driver.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. /*
  2. * Intel Wireless WiMAX Connection 2400m
  3. * Generic probe/disconnect, reset and message passing
  4. *
  5. *
  6. * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
  7. * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License version
  11. * 2 as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  21. * 02110-1301, USA.
  22. *
  23. *
  24. * See i2400m.h for driver documentation. This contains helpers for
  25. * the driver model glue [_setup()/_release()], handling device resets
  26. * [_dev_reset_handle()], and the backends for the WiMAX stack ops
  27. * reset [_op_reset()] and message from user [_op_msg_from_user()].
  28. *
  29. * ROADMAP:
  30. *
  31. * i2400m_op_msg_from_user()
  32. * i2400m_msg_to_dev()
  33. * wimax_msg_to_user_send()
  34. *
  35. * i2400m_op_reset()
  36. * i240m->bus_reset()
  37. *
  38. * i2400m_dev_reset_handle()
  39. * __i2400m_dev_reset_handle()
  40. * __i2400m_dev_stop()
  41. * __i2400m_dev_start()
  42. *
  43. * i2400m_setup()
  44. * i2400m->bus_setup()
  45. * i2400m_bootrom_init()
  46. * register_netdev()
  47. * wimax_dev_add()
  48. * i2400m_dev_start()
  49. * __i2400m_dev_start()
  50. * i2400m_dev_bootstrap()
  51. * i2400m_tx_setup()
  52. * i2400m->bus_dev_start()
  53. * i2400m_firmware_check()
  54. * i2400m_check_mac_addr()
  55. *
  56. * i2400m_release()
  57. * i2400m_dev_stop()
  58. * __i2400m_dev_stop()
  59. * i2400m_dev_shutdown()
  60. * i2400m->bus_dev_stop()
  61. * i2400m_tx_release()
  62. * i2400m->bus_release()
  63. * wimax_dev_rm()
  64. * unregister_netdev()
  65. */
  66. #include "i2400m.h"
  67. #include <linux/etherdevice.h>
  68. #include <linux/wimax/i2400m.h>
  69. #include <linux/module.h>
  70. #include <linux/moduleparam.h>
  71. #include <linux/suspend.h>
  72. #define D_SUBMODULE driver
  73. #include "debug-levels.h"
  74. int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */
  75. module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
  76. MODULE_PARM_DESC(idle_mode_disabled,
  77. "If true, the device will not enable idle mode negotiation "
  78. "with the base station (when connected) to save power.");
  79. int i2400m_rx_reorder_disabled; /* 0 (rx reorder enabled) by default */
  80. module_param_named(rx_reorder_disabled, i2400m_rx_reorder_disabled, int, 0644);
  81. MODULE_PARM_DESC(rx_reorder_disabled,
  82. "If true, RX reordering will be disabled.");
  83. int i2400m_power_save_disabled; /* 0 (power saving enabled) by default */
  84. module_param_named(power_save_disabled, i2400m_power_save_disabled, int, 0644);
  85. MODULE_PARM_DESC(power_save_disabled,
  86. "If true, the driver will not tell the device to enter "
  87. "power saving mode when it reports it is ready for it. "
  88. "False by default (so the device is told to do power "
  89. "saving).");
  90. static char i2400m_debug_params[128];
  91. module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
  92. 0644);
  93. MODULE_PARM_DESC(debug,
  94. "String of space-separated NAME:VALUE pairs, where NAMEs "
  95. "are the different debug submodules and VALUE are the "
  96. "initial debug value to set.");
  97. static char i2400m_barkers_params[128];
  98. module_param_string(barkers, i2400m_barkers_params,
  99. sizeof(i2400m_barkers_params), 0644);
  100. MODULE_PARM_DESC(barkers,
  101. "String of comma-separated 32-bit values; each is "
  102. "recognized as the value the device sends as a reboot "
  103. "signal; values are appended to a list--setting one value "
  104. "as zero cleans the existing list and starts a new one.");
  105. static
  106. struct i2400m_work *__i2400m_work_setup(
  107. struct i2400m *i2400m, void (*fn)(struct work_struct *),
  108. gfp_t gfp_flags, const void *pl, size_t pl_size)
  109. {
  110. struct i2400m_work *iw;
  111. iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags);
  112. if (iw == NULL)
  113. return NULL;
  114. iw->i2400m = i2400m_get(i2400m);
  115. iw->pl_size = pl_size;
  116. memcpy(iw->pl, pl, pl_size);
  117. INIT_WORK(&iw->ws, fn);
  118. return iw;
  119. }
  120. /**
  121. * i2400m_queue_work - schedule work on a i2400m's queue
  122. *
  123. * @i2400m: device descriptor
  124. *
  125. * @fn: function to run to execute work. It gets passed a 'struct
  126. * work_struct' that is wrapped in a 'struct i2400m_work'. Once
  127. * done, you have to (1) i2400m_put(i2400m_work->i2400m) and then
  128. * (2) kfree(i2400m_work).
