myri_sbus.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. /* myri_sbus.c: MyriCOM MyriNET SBUS card driver.
  2. *
  3. * Copyright (C) 1996, 1999, 2006 David S. Miller (davem@davemloft.net)
  4. */
  5. static char version[] =
  6. "myri_sbus.c:v2.0 June 23, 2006 David S. Miller (davem@davemloft.net)\n";
  7. #include <linux/module.h>
  8. #include <linux/errno.h>
  9. #include <linux/kernel.h>
  10. #include <linux/types.h>
  11. #include <linux/fcntl.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/ioport.h>
  14. #include <linux/in.h>
  15. #include <linux/slab.h>
  16. #include <linux/string.h>
  17. #include <linux/delay.h>
  18. #include <linux/init.h>
  19. #include <linux/netdevice.h>
  20. #include <linux/etherdevice.h>
  21. #include <linux/skbuff.h>
  22. #include <linux/bitops.h>
  23. #include <net/dst.h>
  24. #include <net/arp.h>
  25. #include <net/sock.h>
  26. #include <net/ipv6.h>
  27. #include <asm/system.h>
  28. #include <asm/io.h>
  29. #include <asm/dma.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/idprom.h>
  32. #include <asm/sbus.h>
  33. #include <asm/openprom.h>
  34. #include <asm/oplib.h>
  35. #include <asm/auxio.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/irq.h>
  38. #include "myri_sbus.h"
  39. #include "myri_code.h"
  40. /* #define DEBUG_DETECT */
  41. /* #define DEBUG_IRQ */
  42. /* #define DEBUG_TRANSMIT */
  43. /* #define DEBUG_RECEIVE */
  44. /* #define DEBUG_HEADER */
  45. #ifdef DEBUG_DETECT
  46. #define DET(x) printk x
  47. #else
  48. #define DET(x)
  49. #endif
  50. #ifdef DEBUG_IRQ
  51. #define DIRQ(x) printk x
  52. #else
  53. #define DIRQ(x)
  54. #endif
  55. #ifdef DEBUG_TRANSMIT
  56. #define DTX(x) printk x
  57. #else
  58. #define DTX(x)
  59. #endif
  60. #ifdef DEBUG_RECEIVE
  61. #define DRX(x) printk x
  62. #else
  63. #define DRX(x)
  64. #endif
  65. #ifdef DEBUG_HEADER
  66. #define DHDR(x) printk x
  67. #else
  68. #define DHDR(x)
  69. #endif
  70. static void myri_reset_off(void __iomem *lp, void __iomem *cregs)
  71. {
  72. /* Clear IRQ mask. */
  73. sbus_writel(0, lp + LANAI_EIMASK);
  74. /* Turn RESET function off. */
  75. sbus_writel(CONTROL_ROFF, cregs + MYRICTRL_CTRL);
  76. }
  77. static void myri_reset_on(void __iomem *cregs)
  78. {
  79. /* Enable RESET function. */
  80. sbus_writel(CONTROL_RON, cregs + MYRICTRL_CTRL);
  81. /* Disable IRQ's. */
  82. sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
  83. }
  84. static void myri_disable_irq(void __iomem *lp, void __iomem *cregs)
  85. {
  86. sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
  87. sbus_writel(0, lp + LANAI_EIMASK);
  88. sbus_writel(ISTAT_HOST, lp + LANAI_ISTAT);
  89. }
  90. static void myri_enable_irq(void __iomem *lp, void __iomem *cregs)
  91. {
  92. sbus_writel(CONTROL_EIRQ, cregs + MYRICTRL_CTRL);
  93. sbus_writel(ISTAT_HOST, lp + LANAI_EIMASK);
  94. }
  95. static inline void bang_the_chip(struct myri_eth *mp)
  96. {
  97. struct myri_shmem __iomem *shmem = mp->shmem;
  98. void __iomem *cregs = mp->cregs;
  99. sbus_writel(1, &shmem->send);
  100. sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
  101. }
  102. static int myri_do_handshake(struct myri_eth *mp)
  103. {
  104. struct myri_shmem __iomem *shmem = mp->shmem;
  105. void __iomem *cregs = mp->cregs;
  106. struct myri_channel __iomem *chan = &shmem->channel;
  107. int tick = 0;
  108. DET(("myri_do_handshake: "));
  109. if (sbus_readl(&chan->state) == STATE_READY) {
  110. DET(("Already STATE_READY, failed.\n"));
  111. return -1; /* We're hosed... */
  112. }
  113. myri_disable_irq(mp->lregs, cregs);
  114. while (tick++ <= 25) {
  115. u32 softstate;
  116. /* Wake it up. */
  117. DET(("shakedown, CONTROL_WON, "));
  118. sbus_writel(1, &shmem->shakedown);
  119. sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
  120. softstate = sbus_readl(&chan->state);
  121. DET(("chanstate[%08x] ", softstate));
  122. if (softstate == STATE_READY) {
  123. DET(("wakeup successful, "));
  124. break;
  125. }
  126. if (softstate != STATE_WFN) {
  127. DET(("not WFN setting that, "));
  128. sbus_writel(STATE_WFN, &chan->state);
  129. }
  130. udelay(20);
  131. }
  132. myri_enable_irq(mp->lregs, cregs);
  133. if (tick > 25) {
  134. DET(("25 ticks we lose, failure.\n"));
  135. return -1;
  136. }
  137. DET(("success\n"));
  138. return 0;
  139. }
  140. static int __devinit myri_load_lanai(struct myri_eth *mp)
  141. {
  142. struct net_device *dev = mp->dev;
  143. struct myri_shmem __iomem *shmem = mp->shmem;
  144. void __iomem *rptr;
  145. int i;
  146. myri_disable_irq(mp->lregs, mp->cregs);
  147. myri_reset_on(mp->cregs);
  148. rptr = mp->lanai;
  149. for (i = 0; i < mp->eeprom.ramsz; i++)
  150. sbus_writeb(0, rptr + i);
  151. if (mp->eeprom.cpuvers >= CPUVERS_3_0)
  152. sbus_writel(mp->eeprom.cval, mp->lregs + LANAI_CVAL);
  153. /* Load executable code. */
  154. for (i = 0; i < sizeof(lanai4_code); i++)
  155. sbus_writeb(lanai4_code[i], rptr + (lanai4_code_off * 2) + i);
  156. /* Load data segment. */
