mmzone.h 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138
  1. #ifndef _LINUX_MMZONE_H
  2. #define _LINUX_MMZONE_H
  3. #ifndef __ASSEMBLY__
  4. #ifndef __GENERATING_BOUNDS_H
  5. #include <linux/spinlock.h>
  6. #include <linux/list.h>
  7. #include <linux/wait.h>
  8. #include <linux/bitops.h>
  9. #include <linux/cache.h>
  10. #include <linux/threads.h>
  11. #include <linux/numa.h>
  12. #include <linux/init.h>
  13. #include <linux/seqlock.h>
  14. #include <linux/nodemask.h>
  15. #include <linux/pageblock-flags.h>
  16. #include <generated/bounds.h>
  17. #include <asm/atomic.h>
  18. #include <asm/page.h>
  19. /* Free memory management - zoned buddy allocator. */
  20. #ifndef CONFIG_FORCE_MAX_ZONEORDER
  21. #define MAX_ORDER 11
  22. #else
  23. #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  24. #endif
  25. #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  26. /*
  27. * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  28. * costly to service. That is between allocation orders which should
  29. * coelesce naturally under reasonable reclaim pressure and those which
  30. * will not.
  31. */
  32. #define PAGE_ALLOC_COSTLY_ORDER 3
  33. #define MIGRATE_UNMOVABLE 0
  34. #define MIGRATE_RECLAIMABLE 1
  35. #define MIGRATE_MOVABLE 2
  36. #define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
  37. #define MIGRATE_RESERVE 3
  38. #define MIGRATE_ISOLATE 4 /* can't allocate from here */
  39. #define MIGRATE_TYPES 5
  40. #define for_each_migratetype_order(order, type) \
  41. for (order = 0; order < MAX_ORDER; order++) \
  42. for (type = 0; type < MIGRATE_TYPES; type++)
  43. extern int page_group_by_mobility_disabled;
  44. static inline int get_pageblock_migratetype(struct page *page)
  45. {
  46. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  47. }
  48. struct free_area {
  49. struct list_head free_list[MIGRATE_TYPES];
  50. unsigned long nr_free;
  51. };
  52. struct pglist_data;
  53. /*
  54. * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  55. * So add a wild amount of padding here to ensure that they fall into separate
  56. * cachelines. There are very few zone structures in the machine, so space
  57. * consumption is not a concern here.
  58. */
  59. #if defined(CONFIG_SMP)
  60. struct zone_padding {
  61. char x[0];
  62. } ____cacheline_internodealigned_in_smp;
  63. #define ZONE_PADDING(name) struct zone_padding name;
  64. #else
  65. #define ZONE_PADDING(name)
  66. #endif
  67. enum zone_stat_item {
  68. /* First 128 byte cacheline (assuming 64 bit words) */
  69. NR_FREE_PAGES,
  70. NR_LRU_BASE,
  71. NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  72. NR_ACTIVE_ANON, /* " " " " " */
  73. NR_INACTIVE_FILE, /* " " " " " */
  74. NR_ACTIVE_FILE, /* " " " " " */
  75. NR_UNEVICTABLE, /* " " " " " */
  76. NR_MLOCK, /* mlock()ed pages found and moved off LRU */
  77. NR_ANON_PAGES, /* Mapped anonymous pages */
  78. NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  79. only modified from process context */
  80. NR_FILE_PAGES,
  81. NR_FILE_DIRTY,
  82. NR_WRITEBACK,
  83. NR_SLAB_RECLAIMABLE,
  84. NR_SLAB_UNRECLAIMABLE,
  85. NR_PAGETABLE, /* used for pagetables */
  86. NR_KERNEL_STACK,
  87. /* Second 128 byte cacheline */
  88. NR_UNSTABLE_NFS, /* NFS unstable pages */
  89. NR_BOUNCE,
  90. NR_VMSCAN_WRITE,
  91. NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
  92. NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
  93. NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
  94. NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
  95. #ifdef CONFIG_NUMA
  96. NUMA_HIT, /* allocated in intended node */
  97. NUMA_MISS, /* allocated in non intended node */
  98. NUMA_FOREIGN, /* was intended here, hit elsewhere */
  99. NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
  100. NUMA_LOCAL, /* allocation from local node */
  101. NUMA_OTHER, /* allocation from other node */
  102. #endif
  103. NR_VM_ZONE_STAT_ITEMS };
  104. /*
  105. * We do arithmetic on the LRU lists in various places in the code,
  106. * so it is important to keep the active lists LRU_ACTIVE higher in
  107. * the array than the corresponding inactive lists, and to keep
  108. * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
  109. *
  110. * This has to be kept in sync with the statistics in zone_stat_item
  111. * above and the descriptions in vmstat_text in mm/vmstat.c
  112. */
  113. #define LRU_BASE 0
  114. #define LRU_ACTIVE 1
  115. #define LRU_FILE 2
