pageattr.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780
  1. /*
  2. * Copyright 2002 Andi Kleen, SuSE Labs.
  3. * Thanks to Ben LaHaise for precious feedback.
  4. */
  5. #include <linux/highmem.h>
  6. #include <linux/bootmem.h>
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <asm/e820.h>
  12. #include <asm/processor.h>
  13. #include <asm/tlbflush.h>
  14. #include <asm/sections.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/pgalloc.h>
  17. struct cpa_data {
  18. unsigned long vaddr;
  19. pgprot_t mask_set;
  20. pgprot_t mask_clr;
  21. int numpages;
  22. int flushtlb;
  23. };
  24. enum {
  25. CPA_NO_SPLIT = 0,
  26. CPA_SPLIT,
  27. };
  28. static inline int
  29. within(unsigned long addr, unsigned long start, unsigned long end)
  30. {
  31. return addr >= start && addr < end;
  32. }
  33. /*
  34. * Flushing functions
  35. */
  36. /**
  37. * clflush_cache_range - flush a cache range with clflush
  38. * @addr: virtual start address
  39. * @size: number of bytes to flush
  40. *
  41. * clflush is an unordered instruction which needs fencing with mfence
  42. * to avoid ordering issues.
  43. */
  44. void clflush_cache_range(void *vaddr, unsigned int size)
  45. {
  46. void *vend = vaddr + size - 1;
  47. mb();
  48. for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
  49. clflush(vaddr);
  50. /*
  51. * Flush any possible final partial cacheline:
  52. */
  53. clflush(vend);
  54. mb();
  55. }
  56. static void __cpa_flush_all(void *arg)
  57. {
  58. unsigned long cache = (unsigned long)arg;
  59. /*
  60. * Flush all to work around Errata in early athlons regarding
  61. * large page flushing.
  62. */
  63. __flush_tlb_all();
  64. if (cache && boot_cpu_data.x86_model >= 4)
  65. wbinvd();
  66. }
  67. static void cpa_flush_all(unsigned long cache)
  68. {
  69. BUG_ON(irqs_disabled());
  70. on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
  71. }
  72. static void __cpa_flush_range(void *arg)
  73. {
  74. /*
  75. * We could optimize that further and do individual per page
  76. * tlb invalidates for a low number of pages. Caveat: we must
  77. * flush the high aliases on 64bit as well.
  78. */
  79. __flush_tlb_all();
  80. }
  81. static void cpa_flush_range(unsigned long start, int numpages, int cache)
  82. {
  83. unsigned int i, level;
  84. unsigned long addr;
  85. BUG_ON(irqs_disabled());
  86. WARN_ON(PAGE_ALIGN(start) != start);
  87. on_each_cpu(__cpa_flush_range, NULL, 1, 1);
  88. if (!cache)
  89. return;
  90. /*
  91. * We only need to flush on one CPU,
  92. * clflush is a MESI-coherent instruction that
  93. * will cause all other CPUs to flush the same
  94. * cachelines:
  95. */
  96. for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
  97. pte_t *pte = lookup_address(addr, &level);
  98. /*
  99. * Only flush present addresses:
  100. */
  101. if (pte && pte_present(*pte))
  102. clflush_cache_range((void *) addr, PAGE_SIZE);
  103. }
  104. }
  105. #define HIGH_MAP_START __START_KERNEL_map
  106. #define HIGH_MAP_END (__START_KERNEL_map + KERNEL_TEXT_SIZE)
  107. /*
  108. * Converts a virtual address to a X86-64 highmap address
  109. */
  110. static unsigned long virt_to_highmap(void *address)
  111. {
  112. #ifdef CONFIG_X86_64
  113. return __pa((unsigned long)address) + HIGH_MAP_START - phys_base;
  114. #else
  115. return (unsigned long)address;
  116. #endif
  117. }
  118. /*
  119. * Certain areas of memory on x86 require very specific protection flags,
  120. * for example the BIOS area or kernel text. Callers don't always get this
  121. * right (again, ioremap() on BIOS memory is not uncommon) so this function
  122. * checks and fixes these known static required protection bits.
