forcedeth.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. *
  108. * Known bugs:
  109. * We suspect that on some hardware no TX done interrupts are generated.
  110. * This means recovery from netif_stop_queue only happens if the hw timer
  111. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  112. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  113. * If your hardware reliably generates tx done interrupts, then you can remove
  114. * DEV_NEED_TIMERIRQ from the driver_data flags.
  115. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  116. * superfluous timer interrupts from the nic.
  117. */
  118. #define FORCEDETH_VERSION "0.51"
  119. #define DRV_NAME "forcedeth"
  120. #include <linux/module.h>
  121. #include <linux/types.h>
  122. #include <linux/pci.h>
  123. #include <linux/interrupt.h>
  124. #include <linux/netdevice.h>
  125. #include <linux/etherdevice.h>
  126. #include <linux/delay.h>
  127. #include <linux/spinlock.h>
  128. #include <linux/ethtool.h>
  129. #include <linux/timer.h>
  130. #include <linux/skbuff.h>
  131. #include <linux/mii.h>
  132. #include <linux/random.h>
  133. #include <linux/init.h>
  134. #include <linux/if_vlan.h>
  135. #include <asm/irq.h>
  136. #include <asm/io.h>
  137. #include <asm/uaccess.h>
  138. #include <asm/system.h>
  139. #if 0
  140. #define dprintk printk
  141. #else
  142. #define dprintk(x...) do { } while (0)
  143. #endif
  144. /*
  145. * Hardware access:
  146. */
  147. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  148. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  149. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  150. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  151. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  152. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  153. enum {
  154. NvRegIrqStatus = 0x000,
  155. #define NVREG_IRQSTAT_MIIEVENT 0x040
  156. #define NVREG_IRQSTAT_MASK 0x1ff
  157. NvRegIrqMask = 0x004,
  158. #define NVREG_IRQ_RX_ERROR 0x0001
  159. #define NVREG_IRQ_RX 0x0002
  160. #define NVREG_IRQ_RX_NOBUF 0x0004
  161. #define NVREG_IRQ_TX_ERR 0x0008
  162. #define NVREG_IRQ_TX_OK 0x0010
  163. #define NVREG_IRQ_TIMER 0x0020
  164. #define NVREG_IRQ_LINK 0x0040
  165. #define NVREG_IRQ_TX_ERROR 0x0080
  166. #define NVREG_IRQ_TX1 0x0100
  167. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  168. #define NVREG_IRQMASK_CPU 0x0040
  169. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  170. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \
  171. NVREG_IRQ_TX1))
  172. NvRegUnknownSetupReg6 = 0x008,
  173. #define NVREG_UNKSETUP6_VAL 3
  174. /*
  175. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  176. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  177. */
  178. NvRegPollingInterval = 0x00c,
  179. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  180. #define NVREG_POLL_DEFAULT_CPU 13
  181. NvRegMisc1 = 0x080,
  182. #define NVREG_MISC1_HD 0x02
  183. #define NVREG_MISC1_FORCE 0x3b0f3c
  184. NvRegTransmitterControl = 0x084,
  185. #define NVREG_XMITCTL_START 0x01
  186. NvRegTransmitterStatus = 0x088,
  187. #define NVREG_XMITSTAT_BUSY 0x01
  188. NvRegPacketFilterFlags = 0x8c,
  189. #define NVREG_PFF_ALWAYS 0x7F0008
  190. #define NVREG_PFF_PROMISC 0x80
  191. #define NVREG_PFF_MYADDR 0x20
  192. NvRegOffloadConfig = 0x90,
  193. #define NVREG_OFFLOAD_HOMEPHY 0x601
  194. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  195. NvRegReceiverControl = 0x094,
  196. #define NVREG_RCVCTL_START 0x01
  197. NvRegReceiverStatus = 0x98,
  198. #define NVREG_RCVSTAT_BUSY 0x01
  199. NvRegRandomSeed = 0x9c,
  200. #define NVREG_RNDSEED_MASK 0x00ff
  201. #define NVREG_RNDSEED_FORCE 0x7f00
  202. #define NVREG_RNDSEED_FORCE2 0x2d00
  203. #define NVREG_RNDSEED_FORCE3 0x7400
  204. NvRegUnknownSetupReg1 = 0xA0,
  205. #define NVREG_UNKSETUP1_VAL 0x16070f
  206. NvRegUnknownSetupReg2 = 0xA4,
  207. #define NVREG_UNKSETUP2_VAL 0x16
  208. NvRegMacAddrA = 0xA8,
  209. NvRegMacAddrB = 0xAC,
  210. NvRegMulticastAddrA = 0xB0,
  211. #define NVREG_MCASTADDRA_FORCE 0x01
  212. NvRegMulticastAddrB = 0xB4,
  213. NvRegMulticastMaskA = 0xB8,
  214. NvRegMulticastMaskB = 0xBC,
  215. NvRegPhyInterface = 0xC0,
  216. #define PHY_RGMII 0x10000000
  217. NvRegTxRingPhysAddr = 0x100,
  218. NvRegRxRingPhysAddr = 0x104,
  219. NvRegRingSizes = 0x108,
  220. #define NVREG_RINGSZ_TXSHIFT 0
  221. #define NVREG_RINGSZ_RXSHIFT 16
  222. NvRegUnknownTransmitterReg = 0x10c,
  223. NvRegLinkSpeed = 0x110,
  224. #define NVREG_LINKSPEED_FORCE 0x10000
  225. #define NVREG_LINKSPEED_10 1000
  226. #define NVREG_LINKSPEED_100 100
  227. #define NVREG_LINKSPEED_1000 50
  228. #define NVREG_LINKSPEED_MASK (0xFFF)
  229. NvRegUnknownSetupReg5 = 0x130,
  230. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  231. NvRegUnknownSetupReg3 = 0x13c,
  232. #define NVREG_UNKSETUP3_VAL1 0x200010
  233. NvRegTxRxControl = 0x144,
  234. #define NVREG_TXRXCTL_KICK 0x0001
  235. #define NVREG_TXRXCTL_BIT1 0x0002
  236. #define NVREG_TXRXCTL_BIT2 0x0004
  237. #define NVREG_TXRXCTL_IDLE 0x0008
  238. #define NVREG_TXRXCTL_RESET 0x0010
  239. #define NVREG_TXRXCTL_RXCHECK 0x0400
  240. #define NVREG_TXRXCTL_DESC_1 0
  241. #define NVREG_TXRXCTL_DESC_2 0x02100
  242. #define NVREG_TXRXCTL_DESC_3 0x02200
  243. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  244. #define NVREG_TXRXCTL_VLANINS 0x00080
  245. NvRegTxRingPhysAddrHigh = 0x148,
  246. NvRegRxRingPhysAddrHigh = 0x14C,
  247. NvRegMIIStatus = 0x180,
  248. #define NVREG_MIISTAT_ERROR 0x0001
  249. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  250. #define NVREG_MIISTAT_MASK 0x000f
  251. #define NVREG_MIISTAT_MASK2 0x000f
  252. NvRegUnknownSetupReg4 = 0x184,
  253. #define NVREG_UNKSETUP4_VAL 8
  254. NvRegAdapterControl = 0x188,
  255. #define NVREG_ADAPTCTL_START 0x02
  256. #define NVREG_ADAPTCTL_LINKUP 0x04
  257. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  258. #define NVREG_ADAPTCTL_RUNNING 0x100000
  259. #define NVREG_ADAPTCTL_PHYSHIFT 24
  260. NvRegMIISpeed = 0x18c,
  261. #define NVREG_MIISPEED_BIT8 (1<<8)
  262. #define NVREG_MIIDELAY 5
  263. NvRegMIIControl = 0x190,
  264. #define NVREG_MIICTL_INUSE 0x08000
  265. #define NVREG_MIICTL_WRITE 0x00400
  266. #define NVREG_MIICTL_ADDRSHIFT 5
  267. NvRegMIIData = 0x194,
  268. NvRegWakeUpFlags = 0x200,
  269. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  270. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  271. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  272. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  273. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  274. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  275. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  276. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  277. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  278. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  279. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  280. NvRegPatternCRC = 0x204,
  281. NvRegPatternMask = 0x208,
  282. NvRegPowerCap = 0x268,
  283. #define NVREG_POWERCAP_D3SUPP (1<<30)
  284. #define NVREG_POWERCAP_D2SUPP (1<<26)
  285. #define NVREG_POWERCAP_D1SUPP (1<<25)
  286. NvRegPowerState = 0x26c,
  287. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  288. #define NVREG_POWERSTATE_VALID 0x0100
  289. #define NVREG_POWERSTATE_MASK 0x0003
  290. #define NVREG_POWERSTATE_D0 0x0000
  291. #define NVREG_POWERSTATE_D1 0x0001
  292. #define NVREG_POWERSTATE_D2 0x0002
  293. #define NVREG_POWERSTATE_D3 0x0003
  294. NvRegVlanControl = 0x300,
  295. #define NVREG_VLANCONTROL_ENABLE 0x2000
  296. };
  297. /* Big endian: should work, but is untested */
  298. struct ring_desc {
  299. u32 PacketBuffer;
  300. u32 FlagLen;
  301. };
  302. struct ring_desc_ex {
  303. u32 PacketBufferHigh;
  304. u32 PacketBufferLow;
  305. u32 TxVlan;
  306. u32 FlagLen;
  307. };
  308. typedef union _ring_type {
  309. struct ring_desc* orig;
  310. struct ring_desc_ex* ex;
  311. } ring_type;
  312. #define FLAG_MASK_V1 0xffff0000
  313. #define FLAG_MASK_V2 0xffffc000
  314. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  315. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  316. #define NV_TX_LASTPACKET (1<<16)
  317. #define NV_TX_RETRYERROR (1<<19)
  318. #define NV_TX_FORCED_INTERRUPT (1<<24)
  319. #define NV_TX_DEFERRED (1<<26)
  320. #define NV_TX_CARRIERLOST (1<<27)
  321. #define NV_TX_LATECOLLISION (1<<28)
  322. #define NV_TX_UNDERFLOW (1<<29)
  323. #define NV_TX_ERROR (1<<30)
  324. #define NV_TX_VALID (1<<31)
  325. #define NV_TX2_LASTPACKET (1<<29)
  326. #define NV_TX2_RETRYERROR (1<<18)
  327. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  328. #define NV_TX2_DEFERRED (1<<25)
  329. #define NV_TX2_CARRIERLOST (1<<26)
  330. #define NV_TX2_LATECOLLISION (1<<27)
  331. #define NV_TX2_UNDERFLOW (1<<28)
  332. /* error and valid are the same for both */
  333. #define NV_TX2_ERROR (1<<30)
  334. #define NV_TX2_VALID (1<<31)
  335. #define NV_TX2_TSO (1<<28)
  336. #define NV_TX2_TSO_SHIFT 14