  116. enum lru_list {
  117. LRU_INACTIVE_ANON = LRU_BASE,
  118. LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
  119. LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
  120. LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
  121. LRU_UNEVICTABLE,
  122. NR_LRU_LISTS
  123. };
  124. #define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
  125. #define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
  126. static inline int is_file_lru(enum lru_list l)
  127. {
  128. return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
  129. }
  130. static inline int is_active_lru(enum lru_list l)
  131. {
  132. return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
  133. }
  134. static inline int is_unevictable_lru(enum lru_list l)
  135. {
  136. return (l == LRU_UNEVICTABLE);
  137. }
  138. enum zone_watermarks {
  139. WMARK_MIN,
  140. WMARK_LOW,
  141. WMARK_HIGH,
  142. NR_WMARK
  143. };
  144. #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
  145. #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
  146. #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
  147. struct per_cpu_pages {
  148. int count; /* number of pages in the list */
  149. int high; /* high watermark, emptying needed */
  150. int batch; /* chunk size for buddy add/remove */
  151. /* Lists of pages, one per migrate type stored on the pcp-lists */
  152. struct list_head lists[MIGRATE_PCPTYPES];
  153. };
  154. struct per_cpu_pageset {
  155. struct per_cpu_pages pcp;
  156. #ifdef CONFIG_NUMA
  157. s8 expire;
  158. #endif
  159. #ifdef CONFIG_SMP
  160. s8 stat_threshold;
  161. s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
  162. #endif
  163. } ____cacheline_aligned_in_smp;
  164. #ifdef CONFIG_NUMA
  165. #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
  166. #else
  167. #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
  168. #endif
  169. #endif /* !__GENERATING_BOUNDS.H */
  170. enum zone_type {
  171. #ifdef CONFIG_ZONE_DMA
  172. /*
  173. * ZONE_DMA is used when there are devices that are not able
  174. * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
  175. * carve out the portion of memory that is needed for these devices.
  176. * The range is arch specific.
  177. *
  178. * Some examples
  179. *
  180. * Architecture Limit
  181. * ---------------------------
  182. * parisc, ia64, sparc <4G
  183. * s390 <2G
  184. * arm Various
  185. * alpha Unlimited or 0-16MB.
  186. *
  187. * i386, x86_64 and multiple other arches
  188. * <16M.
  189. */
  190. ZONE_DMA,
  191. #endif
  192. #ifdef CONFIG_ZONE_DMA32
  193. /*
  194. * x86_64 needs two ZONE_DMAs because it supports devices that are
  195. * only able to do DMA to the lower 16M but also 32 bit devices that
  196. * can only do DMA areas below 4G.
  197. */
  198. ZONE_DMA32,
  199. #endif
  200. /*
  201. * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
  202. * performed on pages in ZONE_NORMAL if the DMA devices support
  203. * transfers to all addressable memory.
  204. */
  205. ZONE_NORMAL,
  206. #ifdef CONFIG_HIGHMEM
  207. /*
  208. * A memory area that is only addressable by the kernel through
  209. * mapping portions into its own address space. This is for example
  210. * used by i386 to allow the kernel to address the memory beyond
  211. * 900MB. The kernel will set up special mappings (page
  212. * table entries on i386) for each page that the kernel needs to
  213. * access.
  214. */
  215. ZONE_HIGHMEM,
  216. #endif
  217. ZONE_MOVABLE,
  218. __MAX_NR_ZONES
  219. };
  220. #ifndef __GENERATING_BOUNDS_H
  221. /*
  222. * When a memory allocation must conform to specific limitations (such
  223. * as being suitable for DMA) the caller will pass in hints to the
  224. * allocator in the gfp_mask, in the zone modifier bits. These bits
  225. * are used to select a priority ordered list of memory zones which
  226. * match the requested limits. See gfp_zone() in include/linux/gfp.h
  227. */
  228. #if MAX_NR_ZONES < 2
  229. #define ZONES_SHIFT 0
  230. #elif MAX_NR_ZONES <= 2
  231. #define ZONES_SHIFT 1
  232. #elif MAX_NR_ZONES <= 4
  233. #define ZONES_SHIFT 2
  234. #else
  235. #error ZONES_SHIFT -- too many zones configured adjust calculation
  236. #endif
  237. struct zone_reclaim_stat {
  238. /*
  239. * The pageout code in vmscan.c keeps track of how many of the
  240. * mem/swap backed and file backed pages are refeferenced.
  241. * The higher the rotated/scanned ratio, the more valuable
  242. * that cache is.