  157. for (i = 0; i < sizeof(lanai4_data); i++)
  158. sbus_writeb(lanai4_data[i], rptr + (lanai4_data_off * 2) + i);
  159. /* Set device address. */
  160. sbus_writeb(0, &shmem->addr[0]);
  161. sbus_writeb(0, &shmem->addr[1]);
  162. for (i = 0; i < 6; i++)
  163. sbus_writeb(dev->dev_addr[i],
  164. &shmem->addr[i + 2]);
  165. /* Set SBUS bursts and interrupt mask. */
  166. sbus_writel(((mp->myri_bursts & 0xf8) >> 3), &shmem->burst);
  167. sbus_writel(SHMEM_IMASK_RX, &shmem->imask);
  168. /* Release the LANAI. */
  169. myri_disable_irq(mp->lregs, mp->cregs);
  170. myri_reset_off(mp->lregs, mp->cregs);
  171. myri_disable_irq(mp->lregs, mp->cregs);
  172. /* Wait for the reset to complete. */
  173. for (i = 0; i < 5000; i++) {
  174. if (sbus_readl(&shmem->channel.state) != STATE_READY)
  175. break;
  176. else
  177. udelay(10);
  178. }
  179. if (i == 5000)
  180. printk(KERN_ERR "myricom: Chip would not reset after firmware load.\n");
  181. i = myri_do_handshake(mp);
  182. if (i)
  183. printk(KERN_ERR "myricom: Handshake with LANAI failed.\n");
  184. if (mp->eeprom.cpuvers == CPUVERS_4_0)
  185. sbus_writel(0, mp->lregs + LANAI_VERS);
  186. return i;
  187. }
  188. static void myri_clean_rings(struct myri_eth *mp)
  189. {
  190. struct sendq __iomem *sq = mp->sq;
  191. struct recvq __iomem *rq = mp->rq;
  192. int i;
  193. sbus_writel(0, &rq->tail);
  194. sbus_writel(0, &rq->head);
  195. for (i = 0; i < (RX_RING_SIZE+1); i++) {
  196. if (mp->rx_skbs[i] != NULL) {
  197. struct myri_rxd __iomem *rxd = &rq->myri_rxd[i];
  198. u32 dma_addr;
  199. dma_addr = sbus_readl(&rxd->myri_scatters[0].addr);
  200. sbus_unmap_single(mp->myri_sdev, dma_addr, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  201. dev_kfree_skb(mp->rx_skbs[i]);
  202. mp->rx_skbs[i] = NULL;
  203. }
  204. }
  205. mp->tx_old = 0;
  206. sbus_writel(0, &sq->tail);
  207. sbus_writel(0, &sq->head);
  208. for (i = 0; i < TX_RING_SIZE; i++) {
  209. if (mp->tx_skbs[i] != NULL) {
  210. struct sk_buff *skb = mp->tx_skbs[i];
  211. struct myri_txd __iomem *txd = &sq->myri_txd[i];
  212. u32 dma_addr;
  213. dma_addr = sbus_readl(&txd->myri_gathers[0].addr);
  214. sbus_unmap_single(mp->myri_sdev, dma_addr, (skb->len + 3) & ~3, SBUS_DMA_TODEVICE);
  215. dev_kfree_skb(mp->tx_skbs[i]);
  216. mp->tx_skbs[i] = NULL;
  217. }
  218. }
  219. }
  220. static void myri_init_rings(struct myri_eth *mp, int from_irq)
  221. {
  222. struct recvq __iomem *rq = mp->rq;
  223. struct myri_rxd __iomem *rxd = &rq->myri_rxd[0];
  224. struct net_device *dev = mp->dev;
  225. gfp_t gfp_flags = GFP_KERNEL;
  226. int i;
  227. if (from_irq || in_interrupt())
  228. gfp_flags = GFP_ATOMIC;
  229. myri_clean_rings(mp);
  230. for (i = 0; i < RX_RING_SIZE; i++) {
  231. struct sk_buff *skb = myri_alloc_skb(RX_ALLOC_SIZE, gfp_flags);
  232. u32 dma_addr;
  233. if (!skb)
  234. continue;
  235. mp->rx_skbs[i] = skb;
  236. skb->dev = dev;
  237. skb_put(skb, RX_ALLOC_SIZE);
  238. dma_addr = sbus_map_single(mp->myri_sdev, skb->data, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  239. sbus_writel(dma_addr, &rxd[i].myri_scatters[0].addr);
  240. sbus_writel(RX_ALLOC_SIZE, &rxd[i].myri_scatters[0].len);
  241. sbus_writel(i, &rxd[i].ctx);
  242. sbus_writel(1, &rxd[i].num_sg);
  243. }
  244. sbus_writel(0, &rq->head);
  245. sbus_writel(RX_RING_SIZE, &rq->tail);
  246. }
  247. static int myri_init(struct myri_eth *mp, int from_irq)
  248. {
  249. myri_init_rings(mp, from_irq);
  250. return 0;
  251. }
  252. static void myri_is_not_so_happy(struct myri_eth *mp)
  253. {
  254. }
  255. #ifdef DEBUG_HEADER
  256. static void dump_ehdr(struct ethhdr *ehdr)
  257. {
  258. DECLARE_MAC_BUF(mac);
  259. DECLARE_MAC_BUF(mac2);
  260. printk("ehdr[h_dst(%s)"
  261. "h_source(%s)"
  262. "h_proto(%04x)]\n",
  263. print_mac(mac, ehdr->h_dest), print_mac(mac2, ehdr->h_source),
  264. ehdr->h_proto);
  265. }
  266. static void dump_ehdr_and_myripad(unsigned char *stuff)
  267. {
  268. struct ethhdr *ehdr = (struct ethhdr *) (stuff + 2);
  269. printk("pad[%02x:%02x]", stuff[0], stuff[1]);
  270. dump_ehdr(ehdr);
  271. }
  272. #endif
  273. static void myri_tx(struct myri_eth *mp, struct net_device *dev)
  274. {
  275. struct sendq __iomem *sq= mp->sq;
  276. int entry = mp->tx_old;
  277. int limit = sbus_readl(&sq->head);
  278. DTX(("entry[%d] limit[%d] ", entry, limit));
  279. if (entry == limit)
  280. return;
  281. while (entry != limit) {
  282. struct sk_buff *skb = mp->tx_skbs[entry];
  283. u32 dma_addr;
  284. DTX(("SKB[%d] ", entry));
  285. dma_addr = sbus_readl(&sq->myri_txd[entry].myri_gathers[0].addr);
  286. sbus_unmap_single(mp->myri_sdev, dma_addr, skb->len, SBUS_DMA_TODEVICE);
  287. dev_kfree_skb(skb);
  288. mp->tx_skbs[entry] = NULL;
  289. dev->stats.tx_packets++;
  290. entry = NEXT_TX(entry);
  291. }
  292. mp->tx_old = entry;
  293. }
  294. /* Determine the packet's protocol ID. The rule here is that we
  295. * assume 802.3 if the type field is short enough to be a length.
