fork.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/nsproxy.h>
  30. #include <linux/capability.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cgroup.h>
  33. #include <linux/security.h>
  34. #include <linux/hugetlb.h>
  35. #include <linux/seccomp.h>
  36. #include <linux/swap.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/jiffies.h>
  39. #include <linux/futex.h>
  40. #include <linux/compat.h>
  41. #include <linux/kthread.h>
  42. #include <linux/task_io_accounting_ops.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/audit.h>
  47. #include <linux/memcontrol.h>
  48. #include <linux/ftrace.h>
  49. #include <linux/proc_fs.h>
  50. #include <linux/profile.h>
  51. #include <linux/rmap.h>
  52. #include <linux/ksm.h>
  53. #include <linux/acct.h>
  54. #include <linux/tsacct_kern.h>
  55. #include <linux/cn_proc.h>
  56. #include <linux/freezer.h>
  57. #include <linux/delayacct.h>
  58. #include <linux/taskstats_kern.h>
  59. #include <linux/random.h>
  60. #include <linux/tty.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/fs_struct.h>
  63. #include <linux/magic.h>
  64. #include <linux/perf_event.h>
  65. #include <linux/posix-timers.h>
  66. #include <linux/user-return-notifier.h>
  67. #include <linux/oom.h>
  68. #include <linux/khugepaged.h>
  69. #include <linux/signalfd.h>
  70. #include <linux/uprobes.h>
  71. #include <asm/pgtable.h>
  72. #include <asm/pgalloc.h>
  73. #include <asm/uaccess.h>
  74. #include <asm/mmu_context.h>
  75. #include <asm/cacheflush.h>
  76. #include <asm/tlbflush.h>
  77. #include <trace/events/sched.h>
  78. #define CREATE_TRACE_POINTS
  79. #include <trace/events/task.h>
  80. /*
  81. * Protected counters by write_lock_irq(&tasklist_lock)
  82. */
  83. unsigned long total_forks; /* Handle normal Linux uptimes. */
  84. int nr_threads; /* The idle threads do not count.. */
  85. int max_threads; /* tunable limit on nr_threads */
  86. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  87. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  88. #ifdef CONFIG_PROVE_RCU
  89. int lockdep_tasklist_lock_is_held(void)
  90. {
  91. return lockdep_is_held(&tasklist_lock);
  92. }
  93. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  94. #endif /* #ifdef CONFIG_PROVE_RCU */
  95. int nr_processes(void)
  96. {
  97. int cpu;
  98. int total = 0;
  99. for_each_possible_cpu(cpu)
  100. total += per_cpu(process_counts, cpu);
  101. return total;
  102. }
  103. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  104. static struct kmem_cache *task_struct_cachep;
  105. static inline struct task_struct *alloc_task_struct_node(int node)
  106. {
  107. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  108. }
  109. void __weak arch_release_task_struct(struct task_struct *tsk) { }
  110. static inline void free_task_struct(struct task_struct *tsk)
  111. {
  112. arch_release_task_struct(tsk);
  113. kmem_cache_free(task_struct_cachep, tsk);
  114. }
  115. #endif
  116. #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
  117. void __weak arch_release_thread_info(struct thread_info *ti) { }
  118. /*
  119. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  120. * kmemcache based allocator.
  121. */
  122. # if THREAD_SIZE >= PAGE_SIZE
  123. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  124. int node)
  125. {
  126. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  127. THREAD_SIZE_ORDER);
  128. return page ? page_address(page) : NULL;
  129. }
  130. static inline void free_thread_info(struct thread_info *ti)
  131. {
  132. arch_release_thread_info(ti);
  133. free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
  134. }
  135. # else
  136. static struct kmem_cache *thread_info_cache;
  137. static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
  138. int node)
  139. {
  140. return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
  141. }
  142. static void free_thread_info(struct thread_info *ti)
  143. {
  144. arch_release_thread_info(ti);
  145. kmem_cache_free(thread_info_cache, ti);
  146. }
  147. void thread_info_cache_init(void)
  148. {
  149. thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
  150. THREAD_SIZE, 0, NULL);
  151. BUG_ON(thread_info_cache == NULL);
  152. }
  153. # endif
  154. #endif
  155. /* SLAB cache for signal_struct structures (tsk->signal) */
  156. static struct kmem_cache *signal_cachep;
  157. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  158. struct kmem_cache *sighand_cachep;
  159. /* SLAB cache for files_struct structures (tsk->files) */
  160. struct kmem_cache *files_cachep;
  161. /* SLAB cache for fs_struct structures (tsk->fs) */
  162. struct kmem_cache *fs_cachep;
  163. /* SLAB cache for vm_area_struct structures */
  164. struct kmem_cache *vm_area_cachep;
  165. /* SLAB cache for mm_struct structures (tsk->mm) */
  166. static struct kmem_cache *mm_cachep;
  167. static void account_kernel_stack(struct thread_info *ti, int account)
  168. {
  169. struct zone *zone = page_zone(virt_to_page(ti));
  170. mod_zone_page_state(zone, NR_KERNEL_STACK, account);
  171. }
  172. void free_task(struct task_struct *tsk)
  173. {
  174. account_kernel_stack(tsk->stack, -1);
  175. free_thread_info(tsk->stack);
  176. rt_mutex_debug_task_free(tsk);
  177. ftrace_graph_exit_task(tsk);
  178. put_seccomp_filter(tsk);
  179. free_task_struct(tsk);
  180. }
  181. EXPORT_SYMBOL(free_task);
  182. static inline void free_signal_struct(struct signal_struct *sig)
  183. {
  184. taskstats_tgid_free(sig);
  185. sched_autogroup_exit(sig);
  186. kmem_cache_free(signal_cachep, sig);
  187. }
  188. static inline void put_signal_struct(struct signal_struct *sig)
  189. {
  190. if (atomic_dec_and_test(&sig->sigcnt))
  191. free_signal_struct(sig);
  192. }
  193. void __put_task_struct(struct task_struct *tsk)
  194. {
  195. WARN_ON(!tsk->exit_state);
  196. WARN_ON(atomic_read(&tsk->usage));
  197. WARN_ON(tsk == current);
  198. security_task_free(tsk);
  199. exit_creds(tsk);
  200. delayacct_tsk_free(tsk);
  201. put_signal_struct(tsk->signal);
  202. if (!profile_handoff_task(tsk))
  203. free_task(tsk);
  204. }
  205. EXPORT_SYMBOL_GPL(__put_task_struct);
  206. void __init __weak arch_task_cache_init(void) { }
  207. void __init fork_init(unsigned long mempages)
  208. {
  209. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  210. #ifndef ARCH_MIN_TASKALIGN
  211. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  212. #endif
  213. /* create a slab on which task_structs can be allocated */
  214. task_struct_cachep =
  215. kmem_cache_create("task_struct", sizeof(struct task_struct),
  216. ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
  217. #endif
  218. /* do the arch specific task caches init */
  219. arch_task_cache_init();
  220. /*
  221. * The default maximum number of threads is set to a safe
  222. * value: the thread structures can take up at most half
  223. * of memory.
