bnx2.c 201 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2009 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/kernel.h>
  14. #include <linux/timer.h>
  15. #include <linux/errno.h>
  16. #include <linux/ioport.h>
  17. #include <linux/slab.h>
  18. #include <linux/vmalloc.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pci.h>
  21. #include <linux/init.h>
  22. #include <linux/netdevice.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/skbuff.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/bitops.h>
  27. #include <asm/io.h>
  28. #include <asm/irq.h>
  29. #include <linux/delay.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/page.h>
  32. #include <linux/time.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/mii.h>
  35. #include <linux/if_vlan.h>
  36. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  37. #define BCM_VLAN 1
  38. #endif
  39. #include <net/ip.h>
  40. #include <net/tcp.h>
  41. #include <net/checksum.h>
  42. #include <linux/workqueue.h>
  43. #include <linux/crc32.h>
  44. #include <linux/prefetch.h>
  45. #include <linux/cache.h>
  46. #include <linux/firmware.h>
  47. #include <linux/log2.h>
  48. #include <linux/list.h>
  49. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  50. #define BCM_CNIC 1
  51. #include "cnic_if.h"
  52. #endif
  53. #include "bnx2.h"
  54. #include "bnx2_fw.h"
  55. #define DRV_MODULE_NAME "bnx2"
  56. #define PFX DRV_MODULE_NAME ": "
  57. #define DRV_MODULE_VERSION "2.0.2"
  58. #define DRV_MODULE_RELDATE "Aug 21, 2009"
  59. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j3.fw"
  60. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
  61. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j3.fw"
  62. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j3.fw"
  63. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j3.fw"
  64. #define RUN_AT(x) (jiffies + (x))
  65. /* Time in jiffies before concluding the transmitter is hung. */
  66. #define TX_TIMEOUT (5*HZ)
  67. static char version[] __devinitdata =
  68. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  69. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  70. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  71. MODULE_LICENSE("GPL");
  72. MODULE_VERSION(DRV_MODULE_VERSION);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  75. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  76. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  77. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  78. static int disable_msi = 0;
  79. module_param(disable_msi, int, 0);
  80. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  81. typedef enum {
  82. BCM5706 = 0,
  83. NC370T,
  84. NC370I,
  85. BCM5706S,
  86. NC370F,
  87. BCM5708,
  88. BCM5708S,
  89. BCM5709,
  90. BCM5709S,
  91. BCM5716,
  92. BCM5716S,
  93. } board_t;
  94. /* indexed by board_t, above */
  95. static struct {
  96. char *name;
  97. } board_info[] __devinitdata = {
  98. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  99. { "HP NC370T Multifunction Gigabit Server Adapter" },
  100. { "HP NC370i Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  102. { "HP NC370F Multifunction Gigabit Server Adapter" },
  103. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  107. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  108. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  109. };
  110. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  127. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  131. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  132. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  133. { 0, }
  134. };
  135. static const struct flash_spec flash_table[] =
  136. {
  137. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  138. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  139. /* Slow EEPROM */
  140. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  141. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  142. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  143. "EEPROM - slow"},
  144. /* Expansion entry 0001 */
  145. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  146. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  147. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  148. "Entry 0001"},
  149. /* Saifun SA25F010 (non-buffered flash) */
  150. /* strap, cfg1, & write1 need updates */
  151. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  152. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  153. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  154. "Non-buffered flash (128kB)"},
  155. /* Saifun SA25F020 (non-buffered flash) */
  156. /* strap, cfg1, & write1 need updates */
  157. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  158. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  159. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  160. "Non-buffered flash (256kB)"},
  161. /* Expansion entry 0100 */
  162. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  163. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  164. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  165. "Entry 0100"},
  166. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  167. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  168. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  169. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  170. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  171. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  172. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  173. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  174. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  175. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  176. /* Saifun SA25F005 (non-buffered flash) */
  177. /* strap, cfg1, & write1 need updates */
  178. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  179. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  180. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  181. "Non-buffered flash (64kB)"},
  182. /* Fast EEPROM */
  183. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  184. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  185. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  186. "EEPROM - fast"},
  187. /* Expansion entry 1001 */
  188. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  189. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  190. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  191. "Entry 1001"},
  192. /* Expansion entry 1010 */
  193. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  194. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  195. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  196. "Entry 1010"},
  197. /* ATMEL AT45DB011B (buffered flash) */
  198. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  199. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  200. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  201. "Buffered flash (128kB)"},
  202. /* Expansion entry 1100 */
  203. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  204. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  205. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  206. "Entry 1100"},
  207. /* Expansion entry 1101 */
  208. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  209. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  210. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  211. "Entry 1101"},
  212. /* Ateml Expansion entry 1110 */
  213. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  214. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  215. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  216. "Entry 1110 (Atmel)"},
  217. /* ATMEL AT45DB021B (buffered flash) */
  218. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  219. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  220. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  221. "Buffered flash (256kB)"},
  222. };
  223. static const struct flash_spec flash_5709 = {
  224. .flags = BNX2_NV_BUFFERED,
  225. .page_bits = BCM5709_FLASH_PAGE_BITS,
  226. .page_size = BCM5709_FLASH_PAGE_SIZE,
  227. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  228. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  229. .name = "5709 Buffered flash (256kB)",
  230. };
  231. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  232. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  233. {
  234. u32 diff;
  235. smp_mb();
  236. /* The ring uses 256 indices for 255 entries, one of them
  237. * needs to be skipped.
  238. */
  239. diff = txr->tx_prod - txr->tx_cons;
  240. if (unlikely(diff >= TX_DESC_CNT)) {
  241. diff &= 0xffff;
  242. if (diff == TX_DESC_CNT)
  243. diff = MAX_TX_DESC_CNT;
  244. }
  245. return (bp->tx_ring_size - diff);
  246. }
  247. static u32
  248. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  249. {
  250. u32 val;
  251. spin_lock_bh(&bp->indirect_lock);
  252. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  253. val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
  254. spin_unlock_bh(&bp->indirect_lock);
  255. return val;
  256. }
  257. static void
  258. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  259. {
  260. spin_lock_bh(&bp->indirect_lock);
  261. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  262. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  263. spin_unlock_bh(&bp->indirect_lock);
  264. }
  265. static void
  266. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  267. {
  268. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  269. }
  270. static u32
  271. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  272. {
  273. return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
  274. }
  275. static void
  276. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  277. {
  278. offset += cid_addr;
  279. spin_lock_bh(&bp->indirect_lock);
  280. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  281. int i;
  282. REG_WR(bp, BNX2_CTX_CTX_DATA, val);
  283. REG_WR(bp, BNX2_CTX_CTX_CTRL,
  284. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  285. for (i = 0; i < 5; i++) {
  286. val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
  287. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  288. break;
  289. udelay(5);
  290. }
  291. } else {
  292. REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
  293. REG_WR(bp, BNX2_CTX_DATA, val);
  294. }
  295. spin_unlock_bh(&bp->indirect_lock);
  296. }
  297. #ifdef BCM_CNIC
  298. static int
  299. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  300. {
  301. struct bnx2 *bp = netdev_priv(dev);
  302. struct drv_ctl_io *io = &info->data.io;
  303. switch (info->cmd) {
  304. case DRV_CTL_IO_WR_CMD:
  305. bnx2_reg_wr_ind(bp, io->offset, io->data);
  306. break;
  307. case DRV_CTL_IO_RD_CMD:
  308. io->data = bnx2_reg_rd_ind(bp, io->offset);
  309. break;
  310. case DRV_CTL_CTX_WR_CMD:
  311. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  312. break;
  313. default:
  314. return -EINVAL;
  315. }
  316. return 0;
  317. }
  318. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  319. {
  320. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  321. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  322. int sb_id;
  323. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  324. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  325. bnapi->cnic_present = 0;
  326. sb_id = bp->irq_nvecs;
  327. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  328. } else {
  329. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  330. bnapi->cnic_tag = bnapi->last_status_idx;
  331. bnapi->cnic_present = 1;
  332. sb_id = 0;
  333. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  334. }
  335. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  336. cp->irq_arr[0].status_blk = (void *)
  337. ((unsigned long) bnapi->status_blk.msi +
  338. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  339. cp->irq_arr[0].status_blk_num = sb_id;
  340. cp->num_irq = 1;
  341. }
  342. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  343. void *data)
  344. {
  345. struct bnx2 *bp = netdev_priv(dev);
  346. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  347. if (ops == NULL)
  348. return -EINVAL;
  349. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  350. return -EBUSY;
  351. bp->cnic_data = data;
  352. rcu_assign_pointer(bp->cnic_ops, ops);
  353. cp->num_irq = 0;
  354. cp->drv_state = CNIC_DRV_STATE_REGD;
  355. bnx2_setup_cnic_irq_info(bp);
  356. return 0;
  357. }
  358. static int bnx2_unregister_cnic(struct net_device *dev)
  359. {
  360. struct bnx2 *bp = netdev_priv(dev);
  361. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  362. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  363. cp->drv_state = 0;
  364. bnapi->cnic_present = 0;
  365. rcu_assign_pointer(bp->cnic_ops, NULL);
  366. synchronize_rcu();
  367. return 0;
  368. }
  369. struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  370. {
  371. struct bnx2 *bp = netdev_priv(dev);
  372. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  373. cp->drv_owner = THIS_MODULE;
  374. cp->chip_id = bp->chip_id;
  375. cp->pdev = bp->pdev;
  376. cp->io_base = bp->regview;
  377. cp->drv_ctl = bnx2_drv_ctl;
  378. cp->drv_register_cnic = bnx2_register_cnic;
  379. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  380. return cp;
  381. }
  382. EXPORT_SYMBOL(bnx2_cnic_probe);
  383. static void
  384. bnx2_cnic_stop(struct bnx2 *bp)
  385. {
  386. struct cnic_ops *c_ops;
  387. struct cnic_ctl_info info;
  388. rcu_read_lock();
  389. c_ops = rcu_dereference(bp->cnic_ops);
  390. if (c_ops) {
  391. info.cmd = CNIC_CTL_STOP_CMD;
  392. c_ops->cnic_ctl(bp->cnic_data, &info);
  393. }
  394. rcu_read_unlock();
  395. }
  396. static void
  397. bnx2_cnic_start(struct bnx2 *bp)
  398. {
  399. struct cnic_ops *c_ops;
  400. struct cnic_ctl_info info;
  401. rcu_read_lock();
  402. c_ops = rcu_dereference(bp->cnic_ops);
  403. if (c_ops) {
  404. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  405. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  406. bnapi->cnic_tag = bnapi->last_status_idx;
  407. }
  408. info.cmd = CNIC_CTL_START_CMD;
  409. c_ops->cnic_ctl(bp->cnic_data, &info);
  410. }
  411. rcu_read_unlock();
  412. }
  413. #else
  414. static void
  415. bnx2_cnic_stop(struct bnx2 *bp)
  416. {
  417. }
  418. static void
  419. bnx2_cnic_start(struct bnx2 *bp)
  420. {
  421. }
  422. #endif
  423. static int
  424. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  425. {
  426. u32 val1;
  427. int i, ret;
  428. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  429. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  430. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  431. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  432. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  433. udelay(40);
  434. }
  435. val1 = (bp->phy_addr << 21) | (reg << 16) |
  436. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  437. BNX2_EMAC_MDIO_COMM_START_BUSY;
  438. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  439. for (i = 0; i < 50; i++) {
  440. udelay(10);
  441. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  442. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  443. udelay(5);
  444. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  445. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  446. break;
  447. }
  448. }
  449. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  450. *val = 0x0;
  451. ret = -EBUSY;
  452. }
  453. else {
  454. *val = val1;
  455. ret = 0;
  456. }
  457. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  458. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  459. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  460. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  461. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  462. udelay(40);
  463. }
  464. return ret;
  465. }
  466. static int
  467. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  468. {
  469. u32 val1;
  470. int i, ret;
  471. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  472. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  473. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  474. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  475. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  476. udelay(40);
  477. }
  478. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  479. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  480. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  481. REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  482. for (i = 0; i < 50; i++) {
  483. udelay(10);
  484. val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
  485. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  486. udelay(5);
  487. break;
  488. }
  489. }
  490. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  491. ret = -EBUSY;
  492. else
  493. ret = 0;
  494. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  495. val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  496. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  497. REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  498. REG_RD(bp, BNX2_EMAC_MDIO_MODE);
  499. udelay(40);
  500. }
  501. return ret;
  502. }
  503. static void
  504. bnx2_disable_int(struct bnx2 *bp)
  505. {
  506. int i;
  507. struct bnx2_napi *bnapi;
  508. for (i = 0; i < bp->irq_nvecs; i++) {
  509. bnapi = &bp->bnx2_napi[i];
  510. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  511. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  512. }
  513. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  514. }
  515. static void
  516. bnx2_enable_int(struct bnx2 *bp)
  517. {
  518. int i;
  519. struct bnx2_napi *bnapi;
  520. for (i = 0; i < bp->irq_nvecs; i++) {
  521. bnapi = &bp->bnx2_napi[i];
  522. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  523. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  524. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  525. bnapi->last_status_idx);
  526. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  527. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  528. bnapi->last_status_idx);
  529. }
  530. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  531. }
  532. static void
  533. bnx2_disable_int_sync(struct bnx2 *bp)
  534. {
  535. int i;
  536. atomic_inc(&bp->intr_sem);
  537. if (!netif_running(bp->dev))
  538. return;
  539. bnx2_disable_int(bp);
  540. for (i = 0; i < bp->irq_nvecs; i++)
  541. synchronize_irq(bp->irq_tbl[i].vector);
  542. }
  543. static void
  544. bnx2_napi_disable(struct bnx2 *bp)
  545. {
  546. int i;
  547. for (i = 0; i < bp->irq_nvecs; i++)
  548. napi_disable(&bp->bnx2_napi[i].napi);
  549. }
  550. static void
  551. bnx2_napi_enable(struct bnx2 *bp)
  552. {
  553. int i;
  554. for (i = 0; i < bp->irq_nvecs; i++)
  555. napi_enable(&bp->bnx2_napi[i].napi);
  556. }
  557. static void
  558. bnx2_netif_stop(struct bnx2 *bp)
  559. {
  560. bnx2_cnic_stop(bp);
  561. bnx2_disable_int_sync(bp);
  562. if (netif_running(bp->dev)) {
  563. bnx2_napi_disable(bp);
  564. netif_tx_disable(bp->dev);
  565. bp->dev->trans_start = jiffies; /* prevent tx timeout */
  566. }
  567. }
  568. static void
  569. bnx2_netif_start(struct bnx2 *bp)
  570. {
  571. if (atomic_dec_and_test(&bp->intr_sem)) {
  572. if (netif_running(bp->dev)) {
  573. netif_tx_wake_all_queues(bp->dev);
  574. bnx2_napi_enable(bp);
  575. bnx2_enable_int(bp);
  576. bnx2_cnic_start(bp);
  577. }
  578. }
  579. }
  580. static void
  581. bnx2_free_tx_mem(struct bnx2 *bp)
  582. {
  583. int i;
  584. for (i = 0; i < bp->num_tx_rings; i++) {
  585. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  586. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  587. if (txr->tx_desc_ring) {
  588. pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
  589. txr->tx_desc_ring,
  590. txr->tx_desc_mapping);
  591. txr->tx_desc_ring = NULL;
  592. }
  593. kfree(txr->tx_buf_ring);
  594. txr->tx_buf_ring = NULL;
  595. }
  596. }
  597. static void
  598. bnx2_free_rx_mem(struct bnx2 *bp)
  599. {
  600. int i;
  601. for (i = 0; i < bp->num_rx_rings; i++) {
  602. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  603. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  604. int j;
  605. for (j = 0; j < bp->rx_max_ring; j++) {
  606. if (rxr->rx_desc_ring[j])
  607. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  608. rxr->rx_desc_ring[j],
  609. rxr->rx_desc_mapping[j]);
  610. rxr->rx_desc_ring[j] = NULL;
  611. }
  612. vfree(rxr->rx_buf_ring);
  613. rxr->rx_buf_ring = NULL;
  614. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  615. if (rxr->rx_pg_desc_ring[j])
  616. pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
  617. rxr->rx_pg_desc_ring[j],
  618. rxr->rx_pg_desc_mapping[j]);
  619. rxr->rx_pg_desc_ring[j] = NULL;
  620. }
  621. vfree(rxr->rx_pg_ring);
  622. rxr->rx_pg_ring = NULL;
  623. }
  624. }
  625. static int
  626. bnx2_alloc_tx_mem(struct bnx2 *bp)
  627. {
  628. int i;
  629. for (i = 0; i < bp->num_tx_rings; i++) {
  630. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  631. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  632. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  633. if (txr->tx_buf_ring == NULL)
  634. return -ENOMEM;
  635. txr->tx_desc_ring =
  636. pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
  637. &txr->tx_desc_mapping);
  638. if (txr->tx_desc_ring == NULL)
  639. return -ENOMEM;
  640. }
  641. return 0;
  642. }
  643. static int
  644. bnx2_alloc_rx_mem(struct bnx2 *bp)
  645. {
  646. int i;
  647. for (i = 0; i < bp->num_rx_rings; i++) {
  648. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  649. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  650. int j;
  651. rxr->rx_buf_ring =
  652. vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  653. if (rxr->rx_buf_ring == NULL)
  654. return -ENOMEM;
  655. memset(rxr->rx_buf_ring, 0,
  656. SW_RXBD_RING_SIZE * bp->rx_max_ring);
  657. for (j = 0; j < bp->rx_max_ring; j++) {
  658. rxr->rx_desc_ring[j] =
  659. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  660. &rxr->rx_desc_mapping[j]);
  661. if (rxr->rx_desc_ring[j] == NULL)
  662. return -ENOMEM;
  663. }
  664. if (bp->rx_pg_ring_size) {
  665. rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
  666. bp->rx_max_pg_ring);
  667. if (rxr->rx_pg_ring == NULL)
  668. return -ENOMEM;
  669. memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
  670. bp->rx_max_pg_ring);
  671. }
  672. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  673. rxr->rx_pg_desc_ring[j] =
  674. pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
  675. &rxr->rx_pg_desc_mapping[j]);
  676. if (rxr->rx_pg_desc_ring[j] == NULL)
  677. return -ENOMEM;
  678. }
  679. }
  680. return 0;
  681. }
  682. static void
  683. bnx2_free_mem(struct bnx2 *bp)
  684. {
  685. int i;
  686. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  687. bnx2_free_tx_mem(bp);
  688. bnx2_free_rx_mem(bp);
  689. for (i = 0; i < bp->ctx_pages; i++) {
  690. if (bp->ctx_blk[i]) {
  691. pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
  692. bp->ctx_blk[i],
  693. bp->ctx_blk_mapping[i]);
  694. bp->ctx_blk[i] = NULL;
  695. }
  696. }
  697. if (bnapi->status_blk.msi) {
  698. pci_free_consistent(bp->pdev, bp->status_stats_size,
  699. bnapi->status_blk.msi,
  700. bp->status_blk_mapping);
  701. bnapi->status_blk.msi = NULL;
  702. bp->stats_blk = NULL;
  703. }
  704. }
  705. static int
  706. bnx2_alloc_mem(struct bnx2 *bp)
  707. {
  708. int i, status_blk_size, err;
  709. struct bnx2_napi *bnapi;
  710. void *status_blk;
  711. /* Combine status and statistics blocks into one allocation. */
  712. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  713. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  714. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  715. BNX2_SBLK_MSIX_ALIGN_SIZE);
  716. bp->status_stats_size = status_blk_size +
  717. sizeof(struct statistics_block);
  718. status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
  719. &bp->status_blk_mapping);
  720. if (status_blk == NULL)
  721. goto alloc_mem_err;
  722. memset(status_blk, 0, bp->status_stats_size);
  723. bnapi = &bp->bnx2_napi[0];
  724. bnapi->status_blk.msi = status_blk;
  725. bnapi->hw_tx_cons_ptr =
  726. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  727. bnapi->hw_rx_cons_ptr =
  728. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  729. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  730. for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
  731. struct status_block_msix *sblk;
  732. bnapi = &bp->bnx2_napi[i];
  733. sblk = (void *) (status_blk +
  734. BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  735. bnapi->status_blk.msix = sblk;
  736. bnapi->hw_tx_cons_ptr =
  737. &sblk->status_tx_quick_consumer_index;
  738. bnapi->hw_rx_cons_ptr =
  739. &sblk->status_rx_quick_consumer_index;
  740. bnapi->int_num = i << 24;
  741. }
  742. }
  743. bp->stats_blk = status_blk + status_blk_size;
  744. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  745. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  746. bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
  747. if (bp->ctx_pages == 0)
  748. bp->ctx_pages = 1;
  749. for (i = 0; i < bp->ctx_pages; i++) {
  750. bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
  751. BCM_PAGE_SIZE,
  752. &bp->ctx_blk_mapping[i]);
  753. if (bp->ctx_blk[i] == NULL)
  754. goto alloc_mem_err;
  755. }
  756. }
  757. err = bnx2_alloc_rx_mem(bp);
  758. if (err)
  759. goto alloc_mem_err;
  760. err = bnx2_alloc_tx_mem(bp);
  761. if (err)
  762. goto alloc_mem_err;
  763. return 0;
  764. alloc_mem_err:
  765. bnx2_free_mem(bp);
  766. return -ENOMEM;
  767. }
  768. static void
  769. bnx2_report_fw_link(struct bnx2 *bp)
  770. {
  771. u32 fw_link_status = 0;
  772. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  773. return;
  774. if (bp->link_up) {
  775. u32 bmsr;
  776. switch (bp->line_speed) {
  777. case SPEED_10:
  778. if (bp->duplex == DUPLEX_HALF)
  779. fw_link_status = BNX2_LINK_STATUS_10HALF;
  780. else
  781. fw_link_status = BNX2_LINK_STATUS_10FULL;
  782. break;
  783. case SPEED_100:
  784. if (bp->duplex == DUPLEX_HALF)
  785. fw_link_status = BNX2_LINK_STATUS_100HALF;
  786. else
  787. fw_link_status = BNX2_LINK_STATUS_100FULL;
  788. break;
  789. case SPEED_1000:
  790. if (bp->duplex == DUPLEX_HALF)
  791. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  792. else
  793. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  794. break;