  337. #define NV_TX2_TSO_MAX_SHIFT 14
  338. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  339. #define NV_TX2_CHECKSUM_L3 (1<<27)
  340. #define NV_TX2_CHECKSUM_L4 (1<<26)
  341. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  342. #define NV_RX_DESCRIPTORVALID (1<<16)
  343. #define NV_RX_MISSEDFRAME (1<<17)
  344. #define NV_RX_SUBSTRACT1 (1<<18)
  345. #define NV_RX_ERROR1 (1<<23)
  346. #define NV_RX_ERROR2 (1<<24)
  347. #define NV_RX_ERROR3 (1<<25)
  348. #define NV_RX_ERROR4 (1<<26)
  349. #define NV_RX_CRCERR (1<<27)
  350. #define NV_RX_OVERFLOW (1<<28)
  351. #define NV_RX_FRAMINGERR (1<<29)
  352. #define NV_RX_ERROR (1<<30)
  353. #define NV_RX_AVAIL (1<<31)
  354. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  355. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  356. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  357. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  358. #define NV_RX2_DESCRIPTORVALID (1<<29)
  359. #define NV_RX2_SUBSTRACT1 (1<<25)
  360. #define NV_RX2_ERROR1 (1<<18)
  361. #define NV_RX2_ERROR2 (1<<19)
  362. #define NV_RX2_ERROR3 (1<<20)
  363. #define NV_RX2_ERROR4 (1<<21)
  364. #define NV_RX2_CRCERR (1<<22)
  365. #define NV_RX2_OVERFLOW (1<<23)
  366. #define NV_RX2_FRAMINGERR (1<<24)
  367. /* error and avail are the same for both */
  368. #define NV_RX2_ERROR (1<<30)
  369. #define NV_RX2_AVAIL (1<<31)
  370. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  371. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  372. /* Miscelaneous hardware related defines: */
  373. #define NV_PCI_REGSZ 0x270
  374. /* various timeout delays: all in usec */
  375. #define NV_TXRX_RESET_DELAY 4
  376. #define NV_TXSTOP_DELAY1 10
  377. #define NV_TXSTOP_DELAY1MAX 500000
  378. #define NV_TXSTOP_DELAY2 100
  379. #define NV_RXSTOP_DELAY1 10
  380. #define NV_RXSTOP_DELAY1MAX 500000
  381. #define NV_RXSTOP_DELAY2 100
  382. #define NV_SETUP5_DELAY 5
  383. #define NV_SETUP5_DELAYMAX 50000
  384. #define NV_POWERUP_DELAY 5
  385. #define NV_POWERUP_DELAYMAX 5000
  386. #define NV_MIIBUSY_DELAY 50
  387. #define NV_MIIPHY_DELAY 10
  388. #define NV_MIIPHY_DELAYMAX 10000
  389. #define NV_WAKEUPPATTERNS 5
  390. #define NV_WAKEUPMASKENTRIES 4
  391. /* General driver defaults */
  392. #define NV_WATCHDOG_TIMEO (5*HZ)
  393. #define RX_RING 128
  394. #define TX_RING 256
  395. /*
  396. * If your nic mysteriously hangs then try to reduce the limits
  397. * to 1/0: It might be required to set NV_TX_LASTPACKET in the
  398. * last valid ring entry. But this would be impossible to
  399. * implement - probably a disassembly error.
  400. */
  401. #define TX_LIMIT_STOP 255
  402. #define TX_LIMIT_START 254
  403. /* rx/tx mac addr + type + vlan + align + slack*/
  404. #define NV_RX_HEADERS (64)
  405. /* even more slack. */
  406. #define NV_RX_ALLOC_PAD (64)
  407. /* maximum mtu size */
  408. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  409. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  410. #define OOM_REFILL (1+HZ/20)
  411. #define POLL_WAIT (1+HZ/100)
  412. #define LINK_TIMEOUT (3*HZ)
  413. /*
  414. * desc_ver values:
  415. * The nic supports three different descriptor types:
  416. * - DESC_VER_1: Original
  417. * - DESC_VER_2: support for jumbo frames.
  418. * - DESC_VER_3: 64-bit format.
  419. */
  420. #define DESC_VER_1 1
  421. #define DESC_VER_2 2
  422. #define DESC_VER_3 3
  423. /* PHY defines */
  424. #define PHY_OUI_MARVELL 0x5043
  425. #define PHY_OUI_CICADA 0x03f1
  426. #define PHYID1_OUI_MASK 0x03ff
  427. #define PHYID1_OUI_SHFT 6
  428. #define PHYID2_OUI_MASK 0xfc00
  429. #define PHYID2_OUI_SHFT 10
  430. #define PHY_INIT1 0x0f000
  431. #define PHY_INIT2 0x0e00
  432. #define PHY_INIT3 0x01000
  433. #define PHY_INIT4 0x0200
  434. #define PHY_INIT5 0x0004
  435. #define PHY_INIT6 0x02000
  436. #define PHY_GIGABIT 0x0100
  437. #define PHY_TIMEOUT 0x1
  438. #define PHY_ERROR 0x2
  439. #define PHY_100 0x1
  440. #define PHY_1000 0x2
  441. #define PHY_HALF 0x100
  442. /* FIXME: MII defines that should be added to <linux/mii.h> */
  443. #define MII_1000BT_CR 0x09
  444. #define MII_1000BT_SR 0x0a
  445. #define ADVERTISE_1000FULL 0x0200
  446. #define ADVERTISE_1000HALF 0x0100
  447. #define LPA_1000FULL 0x0800
  448. #define LPA_1000HALF 0x0400
  449. /*
  450. * SMP locking:
  451. * All hardware access under dev->priv->lock, except the performance
  452. * critical parts:
  453. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  454. * by the arch code for interrupts.
  455. * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
  456. * needs dev->priv->lock :-(
  457. * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
  458. */
  459. /* in dev: base, irq */
  460. struct fe_priv {
  461. spinlock_t lock;
  462. /* General data:
  463. * Locking: spin_lock(&np->lock); */
  464. struct net_device_stats stats;
  465. int in_shutdown;
  466. u32 linkspeed;
  467. int duplex;
  468. int autoneg;
  469. int fixed_mode;
  470. int phyaddr;
  471. int wolenabled;
  472. unsigned int phy_oui;
  473. u16 gigabit;
  474. /* General data: RO fields */
  475. dma_addr_t ring_addr;
  476. struct pci_dev *pci_dev;
  477. u32 orig_mac[2];
  478. u32 irqmask;
  479. u32 desc_ver;
  480. u32 txrxctl_bits;
  481. u32 vlanctl_bits;
  482. void __iomem *base;
  483. /* rx specific fields.
  484. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  485. */
  486. ring_type rx_ring;
  487. unsigned int cur_rx, refill_rx;
  488. struct sk_buff *rx_skbuff[RX_RING];
  489. dma_addr_t rx_dma[RX_RING];
  490. unsigned int rx_buf_sz;
  491. unsigned int pkt_limit;
  492. struct timer_list oom_kick;
  493. struct timer_list nic_poll;
  494. /* media detection workaround.
  495. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  496. */
  497. int need_linktimer;
  498. unsigned long link_timeout;
  499. /*
  500. * tx specific fields.
  501. */
  502. ring_type tx_ring;
  503. unsigned int next_tx, nic_tx;
  504. struct sk_buff *tx_skbuff[TX_RING];
  505. dma_addr_t tx_dma[TX_RING];
  506. unsigned int tx_dma_len[TX_RING];
  507. u32 tx_flags;
  508. /* vlan fields */
  509. struct vlan_group *vlangrp;
  510. };
  511. /*
  512. * Maximum number of loops until we assume that a bit in the irq mask
  513. * is stuck. Overridable with module param.
  514. */
  515. static int max_interrupt_work = 5;
  516. /*
  517. * Optimization can be either throuput mode or cpu mode
  518. *
  519. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  520. * CPU Mode: Interrupts are controlled by a timer.
  521. */
  522. #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
  523. #define NV_OPTIMIZATION_MODE_CPU 1
  524. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  525. /*
  526. * Poll interval for timer irq
  527. *
  528. * This interval determines how frequent an interrupt is generated.
  529. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  530. * Min = 0, and Max = 65535
  531. */
  532. static int poll_interval = -1;
  533. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  534. {
  535. return netdev_priv(dev);
  536. }
  537. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  538. {
  539. return ((struct fe_priv *)netdev_priv(dev))->base;
  540. }
  541. static inline void pci_push(u8 __iomem *base)
  542. {
  543. /* force out pending posted writes */
  544. readl(base);
  545. }
  546. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  547. {
  548. return le32_to_cpu(prd->FlagLen)
  549. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  550. }
  551. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  552. {
  553. return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
  554. }
  555. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  556. int delay, int delaymax, const char *msg)
  557. {
  558. u8 __iomem *base = get_hwbase(dev);
  559. pci_push(base);
  560. do {
  561. udelay(delay);
  562. delaymax -= delay;
  563. if (delaymax < 0) {
  564. if (msg)
  565. printk(msg);
  566. return 1;
  567. }
  568. } while ((readl(base + offset) & mask) != target);
  569. return 0;
  570. }
  571. #define NV_SETUP_RX_RING 0x01
  572. #define NV_SETUP_TX_RING 0x02
  573. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  574. {
  575. struct fe_priv *np = get_nvpriv(dev);
  576. u8 __iomem *base = get_hwbase(dev);
  577. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  578. if (rxtx_flags & NV_SETUP_RX_RING) {
  579. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  580. }
  581. if (rxtx_flags & NV_SETUP_TX_RING) {
  582. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  583. }
  584. } else {
  585. if (rxtx_flags & NV_SETUP_RX_RING) {
  586. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  587. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  588. }
  589. if (rxtx_flags & NV_SETUP_TX_RING) {
  590. writel((u32) cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  591. writel((u32) (cpu_to_le64(np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  592. }
  593. }
  594. }
  595. #define MII_READ (-1)
  596. /* mii_rw: read/write a register on the PHY.