  224. */
  225. max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
  226. /*
  227. * we need to allow at least 20 threads to boot a system
  228. */
  229. if (max_threads < 20)
  230. max_threads = 20;
  231. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  232. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  233. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  234. init_task.signal->rlim[RLIMIT_NPROC];
  235. }
  236. int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
  237. struct task_struct *src)
  238. {
  239. *dst = *src;
  240. return 0;
  241. }
  242. static struct task_struct *dup_task_struct(struct task_struct *orig)
  243. {
  244. struct task_struct *tsk;
  245. struct thread_info *ti;
  246. unsigned long *stackend;
  247. int node = tsk_fork_get_node(orig);
  248. int err;
  249. tsk = alloc_task_struct_node(node);
  250. if (!tsk)
  251. return NULL;
  252. ti = alloc_thread_info_node(tsk, node);
  253. if (!ti) {
  254. free_task_struct(tsk);
  255. return NULL;
  256. }
  257. err = arch_dup_task_struct(tsk, orig);
  258. if (err)
  259. goto out;
  260. tsk->stack = ti;
  261. setup_thread_stack(tsk, orig);
  262. clear_user_return_notifier(tsk);
  263. clear_tsk_need_resched(tsk);
  264. stackend = end_of_stack(tsk);
  265. *stackend = STACK_END_MAGIC; /* for overflow detection */
  266. #ifdef CONFIG_CC_STACKPROTECTOR
  267. tsk->stack_canary = get_random_int();
  268. #endif
  269. /*
  270. * One for us, one for whoever does the "release_task()" (usually
  271. * parent)
  272. */
  273. atomic_set(&tsk->usage, 2);
  274. #ifdef CONFIG_BLK_DEV_IO_TRACE
  275. tsk->btrace_seq = 0;
  276. #endif
  277. tsk->splice_pipe = NULL;
  278. account_kernel_stack(ti, 1);
  279. return tsk;
  280. out:
  281. free_thread_info(ti);
  282. free_task_struct(tsk);
  283. return NULL;
  284. }
  285. #ifdef CONFIG_MMU
  286. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  287. {
  288. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  289. struct rb_node **rb_link, *rb_parent;
  290. int retval;
  291. unsigned long charge;
  292. struct mempolicy *pol;
  293. down_write(&oldmm->mmap_sem);
  294. flush_cache_dup_mm(oldmm);
  295. /*
  296. * Not linked in yet - no deadlock potential:
  297. */
  298. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  299. mm->locked_vm = 0;
  300. mm->mmap = NULL;
  301. mm->mmap_cache = NULL;
  302. mm->free_area_cache = oldmm->mmap_base;
  303. mm->cached_hole_size = ~0UL;
  304. mm->map_count = 0;
  305. cpumask_clear(mm_cpumask(mm));
  306. mm->mm_rb = RB_ROOT;
  307. rb_link = &mm->mm_rb.rb_node;
  308. rb_parent = NULL;
  309. pprev = &mm->mmap;
  310. retval = ksm_fork(mm, oldmm);
  311. if (retval)
  312. goto out;
  313. retval = khugepaged_fork(mm, oldmm);
  314. if (retval)
  315. goto out;
  316. prev = NULL;
  317. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  318. struct file *file;
  319. if (mpnt->vm_flags & VM_DONTCOPY) {
  320. long pages = vma_pages(mpnt);
  321. mm->total_vm -= pages;
  322. vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
  323. -pages);
  324. continue;
  325. }
  326. charge = 0;
  327. if (mpnt->vm_flags & VM_ACCOUNT) {
  328. unsigned long len;
  329. len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
  330. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  331. goto fail_nomem;
  332. charge = len;
  333. }
  334. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  335. if (!tmp)
  336. goto fail_nomem;
  337. *tmp = *mpnt;
  338. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  339. pol = mpol_dup(vma_policy(mpnt));
  340. retval = PTR_ERR(pol);
  341. if (IS_ERR(pol))
  342. goto fail_nomem_policy;
  343. vma_set_policy(tmp, pol);
  344. tmp->vm_mm = mm;
  345. if (anon_vma_fork(tmp, mpnt))
  346. goto fail_nomem_anon_vma_fork;
  347. tmp->vm_flags &= ~VM_LOCKED;
  348. tmp->vm_next = tmp->vm_prev = NULL;
  349. file = tmp->vm_file;
  350. if (file) {
  351. struct inode *inode = file->f_path.dentry->d_inode;
  352. struct address_space *mapping = file->f_mapping;
  353. get_file(file);
  354. if (tmp->vm_flags & VM_DENYWRITE)
  355. atomic_dec(&inode->i_writecount);
  356. mutex_lock(&mapping->i_mmap_mutex);
  357. if (tmp->vm_flags & VM_SHARED)
  358. mapping->i_mmap_writable++;
  359. flush_dcache_mmap_lock(mapping);
  360. /* insert tmp into the share list, just after mpnt */
  361. vma_prio_tree_add(tmp, mpnt);
  362. flush_dcache_mmap_unlock(mapping);
  363. mutex_unlock(&mapping->i_mmap_mutex);
  364. }
  365. /*
  366. * Clear hugetlb-related page reserves for children. This only
  367. * affects MAP_PRIVATE mappings. Faults generated by the child
  368. * are not guaranteed to succeed, even if read-only
  369. */
  370. if (is_vm_hugetlb_page(tmp))
  371. reset_vma_resv_huge_pages(tmp);
  372. /*
  373. * Link in the new vma and copy the page table entries.
  374. */
  375. *pprev = tmp;
  376. pprev = &tmp->vm_next;
  377. tmp->vm_prev = prev;
  378. prev = tmp;
  379. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  380. rb_link = &tmp->vm_rb.rb_right;
  381. rb_parent = &tmp->vm_rb;
  382. mm->map_count++;
  383. retval = copy_page_range(mm, oldmm, mpnt);
  384. if (tmp->vm_ops && tmp->vm_ops->open)
  385. tmp->vm_ops->open(tmp);
  386. if (retval)
  387. goto out;
  388. if (file && uprobe_mmap(tmp))
  389. goto out;
  390. }
  391. /* a new mm has just been created */
  392. arch_dup_mmap(oldmm, mm);
  393. retval = 0;
  394. out:
  395. up_write(&mm->mmap_sem);
  396. flush_tlb_mm(oldmm);
  397. up_write(&oldmm->mmap_sem);
  398. return retval;
  399. fail_nomem_anon_vma_fork:
  400. mpol_put(pol);
  401. fail_nomem_policy:
  402. kmem_cache_free(vm_area_cachep, tmp);
  403. fail_nomem:
  404. retval = -ENOMEM;
  405. vm_unacct_memory(charge);
  406. goto out;
  407. }
  408. static inline int mm_alloc_pgd(struct mm_struct *mm)
  409. {
  410. mm->pgd = pgd_alloc(mm);
  411. if (unlikely(!mm->pgd))
  412. return -ENOMEM;
  413. return 0;
  414. }
  415. static inline void mm_free_pgd(struct mm_struct *mm)
  416. {
  417. pgd_free(mm, mm->pgd);
  418. }
  419. #else
  420. #define dup_mmap(mm, oldmm) (0)
  421. #define mm_alloc_pgd(mm) (0)
  422. #define mm_free_pgd(mm)
  423. #endif /* CONFIG_MMU */
  424. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  425. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  426. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  427. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  428. static int __init coredump_filter_setup(char *s)
  429. {
  430. default_dump_filter =
  431. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  432. MMF_DUMP_FILTER_MASK;
  433. return 1;
  434. }
  435. __setup("coredump_filter=", coredump_filter_setup);
  436. #include <linux/init_task.h>
  437. static void mm_init_aio(struct mm_struct *mm)
  438. {
  439. #ifdef CONFIG_AIO
  440. spin_lock_init(&mm->ioctx_lock);
  441. INIT_HLIST_HEAD(&mm->ioctx_list);
  442. #endif
  443. }
  444. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  445. {
  446. atomic_set(&mm->mm_users, 1);
  447. atomic_set(&mm->mm_count, 1);
  448. init_rwsem(&mm->mmap_sem);
  449. INIT_LIST_HEAD(&mm->mmlist);
  450. mm->flags = (current->mm) ?