  129. *
  130. * @gfp_flags: GFP flags for memory allocation.
  131. *
  132. * @pl: pointer to a payload buffer that you want to pass to the _work
  133. * function. Use this to pack (for example) a struct with extra
  134. * arguments.
  135. *
  136. * @pl_size: size of the payload buffer.
  137. *
  138. * We do this quite often, so this just saves typing; allocate a
  139. * wrapper for a i2400m, get a ref to it, pack arguments and launch
  140. * the work.
  141. *
  142. * A usual workflow is:
  143. *
  144. * struct my_work_args {
  145. * void *something;
  146. * int whatever;
  147. * };
  148. * ...
  149. *
  150. * struct my_work_args my_args = {
  151. * .something = FOO,
  152. * .whaetever = BLAH
  153. * };
  154. * i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL,
  155. * &args, sizeof(args))
  156. *
  157. * And now the work function can unpack the arguments and call the
  158. * real function (or do the job itself):
  159. *
  160. * static
  161. * void my_work_fn((struct work_struct *ws)
  162. * {
  163. * struct i2400m_work *iw =
  164. * container_of(ws, struct i2400m_work, ws);
  165. * struct my_work_args *my_args = (void *) iw->pl;
  166. *
  167. * my_work(iw->i2400m, my_args->something, my_args->whatevert);
  168. * }
  169. */
  170. int i2400m_queue_work(struct i2400m *i2400m,
  171. void (*fn)(struct work_struct *), gfp_t gfp_flags,
  172. const void *pl, size_t pl_size)
  173. {
  174. int result;
  175. struct i2400m_work *iw;
  176. BUG_ON(i2400m->work_queue == NULL);
  177. result = -ENOMEM;
  178. iw = __i2400m_work_setup(i2400m, fn, gfp_flags, pl, pl_size);
  179. if (iw != NULL) {
  180. result = queue_work(i2400m->work_queue, &iw->ws);
  181. if (WARN_ON(result == 0))
  182. result = -ENXIO;
  183. }
  184. return result;
  185. }
  186. EXPORT_SYMBOL_GPL(i2400m_queue_work);
  187. /*
  188. * Schedule i2400m's specific work on the system's queue.
  189. *
  190. * Used for a few cases where we really need it; otherwise, identical
  191. * to i2400m_queue_work().
  192. *
  193. * Returns < 0 errno code on error, 1 if ok.
  194. *
  195. * If it returns zero, something really bad happened, as it means the
  196. * works struct was already queued, but we have just allocated it, so
  197. * it should not happen.
  198. */
  199. int i2400m_schedule_work(struct i2400m *i2400m,
  200. void (*fn)(struct work_struct *), gfp_t gfp_flags,
  201. const void *pl, size_t pl_size)
  202. {
  203. int result;
  204. struct i2400m_work *iw;
  205. result = -ENOMEM;
  206. iw = __i2400m_work_setup(i2400m, fn, gfp_flags, pl, pl_size);
  207. if (iw != NULL) {
  208. result = schedule_work(&iw->ws);
  209. if (WARN_ON(result == 0))
  210. result = -ENXIO;
  211. }
  212. return result;
  213. }
  214. /*
  215. * WiMAX stack operation: relay a message from user space
  216. *
  217. * @wimax_dev: device descriptor
  218. * @pipe_name: named pipe the message is for
  219. * @msg_buf: pointer to the message bytes
  220. * @msg_len: length of the buffer
  221. * @genl_info: passed by the generic netlink layer
  222. *
  223. * The WiMAX stack will call this function when a message was received
  224. * from user space.
