entry *e, int n)
  151. {
  152. int i;
  153. for (i = 0; i < n; ++i)
  154. wrmsrl(e[i].index, e[i].data);
  155. }
  156. static void save_msrs(struct kvm_msr_entry *e, int n)
  157. {
  158. int i;
  159. for (i = 0; i < n; ++i)
  160. rdmsrl(e[i].index, e[i].data);
  161. }
  162. static inline int is_page_fault(u32 intr_info)
  163. {
  164. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  165. INTR_INFO_VALID_MASK)) ==
  166. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int is_no_device(u32 intr_info)
  169. {
  170. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  171. INTR_INFO_VALID_MASK)) ==
  172. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  173. }
  174. static inline int is_invalid_opcode(u32 intr_info)
  175. {
  176. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  177. INTR_INFO_VALID_MASK)) ==
  178. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  179. }
  180. static inline int is_external_interrupt(u32 intr_info)
  181. {
  182. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  183. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  184. }
  185. static inline int cpu_has_vmx_msr_bitmap(void)
  186. {
  187. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  188. }
  189. static inline int cpu_has_vmx_tpr_shadow(void)
  190. {
  191. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  192. }
  193. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  194. {
  195. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  196. }
  197. static inline int cpu_has_secondary_exec_ctrls(void)
  198. {
  199. return (vmcs_config.cpu_based_exec_ctrl &
  200. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  201. }
  202. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  203. {
  204. return flexpriority_enabled
  205. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  206. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  207. }
  208. static inline int cpu_has_vmx_invept_individual_addr(void)
  209. {
  210. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  211. }
  212. static inline int cpu_has_vmx_invept_context(void)
  213. {
  214. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  215. }
  216. static inline int cpu_has_vmx_invept_global(void)
  217. {
  218. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  219. }
  220. static inline int cpu_has_vmx_ept(void)
  221. {
  222. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  223. SECONDARY_EXEC_ENABLE_EPT);
  224. }
  225. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  226. {
  227. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  228. (irqchip_in_kernel(kvm)));
  229. }
  230. static inline int cpu_has_vmx_vpid(void)
  231. {
  232. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  233. SECONDARY_EXEC_ENABLE_VPID);
  234. }
  235. static inline int cpu_has_virtual_nmis(void)
  236. {
  237. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  238. }
  239. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  240. {
  241. int i;
  242. for (i = 0; i < vmx->nmsrs; ++i)
  243. if (vmx->guest_msrs[i].index == msr)
  244. return i;
  245. return -1;
  246. }
  247. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  248. {
  249. struct {
  250. u64 vpid : 16;
  251. u64 rsvd : 48;
  252. u64 gva;
  253. } operand = { vpid, 0, gva };
  254. asm volatile (__ex(ASM_VMX_INVVPID)
  255. /* CF==1 or ZF==1 --> rc = -1 */
  256. "; ja 1f ; ud2 ; 1:"
  257. : : "a"(&operand), "c"(ext) : "cc", "memory");
  258. }
  259. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  260. {
  261. struct {
  262. u64 eptp, gpa;
  263. } operand = {eptp, gpa};
  264. asm volatile (__ex(ASM_VMX_INVEPT)
  265. /* CF==1 or ZF==1 --> rc = -1 */
  266. "; ja 1f ; ud2 ; 1:\n"
  267. : : "a" (&operand), "c" (ext) : "cc", "memory");
  268. }
  269. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  270. {
  271. int i;
  272. i = __find_msr_index(vmx, msr);
  273. if (i >= 0)
  274. return &vmx->guest_msrs[i];
  275. return NULL;
  276. }
  277. static void vmcs_clear(struct vmcs *vmcs)
  278. {
  279. u64 phys_addr = __pa(vmcs);
  280. u8 error;
  281. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  282. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  283. : "cc", "memory");
  284. if (error)
  285. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  286. vmcs, phys_addr);
  287. }
  288. static void __vcpu_clear(void *arg)
  289. {
  290. struct vcpu_vmx *vmx = arg;
  291. int cpu = raw_smp_processor_id();
  292. if (vmx->vcpu.cpu == cpu)
  293. vmcs_clear(vmx->vmcs);
  294. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  295. per_cpu(current_vmcs, cpu) = NULL;
  296. rdtscll(vmx->vcpu.arch.host_tsc);
  297. list_del(&vmx->local_vcpus_link);
  298. vmx->vcpu.cpu = -1;
  299. vmx->launched = 0;
  300. }
  301. static void vcpu_clear(struct vcpu_vmx *vmx)
  302. {
  303. if (vmx->vcpu.cpu == -1)
  304. return;
  305. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  306. }
  307. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  308. {
  309. if (vmx->vpid == 0)
  310. return;
  311. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  312. }
  313. static inline void ept_sync_global(void)
  314. {
  315. if (cpu_has_vmx_invept_global())
  316. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  317. }
  318. static inline void ept_sync_context(u64 eptp)
  319. {
  320. if (enable_ept) {
  321. if (cpu_has_vmx_invept_context())
  322. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  323. else
  324. ept_sync_global();
  325. }
  326. }
  327. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  328. {
  329. if (enable_ept) {
  330. if (cpu_has_vmx_invept_individual_addr())
  331. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  332. eptp, gpa);
  333. else
  334. ept_sync_context(eptp);
  335. }
  336. }
  337. static unsigned long vmcs_readl(unsigned long field)
  338. {
  339. unsigned long value;
  340. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  341. : "=a"(value) : "d"(field) : "cc");
  342. return value;
  343. }
  344. static u16 vmcs_read16(unsigned long field)
  345. {
  346. return vmcs_readl(field);
  347. }
  348. static u32 vmcs_read32(unsigned long field)
  349. {
  350. return vmcs_readl(field);
  351. }
  352. static u64 vmcs_read64(unsigned long field)
  353. {
  354. #ifdef CONFIG_X86_64
  355. return vmcs_readl(field);
  356. #else
  357. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  358. #endif
  359. }
  360. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  361. {
  362. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  363. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  364. dump_stack();
  365. }
  366. static void vmcs_writel(unsigned long field, unsigned long value)
  367. {
  368. u8 error;
  369. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  370. : "=q"(error) : "a"(value), "d"(field) : "cc");
  371. if (unlikely(error))
  372. vmwrite_error(field, value);
  373. }
  374. static void vmcs_write16(unsigned long field, u16 value)
  375. {
  376. vmcs_writel(field, value);
  377. }
  378. static void vmcs_write32(unsigned long field, u32 value)
  379. {
  380. vmcs_writel(field, value);
  381. }
  382. static void vmcs_write64(unsigned long field, u64 value)
  383. {
  384. vmcs_writel(field, value);
  385. #ifndef CONFIG_X86_64
  386. asm volatile ("");
  387. vmcs_writel(field+1, value >> 32);
  388. #endif
  389. }
  390. static void vmcs_clear_bits(unsigned long field, u32 mask)
  391. {
  392. vmcs_writel(field, vmcs_readl(field) & ~mask);
  393. }
  394. static void vmcs_set_bits(unsigned long field, u32 mask)
  395. {
  396. vmcs_writel(field, vmcs_readl(field) | mask);
  397. }
  398. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  399. {
  400. u32 eb;
  401. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  402. if (!vcpu->fpu_active)
  403. eb |= 1u << NM_VECTOR;
  404. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  405. if (vcpu->guest_debug &
  406. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  407. eb |= 1u << DB_VECTOR;
  408. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  409. eb |= 1u << BP_VECTOR;
  410. }
  411. if (vcpu->arch.rmode.active)
  412. eb = ~0;
  413. if (enable_ept)
  414. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  415. vmcs_write32(EXCEPTION_BITMAP, eb);
  416. }
  417. static void reload_tss(void)
  418. {
  419. /*
  420. * VT restores TR but not its size. Useless.
  421. */
  422. struct descriptor_table gdt;
  423. struct desc_struct *descs;
  424. kvm_get_gdt(&gdt);
  425. descs = (void *)gdt.base;
  426. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  427. load_TR_desc();
  428. }
  429. static void load_transition_efer(struct vcpu_vmx *vmx)
  430. {
  431. int efer_offset = vmx->msr_offset_efer;
  432. u64 host_efer = vmx->host_msrs[efer_offset].data;
  433. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  434. u64 ignore_bits;
  435. if (efer_offset < 0)
  436. return;
  437. /*
  438. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  439. * outside long mode
  440. */
  441. ignore_bits = EFER_NX | EFER_SCE;
  442. #ifdef CONFIG_X86_64
  443. ignore_bits |= EFER_LMA | EFER_LME;
  444. /* SCE is meaningful only in long mode on Intel */
  445. if (guest_efer & EFER_LMA)
  446. ignore_bits &= ~(u64)EFER_SCE;
  447. #endif
  448. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  449. return;
  450. vmx->host_state.guest_efer_loaded = 1;
  451. guest_efer &= ~ignore_bits;
  452. guest_efer |= host_efer & ignore_bits;
  453. wrmsrl(MSR_EFER, guest_efer);
  454. vmx->vcpu.stat.efer_reload++;
  455. }
  456. static void reload_host_efer(struct vcpu_vmx *vmx)
  457. {
  458. if (vmx->host_state.guest_efer_loaded) {
  459. vmx->host_state.guest_efer_loaded = 0;
  460. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  461. }
  462. }
  463. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  464. {
  465. struct vcpu_vmx *vmx = to_vmx(vcpu);
  466. if (vmx->host_state.loaded)
  467. return;
  468. vmx->host_state.loaded = 1;
  469. /*
  470. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  471. * allow segment selectors with cpl > 0 or ti == 1.
  472. */
  473. vmx->host_state.ldt_sel = kvm_read_ldt();
  474. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  475. vmx->host_state.fs_sel = kvm_read_fs();
  476. if (!(vmx->host_state.fs_sel & 7)) {
  477. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  478. vmx->host_state.fs_reload_needed = 0;
  479. } else {
  480. vmcs_write16(HOST_FS_SELECTOR, 0);
  481. vmx->host_state.fs_reload_needed = 1;
  482. }
  483. vmx->host_state.gs_sel = kvm_read_gs();
  484. if (!(vmx->host_state.gs_sel & 7))
  485. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  486. else {
  487. vmcs_write16(HOST_GS_SELECTOR, 0);
  488. vmx->host_state.gs_ldt_reload_needed = 1;
  489. }
  490. #ifdef CONFIG_X86_64
  491. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  492. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  493. #else
  494. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  495. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  496. #endif
  497. #ifdef CONFIG_X86_64
  498. if (is_long_mode(&vmx->vcpu))
  499. save_msrs(vmx->host_msrs +
  500. vmx->msr_offset_kernel_gs_base, 1);
  501. #endif
  502. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  503. load_transition_efer(vmx);
  504. }
  505. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  506. {
  507. unsigned long flags;
  508. if (!vmx->host_state.loaded)
  509. return;
  510. ++vmx->vcpu.stat.host_state_reload;
  511. vmx->host_state.loaded = 0;
  512. if (vmx->host_state.fs_reload_needed)
  513. kvm_load_fs(vmx->host_state.fs_sel);
  514. if (vmx->host_state.gs_ldt_reload_needed) {
  515. kvm_load_ldt(vmx->host_state.ldt_sel);
  516. /*
  517. * If we have to reload gs, we must take care to
  518. * preserve our gs base.
  519. */
  520. local_irq_save(flags);
  521. kvm_load_gs(vmx->host_state.gs_sel);
  522. #ifdef CONFIG_X86_64
  523. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  524. #endif
  525. local_irq_restore(flags);
  526. }
  527. reload_tss();
  528. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  529. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  530. reload_host_efer(vmx);
  531. }
  532. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  533. {
  534. preempt_disable();
  535. __vmx_load_host_state(vmx);
  536. preempt_enable();
  537. }
  538. /*
  539. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  540. * vcpu mutex is already taken.