  123. */
  124. static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
  125. {
  126. pgprot_t forbidden = __pgprot(0);
  127. /*
  128. * The BIOS area between 640k and 1Mb needs to be executable for
  129. * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
  130. */
  131. if (within(__pa(address), BIOS_BEGIN, BIOS_END))
  132. pgprot_val(forbidden) |= _PAGE_NX;
  133. /*
  134. * The kernel text needs to be executable for obvious reasons
  135. * Does not cover __inittext since that is gone later on
  136. */
  137. if (within(address, (unsigned long)_text, (unsigned long)_etext))
  138. pgprot_val(forbidden) |= _PAGE_NX;
  139. /*
  140. * Do the same for the x86-64 high kernel mapping
  141. */
  142. if (within(address, virt_to_highmap(_text), virt_to_highmap(_etext)))
  143. pgprot_val(forbidden) |= _PAGE_NX;
  144. #ifdef CONFIG_DEBUG_RODATA
  145. /* The .rodata section needs to be read-only */
  146. if (within(address, (unsigned long)__start_rodata,
  147. (unsigned long)__end_rodata))
  148. pgprot_val(forbidden) |= _PAGE_RW;
  149. /*
  150. * Do the same for the x86-64 high kernel mapping
  151. */
  152. if (within(address, virt_to_highmap(__start_rodata),
  153. virt_to_highmap(__end_rodata)))
  154. pgprot_val(forbidden) |= _PAGE_RW;
  155. #endif
  156. prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
  157. return prot;
  158. }
  159. /*
  160. * Lookup the page table entry for a virtual address. Return a pointer
  161. * to the entry and the level of the mapping.
  162. *
  163. * Note: We return pud and pmd either when the entry is marked large
  164. * or when the present bit is not set. Otherwise we would return a
  165. * pointer to a nonexisting mapping.
  166. */
  167. pte_t *lookup_address(unsigned long address, int *level)
  168. {
  169. pgd_t *pgd = pgd_offset_k(address);
  170. pud_t *pud;
  171. pmd_t *pmd;
  172. *level = PG_LEVEL_NONE;
  173. if (pgd_none(*pgd))
  174. return NULL;
  175. pud = pud_offset(pgd, address);
  176. if (pud_none(*pud))
  177. return NULL;
  178. pmd = pmd_offset(pud, address);
  179. if (pmd_none(*pmd))
  180. return NULL;
  181. *level = PG_LEVEL_2M;
  182. if (pmd_large(*pmd) || !pmd_present(*pmd))
  183. return (pte_t *)pmd;
  184. *level = PG_LEVEL_4K;
  185. return pte_offset_kernel(pmd, address);
  186. }
  187. static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
  188. {
  189. /* change init_mm */
  190. set_pte_atomic(kpte, pte);
  191. #ifdef CONFIG_X86_32
  192. if (!SHARED_KERNEL_PMD) {
  193. struct page *page;
  194. list_for_each_entry(page, &pgd_list, lru) {
  195. pgd_t *pgd;
  196. pud_t *pud;
  197. pmd_t *pmd;
  198. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  199. pud = pud_offset(pgd, address);
  200. pmd = pmd_offset(pud, address);
  201. set_pte_atomic((pte_t *)pmd, pte);
  202. }
  203. }
  204. #endif
  205. }
  206. static int try_preserve_large_page(pte_t *kpte, unsigned long address,
  207. struct cpa_data *cpa)
  208. {
  209. unsigned long nextpage_addr, numpages, pmask, psize, flags;
  210. pte_t new_pte, old_pte, *tmp;
  211. pgprot_t old_prot, new_prot;
  212. int level, res = CPA_SPLIT;
  213. /*
  214. * An Athlon 64 X2 showed hard hangs if we tried to preserve
  215. * largepages and changed the PSE entry from RW to RO.