  296. * This is normal practice and works for any 'now in use' protocol.
  297. */
  298. static __be16 myri_type_trans(struct sk_buff *skb, struct net_device *dev)
  299. {
  300. struct ethhdr *eth;
  301. unsigned char *rawp;
  302. skb_set_mac_header(skb, MYRI_PAD_LEN);
  303. skb_pull(skb, dev->hard_header_len);
  304. eth = eth_hdr(skb);
  305. #ifdef DEBUG_HEADER
  306. DHDR(("myri_type_trans: "));
  307. dump_ehdr(eth);
  308. #endif
  309. if (*eth->h_dest & 1) {
  310. if (memcmp(eth->h_dest, dev->broadcast, ETH_ALEN)==0)
  311. skb->pkt_type = PACKET_BROADCAST;
  312. else
  313. skb->pkt_type = PACKET_MULTICAST;
  314. } else if (dev->flags & (IFF_PROMISC|IFF_ALLMULTI)) {
  315. if (memcmp(eth->h_dest, dev->dev_addr, ETH_ALEN))
  316. skb->pkt_type = PACKET_OTHERHOST;
  317. }
  318. if (ntohs(eth->h_proto) >= 1536)
  319. return eth->h_proto;
  320. rawp = skb->data;
  321. /* This is a magic hack to spot IPX packets. Older Novell breaks
  322. * the protocol design and runs IPX over 802.3 without an 802.2 LLC
  323. * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
  324. * won't work for fault tolerant netware but does for the rest.
  325. */
  326. if (*(unsigned short *)rawp == 0xFFFF)
  327. return htons(ETH_P_802_3);
  328. /* Real 802.2 LLC */
  329. return htons(ETH_P_802_2);
  330. }
  331. static void myri_rx(struct myri_eth *mp, struct net_device *dev)
  332. {
  333. struct recvq __iomem *rq = mp->rq;
  334. struct recvq __iomem *rqa = mp->rqack;
  335. int entry = sbus_readl(&rqa->head);
  336. int limit = sbus_readl(&rqa->tail);
  337. int drops;
  338. DRX(("entry[%d] limit[%d] ", entry, limit));
  339. if (entry == limit)
  340. return;
  341. drops = 0;
  342. DRX(("\n"));
  343. while (entry != limit) {
  344. struct myri_rxd __iomem *rxdack = &rqa->myri_rxd[entry];
  345. u32 csum = sbus_readl(&rxdack->csum);
  346. int len = sbus_readl(&rxdack->myri_scatters[0].len);
  347. int index = sbus_readl(&rxdack->ctx);
  348. struct myri_rxd __iomem *rxd = &rq->myri_rxd[sbus_readl(&rq->tail)];
  349. struct sk_buff *skb = mp->rx_skbs[index];
  350. /* Ack it. */
  351. sbus_writel(NEXT_RX(entry), &rqa->head);
  352. /* Check for errors. */
  353. DRX(("rxd[%d]: %p len[%d] csum[%08x] ", entry, rxd, len, csum));
  354. sbus_dma_sync_single_for_cpu(mp->myri_sdev,
  355. sbus_readl(&rxd->myri_scatters[0].addr),
  356. RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  357. if (len < (ETH_HLEN + MYRI_PAD_LEN) || (skb->data[0] != MYRI_PAD_LEN)) {
  358. DRX(("ERROR["));
  359. dev->stats.rx_errors++;
  360. if (len < (ETH_HLEN + MYRI_PAD_LEN)) {
  361. DRX(("BAD_LENGTH] "));
  362. dev->stats.rx_length_errors++;
  363. } else {
  364. DRX(("NO_PADDING] "));
  365. dev->stats.rx_frame_errors++;
  366. }
  367. /* Return it to the LANAI. */
  368. drop_it:
  369. drops++;
  370. DRX(("DROP "));
  371. dev->stats.rx_dropped++;
  372. sbus_dma_sync_single_for_device(mp->myri_sdev,
  373. sbus_readl(&rxd->myri_scatters[0].addr),
  374. RX_ALLOC_SIZE,
  375. SBUS_DMA_FROMDEVICE);
  376. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  377. sbus_writel(index, &rxd->ctx);
  378. sbus_writel(1, &rxd->num_sg);
  379. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  380. goto next;
  381. }
  382. DRX(("len[%d] ", len));
  383. if (len > RX_COPY_THRESHOLD) {
  384. struct sk_buff *new_skb;
  385. u32 dma_addr;
  386. DRX(("BIGBUFF "));
  387. new_skb = myri_alloc_skb(RX_ALLOC_SIZE, GFP_ATOMIC);
  388. if (new_skb == NULL) {
  389. DRX(("skb_alloc(FAILED) "));
  390. goto drop_it;
  391. }
  392. sbus_unmap_single(mp->myri_sdev,
  393. sbus_readl(&rxd->myri_scatters[0].addr),
  394. RX_ALLOC_SIZE,
  395. SBUS_DMA_FROMDEVICE);
  396. mp->rx_skbs[index] = new_skb;
  397. new_skb->dev = dev;
  398. skb_put(new_skb, RX_ALLOC_SIZE);
  399. dma_addr = sbus_map_single(mp->myri_sdev,
  400. new_skb->data,
  401. RX_ALLOC_SIZE,
  402. SBUS_DMA_FROMDEVICE);
  403. sbus_writel(dma_addr, &rxd->myri_scatters[0].addr);
  404. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  405. sbus_writel(index, &rxd->ctx);
  406. sbus_writel(1, &rxd->num_sg);
  407. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  408. /* Trim the original skb for the netif. */
  409. DRX(("trim(%d) ", len));
  410. skb_trim(skb, len);
  411. } else {
  412. struct sk_buff *copy_skb = dev_alloc_skb(len);
  413. DRX(("SMALLBUFF "));
  414. if (copy_skb == NULL) {
  415. DRX(("dev_alloc_skb(FAILED) "));
  416. goto drop_it;
  417. }
  418. /* DMA sync already done above. */
  419. copy_skb->dev = dev;
  420. DRX(("resv_and_put "));
  421. skb_put(copy_skb, len);
  422. skb_copy_from_linear_data(skb, copy_skb->data, len);
