ieee80211_sta.c 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <net/iw_handler.h>
  27. #include <asm/types.h>
  28. #include <net/mac80211.h>
  29. #include "ieee80211_i.h"
  30. #include "ieee80211_rate.h"
  31. #include "ieee80211_led.h"
  32. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  33. #define IEEE80211_AUTH_MAX_TRIES 3
  34. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  35. #define IEEE80211_ASSOC_MAX_TRIES 3
  36. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  37. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  38. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  39. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  40. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  41. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  42. #define IEEE80211_PROBE_DELAY (HZ / 33)
  43. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  44. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  45. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  46. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  47. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  48. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  49. #define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
  50. #define ERP_INFO_USE_PROTECTION BIT(1)
  51. /* mgmt header + 1 byte action code */
  52. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  53. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  54. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  55. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  56. /* next values represent the buffer size for A-MPDU frame.
  57. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  58. #define IEEE80211_MIN_AMPDU_BUF 0x8
  59. #define IEEE80211_MAX_AMPDU_BUF 0x40
  60. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  61. u8 *ssid, size_t ssid_len);
  62. static struct ieee80211_sta_bss *
  63. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int channel,
  64. u8 *ssid, u8 ssid_len);
  65. static void ieee80211_rx_bss_put(struct net_device *dev,
  66. struct ieee80211_sta_bss *bss);
  67. static int ieee80211_sta_find_ibss(struct net_device *dev,
  68. struct ieee80211_if_sta *ifsta);
  69. static int ieee80211_sta_wep_configured(struct net_device *dev);
  70. static int ieee80211_sta_start_scan(struct net_device *dev,
  71. u8 *ssid, size_t ssid_len);
  72. static int ieee80211_sta_config_auth(struct net_device *dev,
  73. struct ieee80211_if_sta *ifsta);
  74. /* Parsed Information Elements */
  75. struct ieee802_11_elems {
  76. /* pointers to IEs */
  77. u8 *ssid;
  78. u8 *supp_rates;
  79. u8 *fh_params;
  80. u8 *ds_params;
  81. u8 *cf_params;
  82. u8 *tim;
  83. u8 *ibss_params;
  84. u8 *challenge;
  85. u8 *wpa;
  86. u8 *rsn;
  87. u8 *erp_info;
  88. u8 *ext_supp_rates;
  89. u8 *wmm_info;
  90. u8 *wmm_param;
  91. u8 *ht_cap_elem;
  92. u8 *ht_info_elem;
  93. /* length of them, respectively */
  94. u8 ssid_len;
  95. u8 supp_rates_len;
  96. u8 fh_params_len;
  97. u8 ds_params_len;
  98. u8 cf_params_len;
  99. u8 tim_len;
  100. u8 ibss_params_len;
  101. u8 challenge_len;
  102. u8 wpa_len;
  103. u8 rsn_len;
  104. u8 erp_info_len;
  105. u8 ext_supp_rates_len;
  106. u8 wmm_info_len;
  107. u8 wmm_param_len;
  108. u8 ht_cap_elem_len;
  109. u8 ht_info_elem_len;
  110. };
  111. static void ieee802_11_parse_elems(u8 *start, size_t len,
  112. struct ieee802_11_elems *elems)
  113. {
  114. size_t left = len;
  115. u8 *pos = start;
  116. memset(elems, 0, sizeof(*elems));
  117. while (left >= 2) {
  118. u8 id, elen;
  119. id = *pos++;
  120. elen = *pos++;
  121. left -= 2;
  122. if (elen > left)
  123. return;
  124. switch (id) {
  125. case WLAN_EID_SSID:
  126. elems->ssid = pos;
  127. elems->ssid_len = elen;
  128. break;
  129. case WLAN_EID_SUPP_RATES:
  130. elems->supp_rates = pos;
  131. elems->supp_rates_len = elen;
  132. break;
  133. case WLAN_EID_FH_PARAMS:
  134. elems->fh_params = pos;
  135. elems->fh_params_len = elen;
  136. break;
  137. case WLAN_EID_DS_PARAMS:
  138. elems->ds_params = pos;
  139. elems->ds_params_len = elen;
  140. break;
  141. case WLAN_EID_CF_PARAMS:
  142. elems->cf_params = pos;
  143. elems->cf_params_len = elen;
  144. break;
  145. case WLAN_EID_TIM:
  146. elems->tim = pos;
  147. elems->tim_len = elen;
  148. break;
  149. case WLAN_EID_IBSS_PARAMS:
  150. elems->ibss_params = pos;
  151. elems->ibss_params_len = elen;
  152. break;
  153. case WLAN_EID_CHALLENGE:
  154. elems->challenge = pos;
  155. elems->challenge_len = elen;
  156. break;
  157. case WLAN_EID_WPA:
  158. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  159. pos[2] == 0xf2) {
  160. /* Microsoft OUI (00:50:F2) */
  161. if (pos[3] == 1) {
  162. /* OUI Type 1 - WPA IE */
  163. elems->wpa = pos;
  164. elems->wpa_len = elen;
  165. } else if (elen >= 5 && pos[3] == 2) {
  166. if (pos[4] == 0) {
  167. elems->wmm_info = pos;
  168. elems->wmm_info_len = elen;
  169. } else if (pos[4] == 1) {
  170. elems->wmm_param = pos;
  171. elems->wmm_param_len = elen;
  172. }
  173. }
  174. }
  175. break;
  176. case WLAN_EID_RSN:
  177. elems->rsn = pos;
  178. elems->rsn_len = elen;
  179. break;
  180. case WLAN_EID_ERP_INFO:
  181. elems->erp_info = pos;
  182. elems->erp_info_len = elen;
  183. break;
  184. case WLAN_EID_EXT_SUPP_RATES:
  185. elems->ext_supp_rates = pos;
  186. elems->ext_supp_rates_len = elen;
  187. break;
  188. case WLAN_EID_HT_CAPABILITY:
  189. elems->ht_cap_elem = pos;
  190. elems->ht_cap_elem_len = elen;
  191. break;
  192. case WLAN_EID_HT_EXTRA_INFO:
  193. elems->ht_info_elem = pos;
  194. elems->ht_info_elem_len = elen;
  195. break;
  196. default:
  197. break;
  198. }
  199. left -= elen;
  200. pos += elen;
  201. }
  202. }
  203. static int ecw2cw(int ecw)
  204. {
  205. int cw = 1;
  206. while (ecw > 0) {
  207. cw <<= 1;
  208. ecw--;
  209. }
  210. return cw - 1;
  211. }
  212. static void ieee80211_sta_wmm_params(struct net_device *dev,
  213. struct ieee80211_if_sta *ifsta,
  214. u8 *wmm_param, size_t wmm_param_len)
  215. {
  216. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  217. struct ieee80211_tx_queue_params params;
  218. size_t left;
  219. int count;
  220. u8 *pos;
  221. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  222. return;
  223. count = wmm_param[6] & 0x0f;
  224. if (count == ifsta->wmm_last_param_set)
  225. return;
  226. ifsta->wmm_last_param_set = count;
  227. pos = wmm_param + 8;
  228. left = wmm_param_len - 8;
  229. memset(&params, 0, sizeof(params));
  230. if (!local->ops->conf_tx)
  231. return;
  232. local->wmm_acm = 0;
  233. for (; left >= 4; left -= 4, pos += 4) {
  234. int aci = (pos[0] >> 5) & 0x03;
  235. int acm = (pos[0] >> 4) & 0x01;
  236. int queue;
  237. switch (aci) {
  238. case 1:
  239. queue = IEEE80211_TX_QUEUE_DATA3;
  240. if (acm) {
  241. local->wmm_acm |= BIT(0) | BIT(3);
  242. }
  243. break;
  244. case 2:
  245. queue = IEEE80211_TX_QUEUE_DATA1;
  246. if (acm) {
  247. local->wmm_acm |= BIT(4) | BIT(5);
  248. }
  249. break;
  250. case 3:
  251. queue = IEEE80211_TX_QUEUE_DATA0;
  252. if (acm) {
  253. local->wmm_acm |= BIT(6) | BIT(7);
  254. }
  255. break;
  256. case 0:
  257. default:
  258. queue = IEEE80211_TX_QUEUE_DATA2;
  259. if (acm) {
  260. local->wmm_acm |= BIT(1) | BIT(2);
  261. }
  262. break;
  263. }
  264. params.aifs = pos[0] & 0x0f;
  265. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  266. params.cw_min = ecw2cw(pos[1] & 0x0f);
  267. /* TXOP is in units of 32 usec; burst_time in 0.1 ms */
  268. params.burst_time = (pos[2] | (pos[3] << 8)) * 32 / 100;
  269. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  270. "cWmin=%d cWmax=%d burst=%d\n",
  271. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  272. params.cw_max, params.burst_time);
  273. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  274. * AC for now) */
  275. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  276. printk(KERN_DEBUG "%s: failed to set TX queue "
  277. "parameters for queue %d\n", dev->name, queue);
  278. }
  279. }
  280. }
  281. static void ieee80211_handle_erp_ie(struct net_device *dev, u8 erp_value)
  282. {
  283. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  284. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  285. int use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  286. int preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
  287. u8 changes = 0;
  288. DECLARE_MAC_BUF(mac);
  289. if (use_protection != !!(sdata->flags & IEEE80211_SDATA_USE_PROTECTION)) {
  290. if (net_ratelimit()) {
  291. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  292. "%s)\n",
  293. dev->name,
  294. use_protection ? "enabled" : "disabled",
  295. print_mac(mac, ifsta->bssid));
  296. }
  297. if (use_protection)
  298. sdata->flags |= IEEE80211_SDATA_USE_PROTECTION;
  299. else
  300. sdata->flags &= ~IEEE80211_SDATA_USE_PROTECTION;
  301. changes |= IEEE80211_ERP_CHANGE_PROTECTION;
  302. }
  303. if (preamble_mode != !(sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE)) {
  304. if (net_ratelimit()) {
  305. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  306. " (BSSID=%s)\n",
  307. dev->name,
  308. (preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
  309. "short" : "long",
  310. print_mac(mac, ifsta->bssid));
  311. }
  312. if (preamble_mode)
  313. sdata->flags &= ~IEEE80211_SDATA_SHORT_PREAMBLE;
  314. else
  315. sdata->flags |= IEEE80211_SDATA_SHORT_PREAMBLE;
  316. changes |= IEEE80211_ERP_CHANGE_PREAMBLE;
  317. }
  318. if (changes)
  319. ieee80211_erp_info_change_notify(dev, changes);
  320. }
  321. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  322. struct ieee80211_ht_info *ht_info)
  323. {
  324. if (ht_info == NULL)
  325. return -EINVAL;
  326. memset(ht_info, 0, sizeof(*ht_info));
  327. if (ht_cap_ie) {
  328. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  329. ht_info->ht_supported = 1;
  330. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  331. ht_info->ampdu_factor =
  332. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  333. ht_info->ampdu_density =
  334. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  335. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  336. } else
  337. ht_info->ht_supported = 0;
  338. return 0;
  339. }
  340. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  341. struct ieee80211_ht_addt_info *ht_add_info_ie,
  342. struct ieee80211_ht_bss_info *bss_info)
  343. {
  344. if (bss_info == NULL)
  345. return -EINVAL;
  346. memset(bss_info, 0, sizeof(*bss_info));
  347. if (ht_add_info_ie) {
  348. u16 op_mode;
  349. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  350. bss_info->primary_channel = ht_add_info_ie->control_chan;
  351. bss_info->bss_cap = ht_add_info_ie->ht_param;
  352. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  353. }
  354. return 0;
  355. }
  356. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  357. struct ieee80211_if_sta *ifsta)
  358. {
  359. char *buf;
  360. size_t len;
  361. int i;
  362. union iwreq_data wrqu;
  363. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  364. return;
  365. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  366. ifsta->assocresp_ies_len), GFP_KERNEL);
  367. if (!buf)
  368. return;
  369. len = sprintf(buf, "ASSOCINFO(");
  370. if (ifsta->assocreq_ies) {
  371. len += sprintf(buf + len, "ReqIEs=");
  372. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  373. len += sprintf(buf + len, "%02x",
  374. ifsta->assocreq_ies[i]);
  375. }
  376. }
  377. if (ifsta->assocresp_ies) {
  378. if (ifsta->assocreq_ies)
  379. len += sprintf(buf + len, " ");
  380. len += sprintf(buf + len, "RespIEs=");
  381. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  382. len += sprintf(buf + len, "%02x",
  383. ifsta->assocresp_ies[i]);
  384. }
  385. }
  386. len += sprintf(buf + len, ")");
  387. if (len > IW_CUSTOM_MAX) {
  388. len = sprintf(buf, "ASSOCRESPIE=");
  389. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  390. len += sprintf(buf + len, "%02x",
  391. ifsta->assocresp_ies[i]);
  392. }
  393. }
  394. memset(&wrqu, 0, sizeof(wrqu));
  395. wrqu.data.length = len;
  396. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  397. kfree(buf);
  398. }
  399. static void ieee80211_set_associated(struct net_device *dev,
  400. struct ieee80211_if_sta *ifsta,
  401. bool assoc)
  402. {
  403. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  404. union iwreq_data wrqu;
  405. if (!!(ifsta->flags & IEEE80211_STA_ASSOCIATED) == assoc)
  406. return;
  407. if (assoc) {
  408. struct ieee80211_sub_if_data *sdata;
  409. struct ieee80211_sta_bss *bss;
  410. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  411. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  412. if (sdata->type != IEEE80211_IF_TYPE_STA)
  413. return;
  414. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  415. local->hw.conf.channel,
  416. ifsta->ssid, ifsta->ssid_len);
  417. if (bss) {
  418. if (bss->has_erp_value)
  419. ieee80211_handle_erp_ie(dev, bss->erp_value);
  420. ieee80211_rx_bss_put(dev, bss);
  421. }
  422. netif_carrier_on(dev);
  423. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  424. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  425. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  426. ieee80211_sta_send_associnfo(dev, ifsta);
  427. } else {
  428. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  429. netif_carrier_off(dev);
  430. ieee80211_reset_erp_info(dev);
  431. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  432. }
  433. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  434. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  435. ifsta->last_probe = jiffies;
  436. ieee80211_led_assoc(local, assoc);
  437. }
  438. static void ieee80211_set_disassoc(struct net_device *dev,
  439. struct ieee80211_if_sta *ifsta, int deauth)
  440. {
  441. if (deauth)
