i2c-eg20t.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076
  1. /*
  2. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/errno.h>
  22. #include <linux/i2c.h>
  23. #include <linux/fs.h>
  24. #include <linux/io.h>
  25. #include <linux/types.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/jiffies.h>
  28. #include <linux/pci.h>
  29. #include <linux/mutex.h>
  30. #include <linux/ktime.h>
  31. #include <linux/slab.h>
  32. #define PCH_EVENT_SET 0 /* I2C Interrupt Event Set Status */
  33. #define PCH_EVENT_NONE 1 /* I2C Interrupt Event Clear Status */
  34. #define PCH_MAX_CLK 100000 /* Maximum Clock speed in MHz */
  35. #define PCH_BUFFER_MODE_ENABLE 0x0002 /* flag for Buffer mode enable */
  36. #define PCH_EEPROM_SW_RST_MODE_ENABLE 0x0008 /* EEPROM SW RST enable flag */
  37. #define PCH_I2CSADR 0x00 /* I2C slave address register */
  38. #define PCH_I2CCTL 0x04 /* I2C control register */
  39. #define PCH_I2CSR 0x08 /* I2C status register */
  40. #define PCH_I2CDR 0x0C /* I2C data register */
  41. #define PCH_I2CMON 0x10 /* I2C bus monitor register */
  42. #define PCH_I2CBC 0x14 /* I2C bus transfer rate setup counter */
  43. #define PCH_I2CMOD 0x18 /* I2C mode register */
  44. #define PCH_I2CBUFSLV 0x1C /* I2C buffer mode slave address register */
  45. #define PCH_I2CBUFSUB 0x20 /* I2C buffer mode subaddress register */
  46. #define PCH_I2CBUFFOR 0x24 /* I2C buffer mode format register */
  47. #define PCH_I2CBUFCTL 0x28 /* I2C buffer mode control register */
  48. #define PCH_I2CBUFMSK 0x2C /* I2C buffer mode interrupt mask register */
  49. #define PCH_I2CBUFSTA 0x30 /* I2C buffer mode status register */
  50. #define PCH_I2CBUFLEV 0x34 /* I2C buffer mode level register */
  51. #define PCH_I2CESRFOR 0x38 /* EEPROM software reset mode format register */
  52. #define PCH_I2CESRCTL 0x3C /* EEPROM software reset mode ctrl register */
  53. #define PCH_I2CESRMSK 0x40 /* EEPROM software reset mode */
  54. #define PCH_I2CESRSTA 0x44 /* EEPROM software reset mode status register */
  55. #define PCH_I2CTMR 0x48 /* I2C timer register */
  56. #define PCH_I2CSRST 0xFC /* I2C reset register */
  57. #define PCH_I2CNF 0xF8 /* I2C noise filter register */
  58. #define BUS_IDLE_TIMEOUT 20
  59. #define PCH_I2CCTL_I2CMEN 0x0080
  60. #define TEN_BIT_ADDR_DEFAULT 0xF000
  61. #define TEN_BIT_ADDR_MASK 0xF0
  62. #define PCH_START 0x0020
  63. #define PCH_RESTART 0x0004
  64. #define PCH_ESR_START 0x0001
  65. #define PCH_BUFF_START 0x1
  66. #define PCH_REPSTART 0x0004
  67. #define PCH_ACK 0x0008
  68. #define PCH_GETACK 0x0001
  69. #define CLR_REG 0x0
  70. #define I2C_RD 0x1
  71. #define I2CMCF_BIT 0x0080
  72. #define I2CMIF_BIT 0x0002
  73. #define I2CMAL_BIT 0x0010
  74. #define I2CBMFI_BIT 0x0001
  75. #define I2CBMAL_BIT 0x0002
  76. #define I2CBMNA_BIT 0x0004
  77. #define I2CBMTO_BIT 0x0008
  78. #define I2CBMIS_BIT 0x0010
  79. #define I2CESRFI_BIT 0X0001
  80. #define I2CESRTO_BIT 0x0002
  81. #define I2CESRFIIE_BIT 0x1
  82. #define I2CESRTOIE_BIT 0x2
  83. #define I2CBMDZ_BIT 0x0040
  84. #define I2CBMAG_BIT 0x0020
  85. #define I2CMBB_BIT 0x0020
  86. #define BUFFER_MODE_MASK (I2CBMFI_BIT | I2CBMAL_BIT | I2CBMNA_BIT | \
  87. I2CBMTO_BIT | I2CBMIS_BIT)
  88. #define I2C_ADDR_MSK 0xFF
  89. #define I2C_MSB_2B_MSK 0x300
  90. #define FAST_MODE_CLK 400
  91. #define FAST_MODE_EN 0x0001
  92. #define SUB_ADDR_LEN_MAX 4
  93. #define BUF_LEN_MAX 32
  94. #define PCH_BUFFER_MODE 0x1
  95. #define EEPROM_SW_RST_MODE 0x0002
  96. #define NORMAL_INTR_ENBL 0x0300
  97. #define EEPROM_RST_INTR_ENBL (I2CESRFIIE_BIT | I2CESRTOIE_BIT)
  98. #define EEPROM_RST_INTR_DISBL 0x0
  99. #define BUFFER_MODE_INTR_ENBL 0x001F
  100. #define BUFFER_MODE_INTR_DISBL 0x0
  101. #define NORMAL_MODE 0x0
  102. #define BUFFER_MODE 0x1
  103. #define EEPROM_SR_MODE 0x2
  104. #define I2C_TX_MODE 0x0010
  105. #define PCH_BUF_TX 0xFFF7
  106. #define PCH_BUF_RD 0x0008