  243. *
  244. * The anon LRU stats live in [0], file LRU stats in [1]
  245. */
  246. unsigned long recent_rotated[2];
  247. unsigned long recent_scanned[2];
  248. /*
  249. * accumulated for batching
  250. */
  251. unsigned long nr_saved_scan[NR_LRU_LISTS];
  252. };
  253. struct zone {
  254. /* Fields commonly accessed by the page allocator */
  255. /* zone watermarks, access with *_wmark_pages(zone) macros */
  256. unsigned long watermark[NR_WMARK];
  257. /*
  258. * We don't know if the memory that we're going to allocate will be freeable
  259. * or/and it will be released eventually, so to avoid totally wasting several
  260. * GB of ram we must reserve some of the lower zone memory (otherwise we risk
  261. * to run OOM on the lower zones despite there's tons of freeable ram
  262. * on the higher zones). This array is recalculated at runtime if the
  263. * sysctl_lowmem_reserve_ratio sysctl changes.
  264. */
  265. unsigned long lowmem_reserve[MAX_NR_ZONES];
  266. #ifdef CONFIG_NUMA
  267. int node;
  268. /*
  269. * zone reclaim becomes active if more unmapped pages exist.
  270. */
  271. unsigned long min_unmapped_pages;
  272. unsigned long min_slab_pages;
  273. struct per_cpu_pageset *pageset[NR_CPUS];
  274. #else
  275. struct per_cpu_pageset pageset[NR_CPUS];
  276. #endif
  277. /*
  278. * free areas of different sizes
  279. */
  280. spinlock_t lock;
  281. #ifdef CONFIG_MEMORY_HOTPLUG
  282. /* see spanned/present_pages for more description */
  283. seqlock_t span_seqlock;
  284. #endif
  285. struct free_area free_area[MAX_ORDER];
  286. #ifndef CONFIG_SPARSEMEM
  287. /*
  288. * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
  289. * In SPARSEMEM, this map is stored in struct mem_section
  290. */
  291. unsigned long *pageblock_flags;
  292. #endif /* CONFIG_SPARSEMEM */
  293. ZONE_PADDING(_pad1_)
  294. /* Fields commonly accessed by the page reclaim scanner */
  295. spinlock_t lru_lock;
  296. struct zone_lru {
  297. struct list_head list;
  298. } lru[NR_LRU_LISTS];
  299. struct zone_reclaim_stat reclaim_stat;
  300. unsigned long pages_scanned; /* since last reclaim */
  301. unsigned long flags; /* zone flags, see below */
  302. /* Zone statistics */
  303. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
  304. /*
  305. * prev_priority holds the scanning priority for this zone. It is
  306. * defined as the scanning priority at which we achieved our reclaim
  307. * target at the previous try_to_free_pages() or balance_pgdat()
  308. * invokation.
  309. *
  310. * We use prev_priority as a measure of how much stress page reclaim is
  311. * under - it drives the swappiness decision: whether to unmap mapped
  312. * pages.
  313. *
  314. * Access to both this field is quite racy even on uniprocessor. But
  315. * it is expected to average out OK.
  316. */
  317. int prev_priority;
  318. /*
  319. * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
  320. * this zone's LRU. Maintained by the pageout code.
  321. */
  322. unsigned int inactive_ratio;
  323. ZONE_PADDING(_pad2_)
  324. /* Rarely used or read-mostly fields */
  325. /*
  326. * wait_table -- the array holding the hash table
  327. * wait_table_hash_nr_entries -- the size of the hash table array
  328. * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
  329. *
  330. * The purpose of all these is to keep track of the people
  331. * waiting for a page to become available and make them
  332. * runnable again when possible. The trouble is that this
  333. * consumes a lot of space, especially when so few things
  334. * wait on pages at a given time. So instead of using
  335. * per-page waitqueues, we use a waitqueue hash table.
  336. *
  337. * The bucket discipline is to sleep on the same queue when
  338. * colliding and wake all in that wait queue when removing.
  339. * When something wakes, it must check to be sure its page is
  340. * truly available, a la thundering herd. The cost of a
  341. * collision is great, but given the expected load of the
  342. * table, they should be so rare as to be outweighed by the
  343. * benefits from the saved space.
  344. *
  345. * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
  346. * primary users of these fields, and in mm/page_alloc.c
  347. * free_area_init_core() performs the initialization of them.
  348. */
  349. wait_queue_head_t * wait_table;
  350. unsigned long wait_table_hash_nr_entries;
  351. unsigned long wait_table_bits;
  352. /*
  353. * Discontig memory support fields.