  225. *
  226. * For the i2400m, this is an L3L4 message, as specified in
  227. * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
  228. * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
  229. * coded in Little Endian.
  230. *
  231. * This function just verifies that the header declaration and the
  232. * payload are consistent and then deals with it, either forwarding it
  233. * to the device or procesing it locally.
  234. *
  235. * In the i2400m, messages are basically commands that will carry an
  236. * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
  237. * user space. The rx.c code might intercept the response and use it
  238. * to update the driver's state, but then it will pass it on so it can
  239. * be relayed back to user space.
  240. *
  241. * Note that asynchronous events from the device are processed and
  242. * sent to user space in rx.c.
  243. */
  244. static
  245. int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
  246. const char *pipe_name,
  247. const void *msg_buf, size_t msg_len,
  248. const struct genl_info *genl_info)
  249. {
  250. int result;
  251. struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
  252. struct device *dev = i2400m_dev(i2400m);
  253. struct sk_buff *ack_skb;
  254. d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
  255. "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
  256. msg_buf, msg_len, genl_info);
  257. ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
  258. result = PTR_ERR(ack_skb);
  259. if (IS_ERR(ack_skb))
  260. goto error_msg_to_dev;
  261. result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
  262. error_msg_to_dev:
  263. d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
  264. "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
  265. genl_info, result);
  266. return result;
  267. }
  268. /*
  269. * Context to wait for a reset to finalize
  270. */
  271. struct i2400m_reset_ctx {
  272. struct completion completion;
  273. int result;
  274. };
  275. /*
  276. * WiMAX stack operation: reset a device
  277. *
  278. * @wimax_dev: device descriptor
  279. *
  280. * See the documentation for wimax_reset() and wimax_dev->op_reset for
  281. * the requirements of this function. The WiMAX stack guarantees
  282. * serialization on calls to this function.
  283. *
  284. * Do a warm reset on the device; if it fails, resort to a cold reset
  285. * and return -ENODEV. On successful warm reset, we need to block
  286. * until it is complete.
  287. *
  288. * The bus-driver implementation of reset takes care of falling back
  289. * to cold reset if warm fails.
  290. */
  291. static
  292. int i2400m_op_reset(struct wimax_dev *wimax_dev)
  293. {
  294. int result;
  295. struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
  296. struct device *dev = i2400m_dev(i2400m);
  297. struct i2400m_reset_ctx ctx = {
  298. .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
  299. .result = 0,
  300. };
  301. d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
  302. mutex_lock(&i2400m->init_mutex);
  303. i2400m->reset_ctx = &ctx;
  304. mutex_unlock(&i2400m->init_mutex);
  305. result = i2400m->bus_reset(i2400m, I2400M_RT_WARM);
  306. if (result < 0)
  307. goto out;
  308. result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
  309. if (result == 0)
  310. result = -ETIMEDOUT;
  311. else if (result > 0)
  312. result = ctx.result;
  313. /* if result < 0, pass it on */
  314. mutex_lock(&i2400m->init_mutex);
  315. i2400m->reset_ctx = NULL;
  316. mutex_unlock(&i2400m->init_mutex);
  317. out:
  318. d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
  319. return result;
  320. }
  321. /*
  322. * Check the MAC address we got from boot mode is ok
  323. *
  324. * @i2400m: device descriptor
  325. *
  326. * Returns: 0 if ok, < 0 errno code on error.