  451. (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
  452. mm->core_state = NULL;
  453. mm->nr_ptes = 0;
  454. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  455. spin_lock_init(&mm->page_table_lock);
  456. mm->free_area_cache = TASK_UNMAPPED_BASE;
  457. mm->cached_hole_size = ~0UL;
  458. mm_init_aio(mm);
  459. mm_init_owner(mm, p);
  460. if (likely(!mm_alloc_pgd(mm))) {
  461. mm->def_flags = 0;
  462. mmu_notifier_mm_init(mm);
  463. return mm;
  464. }
  465. free_mm(mm);
  466. return NULL;
  467. }
  468. static void check_mm(struct mm_struct *mm)
  469. {
  470. int i;
  471. for (i = 0; i < NR_MM_COUNTERS; i++) {
  472. long x = atomic_long_read(&mm->rss_stat.count[i]);
  473. if (unlikely(x))
  474. printk(KERN_ALERT "BUG: Bad rss-counter state "
  475. "mm:%p idx:%d val:%ld\n", mm, i, x);
  476. }
  477. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  478. VM_BUG_ON(mm->pmd_huge_pte);
  479. #endif
  480. }
  481. /*
  482. * Allocate and initialize an mm_struct.
  483. */
  484. struct mm_struct *mm_alloc(void)
  485. {
  486. struct mm_struct *mm;
  487. mm = allocate_mm();
  488. if (!mm)
  489. return NULL;
  490. memset(mm, 0, sizeof(*mm));
  491. mm_init_cpumask(mm);
  492. return mm_init(mm, current);
  493. }
  494. /*
  495. * Called when the last reference to the mm
  496. * is dropped: either by a lazy thread or by
  497. * mmput. Free the page directory and the mm.
  498. */
  499. void __mmdrop(struct mm_struct *mm)
  500. {
  501. BUG_ON(mm == &init_mm);
  502. mm_free_pgd(mm);
  503. destroy_context(mm);
  504. mmu_notifier_mm_destroy(mm);
  505. check_mm(mm);
  506. free_mm(mm);
  507. }
  508. EXPORT_SYMBOL_GPL(__mmdrop);
  509. /*
  510. * Decrement the use count and release all resources for an mm.
  511. */
  512. void mmput(struct mm_struct *mm)
  513. {
  514. might_sleep();
  515. if (atomic_dec_and_test(&mm->mm_users)) {
  516. uprobe_clear_state(mm);
  517. exit_aio(mm);
  518. ksm_exit(mm);
  519. khugepaged_exit(mm); /* must run before exit_mmap */
  520. exit_mmap(mm);
  521. set_mm_exe_file(mm, NULL);
  522. if (!list_empty(&mm->mmlist)) {
  523. spin_lock(&mmlist_lock);
  524. list_del(&mm->mmlist);
  525. spin_unlock(&mmlist_lock);
  526. }
  527. if (mm->binfmt)
  528. module_put(mm->binfmt->module);
  529. mmdrop(mm);
  530. }
  531. }
  532. EXPORT_SYMBOL_GPL(mmput);
  533. /*
  534. * We added or removed a vma mapping the executable. The vmas are only mapped
  535. * during exec and are not mapped with the mmap system call.
  536. * Callers must hold down_write() on the mm's mmap_sem for these
  537. */
  538. void added_exe_file_vma(struct mm_struct *mm)
  539. {
  540. mm->num_exe_file_vmas++;
  541. }
  542. void removed_exe_file_vma(struct mm_struct *mm)
  543. {
  544. mm->num_exe_file_vmas--;
  545. if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
  546. fput(mm->exe_file);
  547. mm->exe_file = NULL;
  548. }
  549. }
  550. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  551. {
  552. if (new_exe_file)
  553. get_file(new_exe_file);
  554. if (mm->exe_file)
  555. fput(mm->exe_file);
  556. mm->exe_file = new_exe_file;
  557. mm->num_exe_file_vmas = 0;
  558. }
  559. struct file *get_mm_exe_file(struct mm_struct *mm)
  560. {
  561. struct file *exe_file;
  562. /* We need mmap_sem to protect against races with removal of
  563. * VM_EXECUTABLE vmas */
  564. down_read(&mm->mmap_sem);
  565. exe_file = mm->exe_file;
  566. if (exe_file)
  567. get_file(exe_file);
  568. up_read(&mm->mmap_sem);
  569. return exe_file;
  570. }
  571. static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
  572. {
  573. /* It's safe to write the exe_file pointer without exe_file_lock because
  574. * this is called during fork when the task is not yet in /proc */
  575. newmm->exe_file = get_mm_exe_file(oldmm);
  576. }
  577. /**
  578. * get_task_mm - acquire a reference to the task's mm
  579. *
  580. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  581. * this kernel workthread has transiently adopted a user mm with use_mm,
  582. * to do its AIO) is not set and if so returns a reference to it, after
  583. * bumping up the use count. User must release the mm via mmput()
  584. * after use. Typically used by /proc and ptrace.
  585. */
  586. struct mm_struct *get_task_mm(struct task_struct *task)
  587. {
  588. struct mm_struct *mm;
  589. task_lock(task);
  590. mm = task->mm;
  591. if (mm) {
  592. if (task->flags & PF_KTHREAD)
  593. mm = NULL;
  594. else
  595. atomic_inc(&mm->mm_users);
  596. }
  597. task_unlock(task);
  598. return mm;
  599. }
  600. EXPORT_SYMBOL_GPL(get_task_mm);
  601. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  602. {
  603. struct mm_struct *mm;
  604. int err;
  605. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  606. if (err)
  607. return ERR_PTR(err);
  608. mm = get_task_mm(task);
  609. if (mm && mm != current->mm &&
  610. !ptrace_may_access(task, mode)) {
  611. mmput(mm);
  612. mm = ERR_PTR(-EACCES);
  613. }
  614. mutex_unlock(&task->signal->cred_guard_mutex);
  615. return mm;
  616. }
  617. static void complete_vfork_done(struct task_struct *tsk)
  618. {
  619. struct completion *vfork;
  620. task_lock(tsk);
  621. vfork = tsk->vfork_done;
  622. if (likely(vfork)) {
  623. tsk->vfork_done = NULL;
  624. complete(vfork);
  625. }
  626. task_unlock(tsk);
  627. }
  628. static int wait_for_vfork_done(struct task_struct *child,
  629. struct completion *vfork)
  630. {
  631. int killed;
  632. freezer_do_not_count();
  633. killed = wait_for_completion_killable(vfork);
  634. freezer_count();
  635. if (killed) {
  636. task_lock(child);
  637. child->vfork_done = NULL;
  638. task_unlock(child);
  639. }
  640. put_task_struct(child);
  641. return killed;
  642. }
  643. /* Please note the differences between mmput and mm_release.
