init.c 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806
  1. /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/config.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/string.h>
  11. #include <linux/init.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/mm.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/slab.h>
  16. #include <linux/initrd.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kprobes.h>
  22. #include <linux/cache.h>
  23. #include <asm/head.h>
  24. #include <asm/system.h>
  25. #include <asm/page.h>
  26. #include <asm/pgalloc.h>
  27. #include <asm/pgtable.h>
  28. #include <asm/oplib.h>
  29. #include <asm/iommu.h>
  30. #include <asm/io.h>
  31. #include <asm/uaccess.h>
  32. #include <asm/mmu_context.h>
  33. #include <asm/tlbflush.h>
  34. #include <asm/dma.h>
  35. #include <asm/starfire.h>
  36. #include <asm/tlb.h>
  37. #include <asm/spitfire.h>
  38. #include <asm/sections.h>
  39. extern void device_scan(void);
  40. struct sparc_phys_banks sp_banks[SPARC_PHYS_BANKS];
  41. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  42. /* Ugly, but necessary... -DaveM */
  43. unsigned long phys_base __read_mostly;
  44. unsigned long kern_base __read_mostly;
  45. unsigned long kern_size __read_mostly;
  46. unsigned long pfn_base __read_mostly;
  47. /* get_new_mmu_context() uses "cache + 1". */
  48. DEFINE_SPINLOCK(ctx_alloc_lock);
  49. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  50. #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
  51. unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
  52. /* References to special section boundaries */
  53. extern char _start[], _end[];
  54. /* Initial ramdisk setup */
  55. extern unsigned long sparc_ramdisk_image64;
  56. extern unsigned int sparc_ramdisk_image;
  57. extern unsigned int sparc_ramdisk_size;
  58. struct page *mem_map_zero __read_mostly;
  59. int bigkernel = 0;
  60. /* XXX Tune this... */
  61. #define PGT_CACHE_LOW 25
  62. #define PGT_CACHE_HIGH 50
  63. void check_pgt_cache(void)
  64. {
  65. preempt_disable();
  66. if (pgtable_cache_size > PGT_CACHE_HIGH) {
  67. do {
  68. if (pgd_quicklist)
  69. free_pgd_slow(get_pgd_fast());
  70. if (pte_quicklist[0])
  71. free_pte_slow(pte_alloc_one_fast(NULL, 0));
  72. if (pte_quicklist[1])
  73. free_pte_slow(pte_alloc_one_fast(NULL, 1 << (PAGE_SHIFT + 10)));
  74. } while (pgtable_cache_size > PGT_CACHE_LOW);
  75. }
  76. preempt_enable();
  77. }
  78. #ifdef CONFIG_DEBUG_DCFLUSH
  79. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  80. #ifdef CONFIG_SMP
  81. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  82. #endif
  83. #endif
  84. __inline__ void flush_dcache_page_impl(struct page *page)
  85. {
  86. #ifdef CONFIG_DEBUG_DCFLUSH
  87. atomic_inc(&dcpage_flushes);
  88. #endif
  89. #ifdef DCACHE_ALIASING_POSSIBLE
  90. __flush_dcache_page(page_address(page),
  91. ((tlb_type == spitfire) &&
  92. page_mapping(page) != NULL));
  93. #else
  94. if (page_mapping(page) != NULL &&
  95. tlb_type == spitfire)
  96. __flush_icache_page(__pa(page_address(page)));
  97. #endif
  98. }
  99. #define PG_dcache_dirty PG_arch_1
  100. #define PG_dcache_cpu_shift 24
  101. #define PG_dcache_cpu_mask (256 - 1)
  102. #if NR_CPUS > 256
  103. #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
  104. #endif
  105. #define dcache_dirty_cpu(page) \
  106. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  107. static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
  108. {
  109. unsigned long mask = this_cpu;
  110. unsigned long non_cpu_bits;
  111. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  112. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  113. __asm__ __volatile__("1:\n\t"
  114. "ldx [%2], %%g7\n\t"
  115. "and %%g7, %1, %%g1\n\t"
  116. "or %%g1, %0, %%g1\n\t"
  117. "casx [%2], %%g7, %%g1\n\t"
  118. "cmp %%g7, %%g1\n\t"
  119. "membar #StoreLoad | #StoreStore\n\t"
  120. "bne,pn %%xcc, 1b\n\t"
  121. " nop"
  122. : /* no outputs */
  123. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  124. : "g1", "g7");
  125. }
  126. static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  127. {
  128. unsigned long mask = (1UL << PG_dcache_dirty);
  129. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  130. "1:\n\t"
  131. "ldx [%2], %%g7\n\t"
  132. "srlx %%g7, %4, %%g1\n\t"
  133. "and %%g1, %3, %%g1\n\t"
  134. "cmp %%g1, %0\n\t"
  135. "bne,pn %%icc, 2f\n\t"
  136. " andn %%g7, %1, %%g1\n\t"
  137. "casx [%2], %%g7, %%g1\n\t"
  138. "cmp %%g7, %%g1\n\t"
  139. "membar #StoreLoad | #StoreStore\n\t"
  140. "bne,pn %%xcc, 1b\n\t"
  141. " nop\n"
  142. "2:"
  143. : /* no outputs */
  144. : "r" (cpu), "r" (mask), "r" (&page->flags),
  145. "i" (PG_dcache_cpu_mask),
  146. "i" (PG_dcache_cpu_shift)
  147. : "g1", "g7");
  148. }
  149. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  150. {
  151. struct page *page;
  152. unsigned long pfn;
  153. unsigned long pg_flags;
  154. pfn = pte_pfn(pte);
  155. if (pfn_valid(pfn) &&
  156. (page = pfn_to_page(pfn), page_mapping(page)) &&
  157. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  158. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  159. PG_dcache_cpu_mask);
  160. int this_cpu = get_cpu();
  161. /* This is just to optimize away some function calls
  162. * in the SMP case.
  163. */
  164. if (cpu == this_cpu)
  165. flush_dcache_page_impl(page);
  166. else
  167. smp_flush_dcache_page_impl(page, cpu);
  168. clear_dcache_dirty_cpu(page, cpu);
  169. put_cpu();
  170. }
  171. }
  172. void flush_dcache_page(struct page *page)
  173. {
  174. struct address_space *mapping;
  175. int this_cpu;
  176. /* Do not bother with the expensive D-cache flush if it
  177. * is merely the zero page. The 'bigcore' testcase in GDB
  178. * causes this case to run millions of times.
  179. */
  180. if (page == ZERO_PAGE(0))
  181. return;
  182. this_cpu = get_cpu();
  183. mapping = page_mapping(page);
  184. if (mapping && !mapping_mapped(mapping)) {
  185. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  186. if (dirty) {
  187. int dirty_cpu = dcache_dirty_cpu(page);
  188. if (dirty_cpu == this_cpu)
  189. goto out;
  190. smp_flush_dcache_page_impl(page, dirty_cpu);
  191. }
  192. set_dcache_dirty(page, this_cpu);
  193. } else {
  194. /* We could delay the flush for the !page_mapping
  195. * case too. But that case is for exec env/arg
  196. * pages and those are %99 certainly going to get
  197. * faulted into the tlb (and thus flushed) anyways.