  442. ifsta->auth_tries = 0;
  443. ifsta->assoc_tries = 0;
  444. ieee80211_set_associated(dev, ifsta, 0);
  445. }
  446. static void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  447. int encrypt)
  448. {
  449. struct ieee80211_sub_if_data *sdata;
  450. struct ieee80211_tx_packet_data *pkt_data;
  451. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  452. skb->dev = sdata->local->mdev;
  453. skb_set_mac_header(skb, 0);
  454. skb_set_network_header(skb, 0);
  455. skb_set_transport_header(skb, 0);
  456. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  457. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  458. pkt_data->ifindex = sdata->dev->ifindex;
  459. if (!encrypt)
  460. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  461. dev_queue_xmit(skb);
  462. }
  463. static void ieee80211_send_auth(struct net_device *dev,
  464. struct ieee80211_if_sta *ifsta,
  465. int transaction, u8 *extra, size_t extra_len,
  466. int encrypt)
  467. {
  468. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  469. struct sk_buff *skb;
  470. struct ieee80211_mgmt *mgmt;
  471. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  472. sizeof(*mgmt) + 6 + extra_len);
  473. if (!skb) {
  474. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  475. "frame\n", dev->name);
  476. return;
  477. }
  478. skb_reserve(skb, local->hw.extra_tx_headroom);
  479. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  480. memset(mgmt, 0, 24 + 6);
  481. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  482. IEEE80211_STYPE_AUTH);
  483. if (encrypt)
  484. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  485. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  486. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  487. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  488. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  489. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  490. ifsta->auth_transaction = transaction + 1;
  491. mgmt->u.auth.status_code = cpu_to_le16(0);
  492. if (extra)
  493. memcpy(skb_put(skb, extra_len), extra, extra_len);
  494. ieee80211_sta_tx(dev, skb, encrypt);
  495. }
  496. static void ieee80211_authenticate(struct net_device *dev,
  497. struct ieee80211_if_sta *ifsta)
  498. {
  499. DECLARE_MAC_BUF(mac);
  500. ifsta->auth_tries++;
  501. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  502. printk(KERN_DEBUG "%s: authentication with AP %s"
  503. " timed out\n",
  504. dev->name, print_mac(mac, ifsta->bssid));
  505. ifsta->state = IEEE80211_DISABLED;
  506. return;
  507. }
  508. ifsta->state = IEEE80211_AUTHENTICATE;
  509. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  510. dev->name, print_mac(mac, ifsta->bssid));
  511. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  512. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  513. }
  514. static void ieee80211_send_assoc(struct net_device *dev,
  515. struct ieee80211_if_sta *ifsta)
  516. {
  517. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  518. struct ieee80211_hw_mode *mode;
  519. struct sk_buff *skb;
  520. struct ieee80211_mgmt *mgmt;
  521. u8 *pos, *ies;
  522. int i, len;
  523. u16 capab;
  524. struct ieee80211_sta_bss *bss;
  525. int wmm = 0;
  526. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  527. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  528. ifsta->ssid_len);
  529. if (!skb) {
  530. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  531. "frame\n", dev->name);
  532. return;
  533. }
  534. skb_reserve(skb, local->hw.extra_tx_headroom);
  535. mode = local->oper_hw_mode;
  536. capab = ifsta->capab;
  537. if (mode->mode == MODE_IEEE80211G) {
  538. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME |
  539. WLAN_CAPABILITY_SHORT_PREAMBLE;
  540. }
  541. bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel,
  542. ifsta->ssid, ifsta->ssid_len);
  543. if (bss) {
  544. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  545. capab |= WLAN_CAPABILITY_PRIVACY;
  546. if (bss->wmm_ie) {
  547. wmm = 1;
  548. }
  549. ieee80211_rx_bss_put(dev, bss);
  550. }
  551. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  552. memset(mgmt, 0, 24);
  553. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  554. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  555. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  556. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  557. skb_put(skb, 10);
  558. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  559. IEEE80211_STYPE_REASSOC_REQ);
  560. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  561. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  562. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  563. ETH_ALEN);
  564. } else {
  565. skb_put(skb, 4);
  566. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  567. IEEE80211_STYPE_ASSOC_REQ);
  568. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  569. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  570. }
  571. /* SSID */
  572. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  573. *pos++ = WLAN_EID_SSID;
  574. *pos++ = ifsta->ssid_len;
  575. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  576. len = mode->num_rates;
  577. if (len > 8)
  578. len = 8;
  579. pos = skb_put(skb, len + 2);
  580. *pos++ = WLAN_EID_SUPP_RATES;
  581. *pos++ = len;
  582. for (i = 0; i < len; i++) {
  583. int rate = mode->rates[i].rate;
  584. *pos++ = (u8) (rate / 5);
  585. }
  586. if (mode->num_rates > len) {
  587. pos = skb_put(skb, mode->num_rates - len + 2);
  588. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  589. *pos++ = mode->num_rates - len;
  590. for (i = len; i < mode->num_rates; i++) {
  591. int rate = mode->rates[i].rate;
  592. *pos++ = (u8) (rate / 5);
  593. }
  594. }
  595. if (ifsta->extra_ie) {
  596. pos = skb_put(skb, ifsta->extra_ie_len);
  597. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  598. }
  599. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  600. pos = skb_put(skb, 9);
  601. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  602. *pos++ = 7; /* len */
  603. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  604. *pos++ = 0x50;
  605. *pos++ = 0xf2;
  606. *pos++ = 2; /* WME */
  607. *pos++ = 0; /* WME info */
  608. *pos++ = 1; /* WME ver */
  609. *pos++ = 0;
  610. }
  611. /* wmm support is a must to HT */
  612. if (wmm && mode->ht_info.ht_supported) {
  613. __le16 tmp = cpu_to_le16(mode->ht_info.cap);
  614. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  615. *pos++ = WLAN_EID_HT_CAPABILITY;
  616. *pos++ = sizeof(struct ieee80211_ht_cap);
  617. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  618. memcpy(pos, &tmp, sizeof(u16));
  619. pos += sizeof(u16);
  620. *pos++ = (mode->ht_info.ampdu_factor |
  621. (mode->ht_info.ampdu_density << 2));
  622. memcpy(pos, mode->ht_info.supp_mcs_set, 16);
  623. }
  624. kfree(ifsta->assocreq_ies);
  625. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  626. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  627. if (ifsta->assocreq_ies)
  628. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  629. ieee80211_sta_tx(dev, skb, 0);
  630. }
  631. static void ieee80211_send_deauth(struct net_device *dev,
  632. struct ieee80211_if_sta *ifsta, u16 reason)
  633. {
  634. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  635. struct sk_buff *skb;
  636. struct ieee80211_mgmt *mgmt;
  637. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  638. if (!skb) {
  639. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  640. "frame\n", dev->name);
  641. return;
  642. }
  643. skb_reserve(skb, local->hw.extra_tx_headroom);
  644. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  645. memset(mgmt, 0, 24);
  646. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  647. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  648. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  649. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  650. IEEE80211_STYPE_DEAUTH);
  651. skb_put(skb, 2);
  652. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  653. ieee80211_sta_tx(dev, skb, 0);
  654. }
  655. static void ieee80211_send_disassoc(struct net_device *dev,
  656. struct ieee80211_if_sta *ifsta, u16 reason)
  657. {
  658. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  659. struct sk_buff *skb;
  660. struct ieee80211_mgmt *mgmt;
  661. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  662. if (!skb) {
  663. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  664. "frame\n", dev->name);
  665. return;
  666. }
  667. skb_reserve(skb, local->hw.extra_tx_headroom);
  668. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  669. memset(mgmt, 0, 24);
  670. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  671. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  672. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  673. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  674. IEEE80211_STYPE_DISASSOC);
  675. skb_put(skb, 2);
  676. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  677. ieee80211_sta_tx(dev, skb, 0);
  678. }
  679. static int ieee80211_privacy_mismatch(struct net_device *dev,
  680. struct ieee80211_if_sta *ifsta)
  681. {
  682. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  683. struct ieee80211_sta_bss *bss;
  684. int bss_privacy;
  685. int wep_privacy;
  686. int privacy_invoked;
  687. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  688. return 0;
  689. bss = ieee80211_rx_bss_get(dev, ifsta->bssid, local->hw.conf.channel,
  690. ifsta->ssid, ifsta->ssid_len);
  691. if (!bss)
  692. return 0;
  693. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  694. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  695. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  696. ieee80211_rx_bss_put(dev, bss);
  697. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  698. return 0;
  699. return 1;
  700. }
  701. static void ieee80211_associate(struct net_device *dev,
  702. struct ieee80211_if_sta *ifsta)
  703. {
  704. DECLARE_MAC_BUF(mac);
  705. ifsta->assoc_tries++;
  706. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  707. printk(KERN_DEBUG "%s: association with AP %s"
  708. " timed out\n",
  709. dev->name, print_mac(mac, ifsta->bssid));
  710. ifsta->state = IEEE80211_DISABLED;
  711. return;
  712. }
  713. ifsta->state = IEEE80211_ASSOCIATE;
  714. printk(KERN_DEBUG "%s: associate with AP %s\n",
  715. dev->name, print_mac(mac, ifsta->bssid));
  716. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  717. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  718. "mixed-cell disabled - abort association\n", dev->name);
  719. ifsta->state = IEEE80211_DISABLED;
  720. return;
  721. }
  722. ieee80211_send_assoc(dev, ifsta);
  723. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  724. }
  725. static void ieee80211_associated(struct net_device *dev,
  726. struct ieee80211_if_sta *ifsta)
  727. {
  728. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  729. struct sta_info *sta;
  730. int disassoc;
  731. DECLARE_MAC_BUF(mac);
  732. /* TODO: start monitoring current AP signal quality and number of
  733. * missed beacons. Scan other channels every now and then and search
  734. * for better APs. */
  735. /* TODO: remove expired BSSes */
  736. ifsta->state = IEEE80211_ASSOCIATED;
  737. sta = sta_info_get(local, ifsta->bssid);
  738. if (!sta) {
  739. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  740. dev->name, print_mac(mac, ifsta->bssid));
  741. disassoc = 1;
  742. } else {
  743. disassoc = 0;
  744. if (time_after(jiffies,
  745. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  746. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  747. printk(KERN_DEBUG "%s: No ProbeResp from "
  748. "current AP %s - assume out of "
  749. "range\n",
  750. dev->name, print_mac(mac, ifsta->bssid));
  751. disassoc = 1;
  752. sta_info_free(sta);
  753. } else
  754. ieee80211_send_probe_req(dev, ifsta->bssid,
  755. local->scan_ssid,
  756. local->scan_ssid_len);
  757. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  758. } else {
  759. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  760. if (time_after(jiffies, ifsta->last_probe +
  761. IEEE80211_PROBE_INTERVAL)) {
  762. ifsta->last_probe = jiffies;
  763. ieee80211_send_probe_req(dev, ifsta->bssid,
  764. ifsta->ssid,
  765. ifsta->ssid_len);
  766. }
  767. }
  768. sta_info_put(sta);
  769. }
  770. if (disassoc) {
  771. ifsta->state = IEEE80211_DISABLED;
  772. ieee80211_set_associated(dev, ifsta, 0);
  773. } else {
  774. mod_timer(&ifsta->timer, jiffies +
  775. IEEE80211_MONITORING_INTERVAL);
  776. }
  777. }
  778. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  779. u8 *ssid, size_t ssid_len)
  780. {
  781. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  782. struct ieee80211_hw_mode *mode;
  783. struct sk_buff *skb;
  784. struct ieee80211_mgmt *mgmt;
  785. u8 *pos, *supp_rates, *esupp_rates = NULL;
  786. int i;
  787. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  788. if (!skb) {
  789. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  790. "request\n", dev->name);
  791. return;
  792. }
  793. skb_reserve(skb, local->hw.extra_tx_headroom);
  794. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  795. memset(mgmt, 0, 24);
  796. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  797. IEEE80211_STYPE_PROBE_REQ);
  798. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  799. if (dst) {
  800. memcpy(mgmt->da, dst, ETH_ALEN);
  801. memcpy(mgmt->bssid, dst, ETH_ALEN);
  802. } else {
  803. memset(mgmt->da, 0xff, ETH_ALEN);
  804. memset(mgmt->bssid, 0xff, ETH_ALEN);
  805. }
  806. pos = skb_put(skb, 2 + ssid_len);
  807. *pos++ = WLAN_EID_SSID;
  808. *pos++ = ssid_len;
  809. memcpy(pos, ssid, ssid_len);
  810. supp_rates = skb_put(skb, 2);
  811. supp_rates[0] = WLAN_EID_SUPP_RATES;
  812. supp_rates[1] = 0;