  327. */
  328. static
  329. int i2400m_check_mac_addr(struct i2400m *i2400m)
  330. {
  331. int result;
  332. struct device *dev = i2400m_dev(i2400m);
  333. struct sk_buff *skb;
  334. const struct i2400m_tlv_detailed_device_info *ddi;
  335. struct net_device *net_dev = i2400m->wimax_dev.net_dev;
  336. const unsigned char zeromac[ETH_ALEN] = { 0 };
  337. d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
  338. skb = i2400m_get_device_info(i2400m);
  339. if (IS_ERR(skb)) {
  340. result = PTR_ERR(skb);
  341. dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
  342. result);
  343. goto error;
  344. }
  345. /* Extract MAC addresss */
  346. ddi = (void *) skb->data;
  347. BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
  348. d_printf(2, dev, "GET DEVICE INFO: mac addr "
  349. "%02x:%02x:%02x:%02x:%02x:%02x\n",
  350. ddi->mac_address[0], ddi->mac_address[1],
  351. ddi->mac_address[2], ddi->mac_address[3],
  352. ddi->mac_address[4], ddi->mac_address[5]);
  353. if (!memcmp(net_dev->perm_addr, ddi->mac_address,
  354. sizeof(ddi->mac_address)))
  355. goto ok;
  356. dev_warn(dev, "warning: device reports a different MAC address "
  357. "to that of boot mode's\n");
  358. dev_warn(dev, "device reports %02x:%02x:%02x:%02x:%02x:%02x\n",
  359. ddi->mac_address[0], ddi->mac_address[1],
  360. ddi->mac_address[2], ddi->mac_address[3],
  361. ddi->mac_address[4], ddi->mac_address[5]);
  362. dev_warn(dev, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n",
  363. net_dev->perm_addr[0], net_dev->perm_addr[1],
  364. net_dev->perm_addr[2], net_dev->perm_addr[3],
  365. net_dev->perm_addr[4], net_dev->perm_addr[5]);
  366. if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
  367. dev_err(dev, "device reports an invalid MAC address, "
  368. "not updating\n");
  369. else {
  370. dev_warn(dev, "updating MAC address\n");
  371. net_dev->addr_len = ETH_ALEN;
  372. memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
  373. memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
  374. }
  375. ok:
  376. result = 0;
  377. kfree_skb(skb);
  378. error:
  379. d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
  380. return result;
  381. }
  382. /**
  383. * __i2400m_dev_start - Bring up driver communication with the device
  384. *
  385. * @i2400m: device descriptor
  386. * @flags: boot mode flags
  387. *
  388. * Returns: 0 if ok, < 0 errno code on error.
  389. *
  390. * Uploads firmware and brings up all the resources needed to be able
  391. * to communicate with the device.
  392. *
  393. * The workqueue has to be setup early, at least before RX handling
  394. * (it's only real user for now) so it can process reports as they
  395. * arrive. We also want to destroy it if we retry, to make sure it is
  396. * flushed...easier like this.
  397. *
  398. * TX needs to be setup before the bus-specific code (otherwise on
  399. * shutdown, the bus-tx code could try to access it).
  400. */
  401. static
  402. int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
  403. {
  404. int result;
  405. struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
  406. struct net_device *net_dev = wimax_dev->net_dev;
  407. struct device *dev = i2400m_dev(i2400m);
  408. int times = i2400m->bus_bm_retries;
  409. d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
  410. retry:
  411. result = i2400m_dev_bootstrap(i2400m, flags);
  412. if (result < 0) {
  413. dev_err(dev, "cannot bootstrap device: %d\n", result);
  414. goto error_bootstrap;
  415. }
  416. result = i2400m_tx_setup(i2400m);
  417. if (result < 0)
  418. goto error_tx_setup;
  419. result = i2400m_rx_setup(i2400m);
  420. if (result < 0)
  421. goto error_rx_setup;
  422. i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
  423. if (i2400m->work_queue == NULL) {
  424. result = -ENOMEM;
  425. dev_err(dev, "cannot create workqueue\n");
  426. goto error_create_workqueue;
  427. }
  428. result = i2400m->bus_dev_start(i2400m);
  429. if (result < 0)
  430. goto error_bus_dev_start;
  431. i2400m->ready = 1;
  432. wmb(); /* see i2400m->ready's documentation */