  423. /* Reuse original ring buffer. */
  424. DRX(("reuse "));
  425. sbus_dma_sync_single_for_device(mp->myri_sdev,
  426. sbus_readl(&rxd->myri_scatters[0].addr),
  427. RX_ALLOC_SIZE,
  428. SBUS_DMA_FROMDEVICE);
  429. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  430. sbus_writel(index, &rxd->ctx);
  431. sbus_writel(1, &rxd->num_sg);
  432. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  433. skb = copy_skb;
  434. }
  435. /* Just like the happy meal we get checksums from this card. */
  436. skb->csum = csum;
  437. skb->ip_summed = CHECKSUM_UNNECESSARY; /* XXX */
  438. skb->protocol = myri_type_trans(skb, dev);
  439. DRX(("prot[%04x] netif_rx ", skb->protocol));
  440. netif_rx(skb);
  441. dev->last_rx = jiffies;
  442. dev->stats.rx_packets++;
  443. dev->stats.rx_bytes += len;
  444. next:
  445. DRX(("NEXT\n"));
  446. entry = NEXT_RX(entry);
  447. }
  448. }
  449. static irqreturn_t myri_interrupt(int irq, void *dev_id)
  450. {
  451. struct net_device *dev = (struct net_device *) dev_id;
  452. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  453. void __iomem *lregs = mp->lregs;
  454. struct myri_channel __iomem *chan = &mp->shmem->channel;
  455. unsigned long flags;
  456. u32 status;
  457. int handled = 0;
  458. spin_lock_irqsave(&mp->irq_lock, flags);
  459. status = sbus_readl(lregs + LANAI_ISTAT);
  460. DIRQ(("myri_interrupt: status[%08x] ", status));
  461. if (status & ISTAT_HOST) {
  462. u32 softstate;
  463. handled = 1;
  464. DIRQ(("IRQ_DISAB "));
  465. myri_disable_irq(lregs, mp->cregs);
  466. softstate = sbus_readl(&chan->state);
  467. DIRQ(("state[%08x] ", softstate));
  468. if (softstate != STATE_READY) {
  469. DIRQ(("myri_not_so_happy "));
  470. myri_is_not_so_happy(mp);
  471. }
  472. DIRQ(("\nmyri_rx: "));
  473. myri_rx(mp, dev);
  474. DIRQ(("\nistat=ISTAT_HOST "));
  475. sbus_writel(ISTAT_HOST, lregs + LANAI_ISTAT);
  476. DIRQ(("IRQ_ENAB "));
  477. myri_enable_irq(lregs, mp->cregs);
  478. }
  479. DIRQ(("\n"));
  480. spin_unlock_irqrestore(&mp->irq_lock, flags);
  481. return IRQ_RETVAL(handled);
  482. }
  483. static int myri_open(struct net_device *dev)
  484. {
  485. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  486. return myri_init(mp, in_interrupt());
  487. }
  488. static int myri_close(struct net_device *dev)
  489. {
  490. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  491. myri_clean_rings(mp);
  492. return 0;
  493. }
  494. static void myri_tx_timeout(struct net_device *dev)
  495. {
  496. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  497. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  498. dev->stats.tx_errors++;
  499. myri_init(mp, 0);
  500. netif_wake_queue(dev);
  501. }
  502. static int myri_start_xmit(struct sk_buff *skb, struct net_device *dev)
  503. {
  504. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  505. struct sendq __iomem *sq = mp->sq;
  506. struct myri_txd __iomem *txd;
  507. unsigned long flags;
  508. unsigned int head, tail;
  509. int len, entry;
  510. u32 dma_addr;
  511. DTX(("myri_start_xmit: "));
  512. myri_tx(mp, dev);
  513. netif_stop_queue(dev);
  514. /* This is just to prevent multiple PIO reads for TX_BUFFS_AVAIL. */
  515. head = sbus_readl(&sq->head);
  516. tail = sbus_readl(&sq->tail);
  517. if (!TX_BUFFS_AVAIL(head, tail)) {
  518. DTX(("no buffs available, returning 1\n"));
  519. return 1;
  520. }
  521. spin_lock_irqsave(&mp->irq_lock, flags);
  522. DHDR(("xmit[skbdata(%p)]\n", skb->data));
  523. #ifdef DEBUG_HEADER
  524. dump_ehdr_and_myripad(((unsigned char *) skb->data));
  525. #endif
  526. /* XXX Maybe this can go as well. */
  527. len = skb->len;
  528. if (len & 3) {
  529. DTX(("len&3 "));
  530. len = (len + 4) & (~3);
  531. }
  532. entry = sbus_readl(&sq->tail);
  533. txd = &sq->myri_txd[entry];
  534. mp->tx_skbs[entry] = skb;
  535. /* Must do this before we sbus map it. */
  536. if (skb->data[MYRI_PAD_LEN] & 0x1) {
  537. sbus_writew(0xffff, &txd->addr[0]);
  538. sbus_writew(0xffff, &txd->addr[1]);
  539. sbus_writew(0xffff, &txd->addr[2]);
  540. sbus_writew(0xffff, &txd->addr[3]);
  541. } else {
  542. sbus_writew(0xffff, &txd->addr[0]);
  543. sbus_writew((skb->data[0] << 8) | skb->data[1], &txd->addr[1]);
  544. sbus_writew((skb->data[2] << 8) | skb->data[3], &txd->addr[2]);
  545. sbus_writew((skb->data[4] << 8) | skb->data[5], &txd->addr[3]);
  546. }
  547. dma_addr = sbus_map_single(mp->myri_sdev, skb->data, len, SBUS_DMA_TODEVICE);
  548. sbus_writel(dma_addr, &txd->myri_gathers[0].addr);
  549. sbus_writel(len, &txd->myri_gathers[0].len);
  550. sbus_writel(1, &txd->num_sg);