  107. #define I2C_ERROR_MASK (I2CESRTO_EVENT | I2CBMIS_EVENT | I2CBMTO_EVENT | \
  108. I2CBMNA_EVENT | I2CBMAL_EVENT | I2CMAL_EVENT)
  109. #define I2CMAL_EVENT 0x0001
  110. #define I2CMCF_EVENT 0x0002
  111. #define I2CBMFI_EVENT 0x0004
  112. #define I2CBMAL_EVENT 0x0008
  113. #define I2CBMNA_EVENT 0x0010
  114. #define I2CBMTO_EVENT 0x0020
  115. #define I2CBMIS_EVENT 0x0040
  116. #define I2CESRFI_EVENT 0x0080
  117. #define I2CESRTO_EVENT 0x0100
  118. #define PCI_DEVICE_ID_PCH_I2C 0x8817
  119. #define pch_dbg(adap, fmt, arg...) \
  120. dev_dbg(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg)
  121. #define pch_err(adap, fmt, arg...) \
  122. dev_err(adap->pch_adapter.dev.parent, "%s :" fmt, __func__, ##arg)
  123. #define pch_pci_err(pdev, fmt, arg...) \
  124. dev_err(&pdev->dev, "%s :" fmt, __func__, ##arg)
  125. #define pch_pci_dbg(pdev, fmt, arg...) \
  126. dev_dbg(&pdev->dev, "%s :" fmt, __func__, ##arg)
  127. /*
  128. Set the number of I2C instance max
  129. Intel EG20T PCH : 1ch
  130. LAPIS Semiconductor ML7213 IOH : 2ch
  131. LAPIS Semiconductor ML7831 IOH : 1ch
  132. */
  133. #define PCH_I2C_MAX_DEV 2
  134. /**
  135. * struct i2c_algo_pch_data - for I2C driver functionalities
  136. * @pch_adapter: stores the reference to i2c_adapter structure
  137. * @p_adapter_info: stores the reference to adapter_info structure
  138. * @pch_base_address: specifies the remapped base address
  139. * @pch_buff_mode_en: specifies if buffer mode is enabled
  140. * @pch_event_flag: specifies occurrence of interrupt events
  141. * @pch_i2c_xfer_in_progress: specifies whether the transfer is completed
  142. */
  143. struct i2c_algo_pch_data {
  144. struct i2c_adapter pch_adapter;
  145. struct adapter_info *p_adapter_info;
  146. void __iomem *pch_base_address;
  147. int pch_buff_mode_en;
  148. u32 pch_event_flag;
  149. bool pch_i2c_xfer_in_progress;
  150. };
  151. /**
  152. * struct adapter_info - This structure holds the adapter information for the
  153. PCH i2c controller
  154. * @pch_data: stores a list of i2c_algo_pch_data
  155. * @pch_i2c_suspended: specifies whether the system is suspended or not
  156. * perhaps with more lines and words.
  157. * @ch_num: specifies the number of i2c instance
  158. *
  159. * pch_data has as many elements as maximum I2C channels
  160. */
  161. struct adapter_info {
  162. struct i2c_algo_pch_data pch_data[PCH_I2C_MAX_DEV];
  163. bool pch_i2c_suspended;
  164. int ch_num;
  165. };
  166. static int pch_i2c_speed = 100; /* I2C bus speed in Kbps */
  167. static int pch_clk = 50000; /* specifies I2C clock speed in KHz */
  168. static wait_queue_head_t pch_event;
  169. static DEFINE_MUTEX(pch_mutex);
  170. /* Definition for ML7213 by LAPIS Semiconductor */
  171. #define PCI_VENDOR_ID_ROHM 0x10DB
  172. #define PCI_DEVICE_ID_ML7213_I2C 0x802D
  173. #define PCI_DEVICE_ID_ML7223_I2C 0x8010
  174. #define PCI_DEVICE_ID_ML7831_I2C 0x8817
  175. static DEFINE_PCI_DEVICE_TABLE(pch_pcidev_id) = {
  176. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_PCH_I2C), 1, },
  177. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_I2C), 2, },
  178. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_I2C), 1, },
  179. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_I2C), 1, },
  180. {0,}
  181. };
  182. static irqreturn_t pch_i2c_handler(int irq, void *pData);
  183. static inline void pch_setbit(void __iomem *addr, u32 offset, u32 bitmask)
  184. {
  185. u32 val;
  186. val = ioread32(addr + offset);
  187. val |= bitmask;
  188. iowrite32(val, addr + offset);
  189. }
  190. static inline void pch_clrbit(void __iomem *addr, u32 offset, u32 bitmask)
  191. {
  192. u32 val;
  193. val = ioread32(addr + offset);
  194. val &= (~bitmask);
  195. iowrite32(val, addr + offset);
  196. }
  197. /**
  198. * pch_i2c_init() - hardware initialization of I2C module
  199. * @adap: Pointer to struct i2c_algo_pch_data.