  644. * mmput is called whenever we stop holding onto a mm_struct,
  645. * error success whatever.
  646. *
  647. * mm_release is called after a mm_struct has been removed
  648. * from the current process.
  649. *
  650. * This difference is important for error handling, when we
  651. * only half set up a mm_struct for a new process and need to restore
  652. * the old one. Because we mmput the new mm_struct before
  653. * restoring the old one. . .
  654. * Eric Biederman 10 January 1998
  655. */
  656. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  657. {
  658. /* Get rid of any futexes when releasing the mm */
  659. #ifdef CONFIG_FUTEX
  660. if (unlikely(tsk->robust_list)) {
  661. exit_robust_list(tsk);
  662. tsk->robust_list = NULL;
  663. }
  664. #ifdef CONFIG_COMPAT
  665. if (unlikely(tsk->compat_robust_list)) {
  666. compat_exit_robust_list(tsk);
  667. tsk->compat_robust_list = NULL;
  668. }
  669. #endif
  670. if (unlikely(!list_empty(&tsk->pi_state_list)))
  671. exit_pi_state_list(tsk);
  672. #endif
  673. uprobe_free_utask(tsk);
  674. /* Get rid of any cached register state */
  675. deactivate_mm(tsk, mm);
  676. /*
  677. * If we're exiting normally, clear a user-space tid field if
  678. * requested. We leave this alone when dying by signal, to leave
  679. * the value intact in a core dump, and to save the unnecessary
  680. * trouble, say, a killed vfork parent shouldn't touch this mm.
  681. * Userland only wants this done for a sys_exit.
  682. */
  683. if (tsk->clear_child_tid) {
  684. if (!(tsk->flags & PF_SIGNALED) &&
  685. atomic_read(&mm->mm_users) > 1) {
  686. /*
  687. * We don't check the error code - if userspace has
  688. * not set up a proper pointer then tough luck.
  689. */
  690. put_user(0, tsk->clear_child_tid);
  691. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  692. 1, NULL, NULL, 0);
  693. }
  694. tsk->clear_child_tid = NULL;
  695. }
  696. /*
  697. * All done, finally we can wake up parent and return this mm to him.
  698. * Also kthread_stop() uses this completion for synchronization.
  699. */
  700. if (tsk->vfork_done)
  701. complete_vfork_done(tsk);
  702. }
  703. /*
  704. * Allocate a new mm structure and copy contents from the
  705. * mm structure of the passed in task structure.
  706. */
  707. struct mm_struct *dup_mm(struct task_struct *tsk)
  708. {
  709. struct mm_struct *mm, *oldmm = current->mm;
  710. int err;
  711. if (!oldmm)
  712. return NULL;
  713. mm = allocate_mm();
  714. if (!mm)
  715. goto fail_nomem;
  716. memcpy(mm, oldmm, sizeof(*mm));
  717. mm_init_cpumask(mm);
  718. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  719. mm->pmd_huge_pte = NULL;
  720. #endif
  721. uprobe_reset_state(mm);
  722. if (!mm_init(mm, tsk))
  723. goto fail_nomem;
  724. if (init_new_context(tsk, mm))
  725. goto fail_nocontext;
  726. dup_mm_exe_file(oldmm, mm);
  727. err = dup_mmap(mm, oldmm);
  728. if (err)
  729. goto free_pt;
  730. mm->hiwater_rss = get_mm_rss(mm);
  731. mm->hiwater_vm = mm->total_vm;
  732. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  733. goto free_pt;
  734. return mm;
  735. free_pt:
  736. /* don't put binfmt in mmput, we haven't got module yet */
  737. mm->binfmt = NULL;
  738. mmput(mm);
  739. fail_nomem:
  740. return NULL;
  741. fail_nocontext:
  742. /*
  743. * If init_new_context() failed, we cannot use mmput() to free the mm
  744. * because it calls destroy_context()
  745. */
  746. mm_free_pgd(mm);
  747. free_mm(mm);
  748. return NULL;
  749. }
  750. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  751. {
  752. struct mm_struct *mm, *oldmm;
  753. int retval;
  754. tsk->min_flt = tsk->maj_flt = 0;
  755. tsk->nvcsw = tsk->nivcsw = 0;
  756. #ifdef CONFIG_DETECT_HUNG_TASK
  757. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  758. #endif
  759. tsk->mm = NULL;
  760. tsk->active_mm = NULL;
  761. /*
  762. * Are we cloning a kernel thread?
  763. *
  764. * We need to steal a active VM for that..
  765. */
  766. oldmm = current->mm;
  767. if (!oldmm)
  768. return 0;
  769. if (clone_flags & CLONE_VM) {
  770. atomic_inc(&oldmm->mm_users);
  771. mm = oldmm;
  772. goto good_mm;
  773. }
  774. retval = -ENOMEM;
  775. mm = dup_mm(tsk);
  776. if (!mm)
  777. goto fail_nomem;
  778. good_mm:
  779. tsk->mm = mm;
  780. tsk->active_mm = mm;
  781. return 0;
  782. fail_nomem:
  783. return retval;
  784. }
  785. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  786. {
  787. struct fs_struct *fs = current->fs;
  788. if (clone_flags & CLONE_FS) {
  789. /* tsk->fs is already what we want */
  790. spin_lock(&fs->lock);
  791. if (fs->in_exec) {
  792. spin_unlock(&fs->lock);
  793. return -EAGAIN;
  794. }
  795. fs->users++;
  796. spin_unlock(&fs->lock);
  797. return 0;
  798. }
  799. tsk->fs = copy_fs_struct(fs);
  800. if (!tsk->fs)
  801. return -ENOMEM;
  802. return 0;
  803. }
  804. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  805. {
  806. struct files_struct *oldf, *newf;
  807. int error = 0;
  808. /*
  809. * A background process may not have any files ...
  810. */
  811. oldf = current->files;
  812. if (!oldf)
  813. goto out;
  814. if (clone_flags & CLONE_FILES) {
  815. atomic_inc(&oldf->count);
  816. goto out;
  817. }
  818. newf = dup_fd(oldf, &error);
  819. if (!newf)
  820. goto out;
  821. tsk->files = newf;
  822. error = 0;
  823. out:
  824. return error;
  825. }
  826. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  827. {
  828. #ifdef CONFIG_BLOCK
  829. struct io_context *ioc = current->io_context;
  830. struct io_context *new_ioc;
  831. if (!ioc)
  832. return 0;
  833. /*
  834. * Share io context with parent, if CLONE_IO is set
  835. */
  836. if (clone_flags & CLONE_IO) {
  837. ioc_task_link(ioc);
  838. tsk->io_context = ioc;
  839. } else if (ioprio_valid(ioc->ioprio)) {
  840. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  841. if (unlikely(!new_ioc))
  842. return -ENOMEM;
  843. new_ioc->ioprio = ioc->ioprio;
  844. put_io_context(new_ioc);
  845. }
  846. #endif
  847. return 0;
  848. }
  849. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  850. {
  851. struct sighand_struct *sig;
  852. if (clone_flags & CLONE_SIGHAND) {
  853. atomic_inc(&current->sighand->count);
  854. return 0;
  855. }
  856. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  857. rcu_assign_pointer(tsk->sighand, sig);
  858. if (!sig)
  859. return -ENOMEM;
  860. atomic_set(&sig->count, 1);
  861. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  862. return 0;
  863. }
  864. void __cleanup_sighand(struct sighand_struct *sighand)
  865. {
  866. if (atomic_dec_and_test(&sighand->count)) {
  867. signalfd_cleanup(sighand);
  868. kmem_cache_free(sighand_cachep, sighand);
  869. }
  870. }
  871. /*
  872. * Initialize POSIX timer handling for a thread group.