  795. case SPEED_2500:
  796. if (bp->duplex == DUPLEX_HALF)
  797. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  798. else
  799. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  800. break;
  801. }
  802. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  803. if (bp->autoneg) {
  804. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  805. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  806. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  807. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  808. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  809. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  810. else
  811. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  812. }
  813. }
  814. else
  815. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  816. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  817. }
  818. static char *
  819. bnx2_xceiver_str(struct bnx2 *bp)
  820. {
  821. return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
  822. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  823. "Copper"));
  824. }
  825. static void
  826. bnx2_report_link(struct bnx2 *bp)
  827. {
  828. if (bp->link_up) {
  829. netif_carrier_on(bp->dev);
  830. printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
  831. bnx2_xceiver_str(bp));
  832. printk("%d Mbps ", bp->line_speed);
  833. if (bp->duplex == DUPLEX_FULL)
  834. printk("full duplex");
  835. else
  836. printk("half duplex");
  837. if (bp->flow_ctrl) {
  838. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  839. printk(", receive ");
  840. if (bp->flow_ctrl & FLOW_CTRL_TX)
  841. printk("& transmit ");
  842. }
  843. else {
  844. printk(", transmit ");
  845. }
  846. printk("flow control ON");
  847. }
  848. printk("\n");
  849. }
  850. else {
  851. netif_carrier_off(bp->dev);
  852. printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
  853. bnx2_xceiver_str(bp));
  854. }
  855. bnx2_report_fw_link(bp);
  856. }
  857. static void
  858. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  859. {
  860. u32 local_adv, remote_adv;
  861. bp->flow_ctrl = 0;
  862. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  863. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  864. if (bp->duplex == DUPLEX_FULL) {
  865. bp->flow_ctrl = bp->req_flow_ctrl;
  866. }
  867. return;
  868. }
  869. if (bp->duplex != DUPLEX_FULL) {
  870. return;
  871. }
  872. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  873. (CHIP_NUM(bp) == CHIP_NUM_5708)) {
  874. u32 val;
  875. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  876. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  877. bp->flow_ctrl |= FLOW_CTRL_TX;
  878. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  879. bp->flow_ctrl |= FLOW_CTRL_RX;
  880. return;
  881. }
  882. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  883. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  884. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  885. u32 new_local_adv = 0;
  886. u32 new_remote_adv = 0;
  887. if (local_adv & ADVERTISE_1000XPAUSE)
  888. new_local_adv |= ADVERTISE_PAUSE_CAP;
  889. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  890. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  891. if (remote_adv & ADVERTISE_1000XPAUSE)
  892. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  893. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  894. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  895. local_adv = new_local_adv;
  896. remote_adv = new_remote_adv;
  897. }
  898. /* See Table 28B-3 of 802.3ab-1999 spec. */
  899. if (local_adv & ADVERTISE_PAUSE_CAP) {
  900. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  901. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  902. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  903. }
  904. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  905. bp->flow_ctrl = FLOW_CTRL_RX;
  906. }
  907. }
  908. else {
  909. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  910. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  911. }
  912. }
  913. }
  914. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  915. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  916. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  917. bp->flow_ctrl = FLOW_CTRL_TX;
  918. }
  919. }
  920. }
  921. static int
  922. bnx2_5709s_linkup(struct bnx2 *bp)
  923. {
  924. u32 val, speed;
  925. bp->link_up = 1;
  926. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  927. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  928. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  929. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  930. bp->line_speed = bp->req_line_speed;
  931. bp->duplex = bp->req_duplex;
  932. return 0;
  933. }
  934. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  935. switch (speed) {
  936. case MII_BNX2_GP_TOP_AN_SPEED_10:
  937. bp->line_speed = SPEED_10;
  938. break;
  939. case MII_BNX2_GP_TOP_AN_SPEED_100:
  940. bp->line_speed = SPEED_100;
  941. break;
  942. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  943. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  944. bp->line_speed = SPEED_1000;
  945. break;
  946. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  947. bp->line_speed = SPEED_2500;
  948. break;
  949. }
  950. if (val & MII_BNX2_GP_TOP_AN_FD)
  951. bp->duplex = DUPLEX_FULL;
  952. else
  953. bp->duplex = DUPLEX_HALF;
  954. return 0;
  955. }
  956. static int
  957. bnx2_5708s_linkup(struct bnx2 *bp)
  958. {
  959. u32 val;
  960. bp->link_up = 1;
  961. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  962. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  963. case BCM5708S_1000X_STAT1_SPEED_10:
  964. bp->line_speed = SPEED_10;
  965. break;
  966. case BCM5708S_1000X_STAT1_SPEED_100:
  967. bp->line_speed = SPEED_100;
  968. break;
  969. case BCM5708S_1000X_STAT1_SPEED_1G:
  970. bp->line_speed = SPEED_1000;
  971. break;
  972. case BCM5708S_1000X_STAT1_SPEED_2G5:
  973. bp->line_speed = SPEED_2500;
  974. break;
  975. }
  976. if (val & BCM5708S_1000X_STAT1_FD)
  977. bp->duplex = DUPLEX_FULL;
  978. else
  979. bp->duplex = DUPLEX_HALF;
  980. return 0;
  981. }
  982. static int
  983. bnx2_5706s_linkup(struct bnx2 *bp)
  984. {
  985. u32 bmcr, local_adv, remote_adv, common;
  986. bp->link_up = 1;
  987. bp->line_speed = SPEED_1000;
  988. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  989. if (bmcr & BMCR_FULLDPLX) {
  990. bp->duplex = DUPLEX_FULL;
  991. }
  992. else {
  993. bp->duplex = DUPLEX_HALF;
  994. }
  995. if (!(bmcr & BMCR_ANENABLE)) {
  996. return 0;
  997. }
  998. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  999. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1000. common = local_adv & remote_adv;
  1001. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1002. if (common & ADVERTISE_1000XFULL) {
  1003. bp->duplex = DUPLEX_FULL;
  1004. }
  1005. else {
  1006. bp->duplex = DUPLEX_HALF;
  1007. }
  1008. }
  1009. return 0;
  1010. }
  1011. static int
  1012. bnx2_copper_linkup(struct bnx2 *bp)
  1013. {
  1014. u32 bmcr;
  1015. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1016. if (bmcr & BMCR_ANENABLE) {
  1017. u32 local_adv, remote_adv, common;
  1018. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1019. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1020. common = local_adv & (remote_adv >> 2);
  1021. if (common & ADVERTISE_1000FULL) {
  1022. bp->line_speed = SPEED_1000;
  1023. bp->duplex = DUPLEX_FULL;
  1024. }
  1025. else if (common & ADVERTISE_1000HALF) {
  1026. bp->line_speed = SPEED_1000;
  1027. bp->duplex = DUPLEX_HALF;
  1028. }
  1029. else {
  1030. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1031. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1032. common = local_adv & remote_adv;
  1033. if (common & ADVERTISE_100FULL) {
  1034. bp->line_speed = SPEED_100;
  1035. bp->duplex = DUPLEX_FULL;
  1036. }
  1037. else if (common & ADVERTISE_100HALF) {
  1038. bp->line_speed = SPEED_100;
  1039. bp->duplex = DUPLEX_HALF;
  1040. }
  1041. else if (common & ADVERTISE_10FULL) {
  1042. bp->line_speed = SPEED_10;
  1043. bp->duplex = DUPLEX_FULL;
  1044. }
  1045. else if (common & ADVERTISE_10HALF) {
  1046. bp->line_speed = SPEED_10;
  1047. bp->duplex = DUPLEX_HALF;
  1048. }
  1049. else {
  1050. bp->line_speed = 0;
  1051. bp->link_up = 0;
  1052. }
  1053. }
  1054. }
  1055. else {
  1056. if (bmcr & BMCR_SPEED100) {
  1057. bp->line_speed = SPEED_100;
  1058. }
  1059. else {
  1060. bp->line_speed = SPEED_10;
  1061. }
  1062. if (bmcr & BMCR_FULLDPLX) {
  1063. bp->duplex = DUPLEX_FULL;
  1064. }
  1065. else {
  1066. bp->duplex = DUPLEX_HALF;
  1067. }
  1068. }
  1069. return 0;
  1070. }
  1071. static void
  1072. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1073. {
  1074. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1075. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1076. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1077. val |= 0x02 << 8;
  1078. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1079. u32 lo_water, hi_water;
  1080. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1081. lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
  1082. else
  1083. lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
  1084. if (lo_water >= bp->rx_ring_size)
  1085. lo_water = 0;
  1086. hi_water = bp->rx_ring_size / 4;
  1087. if (hi_water <= lo_water)
  1088. lo_water = 0;
  1089. hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
  1090. lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
  1091. if (hi_water > 0xf)
  1092. hi_water = 0xf;
  1093. else if (hi_water == 0)
  1094. lo_water = 0;
  1095. val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
  1096. }
  1097. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1098. }
  1099. static void
  1100. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1101. {
  1102. int i;
  1103. u32 cid;
  1104. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1105. if (i == 1)
  1106. cid = RX_RSS_CID;
  1107. bnx2_init_rx_context(bp, cid);
  1108. }
  1109. }
  1110. static void
  1111. bnx2_set_mac_link(struct bnx2 *bp)
  1112. {
  1113. u32 val;
  1114. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1115. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1116. (bp->duplex == DUPLEX_HALF)) {
  1117. REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1118. }
  1119. /* Configure the EMAC mode register. */
  1120. val = REG_RD(bp, BNX2_EMAC_MODE);
  1121. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1122. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1123. BNX2_EMAC_MODE_25G_MODE);
  1124. if (bp->link_up) {
  1125. switch (bp->line_speed) {
  1126. case SPEED_10:
  1127. if (CHIP_NUM(bp) != CHIP_NUM_5706) {
  1128. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1129. break;
  1130. }
  1131. /* fall through */
  1132. case SPEED_100:
  1133. val |= BNX2_EMAC_MODE_PORT_MII;
  1134. break;
  1135. case SPEED_2500:
  1136. val |= BNX2_EMAC_MODE_25G_MODE;
  1137. /* fall through */
  1138. case SPEED_1000:
  1139. val |= BNX2_EMAC_MODE_PORT_GMII;
  1140. break;
  1141. }
  1142. }
  1143. else {
  1144. val |= BNX2_EMAC_MODE_PORT_GMII;
  1145. }
  1146. /* Set the MAC to operate in the appropriate duplex mode. */
  1147. if (bp->duplex == DUPLEX_HALF)
  1148. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1149. REG_WR(bp, BNX2_EMAC_MODE, val);
  1150. /* Enable/disable rx PAUSE. */
  1151. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1152. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1153. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1154. REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1155. /* Enable/disable tx PAUSE. */
  1156. val = REG_RD(bp, BNX2_EMAC_TX_MODE);
  1157. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1158. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1159. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1160. REG_WR(bp, BNX2_EMAC_TX_MODE, val);
  1161. /* Acknowledge the interrupt. */
  1162. REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1163. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1164. bnx2_init_all_rx_contexts(bp);
  1165. }
  1166. static void
  1167. bnx2_enable_bmsr1(struct bnx2 *bp)
  1168. {
  1169. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1170. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1171. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1172. MII_BNX2_BLK_ADDR_GP_STATUS);
  1173. }
  1174. static void
  1175. bnx2_disable_bmsr1(struct bnx2 *bp)
  1176. {
  1177. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1178. (CHIP_NUM(bp) == CHIP_NUM_5709))
  1179. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1180. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1181. }
  1182. static int
  1183. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1184. {
  1185. u32 up1;
  1186. int ret = 1;
  1187. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1188. return 0;
  1189. if (bp->autoneg & AUTONEG_SPEED)
  1190. bp->advertising |= ADVERTISED_2500baseX_Full;
  1191. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1192. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1193. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1194. if (!(up1 & BCM5708S_UP1_2G5)) {
  1195. up1 |= BCM5708S_UP1_2G5;
  1196. bnx2_write_phy(bp, bp->mii_up1, up1);
  1197. ret = 0;
  1198. }
  1199. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1200. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1201. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1202. return ret;
  1203. }
  1204. static int
  1205. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1206. {
  1207. u32 up1;
  1208. int ret = 0;
  1209. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1210. return 0;
  1211. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1212. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1213. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1214. if (up1 & BCM5708S_UP1_2G5) {
  1215. up1 &= ~BCM5708S_UP1_2G5;
  1216. bnx2_write_phy(bp, bp->mii_up1, up1);
  1217. ret = 1;
  1218. }
  1219. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1220. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1221. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1222. return ret;
  1223. }
  1224. static void
  1225. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1226. {
  1227. u32 bmcr;
  1228. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1229. return;
  1230. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1231. u32 val;
  1232. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1233. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1234. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1235. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1236. val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
  1237. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1238. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1239. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1240. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1241. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1242. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1243. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1244. }
  1245. if (bp->autoneg & AUTONEG_SPEED) {
  1246. bmcr &= ~BMCR_ANENABLE;
  1247. if (bp->req_duplex == DUPLEX_FULL)
  1248. bmcr |= BMCR_FULLDPLX;
  1249. }
  1250. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1251. }
  1252. static void
  1253. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1254. {
  1255. u32 bmcr;
  1256. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1257. return;
  1258. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1259. u32 val;
  1260. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1261. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1262. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
  1263. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1264. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1265. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1266. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1267. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1268. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1269. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1270. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1271. }
  1272. if (bp->autoneg & AUTONEG_SPEED)
  1273. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1274. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1275. }
  1276. static void
  1277. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1278. {
  1279. u32 val;
  1280. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1281. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1282. if (start)
  1283. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1284. else
  1285. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1286. }
  1287. static int
  1288. bnx2_set_link(struct bnx2 *bp)
  1289. {
  1290. u32 bmsr;
  1291. u8 link_up;
  1292. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1293. bp->link_up = 1;
  1294. return 0;
  1295. }
  1296. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1297. return 0;
  1298. link_up = bp->link_up;
  1299. bnx2_enable_bmsr1(bp);
  1300. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1301. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1302. bnx2_disable_bmsr1(bp);
  1303. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1304. (CHIP_NUM(bp) == CHIP_NUM_5706)) {
  1305. u32 val, an_dbg;
  1306. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1307. bnx2_5706s_force_link_dn(bp, 0);
  1308. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1309. }
  1310. val = REG_RD(bp, BNX2_EMAC_STATUS);
  1311. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1312. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1313. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1314. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1315. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1316. bmsr |= BMSR_LSTATUS;
  1317. else
  1318. bmsr &= ~BMSR_LSTATUS;
  1319. }
  1320. if (bmsr & BMSR_LSTATUS) {
  1321. bp->link_up = 1;
  1322. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1323. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1324. bnx2_5706s_linkup(bp);
  1325. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  1326. bnx2_5708s_linkup(bp);
  1327. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  1328. bnx2_5709s_linkup(bp);
  1329. }
  1330. else {
  1331. bnx2_copper_linkup(bp);
  1332. }
  1333. bnx2_resolve_flow_ctrl(bp);
  1334. }
  1335. else {
  1336. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1337. (bp->autoneg & AUTONEG_SPEED))
  1338. bnx2_disable_forced_2g5(bp);
  1339. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1340. u32 bmcr;
  1341. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1342. bmcr |= BMCR_ANENABLE;
  1343. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1344. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1345. }
  1346. bp->link_up = 0;
  1347. }
  1348. if (bp->link_up != link_up) {
  1349. bnx2_report_link(bp);
  1350. }
  1351. bnx2_set_mac_link(bp);
  1352. return 0;
  1353. }
  1354. static int
  1355. bnx2_reset_phy(struct bnx2 *bp)
  1356. {
  1357. int i;
  1358. u32 reg;
  1359. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1360. #define PHY_RESET_MAX_WAIT 100
  1361. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1362. udelay(10);
  1363. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1364. if (!(reg & BMCR_RESET)) {
  1365. udelay(20);
  1366. break;
  1367. }
  1368. }
  1369. if (i == PHY_RESET_MAX_WAIT) {
  1370. return -EBUSY;
  1371. }
  1372. return 0;
  1373. }
  1374. static u32
  1375. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1376. {
  1377. u32 adv = 0;
  1378. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1379. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1380. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1381. adv = ADVERTISE_1000XPAUSE;
  1382. }
  1383. else {
  1384. adv = ADVERTISE_PAUSE_CAP;
  1385. }
  1386. }
  1387. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1388. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1389. adv = ADVERTISE_1000XPSE_ASYM;
  1390. }
  1391. else {
  1392. adv = ADVERTISE_PAUSE_ASYM;
  1393. }
  1394. }
  1395. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1396. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1397. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1398. }
  1399. else {
  1400. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1401. }
  1402. }
  1403. return adv;
  1404. }
  1405. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1406. static int
  1407. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1408. __releases(&bp->phy_lock)
  1409. __acquires(&bp->phy_lock)
  1410. {
  1411. u32 speed_arg = 0, pause_adv;
  1412. pause_adv = bnx2_phy_get_pause_adv(bp);
  1413. if (bp->autoneg & AUTONEG_SPEED) {
  1414. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1415. if (bp->advertising & ADVERTISED_10baseT_Half)
  1416. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1417. if (bp->advertising & ADVERTISED_10baseT_Full)
  1418. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1419. if (bp->advertising & ADVERTISED_100baseT_Half)
  1420. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1421. if (bp->advertising & ADVERTISED_100baseT_Full)
  1422. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1423. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1424. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1425. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1426. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1427. } else {
  1428. if (bp->req_line_speed == SPEED_2500)
  1429. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1430. else if (bp->req_line_speed == SPEED_1000)
  1431. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1432. else if (bp->req_line_speed == SPEED_100) {
  1433. if (bp->req_duplex == DUPLEX_FULL)
  1434. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1435. else
  1436. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1437. } else if (bp->req_line_speed == SPEED_10) {
  1438. if (bp->req_duplex == DUPLEX_FULL)
  1439. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1440. else
  1441. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1442. }
  1443. }
  1444. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1445. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1446. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1447. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1448. if (port == PORT_TP)
  1449. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1450. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1451. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1452. spin_unlock_bh(&bp->phy_lock);
  1453. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1454. spin_lock_bh(&bp->phy_lock);
  1455. return 0;
  1456. }
  1457. static int
  1458. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1459. __releases(&bp->phy_lock)
  1460. __acquires(&bp->phy_lock)
  1461. {
  1462. u32 adv, bmcr;
  1463. u32 new_adv = 0;
  1464. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1465. return (bnx2_setup_remote_phy(bp, port));
  1466. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1467. u32 new_bmcr;
  1468. int force_link_down = 0;
  1469. if (bp->req_line_speed == SPEED_2500) {
  1470. if (!bnx2_test_and_enable_2g5(bp))
  1471. force_link_down = 1;
  1472. } else if (bp->req_line_speed == SPEED_1000) {
  1473. if (bnx2_test_and_disable_2g5(bp))
  1474. force_link_down = 1;
  1475. }
  1476. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1477. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1478. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1479. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1480. new_bmcr |= BMCR_SPEED1000;
  1481. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  1482. if (bp->req_line_speed == SPEED_2500)
  1483. bnx2_enable_forced_2g5(bp);
  1484. else if (bp->req_line_speed == SPEED_1000) {
  1485. bnx2_disable_forced_2g5(bp);
  1486. new_bmcr &= ~0x2000;
  1487. }
  1488. } else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
  1489. if (bp->req_line_speed == SPEED_2500)
  1490. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1491. else
  1492. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1493. }
  1494. if (bp->req_duplex == DUPLEX_FULL) {
  1495. adv |= ADVERTISE_1000XFULL;
  1496. new_bmcr |= BMCR_FULLDPLX;
  1497. }
  1498. else {
  1499. adv |= ADVERTISE_1000XHALF;
  1500. new_bmcr &= ~BMCR_FULLDPLX;
  1501. }
  1502. if ((new_bmcr != bmcr) || (force_link_down)) {
  1503. /* Force a link down visible on the other side */
  1504. if (bp->link_up) {
  1505. bnx2_write_phy(bp, bp->mii_adv, adv &
  1506. ~(ADVERTISE_1000XFULL |
  1507. ADVERTISE_1000XHALF));
  1508. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1509. BMCR_ANRESTART | BMCR_ANENABLE);
  1510. bp->link_up = 0;
  1511. netif_carrier_off(bp->dev);
  1512. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1513. bnx2_report_link(bp);
  1514. }
  1515. bnx2_write_phy(bp, bp->mii_adv, adv);
  1516. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1517. } else {
  1518. bnx2_resolve_flow_ctrl(bp);
  1519. bnx2_set_mac_link(bp);
  1520. }
  1521. return 0;
  1522. }
  1523. bnx2_test_and_enable_2g5(bp);
  1524. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1525. new_adv |= ADVERTISE_1000XFULL;
  1526. new_adv |= bnx2_phy_get_pause_adv(bp);
  1527. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1528. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1529. bp->serdes_an_pending = 0;
  1530. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1531. /* Force a link down visible on the other side */
  1532. if (bp->link_up) {
  1533. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1534. spin_unlock_bh(&bp->phy_lock);
  1535. msleep(20);
  1536. spin_lock_bh(&bp->phy_lock);
  1537. }
  1538. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1539. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1540. BMCR_ANENABLE);
  1541. /* Speed up link-up time when the link partner
  1542. * does not autonegotiate which is very common
  1543. * in blade servers. Some blade servers use
  1544. * IPMI for kerboard input and it's important
  1545. * to minimize link disruptions. Autoneg. involves
  1546. * exchanging base pages plus 3 next pages and
  1547. * normally completes in about 120 msec.