  200. */
  201. static void pch_i2c_init(struct i2c_algo_pch_data *adap)
  202. {
  203. void __iomem *p = adap->pch_base_address;
  204. u32 pch_i2cbc;
  205. u32 pch_i2ctmr;
  206. u32 reg_value;
  207. /* reset I2C controller */
  208. iowrite32(0x01, p + PCH_I2CSRST);
  209. msleep(20);
  210. iowrite32(0x0, p + PCH_I2CSRST);
  211. /* Initialize I2C registers */
  212. iowrite32(0x21, p + PCH_I2CNF);
  213. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_I2CCTL_I2CMEN);
  214. if (pch_i2c_speed != 400)
  215. pch_i2c_speed = 100;
  216. reg_value = PCH_I2CCTL_I2CMEN;
  217. if (pch_i2c_speed == FAST_MODE_CLK) {
  218. reg_value |= FAST_MODE_EN;
  219. pch_dbg(adap, "Fast mode enabled\n");
  220. }
  221. if (pch_clk > PCH_MAX_CLK)
  222. pch_clk = 62500;
  223. pch_i2cbc = (pch_clk + (pch_i2c_speed * 4)) / (pch_i2c_speed * 8);
  224. /* Set transfer speed in I2CBC */
  225. iowrite32(pch_i2cbc, p + PCH_I2CBC);
  226. pch_i2ctmr = (pch_clk) / 8;
  227. iowrite32(pch_i2ctmr, p + PCH_I2CTMR);
  228. reg_value |= NORMAL_INTR_ENBL; /* Enable interrupts in normal mode */
  229. iowrite32(reg_value, p + PCH_I2CCTL);
  230. pch_dbg(adap,
  231. "I2CCTL=%x pch_i2cbc=%x pch_i2ctmr=%x Enable interrupts\n",
  232. ioread32(p + PCH_I2CCTL), pch_i2cbc, pch_i2ctmr);
  233. init_waitqueue_head(&pch_event);
  234. }
  235. static inline bool ktime_lt(const ktime_t cmp1, const ktime_t cmp2)
  236. {
  237. return cmp1.tv64 < cmp2.tv64;
  238. }
  239. /**
  240. * pch_i2c_wait_for_bus_idle() - check the status of bus.
  241. * @adap: Pointer to struct i2c_algo_pch_data.
  242. * @timeout: waiting time counter (ms).
  243. */
  244. static s32 pch_i2c_wait_for_bus_idle(struct i2c_algo_pch_data *adap,
  245. s32 timeout)
  246. {
  247. void __iomem *p = adap->pch_base_address;
  248. int schedule = 0;
  249. unsigned long end = jiffies + msecs_to_jiffies(timeout);
  250. while (ioread32(p + PCH_I2CSR) & I2CMBB_BIT) {
  251. if (time_after(jiffies, end)) {
  252. pch_dbg(adap, "I2CSR = %x\n", ioread32(p + PCH_I2CSR));
  253. pch_err(adap, "%s: Timeout Error.return%d\n",
  254. __func__, -ETIME);
  255. pch_i2c_init(adap);
  256. return -ETIME;
  257. }
  258. if (!schedule)
  259. /* Retry after some usecs */
  260. udelay(5);
  261. else
  262. /* Wait a bit more without consuming CPU */
  263. usleep_range(20, 1000);
  264. schedule = 1;
  265. }
  266. return 0;
  267. }
  268. /**
  269. * pch_i2c_start() - Generate I2C start condition in normal mode.
  270. * @adap: Pointer to struct i2c_algo_pch_data.
  271. *
  272. * Generate I2C start condition in normal mode by setting I2CCTL.I2CMSTA to 1.
  273. */
  274. static void pch_i2c_start(struct i2c_algo_pch_data *adap)
  275. {
  276. void __iomem *p = adap->pch_base_address;
  277. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  278. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_START);
  279. }
  280. /**
  281. * pch_i2c_wait_for_xfer_complete() - initiates a wait for the tx complete event
  282. * @adap: Pointer to struct i2c_algo_pch_data.
  283. */
  284. static s32 pch_i2c_wait_for_xfer_complete(struct i2c_algo_pch_data *adap)
  285. {
  286. long ret;
  287. ret = wait_event_timeout(pch_event,
  288. (adap->pch_event_flag != 0), msecs_to_jiffies(50));
  289. if (ret == 0) {
  290. pch_err(adap, "timeout: %x\n", adap->pch_event_flag);
  291. adap->pch_event_flag = 0;
  292. return -ETIMEDOUT;
  293. }
  294. if (adap->pch_event_flag & I2C_ERROR_MASK) {
  295. pch_err(adap, "error bits set: %x\n", adap->pch_event_flag);
  296. adap->pch_event_flag = 0;
  297. return -EIO;
  298. }
  299. adap->pch_event_flag = 0;
  300. return 0;
  301. }
  302. /**
  303. * pch_i2c_getack() - to confirm ACK/NACK
  304. * @adap: Pointer to struct i2c_algo_pch_data.
  305. */
  306. static s32 pch_i2c_getack(struct i2c_algo_pch_data *adap)
  307. {
  308. u32 reg_val;
  309. void __iomem *p = adap->pch_base_address;
  310. reg_val = ioread32(p + PCH_I2CSR) & PCH_GETACK;
  311. if (reg_val != 0) {
  312. pch_err(adap, "return%d\n", -EPROTO);
  313. return -EPROTO;
  314. }
  315. return 0;
  316. }
  317. /**
  318. * pch_i2c_stop() - generate stop condition in normal mode.