  216. *
  217. * As AMD CPUs have a long series of erratas in this area,
  218. * (and none of the known ones seem to explain this hang),
  219. * disable this code until the hang can be debugged:
  220. */
  221. if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
  222. return res;
  223. spin_lock_irqsave(&pgd_lock, flags);
  224. /*
  225. * Check for races, another CPU might have split this page
  226. * up already:
  227. */
  228. tmp = lookup_address(address, &level);
  229. if (tmp != kpte)
  230. goto out_unlock;
  231. switch (level) {
  232. case PG_LEVEL_2M:
  233. psize = PMD_PAGE_SIZE;
  234. pmask = PMD_PAGE_MASK;
  235. break;
  236. case PG_LEVEL_1G:
  237. default:
  238. res = -EINVAL;
  239. goto out_unlock;
  240. }
  241. /*
  242. * Calculate the number of pages, which fit into this large
  243. * page starting at address:
  244. */
  245. nextpage_addr = (address + psize) & pmask;
  246. numpages = (nextpage_addr - address) >> PAGE_SHIFT;
  247. if (numpages < cpa->numpages)
  248. cpa->numpages = numpages;
  249. /*
  250. * We are safe now. Check whether the new pgprot is the same:
  251. */
  252. old_pte = *kpte;
  253. old_prot = new_prot = pte_pgprot(old_pte);
  254. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  255. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  256. new_prot = static_protections(new_prot, address);
  257. /*
  258. * If there are no changes, return. maxpages has been updated
  259. * above:
  260. */
  261. if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
  262. res = CPA_NO_SPLIT;
  263. goto out_unlock;
  264. }
  265. /*
  266. * We need to change the attributes. Check, whether we can
  267. * change the large page in one go. We request a split, when
  268. * the address is not aligned and the number of pages is
  269. * smaller than the number of pages in the large page. Note
  270. * that we limited the number of possible pages already to
  271. * the number of pages in the large page.
  272. */
  273. if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
  274. /*
  275. * The address is aligned and the number of pages
  276. * covers the full page.
  277. */
  278. new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
  279. __set_pmd_pte(kpte, address, new_pte);
  280. cpa->flushtlb = 1;
  281. res = CPA_NO_SPLIT;
  282. }
  283. out_unlock:
  284. spin_unlock_irqrestore(&pgd_lock, flags);
  285. return res;
  286. }
  287. static int split_large_page(pte_t *kpte, unsigned long address)
  288. {
  289. pgprot_t ref_prot;
  290. gfp_t gfp_flags = GFP_KERNEL;
  291. unsigned long flags, addr, pfn;
  292. pte_t *pbase, *tmp;
  293. struct page *base;
  294. unsigned int i, level;
  295. #ifdef CONFIG_DEBUG_PAGEALLOC
  296. gfp_flags = GFP_ATOMIC | __GFP_NOWARN;
  297. #endif
  298. base = alloc_pages(gfp_flags, 0);
  299. if (!base)
  300. return -ENOMEM;
  301. spin_lock_irqsave(&pgd_lock, flags);
  302. /*
  303. * Check for races, another CPU might have split this page
  304. * up for us already:
  305. */
  306. tmp = lookup_address(address, &level);
  307. if (tmp != kpte) {
  308. WARN_ON_ONCE(1);
  309. goto out_unlock;
  310. }
  311. address = __pa(address);
  312. addr = address & PMD_PAGE_MASK;
  313. pbase = (pte_t *)page_address(base);
  314. #ifdef CONFIG_X86_32
  315. paravirt_alloc_pt(&init_mm, page_to_pfn(base));
  316. #endif
  317. ref_prot = pte_pgprot(pte_clrhuge(*kpte));
  318. /*
  319. * Get the target pfn from the original entry:
  320. */
  321. pfn = pte_pfn(*kpte);
  322. for (i = 0; i < PTRS_PER_PTE; i++, pfn++)
  323. set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
  324. /*
  325. * Install the new, split up pagetable. Important details here:
  326. *
  327. * On Intel the NX bit of all levels must be cleared to make a
  328. * page executable. See section 4.13.2 of Intel 64 and IA-32
  329. * Architectures Software Developer's Manual).