  597. *
  598. * Caller must guarantee serialization
  599. */
  600. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  601. {
  602. u8 __iomem *base = get_hwbase(dev);
  603. u32 reg;
  604. int retval;
  605. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  606. reg = readl(base + NvRegMIIControl);
  607. if (reg & NVREG_MIICTL_INUSE) {
  608. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  609. udelay(NV_MIIBUSY_DELAY);
  610. }
  611. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  612. if (value != MII_READ) {
  613. writel(value, base + NvRegMIIData);
  614. reg |= NVREG_MIICTL_WRITE;
  615. }
  616. writel(reg, base + NvRegMIIControl);
  617. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  618. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  619. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  620. dev->name, miireg, addr);
  621. retval = -1;
  622. } else if (value != MII_READ) {
  623. /* it was a write operation - fewer failures are detectable */
  624. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  625. dev->name, value, miireg, addr);
  626. retval = 0;
  627. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  628. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  629. dev->name, miireg, addr);
  630. retval = -1;
  631. } else {
  632. retval = readl(base + NvRegMIIData);
  633. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  634. dev->name, miireg, addr, retval);
  635. }
  636. return retval;
  637. }
  638. static int phy_reset(struct net_device *dev)
  639. {
  640. struct fe_priv *np = netdev_priv(dev);
  641. u32 miicontrol;
  642. unsigned int tries = 0;
  643. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  644. miicontrol |= BMCR_RESET;
  645. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  646. return -1;
  647. }
  648. /* wait for 500ms */
  649. msleep(500);
  650. /* must wait till reset is deasserted */
  651. while (miicontrol & BMCR_RESET) {
  652. msleep(10);
  653. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  654. /* FIXME: 100 tries seem excessive */
  655. if (tries++ > 100)
  656. return -1;
  657. }
  658. return 0;
  659. }
  660. static int phy_init(struct net_device *dev)
  661. {
  662. struct fe_priv *np = get_nvpriv(dev);
  663. u8 __iomem *base = get_hwbase(dev);
  664. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  665. /* set advertise register */
  666. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  667. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400);
  668. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  669. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  670. return PHY_ERROR;
  671. }
  672. /* get phy interface type */
  673. phyinterface = readl(base + NvRegPhyInterface);
  674. /* see if gigabit phy */
  675. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  676. if (mii_status & PHY_GIGABIT) {
  677. np->gigabit = PHY_GIGABIT;
  678. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  679. mii_control_1000 &= ~ADVERTISE_1000HALF;
  680. if (phyinterface & PHY_RGMII)
  681. mii_control_1000 |= ADVERTISE_1000FULL;
  682. else
  683. mii_control_1000 &= ~ADVERTISE_1000FULL;
  684. if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) {
  685. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  686. return PHY_ERROR;
  687. }
  688. }
  689. else
  690. np->gigabit = 0;
  691. /* reset the phy */
  692. if (phy_reset(dev)) {
  693. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  694. return PHY_ERROR;
  695. }
  696. /* phy vendor specific configuration */
  697. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  698. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  699. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  700. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  701. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  702. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  703. return PHY_ERROR;
  704. }
  705. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  706. phy_reserved |= PHY_INIT5;
  707. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  708. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  709. return PHY_ERROR;
  710. }
  711. }
  712. if (np->phy_oui == PHY_OUI_CICADA) {
  713. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  714. phy_reserved |= PHY_INIT6;
  715. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  716. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  717. return PHY_ERROR;
  718. }
  719. }
  720. /* restart auto negotiation */
  721. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  722. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  723. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  724. return PHY_ERROR;
  725. }
  726. return 0;
  727. }
  728. static void nv_start_rx(struct net_device *dev)
  729. {
  730. struct fe_priv *np = netdev_priv(dev);
  731. u8 __iomem *base = get_hwbase(dev);
  732. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  733. /* Already running? Stop it. */
  734. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  735. writel(0, base + NvRegReceiverControl);
  736. pci_push(base);
  737. }
  738. writel(np->linkspeed, base + NvRegLinkSpeed);
  739. pci_push(base);
  740. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  741. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  742. dev->name, np->duplex, np->linkspeed);
  743. pci_push(base);
  744. }
  745. static void nv_stop_rx(struct net_device *dev)
  746. {
  747. u8 __iomem *base = get_hwbase(dev);
  748. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  749. writel(0, base + NvRegReceiverControl);
  750. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  751. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  752. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  753. udelay(NV_RXSTOP_DELAY2);
  754. writel(0, base + NvRegLinkSpeed);
  755. }
  756. static void nv_start_tx(struct net_device *dev)
  757. {
  758. u8 __iomem *base = get_hwbase(dev);
  759. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  760. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  761. pci_push(base);
  762. }
  763. static void nv_stop_tx(struct net_device *dev)
  764. {
  765. u8 __iomem *base = get_hwbase(dev);
  766. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  767. writel(0, base + NvRegTransmitterControl);
  768. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  769. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  770. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  771. udelay(NV_TXSTOP_DELAY2);
  772. writel(0, base + NvRegUnknownTransmitterReg);
  773. }
  774. static void nv_txrx_reset(struct net_device *dev)
  775. {
  776. struct fe_priv *np = netdev_priv(dev);
  777. u8 __iomem *base = get_hwbase(dev);
  778. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  779. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  780. pci_push(base);
  781. udelay(NV_TXRX_RESET_DELAY);
  782. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  783. pci_push(base);
  784. }
  785. /*
  786. * nv_get_stats: dev->get_stats function
  787. * Get latest stats value from the nic.
  788. * Called with read_lock(&dev_base_lock) held for read -
  789. * only synchronized against unregister_netdevice.
  790. */
  791. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  792. {
  793. struct fe_priv *np = netdev_priv(dev);
  794. /* It seems that the nic always generates interrupts and doesn't
  795. * accumulate errors internally. Thus the current values in np->stats
  796. * are already up to date.
  797. */
  798. return &np->stats;
  799. }
  800. /*
  801. * nv_alloc_rx: fill rx ring entries.
  802. * Return 1 if the allocations for the skbs failed and the
  803. * rx engine is without Available descriptors
  804. */
  805. static int nv_alloc_rx(struct net_device *dev)
  806. {
  807. struct fe_priv *np = netdev_priv(dev);
  808. unsigned int refill_rx = np->refill_rx;
  809. int nr;
  810. while (np->cur_rx != refill_rx) {
  811. struct sk_buff *skb;
  812. nr = refill_rx % RX_RING;
  813. if (np->rx_skbuff[nr] == NULL) {
  814. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  815. if (!skb)
  816. break;
  817. skb->dev = dev;
  818. np->rx_skbuff[nr] = skb;
  819. } else {
  820. skb = np->rx_skbuff[nr];
  821. }
  822. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  823. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  824. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  825. np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
  826. wmb();
  827. np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  828. } else {
  829. np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  830. np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  831. wmb();
  832. np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  833. }
  834. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  835. dev->name, refill_rx);
  836. refill_rx++;
  837. }
  838. np->refill_rx = refill_rx;
  839. if (np->cur_rx - refill_rx == RX_RING)
  840. return 1;
  841. return 0;
  842. }
  843. static void nv_do_rx_refill(unsigned long data)
  844. {
  845. struct net_device *dev = (struct net_device *) data;
  846. struct fe_priv *np = netdev_priv(dev);
  847. disable_irq(dev->irq);
  848. if (nv_alloc_rx(dev)) {
  849. spin_lock(&np->lock);
  850. if (!np->in_shutdown)
  851. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  852. spin_unlock(&np->lock);
  853. }
  854. enable_irq(dev->irq);
  855. }
  856. static void nv_init_rx(struct net_device *dev)
  857. {
  858. struct fe_priv *np = netdev_priv(dev);
  859. int i;
  860. np->cur_rx = RX_RING;
  861. np->refill_rx = 0;
  862. for (i = 0; i < RX_RING; i++)
  863. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  864. np->rx_ring.orig[i].FlagLen = 0;
  865. else
  866. np->rx_ring.ex[i].FlagLen = 0;
  867. }
  868. static void nv_init_tx(struct net_device *dev)
  869. {
  870. struct fe_priv *np = netdev_priv(dev);
  871. int i;
  872. np->next_tx = np->nic_tx = 0;
  873. for (i = 0; i < TX_RING; i++) {
  874. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  875. np->tx_ring.orig[i].FlagLen = 0;
  876. else
  877. np->tx_ring.ex[i].FlagLen = 0;
  878. np->tx_skbuff[i] = NULL;
  879. np->tx_dma[i] = 0;
  880. }
  881. }
  882. static int nv_init_ring(struct net_device *dev)
  883. {
  884. nv_init_tx(dev);
  885. nv_init_rx(dev);
  886. return nv_alloc_rx(dev);
  887. }
  888. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  889. {
  890. struct fe_priv *np = netdev_priv(dev);
  891. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  892. dev->name, skbnr);
  893. if (np->tx_dma[skbnr]) {
  894. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  895. np->tx_dma_len[skbnr],
  896. PCI_DMA_TODEVICE);
  897. np->tx_dma[skbnr] = 0;
  898. }
  899. if (np->tx_skbuff[skbnr]) {
  900. dev_kfree_skb_irq(np->tx_skbuff[skbnr]);
  901. np->tx_skbuff[skbnr] = NULL;
  902. return 1;
  903. } else {
  904. return 0;
  905. }
  906. }
  907. static void nv_drain_tx(struct net_device *dev)
  908. {
  909. struct fe_priv *np = netdev_priv(dev);
  910. unsigned int i;
  911. for (i = 0; i < TX_RING; i++) {
  912. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  913. np->tx_ring.orig[i].FlagLen = 0;
  914. else
  915. np->tx_ring.ex[i].FlagLen = 0;
  916. if (nv_release_txskb(dev, i))
  917. np->stats.tx_dropped++;
  918. }
  919. }
  920. static void nv_drain_rx(struct net_device *dev)
  921. {
  922. struct fe_priv *np = netdev_priv(dev);
  923. int i;
  924. for (i = 0; i < RX_RING; i++) {
  925. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  926. np->rx_ring.orig[i].FlagLen = 0;
  927. else
  928. np->rx_ring.ex[i].FlagLen = 0;
  929. wmb();
  930. if (np->rx_skbuff[i]) {
  931. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  932. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  933. PCI_DMA_FROMDEVICE);
  934. dev_kfree_skb(np->rx_skbuff[i]);
  935. np->rx_skbuff[i] = NULL;
  936. }
  937. }
  938. }
  939. static void drain_ring(struct net_device *dev)
  940. {
  941. nv_drain_tx(dev);
  942. nv_drain_rx(dev);
  943. }
  944. /*
  945. * nv_start_xmit: dev->hard_start_xmit function
  946. * Called with dev->xmit_lock held.