  319. * @adap: Pointer to struct i2c_algo_pch_data.
  320. */
  321. static void pch_i2c_stop(struct i2c_algo_pch_data *adap)
  322. {
  323. void __iomem *p = adap->pch_base_address;
  324. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  325. /* clear the start bit */
  326. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_START);
  327. }
  328. /**
  329. * pch_i2c_repstart() - generate repeated start condition in normal mode
  330. * @adap: Pointer to struct i2c_algo_pch_data.
  331. */
  332. static void pch_i2c_repstart(struct i2c_algo_pch_data *adap)
  333. {
  334. void __iomem *p = adap->pch_base_address;
  335. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  336. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_REPSTART);
  337. }
  338. /**
  339. * pch_i2c_writebytes() - write data to I2C bus in normal mode
  340. * @i2c_adap: Pointer to the struct i2c_adapter.
  341. * @last: specifies whether last message or not.
  342. * In the case of compound mode it will be 1 for last message,
  343. * otherwise 0.
  344. * @first: specifies whether first message or not.
  345. * 1 for first message otherwise 0.
  346. */
  347. static s32 pch_i2c_writebytes(struct i2c_adapter *i2c_adap,
  348. struct i2c_msg *msgs, u32 last, u32 first)
  349. {
  350. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  351. u8 *buf;
  352. u32 length;
  353. u32 addr;
  354. u32 addr_2_msb;
  355. u32 addr_8_lsb;
  356. s32 wrcount;
  357. s32 rtn;
  358. void __iomem *p = adap->pch_base_address;
  359. length = msgs->len;
  360. buf = msgs->buf;
  361. addr = msgs->addr;
  362. /* enable master tx */
  363. pch_setbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE);
  364. pch_dbg(adap, "I2CCTL = %x msgs->len = %d\n", ioread32(p + PCH_I2CCTL),
  365. length);
  366. if (first) {
  367. if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME)
  368. return -ETIME;
  369. }
  370. if (msgs->flags & I2C_M_TEN) {
  371. addr_2_msb = ((addr & I2C_MSB_2B_MSK) >> 7) & 0x06;
  372. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR);
  373. if (first)
  374. pch_i2c_start(adap);
  375. rtn = pch_i2c_wait_for_xfer_complete(adap);
  376. if (rtn == 0) {
  377. if (pch_i2c_getack(adap)) {
  378. pch_dbg(adap, "Receive NACK for slave address"
  379. "setting\n");
  380. return -EIO;
  381. }
  382. addr_8_lsb = (addr & I2C_ADDR_MSK);
  383. iowrite32(addr_8_lsb, p + PCH_I2CDR);
  384. } else if (rtn == -EIO) { /* Arbitration Lost */
  385. pch_err(adap, "Lost Arbitration\n");
  386. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  387. I2CMAL_BIT);
  388. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  389. I2CMIF_BIT);
  390. pch_i2c_init(adap);
  391. return -EAGAIN;
  392. } else { /* wait-event timeout */
  393. pch_i2c_stop(adap);
  394. return -ETIME;
  395. }
  396. } else {
  397. /* set 7 bit slave address and R/W bit as 0 */
  398. iowrite32(addr << 1, p + PCH_I2CDR);
  399. if (first)
  400. pch_i2c_start(adap);
  401. }
  402. rtn = pch_i2c_wait_for_xfer_complete(adap);
  403. if (rtn == 0) {
  404. if (pch_i2c_getack(adap)) {
  405. pch_dbg(adap, "Receive NACK for slave address"
  406. "setting\n");
  407. return -EIO;
  408. }
  409. } else if (rtn == -EIO) { /* Arbitration Lost */
  410. pch_err(adap, "Lost Arbitration\n");
  411. pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMAL_BIT);
  412. pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMIF_BIT);
  413. pch_i2c_init(adap);
  414. return -EAGAIN;
  415. } else { /* wait-event timeout */
  416. pch_i2c_stop(adap);
  417. return -ETIME;
  418. }
  419. for (wrcount = 0; wrcount < length; ++wrcount) {
  420. /* write buffer value to I2C data register */
  421. iowrite32(buf[wrcount], p + PCH_I2CDR);
  422. pch_dbg(adap, "writing %x to Data register\n", buf[wrcount]);
  423. rtn = pch_i2c_wait_for_xfer_complete(adap);
  424. if (rtn == 0) {
  425. if (pch_i2c_getack(adap)) {
  426. pch_dbg(adap, "Receive NACK for slave address"
  427. "setting\n");
  428. return -EIO;
  429. }
  430. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  431. I2CMCF_BIT);
  432. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  433. I2CMIF_BIT);
  434. } else { /* wait-event timeout */
  435. pch_i2c_stop(adap);
  436. return -ETIME;
  437. }
  438. }
  439. /* check if this is the last message */
  440. if (last)
  441. pch_i2c_stop(adap);
  442. else
  443. pch_i2c_repstart(adap);
  444. pch_dbg(adap, "return=%d\n", wrcount);
  445. return wrcount;
  446. }
  447. /**
  448. * pch_i2c_sendack() - send ACK
  449. * @adap: Pointer to struct i2c_algo_pch_data.