  541. */
  542. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  543. {
  544. struct vcpu_vmx *vmx = to_vmx(vcpu);
  545. u64 phys_addr = __pa(vmx->vmcs);
  546. u64 tsc_this, delta, new_offset;
  547. if (vcpu->cpu != cpu) {
  548. vcpu_clear(vmx);
  549. kvm_migrate_timers(vcpu);
  550. vpid_sync_vcpu_all(vmx);
  551. local_irq_disable();
  552. list_add(&vmx->local_vcpus_link,
  553. &per_cpu(vcpus_on_cpu, cpu));
  554. local_irq_enable();
  555. }
  556. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  557. u8 error;
  558. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  559. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  560. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  561. : "cc");
  562. if (error)
  563. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  564. vmx->vmcs, phys_addr);
  565. }
  566. if (vcpu->cpu != cpu) {
  567. struct descriptor_table dt;
  568. unsigned long sysenter_esp;
  569. vcpu->cpu = cpu;
  570. /*
  571. * Linux uses per-cpu TSS and GDT, so set these when switching
  572. * processors.
  573. */
  574. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  575. kvm_get_gdt(&dt);
  576. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  577. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  578. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  579. /*
  580. * Make sure the time stamp counter is monotonous.
  581. */
  582. rdtscll(tsc_this);
  583. if (tsc_this < vcpu->arch.host_tsc) {
  584. delta = vcpu->arch.host_tsc - tsc_this;
  585. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  586. vmcs_write64(TSC_OFFSET, new_offset);
  587. }
  588. }
  589. }
  590. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  591. {
  592. __vmx_load_host_state(to_vmx(vcpu));
  593. }
  594. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  595. {
  596. if (vcpu->fpu_active)
  597. return;
  598. vcpu->fpu_active = 1;
  599. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  600. if (vcpu->arch.cr0 & X86_CR0_TS)
  601. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  602. update_exception_bitmap(vcpu);
  603. }
  604. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  605. {
  606. if (!vcpu->fpu_active)
  607. return;
  608. vcpu->fpu_active = 0;
  609. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  610. update_exception_bitmap(vcpu);
  611. }
  612. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  613. {
  614. return vmcs_readl(GUEST_RFLAGS);
  615. }
  616. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  617. {
  618. if (vcpu->arch.rmode.active)
  619. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  620. vmcs_writel(GUEST_RFLAGS, rflags);
  621. }
  622. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  623. {
  624. unsigned long rip;
  625. u32 interruptibility;
  626. rip = kvm_rip_read(vcpu);
  627. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  628. kvm_rip_write(vcpu, rip);
  629. /*
  630. * We emulated an instruction, so temporary interrupt blocking
  631. * should be removed, if set.
  632. */
  633. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  634. if (interruptibility & 3)
  635. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  636. interruptibility & ~3);
  637. vcpu->arch.interrupt_window_open = 1;
  638. }
  639. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  640. bool has_error_code, u32 error_code)
  641. {
  642. struct vcpu_vmx *vmx = to_vmx(vcpu);
  643. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  644. if (has_error_code) {
  645. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  646. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  647. }
  648. if (vcpu->arch.rmode.active) {
  649. vmx->rmode.irq.pending = true;
  650. vmx->rmode.irq.vector = nr;
  651. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  652. if (nr == BP_VECTOR || nr == OF_VECTOR)
  653. vmx->rmode.irq.rip++;
  654. intr_info |= INTR_TYPE_SOFT_INTR;
  655. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  656. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  657. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  658. return;
  659. }
  660. if (nr == BP_VECTOR || nr == OF_VECTOR) {
  661. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  662. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  663. } else
  664. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  665. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  666. }
  667. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  668. {
  669. return false;
  670. }
  671. /*
  672. * Swap MSR entry in host/guest MSR entry array.
  673. */
  674. #ifdef CONFIG_X86_64
  675. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  676. {
  677. struct kvm_msr_entry tmp;
  678. tmp = vmx->guest_msrs[to];
  679. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  680. vmx->guest_msrs[from] = tmp;
  681. tmp = vmx->host_msrs[to];
  682. vmx->host_msrs[to] = vmx->host_msrs[from];
  683. vmx->host_msrs[from] = tmp;
  684. }
  685. #endif
  686. /*
  687. * Set up the vmcs to automatically save and restore system
  688. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  689. * mode, as fiddling with msrs is very expensive.
  690. */
  691. static void setup_msrs(struct vcpu_vmx *vmx)
  692. {
  693. int save_nmsrs;
  694. unsigned long *msr_bitmap;
  695. vmx_load_host_state(vmx);
  696. save_nmsrs = 0;
  697. #ifdef CONFIG_X86_64
  698. if (is_long_mode(&vmx->vcpu)) {
  699. int index;
  700. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  701. if (index >= 0)
  702. move_msr_up(vmx, index, save_nmsrs++);
  703. index = __find_msr_index(vmx, MSR_LSTAR);
  704. if (index >= 0)
  705. move_msr_up(vmx, index, save_nmsrs++);
  706. index = __find_msr_index(vmx, MSR_CSTAR);
  707. if (index >= 0)
  708. move_msr_up(vmx, index, save_nmsrs++);
  709. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  710. if (index >= 0)
  711. move_msr_up(vmx, index, save_nmsrs++);
  712. /*
  713. * MSR_K6_STAR is only needed on long mode guests, and only
  714. * if efer.sce is enabled.
  715. */
  716. index = __find_msr_index(vmx, MSR_K6_STAR);
  717. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  718. move_msr_up(vmx, index, save_nmsrs++);
  719. }
  720. #endif
  721. vmx->save_nmsrs = save_nmsrs;
  722. #ifdef CONFIG_X86_64
  723. vmx->msr_offset_kernel_gs_base =
  724. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  725. #endif
  726. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  727. if (cpu_has_vmx_msr_bitmap()) {
  728. if (is_long_mode(&vmx->vcpu))
  729. msr_bitmap = vmx_msr_bitmap_longmode;
  730. else
  731. msr_bitmap = vmx_msr_bitmap_legacy;
  732. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  733. }
  734. }
  735. /*
  736. * reads and returns guest's timestamp counter "register"
  737. * guest_tsc = host_tsc + tsc_offset -- 21.3
  738. */
  739. static u64 guest_read_tsc(void)
  740. {
  741. u64 host_tsc, tsc_offset;
  742. rdtscll(host_tsc);
  743. tsc_offset = vmcs_read64(TSC_OFFSET);
  744. return host_tsc + tsc_offset;
  745. }
  746. /*
  747. * writes 'guest_tsc' into guest's timestamp counter "register"
  748. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  749. */
  750. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  751. {
  752. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  753. }
  754. /*
  755. * Reads an msr value (of 'msr_index') into 'pdata'.
  756. * Returns 0 on success, non-0 otherwise.
  757. * Assumes vcpu_load() was already called.
  758. */
  759. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  760. {
  761. u64 data;
  762. struct kvm_msr_entry *msr;
  763. if (!pdata) {
  764. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  765. return -EINVAL;
  766. }
  767. switch (msr_index) {
  768. #ifdef CONFIG_X86_64
  769. case MSR_FS_BASE:
  770. data = vmcs_readl(GUEST_FS_BASE);
  771. break;
  772. case MSR_GS_BASE:
  773. data = vmcs_readl(GUEST_GS_BASE);
  774. break;
  775. case MSR_EFER:
  776. return kvm_get_msr_common(vcpu, msr_index, pdata);
  777. #endif
  778. case MSR_IA32_TIME_STAMP_COUNTER:
  779. data = guest_read_tsc();
  780. break;
  781. case MSR_IA32_SYSENTER_CS:
  782. data = vmcs_read32(GUEST_SYSENTER_CS);
  783. break;
  784. case MSR_IA32_SYSENTER_EIP:
  785. data = vmcs_readl(GUEST_SYSENTER_EIP);
  786. break;
  787. case MSR_IA32_SYSENTER_ESP:
  788. data = vmcs_readl(GUEST_SYSENTER_ESP);
  789. break;
  790. default:
  791. vmx_load_host_state(to_vmx(vcpu));
  792. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  793. if (msr) {
  794. data = msr->data;
  795. break;
  796. }
  797. return kvm_get_msr_common(vcpu, msr_index, pdata);
  798. }
  799. *pdata = data;
  800. return 0;
  801. }
  802. /*
  803. * Writes msr value into into the appropriate "register".
  804. * Returns 0 on success, non-0 otherwise.
  805. * Assumes vcpu_load() was already called.
  806. */
  807. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  808. {
  809. struct vcpu_vmx *vmx = to_vmx(vcpu);
  810. struct kvm_msr_entry *msr;
  811. u64 host_tsc;
  812. int ret = 0;
  813. switch (msr_index) {
  814. case MSR_EFER:
  815. vmx_load_host_state(vmx);
  816. ret = kvm_set_msr_common(vcpu, msr_index, data);
  817. break;
  818. #ifdef CONFIG_X86_64
  819. case MSR_FS_BASE:
  820. vmcs_writel(GUEST_FS_BASE, data);
  821. break;
  822. case MSR_GS_BASE:
  823. vmcs_writel(GUEST_GS_BASE, data);
  824. break;
  825. #endif
  826. case MSR_IA32_SYSENTER_CS:
  827. vmcs_write32(GUEST_SYSENTER_CS, data);
  828. break;
  829. case MSR_IA32_SYSENTER_EIP:
  830. vmcs_writel(GUEST_SYSENTER_EIP, data);
  831. break;
  832. case MSR_IA32_SYSENTER_ESP:
  833. vmcs_writel(GUEST_SYSENTER_ESP, data);
  834. break;
  835. case MSR_IA32_TIME_STAMP_COUNTER:
  836. rdtscll(host_tsc);
  837. guest_write_tsc(data, host_tsc);
  838. break;
  839. case MSR_P6_PERFCTR0:
  840. case MSR_P6_PERFCTR1:
  841. case MSR_P6_EVNTSEL0:
  842. case MSR_P6_EVNTSEL1:
  843. /*
  844. * Just discard all writes to the performance counters; this
  845. * should keep both older linux and windows 64-bit guests
  846. * happy
  847. */
  848. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  849. break;
  850. case MSR_IA32_CR_PAT:
  851. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  852. vmcs_write64(GUEST_IA32_PAT, data);
  853. vcpu->arch.pat = data;
  854. break;
  855. }
  856. /* Otherwise falls through to kvm_set_msr_common */
  857. default:
  858. vmx_load_host_state(vmx);
  859. msr = find_msr_entry(vmx, msr_index);
  860. if (msr) {
  861. msr->data = data;
  862. break;
  863. }
  864. ret = kvm_set_msr_common(vcpu, msr_index, data);
  865. }
  866. return ret;
  867. }
  868. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  869. {
  870. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  871. switch (reg) {
  872. case VCPU_REGS_RSP:
  873. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  874. break;
  875. case VCPU_REGS_RIP:
  876. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  877. break;
  878. default:
  879. break;
  880. }
  881. }
  882. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  883. {
  884. int old_debug = vcpu->guest_debug;
  885. unsigned long flags;
  886. vcpu->guest_debug = dbg->control;
  887. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  888. vcpu->guest_debug = 0;
  889. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  890. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  891. else
  892. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  893. flags = vmcs_readl(GUEST_RFLAGS);
  894. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  895. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  896. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  897. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  898. vmcs_writel(GUEST_RFLAGS, flags);
  899. update_exception_bitmap(vcpu);
  900. return 0;
  901. }
  902. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  903. {
  904. if (!vcpu->arch.interrupt.pending)
  905. return -1;
  906. return vcpu->arch.interrupt.nr;
  907. }
  908. static __init int cpu_has_kvm_support(void)
  909. {
  910. return cpu_has_vmx();
  911. }
  912. static __init int vmx_disabled_by_bios(void)
  913. {
  914. u64 msr;
  915. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  916. return (msr & (FEATURE_CONTROL_LOCKED |
  917. FEATURE_CONTROL_VMXON_ENABLED))
  918. == FEATURE_CONTROL_LOCKED;
  919. /* locked but not enabled */
  920. }
  921. static void hardware_enable(void *garbage)
  922. {
  923. int cpu = raw_smp_processor_id();
  924. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  925. u64 old;
  926. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  927. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  928. if ((old & (FEATURE_CONTROL_LOCKED |
  929. FEATURE_CONTROL_VMXON_ENABLED))
  930. != (FEATURE_CONTROL_LOCKED |
  931. FEATURE_CONTROL_VMXON_ENABLED))
  932. /* enable and lock */
  933. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  934. FEATURE_CONTROL_LOCKED |
  935. FEATURE_CONTROL_VMXON_ENABLED);
  936. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  937. asm volatile (ASM_VMX_VMXON_RAX
  938. : : "a"(&phys_addr), "m"(phys_addr)
  939. : "memory", "cc");
  940. }
  941. static void vmclear_local_vcpus(void)
  942. {
  943. int cpu = raw_smp_processor_id();
  944. struct vcpu_vmx *vmx, *n;
  945. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  946. local_vcpus_link)
  947. __vcpu_clear(vmx);
  948. }
  949. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  950. * tricks.