  198. */
  199. flush_dcache_page_impl(page);
  200. }
  201. out:
  202. put_cpu();
  203. }
  204. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  205. {
  206. /* Cheetah has coherent I-cache. */
  207. if (tlb_type == spitfire) {
  208. unsigned long kaddr;
  209. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
  210. __flush_icache_page(__get_phys(kaddr));
  211. }
  212. }
  213. unsigned long page_to_pfn(struct page *page)
  214. {
  215. return (unsigned long) ((page - mem_map) + pfn_base);
  216. }
  217. struct page *pfn_to_page(unsigned long pfn)
  218. {
  219. return (mem_map + (pfn - pfn_base));
  220. }
  221. void show_mem(void)
  222. {
  223. printk("Mem-info:\n");
  224. show_free_areas();
  225. printk("Free swap: %6ldkB\n",
  226. nr_swap_pages << (PAGE_SHIFT-10));
  227. printk("%ld pages of RAM\n", num_physpages);
  228. printk("%d free pages\n", nr_free_pages());
  229. printk("%d pages in page table cache\n",pgtable_cache_size);
  230. }
  231. void mmu_info(struct seq_file *m)
  232. {
  233. if (tlb_type == cheetah)
  234. seq_printf(m, "MMU Type\t: Cheetah\n");
  235. else if (tlb_type == cheetah_plus)
  236. seq_printf(m, "MMU Type\t: Cheetah+\n");
  237. else if (tlb_type == spitfire)
  238. seq_printf(m, "MMU Type\t: Spitfire\n");
  239. else
  240. seq_printf(m, "MMU Type\t: ???\n");
  241. #ifdef CONFIG_DEBUG_DCFLUSH
  242. seq_printf(m, "DCPageFlushes\t: %d\n",
  243. atomic_read(&dcpage_flushes));
  244. #ifdef CONFIG_SMP
  245. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  246. atomic_read(&dcpage_flushes_xcall));
  247. #endif /* CONFIG_SMP */
  248. #endif /* CONFIG_DEBUG_DCFLUSH */
  249. }
  250. struct linux_prom_translation {
  251. unsigned long virt;
  252. unsigned long size;
  253. unsigned long data;
  254. };
  255. static struct linux_prom_translation prom_trans[512] __initdata;
  256. extern unsigned long prom_boot_page;
  257. extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle);
  258. extern int prom_get_mmu_ihandle(void);
  259. extern void register_prom_callbacks(void);
  260. /* Exported for SMP bootup purposes. */
  261. unsigned long kern_locked_tte_data;
  262. /* Exported for kernel TLB miss handling in ktlb.S */
  263. unsigned long prom_pmd_phys __read_mostly;
  264. unsigned int swapper_pgd_zero __read_mostly;
  265. /* Allocate power-of-2 aligned chunks from the end of the
  266. * kernel image. Return physical address.
  267. */
  268. static inline unsigned long early_alloc_phys(unsigned long size)
  269. {
  270. unsigned long base;
  271. BUILD_BUG_ON(size & (size - 1));
  272. kern_size = (kern_size + (size - 1)) & ~(size - 1);
  273. base = kern_base + kern_size;
  274. kern_size += size;
  275. return base;
  276. }
  277. static inline unsigned long load_phys32(unsigned long pa)
  278. {
  279. unsigned long val;
  280. __asm__ __volatile__("lduwa [%1] %2, %0"
  281. : "=&r" (val)
  282. : "r" (pa), "i" (ASI_PHYS_USE_EC));
  283. return val;
  284. }
  285. static inline unsigned long load_phys64(unsigned long pa)
  286. {
  287. unsigned long val;
  288. __asm__ __volatile__("ldxa [%1] %2, %0"
  289. : "=&r" (val)
  290. : "r" (pa), "i" (ASI_PHYS_USE_EC));
  291. return val;
  292. }
  293. static inline void store_phys32(unsigned long pa, unsigned long val)
  294. {
  295. __asm__ __volatile__("stwa %0, [%1] %2"
  296. : /* no outputs */
  297. : "r" (val), "r" (pa), "i" (ASI_PHYS_USE_EC));
  298. }
  299. static inline void store_phys64(unsigned long pa, unsigned long val)
  300. {
  301. __asm__ __volatile__("stxa %0, [%1] %2"
  302. : /* no outputs */
  303. : "r" (val), "r" (pa), "i" (ASI_PHYS_USE_EC));
  304. }
  305. #define BASE_PAGE_SIZE 8192
  306. /*
  307. * Translate PROM's mapping we capture at boot time into physical address.
  308. * The second parameter is only set from prom_callback() invocations.
  309. */
  310. unsigned long prom_virt_to_phys(unsigned long promva, int *error)
  311. {
  312. unsigned long pmd_phys = (prom_pmd_phys +
  313. ((promva >> 23) & 0x7ff) * sizeof(pmd_t));
  314. unsigned long pte_phys;
  315. pmd_t pmd_ent;
  316. pte_t pte_ent;
  317. unsigned long base;
  318. pmd_val(pmd_ent) = load_phys32(pmd_phys);
  319. if (pmd_none(pmd_ent)) {
  320. if (error)
  321. *error = 1;
  322. return 0;
  323. }
  324. pte_phys = (unsigned long)pmd_val(pmd_ent) << 11UL;
  325. pte_phys += ((promva >> 13) & 0x3ff) * sizeof(pte_t);
  326. pte_val(pte_ent) = load_phys64(pte_phys);
  327. if (!pte_present(pte_ent)) {
  328. if (error)
  329. *error = 1;
  330. return 0;
  331. }
  332. if (error) {
  333. *error = 0;
  334. return pte_val(pte_ent);
  335. }
  336. base = pte_val(pte_ent) & _PAGE_PADDR;
  337. return (base + (promva & (BASE_PAGE_SIZE - 1)));
  338. }
  339. /* The obp translations are saved based on 8k pagesize, since obp can
  340. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  341. * HI_OBP_ADDRESS range are handled in entry.S and do not use the vpte
  342. * scheme (also, see rant in inherit_locked_prom_mappings()).
  343. */
  344. static void __init build_obp_range(unsigned long start, unsigned long end, unsigned long data)
  345. {
  346. unsigned long vaddr;
  347. for (vaddr = start; vaddr < end; vaddr += BASE_PAGE_SIZE) {
  348. unsigned long val, pte_phys, pmd_phys;
  349. pmd_t pmd_ent;
  350. int i;
  351. pmd_phys = (prom_pmd_phys +
  352. (((vaddr >> 23) & 0x7ff) * sizeof(pmd_t)));
  353. pmd_val(pmd_ent) = load_phys32(pmd_phys);
  354. if (pmd_none(pmd_ent)) {
  355. pte_phys = early_alloc_phys(BASE_PAGE_SIZE);
  356. for (i = 0; i < BASE_PAGE_SIZE / sizeof(pte_t); i++)
  357. store_phys64(pte_phys+i*sizeof(pte_t),0);
  358. pmd_val(pmd_ent) = pte_phys >> 11UL;
  359. store_phys32(pmd_phys, pmd_val(pmd_ent));
  360. }
  361. pte_phys = (unsigned long)pmd_val(pmd_ent) << 11UL;
  362. pte_phys += (((vaddr >> 13) & 0x3ff) * sizeof(pte_t));
  363. val = data;
  364. /* Clear diag TTE bits. */
  365. if (tlb_type == spitfire)
  366. val &= ~0x0003fe0000000000UL;
  367. store_phys64(pte_phys, val | _PAGE_MODIFIED);
  368. data += BASE_PAGE_SIZE;
  369. }
  370. }
  371. static inline int in_obp_range(unsigned long vaddr)
  372. {
  373. return (vaddr >= LOW_OBP_ADDRESS &&
  374. vaddr < HI_OBP_ADDRESS);
  375. }
  376. #define OBP_PMD_SIZE 2048
  377. static void __init build_obp_pgtable(int prom_trans_ents)
  378. {
  379. unsigned long i;
  380. prom_pmd_phys = early_alloc_phys(OBP_PMD_SIZE);
  381. for (i = 0; i < OBP_PMD_SIZE; i += 4)
  382. store_phys32(prom_pmd_phys + i, 0);
  383. for (i = 0; i < prom_trans_ents; i++) {
  384. unsigned long start, end;
  385. if (!in_obp_range(prom_trans[i].virt))
  386. continue;
  387. start = prom_trans[i].virt;
  388. end = start + prom_trans[i].size;
  389. if (end > HI_OBP_ADDRESS)
  390. end = HI_OBP_ADDRESS;
  391. build_obp_range(start, end, prom_trans[i].data);
  392. }
  393. }
  394. /* Read OBP translations property into 'prom_trans[]'.