  354. */
  355. struct pglist_data *zone_pgdat;
  356. /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
  357. unsigned long zone_start_pfn;
  358. /*
  359. * zone_start_pfn, spanned_pages and present_pages are all
  360. * protected by span_seqlock. It is a seqlock because it has
  361. * to be read outside of zone->lock, and it is done in the main
  362. * allocator path. But, it is written quite infrequently.
  363. *
  364. * The lock is declared along with zone->lock because it is
  365. * frequently read in proximity to zone->lock. It's good to
  366. * give them a chance of being in the same cacheline.
  367. */
  368. unsigned long spanned_pages; /* total size, including holes */
  369. unsigned long present_pages; /* amount of memory (excluding holes) */
  370. /*
  371. * rarely used fields:
  372. */
  373. const char *name;
  374. } ____cacheline_internodealigned_in_smp;
  375. typedef enum {
  376. ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
  377. ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
  378. ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
  379. } zone_flags_t;
  380. static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
  381. {
  382. set_bit(flag, &zone->flags);
  383. }
  384. static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
  385. {
  386. return test_and_set_bit(flag, &zone->flags);
  387. }
  388. static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
  389. {
  390. clear_bit(flag, &zone->flags);
  391. }
  392. static inline int zone_is_all_unreclaimable(const struct zone *zone)
  393. {
  394. return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
  395. }
  396. static inline int zone_is_reclaim_locked(const struct zone *zone)
  397. {
  398. return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
  399. }
  400. static inline int zone_is_oom_locked(const struct zone *zone)
  401. {
  402. return test_bit(ZONE_OOM_LOCKED, &zone->flags);
  403. }
  404. /*
  405. * The "priority" of VM scanning is how much of the queues we will scan in one
  406. * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
  407. * queues ("queue_length >> 12") during an aging round.
  408. */
  409. #define DEF_PRIORITY 12
  410. /* Maximum number of zones on a zonelist */
  411. #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
  412. #ifdef CONFIG_NUMA
  413. /*
  414. * The NUMA zonelists are doubled becausse we need zonelists that restrict the
  415. * allocations to a single node for GFP_THISNODE.
  416. *
  417. * [0] : Zonelist with fallback
  418. * [1] : No fallback (GFP_THISNODE)
  419. */
  420. #define MAX_ZONELISTS 2
  421. /*
  422. * We cache key information from each zonelist for smaller cache
  423. * footprint when scanning for free pages in get_page_from_freelist().
  424. *
  425. * 1) The BITMAP fullzones tracks which zones in a zonelist have come
  426. * up short of free memory since the last time (last_fullzone_zap)
  427. * we zero'd fullzones.
  428. * 2) The array z_to_n[] maps each zone in the zonelist to its node
  429. * id, so that we can efficiently evaluate whether that node is
  430. * set in the current tasks mems_allowed.
  431. *
  432. * Both fullzones and z_to_n[] are one-to-one with the zonelist,
  433. * indexed by a zones offset in the zonelist zones[] array.
  434. *
  435. * The get_page_from_freelist() routine does two scans. During the
  436. * first scan, we skip zones whose corresponding bit in 'fullzones'
  437. * is set or whose corresponding node in current->mems_allowed (which
  438. * comes from cpusets) is not set. During the second scan, we bypass
  439. * this zonelist_cache, to ensure we look methodically at each zone.
  440. *
  441. * Once per second, we zero out (zap) fullzones, forcing us to
  442. * reconsider nodes that might have regained more free memory.
  443. * The field last_full_zap is the time we last zapped fullzones.
  444. *
  445. * This mechanism reduces the amount of time we waste repeatedly
  446. * reexaming zones for free memory when they just came up low on
  447. * memory momentarilly ago.
  448. *
  449. * The zonelist_cache struct members logically belong in struct
  450. * zonelist. However, the mempolicy zonelists constructed for
  451. * MPOL_BIND are intentionally variable length (and usually much
  452. * shorter). A general purpose mechanism for handling structs with
  453. * multiple variable length members is more mechanism than we want
  454. * here. We resort to some special case hackery instead.
  455. *
  456. * The MPOL_BIND zonelists don't need this zonelist_cache (in good
  457. * part because they are shorter), so we put the fixed length stuff
  458. * at the front of the zonelist struct, ending in a variable length
  459. * zones[], as is needed by MPOL_BIND.
  460. *
  461. * Then we put the optional zonelist cache on the end of the zonelist
  462. * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
  463. * the fixed length portion at the front of the struct. This pointer
  464. * both enables us to find the zonelist cache, and in the case of
  465. * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
  466. * to know that the zonelist cache is not there.
  467. *
  468. * The end result is that struct zonelists come in two flavors:
  469. * 1) The full, fixed length version, shown below, and
  470. * 2) The custom zonelists for MPOL_BIND.