  951. */
  952. static void kvm_cpu_vmxoff(void)
  953. {
  954. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  955. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  956. }
  957. static void hardware_disable(void *garbage)
  958. {
  959. vmclear_local_vcpus();
  960. kvm_cpu_vmxoff();
  961. }
  962. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  963. u32 msr, u32 *result)
  964. {
  965. u32 vmx_msr_low, vmx_msr_high;
  966. u32 ctl = ctl_min | ctl_opt;
  967. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  968. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  969. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  970. /* Ensure minimum (required) set of control bits are supported. */
  971. if (ctl_min & ~ctl)
  972. return -EIO;
  973. *result = ctl;
  974. return 0;
  975. }
  976. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  977. {
  978. u32 vmx_msr_low, vmx_msr_high;
  979. u32 min, opt, min2, opt2;
  980. u32 _pin_based_exec_control = 0;
  981. u32 _cpu_based_exec_control = 0;
  982. u32 _cpu_based_2nd_exec_control = 0;
  983. u32 _vmexit_control = 0;
  984. u32 _vmentry_control = 0;
  985. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  986. opt = PIN_BASED_VIRTUAL_NMIS;
  987. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  988. &_pin_based_exec_control) < 0)
  989. return -EIO;
  990. min = CPU_BASED_HLT_EXITING |
  991. #ifdef CONFIG_X86_64
  992. CPU_BASED_CR8_LOAD_EXITING |
  993. CPU_BASED_CR8_STORE_EXITING |
  994. #endif
  995. CPU_BASED_CR3_LOAD_EXITING |
  996. CPU_BASED_CR3_STORE_EXITING |
  997. CPU_BASED_USE_IO_BITMAPS |
  998. CPU_BASED_MOV_DR_EXITING |
  999. CPU_BASED_USE_TSC_OFFSETING |
  1000. CPU_BASED_INVLPG_EXITING;
  1001. opt = CPU_BASED_TPR_SHADOW |
  1002. CPU_BASED_USE_MSR_BITMAPS |
  1003. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1004. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1005. &_cpu_based_exec_control) < 0)
  1006. return -EIO;
  1007. #ifdef CONFIG_X86_64
  1008. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1009. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1010. ~CPU_BASED_CR8_STORE_EXITING;
  1011. #endif
  1012. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1013. min2 = 0;
  1014. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1015. SECONDARY_EXEC_WBINVD_EXITING |
  1016. SECONDARY_EXEC_ENABLE_VPID |
  1017. SECONDARY_EXEC_ENABLE_EPT;
  1018. if (adjust_vmx_controls(min2, opt2,
  1019. MSR_IA32_VMX_PROCBASED_CTLS2,
  1020. &_cpu_based_2nd_exec_control) < 0)
  1021. return -EIO;
  1022. }
  1023. #ifndef CONFIG_X86_64
  1024. if (!(_cpu_based_2nd_exec_control &
  1025. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1026. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1027. #endif
  1028. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1029. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1030. enabled */
  1031. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1032. CPU_BASED_CR3_STORE_EXITING |
  1033. CPU_BASED_INVLPG_EXITING);
  1034. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1035. &_cpu_based_exec_control) < 0)
  1036. return -EIO;
  1037. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1038. vmx_capability.ept, vmx_capability.vpid);
  1039. }
  1040. if (!cpu_has_vmx_vpid())
  1041. enable_vpid = 0;
  1042. if (!cpu_has_vmx_ept())
  1043. enable_ept = 0;
  1044. min = 0;
  1045. #ifdef CONFIG_X86_64
  1046. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1047. #endif
  1048. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1049. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1050. &_vmexit_control) < 0)
  1051. return -EIO;
  1052. min = 0;
  1053. opt = VM_ENTRY_LOAD_IA32_PAT;
  1054. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1055. &_vmentry_control) < 0)
  1056. return -EIO;
  1057. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1058. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1059. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1060. return -EIO;
  1061. #ifdef CONFIG_X86_64
  1062. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1063. if (vmx_msr_high & (1u<<16))
  1064. return -EIO;
  1065. #endif
  1066. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1067. if (((vmx_msr_high >> 18) & 15) != 6)
  1068. return -EIO;
  1069. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1070. vmcs_conf->order = get_order(vmcs_config.size);
  1071. vmcs_conf->revision_id = vmx_msr_low;
  1072. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1073. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1074. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1075. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1076. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1077. return 0;
  1078. }
  1079. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1080. {
  1081. int node = cpu_to_node(cpu);
  1082. struct page *pages;
  1083. struct vmcs *vmcs;
  1084. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1085. if (!pages)
  1086. return NULL;
  1087. vmcs = page_address(pages);
  1088. memset(vmcs, 0, vmcs_config.size);
  1089. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1090. return vmcs;
  1091. }
  1092. static struct vmcs *alloc_vmcs(void)
  1093. {
  1094. return alloc_vmcs_cpu(raw_smp_processor_id());
  1095. }
  1096. static void free_vmcs(struct vmcs *vmcs)
  1097. {
  1098. free_pages((unsigned long)vmcs, vmcs_config.order);
  1099. }
  1100. static void free_kvm_area(void)
  1101. {
  1102. int cpu;
  1103. for_each_online_cpu(cpu)
  1104. free_vmcs(per_cpu(vmxarea, cpu));
  1105. }
  1106. static __init int alloc_kvm_area(void)
  1107. {
  1108. int cpu;
  1109. for_each_online_cpu(cpu) {
  1110. struct vmcs *vmcs;
  1111. vmcs = alloc_vmcs_cpu(cpu);
  1112. if (!vmcs) {
  1113. free_kvm_area();
  1114. return -ENOMEM;
  1115. }
  1116. per_cpu(vmxarea, cpu) = vmcs;
  1117. }
  1118. return 0;
  1119. }
  1120. static __init int hardware_setup(void)
  1121. {
  1122. if (setup_vmcs_config(&vmcs_config) < 0)
  1123. return -EIO;
  1124. if (boot_cpu_has(X86_FEATURE_NX))
  1125. kvm_enable_efer_bits(EFER_NX);
  1126. return alloc_kvm_area();
  1127. }
  1128. static __exit void hardware_unsetup(void)
  1129. {
  1130. free_kvm_area();
  1131. }
  1132. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1133. {
  1134. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1135. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1136. vmcs_write16(sf->selector, save->selector);
  1137. vmcs_writel(sf->base, save->base);
  1138. vmcs_write32(sf->limit, save->limit);
  1139. vmcs_write32(sf->ar_bytes, save->ar);
  1140. } else {
  1141. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1142. << AR_DPL_SHIFT;
  1143. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1144. }
  1145. }
  1146. static void enter_pmode(struct kvm_vcpu *vcpu)
  1147. {
  1148. unsigned long flags;
  1149. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1150. vmx->emulation_required = 1;
  1151. vcpu->arch.rmode.active = 0;
  1152. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1153. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1154. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1155. flags = vmcs_readl(GUEST_RFLAGS);
  1156. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1157. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1158. vmcs_writel(GUEST_RFLAGS, flags);
  1159. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1160. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1161. update_exception_bitmap(vcpu);
  1162. if (emulate_invalid_guest_state)
  1163. return;
  1164. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1165. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1166. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1167. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1168. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1169. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1170. vmcs_write16(GUEST_CS_SELECTOR,
  1171. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1172. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1173. }
  1174. static gva_t rmode_tss_base(struct kvm *kvm)
  1175. {
  1176. if (!kvm->arch.tss_addr) {
  1177. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1178. kvm->memslots[0].npages - 3;
  1179. return base_gfn << PAGE_SHIFT;
  1180. }
  1181. return kvm->arch.tss_addr;
  1182. }
  1183. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1184. {
  1185. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1186. save->selector = vmcs_read16(sf->selector);
  1187. save->base = vmcs_readl(sf->base);
  1188. save->limit = vmcs_read32(sf->limit);
  1189. save->ar = vmcs_read32(sf->ar_bytes);
  1190. vmcs_write16(sf->selector, save->base >> 4);
  1191. vmcs_write32(sf->base, save->base & 0xfffff);
  1192. vmcs_write32(sf->limit, 0xffff);
  1193. vmcs_write32(sf->ar_bytes, 0xf3);
  1194. }
  1195. static void enter_rmode(struct kvm_vcpu *vcpu)
  1196. {
  1197. unsigned long flags;
  1198. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1199. vmx->emulation_required = 1;
  1200. vcpu->arch.rmode.active = 1;
  1201. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1202. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1203. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1204. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1205. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1206. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1207. flags = vmcs_readl(GUEST_RFLAGS);
  1208. vcpu->arch.rmode.save_iopl
  1209. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1210. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1211. vmcs_writel(GUEST_RFLAGS, flags);
  1212. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1213. update_exception_bitmap(vcpu);
  1214. if (emulate_invalid_guest_state)
  1215. goto continue_rmode;
  1216. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1217. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1218. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1219. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1220. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1221. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1222. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1223. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1224. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1225. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1226. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1227. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1228. continue_rmode:
  1229. kvm_mmu_reset_context(vcpu);
  1230. init_rmode(vcpu->kvm);
  1231. }
  1232. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1233. {
  1234. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1235. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1236. vcpu->arch.shadow_efer = efer;
  1237. if (!msr)
  1238. return;
  1239. if (efer & EFER_LMA) {
  1240. vmcs_write32(VM_ENTRY_CONTROLS,
  1241. vmcs_read32(VM_ENTRY_CONTROLS) |
  1242. VM_ENTRY_IA32E_MODE);
  1243. msr->data = efer;
  1244. } else {
  1245. vmcs_write32(VM_ENTRY_CONTROLS,
  1246. vmcs_read32(VM_ENTRY_CONTROLS) &
  1247. ~VM_ENTRY_IA32E_MODE);
  1248. msr->data = efer & ~EFER_LME;
  1249. }
  1250. setup_msrs(vmx);
  1251. }
  1252. #ifdef CONFIG_X86_64
  1253. static void enter_lmode(struct kvm_vcpu *vcpu)
  1254. {
  1255. u32 guest_tr_ar;
  1256. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1257. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1258. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1259. __func__);
  1260. vmcs_write32(GUEST_TR_AR_BYTES,
  1261. (guest_tr_ar & ~AR_TYPE_MASK)
  1262. | AR_TYPE_BUSY_64_TSS);
  1263. }
  1264. vcpu->arch.shadow_efer |= EFER_LMA;
  1265. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1266. }
  1267. static void exit_lmode(struct kvm_vcpu *vcpu)
  1268. {
  1269. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1270. vmcs_write32(VM_ENTRY_CONTROLS,
  1271. vmcs_read32(VM_ENTRY_CONTROLS)
  1272. & ~VM_ENTRY_IA32E_MODE);
  1273. }
  1274. #endif
  1275. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1276. {
  1277. vpid_sync_vcpu_all(to_vmx(vcpu));
  1278. if (enable_ept)
  1279. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1280. }
  1281. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1282. {
  1283. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1284. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1285. }
  1286. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1287. {
  1288. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1289. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1290. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1291. return;
  1292. }
  1293. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1294. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1295. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1296. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1297. }
  1298. }
  1299. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1300. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1301. unsigned long cr0,
  1302. struct kvm_vcpu *vcpu)
  1303. {
  1304. if (!(cr0 & X86_CR0_PG)) {
  1305. /* From paging/starting to nonpaging */
  1306. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1307. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1308. (CPU_BASED_CR3_LOAD_EXITING |
  1309. CPU_BASED_CR3_STORE_EXITING));
  1310. vcpu->arch.cr0 = cr0;
  1311. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1312. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1313. *hw_cr0 &= ~X86_CR0_WP;
  1314. } else if (!is_paging(vcpu)) {
  1315. /* From nonpaging to paging */
  1316. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1317. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1318. ~(CPU_BASED_CR3_LOAD_EXITING |
  1319. CPU_BASED_CR3_STORE_EXITING));
  1320. vcpu->arch.cr0 = cr0;
  1321. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1322. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1323. *hw_cr0 &= ~X86_CR0_WP;
  1324. }
  1325. }
  1326. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1327. struct kvm_vcpu *vcpu)
  1328. {
  1329. if (!is_paging(vcpu)) {
  1330. *hw_cr4 &= ~X86_CR4_PAE;
  1331. *hw_cr4 |= X86_CR4_PSE;
  1332. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1333. *hw_cr4 &= ~X86_CR4_PAE;
  1334. }
  1335. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1336. {
  1337. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1338. KVM_VM_CR0_ALWAYS_ON;
  1339. vmx_fpu_deactivate(vcpu);
  1340. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1341. enter_pmode(vcpu);
  1342. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1343. enter_rmode(vcpu);
  1344. #ifdef CONFIG_X86_64
  1345. if (vcpu->arch.shadow_efer & EFER_LME) {
  1346. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1347. enter_lmode(vcpu);