  947. */
  948. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  949. {
  950. struct fe_priv *np = netdev_priv(dev);
  951. u32 tx_flags = 0;
  952. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  953. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  954. unsigned int nr = (np->next_tx - 1) % TX_RING;
  955. unsigned int start_nr = np->next_tx % TX_RING;
  956. unsigned int i;
  957. u32 offset = 0;
  958. u32 bcnt;
  959. u32 size = skb->len-skb->data_len;
  960. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  961. u32 tx_flags_vlan = 0;
  962. /* add fragments to entries count */
  963. for (i = 0; i < fragments; i++) {
  964. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  965. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  966. }
  967. spin_lock_irq(&np->lock);
  968. if ((np->next_tx - np->nic_tx + entries - 1) > TX_LIMIT_STOP) {
  969. spin_unlock_irq(&np->lock);
  970. netif_stop_queue(dev);
  971. return NETDEV_TX_BUSY;
  972. }
  973. /* setup the header buffer */
  974. do {
  975. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  976. nr = (nr + 1) % TX_RING;
  977. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  978. PCI_DMA_TODEVICE);
  979. np->tx_dma_len[nr] = bcnt;
  980. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  981. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  982. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  983. } else {
  984. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  985. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  986. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  987. }
  988. tx_flags = np->tx_flags;
  989. offset += bcnt;
  990. size -= bcnt;
  991. } while(size);
  992. /* setup the fragments */
  993. for (i = 0; i < fragments; i++) {
  994. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  995. u32 size = frag->size;
  996. offset = 0;
  997. do {
  998. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  999. nr = (nr + 1) % TX_RING;
  1000. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1001. PCI_DMA_TODEVICE);
  1002. np->tx_dma_len[nr] = bcnt;
  1003. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1004. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1005. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1006. } else {
  1007. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1008. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1009. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1010. }
  1011. offset += bcnt;
  1012. size -= bcnt;
  1013. } while (size);
  1014. }
  1015. /* set last fragment flag */
  1016. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1017. np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1018. } else {
  1019. np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1020. }
  1021. np->tx_skbuff[nr] = skb;
  1022. #ifdef NETIF_F_TSO
  1023. if (skb_shinfo(skb)->tso_size)
  1024. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
  1025. else
  1026. #endif
  1027. tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
  1028. /* vlan tag */
  1029. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1030. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1031. }
  1032. /* set tx flags */
  1033. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1034. np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1035. } else {
  1036. np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
  1037. np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1038. }
  1039. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1040. dev->name, np->next_tx, entries, tx_flags_extra);
  1041. {
  1042. int j;
  1043. for (j=0; j<64; j++) {
  1044. if ((j%16) == 0)
  1045. dprintk("\n%03x:", j);
  1046. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1047. }
  1048. dprintk("\n");
  1049. }
  1050. np->next_tx += entries;
  1051. dev->trans_start = jiffies;
  1052. spin_unlock_irq(&np->lock);
  1053. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1054. pci_push(get_hwbase(dev));
  1055. return NETDEV_TX_OK;
  1056. }
  1057. /*
  1058. * nv_tx_done: check for completed packets, release the skbs.
  1059. *
  1060. * Caller must own np->lock.
  1061. */
  1062. static void nv_tx_done(struct net_device *dev)
  1063. {
  1064. struct fe_priv *np = netdev_priv(dev);
  1065. u32 Flags;
  1066. unsigned int i;
  1067. struct sk_buff *skb;
  1068. while (np->nic_tx != np->next_tx) {
  1069. i = np->nic_tx % TX_RING;
  1070. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1071. Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
  1072. else
  1073. Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
  1074. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
  1075. dev->name, np->nic_tx, Flags);
  1076. if (Flags & NV_TX_VALID)
  1077. break;
  1078. if (np->desc_ver == DESC_VER_1) {
  1079. if (Flags & NV_TX_LASTPACKET) {
  1080. skb = np->tx_skbuff[i];
  1081. if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1082. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1083. if (Flags & NV_TX_UNDERFLOW)
  1084. np->stats.tx_fifo_errors++;
  1085. if (Flags & NV_TX_CARRIERLOST)
  1086. np->stats.tx_carrier_errors++;
  1087. np->stats.tx_errors++;
  1088. } else {
  1089. np->stats.tx_packets++;
  1090. np->stats.tx_bytes += skb->len;
  1091. }
  1092. }
  1093. } else {
  1094. if (Flags & NV_TX2_LASTPACKET) {
  1095. skb = np->tx_skbuff[i];
  1096. if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1097. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1098. if (Flags & NV_TX2_UNDERFLOW)
  1099. np->stats.tx_fifo_errors++;
  1100. if (Flags & NV_TX2_CARRIERLOST)
  1101. np->stats.tx_carrier_errors++;
  1102. np->stats.tx_errors++;
  1103. } else {
  1104. np->stats.tx_packets++;
  1105. np->stats.tx_bytes += skb->len;
  1106. }
  1107. }
  1108. }
  1109. nv_release_txskb(dev, i);
  1110. np->nic_tx++;
  1111. }
  1112. if (np->next_tx - np->nic_tx < TX_LIMIT_START)
  1113. netif_wake_queue(dev);
  1114. }
  1115. /*
  1116. * nv_tx_timeout: dev->tx_timeout function
  1117. * Called with dev->xmit_lock held.
  1118. */
  1119. static void nv_tx_timeout(struct net_device *dev)
  1120. {
  1121. struct fe_priv *np = netdev_priv(dev);
  1122. u8 __iomem *base = get_hwbase(dev);
  1123. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name,
  1124. readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK);
  1125. {
  1126. int i;
  1127. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1128. dev->name, (unsigned long)np->ring_addr,
  1129. np->next_tx, np->nic_tx);
  1130. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1131. for (i=0;i<0x400;i+= 32) {
  1132. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1133. i,
  1134. readl(base + i + 0), readl(base + i + 4),
  1135. readl(base + i + 8), readl(base + i + 12),
  1136. readl(base + i + 16), readl(base + i + 20),
  1137. readl(base + i + 24), readl(base + i + 28));
  1138. }
  1139. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1140. for (i=0;i<TX_RING;i+= 4) {
  1141. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1142. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1143. i,
  1144. le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
  1145. le32_to_cpu(np->tx_ring.orig[i].FlagLen),
  1146. le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
  1147. le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
  1148. le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
  1149. le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
  1150. le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
  1151. le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
  1152. } else {
  1153. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1154. i,
  1155. le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
  1156. le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
  1157. le32_to_cpu(np->tx_ring.ex[i].FlagLen),
  1158. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
  1159. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
  1160. le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
  1161. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
  1162. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
  1163. le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
  1164. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
  1165. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
  1166. le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
  1167. }
  1168. }
  1169. }
  1170. spin_lock_irq(&np->lock);
  1171. /* 1) stop tx engine */
  1172. nv_stop_tx(dev);
  1173. /* 2) check that the packets were not sent already: */
  1174. nv_tx_done(dev);
  1175. /* 3) if there are dead entries: clear everything */
  1176. if (np->next_tx != np->nic_tx) {
  1177. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1178. nv_drain_tx(dev);
  1179. np->next_tx = np->nic_tx = 0;
  1180. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1181. netif_wake_queue(dev);
  1182. }
  1183. /* 4) restart tx engine */
  1184. nv_start_tx(dev);
  1185. spin_unlock_irq(&np->lock);
  1186. }
  1187. /*
  1188. * Called when the nic notices a mismatch between the actual data len on the
  1189. * wire and the len indicated in the 802 header
  1190. */
  1191. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1192. {
  1193. int hdrlen; /* length of the 802 header */
  1194. int protolen; /* length as stored in the proto field */
  1195. /* 1) calculate len according to header */
  1196. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
  1197. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1198. hdrlen = VLAN_HLEN;
  1199. } else {
  1200. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1201. hdrlen = ETH_HLEN;
  1202. }
  1203. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1204. dev->name, datalen, protolen, hdrlen);
  1205. if (protolen > ETH_DATA_LEN)
  1206. return datalen; /* Value in proto field not a len, no checks possible */
  1207. protolen += hdrlen;
  1208. /* consistency checks: */
  1209. if (datalen > ETH_ZLEN) {
  1210. if (datalen >= protolen) {
  1211. /* more data on wire than in 802 header, trim of
  1212. * additional data.
  1213. */
  1214. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1215. dev->name, protolen);
  1216. return protolen;
  1217. } else {
  1218. /* less data on wire than mentioned in header.
  1219. * Discard the packet.
  1220. */
  1221. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1222. dev->name);
  1223. return -1;
  1224. }
  1225. } else {
  1226. /* short packet. Accept only if 802 values are also short */
  1227. if (protolen > ETH_ZLEN) {
  1228. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1229. dev->name);
  1230. return -1;
  1231. }
  1232. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1233. dev->name, datalen);
  1234. return datalen;
  1235. }
  1236. }
  1237. static void nv_rx_process(struct net_device *dev)
  1238. {
  1239. struct fe_priv *np = netdev_priv(dev);
  1240. u32 Flags;
  1241. u32 vlanflags = 0;
  1242. for (;;) {
  1243. struct sk_buff *skb;
  1244. int len;
  1245. int i;
  1246. if (np->cur_rx - np->refill_rx >= RX_RING)
  1247. break; /* we scanned the whole ring - do not continue */
  1248. i = np->cur_rx % RX_RING;
  1249. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1250. Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
  1251. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1252. } else {
  1253. Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
  1254. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1255. vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
  1256. }
  1257. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
  1258. dev->name, np->cur_rx, Flags);
  1259. if (Flags & NV_RX_AVAIL)
  1260. break; /* still owned by hardware, */
  1261. /*
  1262. * the packet is for us - immediately tear down the pci mapping.
  1263. * TODO: check if a prefetch of the first cacheline improves
  1264. * the performance.