  395. * Return the number of entries.
  396. */
  397. static int __init read_obp_translations(void)
  398. {
  399. int n, node;
  400. node = prom_finddevice("/virtual-memory");
  401. n = prom_getproplen(node, "translations");
  402. if (unlikely(n == 0 || n == -1)) {
  403. prom_printf("prom_mappings: Couldn't get size.\n");
  404. prom_halt();
  405. }
  406. if (unlikely(n > sizeof(prom_trans))) {
  407. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  408. prom_halt();
  409. }
  410. if ((n = prom_getproperty(node, "translations",
  411. (char *)&prom_trans[0],
  412. sizeof(prom_trans))) == -1) {
  413. prom_printf("prom_mappings: Couldn't get property.\n");
  414. prom_halt();
  415. }
  416. n = n / sizeof(struct linux_prom_translation);
  417. return n;
  418. }
  419. static void __init remap_kernel(void)
  420. {
  421. unsigned long phys_page, tte_vaddr, tte_data;
  422. int tlb_ent = sparc64_highest_locked_tlbent();
  423. tte_vaddr = (unsigned long) KERNBASE;
  424. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  425. tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB |
  426. _PAGE_CP | _PAGE_CV | _PAGE_P |
  427. _PAGE_L | _PAGE_W));
  428. kern_locked_tte_data = tte_data;
  429. /* Now lock us into the TLBs via OBP. */
  430. prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
  431. prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
  432. if (bigkernel) {
  433. prom_dtlb_load(tlb_ent - 1,
  434. tte_data + 0x400000,
  435. tte_vaddr + 0x400000);
  436. prom_itlb_load(tlb_ent - 1,
  437. tte_data + 0x400000,
  438. tte_vaddr + 0x400000);
  439. }
  440. }
  441. static void __init inherit_prom_mappings(void)
  442. {
  443. int n;
  444. n = read_obp_translations();
  445. build_obp_pgtable(n);
  446. /* Now fixup OBP's idea about where we really are mapped. */
  447. prom_printf("Remapping the kernel... ");
  448. remap_kernel();
  449. prom_printf("done.\n");
  450. register_prom_callbacks();
  451. }
  452. /* The OBP specifications for sun4u mark 0xfffffffc00000000 and
  453. * upwards as reserved for use by the firmware (I wonder if this
  454. * will be the same on Cheetah...). We use this virtual address
  455. * range for the VPTE table mappings of the nucleus so we need
  456. * to zap them when we enter the PROM. -DaveM
  457. */
  458. static void __flush_nucleus_vptes(void)
  459. {
  460. unsigned long prom_reserved_base = 0xfffffffc00000000UL;
  461. int i;
  462. /* Only DTLB must be checked for VPTE entries. */
  463. if (tlb_type == spitfire) {
  464. for (i = 0; i < 63; i++) {
  465. unsigned long tag;
  466. /* Spitfire Errata #32 workaround */
  467. /* NOTE: Always runs on spitfire, so no cheetah+
  468. * page size encodings.
  469. */
  470. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  471. "flush %%g6"
  472. : /* No outputs */
  473. : "r" (0),
  474. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  475. tag = spitfire_get_dtlb_tag(i);
  476. if (((tag & ~(PAGE_MASK)) == 0) &&
  477. ((tag & (PAGE_MASK)) >= prom_reserved_base)) {
  478. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  479. "membar #Sync"
  480. : /* no outputs */
  481. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  482. spitfire_put_dtlb_data(i, 0x0UL);
  483. }
  484. }
  485. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  486. for (i = 0; i < 512; i++) {
  487. unsigned long tag = cheetah_get_dtlb_tag(i, 2);
  488. if ((tag & ~PAGE_MASK) == 0 &&
  489. (tag & PAGE_MASK) >= prom_reserved_base) {
  490. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  491. "membar #Sync"
  492. : /* no outputs */
  493. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  494. cheetah_put_dtlb_data(i, 0x0UL, 2);
  495. }
  496. if (tlb_type != cheetah_plus)
  497. continue;
  498. tag = cheetah_get_dtlb_tag(i, 3);
  499. if ((tag & ~PAGE_MASK) == 0 &&
  500. (tag & PAGE_MASK) >= prom_reserved_base) {
  501. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  502. "membar #Sync"
  503. : /* no outputs */
  504. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  505. cheetah_put_dtlb_data(i, 0x0UL, 3);
  506. }
  507. }
  508. } else {
  509. /* Implement me :-) */
  510. BUG();
  511. }
  512. }
  513. static int prom_ditlb_set;
  514. struct prom_tlb_entry {
  515. int tlb_ent;
  516. unsigned long tlb_tag;
  517. unsigned long tlb_data;
  518. };
  519. struct prom_tlb_entry prom_itlb[16], prom_dtlb[16];
  520. void prom_world(int enter)
  521. {
  522. unsigned long pstate;
  523. int i;
  524. if (!enter)
  525. set_fs((mm_segment_t) { get_thread_current_ds() });
  526. if (!prom_ditlb_set)
  527. return;
  528. /* Make sure the following runs atomically. */
  529. __asm__ __volatile__("flushw\n\t"
  530. "rdpr %%pstate, %0\n\t"
  531. "wrpr %0, %1, %%pstate"
  532. : "=r" (pstate)
  533. : "i" (PSTATE_IE));
  534. if (enter) {
  535. /* Kick out nucleus VPTEs. */
  536. __flush_nucleus_vptes();
  537. /* Install PROM world. */
  538. for (i = 0; i < 16; i++) {
  539. if (prom_dtlb[i].tlb_ent != -1) {
  540. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  541. "membar #Sync"
  542. : : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
  543. "i" (ASI_DMMU));
  544. if (tlb_type == spitfire)
  545. spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
  546. prom_dtlb[i].tlb_data);
  547. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  548. cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
  549. prom_dtlb[i].tlb_data);
  550. }
  551. if (prom_itlb[i].tlb_ent != -1) {
  552. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  553. "membar #Sync"
  554. : : "r" (prom_itlb[i].tlb_tag),
  555. "r" (TLB_TAG_ACCESS),
  556. "i" (ASI_IMMU));
  557. if (tlb_type == spitfire)
  558. spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
  559. prom_itlb[i].tlb_data);
  560. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  561. cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
  562. prom_itlb[i].tlb_data);
  563. }
  564. }
  565. } else {
  566. for (i = 0; i < 16; i++) {
  567. if (prom_dtlb[i].tlb_ent != -1) {
  568. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  569. "membar #Sync"
  570. : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  571. if (tlb_type == spitfire)
  572. spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
  573. else
  574. cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, 0x0UL);
  575. }
  576. if (prom_itlb[i].tlb_ent != -1) {
  577. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  578. "membar #Sync"
  579. : : "r" (TLB_TAG_ACCESS),
  580. "i" (ASI_IMMU));
  581. if (tlb_type == spitfire)
  582. spitfire_put_itlb_data(prom_itlb[i].tlb_ent, 0x0UL);
  583. else
  584. cheetah_put_litlb_data(prom_itlb[i].tlb_ent, 0x0UL);
  585. }
  586. }
  587. }
  588. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  589. : : "r" (pstate));
  590. }
  591. void inherit_locked_prom_mappings(int save_p)
  592. {
  593. int i;
  594. int dtlb_seen = 0;
  595. int itlb_seen = 0;
  596. /* Fucking losing PROM has more mappings in the TLB, but
  597. * it (conveniently) fails to mention any of these in the
  598. * translations property. The only ones that matter are
  599. * the locked PROM tlb entries, so we impose the following
  600. * irrecovable rule on the PROM, it is allowed 8 locked
  601. * entries in the ITLB and 8 in the DTLB.