  471. * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
  472. *
  473. * Even though there may be multiple CPU cores on a node modifying
  474. * fullzones or last_full_zap in the same zonelist_cache at the same
  475. * time, we don't lock it. This is just hint data - if it is wrong now
  476. * and then, the allocator will still function, perhaps a bit slower.
  477. */
  478. struct zonelist_cache {
  479. unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
  480. DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
  481. unsigned long last_full_zap; /* when last zap'd (jiffies) */
  482. };
  483. #else
  484. #define MAX_ZONELISTS 1
  485. struct zonelist_cache;
  486. #endif
  487. /*
  488. * This struct contains information about a zone in a zonelist. It is stored
  489. * here to avoid dereferences into large structures and lookups of tables
  490. */
  491. struct zoneref {
  492. struct zone *zone; /* Pointer to actual zone */
  493. int zone_idx; /* zone_idx(zoneref->zone) */
  494. };
  495. /*
  496. * One allocation request operates on a zonelist. A zonelist
  497. * is a list of zones, the first one is the 'goal' of the
  498. * allocation, the other zones are fallback zones, in decreasing
  499. * priority.
  500. *
  501. * If zlcache_ptr is not NULL, then it is just the address of zlcache,
  502. * as explained above. If zlcache_ptr is NULL, there is no zlcache.
  503. * *
  504. * To speed the reading of the zonelist, the zonerefs contain the zone index
  505. * of the entry being read. Helper functions to access information given
  506. * a struct zoneref are
  507. *
  508. * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
  509. * zonelist_zone_idx() - Return the index of the zone for an entry
  510. * zonelist_node_idx() - Return the index of the node for an entry
  511. */
  512. struct zonelist {
  513. struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
  514. struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
  515. #ifdef CONFIG_NUMA
  516. struct zonelist_cache zlcache; // optional ...
  517. #endif
  518. };
  519. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  520. struct node_active_region {
  521. unsigned long start_pfn;
  522. unsigned long end_pfn;
  523. int nid;
  524. };
  525. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  526. #ifndef CONFIG_DISCONTIGMEM
  527. /* The array of struct pages - for discontigmem use pgdat->lmem_map */
  528. extern struct page *mem_map;
  529. #endif
  530. /*
  531. * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
  532. * (mostly NUMA machines?) to denote a higher-level memory zone than the
  533. * zone denotes.
  534. *
  535. * On NUMA machines, each NUMA node would have a pg_data_t to describe
  536. * it's memory layout.
  537. *
  538. * Memory statistics and page replacement data structures are maintained on a
  539. * per-zone basis.
  540. */
  541. struct bootmem_data;
  542. typedef struct pglist_data {
  543. struct zone node_zones[MAX_NR_ZONES];
  544. struct zonelist node_zonelists[MAX_ZONELISTS];
  545. int nr_zones;
  546. #ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
  547. struct page *node_mem_map;
  548. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  549. struct page_cgroup *node_page_cgroup;
  550. #endif
  551. #endif
  552. #ifndef CONFIG_NO_BOOTMEM
  553. struct bootmem_data *bdata;
  554. #endif
  555. #ifdef CONFIG_MEMORY_HOTPLUG
  556. /*
  557. * Must be held any time you expect node_start_pfn, node_present_pages
  558. * or node_spanned_pages stay constant. Holding this will also
  559. * guarantee that any pfn_valid() stays that way.
  560. *
  561. * Nests above zone->lock and zone->size_seqlock.