  1348. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1349. exit_lmode(vcpu);
  1350. }
  1351. #endif
  1352. if (enable_ept)
  1353. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1354. vmcs_writel(CR0_READ_SHADOW, cr0);
  1355. vmcs_writel(GUEST_CR0, hw_cr0);
  1356. vcpu->arch.cr0 = cr0;
  1357. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1358. vmx_fpu_activate(vcpu);
  1359. }
  1360. static u64 construct_eptp(unsigned long root_hpa)
  1361. {
  1362. u64 eptp;
  1363. /* TODO write the value reading from MSR */
  1364. eptp = VMX_EPT_DEFAULT_MT |
  1365. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1366. eptp |= (root_hpa & PAGE_MASK);
  1367. return eptp;
  1368. }
  1369. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1370. {
  1371. unsigned long guest_cr3;
  1372. u64 eptp;
  1373. guest_cr3 = cr3;
  1374. if (enable_ept) {
  1375. eptp = construct_eptp(cr3);
  1376. vmcs_write64(EPT_POINTER, eptp);
  1377. ept_sync_context(eptp);
  1378. ept_load_pdptrs(vcpu);
  1379. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1380. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1381. }
  1382. vmx_flush_tlb(vcpu);
  1383. vmcs_writel(GUEST_CR3, guest_cr3);
  1384. if (vcpu->arch.cr0 & X86_CR0_PE)
  1385. vmx_fpu_deactivate(vcpu);
  1386. }
  1387. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1388. {
  1389. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1390. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1391. vcpu->arch.cr4 = cr4;
  1392. if (enable_ept)
  1393. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1394. vmcs_writel(CR4_READ_SHADOW, cr4);
  1395. vmcs_writel(GUEST_CR4, hw_cr4);
  1396. }
  1397. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1398. {
  1399. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1400. return vmcs_readl(sf->base);
  1401. }
  1402. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1403. struct kvm_segment *var, int seg)
  1404. {
  1405. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1406. u32 ar;
  1407. var->base = vmcs_readl(sf->base);
  1408. var->limit = vmcs_read32(sf->limit);
  1409. var->selector = vmcs_read16(sf->selector);
  1410. ar = vmcs_read32(sf->ar_bytes);
  1411. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1412. ar = 0;
  1413. var->type = ar & 15;
  1414. var->s = (ar >> 4) & 1;
  1415. var->dpl = (ar >> 5) & 3;
  1416. var->present = (ar >> 7) & 1;
  1417. var->avl = (ar >> 12) & 1;
  1418. var->l = (ar >> 13) & 1;
  1419. var->db = (ar >> 14) & 1;
  1420. var->g = (ar >> 15) & 1;
  1421. var->unusable = (ar >> 16) & 1;
  1422. }
  1423. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1424. {
  1425. struct kvm_segment kvm_seg;
  1426. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1427. return 0;
  1428. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1429. return 3;
  1430. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1431. return kvm_seg.selector & 3;
  1432. }
  1433. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1434. {
  1435. u32 ar;
  1436. if (var->unusable)
  1437. ar = 1 << 16;
  1438. else {
  1439. ar = var->type & 15;
  1440. ar |= (var->s & 1) << 4;
  1441. ar |= (var->dpl & 3) << 5;
  1442. ar |= (var->present & 1) << 7;
  1443. ar |= (var->avl & 1) << 12;
  1444. ar |= (var->l & 1) << 13;
  1445. ar |= (var->db & 1) << 14;
  1446. ar |= (var->g & 1) << 15;
  1447. }
  1448. if (ar == 0) /* a 0 value means unusable */
  1449. ar = AR_UNUSABLE_MASK;
  1450. return ar;
  1451. }
  1452. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1453. struct kvm_segment *var, int seg)
  1454. {
  1455. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1456. u32 ar;
  1457. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1458. vcpu->arch.rmode.tr.selector = var->selector;
  1459. vcpu->arch.rmode.tr.base = var->base;
  1460. vcpu->arch.rmode.tr.limit = var->limit;
  1461. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1462. return;
  1463. }
  1464. vmcs_writel(sf->base, var->base);
  1465. vmcs_write32(sf->limit, var->limit);
  1466. vmcs_write16(sf->selector, var->selector);
  1467. if (vcpu->arch.rmode.active && var->s) {
  1468. /*
  1469. * Hack real-mode segments into vm86 compatibility.
  1470. */
  1471. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1472. vmcs_writel(sf->base, 0xf0000);
  1473. ar = 0xf3;
  1474. } else
  1475. ar = vmx_segment_access_rights(var);
  1476. vmcs_write32(sf->ar_bytes, ar);
  1477. }
  1478. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1479. {
  1480. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1481. *db = (ar >> 14) & 1;
  1482. *l = (ar >> 13) & 1;
  1483. }
  1484. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1485. {
  1486. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1487. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1488. }
  1489. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1490. {
  1491. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1492. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1493. }
  1494. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1495. {
  1496. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1497. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1498. }
  1499. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1500. {
  1501. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1502. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1503. }
  1504. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1505. {
  1506. struct kvm_segment var;
  1507. u32 ar;
  1508. vmx_get_segment(vcpu, &var, seg);
  1509. ar = vmx_segment_access_rights(&var);
  1510. if (var.base != (var.selector << 4))
  1511. return false;
  1512. if (var.limit != 0xffff)
  1513. return false;
  1514. if (ar != 0xf3)
  1515. return false;
  1516. return true;
  1517. }
  1518. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1519. {
  1520. struct kvm_segment cs;
  1521. unsigned int cs_rpl;
  1522. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1523. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1524. if (cs.unusable)
  1525. return false;
  1526. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1527. return false;
  1528. if (!cs.s)
  1529. return false;
  1530. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1531. if (cs.dpl > cs_rpl)
  1532. return false;
  1533. } else {
  1534. if (cs.dpl != cs_rpl)
  1535. return false;
  1536. }
  1537. if (!cs.present)
  1538. return false;
  1539. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1540. return true;
  1541. }
  1542. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1543. {
  1544. struct kvm_segment ss;
  1545. unsigned int ss_rpl;
  1546. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1547. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1548. if (ss.unusable)
  1549. return true;
  1550. if (ss.type != 3 && ss.type != 7)
  1551. return false;
  1552. if (!ss.s)
  1553. return false;
  1554. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1555. return false;
  1556. if (!ss.present)
  1557. return false;
  1558. return true;
  1559. }
  1560. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1561. {
  1562. struct kvm_segment var;
  1563. unsigned int rpl;
  1564. vmx_get_segment(vcpu, &var, seg);
  1565. rpl = var.selector & SELECTOR_RPL_MASK;
  1566. if (var.unusable)
  1567. return true;
  1568. if (!var.s)
  1569. return false;
  1570. if (!var.present)
  1571. return false;
  1572. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1573. if (var.dpl < rpl) /* DPL < RPL */
  1574. return false;
  1575. }
  1576. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1577. * rights flags
  1578. */
  1579. return true;
  1580. }
  1581. static bool tr_valid(struct kvm_vcpu *vcpu)
  1582. {
  1583. struct kvm_segment tr;
  1584. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1585. if (tr.unusable)
  1586. return false;
  1587. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1588. return false;
  1589. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1590. return false;
  1591. if (!tr.present)
  1592. return false;
  1593. return true;
  1594. }
  1595. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1596. {
  1597. struct kvm_segment ldtr;
  1598. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1599. if (ldtr.unusable)
  1600. return true;
  1601. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1602. return false;
  1603. if (ldtr.type != 2)
  1604. return false;
  1605. if (!ldtr.present)
  1606. return false;
  1607. return true;
  1608. }
  1609. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1610. {
  1611. struct kvm_segment cs, ss;
  1612. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1613. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1614. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1615. (ss.selector & SELECTOR_RPL_MASK));
  1616. }
  1617. /*
  1618. * Check if guest state is valid. Returns true if valid, false if
  1619. * not.
  1620. * We assume that registers are always usable
  1621. */
  1622. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1623. {
  1624. /* real mode guest state checks */
  1625. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1626. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1627. return false;
  1628. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1629. return false;
  1630. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1631. return false;
  1632. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1633. return false;
  1634. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1635. return false;
  1636. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1637. return false;
  1638. } else {
  1639. /* protected mode guest state checks */
  1640. if (!cs_ss_rpl_check(vcpu))
  1641. return false;
  1642. if (!code_segment_valid(vcpu))
  1643. return false;
  1644. if (!stack_segment_valid(vcpu))
  1645. return false;
  1646. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1647. return false;
  1648. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1649. return false;
  1650. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1651. return false;
  1652. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1653. return false;
  1654. if (!tr_valid(vcpu))
  1655. return false;
  1656. if (!ldtr_valid(vcpu))
  1657. return false;
  1658. }
  1659. /* TODO:
  1660. * - Add checks on RIP
  1661. * - Add checks on RFLAGS
  1662. */
  1663. return true;
  1664. }
  1665. static int init_rmode_tss(struct kvm *kvm)
  1666. {
  1667. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1668. u16 data = 0;
  1669. int ret = 0;
  1670. int r;
  1671. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1672. if (r < 0)
  1673. goto out;
  1674. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1675. r = kvm_write_guest_page(kvm, fn++, &data,
  1676. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1677. if (r < 0)
  1678. goto out;
  1679. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1680. if (r < 0)
  1681. goto out;
  1682. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1683. if (r < 0)
  1684. goto out;
  1685. data = ~0;
  1686. r = kvm_write_guest_page(kvm, fn, &data,
  1687. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1688. sizeof(u8));
  1689. if (r < 0)
  1690. goto out;
  1691. ret = 1;
  1692. out:
  1693. return ret;
  1694. }
  1695. static int init_rmode_identity_map(struct kvm *kvm)
  1696. {
  1697. int i, r, ret;
  1698. pfn_t identity_map_pfn;
  1699. u32 tmp;
  1700. if (!enable_ept)
  1701. return 1;
  1702. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1703. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1704. "haven't been allocated!\n");
  1705. return 0;
  1706. }
  1707. if (likely(kvm->arch.ept_identity_pagetable_done))
  1708. return 1;
  1709. ret = 0;
  1710. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1711. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1712. if (r < 0)
  1713. goto out;
  1714. /* Set up identity-mapping pagetable for EPT in real mode */
  1715. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1716. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1717. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1718. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1719. &tmp, i * sizeof(tmp), sizeof(tmp));
  1720. if (r < 0)
  1721. goto out;
  1722. }
  1723. kvm->arch.ept_identity_pagetable_done = true;
  1724. ret = 1;
  1725. out:
  1726. return ret;
  1727. }
  1728. static void seg_setup(int seg)
  1729. {
  1730. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1731. vmcs_write16(sf->selector, 0);
  1732. vmcs_writel(sf->base, 0);
  1733. vmcs_write32(sf->limit, 0xffff);
  1734. vmcs_write32(sf->ar_bytes, 0xf3);
  1735. }
  1736. static int alloc_apic_access_page(struct kvm *kvm)
  1737. {
  1738. struct kvm_userspace_memory_region kvm_userspace_mem;
  1739. int r = 0;
  1740. down_write(&kvm->slots_lock);
  1741. if (kvm->arch.apic_access_page)
  1742. goto out;
  1743. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1744. kvm_userspace_mem.flags = 0;
  1745. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1746. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1747. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1748. if (r)
  1749. goto out;
  1750. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1751. out:
  1752. up_write(&kvm->slots_lock);
  1753. return r;
  1754. }
  1755. static int alloc_identity_pagetable(struct kvm *kvm)
  1756. {
  1757. struct kvm_userspace_memory_region kvm_userspace_mem;
  1758. int r = 0;
  1759. down_write(&kvm->slots_lock);
  1760. if (kvm->arch.ept_identity_pagetable)
  1761. goto out;
  1762. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1763. kvm_userspace_mem.flags = 0;
  1764. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1765. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1766. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1767. if (r)
  1768. goto out;
  1769. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1770. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1771. out:
  1772. up_write(&kvm->slots_lock);
  1773. return r;
  1774. }
  1775. static void allocate_vpid(struct vcpu_vmx *vmx)
  1776. {
  1777. int vpid;
  1778. vmx->vpid = 0;
  1779. if (!enable_vpid)
  1780. return;
  1781. spin_lock(&vmx_vpid_lock);
  1782. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1783. if (vpid < VMX_NR_VPIDS) {
  1784. vmx->vpid = vpid;
  1785. __set_bit(vpid, vmx_vpid_bitmap);
  1786. }
  1787. spin_unlock(&vmx_vpid_lock);
  1788. }
  1789. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1790. {
  1791. int f = sizeof(unsigned long);
  1792. if (!cpu_has_vmx_msr_bitmap())
  1793. return;
  1794. /*
  1795. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1796. * have the write-low and read-high bitmap offsets the wrong way round.