  602. *
  603. * Supposedly the upper 16GB of the address space is
  604. * reserved for OBP, BUT I WISH THIS WAS DOCUMENTED
  605. * SOMEWHERE!!!!!!!!!!!!!!!!! Furthermore the entire interface
  606. * used between the client program and the firmware on sun5
  607. * systems to coordinate mmu mappings is also COMPLETELY
  608. * UNDOCUMENTED!!!!!! Thanks S(t)un!
  609. */
  610. if (save_p) {
  611. for (i = 0; i < 16; i++) {
  612. prom_itlb[i].tlb_ent = -1;
  613. prom_dtlb[i].tlb_ent = -1;
  614. }
  615. }
  616. if (tlb_type == spitfire) {
  617. int high = SPITFIRE_HIGHEST_LOCKED_TLBENT - bigkernel;
  618. for (i = 0; i < high; i++) {
  619. unsigned long data;
  620. /* Spitfire Errata #32 workaround */
  621. /* NOTE: Always runs on spitfire, so no cheetah+
  622. * page size encodings.
  623. */
  624. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  625. "flush %%g6"
  626. : /* No outputs */
  627. : "r" (0),
  628. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  629. data = spitfire_get_dtlb_data(i);
  630. if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
  631. unsigned long tag;
  632. /* Spitfire Errata #32 workaround */
  633. /* NOTE: Always runs on spitfire, so no
  634. * cheetah+ page size encodings.
  635. */
  636. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  637. "flush %%g6"
  638. : /* No outputs */
  639. : "r" (0),
  640. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  641. tag = spitfire_get_dtlb_tag(i);
  642. if (save_p) {
  643. prom_dtlb[dtlb_seen].tlb_ent = i;
  644. prom_dtlb[dtlb_seen].tlb_tag = tag;
  645. prom_dtlb[dtlb_seen].tlb_data = data;
  646. }
  647. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  648. "membar #Sync"
  649. : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  650. spitfire_put_dtlb_data(i, 0x0UL);
  651. dtlb_seen++;
  652. if (dtlb_seen > 15)
  653. break;
  654. }
  655. }
  656. for (i = 0; i < high; i++) {
  657. unsigned long data;
  658. /* Spitfire Errata #32 workaround */
  659. /* NOTE: Always runs on spitfire, so no
  660. * cheetah+ page size encodings.
  661. */
  662. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  663. "flush %%g6"
  664. : /* No outputs */
  665. : "r" (0),
  666. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  667. data = spitfire_get_itlb_data(i);
  668. if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
  669. unsigned long tag;
  670. /* Spitfire Errata #32 workaround */
  671. /* NOTE: Always runs on spitfire, so no
  672. * cheetah+ page size encodings.
  673. */
  674. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  675. "flush %%g6"
  676. : /* No outputs */
  677. : "r" (0),
  678. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  679. tag = spitfire_get_itlb_tag(i);
  680. if (save_p) {
  681. prom_itlb[itlb_seen].tlb_ent = i;
  682. prom_itlb[itlb_seen].tlb_tag = tag;
  683. prom_itlb[itlb_seen].tlb_data = data;
  684. }
  685. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  686. "membar #Sync"
  687. : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  688. spitfire_put_itlb_data(i, 0x0UL);
  689. itlb_seen++;
  690. if (itlb_seen > 15)
  691. break;
  692. }
  693. }
  694. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  695. int high = CHEETAH_HIGHEST_LOCKED_TLBENT - bigkernel;
  696. for (i = 0; i < high; i++) {
  697. unsigned long data;
  698. data = cheetah_get_ldtlb_data(i);
  699. if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
  700. unsigned long tag;
  701. tag = cheetah_get_ldtlb_tag(i);
  702. if (save_p) {
  703. prom_dtlb[dtlb_seen].tlb_ent = i;
  704. prom_dtlb[dtlb_seen].tlb_tag = tag;
  705. prom_dtlb[dtlb_seen].tlb_data = data;
  706. }
  707. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  708. "membar #Sync"
  709. : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  710. cheetah_put_ldtlb_data(i, 0x0UL);
  711. dtlb_seen++;
  712. if (dtlb_seen > 15)
  713. break;
  714. }
  715. }
  716. for (i = 0; i < high; i++) {
  717. unsigned long data;
  718. data = cheetah_get_litlb_data(i);
  719. if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) {
  720. unsigned long tag;
  721. tag = cheetah_get_litlb_tag(i);
  722. if (save_p) {
  723. prom_itlb[itlb_seen].tlb_ent = i;
  724. prom_itlb[itlb_seen].tlb_tag = tag;
  725. prom_itlb[itlb_seen].tlb_data = data;
  726. }
  727. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  728. "membar #Sync"
  729. : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  730. cheetah_put_litlb_data(i, 0x0UL);
  731. itlb_seen++;
  732. if (itlb_seen > 15)
  733. break;
  734. }
  735. }
  736. } else {
  737. /* Implement me :-) */
  738. BUG();
  739. }
  740. if (save_p)
  741. prom_ditlb_set = 1;
  742. }
  743. /* Give PROM back his world, done during reboots... */
  744. void prom_reload_locked(void)
  745. {
  746. int i;
  747. for (i = 0; i < 16; i++) {
  748. if (prom_dtlb[i].tlb_ent != -1) {
  749. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  750. "membar #Sync"
  751. : : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS),
  752. "i" (ASI_DMMU));
  753. if (tlb_type == spitfire)
  754. spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent,
  755. prom_dtlb[i].tlb_data);
  756. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  757. cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent,
  758. prom_dtlb[i].tlb_data);
  759. }
  760. if (prom_itlb[i].tlb_ent != -1) {
  761. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  762. "membar #Sync"
  763. : : "r" (prom_itlb[i].tlb_tag),
  764. "r" (TLB_TAG_ACCESS),
  765. "i" (ASI_IMMU));
  766. if (tlb_type == spitfire)
  767. spitfire_put_itlb_data(prom_itlb[i].tlb_ent,
  768. prom_itlb[i].tlb_data);
  769. else
  770. cheetah_put_litlb_data(prom_itlb[i].tlb_ent,
  771. prom_itlb[i].tlb_data);
  772. }
  773. }
  774. }
  775. #ifdef DCACHE_ALIASING_POSSIBLE
  776. void __flush_dcache_range(unsigned long start, unsigned long end)
  777. {
  778. unsigned long va;
  779. if (tlb_type == spitfire) {
  780. int n = 0;
  781. for (va = start; va < end; va += 32) {
  782. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  783. if (++n >= 512)
  784. break;
  785. }
  786. } else {
  787. start = __pa(start);
  788. end = __pa(end);
  789. for (va = start; va < end; va += 32)
  790. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  791. "membar #Sync"
  792. : /* no outputs */
  793. : "r" (va),
  794. "i" (ASI_DCACHE_INVALIDATE));
  795. }
  796. }
  797. #endif /* DCACHE_ALIASING_POSSIBLE */
  798. /* If not locked, zap it. */
  799. void __flush_tlb_all(void)
  800. {
  801. unsigned long pstate;
  802. int i;
  803. __asm__ __volatile__("flushw\n\t"
  804. "rdpr %%pstate, %0\n\t"
  805. "wrpr %0, %1, %%pstate"
  806. : "=r" (pstate)
  807. : "i" (PSTATE_IE));
  808. if (tlb_type == spitfire) {
  809. for (i = 0; i < 64; i++) {
  810. /* Spitfire Errata #32 workaround */
  811. /* NOTE: Always runs on spitfire, so no
  812. * cheetah+ page size encodings.