  562. */
  563. spinlock_t node_size_lock;
  564. #endif
  565. unsigned long node_start_pfn;
  566. unsigned long node_present_pages; /* total number of physical pages */
  567. unsigned long node_spanned_pages; /* total size of physical page
  568. range, including holes */
  569. int node_id;
  570. wait_queue_head_t kswapd_wait;
  571. struct task_struct *kswapd;
  572. int kswapd_max_order;
  573. } pg_data_t;
  574. #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
  575. #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
  576. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  577. #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
  578. #else
  579. #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
  580. #endif
  581. #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
  582. #include <linux/memory_hotplug.h>
  583. void get_zone_counts(unsigned long *active, unsigned long *inactive,
  584. unsigned long *free);
  585. void build_all_zonelists(void);
  586. void wakeup_kswapd(struct zone *zone, int order);
  587. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  588. int classzone_idx, int alloc_flags);
  589. enum memmap_context {
  590. MEMMAP_EARLY,
  591. MEMMAP_HOTPLUG,
  592. };
  593. extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
  594. unsigned long size,
  595. enum memmap_context context);
  596. #ifdef CONFIG_HAVE_MEMORY_PRESENT
  597. void memory_present(int nid, unsigned long start, unsigned long end);
  598. #else
  599. static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
  600. #endif
  601. #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
  602. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  603. #endif
  604. /*
  605. * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
  606. */
  607. #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
  608. static inline int populated_zone(struct zone *zone)
  609. {
  610. return (!!zone->present_pages);
  611. }
  612. extern int movable_zone;
  613. static inline int zone_movable_is_highmem(void)
  614. {
  615. #if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  616. return movable_zone == ZONE_HIGHMEM;
  617. #else
  618. return 0;
  619. #endif
  620. }
  621. static inline int is_highmem_idx(enum zone_type idx)
  622. {
  623. #ifdef CONFIG_HIGHMEM
  624. return (idx == ZONE_HIGHMEM ||
  625. (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
  626. #else
  627. return 0;
  628. #endif
  629. }
  630. static inline int is_normal_idx(enum zone_type idx)
  631. {
  632. return (idx == ZONE_NORMAL);
  633. }
  634. /**
  635. * is_highmem - helper function to quickly check if a struct zone is a
  636. * highmem zone or not. This is an attempt to keep references
  637. * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
  638. * @zone - pointer to struct zone variable
  639. */
  640. static inline int is_highmem(struct zone *zone)
  641. {
  642. #ifdef CONFIG_HIGHMEM
  643. int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
  644. return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
  645. (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
  646. zone_movable_is_highmem());
  647. #else
  648. return 0;
  649. #endif
  650. }
  651. static inline int is_normal(struct zone *zone)
  652. {
  653. return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
  654. }
  655. static inline int is_dma32(struct zone *zone)
  656. {
  657. #ifdef CONFIG_ZONE_DMA32
  658. return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
  659. #else
  660. return 0;
  661. #endif
  662. }
  663. static inline int is_dma(struct zone *zone)
  664. {
  665. #ifdef CONFIG_ZONE_DMA
  666. return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
  667. #else
  668. return 0;
  669. #endif
  670. }
  671. /* These two functions are used to setup the per zone pages min values */
  672. struct ctl_table;
  673. int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
  674. void __user *, size_t *, loff_t *);
  675. extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
  676. int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
  677. void __user *, size_t *, loff_t *);
  678. int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
  679. void __user *, size_t *, loff_t *);
  680. int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
  681. void __user *, size_t *, loff_t *);
  682. int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
  683. void __user *, size_t *, loff_t *);
  684. extern int numa_zonelist_order_handler(struct ctl_table *, int,
  685. void __user *, size_t *, loff_t *);
  686. extern char numa_zonelist_order[];
  687. #define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
  688. #ifndef CONFIG_NEED_MULTIPLE_NODES
  689. extern struct pglist_data contig_page_data;
  690. #define NODE_DATA(nid) (&contig_page_data)
  691. #define NODE_MEM_MAP(nid) mem_map
  692. #else /* CONFIG_NEED_MULTIPLE_NODES */
  693. #include <asm/mmzone.h>
  694. #endif /* !CONFIG_NEED_MULTIPLE_NODES */
  695. extern struct pglist_data *first_online_pgdat(void);
  696. extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
  697. extern struct zone *next_zone(struct zone *zone);
  698. /**
  699. * for_each_online_pgdat - helper macro to iterate over all online nodes
  700. * @pgdat - pointer to a pg_data_t variable
  701. */
  702. #define for_each_online_pgdat(pgdat) \
  703. for (pgdat = first_online_pgdat(); \
  704. pgdat; \
  705. pgdat = next_online_pgdat(pgdat))
  706. /**
  707. * for_each_zone - helper macro to iterate over all memory zones
  708. * @zone - pointer to struct zone variable
  709. *
  710. * The user only needs to declare the zone variable, for_each_zone
  711. * fills it in.
  712. */
  713. #define for_each_zone(zone) \
  714. for (zone = (first_online_pgdat())->node_zones; \
  715. zone; \
  716. zone = next_zone(zone))
  717. #define for_each_populated_zone(zone) \
  718. for (zone = (first_online_pgdat())->node_zones; \
  719. zone; \
  720. zone = next_zone(zone)) \
  721. if (!populated_zone(zone)) \
  722. ; /* do nothing */ \
  723. else
  724. static inline struct zone *zonelist_zone(struct zoneref *zoneref)
  725. {
  726. return zoneref->zone;
  727. }
  728. static inline int zonelist_zone_idx(struct zoneref *zoneref)
  729. {
  730. return zoneref->zone_idx;
  731. }
  732. static inline int zonelist_node_idx(struct zoneref *zoneref)
  733. {
  734. #ifdef CONFIG_NUMA
  735. /* zone_to_nid not available in this context */
  736. return zoneref->zone->node;
  737. #else
  738. return 0;
  739. #endif /* CONFIG_NUMA */
  740. }
  741. /**
  742. * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
  743. * @z - The cursor used as a starting point for the search
  744. * @highest_zoneidx - The zone index of the highest zone to return
  745. * @nodes - An optional nodemask to filter the zonelist with
  746. * @zone - The first suitable zone found is returned via this parameter
  747. *
  748. * This function returns the next zone at or below a given zone index that is
  749. * within the allowed nodemask using a cursor as the starting point for the
  750. * search. The zoneref returned is a cursor that represents the current zone
  751. * being examined. It should be advanced by one before calling
  752. * next_zones_zonelist again.