  1797. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1798. */
  1799. if (msr <= 0x1fff) {
  1800. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1801. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1802. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1803. msr &= 0x1fff;
  1804. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1805. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1806. }
  1807. }
  1808. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1809. {
  1810. if (!longmode_only)
  1811. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1812. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1813. }
  1814. /*
  1815. * Sets up the vmcs for emulated real mode.
  1816. */
  1817. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1818. {
  1819. u32 host_sysenter_cs, msr_low, msr_high;
  1820. u32 junk;
  1821. u64 host_pat, tsc_this, tsc_base;
  1822. unsigned long a;
  1823. struct descriptor_table dt;
  1824. int i;
  1825. unsigned long kvm_vmx_return;
  1826. u32 exec_control;
  1827. /* I/O */
  1828. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1829. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1830. if (cpu_has_vmx_msr_bitmap())
  1831. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1832. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1833. /* Control */
  1834. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1835. vmcs_config.pin_based_exec_ctrl);
  1836. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1837. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1838. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1839. #ifdef CONFIG_X86_64
  1840. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1841. CPU_BASED_CR8_LOAD_EXITING;
  1842. #endif
  1843. }
  1844. if (!enable_ept)
  1845. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1846. CPU_BASED_CR3_LOAD_EXITING |
  1847. CPU_BASED_INVLPG_EXITING;
  1848. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1849. if (cpu_has_secondary_exec_ctrls()) {
  1850. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1851. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1852. exec_control &=
  1853. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1854. if (vmx->vpid == 0)
  1855. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1856. if (!enable_ept)
  1857. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1858. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1859. }
  1860. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1861. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1862. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1863. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1864. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1865. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1866. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1867. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1868. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1869. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1870. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1871. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1872. #ifdef CONFIG_X86_64
  1873. rdmsrl(MSR_FS_BASE, a);
  1874. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1875. rdmsrl(MSR_GS_BASE, a);
  1876. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1877. #else
  1878. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1879. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1880. #endif
  1881. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1882. kvm_get_idt(&dt);
  1883. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1884. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1885. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1886. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1887. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1888. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1889. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1890. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1891. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1892. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1893. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1894. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1895. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1896. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1897. host_pat = msr_low | ((u64) msr_high << 32);
  1898. vmcs_write64(HOST_IA32_PAT, host_pat);
  1899. }
  1900. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1901. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1902. host_pat = msr_low | ((u64) msr_high << 32);
  1903. /* Write the default value follow host pat */
  1904. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1905. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1906. vmx->vcpu.arch.pat = host_pat;
  1907. }
  1908. for (i = 0; i < NR_VMX_MSR; ++i) {
  1909. u32 index = vmx_msr_index[i];
  1910. u32 data_low, data_high;
  1911. u64 data;
  1912. int j = vmx->nmsrs;
  1913. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1914. continue;
  1915. if (wrmsr_safe(index, data_low, data_high) < 0)
  1916. continue;
  1917. data = data_low | ((u64)data_high << 32);
  1918. vmx->host_msrs[j].index = index;
  1919. vmx->host_msrs[j].reserved = 0;
  1920. vmx->host_msrs[j].data = data;
  1921. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1922. ++vmx->nmsrs;
  1923. }
  1924. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1925. /* 22.2.1, 20.8.1 */
  1926. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1927. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1928. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1929. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1930. rdtscll(tsc_this);
  1931. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1932. tsc_base = tsc_this;
  1933. guest_write_tsc(0, tsc_base);
  1934. return 0;
  1935. }
  1936. static int init_rmode(struct kvm *kvm)
  1937. {
  1938. if (!init_rmode_tss(kvm))
  1939. return 0;
  1940. if (!init_rmode_identity_map(kvm))
  1941. return 0;
  1942. return 1;
  1943. }
  1944. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1945. {
  1946. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1947. u64 msr;
  1948. int ret;
  1949. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1950. down_read(&vcpu->kvm->slots_lock);
  1951. if (!init_rmode(vmx->vcpu.kvm)) {
  1952. ret = -ENOMEM;
  1953. goto out;
  1954. }
  1955. vmx->vcpu.arch.rmode.active = 0;
  1956. vmx->soft_vnmi_blocked = 0;
  1957. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1958. kvm_set_cr8(&vmx->vcpu, 0);
  1959. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1960. if (vmx->vcpu.vcpu_id == 0)
  1961. msr |= MSR_IA32_APICBASE_BSP;
  1962. kvm_set_apic_base(&vmx->vcpu, msr);
  1963. fx_init(&vmx->vcpu);
  1964. seg_setup(VCPU_SREG_CS);
  1965. /*
  1966. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1967. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1968. */
  1969. if (vmx->vcpu.vcpu_id == 0) {
  1970. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1971. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1972. } else {
  1973. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1974. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1975. }
  1976. seg_setup(VCPU_SREG_DS);
  1977. seg_setup(VCPU_SREG_ES);
  1978. seg_setup(VCPU_SREG_FS);
  1979. seg_setup(VCPU_SREG_GS);
  1980. seg_setup(VCPU_SREG_SS);
  1981. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1982. vmcs_writel(GUEST_TR_BASE, 0);
  1983. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1984. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1985. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1986. vmcs_writel(GUEST_LDTR_BASE, 0);
  1987. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1988. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1989. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1990. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1991. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1992. vmcs_writel(GUEST_RFLAGS, 0x02);
  1993. if (vmx->vcpu.vcpu_id == 0)
  1994. kvm_rip_write(vcpu, 0xfff0);
  1995. else
  1996. kvm_rip_write(vcpu, 0);
  1997. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  1998. vmcs_writel(GUEST_DR7, 0x400);
  1999. vmcs_writel(GUEST_GDTR_BASE, 0);
  2000. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2001. vmcs_writel(GUEST_IDTR_BASE, 0);
  2002. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2003. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2004. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2005. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2006. /* Special registers */
  2007. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2008. setup_msrs(vmx);
  2009. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2010. if (cpu_has_vmx_tpr_shadow()) {
  2011. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2012. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2013. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2014. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2015. vmcs_write32(TPR_THRESHOLD, 0);
  2016. }
  2017. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2018. vmcs_write64(APIC_ACCESS_ADDR,
  2019. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2020. if (vmx->vpid != 0)
  2021. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2022. vmx->vcpu.arch.cr0 = 0x60000010;
  2023. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2024. vmx_set_cr4(&vmx->vcpu, 0);
  2025. vmx_set_efer(&vmx->vcpu, 0);
  2026. vmx_fpu_activate(&vmx->vcpu);
  2027. update_exception_bitmap(&vmx->vcpu);
  2028. vpid_sync_vcpu_all(vmx);
  2029. ret = 0;
  2030. /* HACK: Don't enable emulation on guest boot/reset */
  2031. vmx->emulation_required = 0;
  2032. out:
  2033. up_read(&vcpu->kvm->slots_lock);
  2034. return ret;
  2035. }
  2036. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2037. {
  2038. u32 cpu_based_vm_exec_control;
  2039. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2040. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2041. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2042. }
  2043. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2044. {
  2045. u32 cpu_based_vm_exec_control;
  2046. if (!cpu_has_virtual_nmis()) {
  2047. enable_irq_window(vcpu);
  2048. return;
  2049. }
  2050. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2051. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2052. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2053. }
  2054. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  2055. {
  2056. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2057. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2058. ++vcpu->stat.irq_injections;
  2059. if (vcpu->arch.rmode.active) {
  2060. vmx->rmode.irq.pending = true;
  2061. vmx->rmode.irq.vector = irq;
  2062. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2063. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2064. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2065. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2066. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2067. return;
  2068. }
  2069. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2070. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  2071. }
  2072. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2073. {
  2074. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2075. if (!cpu_has_virtual_nmis()) {
  2076. /*
  2077. * Tracking the NMI-blocked state in software is built upon
  2078. * finding the next open IRQ window. This, in turn, depends on
  2079. * well-behaving guests: They have to keep IRQs disabled at
  2080. * least as long as the NMI handler runs. Otherwise we may
  2081. * cause NMI nesting, maybe breaking the guest. But as this is
  2082. * highly unlikely, we can live with the residual risk.
  2083. */
  2084. vmx->soft_vnmi_blocked = 1;
  2085. vmx->vnmi_blocked_time = 0;
  2086. }
  2087. ++vcpu->stat.nmi_injections;
  2088. if (vcpu->arch.rmode.active) {
  2089. vmx->rmode.irq.pending = true;
  2090. vmx->rmode.irq.vector = NMI_VECTOR;
  2091. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2092. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2093. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2094. INTR_INFO_VALID_MASK);
  2095. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2096. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2097. return;
  2098. }
  2099. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2100. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2101. }
  2102. static void vmx_update_window_states(struct kvm_vcpu *vcpu)
  2103. {
  2104. u32 guest_intr = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  2105. vcpu->arch.nmi_window_open =
  2106. !(guest_intr & (GUEST_INTR_STATE_STI |
  2107. GUEST_INTR_STATE_MOV_SS |
  2108. GUEST_INTR_STATE_NMI));
  2109. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2110. vcpu->arch.nmi_window_open = 0;
  2111. vcpu->arch.interrupt_window_open =
  2112. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2113. !(guest_intr & (GUEST_INTR_STATE_STI |
  2114. GUEST_INTR_STATE_MOV_SS)));
  2115. }
  2116. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  2117. struct kvm_run *kvm_run)
  2118. {
  2119. vmx_update_window_states(vcpu);
  2120. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2121. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2122. GUEST_INTR_STATE_STI |
  2123. GUEST_INTR_STATE_MOV_SS);
  2124. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2125. if (vcpu->arch.interrupt.pending) {
  2126. enable_nmi_window(vcpu);
  2127. } else if (vcpu->arch.nmi_window_open) {
  2128. vcpu->arch.nmi_pending = false;
  2129. vcpu->arch.nmi_injected = true;
  2130. } else {
  2131. enable_nmi_window(vcpu);
  2132. return;
  2133. }
  2134. }
  2135. if (vcpu->arch.nmi_injected) {
  2136. vmx_inject_nmi(vcpu);
  2137. if (vcpu->arch.nmi_pending)
  2138. enable_nmi_window(vcpu);
  2139. else if (vcpu->arch.irq_summary
  2140. || kvm_run->request_interrupt_window)
  2141. enable_irq_window(vcpu);
  2142. return;
  2143. }
  2144. if (vcpu->arch.interrupt_window_open) {
  2145. if (vcpu->arch.irq_summary && !vcpu->arch.interrupt.pending)
  2146. kvm_queue_interrupt(vcpu, kvm_pop_irq(vcpu));
  2147. if (vcpu->arch.interrupt.pending)
  2148. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2149. }
  2150. if (!vcpu->arch.interrupt_window_open &&
  2151. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  2152. enable_irq_window(vcpu);
  2153. }
  2154. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2155. {
  2156. int ret;
  2157. struct kvm_userspace_memory_region tss_mem = {
  2158. .slot = TSS_PRIVATE_MEMSLOT,
  2159. .guest_phys_addr = addr,
  2160. .memory_size = PAGE_SIZE * 3,
  2161. .flags = 0,
  2162. };
  2163. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2164. if (ret)
  2165. return ret;
  2166. kvm->arch.tss_addr = addr;
  2167. return 0;
  2168. }
  2169. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2170. int vec, u32 err_code)
  2171. {
  2172. /*
  2173. * Instruction with address size override prefix opcode 0x67
  2174. * Cause the #SS fault with 0 error code in VM86 mode.