  450. */
  451. static void pch_i2c_sendack(struct i2c_algo_pch_data *adap)
  452. {
  453. void __iomem *p = adap->pch_base_address;
  454. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  455. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK);
  456. }
  457. /**
  458. * pch_i2c_sendnack() - send NACK
  459. * @adap: Pointer to struct i2c_algo_pch_data.
  460. */
  461. static void pch_i2c_sendnack(struct i2c_algo_pch_data *adap)
  462. {
  463. void __iomem *p = adap->pch_base_address;
  464. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  465. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_ACK);
  466. }
  467. /**
  468. * pch_i2c_restart() - Generate I2C restart condition in normal mode.
  469. * @adap: Pointer to struct i2c_algo_pch_data.
  470. *
  471. * Generate I2C restart condition in normal mode by setting I2CCTL.I2CRSTA.
  472. */
  473. static void pch_i2c_restart(struct i2c_algo_pch_data *adap)
  474. {
  475. void __iomem *p = adap->pch_base_address;
  476. pch_dbg(adap, "I2CCTL = %x\n", ioread32(p + PCH_I2CCTL));
  477. pch_setbit(adap->pch_base_address, PCH_I2CCTL, PCH_RESTART);
  478. }
  479. /**
  480. * pch_i2c_readbytes() - read data from I2C bus in normal mode.
  481. * @i2c_adap: Pointer to the struct i2c_adapter.
  482. * @msgs: Pointer to i2c_msg structure.
  483. * @last: specifies whether last message or not.
  484. * @first: specifies whether first message or not.
  485. */
  486. static s32 pch_i2c_readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msgs,
  487. u32 last, u32 first)
  488. {
  489. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  490. u8 *buf;
  491. u32 count;
  492. u32 length;
  493. u32 addr;
  494. u32 addr_2_msb;
  495. u32 addr_8_lsb;
  496. void __iomem *p = adap->pch_base_address;
  497. s32 rtn;
  498. length = msgs->len;
  499. buf = msgs->buf;
  500. addr = msgs->addr;
  501. /* enable master reception */
  502. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, I2C_TX_MODE);
  503. if (first) {
  504. if (pch_i2c_wait_for_bus_idle(adap, BUS_IDLE_TIMEOUT) == -ETIME)
  505. return -ETIME;
  506. }
  507. if (msgs->flags & I2C_M_TEN) {
  508. addr_2_msb = ((addr & I2C_MSB_2B_MSK) >> 7);
  509. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK, p + PCH_I2CDR);
  510. if (first)
  511. pch_i2c_start(adap);
  512. rtn = pch_i2c_wait_for_xfer_complete(adap);
  513. if (rtn == 0) {
  514. if (pch_i2c_getack(adap)) {
  515. pch_dbg(adap, "Receive NACK for slave address"
  516. "setting\n");
  517. return -EIO;
  518. }
  519. addr_8_lsb = (addr & I2C_ADDR_MSK);
  520. iowrite32(addr_8_lsb, p + PCH_I2CDR);
  521. } else if (rtn == -EIO) { /* Arbitration Lost */
  522. pch_err(adap, "Lost Arbitration\n");
  523. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  524. I2CMAL_BIT);
  525. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  526. I2CMIF_BIT);
  527. pch_i2c_init(adap);
  528. return -EAGAIN;
  529. } else { /* wait-event timeout */
  530. pch_i2c_stop(adap);
  531. return -ETIME;
  532. }
  533. pch_i2c_restart(adap);
  534. rtn = pch_i2c_wait_for_xfer_complete(adap);
  535. if (rtn == 0) {
  536. if (pch_i2c_getack(adap)) {
  537. pch_dbg(adap, "Receive NACK for slave address"
  538. "setting\n");
  539. return -EIO;
  540. }
  541. addr_2_msb |= I2C_RD;
  542. iowrite32(addr_2_msb | TEN_BIT_ADDR_MASK,
  543. p + PCH_I2CDR);
  544. } else if (rtn == -EIO) { /* Arbitration Lost */
  545. pch_err(adap, "Lost Arbitration\n");
  546. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  547. I2CMAL_BIT);
  548. pch_clrbit(adap->pch_base_address, PCH_I2CSR,
  549. I2CMIF_BIT);
  550. pch_i2c_init(adap);
  551. return -EAGAIN;
  552. } else { /* wait-event timeout */
  553. pch_i2c_stop(adap);
  554. return -ETIME;
  555. }
  556. } else {
  557. /* 7 address bits + R/W bit */
  558. addr = (((addr) << 1) | (I2C_RD));
  559. iowrite32(addr, p + PCH_I2CDR);
  560. }
  561. /* check if it is the first message */