  753. */
  754. struct zoneref *next_zones_zonelist(struct zoneref *z,
  755. enum zone_type highest_zoneidx,
  756. nodemask_t *nodes,
  757. struct zone **zone);
  758. /**
  759. * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
  760. * @zonelist - The zonelist to search for a suitable zone
  761. * @highest_zoneidx - The zone index of the highest zone to return
  762. * @nodes - An optional nodemask to filter the zonelist with
  763. * @zone - The first suitable zone found is returned via this parameter
  764. *
  765. * This function returns the first zone at or below a given zone index that is
  766. * within the allowed nodemask. The zoneref returned is a cursor that can be
  767. * used to iterate the zonelist with next_zones_zonelist by advancing it by
  768. * one before calling.
  769. */
  770. static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
  771. enum zone_type highest_zoneidx,
  772. nodemask_t *nodes,
  773. struct zone **zone)
  774. {
  775. return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
  776. zone);
  777. }
  778. /**
  779. * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
  780. * @zone - The current zone in the iterator
  781. * @z - The current pointer within zonelist->zones being iterated
  782. * @zlist - The zonelist being iterated
  783. * @highidx - The zone index of the highest zone to return
  784. * @nodemask - Nodemask allowed by the allocator
  785. *
  786. * This iterator iterates though all zones at or below a given zone index and
  787. * within a given nodemask
  788. */
  789. #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
  790. for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
  791. zone; \
  792. z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
  793. /**
  794. * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
  795. * @zone - The current zone in the iterator
  796. * @z - The current pointer within zonelist->zones being iterated
  797. * @zlist - The zonelist being iterated
  798. * @highidx - The zone index of the highest zone to return
  799. *
  800. * This iterator iterates though all zones at or below a given zone index.
  801. */
  802. #define for_each_zone_zonelist(zone, z, zlist, highidx) \
  803. for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
  804. #ifdef CONFIG_SPARSEMEM
  805. #include <asm/sparsemem.h>
  806. #endif
  807. #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
  808. !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
  809. static inline unsigned long early_pfn_to_nid(unsigned long pfn)
  810. {
  811. return 0;
  812. }
  813. #endif
  814. #ifdef CONFIG_FLATMEM
  815. #define pfn_to_nid(pfn) (0)
  816. #endif
  817. #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
  818. #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
  819. #ifdef CONFIG_SPARSEMEM
  820. /*
  821. * SECTION_SHIFT #bits space required to store a section #
  822. *
  823. * PA_SECTION_SHIFT physical address to/from section number
  824. * PFN_SECTION_SHIFT pfn to/from section number
  825. */
  826. #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
  827. #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
  828. #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
  829. #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
  830. #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
  831. #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
  832. #define SECTION_BLOCKFLAGS_BITS \
  833. ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
  834. #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
  835. #error Allocator MAX_ORDER exceeds SECTION_SIZE
  836. #endif
  837. struct page;
  838. struct page_cgroup;
  839. struct mem_section {
  840. /*
  841. * This is, logically, a pointer to an array of struct
  842. * pages. However, it is stored with some other magic.
  843. * (see sparse.c::sparse_init_one_section())
  844. *
  845. * Additionally during early boot we encode node id of
  846. * the location of the section here to guide allocation.
  847. * (see sparse.c::memory_present())
  848. *
  849. * Making it a UL at least makes someone do a cast
  850. * before using it wrong.
  851. */
  852. unsigned long section_mem_map;
  853. /* See declaration of similar field in struct zone */
  854. unsigned long *pageblock_flags;
  855. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  856. /*
  857. * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
  858. * section. (see memcontrol.h/page_cgroup.h about this.)
  859. */
  860. struct page_cgroup *page_cgroup;
  861. unsigned long pad;
  862. #endif
  863. };
  864. #ifdef CONFIG_SPARSEMEM_EXTREME
  865. #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
  866. #else
  867. #define SECTIONS_PER_ROOT 1
  868. #endif
  869. #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
  870. #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
  871. #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
  872. #ifdef CONFIG_SPARSEMEM_EXTREME
  873. extern struct mem_section *mem_section[NR_SECTION_ROOTS];
  874. #else
  875. extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
  876. #endif
  877. static inline struct mem_section *__nr_to_section(unsigned long nr)
  878. {
  879. if (!mem_section[SECTION_NR_TO_ROOT(nr)])
  880. return NULL;
  881. return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
  882. }
  883. extern int __section_nr(struct mem_section* ms);
  884. extern unsigned long usemap_size(void);
  885. /*
  886. * We use the lower bits of the mem_map pointer to store
  887. * a little bit of information. There should be at least
  888. * 3 bits here due to 32-bit alignment.