  813. mode = local->oper_hw_mode;
  814. for (i = 0; i < mode->num_rates; i++) {
  815. struct ieee80211_rate *rate = &mode->rates[i];
  816. if (!(rate->flags & IEEE80211_RATE_SUPPORTED))
  817. continue;
  818. if (esupp_rates) {
  819. pos = skb_put(skb, 1);
  820. esupp_rates[1]++;
  821. } else if (supp_rates[1] == 8) {
  822. esupp_rates = skb_put(skb, 3);
  823. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  824. esupp_rates[1] = 1;
  825. pos = &esupp_rates[2];
  826. } else {
  827. pos = skb_put(skb, 1);
  828. supp_rates[1]++;
  829. }
  830. *pos = rate->rate / 5;
  831. }
  832. ieee80211_sta_tx(dev, skb, 0);
  833. }
  834. static int ieee80211_sta_wep_configured(struct net_device *dev)
  835. {
  836. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  837. if (!sdata || !sdata->default_key ||
  838. sdata->default_key->conf.alg != ALG_WEP)
  839. return 0;
  840. return 1;
  841. }
  842. static void ieee80211_auth_completed(struct net_device *dev,
  843. struct ieee80211_if_sta *ifsta)
  844. {
  845. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  846. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  847. ieee80211_associate(dev, ifsta);
  848. }
  849. static void ieee80211_auth_challenge(struct net_device *dev,
  850. struct ieee80211_if_sta *ifsta,
  851. struct ieee80211_mgmt *mgmt,
  852. size_t len)
  853. {
  854. u8 *pos;
  855. struct ieee802_11_elems elems;
  856. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  857. pos = mgmt->u.auth.variable;
  858. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  859. if (!elems.challenge) {
  860. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  861. "frame\n", dev->name);
  862. return;
  863. }
  864. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  865. elems.challenge_len + 2, 1);
  866. }
  867. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  868. u8 dialog_token, u16 status, u16 policy,
  869. u16 buf_size, u16 timeout)
  870. {
  871. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  872. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  873. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  874. struct sk_buff *skb;
  875. struct ieee80211_mgmt *mgmt;
  876. u16 capab;
  877. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  878. sizeof(mgmt->u.action.u.addba_resp));
  879. if (!skb) {
  880. printk(KERN_DEBUG "%s: failed to allocate buffer "
  881. "for addba resp frame\n", dev->name);
  882. return;
  883. }
  884. skb_reserve(skb, local->hw.extra_tx_headroom);
  885. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  886. memset(mgmt, 0, 24);
  887. memcpy(mgmt->da, da, ETH_ALEN);
  888. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  889. if (sdata->type == IEEE80211_IF_TYPE_AP)
  890. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  891. else
  892. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  893. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  894. IEEE80211_STYPE_ACTION);
  895. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  896. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  897. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  898. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  899. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  900. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  901. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  902. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  903. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  904. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  905. ieee80211_sta_tx(dev, skb, 0);
  906. return;
  907. }
  908. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  909. struct ieee80211_mgmt *mgmt,
  910. size_t len)
  911. {
  912. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  913. struct ieee80211_hw *hw = &local->hw;
  914. struct ieee80211_conf *conf = &hw->conf;
  915. struct sta_info *sta;
  916. struct tid_ampdu_rx *tid_agg_rx;
  917. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  918. u8 dialog_token;
  919. int ret = -EOPNOTSUPP;
  920. DECLARE_MAC_BUF(mac);
  921. sta = sta_info_get(local, mgmt->sa);
  922. if (!sta)
  923. return;
  924. /* extract session parameters from addba request frame */
  925. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  926. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  927. start_seq_num =
  928. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  929. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  930. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  931. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  932. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  933. status = WLAN_STATUS_REQUEST_DECLINED;
  934. /* sanity check for incoming parameters:
  935. * check if configuration can support the BA policy
  936. * and if buffer size does not exceeds max value */
  937. if (((ba_policy != 1)
  938. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  939. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  940. status = WLAN_STATUS_INVALID_QOS_PARAM;
  941. #ifdef CONFIG_MAC80211_HT_DEBUG
  942. if (net_ratelimit())
  943. printk(KERN_DEBUG "Block Ack Req with bad params from "
  944. "%s on tid %u. policy %d, buffer size %d\n",
  945. print_mac(mac, mgmt->sa), tid, ba_policy,
  946. buf_size);
  947. #endif /* CONFIG_MAC80211_HT_DEBUG */
  948. goto end_no_lock;
  949. }
  950. /* determine default buffer size */
  951. if (buf_size == 0) {
  952. struct ieee80211_hw_mode *mode = conf->mode;
  953. buf_size = IEEE80211_MIN_AMPDU_BUF;
  954. buf_size = buf_size << mode->ht_info.ampdu_factor;
  955. }
  956. tid_agg_rx = &sta->ampdu_mlme.tid_rx[tid];
  957. /* examine state machine */
  958. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  959. if (tid_agg_rx->state != HT_AGG_STATE_IDLE) {
  960. #ifdef CONFIG_MAC80211_HT_DEBUG
  961. if (net_ratelimit())
  962. printk(KERN_DEBUG "unexpected Block Ack Req from "
  963. "%s on tid %u\n",
  964. print_mac(mac, mgmt->sa), tid);
  965. #endif /* CONFIG_MAC80211_HT_DEBUG */
  966. goto end;
  967. }
  968. /* prepare reordering buffer */
  969. tid_agg_rx->reorder_buf =
  970. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  971. if ((!tid_agg_rx->reorder_buf) && net_ratelimit()) {
  972. printk(KERN_ERR "can not allocate reordering buffer "
  973. "to tid %d\n", tid);
  974. goto end;
  975. }
  976. memset(tid_agg_rx->reorder_buf, 0,
  977. buf_size * sizeof(struct sk_buf *));
  978. if (local->ops->ampdu_action)
  979. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  980. sta->addr, tid, start_seq_num);
  981. #ifdef CONFIG_MAC80211_HT_DEBUG
  982. printk(KERN_DEBUG "Rx A-MPDU on tid %d result %d", tid, ret);
  983. #endif /* CONFIG_MAC80211_HT_DEBUG */
  984. if (ret) {
  985. kfree(tid_agg_rx->reorder_buf);
  986. goto end;
  987. }
  988. /* change state and send addba resp */
  989. tid_agg_rx->state = HT_AGG_STATE_OPERATIONAL;
  990. tid_agg_rx->dialog_token = dialog_token;
  991. tid_agg_rx->ssn = start_seq_num;
  992. tid_agg_rx->head_seq_num = start_seq_num;
  993. tid_agg_rx->buf_size = buf_size;
  994. tid_agg_rx->timeout = timeout;
  995. tid_agg_rx->stored_mpdu_num = 0;
  996. status = WLAN_STATUS_SUCCESS;
  997. end:
  998. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  999. end_no_lock:
  1000. ieee80211_send_addba_resp(sta->dev, sta->addr, tid, dialog_token,
  1001. status, 1, buf_size, timeout);
  1002. sta_info_put(sta);
  1003. }
  1004. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1005. u16 initiator, u16 reason_code)
  1006. {
  1007. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1008. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1009. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1010. struct sk_buff *skb;
  1011. struct ieee80211_mgmt *mgmt;
  1012. u16 params;
  1013. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1014. sizeof(mgmt->u.action.u.delba));
  1015. if (!skb) {
  1016. printk(KERN_ERR "%s: failed to allocate buffer "
  1017. "for delba frame\n", dev->name);
  1018. return;
  1019. }
  1020. skb_reserve(skb, local->hw.extra_tx_headroom);
  1021. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1022. memset(mgmt, 0, 24);
  1023. memcpy(mgmt->da, da, ETH_ALEN);
  1024. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1025. if (sdata->type == IEEE80211_IF_TYPE_AP)
  1026. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1027. else
  1028. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1029. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1030. IEEE80211_STYPE_ACTION);
  1031. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1032. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1033. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1034. params = (u16)(initiator << 11); /* bit 11 initiator */
  1035. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1036. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1037. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1038. ieee80211_sta_tx(dev, skb, 0);
  1039. }
  1040. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1041. u16 initiator, u16 reason)
  1042. {
  1043. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1044. struct ieee80211_hw *hw = &local->hw;
  1045. struct sta_info *sta;
  1046. int ret;
  1047. sta = sta_info_get(local, ra);
  1048. if (!sta)
  1049. return;
  1050. /* check if TID is in operational state */
  1051. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1052. if (sta->ampdu_mlme.tid_rx[tid].state
  1053. != HT_AGG_STATE_OPERATIONAL) {
  1054. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1055. if (net_ratelimit())
  1056. printk(KERN_DEBUG "rx BA session requested to stop on "
  1057. "inactive tid %d\n", tid);
  1058. sta_info_put(sta);
  1059. return;
  1060. }
  1061. sta->ampdu_mlme.tid_rx[tid].state =
  1062. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1063. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1064. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1065. /* stop HW Rx aggregation. ampdu_action existence
  1066. * already verified in session init so we add the BUG_ON */
  1067. BUG_ON(!local->ops->ampdu_action);
  1068. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1069. ra, tid, EINVAL);
  1070. if (ret)
  1071. printk(KERN_DEBUG "HW problem - can not stop rx "
  1072. "aggergation for tid %d\n", tid);
  1073. /* shutdown timer has not expired */
  1074. if (initiator != WLAN_BACK_TIMER)
  1075. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid].
  1076. session_timer);
  1077. /* check if this is a self generated aggregation halt */
  1078. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1079. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1080. /* free the reordering buffer */
  1081. kfree(sta->ampdu_mlme.tid_rx[tid].reorder_buf);
  1082. sta->ampdu_mlme.tid_rx[tid].state = HT_AGG_STATE_IDLE;
  1083. sta_info_put(sta);
  1084. }
  1085. /*
  1086. * After receiving Block Ack Request (BAR) we activated a
  1087. * timer after each frame arrives from the originator.
  1088. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1089. */
  1090. void sta_rx_agg_session_timer_expired(unsigned long data)
  1091. {
  1092. /* not an elegant detour, but there is no choice as the timer passes
  1093. * only one argument, and verious sta_info are needed here, so init
  1094. * flow in sta_info_add gives the TID as data, while the timer_to_id
  1095. * array gives the sta through container_of */
  1096. u8 *ptid = (u8 *)data;
  1097. u8 *timer_to_id = ptid - *ptid;
  1098. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1099. timer_to_tid[0]);
  1100. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1101. ieee80211_sta_stop_rx_ba_session(sta->dev, sta->addr, (u16)*ptid,
  1102. WLAN_BACK_TIMER,
  1103. WLAN_REASON_QSTA_TIMEOUT);
  1104. }
  1105. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1106. struct ieee80211_if_sta *ifsta,
  1107. struct ieee80211_mgmt *mgmt,
  1108. size_t len)
  1109. {
  1110. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1111. u16 auth_alg, auth_transaction, status_code;
  1112. DECLARE_MAC_BUF(mac);
  1113. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1114. sdata->type != IEEE80211_IF_TYPE_IBSS) {
  1115. printk(KERN_DEBUG "%s: authentication frame received from "
  1116. "%s, but not in authenticate state - ignored\n",
  1117. dev->name, print_mac(mac, mgmt->sa));
  1118. return;
  1119. }
  1120. if (len < 24 + 6) {
  1121. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1122. "received from %s - ignored\n",
  1123. dev->name, len, print_mac(mac, mgmt->sa));
  1124. return;
  1125. }
  1126. if (sdata->type != IEEE80211_IF_TYPE_IBSS &&
  1127. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1128. printk(KERN_DEBUG "%s: authentication frame received from "
  1129. "unknown AP (SA=%s BSSID=%s) - "
  1130. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1131. print_mac(mac, mgmt->bssid));
  1132. return;
  1133. }
  1134. if (sdata->type != IEEE80211_IF_TYPE_IBSS &&
  1135. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1136. printk(KERN_DEBUG "%s: authentication frame received from "
  1137. "unknown BSSID (SA=%s BSSID=%s) - "
  1138. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1139. print_mac(mac, mgmt->bssid));
  1140. return;
  1141. }
  1142. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1143. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1144. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1145. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1146. "transaction=%d status=%d)\n",
  1147. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1148. auth_transaction, status_code);
  1149. if (sdata->type == IEEE80211_IF_TYPE_IBSS) {
  1150. /* IEEE 802.11 standard does not require authentication in IBSS
  1151. * networks and most implementations do not seem to use it.
  1152. * However, try to reply to authentication attempts if someone
  1153. * has actually implemented this.