  551. sbus_writel(KERNEL_CHANNEL, &txd->chan);
  552. sbus_writel(len, &txd->len);
  553. sbus_writel((u32)-1, &txd->csum_off);
  554. sbus_writel(0, &txd->csum_field);
  555. sbus_writel(NEXT_TX(entry), &sq->tail);
  556. DTX(("BangTheChip "));
  557. bang_the_chip(mp);
  558. DTX(("tbusy=0, returning 0\n"));
  559. netif_start_queue(dev);
  560. spin_unlock_irqrestore(&mp->irq_lock, flags);
  561. return 0;
  562. }
  563. /* Create the MyriNet MAC header for an arbitrary protocol layer
  564. *
  565. * saddr=NULL means use device source address
  566. * daddr=NULL means leave destination address (eg unresolved arp)
  567. */
  568. static int myri_header(struct sk_buff *skb, struct net_device *dev, unsigned short type,
  569. void *daddr, void *saddr, unsigned len)
  570. {
  571. struct ethhdr *eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
  572. unsigned char *pad = (unsigned char *) skb_push(skb, MYRI_PAD_LEN);
  573. #ifdef DEBUG_HEADER
  574. DHDR(("myri_header: pad[%02x,%02x] ", pad[0], pad[1]));
  575. dump_ehdr(eth);
  576. #endif
  577. /* Set the MyriNET padding identifier. */
  578. pad[0] = MYRI_PAD_LEN;
  579. pad[1] = 0xab;
  580. /* Set the protocol type. For a packet of type ETH_P_802_3 we put the length
  581. * in here instead. It is up to the 802.2 layer to carry protocol information.
  582. */
  583. if (type != ETH_P_802_3)
  584. eth->h_proto = htons(type);
  585. else
  586. eth->h_proto = htons(len);
  587. /* Set the source hardware address. */
  588. if (saddr)
  589. memcpy(eth->h_source, saddr, dev->addr_len);
  590. else
  591. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  592. /* Anyway, the loopback-device should never use this function... */
  593. if (dev->flags & IFF_LOOPBACK) {
  594. int i;
  595. for (i = 0; i < dev->addr_len; i++)
  596. eth->h_dest[i] = 0;
  597. return(dev->hard_header_len);
  598. }
  599. if (daddr) {
  600. memcpy(eth->h_dest, daddr, dev->addr_len);
  601. return dev->hard_header_len;
  602. }
  603. return -dev->hard_header_len;
  604. }
  605. /* Rebuild the MyriNet MAC header. This is called after an ARP
  606. * (or in future other address resolution) has completed on this
  607. * sk_buff. We now let ARP fill in the other fields.
  608. */
  609. static int myri_rebuild_header(struct sk_buff *skb)
  610. {
  611. unsigned char *pad = (unsigned char *) skb->data;
  612. struct ethhdr *eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
  613. struct net_device *dev = skb->dev;
  614. #ifdef DEBUG_HEADER
  615. DHDR(("myri_rebuild_header: pad[%02x,%02x] ", pad[0], pad[1]));
  616. dump_ehdr(eth);
  617. #endif
  618. /* Refill MyriNet padding identifiers, this is just being anal. */
  619. pad[0] = MYRI_PAD_LEN;
  620. pad[1] = 0xab;
  621. switch (eth->h_proto)
  622. {
  623. #ifdef CONFIG_INET
  624. case __constant_htons(ETH_P_IP):
  625. return arp_find(eth->h_dest, skb);
  626. #endif
  627. default:
  628. printk(KERN_DEBUG
  629. "%s: unable to resolve type %X addresses.\n",
  630. dev->name, (int)eth->h_proto);
  631. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  632. return 0;
  633. break;
  634. }
  635. return 0;
  636. }
  637. int myri_header_cache(struct neighbour *neigh, struct hh_cache *hh)
  638. {
  639. unsigned short type = hh->hh_type;
  640. unsigned char *pad;
  641. struct ethhdr *eth;
  642. struct net_device *dev = neigh->dev;
  643. pad = ((unsigned char *) hh->hh_data) +
  644. HH_DATA_OFF(sizeof(*eth) + MYRI_PAD_LEN);
  645. eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
  646. if (type == __constant_htons(ETH_P_802_3))
  647. return -1;
  648. /* Refill MyriNet padding identifiers, this is just being anal. */
  649. pad[0] = MYRI_PAD_LEN;
  650. pad[1] = 0xab;
  651. eth->h_proto = type;
  652. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  653. memcpy(eth->h_dest, neigh->ha, dev->addr_len);
  654. hh->hh_len = 16;
  655. return 0;
  656. }
  657. /* Called by Address Resolution module to notify changes in address. */
  658. void myri_header_cache_update(struct hh_cache *hh, struct net_device *dev, unsigned char * haddr)
  659. {
  660. memcpy(((u8*)hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
  661. haddr, dev->addr_len);
  662. }
  663. static int myri_change_mtu(struct net_device *dev, int new_mtu)
  664. {
  665. if ((new_mtu < (ETH_HLEN + MYRI_PAD_LEN)) || (new_mtu > MYRINET_MTU))
  666. return -EINVAL;
  667. dev->mtu = new_mtu;
  668. return 0;
  669. }
  670. static void myri_set_multicast(struct net_device *dev)
  671. {
  672. /* Do nothing, all MyriCOM nodes transmit multicast frames
  673. * as broadcast packets...