  889. */
  890. #define SECTION_MARKED_PRESENT (1UL<<0)
  891. #define SECTION_HAS_MEM_MAP (1UL<<1)
  892. #define SECTION_MAP_LAST_BIT (1UL<<2)
  893. #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
  894. #define SECTION_NID_SHIFT 2
  895. static inline struct page *__section_mem_map_addr(struct mem_section *section)
  896. {
  897. unsigned long map = section->section_mem_map;
  898. map &= SECTION_MAP_MASK;
  899. return (struct page *)map;
  900. }
  901. static inline int present_section(struct mem_section *section)
  902. {
  903. return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
  904. }
  905. static inline int present_section_nr(unsigned long nr)
  906. {
  907. return present_section(__nr_to_section(nr));
  908. }
  909. static inline int valid_section(struct mem_section *section)
  910. {
  911. return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
  912. }
  913. static inline int valid_section_nr(unsigned long nr)
  914. {
  915. return valid_section(__nr_to_section(nr));
  916. }
  917. static inline struct mem_section *__pfn_to_section(unsigned long pfn)
  918. {
  919. return __nr_to_section(pfn_to_section_nr(pfn));
  920. }
  921. static inline int pfn_valid(unsigned long pfn)
  922. {
  923. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  924. return 0;
  925. return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
  926. }
  927. static inline int pfn_present(unsigned long pfn)
  928. {
  929. if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
  930. return 0;
  931. return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
  932. }
  933. /*
  934. * These are _only_ used during initialisation, therefore they
  935. * can use __initdata ... They could have names to indicate
  936. * this restriction.
  937. */
  938. #ifdef CONFIG_NUMA
  939. #define pfn_to_nid(pfn) \
  940. ({ \
  941. unsigned long __pfn_to_nid_pfn = (pfn); \
  942. page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
  943. })
  944. #else
  945. #define pfn_to_nid(pfn) (0)
  946. #endif
  947. #define early_pfn_valid(pfn) pfn_valid(pfn)
  948. void sparse_init(void);
  949. #else
  950. #define sparse_init() do {} while (0)
  951. #define sparse_index_init(_sec, _nid) do {} while (0)
  952. #endif /* CONFIG_SPARSEMEM */
  953. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  954. bool early_pfn_in_nid(unsigned long pfn, int nid);
  955. #else
  956. #define early_pfn_in_nid(pfn, nid) (1)
  957. #endif
  958. #ifndef early_pfn_valid
  959. #define early_pfn_valid(pfn) (1)
  960. #endif
  961. void memory_present(int nid, unsigned long start, unsigned long end);
  962. unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
  963. /*
  964. * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
  965. * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
  966. * pfn_valid_within() should be used in this case; we optimise this away
  967. * when we have no holes within a MAX_ORDER_NR_PAGES block.
  968. */
  969. #ifdef CONFIG_HOLES_IN_ZONE
  970. #define pfn_valid_within(pfn) pfn_valid(pfn)
  971. #else
  972. #define pfn_valid_within(pfn) (1)
  973. #endif
  974. #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
  975. /*
  976. * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
  977. * associated with it or not. In FLATMEM, it is expected that holes always
  978. * have valid memmap as long as there is valid PFNs either side of the hole.
  979. * In SPARSEMEM, it is assumed that a valid section has a memmap for the
  980. * entire section.
  981. *
  982. * However, an ARM, and maybe other embedded architectures in the future
  983. * free memmap backing holes to save memory on the assumption the memmap is
  984. * never used. The page_zone linkages are then broken even though pfn_valid()
  985. * returns true. A walker of the full memmap must then do this additional
  986. * check to ensure the memmap they are looking at is sane by making sure
  987. * the zone and PFN linkages are still valid. This is expensive, but walkers
  988. * of the full memmap are extremely rare.
  989. */
  990. int memmap_valid_within(unsigned long pfn,
  991. struct page *page, struct zone *zone);
  992. #else
  993. static inline int memmap_valid_within(unsigned long pfn,
  994. struct page *page, struct zone *zone)
  995. {
  996. return 1;
  997. }
  998. #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
  999. #endif /* !__GENERATING_BOUNDS.H */
  1000. #endif /* !__ASSEMBLY__ */
  1001. #endif /* _LINUX_MMZONE_H */