  1548. */
  1549. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1550. bp->serdes_an_pending = 1;
  1551. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1552. } else {
  1553. bnx2_resolve_flow_ctrl(bp);
  1554. bnx2_set_mac_link(bp);
  1555. }
  1556. return 0;
  1557. }
  1558. #define ETHTOOL_ALL_FIBRE_SPEED \
  1559. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1560. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1561. (ADVERTISED_1000baseT_Full)
  1562. #define ETHTOOL_ALL_COPPER_SPEED \
  1563. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1564. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1565. ADVERTISED_1000baseT_Full)
  1566. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1567. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1568. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1569. static void
  1570. bnx2_set_default_remote_link(struct bnx2 *bp)
  1571. {
  1572. u32 link;
  1573. if (bp->phy_port == PORT_TP)
  1574. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1575. else
  1576. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1577. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1578. bp->req_line_speed = 0;
  1579. bp->autoneg |= AUTONEG_SPEED;
  1580. bp->advertising = ADVERTISED_Autoneg;
  1581. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1582. bp->advertising |= ADVERTISED_10baseT_Half;
  1583. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1584. bp->advertising |= ADVERTISED_10baseT_Full;
  1585. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1586. bp->advertising |= ADVERTISED_100baseT_Half;
  1587. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1588. bp->advertising |= ADVERTISED_100baseT_Full;
  1589. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1590. bp->advertising |= ADVERTISED_1000baseT_Full;
  1591. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1592. bp->advertising |= ADVERTISED_2500baseX_Full;
  1593. } else {
  1594. bp->autoneg = 0;
  1595. bp->advertising = 0;
  1596. bp->req_duplex = DUPLEX_FULL;
  1597. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1598. bp->req_line_speed = SPEED_10;
  1599. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1600. bp->req_duplex = DUPLEX_HALF;
  1601. }
  1602. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1603. bp->req_line_speed = SPEED_100;
  1604. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1605. bp->req_duplex = DUPLEX_HALF;
  1606. }
  1607. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1608. bp->req_line_speed = SPEED_1000;
  1609. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1610. bp->req_line_speed = SPEED_2500;
  1611. }
  1612. }
  1613. static void
  1614. bnx2_set_default_link(struct bnx2 *bp)
  1615. {
  1616. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1617. bnx2_set_default_remote_link(bp);
  1618. return;
  1619. }
  1620. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1621. bp->req_line_speed = 0;
  1622. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1623. u32 reg;
  1624. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1625. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1626. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1627. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1628. bp->autoneg = 0;
  1629. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1630. bp->req_duplex = DUPLEX_FULL;
  1631. }
  1632. } else
  1633. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1634. }
  1635. static void
  1636. bnx2_send_heart_beat(struct bnx2 *bp)
  1637. {
  1638. u32 msg;
  1639. u32 addr;
  1640. spin_lock(&bp->indirect_lock);
  1641. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1642. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1643. REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1644. REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1645. spin_unlock(&bp->indirect_lock);
  1646. }
  1647. static void
  1648. bnx2_remote_phy_event(struct bnx2 *bp)
  1649. {
  1650. u32 msg;
  1651. u8 link_up = bp->link_up;
  1652. u8 old_port;
  1653. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1654. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1655. bnx2_send_heart_beat(bp);
  1656. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1657. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1658. bp->link_up = 0;
  1659. else {
  1660. u32 speed;
  1661. bp->link_up = 1;
  1662. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1663. bp->duplex = DUPLEX_FULL;
  1664. switch (speed) {
  1665. case BNX2_LINK_STATUS_10HALF:
  1666. bp->duplex = DUPLEX_HALF;
  1667. case BNX2_LINK_STATUS_10FULL:
  1668. bp->line_speed = SPEED_10;
  1669. break;
  1670. case BNX2_LINK_STATUS_100HALF:
  1671. bp->duplex = DUPLEX_HALF;
  1672. case BNX2_LINK_STATUS_100BASE_T4:
  1673. case BNX2_LINK_STATUS_100FULL:
  1674. bp->line_speed = SPEED_100;
  1675. break;
  1676. case BNX2_LINK_STATUS_1000HALF:
  1677. bp->duplex = DUPLEX_HALF;
  1678. case BNX2_LINK_STATUS_1000FULL:
  1679. bp->line_speed = SPEED_1000;
  1680. break;
  1681. case BNX2_LINK_STATUS_2500HALF:
  1682. bp->duplex = DUPLEX_HALF;
  1683. case BNX2_LINK_STATUS_2500FULL:
  1684. bp->line_speed = SPEED_2500;
  1685. break;
  1686. default:
  1687. bp->line_speed = 0;
  1688. break;
  1689. }
  1690. bp->flow_ctrl = 0;
  1691. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1692. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1693. if (bp->duplex == DUPLEX_FULL)
  1694. bp->flow_ctrl = bp->req_flow_ctrl;
  1695. } else {
  1696. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1697. bp->flow_ctrl |= FLOW_CTRL_TX;
  1698. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1699. bp->flow_ctrl |= FLOW_CTRL_RX;
  1700. }
  1701. old_port = bp->phy_port;
  1702. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1703. bp->phy_port = PORT_FIBRE;
  1704. else
  1705. bp->phy_port = PORT_TP;
  1706. if (old_port != bp->phy_port)
  1707. bnx2_set_default_link(bp);
  1708. }
  1709. if (bp->link_up != link_up)
  1710. bnx2_report_link(bp);
  1711. bnx2_set_mac_link(bp);
  1712. }
  1713. static int
  1714. bnx2_set_remote_link(struct bnx2 *bp)
  1715. {
  1716. u32 evt_code;
  1717. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1718. switch (evt_code) {
  1719. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1720. bnx2_remote_phy_event(bp);
  1721. break;
  1722. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1723. default:
  1724. bnx2_send_heart_beat(bp);
  1725. break;
  1726. }
  1727. return 0;
  1728. }
  1729. static int
  1730. bnx2_setup_copper_phy(struct bnx2 *bp)
  1731. __releases(&bp->phy_lock)
  1732. __acquires(&bp->phy_lock)
  1733. {
  1734. u32 bmcr;
  1735. u32 new_bmcr;
  1736. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1737. if (bp->autoneg & AUTONEG_SPEED) {
  1738. u32 adv_reg, adv1000_reg;
  1739. u32 new_adv_reg = 0;
  1740. u32 new_adv1000_reg = 0;
  1741. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1742. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1743. ADVERTISE_PAUSE_ASYM);
  1744. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1745. adv1000_reg &= PHY_ALL_1000_SPEED;
  1746. if (bp->advertising & ADVERTISED_10baseT_Half)
  1747. new_adv_reg |= ADVERTISE_10HALF;
  1748. if (bp->advertising & ADVERTISED_10baseT_Full)
  1749. new_adv_reg |= ADVERTISE_10FULL;
  1750. if (bp->advertising & ADVERTISED_100baseT_Half)
  1751. new_adv_reg |= ADVERTISE_100HALF;
  1752. if (bp->advertising & ADVERTISED_100baseT_Full)
  1753. new_adv_reg |= ADVERTISE_100FULL;
  1754. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1755. new_adv1000_reg |= ADVERTISE_1000FULL;
  1756. new_adv_reg |= ADVERTISE_CSMA;
  1757. new_adv_reg |= bnx2_phy_get_pause_adv(bp);
  1758. if ((adv1000_reg != new_adv1000_reg) ||
  1759. (adv_reg != new_adv_reg) ||
  1760. ((bmcr & BMCR_ANENABLE) == 0)) {
  1761. bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
  1762. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
  1763. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1764. BMCR_ANENABLE);
  1765. }
  1766. else if (bp->link_up) {
  1767. /* Flow ctrl may have changed from auto to forced */
  1768. /* or vice-versa. */
  1769. bnx2_resolve_flow_ctrl(bp);
  1770. bnx2_set_mac_link(bp);
  1771. }
  1772. return 0;
  1773. }
  1774. new_bmcr = 0;
  1775. if (bp->req_line_speed == SPEED_100) {
  1776. new_bmcr |= BMCR_SPEED100;
  1777. }
  1778. if (bp->req_duplex == DUPLEX_FULL) {
  1779. new_bmcr |= BMCR_FULLDPLX;
  1780. }
  1781. if (new_bmcr != bmcr) {
  1782. u32 bmsr;
  1783. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1784. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1785. if (bmsr & BMSR_LSTATUS) {
  1786. /* Force link down */
  1787. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1788. spin_unlock_bh(&bp->phy_lock);
  1789. msleep(50);
  1790. spin_lock_bh(&bp->phy_lock);
  1791. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1792. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1793. }
  1794. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1795. /* Normally, the new speed is setup after the link has
  1796. * gone down and up again. In some cases, link will not go
  1797. * down so we need to set up the new speed here.
  1798. */
  1799. if (bmsr & BMSR_LSTATUS) {
  1800. bp->line_speed = bp->req_line_speed;
  1801. bp->duplex = bp->req_duplex;
  1802. bnx2_resolve_flow_ctrl(bp);
  1803. bnx2_set_mac_link(bp);
  1804. }
  1805. } else {
  1806. bnx2_resolve_flow_ctrl(bp);
  1807. bnx2_set_mac_link(bp);
  1808. }
  1809. return 0;
  1810. }
  1811. static int
  1812. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1813. __releases(&bp->phy_lock)
  1814. __acquires(&bp->phy_lock)
  1815. {
  1816. if (bp->loopback == MAC_LOOPBACK)
  1817. return 0;
  1818. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1819. return (bnx2_setup_serdes_phy(bp, port));
  1820. }
  1821. else {
  1822. return (bnx2_setup_copper_phy(bp));
  1823. }
  1824. }
  1825. static int
  1826. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1827. {
  1828. u32 val;
  1829. bp->mii_bmcr = MII_BMCR + 0x10;
  1830. bp->mii_bmsr = MII_BMSR + 0x10;
  1831. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1832. bp->mii_adv = MII_ADVERTISE + 0x10;
  1833. bp->mii_lpa = MII_LPA + 0x10;
  1834. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1835. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1836. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1837. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1838. if (reset_phy)
  1839. bnx2_reset_phy(bp);
  1840. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1841. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1842. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1843. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1844. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1845. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1846. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1847. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1848. val |= BCM5708S_UP1_2G5;
  1849. else
  1850. val &= ~BCM5708S_UP1_2G5;
  1851. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1852. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1853. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1854. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1855. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1856. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1857. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1858. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1859. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1860. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1861. return 0;
  1862. }
  1863. static int
  1864. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1865. {
  1866. u32 val;
  1867. if (reset_phy)
  1868. bnx2_reset_phy(bp);
  1869. bp->mii_up1 = BCM5708S_UP1;
  1870. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1871. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1872. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1873. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1874. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1875. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1876. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1877. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1878. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1879. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1880. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1881. val |= BCM5708S_UP1_2G5;
  1882. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1883. }
  1884. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  1885. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  1886. (CHIP_ID(bp) == CHIP_ID_5708_B1)) {
  1887. /* increase tx signal amplitude */
  1888. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1889. BCM5708S_BLK_ADDR_TX_MISC);
  1890. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1891. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1892. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1893. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1894. }
  1895. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1896. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1897. if (val) {
  1898. u32 is_backplane;
  1899. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1900. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1901. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1902. BCM5708S_BLK_ADDR_TX_MISC);
  1903. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1904. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1905. BCM5708S_BLK_ADDR_DIG);
  1906. }
  1907. }
  1908. return 0;
  1909. }
  1910. static int
  1911. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1912. {
  1913. if (reset_phy)
  1914. bnx2_reset_phy(bp);
  1915. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1916. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  1917. REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1918. if (bp->dev->mtu > 1500) {
  1919. u32 val;
  1920. /* Set extended packet length bit */
  1921. bnx2_write_phy(bp, 0x18, 0x7);
  1922. bnx2_read_phy(bp, 0x18, &val);
  1923. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1924. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1925. bnx2_read_phy(bp, 0x1c, &val);
  1926. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1927. }
  1928. else {
  1929. u32 val;
  1930. bnx2_write_phy(bp, 0x18, 0x7);
  1931. bnx2_read_phy(bp, 0x18, &val);
  1932. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1933. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1934. bnx2_read_phy(bp, 0x1c, &val);
  1935. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1936. }
  1937. return 0;
  1938. }
  1939. static int
  1940. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1941. {
  1942. u32 val;
  1943. if (reset_phy)
  1944. bnx2_reset_phy(bp);
  1945. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1946. bnx2_write_phy(bp, 0x18, 0x0c00);
  1947. bnx2_write_phy(bp, 0x17, 0x000a);
  1948. bnx2_write_phy(bp, 0x15, 0x310b);
  1949. bnx2_write_phy(bp, 0x17, 0x201f);
  1950. bnx2_write_phy(bp, 0x15, 0x9506);
  1951. bnx2_write_phy(bp, 0x17, 0x401f);
  1952. bnx2_write_phy(bp, 0x15, 0x14e2);
  1953. bnx2_write_phy(bp, 0x18, 0x0400);
  1954. }
  1955. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1956. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1957. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1958. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1959. val &= ~(1 << 8);
  1960. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1961. }
  1962. if (bp->dev->mtu > 1500) {
  1963. /* Set extended packet length bit */
  1964. bnx2_write_phy(bp, 0x18, 0x7);
  1965. bnx2_read_phy(bp, 0x18, &val);
  1966. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1967. bnx2_read_phy(bp, 0x10, &val);
  1968. bnx2_write_phy(bp, 0x10, val | 0x1);
  1969. }
  1970. else {
  1971. bnx2_write_phy(bp, 0x18, 0x7);
  1972. bnx2_read_phy(bp, 0x18, &val);
  1973. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1974. bnx2_read_phy(bp, 0x10, &val);
  1975. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1976. }
  1977. /* ethernet@wirespeed */
  1978. bnx2_write_phy(bp, 0x18, 0x7007);
  1979. bnx2_read_phy(bp, 0x18, &val);
  1980. bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
  1981. return 0;
  1982. }
  1983. static int
  1984. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1985. __releases(&bp->phy_lock)
  1986. __acquires(&bp->phy_lock)
  1987. {
  1988. u32 val;
  1989. int rc = 0;
  1990. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  1991. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  1992. bp->mii_bmcr = MII_BMCR;
  1993. bp->mii_bmsr = MII_BMSR;
  1994. bp->mii_bmsr1 = MII_BMSR;
  1995. bp->mii_adv = MII_ADVERTISE;
  1996. bp->mii_lpa = MII_LPA;
  1997. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  1998. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1999. goto setup_phy;
  2000. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2001. bp->phy_id = val << 16;
  2002. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2003. bp->phy_id |= val & 0xffff;
  2004. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2005. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  2006. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2007. else if (CHIP_NUM(bp) == CHIP_NUM_5708)
  2008. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2009. else if (CHIP_NUM(bp) == CHIP_NUM_5709)
  2010. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2011. }
  2012. else {
  2013. rc = bnx2_init_copper_phy(bp, reset_phy);
  2014. }
  2015. setup_phy:
  2016. if (!rc)
  2017. rc = bnx2_setup_phy(bp, bp->phy_port);
  2018. return rc;
  2019. }
  2020. static int
  2021. bnx2_set_mac_loopback(struct bnx2 *bp)
  2022. {
  2023. u32 mac_mode;
  2024. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2025. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2026. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2027. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2028. bp->link_up = 1;
  2029. return 0;
  2030. }
  2031. static int bnx2_test_link(struct bnx2 *);
  2032. static int
  2033. bnx2_set_phy_loopback(struct bnx2 *bp)
  2034. {
  2035. u32 mac_mode;
  2036. int rc, i;
  2037. spin_lock_bh(&bp->phy_lock);
  2038. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2039. BMCR_SPEED1000);
  2040. spin_unlock_bh(&bp->phy_lock);
  2041. if (rc)
  2042. return rc;
  2043. for (i = 0; i < 10; i++) {
  2044. if (bnx2_test_link(bp) == 0)
  2045. break;
  2046. msleep(100);
  2047. }
  2048. mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
  2049. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2050. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2051. BNX2_EMAC_MODE_25G_MODE);
  2052. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2053. REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2054. bp->link_up = 1;
  2055. return 0;
  2056. }
  2057. static int
  2058. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2059. {
  2060. int i;
  2061. u32 val;
  2062. bp->fw_wr_seq++;
  2063. msg_data |= bp->fw_wr_seq;
  2064. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2065. if (!ack)
  2066. return 0;
  2067. /* wait for an acknowledgement. */
  2068. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2069. msleep(10);
  2070. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2071. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2072. break;
  2073. }
  2074. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2075. return 0;
  2076. /* If we timed out, inform the firmware that this is the case. */
  2077. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2078. if (!silent)
  2079. printk(KERN_ERR PFX "fw sync timeout, reset code = "
  2080. "%x\n", msg_data);
  2081. msg_data &= ~BNX2_DRV_MSG_CODE;
  2082. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2083. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2084. return -EBUSY;
  2085. }
  2086. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2087. return -EIO;
  2088. return 0;
  2089. }
  2090. static int
  2091. bnx2_init_5709_context(struct bnx2 *bp)
  2092. {
  2093. int i, ret = 0;
  2094. u32 val;
  2095. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2096. val |= (BCM_PAGE_BITS - 8) << 16;
  2097. REG_WR(bp, BNX2_CTX_COMMAND, val);
  2098. for (i = 0; i < 10; i++) {
  2099. val = REG_RD(bp, BNX2_CTX_COMMAND);
  2100. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2101. break;
  2102. udelay(2);
  2103. }