  813. */
  814. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  815. "flush %%g6"
  816. : /* No outputs */
  817. : "r" (0),
  818. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  819. if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) {
  820. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  821. "membar #Sync"
  822. : /* no outputs */
  823. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  824. spitfire_put_dtlb_data(i, 0x0UL);
  825. }
  826. /* Spitfire Errata #32 workaround */
  827. /* NOTE: Always runs on spitfire, so no
  828. * cheetah+ page size encodings.
  829. */
  830. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  831. "flush %%g6"
  832. : /* No outputs */
  833. : "r" (0),
  834. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  835. if (!(spitfire_get_itlb_data(i) & _PAGE_L)) {
  836. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  837. "membar #Sync"
  838. : /* no outputs */
  839. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  840. spitfire_put_itlb_data(i, 0x0UL);
  841. }
  842. }
  843. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  844. cheetah_flush_dtlb_all();
  845. cheetah_flush_itlb_all();
  846. }
  847. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  848. : : "r" (pstate));
  849. }
  850. /* Caller does TLB context flushing on local CPU if necessary.
  851. * The caller also ensures that CTX_VALID(mm->context) is false.
  852. *
  853. * We must be careful about boundary cases so that we never
  854. * let the user have CTX 0 (nucleus) or we ever use a CTX
  855. * version of zero (and thus NO_CONTEXT would not be caught
  856. * by version mis-match tests in mmu_context.h).
  857. */
  858. void get_new_mmu_context(struct mm_struct *mm)
  859. {
  860. unsigned long ctx, new_ctx;
  861. unsigned long orig_pgsz_bits;
  862. spin_lock(&ctx_alloc_lock);
  863. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  864. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  865. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  866. if (new_ctx >= (1 << CTX_NR_BITS)) {
  867. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  868. if (new_ctx >= ctx) {
  869. int i;
  870. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  871. CTX_FIRST_VERSION;
  872. if (new_ctx == 1)
  873. new_ctx = CTX_FIRST_VERSION;
  874. /* Don't call memset, for 16 entries that's just
  875. * plain silly...
  876. */
  877. mmu_context_bmap[0] = 3;
  878. mmu_context_bmap[1] = 0;
  879. mmu_context_bmap[2] = 0;
  880. mmu_context_bmap[3] = 0;
  881. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  882. mmu_context_bmap[i + 0] = 0;
  883. mmu_context_bmap[i + 1] = 0;
  884. mmu_context_bmap[i + 2] = 0;
  885. mmu_context_bmap[i + 3] = 0;
  886. }
  887. goto out;
  888. }
  889. }
  890. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  891. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  892. out:
  893. tlb_context_cache = new_ctx;
  894. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  895. spin_unlock(&ctx_alloc_lock);
  896. }
  897. #ifndef CONFIG_SMP
  898. struct pgtable_cache_struct pgt_quicklists;
  899. #endif
  900. /* OK, we have to color these pages. The page tables are accessed
  901. * by non-Dcache enabled mapping in the VPTE area by the dtlb_backend.S
  902. * code, as well as by PAGE_OFFSET range direct-mapped addresses by
  903. * other parts of the kernel. By coloring, we make sure that the tlbmiss
  904. * fast handlers do not get data from old/garbage dcache lines that
  905. * correspond to an old/stale virtual address (user/kernel) that
  906. * previously mapped the pagetable page while accessing vpte range
  907. * addresses. The idea is that if the vpte color and PAGE_OFFSET range
  908. * color is the same, then when the kernel initializes the pagetable
  909. * using the later address range, accesses with the first address
  910. * range will see the newly initialized data rather than the garbage.
  911. */
  912. #ifdef DCACHE_ALIASING_POSSIBLE
  913. #define DC_ALIAS_SHIFT 1
  914. #else
  915. #define DC_ALIAS_SHIFT 0
  916. #endif
  917. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  918. {
  919. struct page *page;
  920. unsigned long color;
  921. {
  922. pte_t *ptep = pte_alloc_one_fast(mm, address);
  923. if (ptep)
  924. return ptep;
  925. }
  926. color = VPTE_COLOR(address);
  927. page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, DC_ALIAS_SHIFT);
  928. if (page) {
  929. unsigned long *to_free;
  930. unsigned long paddr;
  931. pte_t *pte;
  932. #ifdef DCACHE_ALIASING_POSSIBLE
  933. set_page_count(page, 1);
  934. ClearPageCompound(page);
  935. set_page_count((page + 1), 1);
  936. ClearPageCompound(page + 1);
  937. #endif
  938. paddr = (unsigned long) page_address(page);
  939. memset((char *)paddr, 0, (PAGE_SIZE << DC_ALIAS_SHIFT));
  940. if (!color) {
  941. pte = (pte_t *) paddr;
  942. to_free = (unsigned long *) (paddr + PAGE_SIZE);
  943. } else {
  944. pte = (pte_t *) (paddr + PAGE_SIZE);
  945. to_free = (unsigned long *) paddr;
  946. }
  947. #ifdef DCACHE_ALIASING_POSSIBLE
  948. /* Now free the other one up, adjust cache size. */
  949. preempt_disable();
  950. *to_free = (unsigned long) pte_quicklist[color ^ 0x1];
  951. pte_quicklist[color ^ 0x1] = to_free;
  952. pgtable_cache_size++;
  953. preempt_enable();
  954. #endif
  955. return pte;
  956. }
  957. return NULL;
  958. }
  959. void sparc_ultra_dump_itlb(void)
  960. {
  961. int slot;
  962. if (tlb_type == spitfire) {
  963. printk ("Contents of itlb: ");
  964. for (slot = 0; slot < 14; slot++) printk (" ");
  965. printk ("%2x:%016lx,%016lx\n",
  966. 0,
  967. spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
  968. for (slot = 1; slot < 64; slot+=3) {
  969. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  970. slot,
  971. spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
  972. slot+1,
  973. spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
  974. slot+2,
  975. spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
  976. }
  977. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  978. printk ("Contents of itlb0:\n");
  979. for (slot = 0; slot < 16; slot+=2) {
  980. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  981. slot,