  674. */
  675. }
  676. static inline void set_boardid_from_idprom(struct myri_eth *mp, int num)
  677. {
  678. mp->eeprom.id[0] = 0;
  679. mp->eeprom.id[1] = idprom->id_machtype;
  680. mp->eeprom.id[2] = (idprom->id_sernum >> 16) & 0xff;
  681. mp->eeprom.id[3] = (idprom->id_sernum >> 8) & 0xff;
  682. mp->eeprom.id[4] = (idprom->id_sernum >> 0) & 0xff;
  683. mp->eeprom.id[5] = num;
  684. }
  685. static inline void determine_reg_space_size(struct myri_eth *mp)
  686. {
  687. switch(mp->eeprom.cpuvers) {
  688. case CPUVERS_2_3:
  689. case CPUVERS_3_0:
  690. case CPUVERS_3_1:
  691. case CPUVERS_3_2:
  692. mp->reg_size = (3 * 128 * 1024) + 4096;
  693. break;
  694. case CPUVERS_4_0:
  695. case CPUVERS_4_1:
  696. mp->reg_size = ((4096<<1) + mp->eeprom.ramsz);
  697. break;
  698. case CPUVERS_4_2:
  699. case CPUVERS_5_0:
  700. default:
  701. printk("myricom: AIEEE weird cpu version %04x assuming pre4.0\n",
  702. mp->eeprom.cpuvers);
  703. mp->reg_size = (3 * 128 * 1024) + 4096;
  704. };
  705. }
  706. #ifdef DEBUG_DETECT
  707. static void dump_eeprom(struct myri_eth *mp)
  708. {
  709. printk("EEPROM: clockval[%08x] cpuvers[%04x] "
  710. "id[%02x,%02x,%02x,%02x,%02x,%02x]\n",
  711. mp->eeprom.cval, mp->eeprom.cpuvers,
  712. mp->eeprom.id[0], mp->eeprom.id[1], mp->eeprom.id[2],
  713. mp->eeprom.id[3], mp->eeprom.id[4], mp->eeprom.id[5]);
  714. printk("EEPROM: ramsz[%08x]\n", mp->eeprom.ramsz);
  715. printk("EEPROM: fvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  716. mp->eeprom.fvers[0], mp->eeprom.fvers[1], mp->eeprom.fvers[2],
  717. mp->eeprom.fvers[3], mp->eeprom.fvers[4], mp->eeprom.fvers[5],
  718. mp->eeprom.fvers[6], mp->eeprom.fvers[7]);
  719. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  720. mp->eeprom.fvers[8], mp->eeprom.fvers[9], mp->eeprom.fvers[10],
  721. mp->eeprom.fvers[11], mp->eeprom.fvers[12], mp->eeprom.fvers[13],
  722. mp->eeprom.fvers[14], mp->eeprom.fvers[15]);
  723. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  724. mp->eeprom.fvers[16], mp->eeprom.fvers[17], mp->eeprom.fvers[18],
  725. mp->eeprom.fvers[19], mp->eeprom.fvers[20], mp->eeprom.fvers[21],
  726. mp->eeprom.fvers[22], mp->eeprom.fvers[23]);
  727. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
  728. mp->eeprom.fvers[24], mp->eeprom.fvers[25], mp->eeprom.fvers[26],
  729. mp->eeprom.fvers[27], mp->eeprom.fvers[28], mp->eeprom.fvers[29],
  730. mp->eeprom.fvers[30], mp->eeprom.fvers[31]);
  731. printk("EEPROM: mvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  732. mp->eeprom.mvers[0], mp->eeprom.mvers[1], mp->eeprom.mvers[2],
  733. mp->eeprom.mvers[3], mp->eeprom.mvers[4], mp->eeprom.mvers[5],
  734. mp->eeprom.mvers[6], mp->eeprom.mvers[7]);
  735. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
  736. mp->eeprom.mvers[8], mp->eeprom.mvers[9], mp->eeprom.mvers[10],
  737. mp->eeprom.mvers[11], mp->eeprom.mvers[12], mp->eeprom.mvers[13],
  738. mp->eeprom.mvers[14], mp->eeprom.mvers[15]);
  739. printk("EEPROM: dlval[%04x] brd_type[%04x] bus_type[%04x] prod_code[%04x]\n",
  740. mp->eeprom.dlval, mp->eeprom.brd_type, mp->eeprom.bus_type,
  741. mp->eeprom.prod_code);
  742. printk("EEPROM: serial_num[%08x]\n", mp->eeprom.serial_num);
  743. }
  744. #endif
  745. static int __devinit myri_ether_init(struct sbus_dev *sdev)
  746. {
  747. static int num;
  748. static unsigned version_printed;