  433. result = i2400m_firmware_check(i2400m); /* fw versions ok? */
  434. if (result < 0)
  435. goto error_fw_check;
  436. /* At this point is ok to send commands to the device */
  437. result = i2400m_check_mac_addr(i2400m);
  438. if (result < 0)
  439. goto error_check_mac_addr;
  440. wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
  441. result = i2400m_dev_initialize(i2400m);
  442. if (result < 0)
  443. goto error_dev_initialize;
  444. /* At this point, reports will come for the device and set it
  445. * to the right state if it is different than UNINITIALIZED */
  446. d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
  447. net_dev, i2400m, result);
  448. return result;
  449. error_dev_initialize:
  450. error_check_mac_addr:
  451. i2400m->ready = 0;
  452. wmb(); /* see i2400m->ready's documentation */
  453. flush_workqueue(i2400m->work_queue);
  454. error_fw_check:
  455. i2400m->bus_dev_stop(i2400m);
  456. error_bus_dev_start:
  457. destroy_workqueue(i2400m->work_queue);
  458. error_create_workqueue:
  459. i2400m_rx_release(i2400m);
  460. error_rx_setup:
  461. i2400m_tx_release(i2400m);
  462. error_tx_setup:
  463. error_bootstrap:
  464. if (result == -EL3RST && times-- > 0) {
  465. flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT;
  466. goto retry;
  467. }
  468. d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
  469. net_dev, i2400m, result);
  470. return result;
  471. }
  472. static
  473. int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
  474. {
  475. int result = 0;
  476. mutex_lock(&i2400m->init_mutex); /* Well, start the device */
  477. if (i2400m->updown == 0) {
  478. result = __i2400m_dev_start(i2400m, bm_flags);
  479. if (result >= 0) {
  480. i2400m->updown = 1;
  481. wmb(); /* see i2400m->updown's documentation */
  482. }
  483. }
  484. mutex_unlock(&i2400m->init_mutex);
  485. return result;
  486. }
  487. /**
  488. * i2400m_dev_stop - Tear down driver communication with the device
  489. *
  490. * @i2400m: device descriptor
  491. *
  492. * Returns: 0 if ok, < 0 errno code on error.
  493. *
  494. * Releases all the resources allocated to communicate with the
  495. * device. Note we cannot destroy the workqueue earlier as until RX is
  496. * fully destroyed, it could still try to schedule jobs.
  497. */
  498. static
  499. void __i2400m_dev_stop(struct i2400m *i2400m)
  500. {
  501. struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
  502. struct device *dev = i2400m_dev(i2400m);
  503. d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
  504. wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
  505. i2400m_net_wake_stop(i2400m);
  506. i2400m_dev_shutdown(i2400m);
  507. /*
  508. * Make sure no report hooks are running *before* we stop the
  509. * communication infrastructure with the device.
  510. */
  511. i2400m->ready = 0; /* nobody can queue work anymore */
  512. wmb(); /* see i2400m->ready's documentation */
  513. flush_workqueue(i2400m->work_queue);
  514. i2400m->bus_dev_stop(i2400m);
  515. destroy_workqueue(i2400m->work_queue);
  516. i2400m_rx_release(i2400m);
  517. i2400m_tx_release(i2400m);
  518. wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
  519. d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
  520. }
  521. /*
  522. * Watch out -- we only need to stop if there is a need for it. The
  523. * device could have reset itself and failed to come up again (see
  524. * _i2400m_dev_reset_handle()).
  525. */
  526. static
  527. void i2400m_dev_stop(struct i2400m *i2400m)
  528. {
  529. mutex_lock(&i2400m->init_mutex);
  530. if (i2400m->updown) {
  531. __i2400m_dev_stop(i2400m);
  532. i2400m->updown = 0;
  533. wmb(); /* see i2400m->updown's documentation */
  534. }
  535. mutex_unlock(&i2400m->init_mutex);
  536. }
  537. /*
  538. * Listen to PM events to cache the firmware before suspend/hibernation
  539. *
  540. * When the device comes out of suspend, it might go into reset and
  541. * firmware has to be uploaded again. At resume, most of the times, we
  542. * can't load firmware images from disk, so we need to cache it.