  330. *
  331. * Mark the entry present. The current mapping might be
  332. * set to not present, which we preserved above.
  333. */
  334. ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
  335. pgprot_val(ref_prot) |= _PAGE_PRESENT;
  336. __set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
  337. base = NULL;
  338. out_unlock:
  339. spin_unlock_irqrestore(&pgd_lock, flags);
  340. if (base)
  341. __free_pages(base, 0);
  342. return 0;
  343. }
  344. static int __change_page_attr(unsigned long address, struct cpa_data *cpa)
  345. {
  346. struct page *kpte_page;
  347. int level, res;
  348. pte_t *kpte;
  349. repeat:
  350. kpte = lookup_address(address, &level);
  351. if (!kpte)
  352. return -EINVAL;
  353. kpte_page = virt_to_page(kpte);
  354. BUG_ON(PageLRU(kpte_page));
  355. BUG_ON(PageCompound(kpte_page));
  356. if (level == PG_LEVEL_4K) {
  357. pte_t new_pte, old_pte = *kpte;
  358. pgprot_t new_prot = pte_pgprot(old_pte);
  359. if(!pte_val(old_pte)) {
  360. printk(KERN_WARNING "CPA: called for zero pte. "
  361. "vaddr = %lx cpa->vaddr = %lx\n", address,
  362. cpa->vaddr);
  363. WARN_ON(1);
  364. return -EINVAL;
  365. }
  366. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  367. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  368. new_prot = static_protections(new_prot, address);
  369. /*
  370. * We need to keep the pfn from the existing PTE,
  371. * after all we're only going to change it's attributes
  372. * not the memory it points to
  373. */
  374. new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
  375. /*
  376. * Do we really change anything ?
  377. */
  378. if (pte_val(old_pte) != pte_val(new_pte)) {
  379. set_pte_atomic(kpte, new_pte);
  380. cpa->flushtlb = 1;
  381. }
  382. cpa->numpages = 1;
  383. return 0;
  384. }
  385. /*
  386. * Check, whether we can keep the large page intact
  387. * and just change the pte:
  388. */
  389. res = try_preserve_large_page(kpte, address, cpa);
  390. if (res < 0)
  391. return res;
  392. /*
  393. * When the range fits into the existing large page,
  394. * return. cp->numpages and cpa->tlbflush have been updated in
  395. * try_large_page:
  396. */
  397. if (res == CPA_NO_SPLIT)
  398. return 0;
  399. /*
  400. * We have to split the large page:
  401. */
  402. res = split_large_page(kpte, address);
  403. if (res)
  404. return res;
  405. cpa->flushtlb = 1;
  406. goto repeat;
  407. }
  408. /**
  409. * change_page_attr_addr - Change page table attributes in linear mapping
  410. * @address: Virtual address in linear mapping.
  411. * @prot: New page table attribute (PAGE_*)
  412. *
  413. * Change page attributes of a page in the direct mapping. This is a variant
  414. * of change_page_attr() that also works on memory holes that do not have
  415. * mem_map entry (pfn_valid() is false).
  416. *
  417. * See change_page_attr() documentation for more details.
  418. *
  419. * Modules and drivers should use the set_memory_* APIs instead.
  420. */
  421. static int change_page_attr_addr(struct cpa_data *cpa)
  422. {
  423. int err;
  424. unsigned long address = cpa->vaddr;
  425. #ifdef CONFIG_X86_64
  426. unsigned long phys_addr = __pa(address);
  427. /*
  428. * If we are inside the high mapped kernel range, then we
  429. * fixup the low mapping first. __va() returns the virtual
  430. * address in the linear mapping:
  431. */
  432. if (within(address, HIGH_MAP_START, HIGH_MAP_END))
  433. address = (unsigned long) __va(phys_addr);
  434. #endif
  435. err = __change_page_attr(address, cpa);
  436. if (err)
  437. return err;
  438. #ifdef CONFIG_X86_64
  439. /*
  440. * If the physical address is inside the kernel map, we need
  441. * to touch the high mapped kernel as well:
  442. */
  443. if (within(phys_addr, 0, KERNEL_TEXT_SIZE)) {
  444. /*
  445. * Calc the high mapping address. See __phys_addr()
  446. * for the non obvious details.