  982. cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
  983. slot+1,
  984. cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
  985. }
  986. printk ("Contents of itlb2:\n");
  987. for (slot = 0; slot < 128; slot+=2) {
  988. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  989. slot,
  990. cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
  991. slot+1,
  992. cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
  993. }
  994. }
  995. }
  996. void sparc_ultra_dump_dtlb(void)
  997. {
  998. int slot;
  999. if (tlb_type == spitfire) {
  1000. printk ("Contents of dtlb: ");
  1001. for (slot = 0; slot < 14; slot++) printk (" ");
  1002. printk ("%2x:%016lx,%016lx\n", 0,
  1003. spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
  1004. for (slot = 1; slot < 64; slot+=3) {
  1005. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  1006. slot,
  1007. spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
  1008. slot+1,
  1009. spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
  1010. slot+2,
  1011. spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
  1012. }
  1013. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1014. printk ("Contents of dtlb0:\n");
  1015. for (slot = 0; slot < 16; slot+=2) {
  1016. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  1017. slot,
  1018. cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
  1019. slot+1,
  1020. cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
  1021. }
  1022. printk ("Contents of dtlb2:\n");
  1023. for (slot = 0; slot < 512; slot+=2) {
  1024. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  1025. slot,
  1026. cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
  1027. slot+1,
  1028. cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
  1029. }
  1030. if (tlb_type == cheetah_plus) {
  1031. printk ("Contents of dtlb3:\n");
  1032. for (slot = 0; slot < 512; slot+=2) {
  1033. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  1034. slot,
  1035. cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
  1036. slot+1,
  1037. cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
  1038. }
  1039. }
  1040. }
  1041. }
  1042. extern unsigned long cmdline_memory_size;
  1043. unsigned long __init bootmem_init(unsigned long *pages_avail)
  1044. {
  1045. unsigned long bootmap_size, start_pfn, end_pfn;
  1046. unsigned long end_of_phys_memory = 0UL;
  1047. unsigned long bootmap_pfn, bytes_avail, size;
  1048. int i;
  1049. #ifdef CONFIG_DEBUG_BOOTMEM
  1050. prom_printf("bootmem_init: Scan sp_banks, ");
  1051. #endif
  1052. bytes_avail = 0UL;
  1053. for (i = 0; sp_banks[i].num_bytes != 0; i++) {
  1054. end_of_phys_memory = sp_banks[i].base_addr +
  1055. sp_banks[i].num_bytes;
  1056. bytes_avail += sp_banks[i].num_bytes;
  1057. if (cmdline_memory_size) {
  1058. if (bytes_avail > cmdline_memory_size) {
  1059. unsigned long slack = bytes_avail - cmdline_memory_size;
  1060. bytes_avail -= slack;
  1061. end_of_phys_memory -= slack;
  1062. sp_banks[i].num_bytes -= slack;
  1063. if (sp_banks[i].num_bytes == 0) {
  1064. sp_banks[i].base_addr = 0xdeadbeef;
  1065. } else {
  1066. sp_banks[i+1].num_bytes = 0;
  1067. sp_banks[i+1].base_addr = 0xdeadbeef;
  1068. }
  1069. break;
  1070. }
  1071. }
  1072. }
  1073. *pages_avail = bytes_avail >> PAGE_SHIFT;
  1074. /* Start with page aligned address of last symbol in kernel
  1075. * image. The kernel is hard mapped below PAGE_OFFSET in a
  1076. * 4MB locked TLB translation.
  1077. */
  1078. start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
  1079. bootmap_pfn = start_pfn;
  1080. end_pfn = end_of_phys_memory >> PAGE_SHIFT;
  1081. #ifdef CONFIG_BLK_DEV_INITRD
  1082. /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
  1083. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  1084. unsigned long ramdisk_image = sparc_ramdisk_image ?
  1085. sparc_ramdisk_image : sparc_ramdisk_image64;
  1086. if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
  1087. ramdisk_image -= KERNBASE;
  1088. initrd_start = ramdisk_image + phys_base;
  1089. initrd_end = initrd_start + sparc_ramdisk_size;
  1090. if (initrd_end > end_of_phys_memory) {
  1091. printk(KERN_CRIT "initrd extends beyond end of memory "
  1092. "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
  1093. initrd_end, end_of_phys_memory);
  1094. initrd_start = 0;
  1095. }
  1096. if (initrd_start) {
  1097. if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
  1098. initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
  1099. bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
  1100. }
  1101. }
  1102. #endif
  1103. /* Initialize the boot-time allocator. */
  1104. max_pfn = max_low_pfn = end_pfn;
  1105. min_low_pfn = pfn_base;
  1106. #ifdef CONFIG_DEBUG_BOOTMEM
  1107. prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
  1108. min_low_pfn, bootmap_pfn, max_low_pfn);
  1109. #endif
  1110. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
  1111. /* Now register the available physical memory with the
  1112. * allocator.
  1113. */
  1114. for (i = 0; sp_banks[i].num_bytes != 0; i++) {
  1115. #ifdef CONFIG_DEBUG_BOOTMEM
  1116. prom_printf("free_bootmem(sp_banks:%d): base[%lx] size[%lx]\n",
  1117. i, sp_banks[i].base_addr, sp_banks[i].num_bytes);
  1118. #endif
  1119. free_bootmem(sp_banks[i].base_addr, sp_banks[i].num_bytes);
  1120. }
  1121. #ifdef CONFIG_BLK_DEV_INITRD
  1122. if (initrd_start) {
  1123. size = initrd_end - initrd_start;
  1124. /* Resert the initrd image area. */
  1125. #ifdef CONFIG_DEBUG_BOOTMEM
  1126. prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
  1127. initrd_start, initrd_end);
  1128. #endif
  1129. reserve_bootmem(initrd_start, size);
  1130. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  1131. initrd_start += PAGE_OFFSET;
  1132. initrd_end += PAGE_OFFSET;
  1133. }
  1134. #endif
  1135. /* Reserve the kernel text/data/bss. */
  1136. #ifdef CONFIG_DEBUG_BOOTMEM
  1137. prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
  1138. #endif
  1139. reserve_bootmem(kern_base, kern_size);
  1140. *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
  1141. /* Reserve the bootmem map. We do not account for it
  1142. * in pages_avail because we will release that memory
  1143. * in free_all_bootmem.