  543. *
  544. * i2400m_fw_cache() will allocate a kobject and attach the firmware
  545. * to it; that way we don't have to worry too much about the fw loader
  546. * hitting a race condition.
  547. *
  548. * Note: modus operandi stolen from the Orinoco driver; thx.
  549. */
  550. static
  551. int i2400m_pm_notifier(struct notifier_block *notifier,
  552. unsigned long pm_event,
  553. void *unused)
  554. {
  555. struct i2400m *i2400m =
  556. container_of(notifier, struct i2400m, pm_notifier);
  557. struct device *dev = i2400m_dev(i2400m);
  558. d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event);
  559. switch (pm_event) {
  560. case PM_HIBERNATION_PREPARE:
  561. case PM_SUSPEND_PREPARE:
  562. i2400m_fw_cache(i2400m);
  563. break;
  564. case PM_POST_RESTORE:
  565. /* Restore from hibernation failed. We need to clean
  566. * up in exactly the same way, so fall through. */
  567. case PM_POST_HIBERNATION:
  568. case PM_POST_SUSPEND:
  569. i2400m_fw_uncache(i2400m);
  570. break;
  571. case PM_RESTORE_PREPARE:
  572. default:
  573. break;
  574. }
  575. d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event);
  576. return NOTIFY_DONE;
  577. }
  578. /*
  579. * The device has rebooted; fix up the device and the driver
  580. *
  581. * Tear down the driver communication with the device, reload the
  582. * firmware and reinitialize the communication with the device.
  583. *
  584. * If someone calls a reset when the device's firmware is down, in
  585. * theory we won't see it because we are not listening. However, just
  586. * in case, leave the code to handle it.
  587. *
  588. * If there is a reset context, use it; this means someone is waiting
  589. * for us to tell him when the reset operation is complete and the
  590. * device is ready to rock again.
  591. *
  592. * NOTE: if we are in the process of bringing up or down the
  593. * communication with the device [running i2400m_dev_start() or
  594. * _stop()], don't do anything, let it fail and handle it.
  595. *
  596. * This function is ran always in a thread context
  597. *
  598. * This function gets passed, as payload to i2400m_work() a 'const
  599. * char *' ptr with a "reason" why the reset happened (for messages).
  600. */
  601. static
  602. void __i2400m_dev_reset_handle(struct work_struct *ws)
  603. {
  604. int result;
  605. struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
  606. const char *reason;
  607. struct i2400m *i2400m = iw->i2400m;
  608. struct device *dev = i2400m_dev(i2400m);
  609. struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
  610. if (WARN_ON(iw->pl_size != sizeof(reason)))
  611. reason = "SW BUG: reason n/a";
  612. else
  613. memcpy(&reason, iw->pl, sizeof(reason));
  614. d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
  615. result = 0;
  616. if (mutex_trylock(&i2400m->init_mutex) == 0) {
  617. /* We are still in i2400m_dev_start() [let it fail] or
  618. * i2400m_dev_stop() [we are shutting down anyway, so
  619. * ignore it] or we are resetting somewhere else. */
  620. dev_err(dev, "device rebooted somewhere else?\n");
  621. i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
  622. complete(&i2400m->msg_completion);
  623. goto out;
  624. }
  625. if (i2400m->updown == 0) {
  626. dev_info(dev, "%s: device is down, doing nothing\n", reason);
  627. goto out_unlock;
  628. }
  629. dev_err(dev, "%s: reinitializing driver\n", reason);
  630. __i2400m_dev_stop(i2400m);
  631. result = __i2400m_dev_start(i2400m,
  632. I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
  633. if (result < 0) {
  634. i2400m->updown = 0;
  635. wmb(); /* see i2400m->updown's documentation */
  636. dev_err(dev, "%s: cannot start the device: %d\n",
  637. reason, result);
  638. result = i2400m->bus_reset(i2400m, I2400M_RT_BUS);
  639. if (result >= 0)
  640. result = -ENODEV;
  641. }
  642. out_unlock:
  643. if (i2400m->reset_ctx) {
  644. ctx->result = result;
  645. complete(&ctx->completion);
  646. }
  647. mutex_unlock(&i2400m->init_mutex);
  648. out:
  649. i2400m_put(i2400m);
  650. kfree(iw);
  651. d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n",
  652. ws, i2400m, reason);
  653. return;
  654. }
  655. /**
  656. * i2400m_dev_reset_handle - Handle a device's reset in a thread context
  657. *
  658. * Schedule a device reset handling out on a thread context, so it
  659. * is safe to call from atomic context. We can't use the i2400m's
  660. * queue as we are going to destroy it and reinitialize it as part of
  661. * the driver bringup/bringup process.