  1265. */
  1266. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1267. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1268. PCI_DMA_FROMDEVICE);
  1269. {
  1270. int j;
  1271. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
  1272. for (j=0; j<64; j++) {
  1273. if ((j%16) == 0)
  1274. dprintk("\n%03x:", j);
  1275. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1276. }
  1277. dprintk("\n");
  1278. }
  1279. /* look at what we actually got: */
  1280. if (np->desc_ver == DESC_VER_1) {
  1281. if (!(Flags & NV_RX_DESCRIPTORVALID))
  1282. goto next_pkt;
  1283. if (Flags & NV_RX_ERROR) {
  1284. if (Flags & NV_RX_MISSEDFRAME) {
  1285. np->stats.rx_missed_errors++;
  1286. np->stats.rx_errors++;
  1287. goto next_pkt;
  1288. }
  1289. if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1290. np->stats.rx_errors++;
  1291. goto next_pkt;
  1292. }
  1293. if (Flags & NV_RX_CRCERR) {
  1294. np->stats.rx_crc_errors++;
  1295. np->stats.rx_errors++;
  1296. goto next_pkt;
  1297. }
  1298. if (Flags & NV_RX_OVERFLOW) {
  1299. np->stats.rx_over_errors++;
  1300. np->stats.rx_errors++;
  1301. goto next_pkt;
  1302. }
  1303. if (Flags & NV_RX_ERROR4) {
  1304. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1305. if (len < 0) {
  1306. np->stats.rx_errors++;
  1307. goto next_pkt;
  1308. }
  1309. }
  1310. /* framing errors are soft errors. */
  1311. if (Flags & NV_RX_FRAMINGERR) {
  1312. if (Flags & NV_RX_SUBSTRACT1) {
  1313. len--;
  1314. }
  1315. }
  1316. }
  1317. } else {
  1318. if (!(Flags & NV_RX2_DESCRIPTORVALID))
  1319. goto next_pkt;
  1320. if (Flags & NV_RX2_ERROR) {
  1321. if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1322. np->stats.rx_errors++;
  1323. goto next_pkt;
  1324. }
  1325. if (Flags & NV_RX2_CRCERR) {
  1326. np->stats.rx_crc_errors++;
  1327. np->stats.rx_errors++;
  1328. goto next_pkt;
  1329. }
  1330. if (Flags & NV_RX2_OVERFLOW) {
  1331. np->stats.rx_over_errors++;
  1332. np->stats.rx_errors++;
  1333. goto next_pkt;
  1334. }
  1335. if (Flags & NV_RX2_ERROR4) {
  1336. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1337. if (len < 0) {
  1338. np->stats.rx_errors++;
  1339. goto next_pkt;
  1340. }
  1341. }
  1342. /* framing errors are soft errors */
  1343. if (Flags & NV_RX2_FRAMINGERR) {
  1344. if (Flags & NV_RX2_SUBSTRACT1) {
  1345. len--;
  1346. }
  1347. }
  1348. }
  1349. Flags &= NV_RX2_CHECKSUMMASK;
  1350. if (Flags == NV_RX2_CHECKSUMOK1 ||
  1351. Flags == NV_RX2_CHECKSUMOK2 ||
  1352. Flags == NV_RX2_CHECKSUMOK3) {
  1353. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1354. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1355. } else {
  1356. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1357. }
  1358. }
  1359. /* got a valid packet - forward it to the network core */
  1360. skb = np->rx_skbuff[i];
  1361. np->rx_skbuff[i] = NULL;
  1362. skb_put(skb, len);
  1363. skb->protocol = eth_type_trans(skb, dev);
  1364. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1365. dev->name, np->cur_rx, len, skb->protocol);
  1366. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
  1367. vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
  1368. } else {
  1369. netif_rx(skb);
  1370. }
  1371. dev->last_rx = jiffies;
  1372. np->stats.rx_packets++;
  1373. np->stats.rx_bytes += len;
  1374. next_pkt:
  1375. np->cur_rx++;
  1376. }
  1377. }
  1378. static void set_bufsize(struct net_device *dev)
  1379. {
  1380. struct fe_priv *np = netdev_priv(dev);
  1381. if (dev->mtu <= ETH_DATA_LEN)
  1382. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1383. else
  1384. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1385. }
  1386. /*
  1387. * nv_change_mtu: dev->change_mtu function
  1388. * Called with dev_base_lock held for read.
  1389. */
  1390. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1391. {
  1392. struct fe_priv *np = netdev_priv(dev);
  1393. int old_mtu;
  1394. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1395. return -EINVAL;
  1396. old_mtu = dev->mtu;
  1397. dev->mtu = new_mtu;
  1398. /* return early if the buffer sizes will not change */
  1399. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1400. return 0;
  1401. if (old_mtu == new_mtu)
  1402. return 0;
  1403. /* synchronized against open : rtnl_lock() held by caller */
  1404. if (netif_running(dev)) {
  1405. u8 __iomem *base = get_hwbase(dev);
  1406. /*
  1407. * It seems that the nic preloads valid ring entries into an
  1408. * internal buffer. The procedure for flushing everything is
  1409. * guessed, there is probably a simpler approach.
  1410. * Changing the MTU is a rare event, it shouldn't matter.
  1411. */
  1412. disable_irq(dev->irq);
  1413. spin_lock_bh(&dev->xmit_lock);
  1414. spin_lock(&np->lock);
  1415. /* stop engines */
  1416. nv_stop_rx(dev);
  1417. nv_stop_tx(dev);
  1418. nv_txrx_reset(dev);
  1419. /* drain rx queue */
  1420. nv_drain_rx(dev);
  1421. nv_drain_tx(dev);
  1422. /* reinit driver view of the rx queue */
  1423. nv_init_rx(dev);
  1424. nv_init_tx(dev);
  1425. /* alloc new rx buffers */
  1426. set_bufsize(dev);
  1427. if (nv_alloc_rx(dev)) {
  1428. if (!np->in_shutdown)
  1429. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1430. }
  1431. /* reinit nic view of the rx queue */
  1432. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1433. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1434. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  1435. base + NvRegRingSizes);
  1436. pci_push(base);
  1437. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1438. pci_push(base);
  1439. /* restart rx engine */
  1440. nv_start_rx(dev);
  1441. nv_start_tx(dev);
  1442. spin_unlock(&np->lock);
  1443. spin_unlock_bh(&dev->xmit_lock);
  1444. enable_irq(dev->irq);
  1445. }
  1446. return 0;
  1447. }
  1448. static void nv_copy_mac_to_hw(struct net_device *dev)
  1449. {
  1450. u8 __iomem *base = get_hwbase(dev);
  1451. u32 mac[2];
  1452. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1453. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1454. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1455. writel(mac[0], base + NvRegMacAddrA);
  1456. writel(mac[1], base + NvRegMacAddrB);
  1457. }
  1458. /*
  1459. * nv_set_mac_address: dev->set_mac_address function
  1460. * Called with rtnl_lock() held.
  1461. */
  1462. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1463. {
  1464. struct fe_priv *np = netdev_priv(dev);
  1465. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1466. if(!is_valid_ether_addr(macaddr->sa_data))
  1467. return -EADDRNOTAVAIL;
  1468. /* synchronized against open : rtnl_lock() held by caller */
  1469. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1470. if (netif_running(dev)) {
  1471. spin_lock_bh(&dev->xmit_lock);
  1472. spin_lock_irq(&np->lock);
  1473. /* stop rx engine */
  1474. nv_stop_rx(dev);
  1475. /* set mac address */
  1476. nv_copy_mac_to_hw(dev);
  1477. /* restart rx engine */
  1478. nv_start_rx(dev);
  1479. spin_unlock_irq(&np->lock);
  1480. spin_unlock_bh(&dev->xmit_lock);
  1481. } else {
  1482. nv_copy_mac_to_hw(dev);
  1483. }
  1484. return 0;
  1485. }
  1486. /*
  1487. * nv_set_multicast: dev->set_multicast function
  1488. * Called with dev->xmit_lock held.
  1489. */
  1490. static void nv_set_multicast(struct net_device *dev)
  1491. {
  1492. struct fe_priv *np = netdev_priv(dev);
  1493. u8 __iomem *base = get_hwbase(dev);
  1494. u32 addr[2];
  1495. u32 mask[2];
  1496. u32 pff;
  1497. memset(addr, 0, sizeof(addr));
  1498. memset(mask, 0, sizeof(mask));
  1499. if (dev->flags & IFF_PROMISC) {
  1500. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1501. pff = NVREG_PFF_PROMISC;
  1502. } else {
  1503. pff = NVREG_PFF_MYADDR;
  1504. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1505. u32 alwaysOff[2];
  1506. u32 alwaysOn[2];
  1507. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1508. if (dev->flags & IFF_ALLMULTI) {
  1509. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1510. } else {
  1511. struct dev_mc_list *walk;
  1512. walk = dev->mc_list;
  1513. while (walk != NULL) {
  1514. u32 a, b;
  1515. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1516. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1517. alwaysOn[0] &= a;
  1518. alwaysOff[0] &= ~a;
  1519. alwaysOn[1] &= b;
  1520. alwaysOff[1] &= ~b;
  1521. walk = walk->next;
  1522. }
  1523. }
  1524. addr[0] = alwaysOn[0];
  1525. addr[1] = alwaysOn[1];
  1526. mask[0] = alwaysOn[0] | alwaysOff[0];
  1527. mask[1] = alwaysOn[1] | alwaysOff[1];
  1528. }
  1529. }
  1530. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1531. pff |= NVREG_PFF_ALWAYS;
  1532. spin_lock_irq(&np->lock);
  1533. nv_stop_rx(dev);
  1534. writel(addr[0], base + NvRegMulticastAddrA);
  1535. writel(addr[1], base + NvRegMulticastAddrB);
  1536. writel(mask[0], base + NvRegMulticastMaskA);
  1537. writel(mask[1], base + NvRegMulticastMaskB);
  1538. writel(pff, base + NvRegPacketFilterFlags);
  1539. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1540. dev->name);
  1541. nv_start_rx(dev);
  1542. spin_unlock_irq(&np->lock);
  1543. }
  1544. /**
  1545. * nv_update_linkspeed: Setup the MAC according to the link partner
  1546. * @dev: Network device to be configured
  1547. *
  1548. * The function queries the PHY and checks if there is a link partner.
  1549. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1550. * set to 10 MBit HD.
  1551. *
  1552. * The function returns 0 if there is no link partner and 1 if there is
  1553. * a good link partner.
  1554. */
  1555. static int nv_update_linkspeed(struct net_device *dev)
  1556. {
  1557. struct fe_priv *np = netdev_priv(dev);
  1558. u8 __iomem *base = get_hwbase(dev);
  1559. int adv, lpa;
  1560. int newls = np->linkspeed;
  1561. int newdup = np->duplex;
  1562. int mii_status;
  1563. int retval = 0;
  1564. u32 control_1000, status_1000, phyreg;
  1565. /* BMSR_LSTATUS is latched, read it twice:
  1566. * we want the current value.