  749. struct net_device *dev;
  750. struct myri_eth *mp;
  751. unsigned char prop_buf[32];
  752. int i;
  753. DECLARE_MAC_BUF(mac);
  754. DET(("myri_ether_init(%p,%d):\n", sdev, num));
  755. dev = alloc_etherdev(sizeof(struct myri_eth));
  756. if (!dev)
  757. return -ENOMEM;
  758. if (version_printed++ == 0)
  759. printk(version);
  760. SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
  761. mp = (struct myri_eth *) dev->priv;
  762. spin_lock_init(&mp->irq_lock);
  763. mp->myri_sdev = sdev;
  764. /* Clean out skb arrays. */
  765. for (i = 0; i < (RX_RING_SIZE + 1); i++)
  766. mp->rx_skbs[i] = NULL;
  767. for (i = 0; i < TX_RING_SIZE; i++)
  768. mp->tx_skbs[i] = NULL;
  769. /* First check for EEPROM information. */
  770. i = prom_getproperty(sdev->prom_node, "myrinet-eeprom-info",
  771. (char *)&mp->eeprom, sizeof(struct myri_eeprom));
  772. DET(("prom_getprop(myrinet-eeprom-info) returns %d\n", i));
  773. if (i == 0 || i == -1) {
  774. /* No eeprom property, must cook up the values ourselves. */
  775. DET(("No EEPROM: "));
  776. mp->eeprom.bus_type = BUS_TYPE_SBUS;
  777. mp->eeprom.cpuvers = prom_getintdefault(sdev->prom_node,"cpu_version",0);
  778. mp->eeprom.cval = prom_getintdefault(sdev->prom_node,"clock_value",0);
  779. mp->eeprom.ramsz = prom_getintdefault(sdev->prom_node,"sram_size",0);
  780. DET(("cpuvers[%d] cval[%d] ramsz[%d]\n", mp->eeprom.cpuvers,
  781. mp->eeprom.cval, mp->eeprom.ramsz));
  782. if (mp->eeprom.cpuvers == 0) {
  783. DET(("EEPROM: cpuvers was zero, setting to %04x\n",CPUVERS_2_3));
  784. mp->eeprom.cpuvers = CPUVERS_2_3;
  785. }
  786. if (mp->eeprom.cpuvers < CPUVERS_3_0) {
  787. DET(("EEPROM: cpuvers < CPUVERS_3_0, clockval set to zero.\n"));
  788. mp->eeprom.cval = 0;
  789. }
  790. if (mp->eeprom.ramsz == 0) {
  791. DET(("EEPROM: ramsz == 0, setting to 128k\n"));
  792. mp->eeprom.ramsz = (128 * 1024);
  793. }
  794. i = prom_getproperty(sdev->prom_node, "myrinet-board-id",
  795. &prop_buf[0], 10);
  796. DET(("EEPROM: prom_getprop(myrinet-board-id) returns %d\n", i));
  797. if ((i != 0) && (i != -1))
  798. memcpy(&mp->eeprom.id[0], &prop_buf[0], 6);
  799. else
  800. set_boardid_from_idprom(mp, num);
  801. i = prom_getproperty(sdev->prom_node, "fpga_version",
  802. &mp->eeprom.fvers[0], 32);
  803. DET(("EEPROM: prom_getprop(fpga_version) returns %d\n", i));
  804. if (i == 0 || i == -1)
  805. memset(&mp->eeprom.fvers[0], 0, 32);
  806. if (mp->eeprom.cpuvers == CPUVERS_4_1) {
  807. DET(("EEPROM: cpuvers CPUVERS_4_1, "));
  808. if (mp->eeprom.ramsz == (128 * 1024)) {
  809. DET(("ramsize 128k, setting to 256k, "));
  810. mp->eeprom.ramsz = (256 * 1024);
  811. }
  812. if ((mp->eeprom.cval==0x40414041)||(mp->eeprom.cval==0x90449044)){
  813. DET(("changing cval from %08x to %08x ",
  814. mp->eeprom.cval, 0x50e450e4));
  815. mp->eeprom.cval = 0x50e450e4;
  816. }
  817. DET(("\n"));
  818. }
  819. }
  820. #ifdef DEBUG_DETECT
  821. dump_eeprom(mp);
  822. #endif
  823. for (i = 0; i < 6; i++)
  824. dev->dev_addr[i] = mp->eeprom.id[i];
  825. determine_reg_space_size(mp);
  826. /* Map in the MyriCOM register/localram set. */
  827. if (mp->eeprom.cpuvers < CPUVERS_4_0) {
  828. /* XXX Makes no sense, if control reg is non-existant this
  829. * XXX driver cannot function at all... maybe pre-4.0 is
  830. * XXX only a valid version for PCI cards? Ask feldy...