  2175. */
  2176. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2177. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2178. return 1;
  2179. /*
  2180. * Forward all other exceptions that are valid in real mode.
  2181. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2182. * the required debugging infrastructure rework.
  2183. */
  2184. switch (vec) {
  2185. case DB_VECTOR:
  2186. if (vcpu->guest_debug &
  2187. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2188. return 0;
  2189. kvm_queue_exception(vcpu, vec);
  2190. return 1;
  2191. case BP_VECTOR:
  2192. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2193. return 0;
  2194. /* fall through */
  2195. case DE_VECTOR:
  2196. case OF_VECTOR:
  2197. case BR_VECTOR:
  2198. case UD_VECTOR:
  2199. case DF_VECTOR:
  2200. case SS_VECTOR:
  2201. case GP_VECTOR:
  2202. case MF_VECTOR:
  2203. kvm_queue_exception(vcpu, vec);
  2204. return 1;
  2205. }
  2206. return 0;
  2207. }
  2208. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2209. {
  2210. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2211. u32 intr_info, ex_no, error_code;
  2212. unsigned long cr2, rip, dr6;
  2213. u32 vect_info;
  2214. enum emulation_result er;
  2215. vect_info = vmx->idt_vectoring_info;
  2216. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2217. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2218. !is_page_fault(intr_info))
  2219. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2220. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2221. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  2222. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  2223. kvm_push_irq(vcpu, irq);
  2224. }
  2225. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2226. return 1; /* already handled by vmx_vcpu_run() */
  2227. if (is_no_device(intr_info)) {
  2228. vmx_fpu_activate(vcpu);
  2229. return 1;
  2230. }
  2231. if (is_invalid_opcode(intr_info)) {
  2232. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2233. if (er != EMULATE_DONE)
  2234. kvm_queue_exception(vcpu, UD_VECTOR);
  2235. return 1;
  2236. }
  2237. error_code = 0;
  2238. rip = kvm_rip_read(vcpu);
  2239. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2240. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2241. if (is_page_fault(intr_info)) {
  2242. /* EPT won't cause page fault directly */
  2243. if (enable_ept)
  2244. BUG();
  2245. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2246. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2247. (u32)((u64)cr2 >> 32), handler);
  2248. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2249. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2250. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2251. }
  2252. if (vcpu->arch.rmode.active &&
  2253. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2254. error_code)) {
  2255. if (vcpu->arch.halt_request) {
  2256. vcpu->arch.halt_request = 0;
  2257. return kvm_emulate_halt(vcpu);
  2258. }
  2259. return 1;
  2260. }
  2261. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2262. switch (ex_no) {
  2263. case DB_VECTOR:
  2264. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2265. if (!(vcpu->guest_debug &
  2266. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2267. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2268. kvm_queue_exception(vcpu, DB_VECTOR);
  2269. return 1;
  2270. }
  2271. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2272. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2273. /* fall through */
  2274. case BP_VECTOR:
  2275. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2276. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2277. kvm_run->debug.arch.exception = ex_no;
  2278. break;
  2279. default:
  2280. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2281. kvm_run->ex.exception = ex_no;
  2282. kvm_run->ex.error_code = error_code;
  2283. break;
  2284. }
  2285. return 0;
  2286. }
  2287. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2288. struct kvm_run *kvm_run)
  2289. {
  2290. ++vcpu->stat.irq_exits;
  2291. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2292. return 1;
  2293. }
  2294. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2295. {
  2296. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2297. return 0;
  2298. }
  2299. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2300. {
  2301. unsigned long exit_qualification;
  2302. int size, in, string;
  2303. unsigned port;
  2304. ++vcpu->stat.io_exits;
  2305. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2306. string = (exit_qualification & 16) != 0;
  2307. if (string) {
  2308. if (emulate_instruction(vcpu,
  2309. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2310. return 0;
  2311. return 1;
  2312. }
  2313. size = (exit_qualification & 7) + 1;
  2314. in = (exit_qualification & 8) != 0;
  2315. port = exit_qualification >> 16;
  2316. skip_emulated_instruction(vcpu);
  2317. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2318. }
  2319. static void
  2320. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2321. {
  2322. /*
  2323. * Patch in the VMCALL instruction:
  2324. */
  2325. hypercall[0] = 0x0f;
  2326. hypercall[1] = 0x01;
  2327. hypercall[2] = 0xc1;
  2328. }
  2329. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2330. {
  2331. unsigned long exit_qualification;
  2332. int cr;
  2333. int reg;
  2334. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2335. cr = exit_qualification & 15;
  2336. reg = (exit_qualification >> 8) & 15;
  2337. switch ((exit_qualification >> 4) & 3) {
  2338. case 0: /* mov to cr */
  2339. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2340. (u32)kvm_register_read(vcpu, reg),
  2341. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2342. handler);
  2343. switch (cr) {
  2344. case 0:
  2345. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2346. skip_emulated_instruction(vcpu);
  2347. return 1;
  2348. case 3:
  2349. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2350. skip_emulated_instruction(vcpu);
  2351. return 1;
  2352. case 4:
  2353. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2354. skip_emulated_instruction(vcpu);
  2355. return 1;
  2356. case 8:
  2357. kvm_set_cr8(vcpu, kvm_register_read(vcpu, reg));
  2358. skip_emulated_instruction(vcpu);
  2359. if (irqchip_in_kernel(vcpu->kvm))
  2360. return 1;
  2361. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2362. return 0;
  2363. };
  2364. break;
  2365. case 2: /* clts */
  2366. vmx_fpu_deactivate(vcpu);
  2367. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2368. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2369. vmx_fpu_activate(vcpu);
  2370. KVMTRACE_0D(CLTS, vcpu, handler);
  2371. skip_emulated_instruction(vcpu);
  2372. return 1;
  2373. case 1: /*mov from cr*/
  2374. switch (cr) {
  2375. case 3:
  2376. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2377. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2378. (u32)kvm_register_read(vcpu, reg),
  2379. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2380. handler);
  2381. skip_emulated_instruction(vcpu);
  2382. return 1;
  2383. case 8:
  2384. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2385. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2386. (u32)kvm_register_read(vcpu, reg), handler);
  2387. skip_emulated_instruction(vcpu);
  2388. return 1;
  2389. }
  2390. break;
  2391. case 3: /* lmsw */
  2392. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2393. skip_emulated_instruction(vcpu);
  2394. return 1;
  2395. default:
  2396. break;
  2397. }
  2398. kvm_run->exit_reason = 0;
  2399. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2400. (int)(exit_qualification >> 4) & 3, cr);
  2401. return 0;
  2402. }
  2403. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2404. {
  2405. unsigned long exit_qualification;
  2406. unsigned long val;
  2407. int dr, reg;
  2408. dr = vmcs_readl(GUEST_DR7);
  2409. if (dr & DR7_GD) {
  2410. /*
  2411. * As the vm-exit takes precedence over the debug trap, we
  2412. * need to emulate the latter, either for the host or the
  2413. * guest debugging itself.
  2414. */
  2415. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2416. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2417. kvm_run->debug.arch.dr7 = dr;
  2418. kvm_run->debug.arch.pc =
  2419. vmcs_readl(GUEST_CS_BASE) +
  2420. vmcs_readl(GUEST_RIP);
  2421. kvm_run->debug.arch.exception = DB_VECTOR;
  2422. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2423. return 0;
  2424. } else {
  2425. vcpu->arch.dr7 &= ~DR7_GD;
  2426. vcpu->arch.dr6 |= DR6_BD;
  2427. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2428. kvm_queue_exception(vcpu, DB_VECTOR);
  2429. return 1;
  2430. }
  2431. }
  2432. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2433. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2434. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2435. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2436. switch (dr) {
  2437. case 0 ... 3:
  2438. val = vcpu->arch.db[dr];
  2439. break;
  2440. case 6:
  2441. val = vcpu->arch.dr6;
  2442. break;
  2443. case 7:
  2444. val = vcpu->arch.dr7;
  2445. break;
  2446. default:
  2447. val = 0;
  2448. }
  2449. kvm_register_write(vcpu, reg, val);
  2450. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2451. } else {
  2452. val = vcpu->arch.regs[reg];
  2453. switch (dr) {
  2454. case 0 ... 3:
  2455. vcpu->arch.db[dr] = val;
  2456. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2457. vcpu->arch.eff_db[dr] = val;
  2458. break;
  2459. case 4 ... 5:
  2460. if (vcpu->arch.cr4 & X86_CR4_DE)
  2461. kvm_queue_exception(vcpu, UD_VECTOR);
  2462. break;
  2463. case 6:
  2464. if (val & 0xffffffff00000000ULL) {
  2465. kvm_queue_exception(vcpu, GP_VECTOR);
  2466. break;
  2467. }
  2468. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2469. break;
  2470. case 7:
  2471. if (val & 0xffffffff00000000ULL) {
  2472. kvm_queue_exception(vcpu, GP_VECTOR);
  2473. break;
  2474. }
  2475. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2476. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2477. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2478. vcpu->arch.switch_db_regs =
  2479. (val & DR7_BP_EN_MASK);
  2480. }
  2481. break;
  2482. }
  2483. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2484. }
  2485. skip_emulated_instruction(vcpu);
  2486. return 1;
  2487. }
  2488. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2489. {
  2490. kvm_emulate_cpuid(vcpu);
  2491. return 1;
  2492. }
  2493. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2494. {
  2495. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2496. u64 data;
  2497. if (vmx_get_msr(vcpu, ecx, &data)) {
  2498. kvm_inject_gp(vcpu, 0);
  2499. return 1;
  2500. }
  2501. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2502. handler);
  2503. /* FIXME: handling of bits 32:63 of rax, rdx */
  2504. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2505. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2506. skip_emulated_instruction(vcpu);
  2507. return 1;
  2508. }
  2509. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2510. {
  2511. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2512. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2513. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2514. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2515. handler);
  2516. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2517. kvm_inject_gp(vcpu, 0);
  2518. return 1;
  2519. }
  2520. skip_emulated_instruction(vcpu);
  2521. return 1;
  2522. }
  2523. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2524. struct kvm_run *kvm_run)
  2525. {
  2526. return 1;
  2527. }
  2528. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2529. struct kvm_run *kvm_run)
  2530. {
  2531. u32 cpu_based_vm_exec_control;
  2532. /* clear pending irq */
  2533. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2534. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2535. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2536. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2537. ++vcpu->stat.irq_window_exits;
  2538. /*
  2539. * If the user space waits to inject interrupts, exit as soon as
  2540. * possible
  2541. */
  2542. if (kvm_run->request_interrupt_window &&
  2543. !vcpu->arch.irq_summary) {
  2544. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2545. return 0;
  2546. }
  2547. return 1;
  2548. }
  2549. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2550. {
  2551. skip_emulated_instruction(vcpu);
  2552. return kvm_emulate_halt(vcpu);
  2553. }
  2554. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2555. {
  2556. skip_emulated_instruction(vcpu);
  2557. kvm_emulate_hypercall(vcpu);
  2558. return 1;
  2559. }
  2560. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2561. {
  2562. u64 exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2563. kvm_mmu_invlpg(vcpu, exit_qualification);
  2564. skip_emulated_instruction(vcpu);
  2565. return 1;
  2566. }
  2567. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2568. {
  2569. skip_emulated_instruction(vcpu);
  2570. /* TODO: Add support for VT-d/pass-through device */
  2571. return 1;
  2572. }
  2573. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2574. {
  2575. u64 exit_qualification;
  2576. enum emulation_result er;
  2577. unsigned long offset;
  2578. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2579. offset = exit_qualification & 0xffful;
  2580. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2581. if (er != EMULATE_DONE) {
  2582. printk(KERN_ERR
  2583. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2584. offset);
  2585. return -ENOTSUPP;
  2586. }
  2587. return 1;
  2588. }
  2589. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2590. {
  2591. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2592. unsigned long exit_qualification;
  2593. u16 tss_selector;
  2594. int reason;
  2595. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2596. reason = (u32)exit_qualification >> 30;
  2597. if (reason == TASK_SWITCH_GATE && vmx->vcpu.arch.nmi_injected &&
  2598. (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2599. (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK)
  2600. == INTR_TYPE_NMI_INTR) {
  2601. vcpu->arch.nmi_injected = false;
  2602. if (cpu_has_virtual_nmis())
  2603. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2604. GUEST_INTR_STATE_NMI);
  2605. }
  2606. tss_selector = exit_qualification;
  2607. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2608. return 0;
  2609. /* clear all local breakpoint enable flags */
  2610. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2611. /*
  2612. * TODO: What about debug traps on tss switch?