  1144. */
  1145. size = bootmap_size;
  1146. #ifdef CONFIG_DEBUG_BOOTMEM
  1147. prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
  1148. (bootmap_pfn << PAGE_SHIFT), size);
  1149. #endif
  1150. reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
  1151. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  1152. return end_pfn;
  1153. }
  1154. #ifdef CONFIG_DEBUG_PAGEALLOC
  1155. static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
  1156. {
  1157. unsigned long vstart = PAGE_OFFSET + pstart;
  1158. unsigned long vend = PAGE_OFFSET + pend;
  1159. unsigned long alloc_bytes = 0UL;
  1160. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  1161. prom_printf("kernel_map: Unaligned sp_banks[%lx:%lx]\n",
  1162. vstart, vend);
  1163. prom_halt();
  1164. }
  1165. while (vstart < vend) {
  1166. unsigned long this_end, paddr = __pa(vstart);
  1167. pgd_t *pgd = pgd_offset_k(vstart);
  1168. pud_t *pud;
  1169. pmd_t *pmd;
  1170. pte_t *pte;
  1171. pud = pud_offset(pgd, vstart);
  1172. if (pud_none(*pud)) {
  1173. pmd_t *new;
  1174. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1175. alloc_bytes += PAGE_SIZE;
  1176. pud_populate(&init_mm, pud, new);
  1177. }
  1178. pmd = pmd_offset(pud, vstart);
  1179. if (!pmd_present(*pmd)) {
  1180. pte_t *new;
  1181. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1182. alloc_bytes += PAGE_SIZE;
  1183. pmd_populate_kernel(&init_mm, pmd, new);
  1184. }
  1185. pte = pte_offset_kernel(pmd, vstart);
  1186. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  1187. if (this_end > vend)
  1188. this_end = vend;
  1189. while (vstart < this_end) {
  1190. pte_val(*pte) = (paddr | pgprot_val(prot));
  1191. vstart += PAGE_SIZE;
  1192. paddr += PAGE_SIZE;
  1193. pte++;
  1194. }
  1195. }
  1196. return alloc_bytes;
  1197. }
  1198. extern struct linux_mlist_p1275 *prom_ptot_ptr;
  1199. extern unsigned int kvmap_linear_patch[1];
  1200. static void __init kernel_physical_mapping_init(void)
  1201. {
  1202. struct linux_mlist_p1275 *p = prom_ptot_ptr;
  1203. unsigned long mem_alloced = 0UL;
  1204. while (p) {
  1205. unsigned long phys_start, phys_end;
  1206. phys_start = p->start_adr;
  1207. phys_end = phys_start + p->num_bytes;
  1208. mem_alloced += kernel_map_range(phys_start, phys_end,
  1209. PAGE_KERNEL);
  1210. p = p->theres_more;
  1211. }
  1212. printk("Allocated %ld bytes for kernel page tables.\n",
  1213. mem_alloced);
  1214. kvmap_linear_patch[0] = 0x01000000; /* nop */
  1215. flushi(&kvmap_linear_patch[0]);
  1216. __flush_tlb_all();
  1217. }
  1218. void kernel_map_pages(struct page *page, int numpages, int enable)
  1219. {
  1220. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  1221. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  1222. kernel_map_range(phys_start, phys_end,
  1223. (enable ? PAGE_KERNEL : __pgprot(0)));
  1224. /* we should perform an IPI and flush all tlbs,
  1225. * but that can deadlock->flush only current cpu.
  1226. */
  1227. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  1228. PAGE_OFFSET + phys_end);
  1229. }
  1230. #endif
  1231. static void __init prom_probe_memory(void)
  1232. {
  1233. struct linux_mlist_p1275 *mlist;
  1234. unsigned long bytes, base_paddr, tally;
  1235. int i;
  1236. i = 0;
  1237. mlist = *prom_meminfo()->p1275_available;
  1238. bytes = tally = mlist->num_bytes;
  1239. base_paddr = mlist->start_adr;
  1240. sp_banks[0].base_addr = base_paddr;
  1241. sp_banks[0].num_bytes = bytes;
  1242. while (mlist->theres_more != (void *) 0) {
  1243. i++;
  1244. mlist = mlist->theres_more;
  1245. bytes = mlist->num_bytes;
  1246. tally += bytes;
  1247. if (i >= SPARC_PHYS_BANKS-1) {
  1248. printk ("The machine has more banks than "
  1249. "this kernel can support\n"
  1250. "Increase the SPARC_PHYS_BANKS "
  1251. "setting (currently %d)\n",
  1252. SPARC_PHYS_BANKS);
  1253. i = SPARC_PHYS_BANKS-1;
  1254. break;
  1255. }
  1256. sp_banks[i].base_addr = mlist->start_adr;
  1257. sp_banks[i].num_bytes = mlist->num_bytes;
  1258. }
  1259. i++;
  1260. sp_banks[i].base_addr = 0xdeadbeefbeefdeadUL;
  1261. sp_banks[i].num_bytes = 0;
  1262. /* Now mask all bank sizes on a page boundary, it is all we can
  1263. * use anyways.
  1264. */
  1265. for (i = 0; sp_banks[i].num_bytes != 0; i++)
  1266. sp_banks[i].num_bytes &= PAGE_MASK;
  1267. }
  1268. /* paging_init() sets up the page tables */
  1269. extern void cheetah_ecache_flush_init(void);
  1270. static unsigned long last_valid_pfn;
  1271. pgd_t swapper_pg_dir[2048];
  1272. void __init paging_init(void)
  1273. {
  1274. unsigned long end_pfn, pages_avail, shift;
  1275. unsigned long real_end, i;
  1276. prom_probe_memory();
  1277. phys_base = 0xffffffffffffffffUL;
  1278. for (i = 0; sp_banks[i].num_bytes != 0; i++) {
  1279. unsigned long top;
  1280. if (sp_banks[i].base_addr < phys_base)
  1281. phys_base = sp_banks[i].base_addr;
  1282. top = sp_banks[i].base_addr +
  1283. sp_banks[i].num_bytes;
  1284. }
  1285. pfn_base = phys_base >> PAGE_SHIFT;
  1286. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  1287. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1288. set_bit(0, mmu_context_bmap);
  1289. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1290. real_end = (unsigned long)_end;
  1291. if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
  1292. bigkernel = 1;
  1293. if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
  1294. prom_printf("paging_init: Kernel > 8MB, too large.\n");
  1295. prom_halt();
  1296. }
  1297. /* Set kernel pgd to upper alias so physical page computations
  1298. * work.
  1299. */
  1300. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1301. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1302. /* Now can init the kernel/bad page tables. */
  1303. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1304. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1305. swapper_pgd_zero = pgd_val(swapper_pg_dir[0]);
  1306. /* Inherit non-locked OBP mappings. */
  1307. inherit_prom_mappings();
  1308. /* Ok, we can use our TLB miss and window trap handlers safely.
  1309. * We need to do a quick peek here to see if we are on StarFire
  1310. * or not, so setup_tba can setup the IRQ globals correctly (it
  1311. * needs to get the hard smp processor id correctly).
  1312. */
  1313. {
  1314. extern void setup_tba(int);
  1315. setup_tba(this_is_starfire);
  1316. }
  1317. inherit_locked_prom_mappings(1);
  1318. __flush_tlb_all();
  1319. /* Setup bootmem... */
  1320. pages_avail = 0;
  1321. last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
  1322. #ifdef CONFIG_DEBUG_PAGEALLOC
  1323. kernel_physical_mapping_init();
  1324. #endif
  1325. {
  1326. unsigned long zones_size[MAX_NR_ZONES];
  1327. unsigned long zholes_size[MAX_NR_ZONES];
  1328. unsigned long npages;
  1329. int znum;
  1330. for (znum = 0; znum < MAX_NR_ZONES; znum++)
  1331. zones_size[znum] = zholes_size[znum] = 0;
  1332. npages = end_pfn - pfn_base;
  1333. zones_size[ZONE_DMA] = npages;
  1334. zholes_size[ZONE_DMA] = npages - pages_avail;
  1335. free_area_init_node(0, &contig_page_data, zones_size,
  1336. phys_base >> PAGE_SHIFT, zholes_size);
  1337. }
  1338. device_scan();
  1339. }
  1340. /* Ok, it seems that the prom can allocate some more memory chunks
  1341. * as a side effect of some prom calls we perform during the
  1342. * boot sequence. My most likely theory is that it is from the
  1343. * prom_set_traptable() call, and OBP is allocating a scratchpad
  1344. * for saving client program register state etc.