  831. */
  832. DET(("Mapping regs for cpuvers < CPUVERS_4_0\n"));
  833. mp->regs = sbus_ioremap(&sdev->resource[0], 0,
  834. mp->reg_size, "MyriCOM Regs");
  835. if (!mp->regs) {
  836. printk("MyriCOM: Cannot map MyriCOM registers.\n");
  837. goto err;
  838. }
  839. mp->lanai = mp->regs + (256 * 1024);
  840. mp->lregs = mp->lanai + (0x10000 * 2);
  841. } else {
  842. DET(("Mapping regs for cpuvers >= CPUVERS_4_0\n"));
  843. mp->cregs = sbus_ioremap(&sdev->resource[0], 0,
  844. PAGE_SIZE, "MyriCOM Control Regs");
  845. mp->lregs = sbus_ioremap(&sdev->resource[0], (256 * 1024),
  846. PAGE_SIZE, "MyriCOM LANAI Regs");
  847. mp->lanai =
  848. sbus_ioremap(&sdev->resource[0], (512 * 1024),
  849. mp->eeprom.ramsz, "MyriCOM SRAM");
  850. }
  851. DET(("Registers mapped: cregs[%p] lregs[%p] lanai[%p]\n",
  852. mp->cregs, mp->lregs, mp->lanai));
  853. if (mp->eeprom.cpuvers >= CPUVERS_4_0)
  854. mp->shmem_base = 0xf000;
  855. else
  856. mp->shmem_base = 0x8000;
  857. DET(("Shared memory base is %04x, ", mp->shmem_base));
  858. mp->shmem = (struct myri_shmem __iomem *)
  859. (mp->lanai + (mp->shmem_base * 2));
  860. DET(("shmem mapped at %p\n", mp->shmem));
  861. mp->rqack = &mp->shmem->channel.recvqa;
  862. mp->rq = &mp->shmem->channel.recvq;
  863. mp->sq = &mp->shmem->channel.sendq;
  864. /* Reset the board. */
  865. DET(("Resetting LANAI\n"));
  866. myri_reset_off(mp->lregs, mp->cregs);
  867. myri_reset_on(mp->cregs);
  868. /* Turn IRQ's off. */
  869. myri_disable_irq(mp->lregs, mp->cregs);
  870. /* Reset once more. */
  871. myri_reset_on(mp->cregs);
  872. /* Get the supported DVMA burst sizes from our SBUS. */
  873. mp->myri_bursts = prom_getintdefault(mp->myri_sdev->bus->prom_node,
  874. "burst-sizes", 0x00);
  875. if (!sbus_can_burst64(sdev))
  876. mp->myri_bursts &= ~(DMA_BURST64);
  877. DET(("MYRI bursts %02x\n", mp->myri_bursts));
  878. /* Encode SBUS interrupt level in second control register. */
  879. i = prom_getint(sdev->prom_node, "interrupts");
  880. if (i == 0)
  881. i = 4;
  882. DET(("prom_getint(interrupts)==%d, irqlvl set to %04x\n",
  883. i, (1 << i)));
  884. sbus_writel((1 << i), mp->cregs + MYRICTRL_IRQLVL);
  885. mp->dev = dev;
  886. dev->open = &myri_open;
  887. dev->stop = &myri_close;
  888. dev->hard_start_xmit = &myri_start_xmit;
  889. dev->tx_timeout = &myri_tx_timeout;
  890. dev->watchdog_timeo = 5*HZ;
  891. dev->set_multicast_list = &myri_set_multicast;
  892. dev->irq = sdev->irqs[0];
  893. /* Register interrupt handler now. */
  894. DET(("Requesting MYRIcom IRQ line.\n"));
  895. if (request_irq(dev->irq, &myri_interrupt,
  896. IRQF_SHARED, "MyriCOM Ethernet", (void *) dev)) {
  897. printk("MyriCOM: Cannot register interrupt handler.\n");
  898. goto err;
  899. }
  900. dev->mtu = MYRINET_MTU;
  901. dev->change_mtu = myri_change_mtu;
  902. dev->hard_header = myri_header;
  903. dev->rebuild_header = myri_rebuild_header;
  904. dev->hard_header_len = (ETH_HLEN + MYRI_PAD_LEN);
  905. dev->hard_header_cache = myri_header_cache;
  906. dev->header_cache_update= myri_header_cache_update;
  907. /* Load code onto the LANai. */
  908. DET(("Loading LANAI firmware\n"));
  909. myri_load_lanai(mp);
  910. if (register_netdev(dev)) {
  911. printk("MyriCOM: Cannot register device.\n");
  912. goto err_free_irq;
  913. }
  914. dev_set_drvdata(&sdev->ofdev.dev, mp);
  915. num++;
  916. printk("%s: MyriCOM MyriNET Ethernet %s\n",
  917. dev->name, print_mac(mac, dev->dev_addr));
  918. return 0;
  919. err_free_irq:
  920. free_irq(dev->irq, dev);
  921. err:
  922. /* This will also free the co-allocated 'dev->priv' */
  923. free_netdev(dev);
  924. return -ENODEV;
  925. }
  926. static int __devinit myri_sbus_probe(struct of_device *dev, const struct of_device_id *match)
  927. {
  928. struct sbus_dev *sdev = to_sbus_device(&dev->dev);
  929. return myri_ether_init(sdev);
  930. }
  931. static int __devexit myri_sbus_remove(struct of_device *dev)
  932. {
  933. struct myri_eth *mp = dev_get_drvdata(&dev->dev);
  934. struct net_device *net_dev = mp->dev;
  935. unregister_netdevice(net_dev);
  936. free_irq(net_dev->irq, net_dev);
  937. if (mp->eeprom.cpuvers < CPUVERS_4_0) {
  938. sbus_iounmap(mp->regs, mp->reg_size);
  939. } else {
  940. sbus_iounmap(mp->cregs, PAGE_SIZE);
  941. sbus_iounmap(mp->lregs, (256 * 1024));
  942. sbus_iounmap(mp->lanai, (512 * 1024));
  943. }
  944. free_netdev(net_dev);
  945. dev_set_drvdata(&dev->dev, NULL);
  946. return 0;
  947. }
  948. static struct of_device_id myri_sbus_match[] = {
  949. {
  950. .name = "MYRICOM,mlanai",
  951. },
  952. {
  953. .name = "myri",
  954. },
  955. {},
  956. };
  957. MODULE_DEVICE_TABLE(of, myri_sbus_match);
  958. static struct of_platform_driver myri_sbus_driver = {
  959. .name = "myri",
  960. .match_table = myri_sbus_match,
  961. .probe = myri_sbus_probe,
  962. .remove = __devexit_p(myri_sbus_remove),
  963. };
  964. static int __init myri_sbus_init(void)
  965. {
  966. return of_register_driver(&myri_sbus_driver, &sbus_bus_type);
  967. }
  968. static void __exit myri_sbus_exit(void)
  969. {
  970. of_unregister_driver(&myri_sbus_driver);
  971. }
  972. module_init(myri_sbus_init);
  973. module_exit(myri_sbus_exit);
  974. MODULE_LICENSE("GPL");