  2104. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2105. return -EBUSY;
  2106. for (i = 0; i < bp->ctx_pages; i++) {
  2107. int j;
  2108. if (bp->ctx_blk[i])
  2109. memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
  2110. else
  2111. return -ENOMEM;
  2112. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2113. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2114. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2115. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2116. (u64) bp->ctx_blk_mapping[i] >> 32);
  2117. REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2118. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2119. for (j = 0; j < 10; j++) {
  2120. val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2121. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2122. break;
  2123. udelay(5);
  2124. }
  2125. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2126. ret = -EBUSY;
  2127. break;
  2128. }
  2129. }
  2130. return ret;
  2131. }
  2132. static void
  2133. bnx2_init_context(struct bnx2 *bp)
  2134. {
  2135. u32 vcid;
  2136. vcid = 96;
  2137. while (vcid) {
  2138. u32 vcid_addr, pcid_addr, offset;
  2139. int i;
  2140. vcid--;
  2141. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  2142. u32 new_vcid;
  2143. vcid_addr = GET_PCID_ADDR(vcid);
  2144. if (vcid & 0x8) {
  2145. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2146. }
  2147. else {
  2148. new_vcid = vcid;
  2149. }
  2150. pcid_addr = GET_PCID_ADDR(new_vcid);
  2151. }
  2152. else {
  2153. vcid_addr = GET_CID_ADDR(vcid);
  2154. pcid_addr = vcid_addr;
  2155. }
  2156. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2157. vcid_addr += (i << PHY_CTX_SHIFT);
  2158. pcid_addr += (i << PHY_CTX_SHIFT);
  2159. REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2160. REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2161. /* Zero out the context. */
  2162. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2163. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2164. }
  2165. }
  2166. }
  2167. static int
  2168. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2169. {
  2170. u16 *good_mbuf;
  2171. u32 good_mbuf_cnt;
  2172. u32 val;
  2173. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2174. if (good_mbuf == NULL) {
  2175. printk(KERN_ERR PFX "Failed to allocate memory in "
  2176. "bnx2_alloc_bad_rbuf\n");
  2177. return -ENOMEM;
  2178. }
  2179. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2180. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2181. good_mbuf_cnt = 0;
  2182. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2183. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2184. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2185. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2186. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2187. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2188. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2189. /* The addresses with Bit 9 set are bad memory blocks. */
  2190. if (!(val & (1 << 9))) {
  2191. good_mbuf[good_mbuf_cnt] = (u16) val;
  2192. good_mbuf_cnt++;
  2193. }
  2194. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2195. }
  2196. /* Free the good ones back to the mbuf pool thus discarding
  2197. * all the bad ones. */
  2198. while (good_mbuf_cnt) {
  2199. good_mbuf_cnt--;
  2200. val = good_mbuf[good_mbuf_cnt];
  2201. val = (val << 9) | val | 1;
  2202. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2203. }
  2204. kfree(good_mbuf);
  2205. return 0;
  2206. }
  2207. static void
  2208. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2209. {
  2210. u32 val;
  2211. val = (mac_addr[0] << 8) | mac_addr[1];
  2212. REG_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2213. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2214. (mac_addr[4] << 8) | mac_addr[5];
  2215. REG_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2216. }
  2217. static inline int
  2218. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2219. {
  2220. dma_addr_t mapping;
  2221. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2222. struct rx_bd *rxbd =
  2223. &rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
  2224. struct page *page = alloc_page(GFP_ATOMIC);
  2225. if (!page)
  2226. return -ENOMEM;
  2227. mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
  2228. PCI_DMA_FROMDEVICE);
  2229. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2230. __free_page(page);
  2231. return -EIO;
  2232. }
  2233. rx_pg->page = page;
  2234. pci_unmap_addr_set(rx_pg, mapping, mapping);
  2235. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2236. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2237. return 0;
  2238. }
  2239. static void
  2240. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2241. {
  2242. struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2243. struct page *page = rx_pg->page;
  2244. if (!page)
  2245. return;
  2246. pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
  2247. PCI_DMA_FROMDEVICE);
  2248. __free_page(page);
  2249. rx_pg->page = NULL;
  2250. }
  2251. static inline int
  2252. bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2253. {
  2254. struct sk_buff *skb;
  2255. struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2256. dma_addr_t mapping;
  2257. struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
  2258. unsigned long align;
  2259. skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
  2260. if (skb == NULL) {
  2261. return -ENOMEM;
  2262. }
  2263. if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
  2264. skb_reserve(skb, BNX2_RX_ALIGN - align);
  2265. mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
  2266. PCI_DMA_FROMDEVICE);
  2267. if (pci_dma_mapping_error(bp->pdev, mapping)) {
  2268. dev_kfree_skb(skb);
  2269. return -EIO;
  2270. }
  2271. rx_buf->skb = skb;
  2272. pci_unmap_addr_set(rx_buf, mapping, mapping);
  2273. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2274. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2275. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2276. return 0;
  2277. }
  2278. static int
  2279. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2280. {
  2281. struct status_block *sblk = bnapi->status_blk.msi;
  2282. u32 new_link_state, old_link_state;
  2283. int is_set = 1;
  2284. new_link_state = sblk->status_attn_bits & event;
  2285. old_link_state = sblk->status_attn_bits_ack & event;
  2286. if (new_link_state != old_link_state) {
  2287. if (new_link_state)
  2288. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2289. else
  2290. REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2291. } else
  2292. is_set = 0;
  2293. return is_set;
  2294. }
  2295. static void
  2296. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2297. {
  2298. spin_lock(&bp->phy_lock);
  2299. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2300. bnx2_set_link(bp);
  2301. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2302. bnx2_set_remote_link(bp);
  2303. spin_unlock(&bp->phy_lock);
  2304. }
  2305. static inline u16
  2306. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2307. {
  2308. u16 cons;
  2309. /* Tell compiler that status block fields can change. */
  2310. barrier();
  2311. cons = *bnapi->hw_tx_cons_ptr;
  2312. barrier();
  2313. if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
  2314. cons++;
  2315. return cons;
  2316. }
  2317. static int
  2318. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2319. {
  2320. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2321. u16 hw_cons, sw_cons, sw_ring_cons;
  2322. int tx_pkt = 0, index;
  2323. struct netdev_queue *txq;
  2324. index = (bnapi - bp->bnx2_napi);
  2325. txq = netdev_get_tx_queue(bp->dev, index);
  2326. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2327. sw_cons = txr->tx_cons;
  2328. while (sw_cons != hw_cons) {
  2329. struct sw_tx_bd *tx_buf;
  2330. struct sk_buff *skb;
  2331. int i, last;
  2332. sw_ring_cons = TX_RING_IDX(sw_cons);
  2333. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2334. skb = tx_buf->skb;
  2335. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2336. prefetch(&skb->end);
  2337. /* partial BD completions possible with TSO packets */
  2338. if (tx_buf->is_gso) {
  2339. u16 last_idx, last_ring_idx;
  2340. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2341. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2342. if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
  2343. last_idx++;
  2344. }
  2345. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2346. break;
  2347. }
  2348. }
  2349. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  2350. tx_buf->skb = NULL;
  2351. last = tx_buf->nr_frags;
  2352. for (i = 0; i < last; i++) {
  2353. sw_cons = NEXT_TX_BD(sw_cons);
  2354. }
  2355. sw_cons = NEXT_TX_BD(sw_cons);
  2356. dev_kfree_skb(skb);
  2357. tx_pkt++;
  2358. if (tx_pkt == budget)
  2359. break;
  2360. if (hw_cons == sw_cons)
  2361. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2362. }
  2363. txr->hw_tx_cons = hw_cons;
  2364. txr->tx_cons = sw_cons;
  2365. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2366. * before checking for netif_tx_queue_stopped(). Without the
  2367. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2368. * will miss it and cause the queue to be stopped forever.
  2369. */
  2370. smp_mb();
  2371. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2372. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2373. __netif_tx_lock(txq, smp_processor_id());
  2374. if ((netif_tx_queue_stopped(txq)) &&
  2375. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2376. netif_tx_wake_queue(txq);
  2377. __netif_tx_unlock(txq);
  2378. }
  2379. return tx_pkt;
  2380. }
  2381. static void
  2382. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2383. struct sk_buff *skb, int count)
  2384. {
  2385. struct sw_pg *cons_rx_pg, *prod_rx_pg;
  2386. struct rx_bd *cons_bd, *prod_bd;
  2387. int i;
  2388. u16 hw_prod, prod;
  2389. u16 cons = rxr->rx_pg_cons;
  2390. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2391. /* The caller was unable to allocate a new page to replace the
  2392. * last one in the frags array, so we need to recycle that page
  2393. * and then free the skb.
  2394. */
  2395. if (skb) {
  2396. struct page *page;
  2397. struct skb_shared_info *shinfo;
  2398. shinfo = skb_shinfo(skb);
  2399. shinfo->nr_frags--;
  2400. page = shinfo->frags[shinfo->nr_frags].page;
  2401. shinfo->frags[shinfo->nr_frags].page = NULL;
  2402. cons_rx_pg->page = page;
  2403. dev_kfree_skb(skb);
  2404. }
  2405. hw_prod = rxr->rx_pg_prod;
  2406. for (i = 0; i < count; i++) {
  2407. prod = RX_PG_RING_IDX(hw_prod);
  2408. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2409. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2410. cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2411. prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2412. if (prod != cons) {
  2413. prod_rx_pg->page = cons_rx_pg->page;
  2414. cons_rx_pg->page = NULL;
  2415. pci_unmap_addr_set(prod_rx_pg, mapping,
  2416. pci_unmap_addr(cons_rx_pg, mapping));
  2417. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2418. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2419. }
  2420. cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
  2421. hw_prod = NEXT_RX_BD(hw_prod);
  2422. }
  2423. rxr->rx_pg_prod = hw_prod;
  2424. rxr->rx_pg_cons = cons;
  2425. }
  2426. static inline void
  2427. bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2428. struct sk_buff *skb, u16 cons, u16 prod)
  2429. {
  2430. struct sw_bd *cons_rx_buf, *prod_rx_buf;
  2431. struct rx_bd *cons_bd, *prod_bd;
  2432. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2433. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2434. pci_dma_sync_single_for_device(bp->pdev,
  2435. pci_unmap_addr(cons_rx_buf, mapping),
  2436. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2437. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2438. prod_rx_buf->skb = skb;
  2439. if (cons == prod)
  2440. return;
  2441. pci_unmap_addr_set(prod_rx_buf, mapping,
  2442. pci_unmap_addr(cons_rx_buf, mapping));
  2443. cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
  2444. prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
  2445. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2446. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2447. }
  2448. static int
  2449. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
  2450. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2451. u32 ring_idx)
  2452. {
  2453. int err;
  2454. u16 prod = ring_idx & 0xffff;
  2455. err = bnx2_alloc_rx_skb(bp, rxr, prod);
  2456. if (unlikely(err)) {
  2457. bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
  2458. if (hdr_len) {
  2459. unsigned int raw_len = len + 4;
  2460. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2461. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2462. }
  2463. return err;
  2464. }
  2465. skb_reserve(skb, BNX2_RX_OFFSET);
  2466. pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
  2467. PCI_DMA_FROMDEVICE);
  2468. if (hdr_len == 0) {
  2469. skb_put(skb, len);
  2470. return 0;
  2471. } else {
  2472. unsigned int i, frag_len, frag_size, pages;
  2473. struct sw_pg *rx_pg;
  2474. u16 pg_cons = rxr->rx_pg_cons;
  2475. u16 pg_prod = rxr->rx_pg_prod;
  2476. frag_size = len + 4 - hdr_len;
  2477. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2478. skb_put(skb, hdr_len);
  2479. for (i = 0; i < pages; i++) {
  2480. dma_addr_t mapping_old;
  2481. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2482. if (unlikely(frag_len <= 4)) {
  2483. unsigned int tail = 4 - frag_len;
  2484. rxr->rx_pg_cons = pg_cons;
  2485. rxr->rx_pg_prod = pg_prod;
  2486. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2487. pages - i);
  2488. skb->len -= tail;
  2489. if (i == 0) {
  2490. skb->tail -= tail;
  2491. } else {
  2492. skb_frag_t *frag =
  2493. &skb_shinfo(skb)->frags[i - 1];
  2494. frag->size -= tail;
  2495. skb->data_len -= tail;
  2496. skb->truesize -= tail;
  2497. }
  2498. return 0;
  2499. }
  2500. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2501. /* Don't unmap yet. If we're unable to allocate a new
  2502. * page, we need to recycle the page and the DMA addr.
  2503. */
  2504. mapping_old = pci_unmap_addr(rx_pg, mapping);
  2505. if (i == pages - 1)
  2506. frag_len -= 4;
  2507. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2508. rx_pg->page = NULL;
  2509. err = bnx2_alloc_rx_page(bp, rxr,
  2510. RX_PG_RING_IDX(pg_prod));
  2511. if (unlikely(err)) {
  2512. rxr->rx_pg_cons = pg_cons;
  2513. rxr->rx_pg_prod = pg_prod;
  2514. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2515. pages - i);
  2516. return err;
  2517. }
  2518. pci_unmap_page(bp->pdev, mapping_old,
  2519. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2520. frag_size -= frag_len;
  2521. skb->data_len += frag_len;
  2522. skb->truesize += frag_len;
  2523. skb->len += frag_len;
  2524. pg_prod = NEXT_RX_BD(pg_prod);
  2525. pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
  2526. }
  2527. rxr->rx_pg_prod = pg_prod;
  2528. rxr->rx_pg_cons = pg_cons;
  2529. }
  2530. return 0;
  2531. }
  2532. static inline u16
  2533. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2534. {
  2535. u16 cons;
  2536. /* Tell compiler that status block fields can change. */
  2537. barrier();
  2538. cons = *bnapi->hw_rx_cons_ptr;
  2539. barrier();
  2540. if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
  2541. cons++;
  2542. return cons;
  2543. }
  2544. static int
  2545. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2546. {
  2547. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2548. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2549. struct l2_fhdr *rx_hdr;
  2550. int rx_pkt = 0, pg_ring_used = 0;
  2551. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2552. sw_cons = rxr->rx_cons;
  2553. sw_prod = rxr->rx_prod;
  2554. /* Memory barrier necessary as speculative reads of the rx
  2555. * buffer can be ahead of the index in the status block
  2556. */
  2557. rmb();
  2558. while (sw_cons != hw_cons) {
  2559. unsigned int len, hdr_len;
  2560. u32 status;
  2561. struct sw_bd *rx_buf;
  2562. struct sk_buff *skb;
  2563. dma_addr_t dma_addr;
  2564. u16 vtag = 0;
  2565. int hw_vlan __maybe_unused = 0;
  2566. sw_ring_cons = RX_RING_IDX(sw_cons);
  2567. sw_ring_prod = RX_RING_IDX(sw_prod);
  2568. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2569. skb = rx_buf->skb;
  2570. rx_buf->skb = NULL;
  2571. dma_addr = pci_unmap_addr(rx_buf, mapping);
  2572. pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
  2573. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2574. PCI_DMA_FROMDEVICE);
  2575. rx_hdr = (struct l2_fhdr *) skb->data;
  2576. len = rx_hdr->l2_fhdr_pkt_len;
  2577. status = rx_hdr->l2_fhdr_status;
  2578. hdr_len = 0;
  2579. if (status & L2_FHDR_STATUS_SPLIT) {
  2580. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2581. pg_ring_used = 1;
  2582. } else if (len > bp->rx_jumbo_thresh) {
  2583. hdr_len = bp->rx_jumbo_thresh;
  2584. pg_ring_used = 1;
  2585. }
  2586. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2587. L2_FHDR_ERRORS_PHY_DECODE |
  2588. L2_FHDR_ERRORS_ALIGNMENT |
  2589. L2_FHDR_ERRORS_TOO_SHORT |
  2590. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2591. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2592. sw_ring_prod);
  2593. if (pg_ring_used) {
  2594. int pages;
  2595. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2596. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2597. }
  2598. goto next_rx;
  2599. }
  2600. len -= 4;
  2601. if (len <= bp->rx_copy_thresh) {
  2602. struct sk_buff *new_skb;
  2603. new_skb = netdev_alloc_skb(bp->dev, len + 6);
  2604. if (new_skb == NULL) {
  2605. bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
  2606. sw_ring_prod);
  2607. goto next_rx;
  2608. }
  2609. /* aligned copy */
  2610. skb_copy_from_linear_data_offset(skb,
  2611. BNX2_RX_OFFSET - 6,
  2612. new_skb->data, len + 6);
  2613. skb_reserve(new_skb, 6);
  2614. skb_put(new_skb, len);
  2615. bnx2_reuse_rx_skb(bp, rxr, skb,
  2616. sw_ring_cons, sw_ring_prod);
  2617. skb = new_skb;
  2618. } else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
  2619. dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
  2620. goto next_rx;
  2621. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2622. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
  2623. vtag = rx_hdr->l2_fhdr_vlan_tag;
  2624. #ifdef BCM_VLAN
  2625. if (bp->vlgrp)
  2626. hw_vlan = 1;
  2627. else
  2628. #endif
  2629. {
  2630. struct vlan_ethhdr *ve = (struct vlan_ethhdr *)
  2631. __skb_push(skb, 4);
  2632. memmove(ve, skb->data + 4, ETH_ALEN * 2);
  2633. ve->h_vlan_proto = htons(ETH_P_8021Q);
  2634. ve->h_vlan_TCI = htons(vtag);
  2635. len += 4;
  2636. }
  2637. }
  2638. skb->protocol = eth_type_trans(skb, bp->dev);
  2639. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2640. (ntohs(skb->protocol) != 0x8100)) {
  2641. dev_kfree_skb(skb);
  2642. goto next_rx;
  2643. }
  2644. skb->ip_summed = CHECKSUM_NONE;
  2645. if (bp->rx_csum &&
  2646. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2647. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2648. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2649. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2650. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2651. }
  2652. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2653. #ifdef BCM_VLAN
  2654. if (hw_vlan)
  2655. vlan_hwaccel_receive_skb(skb, bp->vlgrp, vtag);
  2656. else
  2657. #endif
  2658. netif_receive_skb(skb);
  2659. rx_pkt++;
  2660. next_rx:
  2661. sw_cons = NEXT_RX_BD(sw_cons);
  2662. sw_prod = NEXT_RX_BD(sw_prod);
  2663. if ((rx_pkt == budget))
  2664. break;
  2665. /* Refresh hw_cons to see if there is new work */
  2666. if (sw_cons == hw_cons) {
  2667. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2668. rmb();
  2669. }
  2670. }
  2671. rxr->rx_cons = sw_cons;
  2672. rxr->rx_prod = sw_prod;
  2673. if (pg_ring_used)
  2674. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2675. REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2676. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2677. mmiowb();
  2678. return rx_pkt;
  2679. }
  2680. /* MSI ISR - The only difference between this and the INTx ISR
  2681. * is that the MSI interrupt is always serviced.