  1154. * TODO: Could implement shared key authentication. */
  1155. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1156. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1157. "frame (alg=%d transaction=%d)\n",
  1158. dev->name, auth_alg, auth_transaction);
  1159. return;
  1160. }
  1161. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1162. }
  1163. if (auth_alg != ifsta->auth_alg ||
  1164. auth_transaction != ifsta->auth_transaction) {
  1165. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1166. "(alg=%d transaction=%d)\n",
  1167. dev->name, auth_alg, auth_transaction);
  1168. return;
  1169. }
  1170. if (status_code != WLAN_STATUS_SUCCESS) {
  1171. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1172. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1173. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1174. u8 algs[3];
  1175. const int num_algs = ARRAY_SIZE(algs);
  1176. int i, pos;
  1177. algs[0] = algs[1] = algs[2] = 0xff;
  1178. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1179. algs[0] = WLAN_AUTH_OPEN;
  1180. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1181. algs[1] = WLAN_AUTH_SHARED_KEY;
  1182. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1183. algs[2] = WLAN_AUTH_LEAP;
  1184. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1185. pos = 0;
  1186. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1187. pos = 1;
  1188. else
  1189. pos = 2;
  1190. for (i = 0; i < num_algs; i++) {
  1191. pos++;
  1192. if (pos >= num_algs)
  1193. pos = 0;
  1194. if (algs[pos] == ifsta->auth_alg ||
  1195. algs[pos] == 0xff)
  1196. continue;
  1197. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1198. !ieee80211_sta_wep_configured(dev))
  1199. continue;
  1200. ifsta->auth_alg = algs[pos];
  1201. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1202. "next try\n",
  1203. dev->name, ifsta->auth_alg);
  1204. break;
  1205. }
  1206. }
  1207. return;
  1208. }
  1209. switch (ifsta->auth_alg) {
  1210. case WLAN_AUTH_OPEN:
  1211. case WLAN_AUTH_LEAP:
  1212. ieee80211_auth_completed(dev, ifsta);
  1213. break;
  1214. case WLAN_AUTH_SHARED_KEY:
  1215. if (ifsta->auth_transaction == 4)
  1216. ieee80211_auth_completed(dev, ifsta);
  1217. else
  1218. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1219. break;
  1220. }
  1221. }
  1222. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1223. struct ieee80211_if_sta *ifsta,
  1224. struct ieee80211_mgmt *mgmt,
  1225. size_t len)
  1226. {
  1227. u16 reason_code;
  1228. DECLARE_MAC_BUF(mac);
  1229. if (len < 24 + 2) {
  1230. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1231. "received from %s - ignored\n",
  1232. dev->name, len, print_mac(mac, mgmt->sa));
  1233. return;
  1234. }
  1235. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1236. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1237. "unknown AP (SA=%s BSSID=%s) - "
  1238. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1239. print_mac(mac, mgmt->bssid));
  1240. return;
  1241. }
  1242. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1243. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1244. " (reason=%d)\n",
  1245. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1246. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1247. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1248. }
  1249. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1250. ifsta->state == IEEE80211_ASSOCIATE ||
  1251. ifsta->state == IEEE80211_ASSOCIATED) {
  1252. ifsta->state = IEEE80211_AUTHENTICATE;
  1253. mod_timer(&ifsta->timer, jiffies +
  1254. IEEE80211_RETRY_AUTH_INTERVAL);
  1255. }
  1256. ieee80211_set_disassoc(dev, ifsta, 1);
  1257. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1258. }
  1259. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1260. struct ieee80211_if_sta *ifsta,
  1261. struct ieee80211_mgmt *mgmt,
  1262. size_t len)
  1263. {
  1264. u16 reason_code;
  1265. DECLARE_MAC_BUF(mac);
  1266. if (len < 24 + 2) {
  1267. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1268. "received from %s - ignored\n",
  1269. dev->name, len, print_mac(mac, mgmt->sa));
  1270. return;
  1271. }
  1272. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1273. printk(KERN_DEBUG "%s: disassociation frame received from "
  1274. "unknown AP (SA=%s BSSID=%s) - "
  1275. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1276. print_mac(mac, mgmt->bssid));
  1277. return;
  1278. }
  1279. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1280. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1281. " (reason=%d)\n",
  1282. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1283. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1284. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1285. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1286. ifsta->state = IEEE80211_ASSOCIATE;
  1287. mod_timer(&ifsta->timer, jiffies +
  1288. IEEE80211_RETRY_AUTH_INTERVAL);
  1289. }
  1290. ieee80211_set_disassoc(dev, ifsta, 0);
  1291. }
  1292. static void ieee80211_rx_mgmt_assoc_resp(struct net_device *dev,
  1293. struct ieee80211_if_sta *ifsta,
  1294. struct ieee80211_mgmt *mgmt,
  1295. size_t len,
  1296. int reassoc)
  1297. {
  1298. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1299. struct ieee80211_hw_mode *mode;
  1300. struct sta_info *sta;
  1301. u32 rates;
  1302. u16 capab_info, status_code, aid;
  1303. struct ieee802_11_elems elems;
  1304. u8 *pos;
  1305. int i, j;
  1306. DECLARE_MAC_BUF(mac);
  1307. /* AssocResp and ReassocResp have identical structure, so process both
  1308. * of them in this function. */
  1309. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1310. printk(KERN_DEBUG "%s: association frame received from "
  1311. "%s, but not in associate state - ignored\n",
  1312. dev->name, print_mac(mac, mgmt->sa));
  1313. return;
  1314. }
  1315. if (len < 24 + 6) {
  1316. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1317. "received from %s - ignored\n",
  1318. dev->name, len, print_mac(mac, mgmt->sa));
  1319. return;
  1320. }
  1321. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1322. printk(KERN_DEBUG "%s: association frame received from "
  1323. "unknown AP (SA=%s BSSID=%s) - "
  1324. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1325. print_mac(mac, mgmt->bssid));
  1326. return;
  1327. }
  1328. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1329. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1330. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1331. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1332. "status=%d aid=%d)\n",
  1333. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1334. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1335. if (status_code != WLAN_STATUS_SUCCESS) {
  1336. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1337. dev->name, status_code);
  1338. /* if this was a reassociation, ensure we try a "full"
  1339. * association next time. This works around some broken APs
  1340. * which do not correctly reject reassociation requests. */
  1341. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1342. return;
  1343. }
  1344. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1345. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1346. "set\n", dev->name, aid);
  1347. aid &= ~(BIT(15) | BIT(14));
  1348. pos = mgmt->u.assoc_resp.variable;
  1349. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1350. if (!elems.supp_rates) {
  1351. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1352. dev->name);
  1353. return;
  1354. }
  1355. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1356. ifsta->aid = aid;
  1357. ifsta->ap_capab = capab_info;
  1358. kfree(ifsta->assocresp_ies);
  1359. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1360. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1361. if (ifsta->assocresp_ies)
  1362. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1363. ieee80211_set_associated(dev, ifsta, 1);
  1364. /* Add STA entry for the AP */
  1365. sta = sta_info_get(local, ifsta->bssid);
  1366. if (!sta) {
  1367. struct ieee80211_sta_bss *bss;
  1368. sta = sta_info_add(local, dev, ifsta->bssid, GFP_KERNEL);
  1369. if (!sta) {
  1370. printk(KERN_DEBUG "%s: failed to add STA entry for the"
  1371. " AP\n", dev->name);
  1372. return;
  1373. }
  1374. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1375. local->hw.conf.channel,
  1376. ifsta->ssid, ifsta->ssid_len);
  1377. if (bss) {
  1378. sta->last_rssi = bss->rssi;
  1379. sta->last_signal = bss->signal;
  1380. sta->last_noise = bss->noise;
  1381. ieee80211_rx_bss_put(dev, bss);
  1382. }
  1383. }
  1384. sta->dev = dev;
  1385. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP;
  1386. rates = 0;
  1387. mode = local->oper_hw_mode;
  1388. for (i = 0; i < elems.supp_rates_len; i++) {
  1389. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1390. for (j = 0; j < mode->num_rates; j++)
  1391. if (mode->rates[j].rate == rate)
  1392. rates |= BIT(j);
  1393. }
  1394. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1395. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1396. for (j = 0; j < mode->num_rates; j++)
  1397. if (mode->rates[j].rate == rate)
  1398. rates |= BIT(j);
  1399. }
  1400. sta->supp_rates = rates;
  1401. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param &&
  1402. local->ops->conf_ht) {
  1403. struct ieee80211_ht_bss_info bss_info;
  1404. ieee80211_ht_cap_ie_to_ht_info(
  1405. (struct ieee80211_ht_cap *)
  1406. elems.ht_cap_elem, &sta->ht_info);
  1407. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1408. (struct ieee80211_ht_addt_info *)
  1409. elems.ht_info_elem, &bss_info);
  1410. ieee80211_hw_config_ht(local, 1, &sta->ht_info, &bss_info);
  1411. }
  1412. rate_control_rate_init(sta, local);
  1413. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1414. sta->flags |= WLAN_STA_WME;
  1415. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1416. elems.wmm_param_len);
  1417. }
  1418. sta_info_put(sta);
  1419. ieee80211_associated(dev, ifsta);
  1420. }
  1421. /* Caller must hold local->sta_bss_lock */
  1422. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1423. struct ieee80211_sta_bss *bss)
  1424. {
  1425. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1426. bss->hnext = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1427. local->sta_bss_hash[STA_HASH(bss->bssid)] = bss;
  1428. }
  1429. /* Caller must hold local->sta_bss_lock */
  1430. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1431. struct ieee80211_sta_bss *bss)
  1432. {
  1433. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1434. struct ieee80211_sta_bss *b, *prev = NULL;
  1435. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1436. while (b) {
  1437. if (b == bss) {
  1438. if (!prev)
  1439. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1440. bss->hnext;
  1441. else
  1442. prev->hnext = bss->hnext;
  1443. break;
  1444. }
  1445. prev = b;
  1446. b = b->hnext;
  1447. }
  1448. }
  1449. static struct ieee80211_sta_bss *
  1450. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int channel,
  1451. u8 *ssid, u8 ssid_len)
  1452. {
  1453. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1454. struct ieee80211_sta_bss *bss;
  1455. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1456. if (!bss)
  1457. return NULL;
  1458. atomic_inc(&bss->users);
  1459. atomic_inc(&bss->users);
  1460. memcpy(bss->bssid, bssid, ETH_ALEN);
  1461. bss->channel = channel;
  1462. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1463. memcpy(bss->ssid, ssid, ssid_len);
  1464. bss->ssid_len = ssid_len;
  1465. }
  1466. spin_lock_bh(&local->sta_bss_lock);
  1467. /* TODO: order by RSSI? */
  1468. list_add_tail(&bss->list, &local->sta_bss_list);
  1469. __ieee80211_rx_bss_hash_add(dev, bss);
  1470. spin_unlock_bh(&local->sta_bss_lock);
  1471. return bss;
  1472. }
  1473. static struct ieee80211_sta_bss *
  1474. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int channel,
  1475. u8 *ssid, u8 ssid_len)
  1476. {
  1477. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1478. struct ieee80211_sta_bss *bss;
  1479. spin_lock_bh(&local->sta_bss_lock);
  1480. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1481. while (bss) {
  1482. if (!memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1483. bss->channel == channel &&
  1484. bss->ssid_len == ssid_len &&
  1485. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1486. atomic_inc(&bss->users);
  1487. break;
  1488. }
  1489. bss = bss->hnext;
  1490. }
  1491. spin_unlock_bh(&local->sta_bss_lock);
  1492. return bss;
  1493. }
  1494. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1495. {
  1496. kfree(bss->wpa_ie);
  1497. kfree(bss->rsn_ie);
  1498. kfree(bss->wmm_ie);
  1499. kfree(bss->ht_ie);
  1500. kfree(bss);
  1501. }
  1502. static void ieee80211_rx_bss_put(struct net_device *dev,
  1503. struct ieee80211_sta_bss *bss)
  1504. {
  1505. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1506. if (!atomic_dec_and_test(&bss->users))
  1507. return;
  1508. spin_lock_bh(&local->sta_bss_lock);
  1509. __ieee80211_rx_bss_hash_del(dev, bss);
  1510. list_del(&bss->list);
  1511. spin_unlock_bh(&local->sta_bss_lock);
  1512. ieee80211_rx_bss_free(bss);
  1513. }
  1514. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1515. {
  1516. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1517. spin_lock_init(&local->sta_bss_lock);
  1518. INIT_LIST_HEAD(&local->sta_bss_list);
  1519. }
  1520. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1521. {
  1522. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1523. struct ieee80211_sta_bss *bss, *tmp;
  1524. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1525. ieee80211_rx_bss_put(dev, bss);
  1526. }
  1527. static void ieee80211_rx_bss_info(struct net_device *dev,
  1528. struct ieee80211_mgmt *mgmt,
  1529. size_t len,
  1530. struct ieee80211_rx_status *rx_status,
  1531. int beacon)
  1532. {
  1533. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1534. struct ieee802_11_elems elems;
  1535. size_t baselen;
  1536. int channel, clen;
  1537. struct ieee80211_sta_bss *bss;
  1538. struct sta_info *sta;
  1539. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1540. u64 timestamp;
  1541. DECLARE_MAC_BUF(mac);
  1542. DECLARE_MAC_BUF(mac2);
  1543. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  1544. return; /* ignore ProbeResp to foreign address */
  1545. #if 0
  1546. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  1547. dev->name, beacon ? "Beacon" : "Probe Response",
  1548. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  1549. #endif
  1550. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1551. if (baselen > len)
  1552. return;
  1553. timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  1554. if (sdata->type == IEEE80211_IF_TYPE_IBSS && beacon &&
  1555. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0) {
  1556. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1557. static unsigned long last_tsf_debug = 0;
  1558. u64 tsf;
  1559. if (local->ops->get_tsf)
  1560. tsf = local->ops->get_tsf(local_to_hw(local));
  1561. else
  1562. tsf = -1LLU;
  1563. if (time_after(jiffies, last_tsf_debug + 5 * HZ)) {
  1564. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  1565. "%s TSF=0x%llx BCN=0x%llx diff=%lld "
  1566. "@%lu\n",
  1567. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->bssid),
  1568. (unsigned long long)tsf,
  1569. (unsigned long long)timestamp,
  1570. (unsigned long long)(tsf - timestamp),
  1571. jiffies);
  1572. last_tsf_debug = jiffies;
  1573. }
  1574. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1575. }
  1576. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1577. if (sdata->type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  1578. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  1579. (sta = sta_info_get(local, mgmt->sa))) {
  1580. struct ieee80211_hw_mode *mode;
  1581. struct ieee80211_rate *rates;
  1582. size_t num_rates;
  1583. u32 supp_rates, prev_rates;
  1584. int i, j;
  1585. mode = local->sta_sw_scanning ?