  447. *
  448. * Note that NX and other required permissions are
  449. * checked in static_protections().
  450. */
  451. address = phys_addr + HIGH_MAP_START - phys_base;
  452. /*
  453. * Our high aliases are imprecise, because we check
  454. * everything between 0 and KERNEL_TEXT_SIZE, so do
  455. * not propagate lookup failures back to users:
  456. */
  457. __change_page_attr(address, cpa);
  458. }
  459. #endif
  460. return err;
  461. }
  462. static int __change_page_attr_set_clr(struct cpa_data *cpa)
  463. {
  464. int ret, numpages = cpa->numpages;
  465. while (numpages) {
  466. /*
  467. * Store the remaining nr of pages for the large page
  468. * preservation check.
  469. */
  470. cpa->numpages = numpages;
  471. ret = change_page_attr_addr(cpa);
  472. if (ret)
  473. return ret;
  474. /*
  475. * Adjust the number of pages with the result of the
  476. * CPA operation. Either a large page has been
  477. * preserved or a single page update happened.
  478. */
  479. BUG_ON(cpa->numpages > numpages);
  480. numpages -= cpa->numpages;
  481. cpa->vaddr += cpa->numpages * PAGE_SIZE;
  482. }
  483. return 0;
  484. }
  485. static inline int cache_attr(pgprot_t attr)
  486. {
  487. return pgprot_val(attr) &
  488. (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
  489. }
  490. static int change_page_attr_set_clr(unsigned long addr, int numpages,
  491. pgprot_t mask_set, pgprot_t mask_clr)
  492. {
  493. struct cpa_data cpa;
  494. int ret, cache;
  495. /*
  496. * Check, if we are requested to change a not supported
  497. * feature:
  498. */
  499. mask_set = canon_pgprot(mask_set);
  500. mask_clr = canon_pgprot(mask_clr);
  501. if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
  502. return 0;
  503. cpa.vaddr = addr;
  504. cpa.numpages = numpages;
  505. cpa.mask_set = mask_set;
  506. cpa.mask_clr = mask_clr;
  507. cpa.flushtlb = 0;
  508. ret = __change_page_attr_set_clr(&cpa);
  509. /*
  510. * Check whether we really changed something:
  511. */
  512. if (!cpa.flushtlb)
  513. return ret;
  514. /*
  515. * No need to flush, when we did not set any of the caching
  516. * attributes:
  517. */
  518. cache = cache_attr(mask_set);
  519. /*
  520. * On success we use clflush, when the CPU supports it to
  521. * avoid the wbindv. If the CPU does not support it and in the
  522. * error case we fall back to cpa_flush_all (which uses
  523. * wbindv):
  524. */
  525. if (!ret && cpu_has_clflush)
  526. cpa_flush_range(addr, numpages, cache);
  527. else
  528. cpa_flush_all(cache);
  529. return ret;
  530. }
  531. static inline int change_page_attr_set(unsigned long addr, int numpages,
  532. pgprot_t mask)
  533. {
  534. return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
  535. }
  536. static inline int change_page_attr_clear(unsigned long addr, int numpages,
  537. pgprot_t mask)
  538. {
  539. return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
  540. }
  541. int set_memory_uc(unsigned long addr, int numpages)
  542. {
  543. return change_page_attr_set(addr, numpages,
  544. __pgprot(_PAGE_PCD | _PAGE_PWT));
  545. }
  546. EXPORT_SYMBOL(set_memory_uc);
  547. int set_memory_wb(unsigned long addr, int numpages)
  548. {
  549. return change_page_attr_clear(addr, numpages,
  550. __pgprot(_PAGE_PCD | _PAGE_PWT));
  551. }
  552. EXPORT_SYMBOL(set_memory_wb);
  553. int set_memory_x(unsigned long addr, int numpages)
  554. {
  555. return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
  556. }
  557. EXPORT_SYMBOL(set_memory_x);