  2682. */
  2683. static irqreturn_t
  2684. bnx2_msi(int irq, void *dev_instance)
  2685. {
  2686. struct bnx2_napi *bnapi = dev_instance;
  2687. struct bnx2 *bp = bnapi->bp;
  2688. prefetch(bnapi->status_blk.msi);
  2689. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2690. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2691. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2692. /* Return here if interrupt is disabled. */
  2693. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2694. return IRQ_HANDLED;
  2695. napi_schedule(&bnapi->napi);
  2696. return IRQ_HANDLED;
  2697. }
  2698. static irqreturn_t
  2699. bnx2_msi_1shot(int irq, void *dev_instance)
  2700. {
  2701. struct bnx2_napi *bnapi = dev_instance;
  2702. struct bnx2 *bp = bnapi->bp;
  2703. prefetch(bnapi->status_blk.msi);
  2704. /* Return here if interrupt is disabled. */
  2705. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2706. return IRQ_HANDLED;
  2707. napi_schedule(&bnapi->napi);
  2708. return IRQ_HANDLED;
  2709. }
  2710. static irqreturn_t
  2711. bnx2_interrupt(int irq, void *dev_instance)
  2712. {
  2713. struct bnx2_napi *bnapi = dev_instance;
  2714. struct bnx2 *bp = bnapi->bp;
  2715. struct status_block *sblk = bnapi->status_blk.msi;
  2716. /* When using INTx, it is possible for the interrupt to arrive
  2717. * at the CPU before the status block posted prior to the
  2718. * interrupt. Reading a register will flush the status block.
  2719. * When using MSI, the MSI message will always complete after
  2720. * the status block write.
  2721. */
  2722. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2723. (REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2724. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2725. return IRQ_NONE;
  2726. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2727. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2728. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2729. /* Read back to deassert IRQ immediately to avoid too many
  2730. * spurious interrupts.
  2731. */
  2732. REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2733. /* Return here if interrupt is shared and is disabled. */
  2734. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2735. return IRQ_HANDLED;
  2736. if (napi_schedule_prep(&bnapi->napi)) {
  2737. bnapi->last_status_idx = sblk->status_idx;
  2738. __napi_schedule(&bnapi->napi);
  2739. }
  2740. return IRQ_HANDLED;
  2741. }
  2742. static inline int
  2743. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2744. {
  2745. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2746. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2747. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2748. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2749. return 1;
  2750. return 0;
  2751. }
  2752. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2753. STATUS_ATTN_BITS_TIMER_ABORT)
  2754. static inline int
  2755. bnx2_has_work(struct bnx2_napi *bnapi)
  2756. {
  2757. struct status_block *sblk = bnapi->status_blk.msi;
  2758. if (bnx2_has_fast_work(bnapi))
  2759. return 1;
  2760. #ifdef BCM_CNIC
  2761. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2762. return 1;
  2763. #endif
  2764. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2765. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2766. return 1;
  2767. return 0;
  2768. }
  2769. static void
  2770. bnx2_chk_missed_msi(struct bnx2 *bp)
  2771. {
  2772. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2773. u32 msi_ctrl;
  2774. if (bnx2_has_work(bnapi)) {
  2775. msi_ctrl = REG_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2776. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2777. return;
  2778. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2779. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2780. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2781. REG_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2782. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2783. }
  2784. }
  2785. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2786. }
  2787. #ifdef BCM_CNIC
  2788. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2789. {
  2790. struct cnic_ops *c_ops;
  2791. if (!bnapi->cnic_present)
  2792. return;
  2793. rcu_read_lock();
  2794. c_ops = rcu_dereference(bp->cnic_ops);
  2795. if (c_ops)
  2796. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2797. bnapi->status_blk.msi);
  2798. rcu_read_unlock();
  2799. }
  2800. #endif
  2801. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2802. {
  2803. struct status_block *sblk = bnapi->status_blk.msi;
  2804. u32 status_attn_bits = sblk->status_attn_bits;
  2805. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2806. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2807. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2808. bnx2_phy_int(bp, bnapi);
  2809. /* This is needed to take care of transient status
  2810. * during link changes.
  2811. */
  2812. REG_WR(bp, BNX2_HC_COMMAND,
  2813. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2814. REG_RD(bp, BNX2_HC_COMMAND);
  2815. }
  2816. }
  2817. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2818. int work_done, int budget)
  2819. {
  2820. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2821. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2822. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2823. bnx2_tx_int(bp, bnapi, 0);
  2824. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2825. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2826. return work_done;
  2827. }
  2828. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2829. {
  2830. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2831. struct bnx2 *bp = bnapi->bp;
  2832. int work_done = 0;
  2833. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2834. while (1) {
  2835. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2836. if (unlikely(work_done >= budget))
  2837. break;
  2838. bnapi->last_status_idx = sblk->status_idx;
  2839. /* status idx must be read before checking for more work. */
  2840. rmb();
  2841. if (likely(!bnx2_has_fast_work(bnapi))) {
  2842. napi_complete(napi);
  2843. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2844. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2845. bnapi->last_status_idx);
  2846. break;
  2847. }
  2848. }
  2849. return work_done;
  2850. }
  2851. static int bnx2_poll(struct napi_struct *napi, int budget)
  2852. {
  2853. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2854. struct bnx2 *bp = bnapi->bp;
  2855. int work_done = 0;
  2856. struct status_block *sblk = bnapi->status_blk.msi;
  2857. while (1) {
  2858. bnx2_poll_link(bp, bnapi);
  2859. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2860. #ifdef BCM_CNIC
  2861. bnx2_poll_cnic(bp, bnapi);
  2862. #endif
  2863. /* bnapi->last_status_idx is used below to tell the hw how
  2864. * much work has been processed, so we must read it before
  2865. * checking for more work.
  2866. */
  2867. bnapi->last_status_idx = sblk->status_idx;
  2868. if (unlikely(work_done >= budget))
  2869. break;
  2870. rmb();
  2871. if (likely(!bnx2_has_work(bnapi))) {
  2872. napi_complete(napi);
  2873. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2874. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2875. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2876. bnapi->last_status_idx);
  2877. break;
  2878. }
  2879. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2880. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2881. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2882. bnapi->last_status_idx);
  2883. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2884. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2885. bnapi->last_status_idx);
  2886. break;
  2887. }
  2888. }
  2889. return work_done;
  2890. }
  2891. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2892. * from set_multicast.
  2893. */
  2894. static void
  2895. bnx2_set_rx_mode(struct net_device *dev)
  2896. {
  2897. struct bnx2 *bp = netdev_priv(dev);
  2898. u32 rx_mode, sort_mode;
  2899. struct netdev_hw_addr *ha;
  2900. int i;
  2901. if (!netif_running(dev))
  2902. return;
  2903. spin_lock_bh(&bp->phy_lock);
  2904. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2905. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2906. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2907. #ifdef BCM_VLAN
  2908. if (!bp->vlgrp && (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2909. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2910. #else
  2911. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  2912. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2913. #endif
  2914. if (dev->flags & IFF_PROMISC) {
  2915. /* Promiscuous mode. */
  2916. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2917. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2918. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2919. }
  2920. else if (dev->flags & IFF_ALLMULTI) {
  2921. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2922. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2923. 0xffffffff);
  2924. }
  2925. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2926. }
  2927. else {
  2928. /* Accept one or more multicast(s). */
  2929. struct dev_mc_list *mclist;
  2930. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2931. u32 regidx;
  2932. u32 bit;
  2933. u32 crc;
  2934. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2935. for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
  2936. i++, mclist = mclist->next) {
  2937. crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
  2938. bit = crc & 0xff;
  2939. regidx = (bit & 0xe0) >> 5;
  2940. bit &= 0x1f;
  2941. mc_filter[regidx] |= (1 << bit);
  2942. }
  2943. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2944. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2945. mc_filter[i]);
  2946. }
  2947. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  2948. }
  2949. if (dev->uc.count > BNX2_MAX_UNICAST_ADDRESSES) {
  2950. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2951. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2952. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2953. } else if (!(dev->flags & IFF_PROMISC)) {
  2954. /* Add all entries into to the match filter list */
  2955. i = 0;
  2956. list_for_each_entry(ha, &dev->uc.list, list) {
  2957. bnx2_set_mac_addr(bp, ha->addr,
  2958. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  2959. sort_mode |= (1 <<
  2960. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  2961. i++;
  2962. }
  2963. }
  2964. if (rx_mode != bp->rx_mode) {
  2965. bp->rx_mode = rx_mode;
  2966. REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  2967. }
  2968. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  2969. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  2970. REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  2971. spin_unlock_bh(&bp->phy_lock);
  2972. }
  2973. static int __devinit
  2974. check_fw_section(const struct firmware *fw,
  2975. const struct bnx2_fw_file_section *section,
  2976. u32 alignment, bool non_empty)
  2977. {
  2978. u32 offset = be32_to_cpu(section->offset);
  2979. u32 len = be32_to_cpu(section->len);
  2980. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  2981. return -EINVAL;
  2982. if ((non_empty && len == 0) || len > fw->size - offset ||
  2983. len & (alignment - 1))
  2984. return -EINVAL;
  2985. return 0;
  2986. }
  2987. static int __devinit
  2988. check_mips_fw_entry(const struct firmware *fw,
  2989. const struct bnx2_mips_fw_file_entry *entry)
  2990. {
  2991. if (check_fw_section(fw, &entry->text, 4, true) ||
  2992. check_fw_section(fw, &entry->data, 4, false) ||
  2993. check_fw_section(fw, &entry->rodata, 4, false))
  2994. return -EINVAL;
  2995. return 0;
  2996. }
  2997. static int __devinit
  2998. bnx2_request_firmware(struct bnx2 *bp)
  2999. {
  3000. const char *mips_fw_file, *rv2p_fw_file;
  3001. const struct bnx2_mips_fw_file *mips_fw;
  3002. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3003. int rc;
  3004. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3005. mips_fw_file = FW_MIPS_FILE_09;
  3006. if ((CHIP_ID(bp) == CHIP_ID_5709_A0) ||
  3007. (CHIP_ID(bp) == CHIP_ID_5709_A1))
  3008. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3009. else
  3010. rv2p_fw_file = FW_RV2P_FILE_09;
  3011. } else {
  3012. mips_fw_file = FW_MIPS_FILE_06;
  3013. rv2p_fw_file = FW_RV2P_FILE_06;
  3014. }
  3015. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3016. if (rc) {
  3017. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3018. mips_fw_file);
  3019. return rc;
  3020. }
  3021. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3022. if (rc) {
  3023. printk(KERN_ERR PFX "Can't load firmware file \"%s\"\n",
  3024. rv2p_fw_file);
  3025. return rc;
  3026. }
  3027. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3028. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3029. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3030. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3031. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3032. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3033. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3034. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3035. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3036. mips_fw_file);
  3037. return -EINVAL;
  3038. }
  3039. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3040. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3041. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3042. printk(KERN_ERR PFX "Firmware file \"%s\" is invalid\n",
  3043. rv2p_fw_file);
  3044. return -EINVAL;
  3045. }
  3046. return 0;
  3047. }
  3048. static u32
  3049. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3050. {
  3051. switch (idx) {
  3052. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3053. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3054. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3055. break;
  3056. }
  3057. return rv2p_code;
  3058. }
  3059. static int
  3060. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3061. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3062. {
  3063. u32 rv2p_code_len, file_offset;
  3064. __be32 *rv2p_code;
  3065. int i;
  3066. u32 val, cmd, addr;
  3067. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3068. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3069. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3070. if (rv2p_proc == RV2P_PROC1) {
  3071. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3072. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3073. } else {
  3074. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3075. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3076. }
  3077. for (i = 0; i < rv2p_code_len; i += 8) {
  3078. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3079. rv2p_code++;
  3080. REG_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3081. rv2p_code++;
  3082. val = (i / 8) | cmd;
  3083. REG_WR(bp, addr, val);
  3084. }
  3085. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3086. for (i = 0; i < 8; i++) {
  3087. u32 loc, code;
  3088. loc = be32_to_cpu(fw_entry->fixup[i]);
  3089. if (loc && ((loc * 4) < rv2p_code_len)) {
  3090. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3091. REG_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3092. code = be32_to_cpu(*(rv2p_code + loc));
  3093. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3094. REG_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3095. val = (loc / 2) | cmd;
  3096. REG_WR(bp, addr, val);
  3097. }
  3098. }
  3099. /* Reset the processor, un-stall is done later. */
  3100. if (rv2p_proc == RV2P_PROC1) {
  3101. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3102. }
  3103. else {
  3104. REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3105. }
  3106. return 0;
  3107. }
  3108. static int
  3109. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3110. const struct bnx2_mips_fw_file_entry *fw_entry)
  3111. {
  3112. u32 addr, len, file_offset;
  3113. __be32 *data;
  3114. u32 offset;
  3115. u32 val;
  3116. /* Halt the CPU. */
  3117. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3118. val |= cpu_reg->mode_value_halt;
  3119. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3120. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3121. /* Load the Text area. */
  3122. addr = be32_to_cpu(fw_entry->text.addr);
  3123. len = be32_to_cpu(fw_entry->text.len);
  3124. file_offset = be32_to_cpu(fw_entry->text.offset);
  3125. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3126. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3127. if (len) {
  3128. int j;
  3129. for (j = 0; j < (len / 4); j++, offset += 4)
  3130. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3131. }
  3132. /* Load the Data area. */
  3133. addr = be32_to_cpu(fw_entry->data.addr);
  3134. len = be32_to_cpu(fw_entry->data.len);
  3135. file_offset = be32_to_cpu(fw_entry->data.offset);
  3136. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3137. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3138. if (len) {
  3139. int j;
  3140. for (j = 0; j < (len / 4); j++, offset += 4)
  3141. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3142. }
  3143. /* Load the Read-Only area. */
  3144. addr = be32_to_cpu(fw_entry->rodata.addr);
  3145. len = be32_to_cpu(fw_entry->rodata.len);
  3146. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3147. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3148. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3149. if (len) {
  3150. int j;
  3151. for (j = 0; j < (len / 4); j++, offset += 4)
  3152. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3153. }
  3154. /* Clear the pre-fetch instruction. */
  3155. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3156. val = be32_to_cpu(fw_entry->start_addr);
  3157. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3158. /* Start the CPU. */
  3159. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3160. val &= ~cpu_reg->mode_value_halt;
  3161. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3162. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3163. return 0;
  3164. }
  3165. static int
  3166. bnx2_init_cpus(struct bnx2 *bp)
  3167. {
  3168. const struct bnx2_mips_fw_file *mips_fw =
  3169. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3170. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3171. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3172. int rc;
  3173. /* Initialize the RV2P processor. */
  3174. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3175. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3176. /* Initialize the RX Processor. */
  3177. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3178. if (rc)
  3179. goto init_cpu_err;
  3180. /* Initialize the TX Processor. */
  3181. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3182. if (rc)
  3183. goto init_cpu_err;
  3184. /* Initialize the TX Patch-up Processor. */
  3185. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3186. if (rc)
  3187. goto init_cpu_err;
  3188. /* Initialize the Completion Processor. */
  3189. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3190. if (rc)
  3191. goto init_cpu_err;
  3192. /* Initialize the Command Processor. */
  3193. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3194. init_cpu_err:
  3195. return rc;
  3196. }
  3197. static int
  3198. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3199. {
  3200. u16 pmcsr;
  3201. pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
  3202. switch (state) {
  3203. case PCI_D0: {
  3204. u32 val;
  3205. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3206. (pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
  3207. PCI_PM_CTRL_PME_STATUS);
  3208. if (pmcsr & PCI_PM_CTRL_STATE_MASK)
  3209. /* delay required during transition out of D3hot */
  3210. msleep(20);
  3211. val = REG_RD(bp, BNX2_EMAC_MODE);
  3212. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3213. val &= ~BNX2_EMAC_MODE_MPKT;
  3214. REG_WR(bp, BNX2_EMAC_MODE, val);
  3215. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3216. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3217. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3218. break;
  3219. }
  3220. case PCI_D3hot: {
  3221. int i;
  3222. u32 val, wol_msg;
  3223. if (bp->wol) {
  3224. u32 advertising;
  3225. u8 autoneg;
  3226. autoneg = bp->autoneg;
  3227. advertising = bp->advertising;
  3228. if (bp->phy_port == PORT_TP) {
  3229. bp->autoneg = AUTONEG_SPEED;
  3230. bp->advertising = ADVERTISED_10baseT_Half |
  3231. ADVERTISED_10baseT_Full |
  3232. ADVERTISED_100baseT_Half |
  3233. ADVERTISED_100baseT_Full |
  3234. ADVERTISED_Autoneg;
  3235. }
  3236. spin_lock_bh(&bp->phy_lock);
  3237. bnx2_setup_phy(bp, bp->phy_port);
  3238. spin_unlock_bh(&bp->phy_lock);
  3239. bp->autoneg = autoneg;
  3240. bp->advertising = advertising;
  3241. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3242. val = REG_RD(bp, BNX2_EMAC_MODE);
  3243. /* Enable port mode. */
  3244. val &= ~BNX2_EMAC_MODE_PORT;
  3245. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3246. BNX2_EMAC_MODE_ACPI_RCVD |
  3247. BNX2_EMAC_MODE_MPKT;
  3248. if (bp->phy_port == PORT_TP)
  3249. val |= BNX2_EMAC_MODE_PORT_MII;
  3250. else {
  3251. val |= BNX2_EMAC_MODE_PORT_GMII;
  3252. if (bp->line_speed == SPEED_2500)
  3253. val |= BNX2_EMAC_MODE_25G_MODE;
  3254. }
  3255. REG_WR(bp, BNX2_EMAC_MODE, val);
  3256. /* receive all multicast */
  3257. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3258. REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3259. 0xffffffff);
  3260. }
  3261. REG_WR(bp, BNX2_EMAC_RX_MODE,
  3262. BNX2_EMAC_RX_MODE_SORT_MODE);
  3263. val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
  3264. BNX2_RPM_SORT_USER0_MC_EN;
  3265. REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3266. REG_WR(bp, BNX2_RPM_SORT_USER0, val);
  3267. REG_WR(bp, BNX2_RPM_SORT_USER0, val |
  3268. BNX2_RPM_SORT_USER0_ENA);
  3269. /* Need to enable EMAC and RPM for WOL. */
  3270. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3271. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3272. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3273. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3274. val = REG_RD(bp, BNX2_RPM_CONFIG);
  3275. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3276. REG_WR(bp, BNX2_RPM_CONFIG, val);
  3277. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3278. }
  3279. else {
  3280. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3281. }
  3282. if (!(bp->flags & BNX2_FLAG_NO_WOL))
  3283. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
  3284. 1, 0);
  3285. pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
  3286. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3287. (CHIP_ID(bp) == CHIP_ID_5706_A1)) {
  3288. if (bp->wol)
  3289. pmcsr |= 3;
  3290. }
  3291. else {
  3292. pmcsr |= 3;
  3293. }
  3294. if (bp->wol) {
  3295. pmcsr |= PCI_PM_CTRL_PME_ENABLE;
  3296. }
  3297. pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
  3298. pmcsr);
  3299. /* No more memory access after this point until
  3300. * device is brought back to D0.