  873. */
  874. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  875. {
  876. unsigned long cpu_limit;
  877. /* Thread group counters. */
  878. thread_group_cputime_init(sig);
  879. cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  880. if (cpu_limit != RLIM_INFINITY) {
  881. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  882. sig->cputimer.running = 1;
  883. }
  884. /* The timer lists. */
  885. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  886. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  887. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  888. }
  889. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  890. {
  891. struct signal_struct *sig;
  892. if (clone_flags & CLONE_THREAD)
  893. return 0;
  894. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  895. tsk->signal = sig;
  896. if (!sig)
  897. return -ENOMEM;
  898. sig->nr_threads = 1;
  899. atomic_set(&sig->live, 1);
  900. atomic_set(&sig->sigcnt, 1);
  901. init_waitqueue_head(&sig->wait_chldexit);
  902. if (clone_flags & CLONE_NEWPID)
  903. sig->flags |= SIGNAL_UNKILLABLE;
  904. sig->curr_target = tsk;
  905. init_sigpending(&sig->shared_pending);
  906. INIT_LIST_HEAD(&sig->posix_timers);
  907. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  908. sig->real_timer.function = it_real_fn;
  909. task_lock(current->group_leader);
  910. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  911. task_unlock(current->group_leader);
  912. posix_cpu_timers_init_group(sig);
  913. tty_audit_fork(sig);
  914. sched_autogroup_fork(sig);
  915. #ifdef CONFIG_CGROUPS
  916. init_rwsem(&sig->group_rwsem);
  917. #endif
  918. sig->oom_adj = current->signal->oom_adj;
  919. sig->oom_score_adj = current->signal->oom_score_adj;
  920. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  921. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  922. current->signal->is_child_subreaper;
  923. mutex_init(&sig->cred_guard_mutex);
  924. return 0;
  925. }
  926. static void copy_flags(unsigned long clone_flags, struct task_struct *p)
  927. {
  928. unsigned long new_flags = p->flags;
  929. new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  930. new_flags |= PF_FORKNOEXEC;
  931. p->flags = new_flags;
  932. }
  933. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  934. {
  935. current->clear_child_tid = tidptr;
  936. return task_pid_vnr(current);
  937. }
  938. static void rt_mutex_init_task(struct task_struct *p)
  939. {
  940. raw_spin_lock_init(&p->pi_lock);
  941. #ifdef CONFIG_RT_MUTEXES
  942. plist_head_init(&p->pi_waiters);
  943. p->pi_blocked_on = NULL;
  944. #endif
  945. }
  946. #ifdef CONFIG_MM_OWNER
  947. void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  948. {
  949. mm->owner = p;
  950. }
  951. #endif /* CONFIG_MM_OWNER */
  952. /*
  953. * Initialize POSIX timer handling for a single task.
  954. */
  955. static void posix_cpu_timers_init(struct task_struct *tsk)
  956. {
  957. tsk->cputime_expires.prof_exp = 0;
  958. tsk->cputime_expires.virt_exp = 0;
  959. tsk->cputime_expires.sched_exp = 0;
  960. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  961. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  962. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  963. }
  964. /*
  965. * This creates a new process as a copy of the old one,
  966. * but does not actually start it yet.
  967. *
  968. * It copies the registers, and all the appropriate
  969. * parts of the process environment (as per the clone
  970. * flags). The actual kick-off is left to the caller.
  971. */
  972. static struct task_struct *copy_process(unsigned long clone_flags,
  973. unsigned long stack_start,
  974. struct pt_regs *regs,
  975. unsigned long stack_size,
  976. int __user *child_tidptr,
  977. struct pid *pid,
  978. int trace)
  979. {
  980. int retval;
  981. struct task_struct *p;
  982. int cgroup_callbacks_done = 0;
  983. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  984. return ERR_PTR(-EINVAL);
  985. /*
  986. * Thread groups must share signals as well, and detached threads
  987. * can only be started up within the thread group.
  988. */
  989. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  990. return ERR_PTR(-EINVAL);
  991. /*
  992. * Shared signal handlers imply shared VM. By way of the above,
  993. * thread groups also imply shared VM. Blocking this case allows
  994. * for various simplifications in other code.
  995. */
  996. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  997. return ERR_PTR(-EINVAL);
  998. /*
  999. * Siblings of global init remain as zombies on exit since they are
  1000. * not reaped by their parent (swapper). To solve this and to avoid
  1001. * multi-rooted process trees, prevent global and container-inits
  1002. * from creating siblings.
  1003. */
  1004. if ((clone_flags & CLONE_PARENT) &&
  1005. current->signal->flags & SIGNAL_UNKILLABLE)
  1006. return ERR_PTR(-EINVAL);
  1007. retval = security_task_create(clone_flags);
  1008. if (retval)
  1009. goto fork_out;
  1010. retval = -ENOMEM;
  1011. p = dup_task_struct(current);
  1012. if (!p)
  1013. goto fork_out;
  1014. ftrace_graph_init_task(p);
  1015. get_seccomp_filter(p);
  1016. rt_mutex_init_task(p);
  1017. #ifdef CONFIG_PROVE_LOCKING
  1018. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1019. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1020. #endif
  1021. retval = -EAGAIN;
  1022. if (atomic_read(&p->real_cred->user->processes) >=
  1023. task_rlimit(p, RLIMIT_NPROC)) {
  1024. if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
  1025. p->real_cred->user != INIT_USER)
  1026. goto bad_fork_free;
  1027. }
  1028. current->flags &= ~PF_NPROC_EXCEEDED;
  1029. retval = copy_creds(p, clone_flags);
  1030. if (retval < 0)
  1031. goto bad_fork_free;
  1032. /*
  1033. * If multiple threads are within copy_process(), then this check
  1034. * triggers too late. This doesn't hurt, the check is only there
  1035. * to stop root fork bombs.