  558. int set_memory_nx(unsigned long addr, int numpages)
  559. {
  560. return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
  561. }
  562. EXPORT_SYMBOL(set_memory_nx);
  563. int set_memory_ro(unsigned long addr, int numpages)
  564. {
  565. return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
  566. }
  567. int set_memory_rw(unsigned long addr, int numpages)
  568. {
  569. return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
  570. }
  571. int set_memory_np(unsigned long addr, int numpages)
  572. {
  573. return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
  574. }
  575. int set_pages_uc(struct page *page, int numpages)
  576. {
  577. unsigned long addr = (unsigned long)page_address(page);
  578. return set_memory_uc(addr, numpages);
  579. }
  580. EXPORT_SYMBOL(set_pages_uc);
  581. int set_pages_wb(struct page *page, int numpages)
  582. {
  583. unsigned long addr = (unsigned long)page_address(page);
  584. return set_memory_wb(addr, numpages);
  585. }
  586. EXPORT_SYMBOL(set_pages_wb);
  587. int set_pages_x(struct page *page, int numpages)
  588. {
  589. unsigned long addr = (unsigned long)page_address(page);
  590. return set_memory_x(addr, numpages);
  591. }
  592. EXPORT_SYMBOL(set_pages_x);
  593. int set_pages_nx(struct page *page, int numpages)
  594. {
  595. unsigned long addr = (unsigned long)page_address(page);
  596. return set_memory_nx(addr, numpages);
  597. }
  598. EXPORT_SYMBOL(set_pages_nx);
  599. int set_pages_ro(struct page *page, int numpages)
  600. {
  601. unsigned long addr = (unsigned long)page_address(page);
  602. return set_memory_ro(addr, numpages);
  603. }
  604. int set_pages_rw(struct page *page, int numpages)
  605. {
  606. unsigned long addr = (unsigned long)page_address(page);
  607. return set_memory_rw(addr, numpages);
  608. }
  609. #ifdef CONFIG_DEBUG_PAGEALLOC
  610. static int __set_pages_p(struct page *page, int numpages)
  611. {
  612. struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
  613. .numpages = numpages,
  614. .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  615. .mask_clr = __pgprot(0)};
  616. return __change_page_attr_set_clr(&cpa);
  617. }
  618. static int __set_pages_np(struct page *page, int numpages)
  619. {
  620. struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
  621. .numpages = numpages,
  622. .mask_set = __pgprot(0),
  623. .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
  624. return __change_page_attr_set_clr(&cpa);
  625. }
  626. void kernel_map_pages(struct page *page, int numpages, int enable)
  627. {
  628. if (PageHighMem(page))
  629. return;
  630. if (!enable) {
  631. debug_check_no_locks_freed(page_address(page),
  632. numpages * PAGE_SIZE);
  633. }
  634. /*
  635. * If page allocator is not up yet then do not call c_p_a():
  636. */
  637. if (!debug_pagealloc_enabled)
  638. return;
  639. /*
  640. * The return value is ignored - the calls cannot fail,
  641. * large pages are disabled at boot time:
  642. */
  643. if (enable)
  644. __set_pages_p(page, numpages);
  645. else
  646. __set_pages_np(page, numpages);
  647. /*
  648. * We should perform an IPI and flush all tlbs,
  649. * but that can deadlock->flush only current cpu:
  650. */
  651. __flush_tlb_all();
  652. }
  653. #endif
  654. /*
  655. * The testcases use internal knowledge of the implementation that shouldn't
  656. * be exposed to the rest of the kernel. Include these directly here.
  657. */
  658. #ifdef CONFIG_CPA_DEBUG
  659. #include "pageattr-test.c"
  660. #endif