  1586. local->scan_hw_mode : local->oper_hw_mode;
  1587. if (local->sta_hw_scanning) {
  1588. /* search for the correct mode matches the beacon */
  1589. list_for_each_entry(mode, &local->modes_list, list)
  1590. if (mode->mode == rx_status->phymode)
  1591. break;
  1592. if (mode == NULL)
  1593. mode = local->oper_hw_mode;
  1594. }
  1595. rates = mode->rates;
  1596. num_rates = mode->num_rates;
  1597. supp_rates = 0;
  1598. for (i = 0; i < elems.supp_rates_len +
  1599. elems.ext_supp_rates_len; i++) {
  1600. u8 rate = 0;
  1601. int own_rate;
  1602. if (i < elems.supp_rates_len)
  1603. rate = elems.supp_rates[i];
  1604. else if (elems.ext_supp_rates)
  1605. rate = elems.ext_supp_rates
  1606. [i - elems.supp_rates_len];
  1607. own_rate = 5 * (rate & 0x7f);
  1608. for (j = 0; j < num_rates; j++)
  1609. if (rates[j].rate == own_rate)
  1610. supp_rates |= BIT(j);
  1611. }
  1612. prev_rates = sta->supp_rates;
  1613. sta->supp_rates &= supp_rates;
  1614. if (sta->supp_rates == 0) {
  1615. /* No matching rates - this should not really happen.
  1616. * Make sure that at least one rate is marked
  1617. * supported to avoid issues with TX rate ctrl. */
  1618. sta->supp_rates = sdata->u.sta.supp_rates_bits;
  1619. }
  1620. if (sta->supp_rates != prev_rates) {
  1621. printk(KERN_DEBUG "%s: updated supp_rates set for "
  1622. "%s based on beacon info (0x%x & 0x%x -> "
  1623. "0x%x)\n",
  1624. dev->name, print_mac(mac, sta->addr), prev_rates,
  1625. supp_rates, sta->supp_rates);
  1626. }
  1627. sta_info_put(sta);
  1628. }
  1629. if (!elems.ssid)
  1630. return;
  1631. if (elems.ds_params && elems.ds_params_len == 1)
  1632. channel = elems.ds_params[0];
  1633. else
  1634. channel = rx_status->channel;
  1635. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, channel,
  1636. elems.ssid, elems.ssid_len);
  1637. if (!bss) {
  1638. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, channel,
  1639. elems.ssid, elems.ssid_len);
  1640. if (!bss)
  1641. return;
  1642. } else {
  1643. #if 0
  1644. /* TODO: order by RSSI? */
  1645. spin_lock_bh(&local->sta_bss_lock);
  1646. list_move_tail(&bss->list, &local->sta_bss_list);
  1647. spin_unlock_bh(&local->sta_bss_lock);
  1648. #endif
  1649. }
  1650. if (bss->probe_resp && beacon) {
  1651. /* Do not allow beacon to override data from Probe Response. */
  1652. ieee80211_rx_bss_put(dev, bss);
  1653. return;
  1654. }
  1655. /* save the ERP value so that it is available at association time */
  1656. if (elems.erp_info && elems.erp_info_len >= 1) {
  1657. bss->erp_value = elems.erp_info[0];
  1658. bss->has_erp_value = 1;
  1659. }
  1660. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  1661. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  1662. bss->supp_rates_len = 0;
  1663. if (elems.supp_rates) {
  1664. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1665. if (clen > elems.supp_rates_len)
  1666. clen = elems.supp_rates_len;
  1667. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  1668. clen);
  1669. bss->supp_rates_len += clen;
  1670. }
  1671. if (elems.ext_supp_rates) {
  1672. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  1673. if (clen > elems.ext_supp_rates_len)
  1674. clen = elems.ext_supp_rates_len;
  1675. memcpy(&bss->supp_rates[bss->supp_rates_len],
  1676. elems.ext_supp_rates, clen);
  1677. bss->supp_rates_len += clen;
  1678. }
  1679. if (elems.wpa &&
  1680. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  1681. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  1682. kfree(bss->wpa_ie);
  1683. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  1684. if (bss->wpa_ie) {
  1685. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  1686. bss->wpa_ie_len = elems.wpa_len + 2;
  1687. } else
  1688. bss->wpa_ie_len = 0;
  1689. } else if (!elems.wpa && bss->wpa_ie) {
  1690. kfree(bss->wpa_ie);
  1691. bss->wpa_ie = NULL;
  1692. bss->wpa_ie_len = 0;
  1693. }
  1694. if (elems.rsn &&
  1695. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  1696. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  1697. kfree(bss->rsn_ie);
  1698. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  1699. if (bss->rsn_ie) {
  1700. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  1701. bss->rsn_ie_len = elems.rsn_len + 2;
  1702. } else
  1703. bss->rsn_ie_len = 0;
  1704. } else if (!elems.rsn && bss->rsn_ie) {
  1705. kfree(bss->rsn_ie);
  1706. bss->rsn_ie = NULL;
  1707. bss->rsn_ie_len = 0;
  1708. }
  1709. if (elems.wmm_param &&
  1710. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  1711. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  1712. kfree(bss->wmm_ie);
  1713. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  1714. if (bss->wmm_ie) {
  1715. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  1716. elems.wmm_param_len + 2);
  1717. bss->wmm_ie_len = elems.wmm_param_len + 2;
  1718. } else
  1719. bss->wmm_ie_len = 0;
  1720. } else if (!elems.wmm_param && bss->wmm_ie) {
  1721. kfree(bss->wmm_ie);
  1722. bss->wmm_ie = NULL;
  1723. bss->wmm_ie_len = 0;
  1724. }
  1725. if (elems.ht_cap_elem &&
  1726. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  1727. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  1728. kfree(bss->ht_ie);
  1729. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  1730. if (bss->ht_ie) {
  1731. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  1732. elems.ht_cap_elem_len + 2);
  1733. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  1734. } else
  1735. bss->ht_ie_len = 0;
  1736. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  1737. kfree(bss->ht_ie);
  1738. bss->ht_ie = NULL;
  1739. bss->ht_ie_len = 0;
  1740. }
  1741. bss->hw_mode = rx_status->phymode;
  1742. bss->freq = rx_status->freq;
  1743. if (channel != rx_status->channel &&
  1744. (bss->hw_mode == MODE_IEEE80211G ||
  1745. bss->hw_mode == MODE_IEEE80211B) &&
  1746. channel >= 1 && channel <= 14) {
  1747. static const int freq_list[] = {
  1748. 2412, 2417, 2422, 2427, 2432, 2437, 2442,
  1749. 2447, 2452, 2457, 2462, 2467, 2472, 2484
  1750. };
  1751. /* IEEE 802.11g/b mode can receive packets from neighboring
  1752. * channels, so map the channel into frequency. */
  1753. bss->freq = freq_list[channel - 1];
  1754. }
  1755. bss->timestamp = timestamp;
  1756. bss->last_update = jiffies;
  1757. bss->rssi = rx_status->ssi;
  1758. bss->signal = rx_status->signal;
  1759. bss->noise = rx_status->noise;
  1760. if (!beacon)
  1761. bss->probe_resp++;
  1762. ieee80211_rx_bss_put(dev, bss);
  1763. }
  1764. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  1765. struct ieee80211_mgmt *mgmt,
  1766. size_t len,
  1767. struct ieee80211_rx_status *rx_status)
  1768. {
  1769. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  1770. }
  1771. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  1772. struct ieee80211_mgmt *mgmt,
  1773. size_t len,
  1774. struct ieee80211_rx_status *rx_status)
  1775. {
  1776. struct ieee80211_sub_if_data *sdata;
  1777. struct ieee80211_if_sta *ifsta;
  1778. size_t baselen;
  1779. struct ieee802_11_elems elems;
  1780. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1781. struct ieee80211_conf *conf = &local->hw.conf;
  1782. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  1783. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1784. if (sdata->type != IEEE80211_IF_TYPE_STA)
  1785. return;
  1786. ifsta = &sdata->u.sta;
  1787. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  1788. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  1789. return;
  1790. /* Process beacon from the current BSS */
  1791. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  1792. if (baselen > len)
  1793. return;
  1794. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  1795. if (elems.erp_info && elems.erp_info_len >= 1)
  1796. ieee80211_handle_erp_ie(dev, elems.erp_info[0]);
  1797. if (elems.ht_cap_elem && elems.ht_info_elem &&
  1798. elems.wmm_param && local->ops->conf_ht &&
  1799. conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  1800. struct ieee80211_ht_bss_info bss_info;
  1801. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1802. (struct ieee80211_ht_addt_info *)
  1803. elems.ht_info_elem, &bss_info);
  1804. /* check if AP changed bss inforamation */
  1805. if ((conf->ht_bss_conf.primary_channel !=
  1806. bss_info.primary_channel) ||
  1807. (conf->ht_bss_conf.bss_cap != bss_info.bss_cap) ||
  1808. (conf->ht_bss_conf.bss_op_mode != bss_info.bss_op_mode))
  1809. ieee80211_hw_config_ht(local, 1, &conf->ht_conf,
  1810. &bss_info);
  1811. }
  1812. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1813. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1814. elems.wmm_param_len);
  1815. }
  1816. }
  1817. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  1818. struct ieee80211_if_sta *ifsta,
  1819. struct ieee80211_mgmt *mgmt,
  1820. size_t len,
  1821. struct ieee80211_rx_status *rx_status)
  1822. {
  1823. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1824. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1825. int tx_last_beacon;
  1826. struct sk_buff *skb;
  1827. struct ieee80211_mgmt *resp;
  1828. u8 *pos, *end;
  1829. DECLARE_MAC_BUF(mac);
  1830. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1831. DECLARE_MAC_BUF(mac2);
  1832. DECLARE_MAC_BUF(mac3);
  1833. #endif
  1834. if (sdata->type != IEEE80211_IF_TYPE_IBSS ||
  1835. ifsta->state != IEEE80211_IBSS_JOINED ||
  1836. len < 24 + 2 || !ifsta->probe_resp)
  1837. return;
  1838. if (local->ops->tx_last_beacon)
  1839. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  1840. else
  1841. tx_last_beacon = 1;
  1842. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1843. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  1844. "%s (tx_last_beacon=%d)\n",
  1845. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  1846. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  1847. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1848. if (!tx_last_beacon)
  1849. return;
  1850. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  1851. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  1852. return;
  1853. end = ((u8 *) mgmt) + len;
  1854. pos = mgmt->u.probe_req.variable;
  1855. if (pos[0] != WLAN_EID_SSID ||
  1856. pos + 2 + pos[1] > end) {
  1857. if (net_ratelimit()) {
  1858. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  1859. "from %s\n",
  1860. dev->name, print_mac(mac, mgmt->sa));
  1861. }
  1862. return;
  1863. }
  1864. if (pos[1] != 0 &&
  1865. (pos[1] != ifsta->ssid_len ||
  1866. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  1867. /* Ignore ProbeReq for foreign SSID */
  1868. return;
  1869. }
  1870. /* Reply with ProbeResp */
  1871. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  1872. if (!skb)
  1873. return;
  1874. resp = (struct ieee80211_mgmt *) skb->data;
  1875. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  1876. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  1877. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  1878. dev->name, print_mac(mac, resp->da));
  1879. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  1880. ieee80211_sta_tx(dev, skb, 0);
  1881. }
  1882. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  1883. struct ieee80211_if_sta *ifsta,
  1884. struct ieee80211_mgmt *mgmt,
  1885. size_t len)
  1886. {
  1887. if (len < IEEE80211_MIN_ACTION_SIZE)
  1888. return;
  1889. switch (mgmt->u.action.category) {
  1890. case WLAN_CATEGORY_BACK:
  1891. switch (mgmt->u.action.u.addba_req.action_code) {
  1892. case WLAN_ACTION_ADDBA_REQ:
  1893. if (len < (IEEE80211_MIN_ACTION_SIZE +
  1894. sizeof(mgmt->u.action.u.addba_req)))
  1895. break;
  1896. ieee80211_sta_process_addba_request(dev, mgmt, len);
  1897. break;
  1898. default:
  1899. if (net_ratelimit())
  1900. printk(KERN_DEBUG "%s: received unsupported BACK\n",
  1901. dev->name);
  1902. break;
  1903. }
  1904. break;
  1905. default:
  1906. break;
  1907. }
  1908. }
  1909. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  1910. struct ieee80211_rx_status *rx_status)
  1911. {
  1912. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1913. struct ieee80211_sub_if_data *sdata;
  1914. struct ieee80211_if_sta *ifsta;
  1915. struct ieee80211_mgmt *mgmt;
  1916. u16 fc;
  1917. if (skb->len < 24)
  1918. goto fail;
  1919. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1920. ifsta = &sdata->u.sta;
  1921. mgmt = (struct ieee80211_mgmt *) skb->data;
  1922. fc = le16_to_cpu(mgmt->frame_control);
  1923. switch (fc & IEEE80211_FCTL_STYPE) {
  1924. case IEEE80211_STYPE_PROBE_REQ:
  1925. case IEEE80211_STYPE_PROBE_RESP:
  1926. case IEEE80211_STYPE_BEACON:
  1927. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  1928. case IEEE80211_STYPE_AUTH:
  1929. case IEEE80211_STYPE_ASSOC_RESP:
  1930. case IEEE80211_STYPE_REASSOC_RESP:
  1931. case IEEE80211_STYPE_DEAUTH:
  1932. case IEEE80211_STYPE_DISASSOC:
  1933. case IEEE80211_STYPE_ACTION:
  1934. skb_queue_tail(&ifsta->skb_queue, skb);
  1935. queue_work(local->hw.workqueue, &ifsta->work);
  1936. return;
  1937. default:
  1938. printk(KERN_DEBUG "%s: received unknown management frame - "
  1939. "stype=%d\n", dev->name,
  1940. (fc & IEEE80211_FCTL_STYPE) >> 4);
  1941. break;
  1942. }
  1943. fail:
  1944. kfree_skb(skb);
  1945. }
  1946. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  1947. struct sk_buff *skb)
  1948. {
  1949. struct ieee80211_rx_status *rx_status;
  1950. struct ieee80211_sub_if_data *sdata;
  1951. struct ieee80211_if_sta *ifsta;
  1952. struct ieee80211_mgmt *mgmt;
  1953. u16 fc;
  1954. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1955. ifsta = &sdata->u.sta;
  1956. rx_status = (struct ieee80211_rx_status *) skb->cb;