  3301. */
  3302. udelay(50);
  3303. break;
  3304. }
  3305. default:
  3306. return -EINVAL;
  3307. }
  3308. return 0;
  3309. }
  3310. static int
  3311. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3312. {
  3313. u32 val;
  3314. int j;
  3315. /* Request access to the flash interface. */
  3316. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3317. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3318. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3319. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3320. break;
  3321. udelay(5);
  3322. }
  3323. if (j >= NVRAM_TIMEOUT_COUNT)
  3324. return -EBUSY;
  3325. return 0;
  3326. }
  3327. static int
  3328. bnx2_release_nvram_lock(struct bnx2 *bp)
  3329. {
  3330. int j;
  3331. u32 val;
  3332. /* Relinquish nvram interface. */
  3333. REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3334. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3335. val = REG_RD(bp, BNX2_NVM_SW_ARB);
  3336. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3337. break;
  3338. udelay(5);
  3339. }
  3340. if (j >= NVRAM_TIMEOUT_COUNT)
  3341. return -EBUSY;
  3342. return 0;
  3343. }
  3344. static int
  3345. bnx2_enable_nvram_write(struct bnx2 *bp)
  3346. {
  3347. u32 val;
  3348. val = REG_RD(bp, BNX2_MISC_CFG);
  3349. REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3350. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3351. int j;
  3352. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3353. REG_WR(bp, BNX2_NVM_COMMAND,
  3354. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3355. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3356. udelay(5);
  3357. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3358. if (val & BNX2_NVM_COMMAND_DONE)
  3359. break;
  3360. }
  3361. if (j >= NVRAM_TIMEOUT_COUNT)
  3362. return -EBUSY;
  3363. }
  3364. return 0;
  3365. }
  3366. static void
  3367. bnx2_disable_nvram_write(struct bnx2 *bp)
  3368. {
  3369. u32 val;
  3370. val = REG_RD(bp, BNX2_MISC_CFG);
  3371. REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3372. }
  3373. static void
  3374. bnx2_enable_nvram_access(struct bnx2 *bp)
  3375. {
  3376. u32 val;
  3377. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3378. /* Enable both bits, even on read. */
  3379. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3380. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3381. }
  3382. static void
  3383. bnx2_disable_nvram_access(struct bnx2 *bp)
  3384. {
  3385. u32 val;
  3386. val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3387. /* Disable both bits, even after read. */
  3388. REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3389. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3390. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3391. }
  3392. static int
  3393. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3394. {
  3395. u32 cmd;
  3396. int j;
  3397. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3398. /* Buffered flash, no erase needed */
  3399. return 0;
  3400. /* Build an erase command */
  3401. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3402. BNX2_NVM_COMMAND_DOIT;
  3403. /* Need to clear DONE bit separately. */
  3404. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3405. /* Address of the NVRAM to read from. */
  3406. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3407. /* Issue an erase command. */
  3408. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3409. /* Wait for completion. */
  3410. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3411. u32 val;
  3412. udelay(5);
  3413. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3414. if (val & BNX2_NVM_COMMAND_DONE)
  3415. break;
  3416. }
  3417. if (j >= NVRAM_TIMEOUT_COUNT)
  3418. return -EBUSY;
  3419. return 0;
  3420. }
  3421. static int
  3422. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3423. {
  3424. u32 cmd;
  3425. int j;
  3426. /* Build the command word. */
  3427. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3428. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3429. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3430. offset = ((offset / bp->flash_info->page_size) <<
  3431. bp->flash_info->page_bits) +
  3432. (offset % bp->flash_info->page_size);
  3433. }
  3434. /* Need to clear DONE bit separately. */
  3435. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3436. /* Address of the NVRAM to read from. */
  3437. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3438. /* Issue a read command. */
  3439. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3440. /* Wait for completion. */
  3441. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3442. u32 val;
  3443. udelay(5);
  3444. val = REG_RD(bp, BNX2_NVM_COMMAND);
  3445. if (val & BNX2_NVM_COMMAND_DONE) {
  3446. __be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
  3447. memcpy(ret_val, &v, 4);
  3448. break;
  3449. }
  3450. }
  3451. if (j >= NVRAM_TIMEOUT_COUNT)
  3452. return -EBUSY;
  3453. return 0;
  3454. }
  3455. static int
  3456. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3457. {
  3458. u32 cmd;
  3459. __be32 val32;
  3460. int j;
  3461. /* Build the command word. */
  3462. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3463. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3464. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3465. offset = ((offset / bp->flash_info->page_size) <<
  3466. bp->flash_info->page_bits) +
  3467. (offset % bp->flash_info->page_size);
  3468. }
  3469. /* Need to clear DONE bit separately. */
  3470. REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3471. memcpy(&val32, val, 4);
  3472. /* Write the data. */
  3473. REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3474. /* Address of the NVRAM to write to. */
  3475. REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3476. /* Issue the write command. */
  3477. REG_WR(bp, BNX2_NVM_COMMAND, cmd);
  3478. /* Wait for completion. */
  3479. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3480. udelay(5);
  3481. if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3482. break;
  3483. }
  3484. if (j >= NVRAM_TIMEOUT_COUNT)
  3485. return -EBUSY;
  3486. return 0;
  3487. }
  3488. static int
  3489. bnx2_init_nvram(struct bnx2 *bp)
  3490. {
  3491. u32 val;
  3492. int j, entry_count, rc = 0;
  3493. const struct flash_spec *flash;
  3494. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3495. bp->flash_info = &flash_5709;
  3496. goto get_flash_size;
  3497. }
  3498. /* Determine the selected interface. */
  3499. val = REG_RD(bp, BNX2_NVM_CFG1);
  3500. entry_count = ARRAY_SIZE(flash_table);
  3501. if (val & 0x40000000) {
  3502. /* Flash interface has been reconfigured */
  3503. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3504. j++, flash++) {
  3505. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3506. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3507. bp->flash_info = flash;
  3508. break;
  3509. }
  3510. }
  3511. }
  3512. else {
  3513. u32 mask;
  3514. /* Not yet been reconfigured */
  3515. if (val & (1 << 23))
  3516. mask = FLASH_BACKUP_STRAP_MASK;
  3517. else
  3518. mask = FLASH_STRAP_MASK;
  3519. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3520. j++, flash++) {
  3521. if ((val & mask) == (flash->strapping & mask)) {
  3522. bp->flash_info = flash;
  3523. /* Request access to the flash interface. */
  3524. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3525. return rc;
  3526. /* Enable access to flash interface */
  3527. bnx2_enable_nvram_access(bp);
  3528. /* Reconfigure the flash interface */
  3529. REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3530. REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3531. REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3532. REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3533. /* Disable access to flash interface */
  3534. bnx2_disable_nvram_access(bp);
  3535. bnx2_release_nvram_lock(bp);
  3536. break;
  3537. }
  3538. }
  3539. } /* if (val & 0x40000000) */
  3540. if (j == entry_count) {
  3541. bp->flash_info = NULL;
  3542. printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
  3543. return -ENODEV;
  3544. }
  3545. get_flash_size:
  3546. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3547. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3548. if (val)
  3549. bp->flash_size = val;
  3550. else
  3551. bp->flash_size = bp->flash_info->total_size;
  3552. return rc;
  3553. }
  3554. static int
  3555. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3556. int buf_size)
  3557. {
  3558. int rc = 0;
  3559. u32 cmd_flags, offset32, len32, extra;
  3560. if (buf_size == 0)
  3561. return 0;
  3562. /* Request access to the flash interface. */
  3563. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3564. return rc;
  3565. /* Enable access to flash interface */
  3566. bnx2_enable_nvram_access(bp);
  3567. len32 = buf_size;
  3568. offset32 = offset;
  3569. extra = 0;
  3570. cmd_flags = 0;
  3571. if (offset32 & 3) {
  3572. u8 buf[4];
  3573. u32 pre_len;
  3574. offset32 &= ~3;
  3575. pre_len = 4 - (offset & 3);
  3576. if (pre_len >= len32) {
  3577. pre_len = len32;
  3578. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3579. BNX2_NVM_COMMAND_LAST;
  3580. }
  3581. else {
  3582. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3583. }
  3584. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3585. if (rc)
  3586. return rc;
  3587. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3588. offset32 += 4;
  3589. ret_buf += pre_len;
  3590. len32 -= pre_len;
  3591. }
  3592. if (len32 & 3) {
  3593. extra = 4 - (len32 & 3);
  3594. len32 = (len32 + 4) & ~3;
  3595. }
  3596. if (len32 == 4) {
  3597. u8 buf[4];
  3598. if (cmd_flags)
  3599. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3600. else
  3601. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3602. BNX2_NVM_COMMAND_LAST;
  3603. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3604. memcpy(ret_buf, buf, 4 - extra);
  3605. }
  3606. else if (len32 > 0) {
  3607. u8 buf[4];
  3608. /* Read the first word. */
  3609. if (cmd_flags)
  3610. cmd_flags = 0;
  3611. else
  3612. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3613. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3614. /* Advance to the next dword. */
  3615. offset32 += 4;
  3616. ret_buf += 4;
  3617. len32 -= 4;
  3618. while (len32 > 4 && rc == 0) {
  3619. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3620. /* Advance to the next dword. */
  3621. offset32 += 4;
  3622. ret_buf += 4;
  3623. len32 -= 4;
  3624. }
  3625. if (rc)
  3626. return rc;
  3627. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3628. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3629. memcpy(ret_buf, buf, 4 - extra);
  3630. }
  3631. /* Disable access to flash interface */
  3632. bnx2_disable_nvram_access(bp);
  3633. bnx2_release_nvram_lock(bp);
  3634. return rc;
  3635. }
  3636. static int
  3637. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3638. int buf_size)
  3639. {
  3640. u32 written, offset32, len32;
  3641. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3642. int rc = 0;
  3643. int align_start, align_end;
  3644. buf = data_buf;
  3645. offset32 = offset;
  3646. len32 = buf_size;
  3647. align_start = align_end = 0;
  3648. if ((align_start = (offset32 & 3))) {
  3649. offset32 &= ~3;
  3650. len32 += align_start;
  3651. if (len32 < 4)
  3652. len32 = 4;
  3653. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3654. return rc;
  3655. }
  3656. if (len32 & 3) {
  3657. align_end = 4 - (len32 & 3);
  3658. len32 += align_end;
  3659. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3660. return rc;
  3661. }
  3662. if (align_start || align_end) {
  3663. align_buf = kmalloc(len32, GFP_KERNEL);
  3664. if (align_buf == NULL)
  3665. return -ENOMEM;
  3666. if (align_start) {
  3667. memcpy(align_buf, start, 4);
  3668. }
  3669. if (align_end) {
  3670. memcpy(align_buf + len32 - 4, end, 4);
  3671. }
  3672. memcpy(align_buf + align_start, data_buf, buf_size);
  3673. buf = align_buf;
  3674. }
  3675. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3676. flash_buffer = kmalloc(264, GFP_KERNEL);
  3677. if (flash_buffer == NULL) {
  3678. rc = -ENOMEM;
  3679. goto nvram_write_end;
  3680. }
  3681. }
  3682. written = 0;
  3683. while ((written < len32) && (rc == 0)) {
  3684. u32 page_start, page_end, data_start, data_end;
  3685. u32 addr, cmd_flags;
  3686. int i;
  3687. /* Find the page_start addr */
  3688. page_start = offset32 + written;
  3689. page_start -= (page_start % bp->flash_info->page_size);
  3690. /* Find the page_end addr */
  3691. page_end = page_start + bp->flash_info->page_size;
  3692. /* Find the data_start addr */
  3693. data_start = (written == 0) ? offset32 : page_start;
  3694. /* Find the data_end addr */
  3695. data_end = (page_end > offset32 + len32) ?
  3696. (offset32 + len32) : page_end;
  3697. /* Request access to the flash interface. */
  3698. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3699. goto nvram_write_end;
  3700. /* Enable access to flash interface */
  3701. bnx2_enable_nvram_access(bp);
  3702. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3703. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3704. int j;
  3705. /* Read the whole page into the buffer
  3706. * (non-buffer flash only) */
  3707. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3708. if (j == (bp->flash_info->page_size - 4)) {
  3709. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3710. }
  3711. rc = bnx2_nvram_read_dword(bp,
  3712. page_start + j,
  3713. &flash_buffer[j],
  3714. cmd_flags);
  3715. if (rc)
  3716. goto nvram_write_end;
  3717. cmd_flags = 0;
  3718. }
  3719. }
  3720. /* Enable writes to flash interface (unlock write-protect) */
  3721. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3722. goto nvram_write_end;
  3723. /* Loop to write back the buffer data from page_start to
  3724. * data_start */
  3725. i = 0;
  3726. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3727. /* Erase the page */
  3728. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3729. goto nvram_write_end;
  3730. /* Re-enable the write again for the actual write */
  3731. bnx2_enable_nvram_write(bp);
  3732. for (addr = page_start; addr < data_start;
  3733. addr += 4, i += 4) {
  3734. rc = bnx2_nvram_write_dword(bp, addr,
  3735. &flash_buffer[i], cmd_flags);
  3736. if (rc != 0)
  3737. goto nvram_write_end;
  3738. cmd_flags = 0;
  3739. }
  3740. }
  3741. /* Loop to write the new data from data_start to data_end */
  3742. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3743. if ((addr == page_end - 4) ||
  3744. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3745. (addr == data_end - 4))) {
  3746. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3747. }
  3748. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3749. cmd_flags);
  3750. if (rc != 0)
  3751. goto nvram_write_end;
  3752. cmd_flags = 0;
  3753. buf += 4;
  3754. }
  3755. /* Loop to write back the buffer data from data_end
  3756. * to page_end */
  3757. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3758. for (addr = data_end; addr < page_end;
  3759. addr += 4, i += 4) {
  3760. if (addr == page_end-4) {
  3761. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3762. }
  3763. rc = bnx2_nvram_write_dword(bp, addr,
  3764. &flash_buffer[i], cmd_flags);
  3765. if (rc != 0)
  3766. goto nvram_write_end;
  3767. cmd_flags = 0;
  3768. }
  3769. }
  3770. /* Disable writes to flash interface (lock write-protect) */
  3771. bnx2_disable_nvram_write(bp);
  3772. /* Disable access to flash interface */
  3773. bnx2_disable_nvram_access(bp);
  3774. bnx2_release_nvram_lock(bp);
  3775. /* Increment written */
  3776. written += data_end - data_start;
  3777. }
  3778. nvram_write_end:
  3779. kfree(flash_buffer);
  3780. kfree(align_buf);
  3781. return rc;
  3782. }
  3783. static void
  3784. bnx2_init_fw_cap(struct bnx2 *bp)
  3785. {
  3786. u32 val, sig = 0;
  3787. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3788. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3789. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3790. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3791. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3792. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3793. return;
  3794. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3795. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3796. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3797. }
  3798. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3799. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3800. u32 link;
  3801. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3802. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3803. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3804. bp->phy_port = PORT_FIBRE;
  3805. else
  3806. bp->phy_port = PORT_TP;
  3807. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3808. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3809. }
  3810. if (netif_running(bp->dev) && sig)
  3811. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3812. }
  3813. static void
  3814. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3815. {
  3816. REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3817. REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3818. REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3819. }
  3820. static int
  3821. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3822. {
  3823. u32 val;
  3824. int i, rc = 0;
  3825. u8 old_port;
  3826. /* Wait for the current PCI transaction to complete before
  3827. * issuing a reset. */
  3828. REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3829. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3830. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3831. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3832. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3833. val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3834. udelay(5);
  3835. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3836. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3837. /* Deposit a driver reset signature so the firmware knows that
  3838. * this is a soft reset. */
  3839. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3840. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3841. /* Do a dummy read to force the chip to complete all current transaction
  3842. * before we issue a reset. */
  3843. val = REG_RD(bp, BNX2_MISC_ID);
  3844. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3845. REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3846. REG_RD(bp, BNX2_MISC_COMMAND);
  3847. udelay(5);
  3848. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3849. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3850. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
  3851. } else {
  3852. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3853. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3854. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3855. /* Chip reset. */
  3856. REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3857. /* Reading back any register after chip reset will hang the
  3858. * bus on 5706 A0 and A1. The msleep below provides plenty
  3859. * of margin for write posting.