  562. if (first)
  563. pch_i2c_start(adap);
  564. rtn = pch_i2c_wait_for_xfer_complete(adap);
  565. if (rtn == 0) {
  566. if (pch_i2c_getack(adap)) {
  567. pch_dbg(adap, "Receive NACK for slave address"
  568. "setting\n");
  569. return -EIO;
  570. }
  571. } else if (rtn == -EIO) { /* Arbitration Lost */
  572. pch_err(adap, "Lost Arbitration\n");
  573. pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMAL_BIT);
  574. pch_clrbit(adap->pch_base_address, PCH_I2CSR, I2CMIF_BIT);
  575. pch_i2c_init(adap);
  576. return -EAGAIN;
  577. } else { /* wait-event timeout */
  578. pch_i2c_stop(adap);
  579. return -ETIME;
  580. }
  581. if (length == 0) {
  582. pch_i2c_stop(adap);
  583. ioread32(p + PCH_I2CDR); /* Dummy read needs */
  584. count = length;
  585. } else {
  586. int read_index;
  587. int loop;
  588. pch_i2c_sendack(adap);
  589. /* Dummy read */
  590. for (loop = 1, read_index = 0; loop < length; loop++) {
  591. buf[read_index] = ioread32(p + PCH_I2CDR);
  592. if (loop != 1)
  593. read_index++;
  594. rtn = pch_i2c_wait_for_xfer_complete(adap);
  595. if (rtn == 0) {
  596. if (pch_i2c_getack(adap)) {
  597. pch_dbg(adap, "Receive NACK for slave"
  598. "address setting\n");
  599. return -EIO;
  600. }
  601. } else { /* wait-event timeout */
  602. pch_i2c_stop(adap);
  603. return -ETIME;
  604. }
  605. } /* end for */
  606. pch_i2c_sendnack(adap);
  607. buf[read_index] = ioread32(p + PCH_I2CDR); /* Read final - 1 */
  608. if (length != 1)
  609. read_index++;
  610. rtn = pch_i2c_wait_for_xfer_complete(adap);
  611. if (rtn == 0) {
  612. if (pch_i2c_getack(adap)) {
  613. pch_dbg(adap, "Receive NACK for slave"
  614. "address setting\n");
  615. return -EIO;
  616. }
  617. } else { /* wait-event timeout */
  618. pch_i2c_stop(adap);
  619. return -ETIME;
  620. }
  621. if (last)
  622. pch_i2c_stop(adap);
  623. else
  624. pch_i2c_repstart(adap);
  625. buf[read_index++] = ioread32(p + PCH_I2CDR); /* Read Final */
  626. count = read_index;
  627. }
  628. return count;
  629. }
  630. /**
  631. * pch_i2c_cb() - Interrupt handler Call back function
  632. * @adap: Pointer to struct i2c_algo_pch_data.
  633. */
  634. static void pch_i2c_cb(struct i2c_algo_pch_data *adap)
  635. {
  636. u32 sts;
  637. void __iomem *p = adap->pch_base_address;
  638. sts = ioread32(p + PCH_I2CSR);
  639. sts &= (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT);
  640. if (sts & I2CMAL_BIT)
  641. adap->pch_event_flag |= I2CMAL_EVENT;
  642. if (sts & I2CMCF_BIT)
  643. adap->pch_event_flag |= I2CMCF_EVENT;
  644. /* clear the applicable bits */
  645. pch_clrbit(adap->pch_base_address, PCH_I2CSR, sts);
  646. pch_dbg(adap, "PCH_I2CSR = %x\n", ioread32(p + PCH_I2CSR));
  647. wake_up(&pch_event);
  648. }
  649. /**
  650. * pch_i2c_handler() - interrupt handler for the PCH I2C controller
  651. * @irq: irq number.
  652. * @pData: cookie passed back to the handler function.
  653. */
  654. static irqreturn_t pch_i2c_handler(int irq, void *pData)
  655. {
  656. u32 reg_val;
  657. int flag;
  658. int i;
  659. struct adapter_info *adap_info = pData;
  660. void __iomem *p;
  661. u32 mode;
  662. for (i = 0, flag = 0; i < adap_info->ch_num; i++) {
  663. p = adap_info->pch_data[i].pch_base_address;
  664. mode = ioread32(p + PCH_I2CMOD);
  665. mode &= BUFFER_MODE | EEPROM_SR_MODE;
  666. if (mode != NORMAL_MODE) {
  667. pch_err(adap_info->pch_data,
  668. "I2C-%d mode(%d) is not supported\n", mode, i);
  669. continue;
  670. }
  671. reg_val = ioread32(p + PCH_I2CSR);
  672. if (reg_val & (I2CMAL_BIT | I2CMCF_BIT | I2CMIF_BIT)) {
  673. pch_i2c_cb(&adap_info->pch_data[i]);
  674. flag = 1;
  675. }
  676. }
  677. return flag ? IRQ_HANDLED : IRQ_NONE;
  678. }
  679. /**
  680. * pch_i2c_xfer() - Reading adnd writing data through I2C bus
  681. * @i2c_adap: Pointer to the struct i2c_adapter.
  682. * @msgs: Pointer to i2c_msg structure.
  683. * @num: number of messages.