  1567. */
  1568. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1569. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1570. if (!(mii_status & BMSR_LSTATUS)) {
  1571. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1572. dev->name);
  1573. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1574. newdup = 0;
  1575. retval = 0;
  1576. goto set_speed;
  1577. }
  1578. if (np->autoneg == 0) {
  1579. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1580. dev->name, np->fixed_mode);
  1581. if (np->fixed_mode & LPA_100FULL) {
  1582. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1583. newdup = 1;
  1584. } else if (np->fixed_mode & LPA_100HALF) {
  1585. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1586. newdup = 0;
  1587. } else if (np->fixed_mode & LPA_10FULL) {
  1588. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1589. newdup = 1;
  1590. } else {
  1591. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1592. newdup = 0;
  1593. }
  1594. retval = 1;
  1595. goto set_speed;
  1596. }
  1597. /* check auto negotiation is complete */
  1598. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1599. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1600. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1601. newdup = 0;
  1602. retval = 0;
  1603. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1604. goto set_speed;
  1605. }
  1606. retval = 1;
  1607. if (np->gigabit == PHY_GIGABIT) {
  1608. control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1609. status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ);
  1610. if ((control_1000 & ADVERTISE_1000FULL) &&
  1611. (status_1000 & LPA_1000FULL)) {
  1612. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1613. dev->name);
  1614. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1615. newdup = 1;
  1616. goto set_speed;
  1617. }
  1618. }
  1619. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1620. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1621. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1622. dev->name, adv, lpa);
  1623. /* FIXME: handle parallel detection properly */
  1624. lpa = lpa & adv;
  1625. if (lpa & LPA_100FULL) {
  1626. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1627. newdup = 1;
  1628. } else if (lpa & LPA_100HALF) {
  1629. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1630. newdup = 0;
  1631. } else if (lpa & LPA_10FULL) {
  1632. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1633. newdup = 1;
  1634. } else if (lpa & LPA_10HALF) {
  1635. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1636. newdup = 0;
  1637. } else {
  1638. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa);
  1639. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1640. newdup = 0;
  1641. }
  1642. set_speed:
  1643. if (np->duplex == newdup && np->linkspeed == newls)
  1644. return retval;
  1645. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  1646. dev->name, np->linkspeed, np->duplex, newls, newdup);
  1647. np->duplex = newdup;
  1648. np->linkspeed = newls;
  1649. if (np->gigabit == PHY_GIGABIT) {
  1650. phyreg = readl(base + NvRegRandomSeed);
  1651. phyreg &= ~(0x3FF00);
  1652. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  1653. phyreg |= NVREG_RNDSEED_FORCE3;
  1654. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  1655. phyreg |= NVREG_RNDSEED_FORCE2;
  1656. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  1657. phyreg |= NVREG_RNDSEED_FORCE;
  1658. writel(phyreg, base + NvRegRandomSeed);
  1659. }
  1660. phyreg = readl(base + NvRegPhyInterface);
  1661. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  1662. if (np->duplex == 0)
  1663. phyreg |= PHY_HALF;
  1664. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  1665. phyreg |= PHY_100;
  1666. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  1667. phyreg |= PHY_1000;
  1668. writel(phyreg, base + NvRegPhyInterface);
  1669. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  1670. base + NvRegMisc1);
  1671. pci_push(base);
  1672. writel(np->linkspeed, base + NvRegLinkSpeed);
  1673. pci_push(base);
  1674. return retval;
  1675. }
  1676. static void nv_linkchange(struct net_device *dev)
  1677. {
  1678. if (nv_update_linkspeed(dev)) {
  1679. if (!netif_carrier_ok(dev)) {
  1680. netif_carrier_on(dev);
  1681. printk(KERN_INFO "%s: link up.\n", dev->name);
  1682. nv_start_rx(dev);
  1683. }
  1684. } else {
  1685. if (netif_carrier_ok(dev)) {
  1686. netif_carrier_off(dev);
  1687. printk(KERN_INFO "%s: link down.\n", dev->name);
  1688. nv_stop_rx(dev);
  1689. }
  1690. }
  1691. }
  1692. static void nv_link_irq(struct net_device *dev)
  1693. {
  1694. u8 __iomem *base = get_hwbase(dev);
  1695. u32 miistat;
  1696. miistat = readl(base + NvRegMIIStatus);
  1697. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  1698. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  1699. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  1700. nv_linkchange(dev);
  1701. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  1702. }
  1703. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  1704. {
  1705. struct net_device *dev = (struct net_device *) data;
  1706. struct fe_priv *np = netdev_priv(dev);
  1707. u8 __iomem *base = get_hwbase(dev);
  1708. u32 events;
  1709. int i;
  1710. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  1711. for (i=0; ; i++) {
  1712. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1713. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  1714. pci_push(base);
  1715. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1716. if (!(events & np->irqmask))
  1717. break;
  1718. spin_lock(&np->lock);
  1719. nv_tx_done(dev);
  1720. spin_unlock(&np->lock);
  1721. nv_rx_process(dev);
  1722. if (nv_alloc_rx(dev)) {
  1723. spin_lock(&np->lock);
  1724. if (!np->in_shutdown)
  1725. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1726. spin_unlock(&np->lock);
  1727. }
  1728. if (events & NVREG_IRQ_LINK) {
  1729. spin_lock(&np->lock);
  1730. nv_link_irq(dev);
  1731. spin_unlock(&np->lock);
  1732. }
  1733. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1734. spin_lock(&np->lock);
  1735. nv_linkchange(dev);
  1736. spin_unlock(&np->lock);
  1737. np->link_timeout = jiffies + LINK_TIMEOUT;
  1738. }
  1739. if (events & (NVREG_IRQ_TX_ERR)) {
  1740. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1741. dev->name, events);
  1742. }
  1743. if (events & (NVREG_IRQ_UNKNOWN)) {
  1744. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1745. dev->name, events);
  1746. }
  1747. if (i > max_interrupt_work) {
  1748. spin_lock(&np->lock);
  1749. /* disable interrupts on the nic */
  1750. writel(0, base + NvRegIrqMask);
  1751. pci_push(base);
  1752. if (!np->in_shutdown)
  1753. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  1754. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  1755. spin_unlock(&np->lock);
  1756. break;
  1757. }
  1758. }
  1759. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  1760. return IRQ_RETVAL(i);
  1761. }
  1762. static void nv_do_nic_poll(unsigned long data)
  1763. {
  1764. struct net_device *dev = (struct net_device *) data;
  1765. struct fe_priv *np = netdev_priv(dev);
  1766. u8 __iomem *base = get_hwbase(dev);
  1767. disable_irq(dev->irq);
  1768. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  1769. /*
  1770. * reenable interrupts on the nic, we have to do this before calling
  1771. * nv_nic_irq because that may decide to do otherwise
  1772. */
  1773. writel(np->irqmask, base + NvRegIrqMask);
  1774. pci_push(base);
  1775. nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
  1776. enable_irq(dev->irq);
  1777. }
  1778. #ifdef CONFIG_NET_POLL_CONTROLLER
  1779. static void nv_poll_controller(struct net_device *dev)
  1780. {
  1781. nv_do_nic_poll((unsigned long) dev);
  1782. }
  1783. #endif
  1784. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  1785. {
  1786. struct fe_priv *np = netdev_priv(dev);
  1787. strcpy(info->driver, "forcedeth");
  1788. strcpy(info->version, FORCEDETH_VERSION);
  1789. strcpy(info->bus_info, pci_name(np->pci_dev));
  1790. }
  1791. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  1792. {
  1793. struct fe_priv *np = netdev_priv(dev);
  1794. wolinfo->supported = WAKE_MAGIC;
  1795. spin_lock_irq(&np->lock);
  1796. if (np->wolenabled)
  1797. wolinfo->wolopts = WAKE_MAGIC;
  1798. spin_unlock_irq(&np->lock);
  1799. }
  1800. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  1801. {
  1802. struct fe_priv *np = netdev_priv(dev);
  1803. u8 __iomem *base = get_hwbase(dev);
  1804. spin_lock_irq(&np->lock);
  1805. if (wolinfo->wolopts == 0) {
  1806. writel(0, base + NvRegWakeUpFlags);
  1807. np->wolenabled = 0;
  1808. }
  1809. if (wolinfo->wolopts & WAKE_MAGIC) {
  1810. writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
  1811. np->wolenabled = 1;
  1812. }
  1813. spin_unlock_irq(&np->lock);
  1814. return 0;
  1815. }
  1816. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1817. {
  1818. struct fe_priv *np = netdev_priv(dev);
  1819. int adv;
  1820. spin_lock_irq(&np->lock);
  1821. ecmd->port = PORT_MII;
  1822. if (!netif_running(dev)) {
  1823. /* We do not track link speed / duplex setting if the
  1824. * interface is disabled. Force a link check */
  1825. nv_update_linkspeed(dev);
  1826. }
  1827. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  1828. case NVREG_LINKSPEED_10:
  1829. ecmd->speed = SPEED_10;
  1830. break;
  1831. case NVREG_LINKSPEED_100:
  1832. ecmd->speed = SPEED_100;
  1833. break;
  1834. case NVREG_LINKSPEED_1000:
  1835. ecmd->speed = SPEED_1000;
  1836. break;
  1837. }
  1838. ecmd->duplex = DUPLEX_HALF;
  1839. if (np->duplex)
  1840. ecmd->duplex = DUPLEX_FULL;
  1841. ecmd->autoneg = np->autoneg;
  1842. ecmd->advertising = ADVERTISED_MII;
  1843. if (np->autoneg) {
  1844. ecmd->advertising |= ADVERTISED_Autoneg;
  1845. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1846. } else {
  1847. adv = np->fixed_mode;
  1848. }
  1849. if (adv & ADVERTISE_10HALF)
  1850. ecmd->advertising |= ADVERTISED_10baseT_Half;
  1851. if (adv & ADVERTISE_10FULL)
  1852. ecmd->advertising |= ADVERTISED_10baseT_Full;
  1853. if (adv & ADVERTISE_100HALF)
  1854. ecmd->advertising |= ADVERTISED_100baseT_Half;
  1855. if (adv & ADVERTISE_100FULL)
  1856. ecmd->advertising |= ADVERTISED_100baseT_Full;
  1857. if (np->autoneg && np->gigabit == PHY_GIGABIT) {
  1858. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1859. if (adv & ADVERTISE_1000FULL)
  1860. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  1861. }
  1862. ecmd->supported = (SUPPORTED_Autoneg |
  1863. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  1864. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  1865. SUPPORTED_MII);
  1866. if (np->gigabit == PHY_GIGABIT)
  1867. ecmd->supported |= SUPPORTED_1000baseT_Full;
  1868. ecmd->phy_address = np->phyaddr;
  1869. ecmd->transceiver = XCVR_EXTERNAL;
  1870. /* ignore maxtxpkt, maxrxpkt for now */
  1871. spin_unlock_irq(&np->lock);
  1872. return 0;
  1873. }
  1874. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  1875. {
  1876. struct fe_priv *np = netdev_priv(dev);
  1877. if (ecmd->port != PORT_MII)
  1878. return -EINVAL;
  1879. if (ecmd->transceiver != XCVR_EXTERNAL)
  1880. return -EINVAL;
  1881. if (ecmd->phy_address != np->phyaddr) {
  1882. /* TODO: support switching between multiple phys. Should be
  1883. * trivial, but not enabled due to lack of test hardware. */
  1884. return -EINVAL;
  1885. }
  1886. if (ecmd->autoneg == AUTONEG_ENABLE) {
  1887. u32 mask;