  3860. */
  3861. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  3862. (CHIP_ID(bp) == CHIP_ID_5706_A1))
  3863. msleep(20);
  3864. /* Reset takes approximate 30 usec */
  3865. for (i = 0; i < 10; i++) {
  3866. val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3867. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3868. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3869. break;
  3870. udelay(10);
  3871. }
  3872. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3873. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3874. printk(KERN_ERR PFX "Chip reset did not complete\n");
  3875. return -EBUSY;
  3876. }
  3877. }
  3878. /* Make sure byte swapping is properly configured. */
  3879. val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3880. if (val != 0x01020304) {
  3881. printk(KERN_ERR PFX "Chip not in correct endian mode\n");
  3882. return -ENODEV;
  3883. }
  3884. /* Wait for the firmware to finish its initialization. */
  3885. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3886. if (rc)
  3887. return rc;
  3888. spin_lock_bh(&bp->phy_lock);
  3889. old_port = bp->phy_port;
  3890. bnx2_init_fw_cap(bp);
  3891. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3892. old_port != bp->phy_port)
  3893. bnx2_set_default_remote_link(bp);
  3894. spin_unlock_bh(&bp->phy_lock);
  3895. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3896. /* Adjust the voltage regular to two steps lower. The default
  3897. * of this register is 0x0000000e. */
  3898. REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  3899. /* Remove bad rbuf memory from the free pool. */
  3900. rc = bnx2_alloc_bad_rbuf(bp);
  3901. }
  3902. if (bp->flags & BNX2_FLAG_USING_MSIX)
  3903. bnx2_setup_msix_tbl(bp);
  3904. return rc;
  3905. }
  3906. static int
  3907. bnx2_init_chip(struct bnx2 *bp)
  3908. {
  3909. u32 val, mtu;
  3910. int rc, i;
  3911. /* Make sure the interrupt is not active. */
  3912. REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  3913. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  3914. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  3915. #ifdef __BIG_ENDIAN
  3916. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  3917. #endif
  3918. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  3919. DMA_READ_CHANS << 12 |
  3920. DMA_WRITE_CHANS << 16;
  3921. val |= (0x2 << 20) | (1 << 11);
  3922. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  3923. val |= (1 << 23);
  3924. if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
  3925. (CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
  3926. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  3927. REG_WR(bp, BNX2_DMA_CONFIG, val);
  3928. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  3929. val = REG_RD(bp, BNX2_TDMA_CONFIG);
  3930. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  3931. REG_WR(bp, BNX2_TDMA_CONFIG, val);
  3932. }
  3933. if (bp->flags & BNX2_FLAG_PCIX) {
  3934. u16 val16;
  3935. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3936. &val16);
  3937. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  3938. val16 & ~PCI_X_CMD_ERO);
  3939. }
  3940. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3941. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  3942. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  3943. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  3944. /* Initialize context mapping and zero out the quick contexts. The
  3945. * context block must have already been enabled. */
  3946. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3947. rc = bnx2_init_5709_context(bp);
  3948. if (rc)
  3949. return rc;
  3950. } else
  3951. bnx2_init_context(bp);
  3952. if ((rc = bnx2_init_cpus(bp)) != 0)
  3953. return rc;
  3954. bnx2_init_nvram(bp);
  3955. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3956. val = REG_RD(bp, BNX2_MQ_CONFIG);
  3957. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  3958. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  3959. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  3960. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  3961. if (CHIP_REV(bp) == CHIP_REV_Ax)
  3962. val |= BNX2_MQ_CONFIG_HALT_DIS;
  3963. }
  3964. REG_WR(bp, BNX2_MQ_CONFIG, val);
  3965. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  3966. REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  3967. REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  3968. val = (BCM_PAGE_BITS - 8) << 24;
  3969. REG_WR(bp, BNX2_RV2P_CONFIG, val);
  3970. /* Configure page size. */
  3971. val = REG_RD(bp, BNX2_TBDR_CONFIG);
  3972. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  3973. val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
  3974. REG_WR(bp, BNX2_TBDR_CONFIG, val);
  3975. val = bp->mac_addr[0] +
  3976. (bp->mac_addr[1] << 8) +
  3977. (bp->mac_addr[2] << 16) +
  3978. bp->mac_addr[3] +
  3979. (bp->mac_addr[4] << 8) +
  3980. (bp->mac_addr[5] << 16);
  3981. REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  3982. /* Program the MTU. Also include 4 bytes for CRC32. */
  3983. mtu = bp->dev->mtu;
  3984. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  3985. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  3986. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  3987. REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  3988. if (mtu < 1500)
  3989. mtu = 1500;
  3990. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  3991. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  3992. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  3993. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  3994. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  3995. bp->bnx2_napi[i].last_status_idx = 0;
  3996. bp->idle_chk_status_idx = 0xffff;
  3997. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  3998. /* Set up how to generate a link change interrupt. */
  3999. REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4000. REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4001. (u64) bp->status_blk_mapping & 0xffffffff);
  4002. REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4003. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4004. (u64) bp->stats_blk_mapping & 0xffffffff);
  4005. REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4006. (u64) bp->stats_blk_mapping >> 32);
  4007. REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4008. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4009. REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4010. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4011. REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4012. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4013. REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4014. REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4015. REG_WR(bp, BNX2_HC_COM_TICKS,
  4016. (bp->com_ticks_int << 16) | bp->com_ticks);
  4017. REG_WR(bp, BNX2_HC_CMD_TICKS,
  4018. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4019. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4020. REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4021. else
  4022. REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4023. REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4024. if (CHIP_ID(bp) == CHIP_ID_5706_A1)
  4025. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4026. else {
  4027. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4028. BNX2_HC_CONFIG_COLLECT_STATS;
  4029. }
  4030. if (bp->irq_nvecs > 1) {
  4031. REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4032. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4033. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4034. }
  4035. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4036. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4037. REG_WR(bp, BNX2_HC_CONFIG, val);
  4038. for (i = 1; i < bp->irq_nvecs; i++) {
  4039. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4040. BNX2_HC_SB_CONFIG_1;
  4041. REG_WR(bp, base,
  4042. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4043. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4044. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4045. REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4046. (bp->tx_quick_cons_trip_int << 16) |
  4047. bp->tx_quick_cons_trip);
  4048. REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4049. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4050. REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4051. (bp->rx_quick_cons_trip_int << 16) |
  4052. bp->rx_quick_cons_trip);
  4053. REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4054. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4055. }
  4056. /* Clear internal stats counters. */
  4057. REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4058. REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4059. /* Initialize the receive filter. */
  4060. bnx2_set_rx_mode(bp->dev);
  4061. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4062. val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4063. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4064. REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4065. }
  4066. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4067. 1, 0);
  4068. REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4069. REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4070. udelay(20);
  4071. bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
  4072. return rc;
  4073. }
  4074. static void
  4075. bnx2_clear_ring_states(struct bnx2 *bp)
  4076. {
  4077. struct bnx2_napi *bnapi;
  4078. struct bnx2_tx_ring_info *txr;
  4079. struct bnx2_rx_ring_info *rxr;
  4080. int i;
  4081. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4082. bnapi = &bp->bnx2_napi[i];
  4083. txr = &bnapi->tx_ring;
  4084. rxr = &bnapi->rx_ring;
  4085. txr->tx_cons = 0;
  4086. txr->hw_tx_cons = 0;
  4087. rxr->rx_prod_bseq = 0;
  4088. rxr->rx_prod = 0;
  4089. rxr->rx_cons = 0;
  4090. rxr->rx_pg_prod = 0;
  4091. rxr->rx_pg_cons = 0;
  4092. }
  4093. }
  4094. static void
  4095. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4096. {
  4097. u32 val, offset0, offset1, offset2, offset3;
  4098. u32 cid_addr = GET_CID_ADDR(cid);
  4099. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4100. offset0 = BNX2_L2CTX_TYPE_XI;
  4101. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4102. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4103. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4104. } else {
  4105. offset0 = BNX2_L2CTX_TYPE;
  4106. offset1 = BNX2_L2CTX_CMD_TYPE;
  4107. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4108. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4109. }
  4110. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4111. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4112. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4113. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4114. val = (u64) txr->tx_desc_mapping >> 32;
  4115. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4116. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4117. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4118. }
  4119. static void
  4120. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4121. {
  4122. struct tx_bd *txbd;
  4123. u32 cid = TX_CID;
  4124. struct bnx2_napi *bnapi;
  4125. struct bnx2_tx_ring_info *txr;
  4126. bnapi = &bp->bnx2_napi[ring_num];
  4127. txr = &bnapi->tx_ring;
  4128. if (ring_num == 0)
  4129. cid = TX_CID;
  4130. else
  4131. cid = TX_TSS_CID + ring_num - 1;
  4132. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4133. txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
  4134. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4135. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4136. txr->tx_prod = 0;
  4137. txr->tx_prod_bseq = 0;
  4138. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4139. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4140. bnx2_init_tx_context(bp, cid, txr);
  4141. }
  4142. static void
  4143. bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
  4144. int num_rings)
  4145. {
  4146. int i;
  4147. struct rx_bd *rxbd;
  4148. for (i = 0; i < num_rings; i++) {
  4149. int j;
  4150. rxbd = &rx_ring[i][0];
  4151. for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
  4152. rxbd->rx_bd_len = buf_size;
  4153. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4154. }
  4155. if (i == (num_rings - 1))
  4156. j = 0;
  4157. else
  4158. j = i + 1;
  4159. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4160. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4161. }
  4162. }
  4163. static void
  4164. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4165. {
  4166. int i;
  4167. u16 prod, ring_prod;
  4168. u32 cid, rx_cid_addr, val;
  4169. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4170. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4171. if (ring_num == 0)
  4172. cid = RX_CID;
  4173. else
  4174. cid = RX_RSS_CID + ring_num - 1;
  4175. rx_cid_addr = GET_CID_ADDR(cid);
  4176. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4177. bp->rx_buf_use_size, bp->rx_max_ring);
  4178. bnx2_init_rx_context(bp, cid);
  4179. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  4180. val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
  4181. REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4182. }
  4183. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4184. if (bp->rx_pg_ring_size) {
  4185. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4186. rxr->rx_pg_desc_mapping,
  4187. PAGE_SIZE, bp->rx_max_pg_ring);
  4188. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4189. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4190. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4191. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4192. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4193. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4194. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4195. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4196. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4197. REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4198. }
  4199. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4200. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4201. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4202. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4203. ring_prod = prod = rxr->rx_pg_prod;
  4204. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4205. if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
  4206. break;
  4207. prod = NEXT_RX_BD(prod);
  4208. ring_prod = RX_PG_RING_IDX(prod);
  4209. }
  4210. rxr->rx_pg_prod = prod;
  4211. ring_prod = prod = rxr->rx_prod;
  4212. for (i = 0; i < bp->rx_ring_size; i++) {
  4213. if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
  4214. break;
  4215. prod = NEXT_RX_BD(prod);
  4216. ring_prod = RX_RING_IDX(prod);
  4217. }
  4218. rxr->rx_prod = prod;
  4219. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4220. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4221. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4222. REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4223. REG_WR16(bp, rxr->rx_bidx_addr, prod);
  4224. REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4225. }
  4226. static void
  4227. bnx2_init_all_rings(struct bnx2 *bp)
  4228. {
  4229. int i;
  4230. u32 val;
  4231. bnx2_clear_ring_states(bp);
  4232. REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4233. for (i = 0; i < bp->num_tx_rings; i++)
  4234. bnx2_init_tx_ring(bp, i);
  4235. if (bp->num_tx_rings > 1)
  4236. REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4237. (TX_TSS_CID << 7));
  4238. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4239. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4240. for (i = 0; i < bp->num_rx_rings; i++)
  4241. bnx2_init_rx_ring(bp, i);
  4242. if (bp->num_rx_rings > 1) {
  4243. u32 tbl_32;
  4244. u8 *tbl = (u8 *) &tbl_32;
  4245. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
  4246. BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
  4247. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4248. tbl[i % 4] = i % (bp->num_rx_rings - 1);
  4249. if ((i % 4) == 3)
  4250. bnx2_reg_wr_ind(bp,
  4251. BNX2_RXP_SCRATCH_RSS_TBL + i,
  4252. cpu_to_be32(tbl_32));
  4253. }
  4254. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4255. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4256. REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4257. }
  4258. }
  4259. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4260. {
  4261. u32 max, num_rings = 1;
  4262. while (ring_size > MAX_RX_DESC_CNT) {
  4263. ring_size -= MAX_RX_DESC_CNT;
  4264. num_rings++;
  4265. }
  4266. /* round to next power of 2 */
  4267. max = max_size;
  4268. while ((max & num_rings) == 0)
  4269. max >>= 1;
  4270. if (num_rings != max)
  4271. max <<= 1;
  4272. return max;
  4273. }
  4274. static void
  4275. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4276. {
  4277. u32 rx_size, rx_space, jumbo_size;
  4278. /* 8 for CRC and VLAN */
  4279. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4280. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4281. sizeof(struct skb_shared_info);
  4282. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4283. bp->rx_pg_ring_size = 0;
  4284. bp->rx_max_pg_ring = 0;
  4285. bp->rx_max_pg_ring_idx = 0;
  4286. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4287. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4288. jumbo_size = size * pages;
  4289. if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
  4290. jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
  4291. bp->rx_pg_ring_size = jumbo_size;
  4292. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4293. MAX_RX_PG_RINGS);
  4294. bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
  4295. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4296. bp->rx_copy_thresh = 0;
  4297. }
  4298. bp->rx_buf_use_size = rx_size;
  4299. /* hw alignment */
  4300. bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
  4301. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4302. bp->rx_ring_size = size;
  4303. bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
  4304. bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
  4305. }
  4306. static void
  4307. bnx2_free_tx_skbs(struct bnx2 *bp)
  4308. {
  4309. int i;
  4310. for (i = 0; i < bp->num_tx_rings; i++) {
  4311. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4312. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4313. int j;
  4314. if (txr->tx_buf_ring == NULL)
  4315. continue;
  4316. for (j = 0; j < TX_DESC_CNT; ) {
  4317. struct sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4318. struct sk_buff *skb = tx_buf->skb;
  4319. if (skb == NULL) {
  4320. j++;
  4321. continue;
  4322. }
  4323. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4324. tx_buf->skb = NULL;
  4325. j += skb_shinfo(skb)->nr_frags + 1;
  4326. dev_kfree_skb(skb);
  4327. }
  4328. }
  4329. }
  4330. static void
  4331. bnx2_free_rx_skbs(struct bnx2 *bp)
  4332. {
  4333. int i;
  4334. for (i = 0; i < bp->num_rx_rings; i++) {
  4335. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4336. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4337. int j;
  4338. if (rxr->rx_buf_ring == NULL)
  4339. return;
  4340. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4341. struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4342. struct sk_buff *skb = rx_buf->skb;
  4343. if (skb == NULL)
  4344. continue;
  4345. pci_unmap_single(bp->pdev,
  4346. pci_unmap_addr(rx_buf, mapping),
  4347. bp->rx_buf_use_size,
  4348. PCI_DMA_FROMDEVICE);
  4349. rx_buf->skb = NULL;
  4350. dev_kfree_skb(skb);
  4351. }
  4352. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4353. bnx2_free_rx_page(bp, rxr, j);
  4354. }
  4355. }
  4356. static void
  4357. bnx2_free_skbs(struct bnx2 *bp)
  4358. {
  4359. bnx2_free_tx_skbs(bp);
  4360. bnx2_free_rx_skbs(bp);
  4361. }
  4362. static int
  4363. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4364. {
  4365. int rc;
  4366. rc = bnx2_reset_chip(bp, reset_code);
  4367. bnx2_free_skbs(bp);
  4368. if (rc)
  4369. return rc;
  4370. if ((rc = bnx2_init_chip(bp)) != 0)
  4371. return rc;
  4372. bnx2_init_all_rings(bp);
  4373. return 0;
  4374. }
  4375. static int
  4376. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4377. {
  4378. int rc;
  4379. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4380. return rc;
  4381. spin_lock_bh(&bp->phy_lock);
  4382. bnx2_init_phy(bp, reset_phy);
  4383. bnx2_set_link(bp);
  4384. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4385. bnx2_remote_phy_event(bp);
  4386. spin_unlock_bh(&bp->phy_lock);
  4387. return 0;
  4388. }
  4389. static int
  4390. bnx2_shutdown_chip(struct bnx2 *bp)
  4391. {
  4392. u32 reset_code;
  4393. if (bp->flags & BNX2_FLAG_NO_WOL)
  4394. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4395. else if (bp->wol)
  4396. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4397. else
  4398. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4399. return bnx2_reset_chip(bp, reset_code);
  4400. }
  4401. static int
  4402. bnx2_test_registers(struct bnx2 *bp)
  4403. {
  4404. int ret;
  4405. int i, is_5709;
  4406. static const struct {
  4407. u16 offset;
  4408. u16 flags;
  4409. #define BNX2_FL_NOT_5709 1
  4410. u32 rw_mask;
  4411. u32 ro_mask;
  4412. } reg_tbl[] = {
  4413. { 0x006c, 0, 0x00000000, 0x0000003f },
  4414. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4415. { 0x0094, 0, 0x00000000, 0x00000000 },
  4416. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4417. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4418. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4419. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4420. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4421. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4422. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4423. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4424. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4425. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4426. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4427. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4428. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4429. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4430. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4431. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4432. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4433. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4434. { 0x1000, 0, 0x00000000, 0x00000001 },
  4435. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4436. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4437. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4438. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4439. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4440. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4441. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4442. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4443. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4444. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4445. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4446. { 0x1800, 0, 0x00000000, 0x00000001 },
  4447. { 0x1804, 0, 0x00000000, 0x00000003 },
  4448. { 0x2800, 0, 0x00000000, 0x00000001 },
  4449. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4450. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4451. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4452. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4453. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4454. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4455. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4456. { 0x2840, 0, 0x00000000, 0xffffffff },
  4457. { 0x2844, 0, 0x00000000, 0xffffffff },
  4458. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4459. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4460. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4461. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4462. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4463. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4464. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4465. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4466. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4467. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4468. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4469. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4470. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4471. { 0x5004, 0, 0x00000000, 0x0000007f },