  662. *
  663. * See __i2400m_dev_reset_handle() for details; that takes care of
  664. * reinitializing the driver to handle the reset, calling into the
  665. * bus-specific functions ops as needed.
  666. */
  667. int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
  668. {
  669. i2400m->boot_mode = 1;
  670. wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
  671. return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
  672. GFP_ATOMIC, &reason, sizeof(reason));
  673. }
  674. EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
  675. /**
  676. * i2400m_bm_buf_alloc - Alloc the command and ack buffers for boot mode
  677. *
  678. * Get the buffers needed to deal with boot mode messages. These
  679. * buffers need to be allocated before the sdio recieve irq is setup.
  680. */
  681. int i2400m_bm_buf_alloc(struct i2400m *i2400m)
  682. {
  683. int result;
  684. result = -ENOMEM;
  685. i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
  686. if (i2400m->bm_cmd_buf == NULL)
  687. goto error_bm_cmd_kzalloc;
  688. i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
  689. if (i2400m->bm_ack_buf == NULL)
  690. goto error_bm_ack_buf_kzalloc;
  691. return 0;
  692. error_bm_ack_buf_kzalloc:
  693. kfree(i2400m->bm_cmd_buf);
  694. error_bm_cmd_kzalloc:
  695. return result;
  696. }
  697. EXPORT_SYMBOL_GPL(i2400m_bm_buf_alloc);
  698. /**
  699. * i2400m_bm_buf_free - Free boot mode command and ack buffers.
  700. *
  701. * Free the command and ack buffers
  702. *
  703. */
  704. void i2400m_bm_buf_free(struct i2400m *i2400m)
  705. {
  706. kfree(i2400m->bm_ack_buf);
  707. kfree(i2400m->bm_cmd_buf);
  708. return;
  709. }
  710. EXPORT_SYMBOL_GPL(i2400m_bm_buf_free
  711. );
  712. /**
  713. * i2400m_setup - bus-generic setup function for the i2400m device
  714. *
  715. * @i2400m: device descriptor (bus-specific parts have been initialized)
  716. *
  717. * Returns: 0 if ok, < 0 errno code on error.
  718. *
  719. * Sets up basic device comunication infrastructure, boots the ROM to
  720. * read the MAC address, registers with the WiMAX and network stacks
  721. * and then brings up the device.
  722. */
  723. int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
  724. {
  725. int result = -ENODEV;
  726. struct device *dev = i2400m_dev(i2400m);
  727. struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
  728. struct net_device *net_dev = i2400m->wimax_dev.net_dev;
  729. d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
  730. snprintf(wimax_dev->name, sizeof(wimax_dev->name),
  731. "i2400m-%s:%s", dev->bus->name, dev_name(dev));
  732. if (i2400m->bus_setup) {
  733. result = i2400m->bus_setup(i2400m);
  734. if (result < 0) {
  735. dev_err(dev, "bus-specific setup failed: %d\n",
  736. result);
  737. goto error_bus_setup;
  738. }
  739. }
  740. result = i2400m_bootrom_init(i2400m, bm_flags);
  741. if (result < 0) {
  742. dev_err(dev, "read mac addr: bootrom init "
  743. "failed: %d\n", result);
  744. goto error_bootrom_init;
  745. }
  746. result = i2400m_read_mac_addr(i2400m);
  747. if (result < 0)
  748. goto error_read_mac_addr;
  749. random_ether_addr(i2400m->src_mac_addr);
  750. i2400m->pm_notifier.notifier_call = i2400m_pm_notifier;
  751. register_pm_notifier(&i2400m->pm_notifier);
  752. result = register_netdev(net_dev); /* Okey dokey, bring it up */
  753. if (result < 0) {
  754. dev_err(dev, "cannot register i2400m network device: %d\n",
  755. result);
  756. goto error_register_netdev;
  757. }
  758. netif_carrier_off(net_dev);
  759. i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