  1888. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  1889. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  1890. if (np->gigabit == PHY_GIGABIT)
  1891. mask |= ADVERTISED_1000baseT_Full;
  1892. if ((ecmd->advertising & mask) == 0)
  1893. return -EINVAL;
  1894. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  1895. /* Note: autonegotiation disable, speed 1000 intentionally
  1896. * forbidden - noone should need that. */
  1897. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  1898. return -EINVAL;
  1899. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  1900. return -EINVAL;
  1901. } else {
  1902. return -EINVAL;
  1903. }
  1904. spin_lock_irq(&np->lock);
  1905. if (ecmd->autoneg == AUTONEG_ENABLE) {
  1906. int adv, bmcr;
  1907. np->autoneg = 1;
  1908. /* advertise only what has been requested */
  1909. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1910. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  1911. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  1912. adv |= ADVERTISE_10HALF;
  1913. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  1914. adv |= ADVERTISE_10FULL;
  1915. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  1916. adv |= ADVERTISE_100HALF;
  1917. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  1918. adv |= ADVERTISE_100FULL;
  1919. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  1920. if (np->gigabit == PHY_GIGABIT) {
  1921. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1922. adv &= ~ADVERTISE_1000FULL;
  1923. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  1924. adv |= ADVERTISE_1000FULL;
  1925. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  1926. }
  1927. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1928. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1929. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  1930. } else {
  1931. int adv, bmcr;
  1932. np->autoneg = 0;
  1933. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1934. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  1935. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  1936. adv |= ADVERTISE_10HALF;
  1937. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  1938. adv |= ADVERTISE_10FULL;
  1939. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  1940. adv |= ADVERTISE_100HALF;
  1941. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  1942. adv |= ADVERTISE_100FULL;
  1943. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  1944. np->fixed_mode = adv;
  1945. if (np->gigabit == PHY_GIGABIT) {
  1946. adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ);
  1947. adv &= ~ADVERTISE_1000FULL;
  1948. mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv);
  1949. }
  1950. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1951. bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX);
  1952. if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  1953. bmcr |= BMCR_FULLDPLX;
  1954. if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  1955. bmcr |= BMCR_SPEED100;
  1956. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  1957. if (netif_running(dev)) {
  1958. /* Wait a bit and then reconfigure the nic. */
  1959. udelay(10);
  1960. nv_linkchange(dev);
  1961. }
  1962. }
  1963. spin_unlock_irq(&np->lock);
  1964. return 0;
  1965. }
  1966. #define FORCEDETH_REGS_VER 1
  1967. #define FORCEDETH_REGS_SIZE 0x400 /* 256 32-bit registers */
  1968. static int nv_get_regs_len(struct net_device *dev)
  1969. {
  1970. return FORCEDETH_REGS_SIZE;
  1971. }
  1972. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  1973. {
  1974. struct fe_priv *np = netdev_priv(dev);
  1975. u8 __iomem *base = get_hwbase(dev);
  1976. u32 *rbuf = buf;
  1977. int i;
  1978. regs->version = FORCEDETH_REGS_VER;
  1979. spin_lock_irq(&np->lock);
  1980. for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++)
  1981. rbuf[i] = readl(base + i*sizeof(u32));
  1982. spin_unlock_irq(&np->lock);
  1983. }
  1984. static int nv_nway_reset(struct net_device *dev)
  1985. {
  1986. struct fe_priv *np = netdev_priv(dev);
  1987. int ret;
  1988. spin_lock_irq(&np->lock);
  1989. if (np->autoneg) {
  1990. int bmcr;
  1991. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1992. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1993. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  1994. ret = 0;
  1995. } else {
  1996. ret = -EINVAL;
  1997. }
  1998. spin_unlock_irq(&np->lock);
  1999. return ret;
  2000. }
  2001. static struct ethtool_ops ops = {
  2002. .get_drvinfo = nv_get_drvinfo,
  2003. .get_link = ethtool_op_get_link,
  2004. .get_wol = nv_get_wol,
  2005. .set_wol = nv_set_wol,
  2006. .get_settings = nv_get_settings,
  2007. .set_settings = nv_set_settings,
  2008. .get_regs_len = nv_get_regs_len,
  2009. .get_regs = nv_get_regs,
  2010. .nway_reset = nv_nway_reset,
  2011. .get_perm_addr = ethtool_op_get_perm_addr,
  2012. };
  2013. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  2014. {
  2015. struct fe_priv *np = get_nvpriv(dev);
  2016. spin_lock_irq(&np->lock);
  2017. /* save vlan group */
  2018. np->vlangrp = grp;
  2019. if (grp) {
  2020. /* enable vlan on MAC */
  2021. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  2022. } else {
  2023. /* disable vlan on MAC */
  2024. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  2025. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  2026. }
  2027. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2028. spin_unlock_irq(&np->lock);
  2029. };
  2030. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  2031. {
  2032. /* nothing to do */
  2033. };
  2034. static int nv_open(struct net_device *dev)
  2035. {
  2036. struct fe_priv *np = netdev_priv(dev);
  2037. u8 __iomem *base = get_hwbase(dev);
  2038. int ret, oom, i;
  2039. dprintk(KERN_DEBUG "nv_open: begin\n");
  2040. /* 1) erase previous misconfiguration */
  2041. /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
  2042. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2043. writel(0, base + NvRegMulticastAddrB);
  2044. writel(0, base + NvRegMulticastMaskA);
  2045. writel(0, base + NvRegMulticastMaskB);
  2046. writel(0, base + NvRegPacketFilterFlags);
  2047. writel(0, base + NvRegTransmitterControl);
  2048. writel(0, base + NvRegReceiverControl);
  2049. writel(0, base + NvRegAdapterControl);
  2050. /* 2) initialize descriptor rings */
  2051. set_bufsize(dev);
  2052. oom = nv_init_ring(dev);
  2053. writel(0, base + NvRegLinkSpeed);
  2054. writel(0, base + NvRegUnknownTransmitterReg);
  2055. nv_txrx_reset(dev);
  2056. writel(0, base + NvRegUnknownSetupReg6);
  2057. np->in_shutdown = 0;
  2058. /* 3) set mac address */
  2059. nv_copy_mac_to_hw(dev);
  2060. /* 4) give hw rings */
  2061. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2062. writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT),
  2063. base + NvRegRingSizes);
  2064. /* 5) continue setup */
  2065. writel(np->linkspeed, base + NvRegLinkSpeed);
  2066. writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
  2067. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  2068. writel(np->vlanctl_bits, base + NvRegVlanControl);
  2069. pci_push(base);
  2070. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  2071. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  2072. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  2073. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  2074. writel(0, base + NvRegUnknownSetupReg4);
  2075. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2076. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2077. /* 6) continue setup */
  2078. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  2079. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  2080. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  2081. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2082. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  2083. get_random_bytes(&i, sizeof(i));
  2084. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  2085. writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
  2086. writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
  2087. if (poll_interval == -1) {
  2088. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  2089. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  2090. else
  2091. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  2092. }
  2093. else
  2094. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  2095. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  2096. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  2097. base + NvRegAdapterControl);
  2098. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  2099. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  2100. writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
  2101. i = readl(base + NvRegPowerState);
  2102. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  2103. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  2104. pci_push(base);
  2105. udelay(10);
  2106. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  2107. writel(0, base + NvRegIrqMask);
  2108. pci_push(base);
  2109. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2110. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2111. pci_push(base);
  2112. ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev);
  2113. if (ret)
  2114. goto out_drain;
  2115. /* ask for interrupts */
  2116. writel(np->irqmask, base + NvRegIrqMask);
  2117. spin_lock_irq(&np->lock);
  2118. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2119. writel(0, base + NvRegMulticastAddrB);
  2120. writel(0, base + NvRegMulticastMaskA);
  2121. writel(0, base + NvRegMulticastMaskB);
  2122. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  2123. /* One manual link speed update: Interrupts are enabled, future link
  2124. * speed changes cause interrupts and are handled by nv_link_irq().
  2125. */
  2126. {
  2127. u32 miistat;
  2128. miistat = readl(base + NvRegMIIStatus);
  2129. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2130. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  2131. }
  2132. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  2133. * to init hw */
  2134. np->linkspeed = 0;
  2135. ret = nv_update_linkspeed(dev);
  2136. nv_start_rx(dev);
  2137. nv_start_tx(dev);
  2138. netif_start_queue(dev);
  2139. if (ret) {
  2140. netif_carrier_on(dev);
  2141. } else {
  2142. printk("%s: no link during initialization.\n", dev->name);
  2143. netif_carrier_off(dev);
  2144. }
  2145. if (oom)
  2146. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2147. spin_unlock_irq(&np->lock);
  2148. return 0;
  2149. out_drain:
  2150. drain_ring(dev);
  2151. return ret;
  2152. }
  2153. static int nv_close(struct net_device *dev)
  2154. {
  2155. struct fe_priv *np = netdev_priv(dev);
  2156. u8 __iomem *base;
  2157. spin_lock_irq(&np->lock);
  2158. np->in_shutdown = 1;
  2159. spin_unlock_irq(&np->lock);
  2160. synchronize_irq(dev->irq);
  2161. del_timer_sync(&np->oom_kick);
  2162. del_timer_sync(&np->nic_poll);
  2163. netif_stop_queue(dev);
  2164. spin_lock_irq(&np->lock);
  2165. nv_stop_tx(dev);
  2166. nv_stop_rx(dev);
  2167. nv_txrx_reset(dev);
  2168. /* disable interrupts on the nic or we will lock up */
  2169. base = get_hwbase(dev);
  2170. writel(0, base + NvRegIrqMask);
  2171. pci_push(base);
  2172. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  2173. spin_unlock_irq(&np->lock);
  2174. free_irq(dev->irq, dev);
  2175. drain_ring(dev);
  2176. if (np->wolenabled)
  2177. nv_start_rx(dev);
  2178. /* special op: write back the misordered MAC address - otherwise
  2179. * the next nv_probe would see a wrong address.