  1036. */
  1037. retval = -EAGAIN;
  1038. if (nr_threads >= max_threads)
  1039. goto bad_fork_cleanup_count;
  1040. if (!try_module_get(task_thread_info(p)->exec_domain->module))
  1041. goto bad_fork_cleanup_count;
  1042. p->did_exec = 0;
  1043. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1044. copy_flags(clone_flags, p);
  1045. INIT_LIST_HEAD(&p->children);
  1046. INIT_LIST_HEAD(&p->sibling);
  1047. rcu_copy_process(p);
  1048. p->vfork_done = NULL;
  1049. spin_lock_init(&p->alloc_lock);
  1050. init_sigpending(&p->pending);
  1051. p->utime = p->stime = p->gtime = 0;
  1052. p->utimescaled = p->stimescaled = 0;
  1053. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  1054. p->prev_utime = p->prev_stime = 0;
  1055. #endif
  1056. #if defined(SPLIT_RSS_COUNTING)
  1057. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1058. #endif
  1059. p->default_timer_slack_ns = current->timer_slack_ns;
  1060. task_io_accounting_init(&p->ioac);
  1061. acct_clear_integrals(p);
  1062. posix_cpu_timers_init(p);
  1063. do_posix_clock_monotonic_gettime(&p->start_time);
  1064. p->real_start_time = p->start_time;
  1065. monotonic_to_bootbased(&p->real_start_time);
  1066. p->io_context = NULL;
  1067. p->audit_context = NULL;
  1068. if (clone_flags & CLONE_THREAD)
  1069. threadgroup_change_begin(current);
  1070. cgroup_fork(p);
  1071. #ifdef CONFIG_NUMA
  1072. p->mempolicy = mpol_dup(p->mempolicy);
  1073. if (IS_ERR(p->mempolicy)) {
  1074. retval = PTR_ERR(p->mempolicy);
  1075. p->mempolicy = NULL;
  1076. goto bad_fork_cleanup_cgroup;
  1077. }
  1078. mpol_fix_fork_child_flag(p);
  1079. #endif
  1080. #ifdef CONFIG_CPUSETS
  1081. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1082. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1083. seqcount_init(&p->mems_allowed_seq);
  1084. #endif
  1085. #ifdef CONFIG_TRACE_IRQFLAGS
  1086. p->irq_events = 0;
  1087. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  1088. p->hardirqs_enabled = 1;
  1089. #else
  1090. p->hardirqs_enabled = 0;
  1091. #endif
  1092. p->hardirq_enable_ip = 0;
  1093. p->hardirq_enable_event = 0;
  1094. p->hardirq_disable_ip = _THIS_IP_;
  1095. p->hardirq_disable_event = 0;
  1096. p->softirqs_enabled = 1;
  1097. p->softirq_enable_ip = _THIS_IP_;
  1098. p->softirq_enable_event = 0;
  1099. p->softirq_disable_ip = 0;
  1100. p->softirq_disable_event = 0;
  1101. p->hardirq_context = 0;
  1102. p->softirq_context = 0;
  1103. #endif
  1104. #ifdef CONFIG_LOCKDEP
  1105. p->lockdep_depth = 0; /* no locks held yet */
  1106. p->curr_chain_key = 0;
  1107. p->lockdep_recursion = 0;
  1108. #endif
  1109. #ifdef CONFIG_DEBUG_MUTEXES
  1110. p->blocked_on = NULL; /* not blocked yet */
  1111. #endif
  1112. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  1113. p->memcg_batch.do_batch = 0;
  1114. p->memcg_batch.memcg = NULL;
  1115. #endif
  1116. /* Perform scheduler related setup. Assign this task to a CPU. */
  1117. sched_fork(p);
  1118. retval = perf_event_init_task(p);
  1119. if (retval)
  1120. goto bad_fork_cleanup_policy;
  1121. retval = audit_alloc(p);
  1122. if (retval)
  1123. goto bad_fork_cleanup_policy;
  1124. /* copy all the process information */
  1125. retval = copy_semundo(clone_flags, p);
  1126. if (retval)
  1127. goto bad_fork_cleanup_audit;
  1128. retval = copy_files(clone_flags, p);
  1129. if (retval)
  1130. goto bad_fork_cleanup_semundo;
  1131. retval = copy_fs(clone_flags, p);
  1132. if (retval)
  1133. goto bad_fork_cleanup_files;
  1134. retval = copy_sighand(clone_flags, p);
  1135. if (retval)
  1136. goto bad_fork_cleanup_fs;
  1137. retval = copy_signal(clone_flags, p);
  1138. if (retval)
  1139. goto bad_fork_cleanup_sighand;
  1140. retval = copy_mm(clone_flags, p);
  1141. if (retval)
  1142. goto bad_fork_cleanup_signal;
  1143. retval = copy_namespaces(clone_flags, p);
  1144. if (retval)
  1145. goto bad_fork_cleanup_mm;
  1146. retval = copy_io(clone_flags, p);
  1147. if (retval)
  1148. goto bad_fork_cleanup_namespaces;
  1149. retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
  1150. if (retval)
  1151. goto bad_fork_cleanup_io;
  1152. if (pid != &init_struct_pid) {
  1153. retval = -ENOMEM;
  1154. pid = alloc_pid(p->nsproxy->pid_ns);
  1155. if (!pid)
  1156. goto bad_fork_cleanup_io;
  1157. }
  1158. p->pid = pid_nr(pid);
  1159. p->tgid = p->pid;
  1160. if (clone_flags & CLONE_THREAD)
  1161. p->tgid = current->tgid;
  1162. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1163. /*
  1164. * Clear TID on mm_release()?
  1165. */
  1166. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1167. #ifdef CONFIG_BLOCK
  1168. p->plug = NULL;
  1169. #endif
  1170. #ifdef CONFIG_FUTEX
  1171. p->robust_list = NULL;
  1172. #ifdef CONFIG_COMPAT
  1173. p->compat_robust_list = NULL;
  1174. #endif
  1175. INIT_LIST_HEAD(&p->pi_state_list);
  1176. p->pi_state_cache = NULL;
  1177. #endif
  1178. uprobe_copy_process(p);
  1179. /*
  1180. * sigaltstack should be cleared when sharing the same VM
  1181. */
  1182. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1183. p->sas_ss_sp = p->sas_ss_size = 0;
  1184. /*
  1185. * Syscall tracing and stepping should be turned off in the
  1186. * child regardless of CLONE_PTRACE.
  1187. */
  1188. user_disable_single_step(p);
  1189. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1190. #ifdef TIF_SYSCALL_EMU
  1191. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1192. #endif
  1193. clear_all_latency_tracing(p);
  1194. /* ok, now we should be set up.. */
  1195. if (clone_flags & CLONE_THREAD)
  1196. p->exit_signal = -1;
  1197. else if (clone_flags & CLONE_PARENT)
  1198. p->exit_signal = current->group_leader->exit_signal;
  1199. else
  1200. p->exit_signal = (clone_flags & CSIGNAL);
  1201. p->pdeath_signal = 0;
  1202. p->exit_state = 0;
  1203. p->nr_dirtied = 0;
  1204. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1205. p->dirty_paused_when = 0;
  1206. /*
  1207. * Ok, make it visible to the rest of the system.
  1208. * We dont wake it up yet.
  1209. */
  1210. p->group_leader = p;
  1211. INIT_LIST_HEAD(&p->thread_group);
  1212. /* Now that the task is set up, run cgroup callbacks if
  1213. * necessary. We need to run them before the task is visible
  1214. * on the tasklist. */
  1215. cgroup_fork_callbacks(p);
  1216. cgroup_callbacks_done = 1;
  1217. /* Need tasklist lock for parent etc handling! */
  1218. write_lock_irq(&tasklist_lock);
  1219. /* CLONE_PARENT re-uses the old parent */
  1220. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1221. p->real_parent = current->real_parent;
  1222. p->parent_exec_id = current->parent_exec_id;
  1223. } else {
  1224. p->real_parent = current;
  1225. p->parent_exec_id = current->self_exec_id;
  1226. }
  1227. spin_lock(&current->sighand->siglock);
  1228. /*
  1229. * Process group and session signals need to be delivered to just the
  1230. * parent before the fork or both the parent and the child after the
  1231. * fork. Restart if a signal comes in before we add the new process to
  1232. * it's process group.