  1957. mgmt = (struct ieee80211_mgmt *) skb->data;
  1958. fc = le16_to_cpu(mgmt->frame_control);
  1959. switch (fc & IEEE80211_FCTL_STYPE) {
  1960. case IEEE80211_STYPE_PROBE_REQ:
  1961. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  1962. rx_status);
  1963. break;
  1964. case IEEE80211_STYPE_PROBE_RESP:
  1965. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  1966. break;
  1967. case IEEE80211_STYPE_BEACON:
  1968. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  1969. break;
  1970. case IEEE80211_STYPE_AUTH:
  1971. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  1972. break;
  1973. case IEEE80211_STYPE_ASSOC_RESP:
  1974. ieee80211_rx_mgmt_assoc_resp(dev, ifsta, mgmt, skb->len, 0);
  1975. break;
  1976. case IEEE80211_STYPE_REASSOC_RESP:
  1977. ieee80211_rx_mgmt_assoc_resp(dev, ifsta, mgmt, skb->len, 1);
  1978. break;
  1979. case IEEE80211_STYPE_DEAUTH:
  1980. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  1981. break;
  1982. case IEEE80211_STYPE_DISASSOC:
  1983. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  1984. break;
  1985. case IEEE80211_STYPE_ACTION:
  1986. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len);
  1987. break;
  1988. }
  1989. kfree_skb(skb);
  1990. }
  1991. ieee80211_txrx_result
  1992. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  1993. struct ieee80211_rx_status *rx_status)
  1994. {
  1995. struct ieee80211_mgmt *mgmt;
  1996. u16 fc;
  1997. if (skb->len < 2)
  1998. return TXRX_DROP;
  1999. mgmt = (struct ieee80211_mgmt *) skb->data;
  2000. fc = le16_to_cpu(mgmt->frame_control);
  2001. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2002. return TXRX_CONTINUE;
  2003. if (skb->len < 24)
  2004. return TXRX_DROP;
  2005. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2006. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2007. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2008. skb->len, rx_status);
  2009. dev_kfree_skb(skb);
  2010. return TXRX_QUEUED;
  2011. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2012. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2013. rx_status);
  2014. dev_kfree_skb(skb);
  2015. return TXRX_QUEUED;
  2016. }
  2017. }
  2018. return TXRX_CONTINUE;
  2019. }
  2020. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2021. {
  2022. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2023. int active = 0;
  2024. struct sta_info *sta;
  2025. read_lock_bh(&local->sta_lock);
  2026. list_for_each_entry(sta, &local->sta_list, list) {
  2027. if (sta->dev == dev &&
  2028. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2029. jiffies)) {
  2030. active++;
  2031. break;
  2032. }
  2033. }
  2034. read_unlock_bh(&local->sta_lock);
  2035. return active;
  2036. }
  2037. static void ieee80211_sta_expire(struct net_device *dev)
  2038. {
  2039. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2040. struct sta_info *sta, *tmp;
  2041. LIST_HEAD(tmp_list);
  2042. DECLARE_MAC_BUF(mac);
  2043. write_lock_bh(&local->sta_lock);
  2044. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2045. if (time_after(jiffies, sta->last_rx +
  2046. IEEE80211_IBSS_INACTIVITY_LIMIT)) {
  2047. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2048. dev->name, print_mac(mac, sta->addr));
  2049. __sta_info_get(sta);
  2050. sta_info_remove(sta);
  2051. list_add(&sta->list, &tmp_list);
  2052. }
  2053. write_unlock_bh(&local->sta_lock);
  2054. list_for_each_entry_safe(sta, tmp, &tmp_list, list) {
  2055. sta_info_free(sta);
  2056. sta_info_put(sta);
  2057. }
  2058. }
  2059. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2060. struct ieee80211_if_sta *ifsta)
  2061. {
  2062. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2063. ieee80211_sta_expire(dev);
  2064. if (ieee80211_sta_active_ibss(dev))
  2065. return;
  2066. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2067. "IBSS networks with same SSID (merge)\n", dev->name);
  2068. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2069. }
  2070. void ieee80211_sta_timer(unsigned long data)
  2071. {
  2072. struct ieee80211_sub_if_data *sdata =
  2073. (struct ieee80211_sub_if_data *) data;
  2074. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2075. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2076. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2077. queue_work(local->hw.workqueue, &ifsta->work);
  2078. }
  2079. void ieee80211_sta_work(struct work_struct *work)
  2080. {
  2081. struct ieee80211_sub_if_data *sdata =
  2082. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2083. struct net_device *dev = sdata->dev;
  2084. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2085. struct ieee80211_if_sta *ifsta;
  2086. struct sk_buff *skb;
  2087. if (!netif_running(dev))
  2088. return;
  2089. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2090. return;
  2091. if (sdata->type != IEEE80211_IF_TYPE_STA &&
  2092. sdata->type != IEEE80211_IF_TYPE_IBSS) {
  2093. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2094. "(type=%d)\n", dev->name, sdata->type);
  2095. return;
  2096. }
  2097. ifsta = &sdata->u.sta;
  2098. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2099. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2100. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2101. ifsta->state != IEEE80211_ASSOCIATE &&
  2102. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2103. if (ifsta->scan_ssid_len)
  2104. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2105. else
  2106. ieee80211_sta_start_scan(dev, NULL, 0);
  2107. return;
  2108. }
  2109. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2110. if (ieee80211_sta_config_auth(dev, ifsta))
  2111. return;
  2112. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2113. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2114. return;
  2115. switch (ifsta->state) {
  2116. case IEEE80211_DISABLED:
  2117. break;
  2118. case IEEE80211_AUTHENTICATE:
  2119. ieee80211_authenticate(dev, ifsta);
  2120. break;
  2121. case IEEE80211_ASSOCIATE:
  2122. ieee80211_associate(dev, ifsta);
  2123. break;
  2124. case IEEE80211_ASSOCIATED:
  2125. ieee80211_associated(dev, ifsta);
  2126. break;
  2127. case IEEE80211_IBSS_SEARCH:
  2128. ieee80211_sta_find_ibss(dev, ifsta);
  2129. break;
  2130. case IEEE80211_IBSS_JOINED:
  2131. ieee80211_sta_merge_ibss(dev, ifsta);
  2132. break;
  2133. default:
  2134. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2135. ifsta->state);
  2136. break;
  2137. }
  2138. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2139. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2140. "mixed-cell disabled - disassociate\n", dev->name);
  2141. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2142. ieee80211_set_disassoc(dev, ifsta, 0);
  2143. }
  2144. }
  2145. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2146. struct ieee80211_if_sta *ifsta)
  2147. {
  2148. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2149. if (local->ops->reset_tsf) {
  2150. /* Reset own TSF to allow time synchronization work. */
  2151. local->ops->reset_tsf(local_to_hw(local));
  2152. }
  2153. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2154. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2155. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2156. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2157. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2158. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2159. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2160. else
  2161. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2162. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2163. ifsta->auth_alg);
  2164. ifsta->auth_transaction = -1;
  2165. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2166. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2167. netif_carrier_off(dev);
  2168. }
  2169. void ieee80211_sta_req_auth(struct net_device *dev,
  2170. struct ieee80211_if_sta *ifsta)
  2171. {
  2172. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2173. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2174. if (sdata->type != IEEE80211_IF_TYPE_STA)
  2175. return;
  2176. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2177. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2178. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2179. IEEE80211_STA_AUTO_SSID_SEL))) {
  2180. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2181. queue_work(local->hw.workqueue, &ifsta->work);
  2182. }
  2183. }
  2184. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2185. const char *ssid, int ssid_len)
  2186. {
  2187. int tmp, hidden_ssid;
  2188. if (ssid_len == ifsta->ssid_len &&
  2189. !memcmp(ifsta->ssid, ssid, ssid_len))
  2190. return 1;
  2191. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2192. return 0;
  2193. hidden_ssid = 1;
  2194. tmp = ssid_len;
  2195. while (tmp--) {
  2196. if (ssid[tmp] != '\0') {
  2197. hidden_ssid = 0;
  2198. break;
  2199. }
  2200. }
  2201. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2202. return 1;
  2203. if (ssid_len == 1 && ssid[0] == ' ')
  2204. return 1;
  2205. return 0;
  2206. }
  2207. static int ieee80211_sta_config_auth(struct net_device *dev,
  2208. struct ieee80211_if_sta *ifsta)
  2209. {
  2210. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2211. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2212. struct ieee80211_sta_bss *bss, *selected = NULL;
  2213. int top_rssi = 0, freq;
  2214. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2215. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2216. ifsta->state = IEEE80211_AUTHENTICATE;
  2217. ieee80211_sta_reset_auth(dev, ifsta);
  2218. return 0;
  2219. }
  2220. spin_lock_bh(&local->sta_bss_lock);
  2221. freq = local->oper_channel->freq;
  2222. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2223. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2224. continue;
  2225. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2226. !!sdata->default_key)
  2227. continue;
  2228. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2229. bss->freq != freq)
  2230. continue;
  2231. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2232. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2233. continue;
  2234. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2235. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2236. continue;
  2237. if (!selected || top_rssi < bss->rssi) {
  2238. selected = bss;
  2239. top_rssi = bss->rssi;
  2240. }
  2241. }
  2242. if (selected)
  2243. atomic_inc(&selected->users);
  2244. spin_unlock_bh(&local->sta_bss_lock);
  2245. if (selected) {
  2246. ieee80211_set_channel(local, -1, selected->freq);
  2247. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2248. ieee80211_sta_set_ssid(dev, selected->ssid,
  2249. selected->ssid_len);
  2250. ieee80211_sta_set_bssid(dev, selected->bssid);
  2251. ieee80211_rx_bss_put(dev, selected);
  2252. ifsta->state = IEEE80211_AUTHENTICATE;
  2253. ieee80211_sta_reset_auth(dev, ifsta);
  2254. return 0;
  2255. } else {
  2256. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2257. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2258. ieee80211_sta_start_scan(dev, NULL, 0);
  2259. else
  2260. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2261. ifsta->ssid_len);
  2262. ifsta->state = IEEE80211_AUTHENTICATE;
  2263. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2264. } else
  2265. ifsta->state = IEEE80211_DISABLED;
  2266. }
  2267. return -1;
  2268. }
  2269. static int ieee80211_sta_join_ibss(struct net_device *dev,
  2270. struct ieee80211_if_sta *ifsta,
  2271. struct ieee80211_sta_bss *bss)
  2272. {
  2273. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2274. int res, rates, i, j;
  2275. struct sk_buff *skb;
  2276. struct ieee80211_mgmt *mgmt;
  2277. struct ieee80211_tx_control control;
  2278. struct ieee80211_hw_mode *mode;
  2279. struct rate_selection ratesel;
  2280. u8 *pos;
  2281. struct ieee80211_sub_if_data *sdata;
  2282. /* Remove possible STA entries from other IBSS networks. */
  2283. sta_info_flush(local, NULL);
  2284. if (local->ops->reset_tsf) {
  2285. /* Reset own TSF to allow time synchronization work. */
  2286. local->ops->reset_tsf(local_to_hw(local));
  2287. }
  2288. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  2289. res = ieee80211_if_config(dev);
  2290. if (res)
  2291. return res;
  2292. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  2293. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2294. sdata->drop_unencrypted = bss->capability &
  2295. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  2296. res = ieee80211_set_channel(local, -1, bss->freq);
  2297. if (!(local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)) {
  2298. printk(KERN_DEBUG "%s: IBSS not allowed on channel %d "
  2299. "(%d MHz)\n", dev->name, local->hw.conf.channel,
  2300. local->hw.conf.freq);
  2301. return -1;
  2302. }
  2303. /* Set beacon template based on scan results */
  2304. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  2305. do {
  2306. if (!skb)
  2307. break;
  2308. skb_reserve(skb, local->hw.extra_tx_headroom);
  2309. mgmt = (struct ieee80211_mgmt *)
  2310. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  2311. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  2312. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2313. IEEE80211_STYPE_BEACON);
  2314. memset(mgmt->da, 0xff, ETH_ALEN);
  2315. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  2316. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  2317. mgmt->u.beacon.beacon_int =
  2318. cpu_to_le16(local->hw.conf.beacon_int);
  2319. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  2320. pos = skb_put(skb, 2 + ifsta->ssid_len);
  2321. *pos++ = WLAN_EID_SSID;