  2613. * Are we supposed to inject them and update dr6?
  2614. */
  2615. return 1;
  2616. }
  2617. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2618. {
  2619. u64 exit_qualification;
  2620. gpa_t gpa;
  2621. int gla_validity;
  2622. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2623. if (exit_qualification & (1 << 6)) {
  2624. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2625. return -ENOTSUPP;
  2626. }
  2627. gla_validity = (exit_qualification >> 7) & 0x3;
  2628. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2629. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2630. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2631. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2632. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2633. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2634. (long unsigned int)exit_qualification);
  2635. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2636. kvm_run->hw.hardware_exit_reason = 0;
  2637. return -ENOTSUPP;
  2638. }
  2639. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2640. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2641. }
  2642. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2643. {
  2644. u32 cpu_based_vm_exec_control;
  2645. /* clear pending NMI */
  2646. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2647. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2648. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2649. ++vcpu->stat.nmi_window_exits;
  2650. return 1;
  2651. }
  2652. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2653. struct kvm_run *kvm_run)
  2654. {
  2655. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2656. enum emulation_result err = EMULATE_DONE;
  2657. preempt_enable();
  2658. local_irq_enable();
  2659. while (!guest_state_valid(vcpu)) {
  2660. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2661. if (err == EMULATE_DO_MMIO)
  2662. break;
  2663. if (err != EMULATE_DONE) {
  2664. kvm_report_emulation_failure(vcpu, "emulation failure");
  2665. return;
  2666. }
  2667. if (signal_pending(current))
  2668. break;
  2669. if (need_resched())
  2670. schedule();
  2671. }
  2672. local_irq_disable();
  2673. preempt_disable();
  2674. vmx->invalid_state_emulation_result = err;
  2675. }
  2676. /*
  2677. * The exit handlers return 1 if the exit was handled fully and guest execution
  2678. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2679. * to be done to userspace and return 0.
  2680. */
  2681. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2682. struct kvm_run *kvm_run) = {
  2683. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2684. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2685. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2686. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2687. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2688. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2689. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2690. [EXIT_REASON_CPUID] = handle_cpuid,
  2691. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2692. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2693. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2694. [EXIT_REASON_HLT] = handle_halt,
  2695. [EXIT_REASON_INVLPG] = handle_invlpg,
  2696. [EXIT_REASON_VMCALL] = handle_vmcall,
  2697. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2698. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2699. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2700. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2701. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2702. };
  2703. static const int kvm_vmx_max_exit_handlers =
  2704. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2705. /*
  2706. * The guest has exited. See if we can fix it or if we need userspace
  2707. * assistance.
  2708. */
  2709. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2710. {
  2711. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2712. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2713. u32 vectoring_info = vmx->idt_vectoring_info;
  2714. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2715. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2716. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2717. * we just return 0 */
  2718. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2719. if (guest_state_valid(vcpu))
  2720. vmx->emulation_required = 0;
  2721. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2722. }
  2723. /* Access CR3 don't cause VMExit in paging mode, so we need
  2724. * to sync with guest real CR3. */
  2725. if (enable_ept && is_paging(vcpu)) {
  2726. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2727. ept_load_pdptrs(vcpu);
  2728. }
  2729. if (unlikely(vmx->fail)) {
  2730. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2731. kvm_run->fail_entry.hardware_entry_failure_reason
  2732. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2733. return 0;
  2734. }
  2735. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2736. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2737. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2738. exit_reason != EXIT_REASON_TASK_SWITCH))
  2739. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2740. "(0x%x) and exit reason is 0x%x\n",
  2741. __func__, vectoring_info, exit_reason);
  2742. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2743. if (vcpu->arch.interrupt_window_open) {
  2744. vmx->soft_vnmi_blocked = 0;
  2745. vcpu->arch.nmi_window_open = 1;
  2746. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2747. vcpu->arch.nmi_pending) {
  2748. /*
  2749. * This CPU don't support us in finding the end of an
  2750. * NMI-blocked window if the guest runs with IRQs
  2751. * disabled. So we pull the trigger after 1 s of
  2752. * futile waiting, but inform the user about this.
  2753. */
  2754. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2755. "state on VCPU %d after 1 s timeout\n",
  2756. __func__, vcpu->vcpu_id);
  2757. vmx->soft_vnmi_blocked = 0;
  2758. vmx->vcpu.arch.nmi_window_open = 1;
  2759. }
  2760. }
  2761. if (exit_reason < kvm_vmx_max_exit_handlers
  2762. && kvm_vmx_exit_handlers[exit_reason])
  2763. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2764. else {
  2765. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2766. kvm_run->hw.hardware_exit_reason = exit_reason;
  2767. }
  2768. return 0;
  2769. }
  2770. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2771. {
  2772. int max_irr, tpr;
  2773. if (!vm_need_tpr_shadow(vcpu->kvm))
  2774. return;
  2775. if (!kvm_lapic_enabled(vcpu) ||
  2776. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2777. vmcs_write32(TPR_THRESHOLD, 0);
  2778. return;
  2779. }
  2780. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2781. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2782. }
  2783. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2784. {
  2785. u32 exit_intr_info;
  2786. u32 idt_vectoring_info;
  2787. bool unblock_nmi;
  2788. u8 vector;
  2789. int type;
  2790. bool idtv_info_valid;
  2791. u32 error;
  2792. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2793. if (cpu_has_virtual_nmis()) {
  2794. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2795. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2796. /*
  2797. * SDM 3: 25.7.1.2
  2798. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2799. * a guest IRET fault.
  2800. */
  2801. if (unblock_nmi && vector != DF_VECTOR)
  2802. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2803. GUEST_INTR_STATE_NMI);
  2804. } else if (unlikely(vmx->soft_vnmi_blocked))
  2805. vmx->vnmi_blocked_time +=
  2806. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2807. idt_vectoring_info = vmx->idt_vectoring_info;
  2808. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2809. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2810. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2811. if (vmx->vcpu.arch.nmi_injected) {
  2812. /*
  2813. * SDM 3: 25.7.1.2
  2814. * Clear bit "block by NMI" before VM entry if a NMI delivery
  2815. * faulted.
  2816. */
  2817. if (idtv_info_valid && type == INTR_TYPE_NMI_INTR)
  2818. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2819. GUEST_INTR_STATE_NMI);
  2820. else
  2821. vmx->vcpu.arch.nmi_injected = false;
  2822. }
  2823. kvm_clear_exception_queue(&vmx->vcpu);
  2824. if (idtv_info_valid && (type == INTR_TYPE_HARD_EXCEPTION ||
  2825. type == INTR_TYPE_SOFT_EXCEPTION)) {
  2826. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2827. error = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2828. kvm_queue_exception_e(&vmx->vcpu, vector, error);
  2829. } else
  2830. kvm_queue_exception(&vmx->vcpu, vector);
  2831. vmx->idt_vectoring_info = 0;
  2832. }
  2833. kvm_clear_interrupt_queue(&vmx->vcpu);
  2834. if (idtv_info_valid && type == INTR_TYPE_EXT_INTR) {
  2835. kvm_queue_interrupt(&vmx->vcpu, vector);
  2836. vmx->idt_vectoring_info = 0;
  2837. }
  2838. }
  2839. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2840. {
  2841. update_tpr_threshold(vcpu);
  2842. vmx_update_window_states(vcpu);
  2843. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2844. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2845. GUEST_INTR_STATE_STI |
  2846. GUEST_INTR_STATE_MOV_SS);
  2847. if (vcpu->arch.nmi_pending && !vcpu->arch.nmi_injected) {
  2848. if (vcpu->arch.interrupt.pending) {
  2849. enable_nmi_window(vcpu);
  2850. } else if (vcpu->arch.nmi_window_open) {
  2851. vcpu->arch.nmi_pending = false;
  2852. vcpu->arch.nmi_injected = true;
  2853. } else {
  2854. enable_nmi_window(vcpu);
  2855. return;
  2856. }
  2857. }
  2858. if (vcpu->arch.nmi_injected) {
  2859. vmx_inject_nmi(vcpu);
  2860. if (vcpu->arch.nmi_pending)
  2861. enable_nmi_window(vcpu);
  2862. else if (kvm_cpu_has_interrupt(vcpu))
  2863. enable_irq_window(vcpu);
  2864. return;
  2865. }
  2866. if (!vcpu->arch.interrupt.pending && kvm_cpu_has_interrupt(vcpu)) {
  2867. if (vcpu->arch.interrupt_window_open)
  2868. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu));
  2869. else
  2870. enable_irq_window(vcpu);
  2871. }
  2872. if (vcpu->arch.interrupt.pending) {
  2873. vmx_inject_irq(vcpu, vcpu->arch.interrupt.nr);
  2874. if (kvm_cpu_has_interrupt(vcpu))
  2875. enable_irq_window(vcpu);
  2876. }
  2877. }
  2878. /*
  2879. * Failure to inject an interrupt should give us the information
  2880. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2881. * when fetching the interrupt redirection bitmap in the real-mode
  2882. * tss, this doesn't happen. So we do it ourselves.