  684. */
  685. static s32 pch_i2c_xfer(struct i2c_adapter *i2c_adap,
  686. struct i2c_msg *msgs, s32 num)
  687. {
  688. struct i2c_msg *pmsg;
  689. u32 i = 0;
  690. u32 status;
  691. u32 msglen;
  692. u32 subaddrlen;
  693. s32 ret;
  694. struct i2c_algo_pch_data *adap = i2c_adap->algo_data;
  695. ret = mutex_lock_interruptible(&pch_mutex);
  696. if (ret)
  697. return -ERESTARTSYS;
  698. if (adap->p_adapter_info->pch_i2c_suspended) {
  699. mutex_unlock(&pch_mutex);
  700. return -EBUSY;
  701. }
  702. pch_dbg(adap, "adap->p_adapter_info->pch_i2c_suspended is %d\n",
  703. adap->p_adapter_info->pch_i2c_suspended);
  704. /* transfer not completed */
  705. adap->pch_i2c_xfer_in_progress = true;
  706. for (i = 0; i < num && ret >= 0; i++) {
  707. pmsg = &msgs[i];
  708. pmsg->flags |= adap->pch_buff_mode_en;
  709. status = pmsg->flags;
  710. pch_dbg(adap,
  711. "After invoking I2C_MODE_SEL :flag= 0x%x\n", status);
  712. /* calculate sub address length and message length */
  713. /* these are applicable only for buffer mode */
  714. subaddrlen = pmsg->buf[0];
  715. /* calculate actual message length excluding
  716. * the sub address fields */
  717. msglen = (pmsg->len) - (subaddrlen + 1);
  718. if ((status & (I2C_M_RD)) != false) {
  719. ret = pch_i2c_readbytes(i2c_adap, pmsg, (i + 1 == num),
  720. (i == 0));
  721. } else {
  722. ret = pch_i2c_writebytes(i2c_adap, pmsg, (i + 1 == num),
  723. (i == 0));
  724. }
  725. }
  726. adap->pch_i2c_xfer_in_progress = false; /* transfer completed */
  727. mutex_unlock(&pch_mutex);
  728. return (ret < 0) ? ret : num;
  729. }
  730. /**
  731. * pch_i2c_func() - return the functionality of the I2C driver
  732. * @adap: Pointer to struct i2c_algo_pch_data.
  733. */
  734. static u32 pch_i2c_func(struct i2c_adapter *adap)
  735. {
  736. return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR;
  737. }
  738. static struct i2c_algorithm pch_algorithm = {
  739. .master_xfer = pch_i2c_xfer,
  740. .functionality = pch_i2c_func
  741. };
  742. /**
  743. * pch_i2c_disbl_int() - Disable PCH I2C interrupts
  744. * @adap: Pointer to struct i2c_algo_pch_data.
  745. */
  746. static void pch_i2c_disbl_int(struct i2c_algo_pch_data *adap)
  747. {
  748. void __iomem *p = adap->pch_base_address;
  749. pch_clrbit(adap->pch_base_address, PCH_I2CCTL, NORMAL_INTR_ENBL);
  750. iowrite32(EEPROM_RST_INTR_DISBL, p + PCH_I2CESRMSK);
  751. iowrite32(BUFFER_MODE_INTR_DISBL, p + PCH_I2CBUFMSK);
  752. }
  753. static int __devinit pch_i2c_probe(struct pci_dev *pdev,
  754. const struct pci_device_id *id)
  755. {
  756. void __iomem *base_addr;
  757. int ret;
  758. int i, j;
  759. struct adapter_info *adap_info;
  760. struct i2c_adapter *pch_adap;
  761. pch_pci_dbg(pdev, "Entered.\n");
  762. adap_info = kzalloc((sizeof(struct adapter_info)), GFP_KERNEL);
  763. if (adap_info == NULL) {
  764. pch_pci_err(pdev, "Memory allocation FAILED\n");
  765. return -ENOMEM;
  766. }
  767. ret = pci_enable_device(pdev);
  768. if (ret) {
  769. pch_pci_err(pdev, "pci_enable_device FAILED\n");
  770. goto err_pci_enable;
  771. }
  772. ret = pci_request_regions(pdev, KBUILD_MODNAME);
  773. if (ret) {
  774. pch_pci_err(pdev, "pci_request_regions FAILED\n");
  775. goto err_pci_req;
  776. }
  777. base_addr = pci_iomap(pdev, 1, 0);
  778. if (base_addr == NULL) {
  779. pch_pci_err(pdev, "pci_iomap FAILED\n");
  780. ret = -ENOMEM;
  781. goto err_pci_iomap;
  782. }
  783. /* Set the number of I2C channel instance */
  784. adap_info->ch_num = id->driver_data;
  785. ret = request_irq(pdev->irq, pch_i2c_handler, IRQF_SHARED,
  786. KBUILD_MODNAME, adap_info);
  787. if (ret) {
  788. pch_pci_err(pdev, "request_irq FAILED\n");
  789. goto err_request_irq;
  790. }
  791. for (i = 0; i < adap_info->ch_num; i++) {
  792. pch_adap = &adap_info->pch_data[i].pch_adapter;
  793. adap_info->pch_i2c_suspended = false;
  794. adap_info->pch_data[i].p_adapter_info = adap_info;
  795. pch_adap->owner = THIS_MODULE;
  796. pch_adap->class = I2C_CLASS_HWMON;
  797. strcpy(pch_adap->name, KBUILD_MODNAME);
  798. pch_adap->algo = &pch_algorithm;
  799. pch_adap->algo_data = &adap_info->pch_data[i];
  800. /* base_addr + offset; */