  2322. *pos++ = ifsta->ssid_len;
  2323. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  2324. rates = bss->supp_rates_len;
  2325. if (rates > 8)
  2326. rates = 8;
  2327. pos = skb_put(skb, 2 + rates);
  2328. *pos++ = WLAN_EID_SUPP_RATES;
  2329. *pos++ = rates;
  2330. memcpy(pos, bss->supp_rates, rates);
  2331. pos = skb_put(skb, 2 + 1);
  2332. *pos++ = WLAN_EID_DS_PARAMS;
  2333. *pos++ = 1;
  2334. *pos++ = bss->channel;
  2335. pos = skb_put(skb, 2 + 2);
  2336. *pos++ = WLAN_EID_IBSS_PARAMS;
  2337. *pos++ = 2;
  2338. /* FIX: set ATIM window based on scan results */
  2339. *pos++ = 0;
  2340. *pos++ = 0;
  2341. if (bss->supp_rates_len > 8) {
  2342. rates = bss->supp_rates_len - 8;
  2343. pos = skb_put(skb, 2 + rates);
  2344. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  2345. *pos++ = rates;
  2346. memcpy(pos, &bss->supp_rates[8], rates);
  2347. }
  2348. memset(&control, 0, sizeof(control));
  2349. rate_control_get_rate(dev, local->oper_hw_mode, skb, &ratesel);
  2350. if (!ratesel.rate) {
  2351. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  2352. "for IBSS beacon\n", dev->name);
  2353. break;
  2354. }
  2355. control.tx_rate =
  2356. ((sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE) &&
  2357. (ratesel.rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
  2358. ratesel.rate->val2 : ratesel.rate->val;
  2359. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  2360. control.power_level = local->hw.conf.power_level;
  2361. control.flags |= IEEE80211_TXCTL_NO_ACK;
  2362. control.retry_limit = 1;
  2363. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2364. if (ifsta->probe_resp) {
  2365. mgmt = (struct ieee80211_mgmt *)
  2366. ifsta->probe_resp->data;
  2367. mgmt->frame_control =
  2368. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2369. IEEE80211_STYPE_PROBE_RESP);
  2370. } else {
  2371. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2372. "template for IBSS\n", dev->name);
  2373. }
  2374. if (local->ops->beacon_update &&
  2375. local->ops->beacon_update(local_to_hw(local),
  2376. skb, &control) == 0) {
  2377. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2378. "template based on scan results\n", dev->name);
  2379. skb = NULL;
  2380. }
  2381. rates = 0;
  2382. mode = local->oper_hw_mode;
  2383. for (i = 0; i < bss->supp_rates_len; i++) {
  2384. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2385. for (j = 0; j < mode->num_rates; j++)
  2386. if (mode->rates[j].rate == bitrate)
  2387. rates |= BIT(j);
  2388. }
  2389. ifsta->supp_rates_bits = rates;
  2390. } while (0);
  2391. if (skb) {
  2392. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2393. "template\n", dev->name);
  2394. dev_kfree_skb(skb);
  2395. }
  2396. ifsta->state = IEEE80211_IBSS_JOINED;
  2397. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2398. ieee80211_rx_bss_put(dev, bss);
  2399. return res;
  2400. }
  2401. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2402. struct ieee80211_if_sta *ifsta)
  2403. {
  2404. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2405. struct ieee80211_sta_bss *bss;
  2406. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2407. struct ieee80211_hw_mode *mode;
  2408. u8 bssid[ETH_ALEN], *pos;
  2409. int i;
  2410. DECLARE_MAC_BUF(mac);
  2411. #if 0
  2412. /* Easier testing, use fixed BSSID. */
  2413. memset(bssid, 0xfe, ETH_ALEN);
  2414. #else
  2415. /* Generate random, not broadcast, locally administered BSSID. Mix in
  2416. * own MAC address to make sure that devices that do not have proper
  2417. * random number generator get different BSSID. */
  2418. get_random_bytes(bssid, ETH_ALEN);
  2419. for (i = 0; i < ETH_ALEN; i++)
  2420. bssid[i] ^= dev->dev_addr[i];
  2421. bssid[0] &= ~0x01;
  2422. bssid[0] |= 0x02;
  2423. #endif
  2424. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  2425. dev->name, print_mac(mac, bssid));
  2426. bss = ieee80211_rx_bss_add(dev, bssid, local->hw.conf.channel,
  2427. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  2428. if (!bss)
  2429. return -ENOMEM;
  2430. mode = local->oper_hw_mode;
  2431. if (local->hw.conf.beacon_int == 0)
  2432. local->hw.conf.beacon_int = 100;
  2433. bss->beacon_int = local->hw.conf.beacon_int;
  2434. bss->hw_mode = local->hw.conf.phymode;
  2435. bss->freq = local->hw.conf.freq;
  2436. bss->last_update = jiffies;
  2437. bss->capability = WLAN_CAPABILITY_IBSS;
  2438. if (sdata->default_key) {
  2439. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  2440. } else
  2441. sdata->drop_unencrypted = 0;
  2442. bss->supp_rates_len = mode->num_rates;
  2443. pos = bss->supp_rates;
  2444. for (i = 0; i < mode->num_rates; i++) {
  2445. int rate = mode->rates[i].rate;
  2446. *pos++ = (u8) (rate / 5);
  2447. }
  2448. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2449. }
  2450. static int ieee80211_sta_find_ibss(struct net_device *dev,
  2451. struct ieee80211_if_sta *ifsta)
  2452. {
  2453. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2454. struct ieee80211_sta_bss *bss;
  2455. int found = 0;
  2456. u8 bssid[ETH_ALEN];
  2457. int active_ibss;
  2458. DECLARE_MAC_BUF(mac);
  2459. DECLARE_MAC_BUF(mac2);
  2460. if (ifsta->ssid_len == 0)
  2461. return -EINVAL;
  2462. active_ibss = ieee80211_sta_active_ibss(dev);
  2463. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2464. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  2465. dev->name, active_ibss);
  2466. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2467. spin_lock_bh(&local->sta_bss_lock);
  2468. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2469. if (ifsta->ssid_len != bss->ssid_len ||
  2470. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  2471. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  2472. continue;
  2473. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2474. printk(KERN_DEBUG " bssid=%s found\n",
  2475. print_mac(mac, bss->bssid));
  2476. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2477. memcpy(bssid, bss->bssid, ETH_ALEN);
  2478. found = 1;
  2479. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  2480. break;
  2481. }
  2482. spin_unlock_bh(&local->sta_bss_lock);
  2483. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2484. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  2485. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  2486. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2487. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  2488. (bss = ieee80211_rx_bss_get(dev, bssid, local->hw.conf.channel,
  2489. ifsta->ssid, ifsta->ssid_len))) {
  2490. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  2491. " based on configured SSID\n",
  2492. dev->name, print_mac(mac, bssid));
  2493. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  2494. }
  2495. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2496. printk(KERN_DEBUG " did not try to join ibss\n");
  2497. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2498. /* Selected IBSS not found in current scan results - try to scan */
  2499. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  2500. !ieee80211_sta_active_ibss(dev)) {
  2501. mod_timer(&ifsta->timer, jiffies +
  2502. IEEE80211_IBSS_MERGE_INTERVAL);
  2503. } else if (time_after(jiffies, local->last_scan_completed +
  2504. IEEE80211_SCAN_INTERVAL)) {
  2505. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  2506. "join\n", dev->name);
  2507. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  2508. ifsta->ssid_len);
  2509. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  2510. int interval = IEEE80211_SCAN_INTERVAL;
  2511. if (time_after(jiffies, ifsta->ibss_join_req +
  2512. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  2513. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  2514. local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)
  2515. return ieee80211_sta_create_ibss(dev, ifsta);
  2516. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  2517. printk(KERN_DEBUG "%s: IBSS not allowed on the"
  2518. " configured channel %d (%d MHz)\n",
  2519. dev->name, local->hw.conf.channel,
  2520. local->hw.conf.freq);
  2521. }
  2522. /* No IBSS found - decrease scan interval and continue
  2523. * scanning. */
  2524. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  2525. }
  2526. ifsta->state = IEEE80211_IBSS_SEARCH;
  2527. mod_timer(&ifsta->timer, jiffies + interval);
  2528. return 0;
  2529. }
  2530. return 0;
  2531. }
  2532. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  2533. {
  2534. struct ieee80211_sub_if_data *sdata;
  2535. struct ieee80211_if_sta *ifsta;
  2536. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2537. if (len > IEEE80211_MAX_SSID_LEN)
  2538. return -EINVAL;
  2539. /* TODO: This should always be done for IBSS, even if IEEE80211_QOS is
  2540. * not defined. */
  2541. if (local->ops->conf_tx) {
  2542. struct ieee80211_tx_queue_params qparam;
  2543. int i;
  2544. memset(&qparam, 0, sizeof(qparam));
  2545. /* TODO: are these ok defaults for all hw_modes? */
  2546. qparam.aifs = 2;
  2547. qparam.cw_min =
  2548. local->hw.conf.phymode == MODE_IEEE80211B ? 31 : 15;
  2549. qparam.cw_max = 1023;
  2550. qparam.burst_time = 0;
  2551. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  2552. {
  2553. local->ops->conf_tx(local_to_hw(local),
  2554. i + IEEE80211_TX_QUEUE_DATA0,
  2555. &qparam);
  2556. }
  2557. /* IBSS uses different parameters for Beacon sending */
  2558. qparam.cw_min++;
  2559. qparam.cw_min *= 2;
  2560. qparam.cw_min--;
  2561. local->ops->conf_tx(local_to_hw(local),
  2562. IEEE80211_TX_QUEUE_BEACON, &qparam);
  2563. }
  2564. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2565. ifsta = &sdata->u.sta;
  2566. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  2567. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  2568. memcpy(ifsta->ssid, ssid, len);
  2569. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  2570. ifsta->ssid_len = len;
  2571. if (len)
  2572. ifsta->flags |= IEEE80211_STA_SSID_SET;
  2573. else
  2574. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  2575. if (sdata->type == IEEE80211_IF_TYPE_IBSS &&
  2576. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  2577. ifsta->ibss_join_req = jiffies;
  2578. ifsta->state = IEEE80211_IBSS_SEARCH;
  2579. return ieee80211_sta_find_ibss(dev, ifsta);
  2580. }
  2581. return 0;
  2582. }
  2583. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  2584. {
  2585. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2586. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2587. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  2588. *len = ifsta->ssid_len;
  2589. return 0;
  2590. }
  2591. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  2592. {
  2593. struct ieee80211_sub_if_data *sdata;
  2594. struct ieee80211_if_sta *ifsta;
  2595. int res;
  2596. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2597. ifsta = &sdata->u.sta;
  2598. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  2599. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  2600. res = ieee80211_if_config(dev);
  2601. if (res) {
  2602. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  2603. "the low-level driver\n", dev->name);
  2604. return res;
  2605. }
  2606. }
  2607. if (is_valid_ether_addr(bssid))
  2608. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  2609. else
  2610. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  2611. return 0;
  2612. }
  2613. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  2614. struct ieee80211_sub_if_data *sdata,
  2615. int powersave)
  2616. {
  2617. struct sk_buff *skb;
  2618. struct ieee80211_hdr *nullfunc;
  2619. u16 fc;
  2620. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  2621. if (!skb) {
  2622. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  2623. "frame\n", sdata->dev->name);
  2624. return;
  2625. }
  2626. skb_reserve(skb, local->hw.extra_tx_headroom);
  2627. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  2628. memset(nullfunc, 0, 24);
  2629. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  2630. IEEE80211_FCTL_TODS;
  2631. if (powersave)
  2632. fc |= IEEE80211_FCTL_PM;
  2633. nullfunc->frame_control = cpu_to_le16(fc);
  2634. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  2635. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  2636. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  2637. ieee80211_sta_tx(sdata->dev, skb, 0);
  2638. }
  2639. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  2640. {
  2641. struct ieee80211_local *local = hw_to_local(hw);
  2642. struct net_device *dev = local->scan_dev;
  2643. struct ieee80211_sub_if_data *sdata;
  2644. union iwreq_data wrqu;
  2645. local->last_scan_completed = jiffies;
  2646. memset(&wrqu, 0, sizeof(wrqu));
  2647. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  2648. if (local->sta_hw_scanning) {
  2649. local->sta_hw_scanning = 0;
  2650. goto done;
  2651. }
  2652. local->sta_sw_scanning = 0;
  2653. if (ieee80211_hw_config(local))
  2654. printk(KERN_DEBUG "%s: failed to restore operational "
  2655. "channel after scan\n", dev->name);
  2656. netif_tx_lock_bh(local->mdev);
  2657. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  2658. local->ops->configure_filter(local_to_hw(local),
  2659. FIF_BCN_PRBRESP_PROMISC,
  2660. &local->filter_flags,
  2661. local->mdev->mc_count,
  2662. local->mdev->mc_list);
  2663. netif_tx_unlock_bh(local->mdev);
  2664. rcu_read_lock();
  2665. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  2666. /* No need to wake the master device. */
  2667. if (sdata->dev == local->mdev)
  2668. continue;
  2669. if (sdata->type == IEEE80211_IF_TYPE_STA) {
  2670. if (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  2671. ieee80211_send_nullfunc(local, sdata, 0);