  1233. * A fatal signal pending means that current will exit, so the new
  1234. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1235. */
  1236. recalc_sigpending();
  1237. if (signal_pending(current)) {
  1238. spin_unlock(&current->sighand->siglock);
  1239. write_unlock_irq(&tasklist_lock);
  1240. retval = -ERESTARTNOINTR;
  1241. goto bad_fork_free_pid;
  1242. }
  1243. if (clone_flags & CLONE_THREAD) {
  1244. current->signal->nr_threads++;
  1245. atomic_inc(&current->signal->live);
  1246. atomic_inc(&current->signal->sigcnt);
  1247. p->group_leader = current->group_leader;
  1248. list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
  1249. }
  1250. if (likely(p->pid)) {
  1251. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1252. if (thread_group_leader(p)) {
  1253. if (is_child_reaper(pid))
  1254. p->nsproxy->pid_ns->child_reaper = p;
  1255. p->signal->leader_pid = pid;
  1256. p->signal->tty = tty_kref_get(current->signal->tty);
  1257. attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1258. attach_pid(p, PIDTYPE_SID, task_session(current));
  1259. list_add_tail(&p->sibling, &p->real_parent->children);
  1260. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1261. __this_cpu_inc(process_counts);
  1262. }
  1263. attach_pid(p, PIDTYPE_PID, pid);
  1264. nr_threads++;
  1265. }
  1266. total_forks++;
  1267. spin_unlock(&current->sighand->siglock);
  1268. write_unlock_irq(&tasklist_lock);
  1269. proc_fork_connector(p);
  1270. cgroup_post_fork(p);
  1271. if (clone_flags & CLONE_THREAD)
  1272. threadgroup_change_end(current);
  1273. perf_event_fork(p);
  1274. trace_task_newtask(p, clone_flags);
  1275. return p;
  1276. bad_fork_free_pid:
  1277. if (pid != &init_struct_pid)
  1278. free_pid(pid);
  1279. bad_fork_cleanup_io:
  1280. if (p->io_context)
  1281. exit_io_context(p);
  1282. bad_fork_cleanup_namespaces:
  1283. if (unlikely(clone_flags & CLONE_NEWPID))
  1284. pid_ns_release_proc(p->nsproxy->pid_ns);
  1285. exit_task_namespaces(p);
  1286. bad_fork_cleanup_mm:
  1287. if (p->mm)
  1288. mmput(p->mm);
  1289. bad_fork_cleanup_signal:
  1290. if (!(clone_flags & CLONE_THREAD))
  1291. free_signal_struct(p->signal);
  1292. bad_fork_cleanup_sighand:
  1293. __cleanup_sighand(p->sighand);
  1294. bad_fork_cleanup_fs:
  1295. exit_fs(p); /* blocking */
  1296. bad_fork_cleanup_files:
  1297. exit_files(p); /* blocking */
  1298. bad_fork_cleanup_semundo:
  1299. exit_sem(p);
  1300. bad_fork_cleanup_audit:
  1301. audit_free(p);
  1302. bad_fork_cleanup_policy:
  1303. perf_event_free_task(p);
  1304. #ifdef CONFIG_NUMA
  1305. mpol_put(p->mempolicy);
  1306. bad_fork_cleanup_cgroup:
  1307. #endif
  1308. if (clone_flags & CLONE_THREAD)
  1309. threadgroup_change_end(current);
  1310. cgroup_exit(p, cgroup_callbacks_done);
  1311. delayacct_tsk_free(p);
  1312. module_put(task_thread_info(p)->exec_domain->module);
  1313. bad_fork_cleanup_count:
  1314. atomic_dec(&p->cred->user->processes);
  1315. exit_creds(p);
  1316. bad_fork_free:
  1317. free_task(p);
  1318. fork_out:
  1319. return ERR_PTR(retval);
  1320. }
  1321. noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
  1322. {
  1323. memset(regs, 0, sizeof(struct pt_regs));
  1324. return regs;
  1325. }
  1326. static inline void init_idle_pids(struct pid_link *links)
  1327. {
  1328. enum pid_type type;
  1329. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1330. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1331. links[type].pid = &init_struct_pid;
  1332. }
  1333. }
  1334. struct task_struct * __cpuinit fork_idle(int cpu)
  1335. {
  1336. struct task_struct *task;
  1337. struct pt_regs regs;
  1338. task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
  1339. &init_struct_pid, 0);
  1340. if (!IS_ERR(task)) {
  1341. init_idle_pids(task->pids);
  1342. init_idle(task, cpu);
  1343. }
  1344. return task;
  1345. }
  1346. /*
  1347. * Ok, this is the main fork-routine.
  1348. *
  1349. * It copies the process, and if successful kick-starts
  1350. * it and waits for it to finish using the VM if required.
  1351. */
  1352. long do_fork(unsigned long clone_flags,
  1353. unsigned long stack_start,
  1354. struct pt_regs *regs,
  1355. unsigned long stack_size,
  1356. int __user *parent_tidptr,
  1357. int __user *child_tidptr)
  1358. {
  1359. struct task_struct *p;
  1360. int trace = 0;
  1361. long nr;
  1362. /*
  1363. * Do some preliminary argument and permissions checking before we
  1364. * actually start allocating stuff
  1365. */
  1366. if (clone_flags & CLONE_NEWUSER) {
  1367. if (clone_flags & CLONE_THREAD)
  1368. return -EINVAL;
  1369. /* hopefully this check will go away when userns support is
  1370. * complete
  1371. */
  1372. if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
  1373. !capable(CAP_SETGID))
  1374. return -EPERM;
  1375. }
  1376. /*
  1377. * Determine whether and which event to report to ptracer. When
  1378. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1379. * requested, no event is reported; otherwise, report if the event
  1380. * for the type of forking is enabled.
  1381. */
  1382. if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
  1383. if (clone_flags & CLONE_VFORK)
  1384. trace = PTRACE_EVENT_VFORK;
  1385. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1386. trace = PTRACE_EVENT_CLONE;
  1387. else
  1388. trace = PTRACE_EVENT_FORK;
  1389. if (likely(!ptrace_event_enabled(current, trace)))
  1390. trace = 0;
  1391. }
  1392. p = copy_process(clone_flags, stack_start, regs, stack_size,
  1393. child_tidptr, NULL, trace);
  1394. /*
  1395. * Do this prior waking up the new thread - the thread pointer
  1396. * might get invalid after that point, if the thread exits quickly.