  760. i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
  761. i2400m->wimax_dev.op_reset = i2400m_op_reset;
  762. result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
  763. if (result < 0)
  764. goto error_wimax_dev_add;
  765. /* Now setup all that requires a registered net and wimax device. */
  766. result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
  767. if (result < 0) {
  768. dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
  769. goto error_sysfs_setup;
  770. }
  771. result = i2400m_debugfs_add(i2400m);
  772. if (result < 0) {
  773. dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
  774. goto error_debugfs_setup;
  775. }
  776. result = i2400m_dev_start(i2400m, bm_flags);
  777. if (result < 0)
  778. goto error_dev_start;
  779. d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
  780. return result;
  781. error_dev_start:
  782. i2400m_debugfs_rm(i2400m);
  783. error_debugfs_setup:
  784. sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
  785. &i2400m_dev_attr_group);
  786. error_sysfs_setup:
  787. wimax_dev_rm(&i2400m->wimax_dev);
  788. error_wimax_dev_add:
  789. unregister_netdev(net_dev);
  790. error_register_netdev:
  791. unregister_pm_notifier(&i2400m->pm_notifier);
  792. error_read_mac_addr:
  793. error_bootrom_init:
  794. if (i2400m->bus_release)
  795. i2400m->bus_release(i2400m);
  796. error_bus_setup:
  797. d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
  798. return result;
  799. }
  800. EXPORT_SYMBOL_GPL(i2400m_setup);
  801. /**
  802. * i2400m_release - release the bus-generic driver resources
  803. *
  804. * Sends a disconnect message and undoes any setup done by i2400m_setup()
  805. */
  806. void i2400m_release(struct i2400m *i2400m)
  807. {
  808. struct device *dev = i2400m_dev(i2400m);
  809. d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
  810. netif_stop_queue(i2400m->wimax_dev.net_dev);
  811. i2400m_dev_stop(i2400m);
  812. i2400m_debugfs_rm(i2400m);
  813. sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
  814. &i2400m_dev_attr_group);
  815. wimax_dev_rm(&i2400m->wimax_dev);
  816. unregister_netdev(i2400m->wimax_dev.net_dev);
  817. unregister_pm_notifier(&i2400m->pm_notifier);
  818. if (i2400m->bus_release)
  819. i2400m->bus_release(i2400m);
  820. i2400m_bm_buf_free(i2400m);
  821. d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
  822. }
  823. EXPORT_SYMBOL_GPL(i2400m_release);
  824. /*
  825. * Debug levels control; see debug.h
  826. */
  827. struct d_level D_LEVEL[] = {
  828. D_SUBMODULE_DEFINE(control),
  829. D_SUBMODULE_DEFINE(driver),
  830. D_SUBMODULE_DEFINE(debugfs),
  831. D_SUBMODULE_DEFINE(fw),
  832. D_SUBMODULE_DEFINE(netdev),
  833. D_SUBMODULE_DEFINE(rfkill),
  834. D_SUBMODULE_DEFINE(rx),
  835. D_SUBMODULE_DEFINE(sysfs),
  836. D_SUBMODULE_DEFINE(tx),
  837. };
  838. size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
  839. static
  840. int __init i2400m_driver_init(void)
  841. {
  842. d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params,
  843. "i2400m.debug");
  844. return i2400m_barker_db_init(i2400m_barkers_params);
  845. }
  846. module_init(i2400m_driver_init);
  847. static
  848. void __exit i2400m_driver_exit(void)
  849. {
  850. /* for scheds i2400m_dev_reset_handle() */
  851. flush_scheduled_work();
  852. i2400m_barker_db_exit();
  853. return;
  854. }
  855. module_exit(i2400m_driver_exit);
  856. MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
  857. MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
  858. MODULE_LICENSE("GPL");