  2672. ieee80211_sta_timer((unsigned long)sdata);
  2673. }
  2674. netif_wake_queue(sdata->dev);
  2675. }
  2676. rcu_read_unlock();
  2677. done:
  2678. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2679. if (sdata->type == IEEE80211_IF_TYPE_IBSS) {
  2680. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2681. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  2682. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  2683. !ieee80211_sta_active_ibss(dev)))
  2684. ieee80211_sta_find_ibss(dev, ifsta);
  2685. }
  2686. }
  2687. EXPORT_SYMBOL(ieee80211_scan_completed);
  2688. void ieee80211_sta_scan_work(struct work_struct *work)
  2689. {
  2690. struct ieee80211_local *local =
  2691. container_of(work, struct ieee80211_local, scan_work.work);
  2692. struct net_device *dev = local->scan_dev;
  2693. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2694. struct ieee80211_hw_mode *mode;
  2695. struct ieee80211_channel *chan;
  2696. int skip;
  2697. unsigned long next_delay = 0;
  2698. if (!local->sta_sw_scanning)
  2699. return;
  2700. switch (local->scan_state) {
  2701. case SCAN_SET_CHANNEL:
  2702. mode = local->scan_hw_mode;
  2703. if (local->scan_hw_mode->list.next == &local->modes_list &&
  2704. local->scan_channel_idx >= mode->num_channels) {
  2705. ieee80211_scan_completed(local_to_hw(local));
  2706. return;
  2707. }
  2708. skip = !(local->enabled_modes & (1 << mode->mode));
  2709. chan = &mode->channels[local->scan_channel_idx];
  2710. if (!(chan->flag & IEEE80211_CHAN_W_SCAN) ||
  2711. (sdata->type == IEEE80211_IF_TYPE_IBSS &&
  2712. !(chan->flag & IEEE80211_CHAN_W_IBSS)) ||
  2713. (local->hw_modes & local->enabled_modes &
  2714. (1 << MODE_IEEE80211G) && mode->mode == MODE_IEEE80211B))
  2715. skip = 1;
  2716. if (!skip) {
  2717. #if 0
  2718. printk(KERN_DEBUG "%s: scan channel %d (%d MHz)\n",
  2719. dev->name, chan->chan, chan->freq);
  2720. #endif
  2721. local->scan_channel = chan;
  2722. if (ieee80211_hw_config(local)) {
  2723. printk(KERN_DEBUG "%s: failed to set channel "
  2724. "%d (%d MHz) for scan\n", dev->name,
  2725. chan->chan, chan->freq);
  2726. skip = 1;
  2727. }
  2728. }
  2729. local->scan_channel_idx++;
  2730. if (local->scan_channel_idx >= local->scan_hw_mode->num_channels) {
  2731. if (local->scan_hw_mode->list.next != &local->modes_list) {
  2732. local->scan_hw_mode = list_entry(local->scan_hw_mode->list.next,
  2733. struct ieee80211_hw_mode,
  2734. list);
  2735. local->scan_channel_idx = 0;
  2736. }
  2737. }
  2738. if (skip)
  2739. break;
  2740. next_delay = IEEE80211_PROBE_DELAY +
  2741. usecs_to_jiffies(local->hw.channel_change_time);
  2742. local->scan_state = SCAN_SEND_PROBE;
  2743. break;
  2744. case SCAN_SEND_PROBE:
  2745. if (local->scan_channel->flag & IEEE80211_CHAN_W_ACTIVE_SCAN) {
  2746. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  2747. local->scan_ssid_len);
  2748. next_delay = IEEE80211_CHANNEL_TIME;
  2749. } else
  2750. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  2751. local->scan_state = SCAN_SET_CHANNEL;
  2752. break;
  2753. }
  2754. if (local->sta_sw_scanning)
  2755. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  2756. next_delay);
  2757. }
  2758. static int ieee80211_sta_start_scan(struct net_device *dev,
  2759. u8 *ssid, size_t ssid_len)
  2760. {
  2761. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2762. struct ieee80211_sub_if_data *sdata;
  2763. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  2764. return -EINVAL;
  2765. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  2766. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  2767. * BSSID: MACAddress
  2768. * SSID
  2769. * ScanType: ACTIVE, PASSIVE
  2770. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  2771. * a Probe frame during active scanning
  2772. * ChannelList
  2773. * MinChannelTime (>= ProbeDelay), in TU
  2774. * MaxChannelTime: (>= MinChannelTime), in TU
  2775. */
  2776. /* MLME-SCAN.confirm
  2777. * BSSDescriptionSet
  2778. * ResultCode: SUCCESS, INVALID_PARAMETERS
  2779. */
  2780. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  2781. if (local->scan_dev == dev)
  2782. return 0;
  2783. return -EBUSY;
  2784. }
  2785. if (local->ops->hw_scan) {
  2786. int rc = local->ops->hw_scan(local_to_hw(local),
  2787. ssid, ssid_len);
  2788. if (!rc) {
  2789. local->sta_hw_scanning = 1;
  2790. local->scan_dev = dev;
  2791. }
  2792. return rc;
  2793. }
  2794. local->sta_sw_scanning = 1;
  2795. rcu_read_lock();
  2796. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  2797. /* Don't stop the master interface, otherwise we can't transmit
  2798. * probes! */
  2799. if (sdata->dev == local->mdev)
  2800. continue;
  2801. netif_stop_queue(sdata->dev);
  2802. if (sdata->type == IEEE80211_IF_TYPE_STA &&
  2803. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  2804. ieee80211_send_nullfunc(local, sdata, 1);
  2805. }
  2806. rcu_read_unlock();
  2807. if (ssid) {
  2808. local->scan_ssid_len = ssid_len;
  2809. memcpy(local->scan_ssid, ssid, ssid_len);
  2810. } else
  2811. local->scan_ssid_len = 0;
  2812. local->scan_state = SCAN_SET_CHANNEL;
  2813. local->scan_hw_mode = list_entry(local->modes_list.next,
  2814. struct ieee80211_hw_mode,
  2815. list);
  2816. local->scan_channel_idx = 0;
  2817. local->scan_dev = dev;
  2818. netif_tx_lock_bh(local->mdev);
  2819. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  2820. local->ops->configure_filter(local_to_hw(local),
  2821. FIF_BCN_PRBRESP_PROMISC,
  2822. &local->filter_flags,
  2823. local->mdev->mc_count,
  2824. local->mdev->mc_list);
  2825. netif_tx_unlock_bh(local->mdev);
  2826. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  2827. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  2828. IEEE80211_CHANNEL_TIME);
  2829. return 0;
  2830. }
  2831. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  2832. {
  2833. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2834. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2835. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2836. if (sdata->type != IEEE80211_IF_TYPE_STA)
  2837. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  2838. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  2839. if (local->scan_dev == dev)
  2840. return 0;
  2841. return -EBUSY;
  2842. }
  2843. ifsta->scan_ssid_len = ssid_len;
  2844. if (ssid_len)
  2845. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  2846. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  2847. queue_work(local->hw.workqueue, &ifsta->work);
  2848. return 0;
  2849. }
  2850. static char *
  2851. ieee80211_sta_scan_result(struct net_device *dev,
  2852. struct ieee80211_sta_bss *bss,
  2853. char *current_ev, char *end_buf)
  2854. {
  2855. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2856. struct iw_event iwe;
  2857. if (time_after(jiffies,
  2858. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  2859. return current_ev;
  2860. if (!(local->enabled_modes & (1 << bss->hw_mode)))
  2861. return current_ev;
  2862. memset(&iwe, 0, sizeof(iwe));
  2863. iwe.cmd = SIOCGIWAP;
  2864. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  2865. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  2866. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2867. IW_EV_ADDR_LEN);
  2868. memset(&iwe, 0, sizeof(iwe));
  2869. iwe.cmd = SIOCGIWESSID;
  2870. iwe.u.data.length = bss->ssid_len;
  2871. iwe.u.data.flags = 1;
  2872. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2873. bss->ssid);
  2874. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)) {
  2875. memset(&iwe, 0, sizeof(iwe));
  2876. iwe.cmd = SIOCGIWMODE;
  2877. if (bss->capability & WLAN_CAPABILITY_ESS)
  2878. iwe.u.mode = IW_MODE_MASTER;
  2879. else
  2880. iwe.u.mode = IW_MODE_ADHOC;
  2881. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2882. IW_EV_UINT_LEN);
  2883. }
  2884. memset(&iwe, 0, sizeof(iwe));
  2885. iwe.cmd = SIOCGIWFREQ;
  2886. iwe.u.freq.m = bss->channel;
  2887. iwe.u.freq.e = 0;
  2888. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2889. IW_EV_FREQ_LEN);
  2890. iwe.u.freq.m = bss->freq * 100000;
  2891. iwe.u.freq.e = 1;
  2892. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2893. IW_EV_FREQ_LEN);
  2894. memset(&iwe, 0, sizeof(iwe));
  2895. iwe.cmd = IWEVQUAL;
  2896. iwe.u.qual.qual = bss->signal;
  2897. iwe.u.qual.level = bss->rssi;
  2898. iwe.u.qual.noise = bss->noise;
  2899. iwe.u.qual.updated = local->wstats_flags;
  2900. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  2901. IW_EV_QUAL_LEN);
  2902. memset(&iwe, 0, sizeof(iwe));
  2903. iwe.cmd = SIOCGIWENCODE;
  2904. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  2905. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  2906. else
  2907. iwe.u.data.flags = IW_ENCODE_DISABLED;
  2908. iwe.u.data.length = 0;
  2909. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  2910. if (bss && bss->wpa_ie) {
  2911. memset(&iwe, 0, sizeof(iwe));
  2912. iwe.cmd = IWEVGENIE;
  2913. iwe.u.data.length = bss->wpa_ie_len;
  2914. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2915. bss->wpa_ie);
  2916. }
  2917. if (bss && bss->rsn_ie) {
  2918. memset(&iwe, 0, sizeof(iwe));
  2919. iwe.cmd = IWEVGENIE;
  2920. iwe.u.data.length = bss->rsn_ie_len;
  2921. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  2922. bss->rsn_ie);
  2923. }
  2924. if (bss && bss->supp_rates_len > 0) {
  2925. /* display all supported rates in readable format */
  2926. char *p = current_ev + IW_EV_LCP_LEN;
  2927. int i;
  2928. memset(&iwe, 0, sizeof(iwe));
  2929. iwe.cmd = SIOCGIWRATE;
  2930. /* Those two flags are ignored... */
  2931. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  2932. for (i = 0; i < bss->supp_rates_len; i++) {
  2933. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  2934. 0x7f) * 500000);
  2935. p = iwe_stream_add_value(current_ev, p,
  2936. end_buf, &iwe, IW_EV_PARAM_LEN);
  2937. }
  2938. current_ev = p;
  2939. }
  2940. if (bss) {
  2941. char *buf;
  2942. buf = kmalloc(30, GFP_ATOMIC);
  2943. if (buf) {
  2944. memset(&iwe, 0, sizeof(iwe));
  2945. iwe.cmd = IWEVCUSTOM;
  2946. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  2947. iwe.u.data.length = strlen(buf);
  2948. current_ev = iwe_stream_add_point(current_ev, end_buf,
  2949. &iwe, buf);
  2950. kfree(buf);
  2951. }
  2952. }
  2953. return current_ev;
  2954. }
  2955. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  2956. {
  2957. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2958. char *current_ev = buf;
  2959. char *end_buf = buf + len;
  2960. struct ieee80211_sta_bss *bss;
  2961. spin_lock_bh(&local->sta_bss_lock);
  2962. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2963. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  2964. spin_unlock_bh(&local->sta_bss_lock);
  2965. return -E2BIG;
  2966. }
  2967. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  2968. end_buf);
  2969. }
  2970. spin_unlock_bh(&local->sta_bss_lock);
  2971. return current_ev - buf;
  2972. }
  2973. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  2974. {
  2975. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2976. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2977. kfree(ifsta->extra_ie);
  2978. if (len == 0) {
  2979. ifsta->extra_ie = NULL;
  2980. ifsta->extra_ie_len = 0;
  2981. return 0;
  2982. }
  2983. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  2984. if (!ifsta->extra_ie) {
  2985. ifsta->extra_ie_len = 0;
  2986. return -ENOMEM;
  2987. }
  2988. memcpy(ifsta->extra_ie, ie, len);
  2989. ifsta->extra_ie_len = len;
  2990. return 0;
  2991. }
  2992. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  2993. struct sk_buff *skb, u8 *bssid,
  2994. u8 *addr)
  2995. {
  2996. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2997. struct sta_info *sta;
  2998. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2999. DECLARE_MAC_BUF(mac);
  3000. /* TODO: Could consider removing the least recently used entry and
  3001. * allow new one to be added. */
  3002. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3003. if (net_ratelimit()) {
  3004. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3005. "entry %s\n", dev->name, print_mac(mac, addr));
  3006. }
  3007. return NULL;
  3008. }
  3009. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3010. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3011. sta = sta_info_add(local, dev, addr, GFP_ATOMIC);
  3012. if (!sta)
  3013. return NULL;
  3014. sta->supp_rates = sdata->u.sta.supp_rates_bits;
  3015. rate_control_rate_init(sta, local);
  3016. return sta; /* caller will call sta_info_put() */
  3017. }
  3018. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3019. {
  3020. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3021. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3022. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3023. dev->name, reason);
  3024. if (sdata->type != IEEE80211_IF_TYPE_STA &&
  3025. sdata->type != IEEE80211_IF_TYPE_IBSS)
  3026. return -EINVAL;
  3027. ieee80211_send_deauth(dev, ifsta, reason);
  3028. ieee80211_set_disassoc(dev, ifsta, 1);
  3029. return 0;
  3030. }
  3031. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3032. {
  3033. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3034. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3035. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3036. dev->name, reason);
  3037. if (sdata->type != IEEE80211_IF_TYPE_STA)
  3038. return -EINVAL;
  3039. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3040. return -1;
  3041. ieee80211_send_disassoc(dev, ifsta, reason);
  3042. ieee80211_set_disassoc(dev, ifsta, 0);
  3043. return 0;
  3044. }