  1397. */
  1398. if (!IS_ERR(p)) {
  1399. struct completion vfork;
  1400. trace_sched_process_fork(current, p);
  1401. nr = task_pid_vnr(p);
  1402. if (clone_flags & CLONE_PARENT_SETTID)
  1403. put_user(nr, parent_tidptr);
  1404. if (clone_flags & CLONE_VFORK) {
  1405. p->vfork_done = &vfork;
  1406. init_completion(&vfork);
  1407. get_task_struct(p);
  1408. }
  1409. wake_up_new_task(p);
  1410. /* forking complete and child started to run, tell ptracer */
  1411. if (unlikely(trace))
  1412. ptrace_event(trace, nr);
  1413. if (clone_flags & CLONE_VFORK) {
  1414. if (!wait_for_vfork_done(p, &vfork))
  1415. ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
  1416. }
  1417. } else {
  1418. nr = PTR_ERR(p);
  1419. }
  1420. return nr;
  1421. }
  1422. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1423. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1424. #endif
  1425. static void sighand_ctor(void *data)
  1426. {
  1427. struct sighand_struct *sighand = data;
  1428. spin_lock_init(&sighand->siglock);
  1429. init_waitqueue_head(&sighand->signalfd_wqh);
  1430. }
  1431. void __init proc_caches_init(void)
  1432. {
  1433. sighand_cachep = kmem_cache_create("sighand_cache",
  1434. sizeof(struct sighand_struct), 0,
  1435. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1436. SLAB_NOTRACK, sighand_ctor);
  1437. signal_cachep = kmem_cache_create("signal_cache",
  1438. sizeof(struct signal_struct), 0,
  1439. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1440. files_cachep = kmem_cache_create("files_cache",
  1441. sizeof(struct files_struct), 0,
  1442. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1443. fs_cachep = kmem_cache_create("fs_cache",
  1444. sizeof(struct fs_struct), 0,
  1445. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1446. /*
  1447. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1448. * whole struct cpumask for the OFFSTACK case. We could change
  1449. * this to *only* allocate as much of it as required by the
  1450. * maximum number of CPU's we can ever have. The cpumask_allocation
  1451. * is at the end of the structure, exactly for that reason.
  1452. */
  1453. mm_cachep = kmem_cache_create("mm_struct",
  1454. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1455. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
  1456. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
  1457. mmap_init();
  1458. nsproxy_cache_init();
  1459. }
  1460. /*
  1461. * Check constraints on flags passed to the unshare system call.
  1462. */
  1463. static int check_unshare_flags(unsigned long unshare_flags)
  1464. {
  1465. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1466. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1467. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
  1468. return -EINVAL;
  1469. /*
  1470. * Not implemented, but pretend it works if there is nothing to
  1471. * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
  1472. * needs to unshare vm.
  1473. */
  1474. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1475. /* FIXME: get_task_mm() increments ->mm_users */
  1476. if (atomic_read(&current->mm->mm_users) > 1)
  1477. return -EINVAL;
  1478. }
  1479. return 0;
  1480. }
  1481. /*
  1482. * Unshare the filesystem structure if it is being shared
  1483. */
  1484. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1485. {
  1486. struct fs_struct *fs = current->fs;
  1487. if (!(unshare_flags & CLONE_FS) || !fs)
  1488. return 0;
  1489. /* don't need lock here; in the worst case we'll do useless copy */
  1490. if (fs->users == 1)
  1491. return 0;
  1492. *new_fsp = copy_fs_struct(fs);
  1493. if (!*new_fsp)
  1494. return -ENOMEM;
  1495. return 0;
  1496. }
  1497. /*
  1498. * Unshare file descriptor table if it is being shared
  1499. */
  1500. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1501. {
  1502. struct files_struct *fd = current->files;
  1503. int error = 0;
  1504. if ((unshare_flags & CLONE_FILES) &&
  1505. (fd && atomic_read(&fd->count) > 1)) {
  1506. *new_fdp = dup_fd(fd, &error);
  1507. if (!*new_fdp)
  1508. return error;
  1509. }
  1510. return 0;
  1511. }
  1512. /*
  1513. * unshare allows a process to 'unshare' part of the process
  1514. * context which was originally shared using clone. copy_*
  1515. * functions used by do_fork() cannot be used here directly
  1516. * because they modify an inactive task_struct that is being
  1517. * constructed. Here we are modifying the current, active,
  1518. * task_struct.
  1519. */
  1520. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1521. {
  1522. struct fs_struct *fs, *new_fs = NULL;
  1523. struct files_struct *fd, *new_fd = NULL;
  1524. struct nsproxy *new_nsproxy = NULL;
  1525. int do_sysvsem = 0;
  1526. int err;
  1527. err = check_unshare_flags(unshare_flags);
  1528. if (err)
  1529. goto bad_unshare_out;
  1530. /*
  1531. * If unsharing namespace, must also unshare filesystem information.
  1532. */
  1533. if (unshare_flags & CLONE_NEWNS)
  1534. unshare_flags |= CLONE_FS;
  1535. /*
  1536. * CLONE_NEWIPC must also detach from the undolist: after switching
  1537. * to a new ipc namespace, the semaphore arrays from the old
  1538. * namespace are unreachable.
  1539. */
  1540. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1541. do_sysvsem = 1;
  1542. err = unshare_fs(unshare_flags, &new_fs);
  1543. if (err)
  1544. goto bad_unshare_out;
  1545. err = unshare_fd(unshare_flags, &new_fd);
  1546. if (err)
  1547. goto bad_unshare_cleanup_fs;
  1548. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
  1549. if (err)
  1550. goto bad_unshare_cleanup_fd;
  1551. if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
  1552. if (do_sysvsem) {
  1553. /*
  1554. * CLONE_SYSVSEM is equivalent to sys_exit().
  1555. */
  1556. exit_sem(current);
  1557. }
  1558. if (new_nsproxy) {
  1559. switch_task_namespaces(current, new_nsproxy);
  1560. new_nsproxy = NULL;
  1561. }
  1562. task_lock(current);
  1563. if (new_fs) {
  1564. fs = current->fs;
  1565. spin_lock(&fs->lock);
  1566. current->fs = new_fs;
  1567. if (--fs->users)
  1568. new_fs = NULL;
  1569. else
  1570. new_fs = fs;
  1571. spin_unlock(&fs->lock);
  1572. }
  1573. if (new_fd) {
  1574. fd = current->files;
  1575. current->files = new_fd;
  1576. new_fd = fd;
  1577. }
  1578. task_unlock(current);
  1579. }
  1580. if (new_nsproxy)
  1581. put_nsproxy(new_nsproxy);
  1582. bad_unshare_cleanup_fd:
  1583. if (new_fd)
  1584. put_files_struct(new_fd);
  1585. bad_unshare_cleanup_fs:
  1586. if (new_fs)
  1587. free_fs_struct(new_fs);
  1588. bad_unshare_out:
  1589. return err;
  1590. }
  1591. /*
  1592. * Helper to unshare the files of the current task.
  1593. * We don't want to expose copy_files internals to
  1594. * the exec layer of the kernel.
  1595. */
  1596. int unshare_files(struct files_struct **displaced)
  1597. {
  1598. struct task_struct *task = current;
  1599. struct files_struct *copy = NULL;
  1600. int error;
  1601. error = unshare_fd(CLONE_FILES, &copy);
  1602. if (error || !copy) {
  1603. *displaced = NULL;
  1604. return error;
  1605. }
  1606. *displaced = task->files;
  1607. task_lock(task);
  1608. task->files = copy;
  1609. task_unlock(task);
  1610. return 0;
  1611. }