  2883. */
  2884. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2885. {
  2886. vmx->rmode.irq.pending = 0;
  2887. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2888. return;
  2889. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2890. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2891. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2892. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2893. return;
  2894. }
  2895. vmx->idt_vectoring_info =
  2896. VECTORING_INFO_VALID_MASK
  2897. | INTR_TYPE_EXT_INTR
  2898. | vmx->rmode.irq.vector;
  2899. }
  2900. #ifdef CONFIG_X86_64
  2901. #define R "r"
  2902. #define Q "q"
  2903. #else
  2904. #define R "e"
  2905. #define Q "l"
  2906. #endif
  2907. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2908. {
  2909. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2910. u32 intr_info;
  2911. /* Record the guest's net vcpu time for enforced NMI injections. */
  2912. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2913. vmx->entry_time = ktime_get();
  2914. /* Handle invalid guest state instead of entering VMX */
  2915. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2916. handle_invalid_guest_state(vcpu, kvm_run);
  2917. return;
  2918. }
  2919. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2920. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2921. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2922. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2923. /*
  2924. * Loading guest fpu may have cleared host cr0.ts
  2925. */
  2926. vmcs_writel(HOST_CR0, read_cr0());
  2927. set_debugreg(vcpu->arch.dr6, 6);
  2928. asm(
  2929. /* Store host registers */
  2930. "push %%"R"dx; push %%"R"bp;"
  2931. "push %%"R"cx \n\t"
  2932. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2933. "je 1f \n\t"
  2934. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2935. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2936. "1: \n\t"
  2937. /* Check if vmlaunch of vmresume is needed */
  2938. "cmpl $0, %c[launched](%0) \n\t"
  2939. /* Load guest registers. Don't clobber flags. */
  2940. "mov %c[cr2](%0), %%"R"ax \n\t"
  2941. "mov %%"R"ax, %%cr2 \n\t"
  2942. "mov %c[rax](%0), %%"R"ax \n\t"
  2943. "mov %c[rbx](%0), %%"R"bx \n\t"
  2944. "mov %c[rdx](%0), %%"R"dx \n\t"
  2945. "mov %c[rsi](%0), %%"R"si \n\t"
  2946. "mov %c[rdi](%0), %%"R"di \n\t"
  2947. "mov %c[rbp](%0), %%"R"bp \n\t"
  2948. #ifdef CONFIG_X86_64
  2949. "mov %c[r8](%0), %%r8 \n\t"
  2950. "mov %c[r9](%0), %%r9 \n\t"
  2951. "mov %c[r10](%0), %%r10 \n\t"
  2952. "mov %c[r11](%0), %%r11 \n\t"
  2953. "mov %c[r12](%0), %%r12 \n\t"
  2954. "mov %c[r13](%0), %%r13 \n\t"
  2955. "mov %c[r14](%0), %%r14 \n\t"
  2956. "mov %c[r15](%0), %%r15 \n\t"
  2957. #endif
  2958. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2959. /* Enter guest mode */
  2960. "jne .Llaunched \n\t"
  2961. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2962. "jmp .Lkvm_vmx_return \n\t"
  2963. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2964. ".Lkvm_vmx_return: "
  2965. /* Save guest registers, load host registers, keep flags */
  2966. "xchg %0, (%%"R"sp) \n\t"
  2967. "mov %%"R"ax, %c[rax](%0) \n\t"
  2968. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2969. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2970. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2971. "mov %%"R"si, %c[rsi](%0) \n\t"
  2972. "mov %%"R"di, %c[rdi](%0) \n\t"
  2973. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2974. #ifdef CONFIG_X86_64
  2975. "mov %%r8, %c[r8](%0) \n\t"
  2976. "mov %%r9, %c[r9](%0) \n\t"
  2977. "mov %%r10, %c[r10](%0) \n\t"
  2978. "mov %%r11, %c[r11](%0) \n\t"
  2979. "mov %%r12, %c[r12](%0) \n\t"
  2980. "mov %%r13, %c[r13](%0) \n\t"
  2981. "mov %%r14, %c[r14](%0) \n\t"
  2982. "mov %%r15, %c[r15](%0) \n\t"
  2983. #endif
  2984. "mov %%cr2, %%"R"ax \n\t"
  2985. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2986. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2987. "setbe %c[fail](%0) \n\t"
  2988. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2989. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2990. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2991. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2992. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2993. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2994. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2995. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2996. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2997. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2998. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2999. #ifdef CONFIG_X86_64
  3000. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3001. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3002. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3003. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3004. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3005. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3006. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3007. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3008. #endif
  3009. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3010. : "cc", "memory"
  3011. , R"bx", R"di", R"si"
  3012. #ifdef CONFIG_X86_64
  3013. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3014. #endif
  3015. );
  3016. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3017. vcpu->arch.regs_dirty = 0;
  3018. get_debugreg(vcpu->arch.dr6, 6);
  3019. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3020. if (vmx->rmode.irq.pending)
  3021. fixup_rmode_irq(vmx);
  3022. vmx_update_window_states(vcpu);
  3023. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3024. vmx->launched = 1;
  3025. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  3026. /* We need to handle NMIs before interrupts are enabled */
  3027. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  3028. (intr_info & INTR_INFO_VALID_MASK)) {
  3029. KVMTRACE_0D(NMI, vcpu, handler);
  3030. asm("int $2");
  3031. }
  3032. vmx_complete_interrupts(vmx);
  3033. }
  3034. #undef R
  3035. #undef Q
  3036. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3037. {
  3038. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3039. if (vmx->vmcs) {
  3040. vcpu_clear(vmx);
  3041. free_vmcs(vmx->vmcs);
  3042. vmx->vmcs = NULL;
  3043. }
  3044. }
  3045. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3046. {
  3047. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3048. spin_lock(&vmx_vpid_lock);
  3049. if (vmx->vpid != 0)
  3050. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3051. spin_unlock(&vmx_vpid_lock);
  3052. vmx_free_vmcs(vcpu);
  3053. kfree(vmx->host_msrs);
  3054. kfree(vmx->guest_msrs);
  3055. kvm_vcpu_uninit(vcpu);
  3056. kmem_cache_free(kvm_vcpu_cache, vmx);
  3057. }
  3058. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3059. {
  3060. int err;
  3061. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3062. int cpu;
  3063. if (!vmx)
  3064. return ERR_PTR(-ENOMEM);
  3065. allocate_vpid(vmx);
  3066. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3067. if (err)
  3068. goto free_vcpu;
  3069. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3070. if (!vmx->guest_msrs) {
  3071. err = -ENOMEM;
  3072. goto uninit_vcpu;
  3073. }
  3074. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3075. if (!vmx->host_msrs)
  3076. goto free_guest_msrs;
  3077. vmx->vmcs = alloc_vmcs();
  3078. if (!vmx->vmcs)
  3079. goto free_msrs;
  3080. vmcs_clear(vmx->vmcs);
  3081. cpu = get_cpu();
  3082. vmx_vcpu_load(&vmx->vcpu, cpu);
  3083. err = vmx_vcpu_setup(vmx);
  3084. vmx_vcpu_put(&vmx->vcpu);
  3085. put_cpu();
  3086. if (err)
  3087. goto free_vmcs;
  3088. if (vm_need_virtualize_apic_accesses(kvm))
  3089. if (alloc_apic_access_page(kvm) != 0)
  3090. goto free_vmcs;
  3091. if (enable_ept)
  3092. if (alloc_identity_pagetable(kvm) != 0)
  3093. goto free_vmcs;
  3094. return &vmx->vcpu;
  3095. free_vmcs:
  3096. free_vmcs(vmx->vmcs);
  3097. free_msrs:
  3098. kfree(vmx->host_msrs);
  3099. free_guest_msrs:
  3100. kfree(vmx->guest_msrs);
  3101. uninit_vcpu:
  3102. kvm_vcpu_uninit(&vmx->vcpu);
  3103. free_vcpu:
  3104. kmem_cache_free(kvm_vcpu_cache, vmx);
  3105. return ERR_PTR(err);
  3106. }
  3107. static void __init vmx_check_processor_compat(void *rtn)
  3108. {
  3109. struct vmcs_config vmcs_conf;
  3110. *(int *)rtn = 0;
  3111. if (setup_vmcs_config(&vmcs_conf) < 0)
  3112. *(int *)rtn = -EIO;
  3113. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3114. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3115. smp_processor_id());
  3116. *(int *)rtn = -EIO;
  3117. }
  3118. }
  3119. static int get_ept_level(void)
  3120. {
  3121. return VMX_EPT_DEFAULT_GAW + 1;
  3122. }
  3123. static int vmx_get_mt_mask_shift(void)
  3124. {
  3125. return VMX_EPT_MT_EPTE_SHIFT;
  3126. }
  3127. static struct kvm_x86_ops vmx_x86_ops = {
  3128. .cpu_has_kvm_support = cpu_has_kvm_support,
  3129. .disabled_by_bios = vmx_disabled_by_bios,
  3130. .hardware_setup = hardware_setup,
  3131. .hardware_unsetup = hardware_unsetup,
  3132. .check_processor_compatibility = vmx_check_processor_compat,
  3133. .hardware_enable = hardware_enable,
  3134. .hardware_disable = hardware_disable,
  3135. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  3136. .vcpu_create = vmx_create_vcpu,
  3137. .vcpu_free = vmx_free_vcpu,
  3138. .vcpu_reset = vmx_vcpu_reset,
  3139. .prepare_guest_switch = vmx_save_host_state,
  3140. .vcpu_load = vmx_vcpu_load,
  3141. .vcpu_put = vmx_vcpu_put,
  3142. .set_guest_debug = set_guest_debug,
  3143. .get_msr = vmx_get_msr,
  3144. .set_msr = vmx_set_msr,
  3145. .get_segment_base = vmx_get_segment_base,
  3146. .get_segment = vmx_get_segment,
  3147. .set_segment = vmx_set_segment,
  3148. .get_cpl = vmx_get_cpl,
  3149. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3150. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3151. .set_cr0 = vmx_set_cr0,
  3152. .set_cr3 = vmx_set_cr3,
  3153. .set_cr4 = vmx_set_cr4,
  3154. .set_efer = vmx_set_efer,
  3155. .get_idt = vmx_get_idt,
  3156. .set_idt = vmx_set_idt,
  3157. .get_gdt = vmx_get_gdt,
  3158. .set_gdt = vmx_set_gdt,
  3159. .cache_reg = vmx_cache_reg,
  3160. .get_rflags = vmx_get_rflags,
  3161. .set_rflags = vmx_set_rflags,
  3162. .tlb_flush = vmx_flush_tlb,
  3163. .run = vmx_vcpu_run,
  3164. .handle_exit = vmx_handle_exit,
  3165. .skip_emulated_instruction = skip_emulated_instruction,
  3166. .patch_hypercall = vmx_patch_hypercall,
  3167. .get_irq = vmx_get_irq,
  3168. .set_irq = vmx_inject_irq,
  3169. .queue_exception = vmx_queue_exception,
  3170. .exception_injected = vmx_exception_injected,
  3171. .inject_pending_irq = vmx_intr_assist,
  3172. .inject_pending_vectors = do_interrupt_requests,
  3173. .set_tss_addr = vmx_set_tss_addr,
  3174. .get_tdp_level = get_ept_level,
  3175. .get_mt_mask_shift = vmx_get_mt_mask_shift,
  3176. };
  3177. static int __init vmx_init(void)
  3178. {
  3179. int r;
  3180. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3181. if (!vmx_io_bitmap_a)
  3182. return -ENOMEM;
  3183. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3184. if (!vmx_io_bitmap_b) {
  3185. r = -ENOMEM;
  3186. goto out;
  3187. }
  3188. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3189. if (!vmx_msr_bitmap_legacy) {
  3190. r = -ENOMEM;
  3191. goto out1;
  3192. }
  3193. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3194. if (!vmx_msr_bitmap_longmode) {
  3195. r = -ENOMEM;
  3196. goto out2;
  3197. }
  3198. /*
  3199. * Allow direct access to the PC debug port (it is often used for I/O
  3200. * delays, but the vmexits simply slow things down).
  3201. */
  3202. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3203. clear_bit(0x80, vmx_io_bitmap_a);
  3204. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3205. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3206. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3207. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3208. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3209. if (r)
  3210. goto out3;
  3211. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3212. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3213. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3214. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3215. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3216. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3217. if (enable_ept) {
  3218. bypass_guest_pf = 0;
  3219. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3220. VMX_EPT_WRITABLE_MASK);
  3221. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3222. VMX_EPT_EXECUTABLE_MASK,
  3223. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  3224. kvm_enable_tdp();
  3225. } else
  3226. kvm_disable_tdp();
  3227. if (bypass_guest_pf)
  3228. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3229. ept_sync_global();
  3230. return 0;
  3231. out3:
  3232. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3233. out2:
  3234. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3235. out1:
  3236. free_page((unsigned long)vmx_io_bitmap_b);
  3237. out:
  3238. free_page((unsigned long)vmx_io_bitmap_a);
  3239. return r;
  3240. }
  3241. static void __exit vmx_exit(void)
  3242. {
  3243. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3244. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3245. free_page((unsigned long)vmx_io_bitmap_b);
  3246. free_page((unsigned long)vmx_io_bitmap_a);
  3247. kvm_exit();
  3248. }
  3249. module_init(vmx_init)
  3250. module_exit(vmx_exit)