  801. adap_info->pch_data[i].pch_base_address = base_addr + 0x100 * i;
  802. pch_adap->dev.parent = &pdev->dev;
  803. pch_i2c_init(&adap_info->pch_data[i]);
  804. pch_adap->nr = i;
  805. ret = i2c_add_numbered_adapter(pch_adap);
  806. if (ret) {
  807. pch_pci_err(pdev, "i2c_add_adapter[ch:%d] FAILED\n", i);
  808. goto err_add_adapter;
  809. }
  810. }
  811. pci_set_drvdata(pdev, adap_info);
  812. pch_pci_dbg(pdev, "returns %d.\n", ret);
  813. return 0;
  814. err_add_adapter:
  815. for (j = 0; j < i; j++)
  816. i2c_del_adapter(&adap_info->pch_data[j].pch_adapter);
  817. free_irq(pdev->irq, adap_info);
  818. err_request_irq:
  819. pci_iounmap(pdev, base_addr);
  820. err_pci_iomap:
  821. pci_release_regions(pdev);
  822. err_pci_req:
  823. pci_disable_device(pdev);
  824. err_pci_enable:
  825. kfree(adap_info);
  826. return ret;
  827. }
  828. static void __devexit pch_i2c_remove(struct pci_dev *pdev)
  829. {
  830. int i;
  831. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  832. free_irq(pdev->irq, adap_info);
  833. for (i = 0; i < adap_info->ch_num; i++) {
  834. pch_i2c_disbl_int(&adap_info->pch_data[i]);
  835. i2c_del_adapter(&adap_info->pch_data[i].pch_adapter);
  836. }
  837. if (adap_info->pch_data[0].pch_base_address)
  838. pci_iounmap(pdev, adap_info->pch_data[0].pch_base_address);
  839. for (i = 0; i < adap_info->ch_num; i++)
  840. adap_info->pch_data[i].pch_base_address = 0;
  841. pci_set_drvdata(pdev, NULL);
  842. pci_release_regions(pdev);
  843. pci_disable_device(pdev);
  844. kfree(adap_info);
  845. }
  846. #ifdef CONFIG_PM
  847. static int pch_i2c_suspend(struct pci_dev *pdev, pm_message_t state)
  848. {
  849. int ret;
  850. int i;
  851. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  852. void __iomem *p = adap_info->pch_data[0].pch_base_address;
  853. adap_info->pch_i2c_suspended = true;
  854. for (i = 0; i < adap_info->ch_num; i++) {
  855. while ((adap_info->pch_data[i].pch_i2c_xfer_in_progress)) {
  856. /* Wait until all channel transfers are completed */
  857. msleep(20);
  858. }
  859. }
  860. /* Disable the i2c interrupts */
  861. for (i = 0; i < adap_info->ch_num; i++)
  862. pch_i2c_disbl_int(&adap_info->pch_data[i]);
  863. pch_pci_dbg(pdev, "I2CSR = %x I2CBUFSTA = %x I2CESRSTA = %x "
  864. "invoked function pch_i2c_disbl_int successfully\n",
  865. ioread32(p + PCH_I2CSR), ioread32(p + PCH_I2CBUFSTA),
  866. ioread32(p + PCH_I2CESRSTA));
  867. ret = pci_save_state(pdev);
  868. if (ret) {
  869. pch_pci_err(pdev, "pci_save_state\n");
  870. return ret;
  871. }
  872. pci_enable_wake(pdev, PCI_D3hot, 0);
  873. pci_disable_device(pdev);
  874. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  875. return 0;
  876. }
  877. static int pch_i2c_resume(struct pci_dev *pdev)
  878. {
  879. int i;
  880. struct adapter_info *adap_info = pci_get_drvdata(pdev);
  881. pci_set_power_state(pdev, PCI_D0);
  882. pci_restore_state(pdev);
  883. if (pci_enable_device(pdev) < 0) {
  884. pch_pci_err(pdev, "pch_i2c_resume:pci_enable_device FAILED\n");
  885. return -EIO;
  886. }
  887. pci_enable_wake(pdev, PCI_D3hot, 0);
  888. for (i = 0; i < adap_info->ch_num; i++)
  889. pch_i2c_init(&adap_info->pch_data[i]);
  890. adap_info->pch_i2c_suspended = false;
  891. return 0;
  892. }
  893. #else
  894. #define pch_i2c_suspend NULL
  895. #define pch_i2c_resume NULL
  896. #endif
  897. static struct pci_driver pch_pcidriver = {
  898. .name = KBUILD_MODNAME,
  899. .id_table = pch_pcidev_id,
  900. .probe = pch_i2c_probe,
  901. .remove = __devexit_p(pch_i2c_remove),
  902. .suspend = pch_i2c_suspend,
  903. .resume = pch_i2c_resume
  904. };
  905. static int __init pch_pci_init(void)
  906. {
  907. return pci_register_driver(&pch_pcidriver);
  908. }
  909. module_init(pch_pci_init);
  910. static void __exit pch_pci_exit(void)
  911. {
  912. pci_unregister_driver(&pch_pcidriver);
  913. }
  914. module_exit(pch_pci_exit);
  915. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semico ML7213/ML7223/ML7831 IOH I2C");
  916. MODULE_LICENSE("GPL");
  917. MODULE_AUTHOR("Tomoya MORINAGA. <tomoya-linux@dsn.lapis-semi.com>");
  918. module_param(pch_i2c_speed, int, (S_IRUSR | S_IWUSR));
  919. module_param(pch_clk, int, (S_IRUSR | S_IWUSR));