  1345. */
  1346. static void __init sort_memlist(struct linux_mlist_p1275 *thislist)
  1347. {
  1348. int swapi = 0;
  1349. int i, mitr;
  1350. unsigned long tmpaddr, tmpsize;
  1351. unsigned long lowest;
  1352. for (i = 0; thislist[i].theres_more != 0; i++) {
  1353. lowest = thislist[i].start_adr;
  1354. for (mitr = i+1; thislist[mitr-1].theres_more != 0; mitr++)
  1355. if (thislist[mitr].start_adr < lowest) {
  1356. lowest = thislist[mitr].start_adr;
  1357. swapi = mitr;
  1358. }
  1359. if (lowest == thislist[i].start_adr)
  1360. continue;
  1361. tmpaddr = thislist[swapi].start_adr;
  1362. tmpsize = thislist[swapi].num_bytes;
  1363. for (mitr = swapi; mitr > i; mitr--) {
  1364. thislist[mitr].start_adr = thislist[mitr-1].start_adr;
  1365. thislist[mitr].num_bytes = thislist[mitr-1].num_bytes;
  1366. }
  1367. thislist[i].start_adr = tmpaddr;
  1368. thislist[i].num_bytes = tmpsize;
  1369. }
  1370. }
  1371. void __init rescan_sp_banks(void)
  1372. {
  1373. struct linux_prom64_registers memlist[64];
  1374. struct linux_mlist_p1275 avail[64], *mlist;
  1375. unsigned long bytes, base_paddr;
  1376. int num_regs, node = prom_finddevice("/memory");
  1377. int i;
  1378. num_regs = prom_getproperty(node, "available",
  1379. (char *) memlist, sizeof(memlist));
  1380. num_regs = (num_regs / sizeof(struct linux_prom64_registers));
  1381. for (i = 0; i < num_regs; i++) {
  1382. avail[i].start_adr = memlist[i].phys_addr;
  1383. avail[i].num_bytes = memlist[i].reg_size;
  1384. avail[i].theres_more = &avail[i + 1];
  1385. }
  1386. avail[i - 1].theres_more = NULL;
  1387. sort_memlist(avail);
  1388. mlist = &avail[0];
  1389. i = 0;
  1390. bytes = mlist->num_bytes;
  1391. base_paddr = mlist->start_adr;
  1392. sp_banks[0].base_addr = base_paddr;
  1393. sp_banks[0].num_bytes = bytes;
  1394. while (mlist->theres_more != NULL){
  1395. i++;
  1396. mlist = mlist->theres_more;
  1397. bytes = mlist->num_bytes;
  1398. if (i >= SPARC_PHYS_BANKS-1) {
  1399. printk ("The machine has more banks than "
  1400. "this kernel can support\n"
  1401. "Increase the SPARC_PHYS_BANKS "
  1402. "setting (currently %d)\n",
  1403. SPARC_PHYS_BANKS);
  1404. i = SPARC_PHYS_BANKS-1;
  1405. break;
  1406. }
  1407. sp_banks[i].base_addr = mlist->start_adr;
  1408. sp_banks[i].num_bytes = mlist->num_bytes;
  1409. }
  1410. i++;
  1411. sp_banks[i].base_addr = 0xdeadbeefbeefdeadUL;
  1412. sp_banks[i].num_bytes = 0;
  1413. for (i = 0; sp_banks[i].num_bytes != 0; i++)
  1414. sp_banks[i].num_bytes &= PAGE_MASK;
  1415. }
  1416. static void __init taint_real_pages(void)
  1417. {
  1418. struct sparc_phys_banks saved_sp_banks[SPARC_PHYS_BANKS];
  1419. int i;
  1420. for (i = 0; i < SPARC_PHYS_BANKS; i++) {
  1421. saved_sp_banks[i].base_addr =
  1422. sp_banks[i].base_addr;
  1423. saved_sp_banks[i].num_bytes =
  1424. sp_banks[i].num_bytes;
  1425. }
  1426. rescan_sp_banks();
  1427. /* Find changes discovered in the sp_bank rescan and
  1428. * reserve the lost portions in the bootmem maps.
  1429. */
  1430. for (i = 0; saved_sp_banks[i].num_bytes; i++) {
  1431. unsigned long old_start, old_end;
  1432. old_start = saved_sp_banks[i].base_addr;
  1433. old_end = old_start +
  1434. saved_sp_banks[i].num_bytes;
  1435. while (old_start < old_end) {
  1436. int n;
  1437. for (n = 0; sp_banks[n].num_bytes; n++) {
  1438. unsigned long new_start, new_end;
  1439. new_start = sp_banks[n].base_addr;
  1440. new_end = new_start + sp_banks[n].num_bytes;
  1441. if (new_start <= old_start &&
  1442. new_end >= (old_start + PAGE_SIZE)) {
  1443. set_bit (old_start >> 22,
  1444. sparc64_valid_addr_bitmap);
  1445. goto do_next_page;
  1446. }
  1447. }
  1448. reserve_bootmem(old_start, PAGE_SIZE);
  1449. do_next_page:
  1450. old_start += PAGE_SIZE;
  1451. }
  1452. }
  1453. }
  1454. void __init mem_init(void)
  1455. {
  1456. unsigned long codepages, datapages, initpages;
  1457. unsigned long addr, last;
  1458. int i;
  1459. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1460. i += 1;
  1461. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1462. if (sparc64_valid_addr_bitmap == NULL) {
  1463. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1464. prom_halt();
  1465. }
  1466. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1467. addr = PAGE_OFFSET + kern_base;
  1468. last = PAGE_ALIGN(kern_size) + addr;
  1469. while (addr < last) {
  1470. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1471. addr += PAGE_SIZE;
  1472. }
  1473. taint_real_pages();
  1474. max_mapnr = last_valid_pfn - pfn_base;
  1475. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1476. #ifdef CONFIG_DEBUG_BOOTMEM
  1477. prom_printf("mem_init: Calling free_all_bootmem().\n");
  1478. #endif
  1479. totalram_pages = num_physpages = free_all_bootmem() - 1;
  1480. /*
  1481. * Set up the zero page, mark it reserved, so that page count
  1482. * is not manipulated when freeing the page from user ptes.
  1483. */
  1484. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1485. if (mem_map_zero == NULL) {
  1486. prom_printf("paging_init: Cannot alloc zero page.\n");
  1487. prom_halt();
  1488. }
  1489. SetPageReserved(mem_map_zero);
  1490. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1491. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1492. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1493. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1494. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1495. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1496. printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1497. nr_free_pages() << (PAGE_SHIFT-10),
  1498. codepages << (PAGE_SHIFT-10),
  1499. datapages << (PAGE_SHIFT-10),
  1500. initpages << (PAGE_SHIFT-10),
  1501. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1502. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1503. cheetah_ecache_flush_init();
  1504. }
  1505. void free_initmem(void)
  1506. {
  1507. unsigned long addr, initend;
  1508. /*
  1509. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1510. */
  1511. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1512. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1513. for (; addr < initend; addr += PAGE_SIZE) {
  1514. unsigned long page;
  1515. struct page *p;
  1516. page = (addr +
  1517. ((unsigned long) __va(kern_base)) -
  1518. ((unsigned long) KERNBASE));
  1519. memset((void *)addr, 0xcc, PAGE_SIZE);
  1520. p = virt_to_page(page);
  1521. ClearPageReserved(p);
  1522. set_page_count(p, 1);
  1523. __free_page(p);
  1524. num_physpages++;
  1525. totalram_pages++;
  1526. }
  1527. }
  1528. #ifdef CONFIG_BLK_DEV_INITRD
  1529. void free_initrd_mem(unsigned long start, unsigned long end)
  1530. {
  1531. if (start < end)
  1532. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1533. for (; start < end; start += PAGE_SIZE) {
  1534. struct page *p = virt_to_page(start);
  1535. ClearPageReserved(p);
  1536. set_page_count(p, 1);
  1537. __free_page(p);
  1538. num_physpages++;
  1539. totalram_pages++;
  1540. }
  1541. }
  1542. #endif