  2180. */
  2181. writel(np->orig_mac[0], base + NvRegMacAddrA);
  2182. writel(np->orig_mac[1], base + NvRegMacAddrB);
  2183. /* FIXME: power down nic */
  2184. return 0;
  2185. }
  2186. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  2187. {
  2188. struct net_device *dev;
  2189. struct fe_priv *np;
  2190. unsigned long addr;
  2191. u8 __iomem *base;
  2192. int err, i;
  2193. dev = alloc_etherdev(sizeof(struct fe_priv));
  2194. err = -ENOMEM;
  2195. if (!dev)
  2196. goto out;
  2197. np = netdev_priv(dev);
  2198. np->pci_dev = pci_dev;
  2199. spin_lock_init(&np->lock);
  2200. SET_MODULE_OWNER(dev);
  2201. SET_NETDEV_DEV(dev, &pci_dev->dev);
  2202. init_timer(&np->oom_kick);
  2203. np->oom_kick.data = (unsigned long) dev;
  2204. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  2205. init_timer(&np->nic_poll);
  2206. np->nic_poll.data = (unsigned long) dev;
  2207. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  2208. err = pci_enable_device(pci_dev);
  2209. if (err) {
  2210. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  2211. err, pci_name(pci_dev));
  2212. goto out_free;
  2213. }
  2214. pci_set_master(pci_dev);
  2215. err = pci_request_regions(pci_dev, DRV_NAME);
  2216. if (err < 0)
  2217. goto out_disable;
  2218. err = -EINVAL;
  2219. addr = 0;
  2220. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  2221. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  2222. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  2223. pci_resource_len(pci_dev, i),
  2224. pci_resource_flags(pci_dev, i));
  2225. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  2226. pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) {
  2227. addr = pci_resource_start(pci_dev, i);
  2228. break;
  2229. }
  2230. }
  2231. if (i == DEVICE_COUNT_RESOURCE) {
  2232. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  2233. pci_name(pci_dev));
  2234. goto out_relreg;
  2235. }
  2236. /* handle different descriptor versions */
  2237. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  2238. /* packet format 3: supports 40-bit addressing */
  2239. np->desc_ver = DESC_VER_3;
  2240. if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  2241. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  2242. pci_name(pci_dev));
  2243. } else {
  2244. if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  2245. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
  2246. pci_name(pci_dev));
  2247. goto out_relreg;
  2248. } else {
  2249. dev->features |= NETIF_F_HIGHDMA;
  2250. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  2251. }
  2252. }
  2253. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  2254. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  2255. /* packet format 2: supports jumbo frames */
  2256. np->desc_ver = DESC_VER_2;
  2257. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  2258. } else {
  2259. /* original packet format */
  2260. np->desc_ver = DESC_VER_1;
  2261. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  2262. }
  2263. np->pkt_limit = NV_PKTLIMIT_1;
  2264. if (id->driver_data & DEV_HAS_LARGEDESC)
  2265. np->pkt_limit = NV_PKTLIMIT_2;
  2266. if (id->driver_data & DEV_HAS_CHECKSUM) {
  2267. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  2268. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  2269. #ifdef NETIF_F_TSO
  2270. dev->features |= NETIF_F_TSO;
  2271. #endif
  2272. }
  2273. np->vlanctl_bits = 0;
  2274. if (id->driver_data & DEV_HAS_VLAN) {
  2275. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  2276. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  2277. dev->vlan_rx_register = nv_vlan_rx_register;
  2278. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  2279. }
  2280. err = -ENOMEM;
  2281. np->base = ioremap(addr, NV_PCI_REGSZ);
  2282. if (!np->base)
  2283. goto out_relreg;
  2284. dev->base_addr = (unsigned long)np->base;
  2285. dev->irq = pci_dev->irq;
  2286. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2287. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  2288. sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2289. &np->ring_addr);
  2290. if (!np->rx_ring.orig)
  2291. goto out_unmap;
  2292. np->tx_ring.orig = &np->rx_ring.orig[RX_RING];
  2293. } else {
  2294. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  2295. sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2296. &np->ring_addr);
  2297. if (!np->rx_ring.ex)
  2298. goto out_unmap;
  2299. np->tx_ring.ex = &np->rx_ring.ex[RX_RING];
  2300. }
  2301. dev->open = nv_open;
  2302. dev->stop = nv_close;
  2303. dev->hard_start_xmit = nv_start_xmit;
  2304. dev->get_stats = nv_get_stats;
  2305. dev->change_mtu = nv_change_mtu;
  2306. dev->set_mac_address = nv_set_mac_address;
  2307. dev->set_multicast_list = nv_set_multicast;
  2308. #ifdef CONFIG_NET_POLL_CONTROLLER
  2309. dev->poll_controller = nv_poll_controller;
  2310. #endif
  2311. SET_ETHTOOL_OPS(dev, &ops);
  2312. dev->tx_timeout = nv_tx_timeout;
  2313. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  2314. pci_set_drvdata(pci_dev, dev);
  2315. /* read the mac address */
  2316. base = get_hwbase(dev);
  2317. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  2318. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  2319. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  2320. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  2321. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  2322. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  2323. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  2324. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  2325. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2326. if (!is_valid_ether_addr(dev->perm_addr)) {
  2327. /*
  2328. * Bad mac address. At least one bios sets the mac address
  2329. * to 01:23:45:67:89:ab
  2330. */
  2331. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  2332. pci_name(pci_dev),
  2333. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2334. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2335. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  2336. dev->dev_addr[0] = 0x00;
  2337. dev->dev_addr[1] = 0x00;
  2338. dev->dev_addr[2] = 0x6c;
  2339. get_random_bytes(&dev->dev_addr[3], 3);
  2340. }
  2341. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  2342. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2343. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2344. /* disable WOL */
  2345. writel(0, base + NvRegWakeUpFlags);
  2346. np->wolenabled = 0;
  2347. if (np->desc_ver == DESC_VER_1) {
  2348. np->tx_flags = NV_TX_VALID;
  2349. } else {
  2350. np->tx_flags = NV_TX2_VALID;
  2351. }
  2352. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  2353. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  2354. else
  2355. np->irqmask = NVREG_IRQMASK_CPU;
  2356. if (id->driver_data & DEV_NEED_TIMERIRQ)
  2357. np->irqmask |= NVREG_IRQ_TIMER;
  2358. if (id->driver_data & DEV_NEED_LINKTIMER) {
  2359. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  2360. np->need_linktimer = 1;
  2361. np->link_timeout = jiffies + LINK_TIMEOUT;
  2362. } else {
  2363. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  2364. np->need_linktimer = 0;
  2365. }
  2366. /* find a suitable phy */
  2367. for (i = 1; i <= 32; i++) {
  2368. int id1, id2;
  2369. int phyaddr = i & 0x1F;
  2370. spin_lock_irq(&np->lock);
  2371. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  2372. spin_unlock_irq(&np->lock);
  2373. if (id1 < 0 || id1 == 0xffff)
  2374. continue;
  2375. spin_lock_irq(&np->lock);
  2376. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  2377. spin_unlock_irq(&np->lock);
  2378. if (id2 < 0 || id2 == 0xffff)
  2379. continue;
  2380. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  2381. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  2382. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  2383. pci_name(pci_dev), id1, id2, phyaddr);
  2384. np->phyaddr = phyaddr;
  2385. np->phy_oui = id1 | id2;
  2386. break;
  2387. }
  2388. if (i == 33) {
  2389. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  2390. pci_name(pci_dev));
  2391. goto out_freering;
  2392. }
  2393. /* reset it */
  2394. phy_init(dev);
  2395. /* set default link speed settings */
  2396. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2397. np->duplex = 0;
  2398. np->autoneg = 1;
  2399. err = register_netdev(dev);
  2400. if (err) {
  2401. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  2402. goto out_freering;
  2403. }
  2404. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  2405. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  2406. pci_name(pci_dev));
  2407. return 0;
  2408. out_freering:
  2409. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2410. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING),
  2411. np->rx_ring.orig, np->ring_addr);
  2412. else
  2413. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING),
  2414. np->rx_ring.ex, np->ring_addr);
  2415. pci_set_drvdata(pci_dev, NULL);
  2416. out_unmap:
  2417. iounmap(get_hwbase(dev));
  2418. out_relreg:
  2419. pci_release_regions(pci_dev);
  2420. out_disable:
  2421. pci_disable_device(pci_dev);
  2422. out_free:
  2423. free_netdev(dev);
  2424. out:
  2425. return err;
  2426. }
  2427. static void __devexit nv_remove(struct pci_dev *pci_dev)
  2428. {
  2429. struct net_device *dev = pci_get_drvdata(pci_dev);
  2430. struct fe_priv *np = netdev_priv(dev);
  2431. unregister_netdev(dev);
  2432. /* free all structures */
  2433. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2434. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr);
  2435. else
  2436. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr);
  2437. iounmap(get_hwbase(dev));
  2438. pci_release_regions(pci_dev);
  2439. pci_disable_device(pci_dev);
  2440. free_netdev(dev);
  2441. pci_set_drvdata(pci_dev, NULL);
  2442. }
  2443. static struct pci_device_id pci_tbl[] = {
  2444. { /* nForce Ethernet Controller */
  2445. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  2446. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2447. },
  2448. { /* nForce2 Ethernet Controller */
  2449. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  2450. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2451. },
  2452. { /* nForce3 Ethernet Controller */
  2453. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  2454. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  2455. },
  2456. { /* nForce3 Ethernet Controller */
  2457. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  2458. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2459. },
  2460. { /* nForce3 Ethernet Controller */
  2461. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  2462. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2463. },
  2464. { /* nForce3 Ethernet Controller */
  2465. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  2466. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2467. },
  2468. { /* nForce3 Ethernet Controller */
  2469. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  2470. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  2471. },
  2472. { /* CK804 Ethernet Controller */
  2473. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  2474. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2475. },
  2476. { /* CK804 Ethernet Controller */
  2477. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  2478. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2479. },
  2480. { /* MCP04 Ethernet Controller */
  2481. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  2482. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2483. },
  2484. { /* MCP04 Ethernet Controller */
  2485. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  2486. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  2487. },
  2488. { /* MCP51 Ethernet Controller */
  2489. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  2490. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
  2491. },
  2492. { /* MCP51 Ethernet Controller */
  2493. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  2494. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA,
  2495. },
  2496. { /* MCP55 Ethernet Controller */
  2497. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  2498. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN,
  2499. },
  2500. { /* MCP55 Ethernet Controller */
  2501. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  2502. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN,
  2503. },
  2504. {0,},
  2505. };
  2506. static struct pci_driver driver = {
  2507. .name = "forcedeth",
  2508. .id_table = pci_tbl,
  2509. .probe = nv_probe,
  2510. .remove = __devexit_p(nv_remove),
  2511. };
  2512. static int __init init_nic(void)
  2513. {
  2514. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  2515. return pci_module_init(&driver);
  2516. }
  2517. static void __exit exit_nic(void)
  2518. {
  2519. pci_unregister_driver(&driver);
  2520. }
  2521. module_param(max_interrupt_work, int, 0);
  2522. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  2523. module_param(optimization_mode, int, 0);
  2524. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  2525. module_param(poll_interval, int, 0);
  2526. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  2527. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  2528. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  2529. MODULE_LICENSE("GPL");
  2530. MODULE_DEVICE_TABLE(pci, pci_tbl);
  2531. module_init(init_nic);
  2532. module_exit(exit_nic);