  4472. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4473. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4474. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4475. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4476. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4477. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4478. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4479. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4480. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4481. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4482. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4483. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4484. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4485. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4486. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4487. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4488. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4489. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4490. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4491. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4492. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4493. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4494. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4495. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4496. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4497. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4498. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4499. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4500. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4501. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4502. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4503. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4504. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4505. { 0xffff, 0, 0x00000000, 0x00000000 },
  4506. };
  4507. ret = 0;
  4508. is_5709 = 0;
  4509. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4510. is_5709 = 1;
  4511. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4512. u32 offset, rw_mask, ro_mask, save_val, val;
  4513. u16 flags = reg_tbl[i].flags;
  4514. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4515. continue;
  4516. offset = (u32) reg_tbl[i].offset;
  4517. rw_mask = reg_tbl[i].rw_mask;
  4518. ro_mask = reg_tbl[i].ro_mask;
  4519. save_val = readl(bp->regview + offset);
  4520. writel(0, bp->regview + offset);
  4521. val = readl(bp->regview + offset);
  4522. if ((val & rw_mask) != 0) {
  4523. goto reg_test_err;
  4524. }
  4525. if ((val & ro_mask) != (save_val & ro_mask)) {
  4526. goto reg_test_err;
  4527. }
  4528. writel(0xffffffff, bp->regview + offset);
  4529. val = readl(bp->regview + offset);
  4530. if ((val & rw_mask) != rw_mask) {
  4531. goto reg_test_err;
  4532. }
  4533. if ((val & ro_mask) != (save_val & ro_mask)) {
  4534. goto reg_test_err;
  4535. }
  4536. writel(save_val, bp->regview + offset);
  4537. continue;
  4538. reg_test_err:
  4539. writel(save_val, bp->regview + offset);
  4540. ret = -ENODEV;
  4541. break;
  4542. }
  4543. return ret;
  4544. }
  4545. static int
  4546. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4547. {
  4548. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4549. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4550. int i;
  4551. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4552. u32 offset;
  4553. for (offset = 0; offset < size; offset += 4) {
  4554. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4555. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4556. test_pattern[i]) {
  4557. return -ENODEV;
  4558. }
  4559. }
  4560. }
  4561. return 0;
  4562. }
  4563. static int
  4564. bnx2_test_memory(struct bnx2 *bp)
  4565. {
  4566. int ret = 0;
  4567. int i;
  4568. static struct mem_entry {
  4569. u32 offset;
  4570. u32 len;
  4571. } mem_tbl_5706[] = {
  4572. { 0x60000, 0x4000 },
  4573. { 0xa0000, 0x3000 },
  4574. { 0xe0000, 0x4000 },
  4575. { 0x120000, 0x4000 },
  4576. { 0x1a0000, 0x4000 },
  4577. { 0x160000, 0x4000 },
  4578. { 0xffffffff, 0 },
  4579. },
  4580. mem_tbl_5709[] = {
  4581. { 0x60000, 0x4000 },
  4582. { 0xa0000, 0x3000 },
  4583. { 0xe0000, 0x4000 },
  4584. { 0x120000, 0x4000 },
  4585. { 0x1a0000, 0x4000 },
  4586. { 0xffffffff, 0 },
  4587. };
  4588. struct mem_entry *mem_tbl;
  4589. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  4590. mem_tbl = mem_tbl_5709;
  4591. else
  4592. mem_tbl = mem_tbl_5706;
  4593. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4594. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4595. mem_tbl[i].len)) != 0) {
  4596. return ret;
  4597. }
  4598. }
  4599. return ret;
  4600. }
  4601. #define BNX2_MAC_LOOPBACK 0
  4602. #define BNX2_PHY_LOOPBACK 1
  4603. static int
  4604. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4605. {
  4606. unsigned int pkt_size, num_pkts, i;
  4607. struct sk_buff *skb, *rx_skb;
  4608. unsigned char *packet;
  4609. u16 rx_start_idx, rx_idx;
  4610. dma_addr_t map;
  4611. struct tx_bd *txbd;
  4612. struct sw_bd *rx_buf;
  4613. struct l2_fhdr *rx_hdr;
  4614. int ret = -ENODEV;
  4615. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4616. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4617. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4618. tx_napi = bnapi;
  4619. txr = &tx_napi->tx_ring;
  4620. rxr = &bnapi->rx_ring;
  4621. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4622. bp->loopback = MAC_LOOPBACK;
  4623. bnx2_set_mac_loopback(bp);
  4624. }
  4625. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4626. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4627. return 0;
  4628. bp->loopback = PHY_LOOPBACK;
  4629. bnx2_set_phy_loopback(bp);
  4630. }
  4631. else
  4632. return -EINVAL;
  4633. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4634. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4635. if (!skb)
  4636. return -ENOMEM;
  4637. packet = skb_put(skb, pkt_size);
  4638. memcpy(packet, bp->dev->dev_addr, 6);
  4639. memset(packet + 6, 0x0, 8);
  4640. for (i = 14; i < pkt_size; i++)
  4641. packet[i] = (unsigned char) (i & 0xff);
  4642. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  4643. dev_kfree_skb(skb);
  4644. return -EIO;
  4645. }
  4646. map = skb_shinfo(skb)->dma_head;
  4647. REG_WR(bp, BNX2_HC_COMMAND,
  4648. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4649. REG_RD(bp, BNX2_HC_COMMAND);
  4650. udelay(5);
  4651. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4652. num_pkts = 0;
  4653. txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
  4654. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4655. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4656. txbd->tx_bd_mss_nbytes = pkt_size;
  4657. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4658. num_pkts++;
  4659. txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
  4660. txr->tx_prod_bseq += pkt_size;
  4661. REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4662. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4663. udelay(100);
  4664. REG_WR(bp, BNX2_HC_COMMAND,
  4665. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4666. REG_RD(bp, BNX2_HC_COMMAND);
  4667. udelay(5);
  4668. skb_dma_unmap(&bp->pdev->dev, skb, DMA_TO_DEVICE);
  4669. dev_kfree_skb(skb);
  4670. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4671. goto loopback_test_done;
  4672. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4673. if (rx_idx != rx_start_idx + num_pkts) {
  4674. goto loopback_test_done;
  4675. }
  4676. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4677. rx_skb = rx_buf->skb;
  4678. rx_hdr = (struct l2_fhdr *) rx_skb->data;
  4679. skb_reserve(rx_skb, BNX2_RX_OFFSET);
  4680. pci_dma_sync_single_for_cpu(bp->pdev,
  4681. pci_unmap_addr(rx_buf, mapping),
  4682. bp->rx_buf_size, PCI_DMA_FROMDEVICE);
  4683. if (rx_hdr->l2_fhdr_status &
  4684. (L2_FHDR_ERRORS_BAD_CRC |
  4685. L2_FHDR_ERRORS_PHY_DECODE |
  4686. L2_FHDR_ERRORS_ALIGNMENT |
  4687. L2_FHDR_ERRORS_TOO_SHORT |
  4688. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4689. goto loopback_test_done;
  4690. }
  4691. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4692. goto loopback_test_done;
  4693. }
  4694. for (i = 14; i < pkt_size; i++) {
  4695. if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
  4696. goto loopback_test_done;
  4697. }
  4698. }
  4699. ret = 0;
  4700. loopback_test_done:
  4701. bp->loopback = 0;
  4702. return ret;
  4703. }
  4704. #define BNX2_MAC_LOOPBACK_FAILED 1
  4705. #define BNX2_PHY_LOOPBACK_FAILED 2
  4706. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4707. BNX2_PHY_LOOPBACK_FAILED)
  4708. static int
  4709. bnx2_test_loopback(struct bnx2 *bp)
  4710. {
  4711. int rc = 0;
  4712. if (!netif_running(bp->dev))
  4713. return BNX2_LOOPBACK_FAILED;
  4714. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4715. spin_lock_bh(&bp->phy_lock);
  4716. bnx2_init_phy(bp, 1);
  4717. spin_unlock_bh(&bp->phy_lock);
  4718. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4719. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4720. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4721. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4722. return rc;
  4723. }
  4724. #define NVRAM_SIZE 0x200
  4725. #define CRC32_RESIDUAL 0xdebb20e3
  4726. static int
  4727. bnx2_test_nvram(struct bnx2 *bp)
  4728. {
  4729. __be32 buf[NVRAM_SIZE / 4];
  4730. u8 *data = (u8 *) buf;
  4731. int rc = 0;
  4732. u32 magic, csum;
  4733. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4734. goto test_nvram_done;
  4735. magic = be32_to_cpu(buf[0]);
  4736. if (magic != 0x669955aa) {
  4737. rc = -ENODEV;
  4738. goto test_nvram_done;
  4739. }
  4740. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4741. goto test_nvram_done;
  4742. csum = ether_crc_le(0x100, data);
  4743. if (csum != CRC32_RESIDUAL) {
  4744. rc = -ENODEV;
  4745. goto test_nvram_done;
  4746. }
  4747. csum = ether_crc_le(0x100, data + 0x100);
  4748. if (csum != CRC32_RESIDUAL) {
  4749. rc = -ENODEV;
  4750. }
  4751. test_nvram_done:
  4752. return rc;
  4753. }
  4754. static int
  4755. bnx2_test_link(struct bnx2 *bp)
  4756. {
  4757. u32 bmsr;
  4758. if (!netif_running(bp->dev))
  4759. return -ENODEV;
  4760. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4761. if (bp->link_up)
  4762. return 0;
  4763. return -ENODEV;
  4764. }
  4765. spin_lock_bh(&bp->phy_lock);
  4766. bnx2_enable_bmsr1(bp);
  4767. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4768. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4769. bnx2_disable_bmsr1(bp);
  4770. spin_unlock_bh(&bp->phy_lock);
  4771. if (bmsr & BMSR_LSTATUS) {
  4772. return 0;
  4773. }
  4774. return -ENODEV;
  4775. }
  4776. static int
  4777. bnx2_test_intr(struct bnx2 *bp)
  4778. {
  4779. int i;
  4780. u16 status_idx;
  4781. if (!netif_running(bp->dev))
  4782. return -ENODEV;
  4783. status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4784. /* This register is not touched during run-time. */
  4785. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4786. REG_RD(bp, BNX2_HC_COMMAND);
  4787. for (i = 0; i < 10; i++) {
  4788. if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4789. status_idx) {
  4790. break;
  4791. }
  4792. msleep_interruptible(10);
  4793. }
  4794. if (i < 10)
  4795. return 0;
  4796. return -ENODEV;
  4797. }
  4798. /* Determining link for parallel detection. */
  4799. static int
  4800. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4801. {
  4802. u32 mode_ctl, an_dbg, exp;
  4803. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4804. return 0;
  4805. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4806. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4807. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4808. return 0;
  4809. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4810. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4811. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4812. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4813. return 0;
  4814. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4815. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4816. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4817. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4818. return 0;
  4819. return 1;
  4820. }
  4821. static void
  4822. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4823. {
  4824. int check_link = 1;
  4825. spin_lock(&bp->phy_lock);
  4826. if (bp->serdes_an_pending) {
  4827. bp->serdes_an_pending--;
  4828. check_link = 0;
  4829. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4830. u32 bmcr;
  4831. bp->current_interval = BNX2_TIMER_INTERVAL;
  4832. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4833. if (bmcr & BMCR_ANENABLE) {
  4834. if (bnx2_5706_serdes_has_link(bp)) {
  4835. bmcr &= ~BMCR_ANENABLE;
  4836. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4837. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4838. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4839. }
  4840. }
  4841. }
  4842. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4843. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4844. u32 phy2;
  4845. bnx2_write_phy(bp, 0x17, 0x0f01);
  4846. bnx2_read_phy(bp, 0x15, &phy2);
  4847. if (phy2 & 0x20) {
  4848. u32 bmcr;
  4849. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4850. bmcr |= BMCR_ANENABLE;
  4851. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4852. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4853. }
  4854. } else
  4855. bp->current_interval = BNX2_TIMER_INTERVAL;
  4856. if (check_link) {
  4857. u32 val;
  4858. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4859. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4860. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4861. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4862. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4863. bnx2_5706s_force_link_dn(bp, 1);
  4864. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  4865. } else
  4866. bnx2_set_link(bp);
  4867. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  4868. bnx2_set_link(bp);
  4869. }
  4870. spin_unlock(&bp->phy_lock);
  4871. }
  4872. static void
  4873. bnx2_5708_serdes_timer(struct bnx2 *bp)
  4874. {
  4875. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4876. return;
  4877. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  4878. bp->serdes_an_pending = 0;
  4879. return;
  4880. }
  4881. spin_lock(&bp->phy_lock);
  4882. if (bp->serdes_an_pending)
  4883. bp->serdes_an_pending--;
  4884. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4885. u32 bmcr;
  4886. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4887. if (bmcr & BMCR_ANENABLE) {
  4888. bnx2_enable_forced_2g5(bp);
  4889. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  4890. } else {
  4891. bnx2_disable_forced_2g5(bp);
  4892. bp->serdes_an_pending = 2;
  4893. bp->current_interval = BNX2_TIMER_INTERVAL;
  4894. }
  4895. } else
  4896. bp->current_interval = BNX2_TIMER_INTERVAL;
  4897. spin_unlock(&bp->phy_lock);
  4898. }
  4899. static void
  4900. bnx2_timer(unsigned long data)
  4901. {
  4902. struct bnx2 *bp = (struct bnx2 *) data;
  4903. if (!netif_running(bp->dev))
  4904. return;
  4905. if (atomic_read(&bp->intr_sem) != 0)
  4906. goto bnx2_restart_timer;
  4907. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  4908. BNX2_FLAG_USING_MSI)
  4909. bnx2_chk_missed_msi(bp);
  4910. bnx2_send_heart_beat(bp);
  4911. bp->stats_blk->stat_FwRxDrop =
  4912. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  4913. /* workaround occasional corrupted counters */
  4914. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  4915. REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  4916. BNX2_HC_COMMAND_STATS_NOW);
  4917. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  4918. if (CHIP_NUM(bp) == CHIP_NUM_5706)
  4919. bnx2_5706_serdes_timer(bp);
  4920. else
  4921. bnx2_5708_serdes_timer(bp);
  4922. }
  4923. bnx2_restart_timer:
  4924. mod_timer(&bp->timer, jiffies + bp->current_interval);
  4925. }
  4926. static int
  4927. bnx2_request_irq(struct bnx2 *bp)
  4928. {
  4929. unsigned long flags;
  4930. struct bnx2_irq *irq;
  4931. int rc = 0, i;
  4932. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  4933. flags = 0;
  4934. else
  4935. flags = IRQF_SHARED;
  4936. for (i = 0; i < bp->irq_nvecs; i++) {
  4937. irq = &bp->irq_tbl[i];
  4938. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  4939. &bp->bnx2_napi[i]);
  4940. if (rc)
  4941. break;
  4942. irq->requested = 1;
  4943. }
  4944. return rc;
  4945. }
  4946. static void
  4947. bnx2_free_irq(struct bnx2 *bp)
  4948. {
  4949. struct bnx2_irq *irq;
  4950. int i;
  4951. for (i = 0; i < bp->irq_nvecs; i++) {
  4952. irq = &bp->irq_tbl[i];
  4953. if (irq->requested)
  4954. free_irq(irq->vector, &bp->bnx2_napi[i]);
  4955. irq->requested = 0;
  4956. }
  4957. if (bp->flags & BNX2_FLAG_USING_MSI)
  4958. pci_disable_msi(bp->pdev);
  4959. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  4960. pci_disable_msix(bp->pdev);
  4961. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  4962. }
  4963. static void
  4964. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  4965. {
  4966. int i, rc;
  4967. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  4968. struct net_device *dev = bp->dev;
  4969. const int len = sizeof(bp->irq_tbl[0].name);
  4970. bnx2_setup_msix_tbl(bp);
  4971. REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  4972. REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  4973. REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  4974. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4975. msix_ent[i].entry = i;
  4976. msix_ent[i].vector = 0;
  4977. }
  4978. rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
  4979. if (rc != 0)
  4980. return;
  4981. bp->irq_nvecs = msix_vecs;
  4982. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  4983. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4984. bp->irq_tbl[i].vector = msix_ent[i].vector;
  4985. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  4986. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  4987. }
  4988. }
  4989. static void
  4990. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  4991. {
  4992. int cpus = num_online_cpus();
  4993. int msix_vecs = min(cpus + 1, RX_MAX_RINGS);
  4994. bp->irq_tbl[0].handler = bnx2_interrupt;
  4995. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  4996. bp->irq_nvecs = 1;
  4997. bp->irq_tbl[0].vector = bp->pdev->irq;
  4998. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
  4999. bnx2_enable_msix(bp, msix_vecs);
  5000. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5001. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5002. if (pci_enable_msi(bp->pdev) == 0) {
  5003. bp->flags |= BNX2_FLAG_USING_MSI;
  5004. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  5005. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5006. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5007. } else
  5008. bp->irq_tbl[0].handler = bnx2_msi;
  5009. bp->irq_tbl[0].vector = bp->pdev->irq;
  5010. }
  5011. }
  5012. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5013. bp->dev->real_num_tx_queues = bp->num_tx_rings;
  5014. bp->num_rx_rings = bp->irq_nvecs;
  5015. }
  5016. /* Called with rtnl_lock */
  5017. static int
  5018. bnx2_open(struct net_device *dev)
  5019. {
  5020. struct bnx2 *bp = netdev_priv(dev);
  5021. int rc;
  5022. netif_carrier_off(dev);
  5023. bnx2_set_power_state(bp, PCI_D0);
  5024. bnx2_disable_int(bp);
  5025. bnx2_setup_int_mode(bp, disable_msi);
  5026. bnx2_napi_enable(bp);
  5027. rc = bnx2_alloc_mem(bp);
  5028. if (rc)
  5029. goto open_err;
  5030. rc = bnx2_request_irq(bp);
  5031. if (rc)
  5032. goto open_err;
  5033. rc = bnx2_init_nic(bp, 1);
  5034. if (rc)
  5035. goto open_err;
  5036. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5037. atomic_set(&bp->intr_sem, 0);
  5038. bnx2_enable_int(bp);
  5039. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5040. /* Test MSI to make sure it is working
  5041. * If MSI test fails, go back to INTx mode
  5042. */
  5043. if (bnx2_test_intr(bp) != 0) {
  5044. printk(KERN_WARNING PFX "%s: No interrupt was generated"
  5045. " using MSI, switching to INTx mode. Please"
  5046. " report this failure to the PCI maintainer"
  5047. " and include system chipset information.\n",
  5048. bp->dev->name);
  5049. bnx2_disable_int(bp);
  5050. bnx2_free_irq(bp);
  5051. bnx2_setup_int_mode(bp, 1);
  5052. rc = bnx2_init_nic(bp, 0);
  5053. if (!rc)
  5054. rc = bnx2_request_irq(bp);
  5055. if (rc) {
  5056. del_timer_sync(&bp->timer);
  5057. goto open_err;
  5058. }
  5059. bnx2_enable_int(bp);
  5060. }
  5061. }
  5062. if (bp->flags & BNX2_FLAG_USING_MSI)
  5063. printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
  5064. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5065. printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
  5066. netif_tx_start_all_queues(dev);
  5067. return 0;
  5068. open_err:
  5069. bnx2_napi_disable(bp);
  5070. bnx2_free_skbs(bp);
  5071. bnx2_free_irq(bp);
  5072. bnx2_free_mem(bp);
  5073. return rc;
  5074. }
  5075. static void
  5076. bnx2_reset_task(struct work_struct *work)
  5077. {
  5078. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5079. if (!netif_running(bp->dev))
  5080. return;
  5081. bnx2_netif_stop(bp);
  5082. bnx2_init_nic(bp, 1);
  5083. atomic_set(&bp->intr_sem, 1);
  5084. bnx2_netif_start(bp);
  5085. }
  5086. static void
  5087. bnx2_tx_timeout(struct net_device *dev)
  5088. {
  5089. struct bnx2 *bp = netdev_priv(dev);
  5090. /* This allows the netif to be shutdown gracefully before resetting */
  5091. schedule_work(&bp->reset_task);
  5092. }
  5093. #ifdef BCM_VLAN
  5094. /* Called with rtnl_lock */
  5095. static void
  5096. bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
  5097. {
  5098. struct bnx2 *bp = netdev_priv(dev);
  5099. if (netif_running(dev))
  5100. bnx2_netif_stop(bp);
  5101. bp->vlgrp = vlgrp;
  5102. if (!netif_running(dev))
  5103. return;
  5104. bnx2_set_rx_mode(dev);
  5105. if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
  5106. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  5107. bnx2_netif_start(bp);
  5108. }
  5109. #endif
  5110. /* Called with netif_tx_lock.
  5111. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5112. * netif_wake_queue().
  5113. */
  5114. static int
  5115. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5116. {
  5117. struct bnx2 *bp = netdev_priv(dev);
  5118. dma_addr_t mapping;
  5119. struct tx_bd *txbd;
  5120. struct sw_tx_bd *tx_buf;
  5121. u32 len, vlan_tag_flags, last_frag, mss;
  5122. u16 prod, ring_prod;
  5123. int i;
  5124. struct bnx2_napi *bnapi;
  5125. struct bnx2_tx_ring_info *txr;
  5126. struct netdev_queue *txq;
  5127. struct skb_shared_info *sp;
  5128. /* Determine which tx ring we will be placed on */
  5129. i = skb_get_queue_mapping(skb);
  5130. bnapi = &bp->bnx2_napi[i];
  5131. txr = &bnapi->tx_ring;
  5132. txq = netdev_get_tx_queue(dev, i);
  5133. if (unlikely(bnx2_tx_avail(bp, txr) <
  5134. (skb_shinfo(skb)->nr_frags + 1))) {
  5135. netif_tx_stop_queue(txq);
  5136. printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
  5137. dev->name);
  5138. return NETDEV_TX_BUSY;
  5139. }
  5140. len = skb_headlen(skb);
  5141. prod = txr->tx_prod;
  5142. ring_prod = TX_RING_IDX(prod);
  5143. vlan_tag_flags = 0;
  5144. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5145. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5146. }
  5147. #ifdef BCM_VLAN
  5148. if (bp->vlgrp && vlan_tx_tag_present(skb)) {
  5149. vlan_tag_flags |=
  5150. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5151. }
  5152. #endif
  5153. if ((mss = skb_shinfo(skb)->gso_size)) {
  5154. u32 tcp_opt_len;
  5155. struct iphdr *iph;
  5156. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5157. tcp_opt_len = tcp_optlen(skb);
  5158. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5159. u32 tcp_off = skb_transport_offset(skb) -
  5160. sizeof(struct ipv6hdr) - ETH_HLEN;
  5161. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5162. TX_BD_FLAGS_SW_FLAGS;
  5163. if (likely(tcp_off == 0))
  5164. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5165. else {
  5166. tcp_off >>= 3;
  5167. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5168. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5169. ((tcp_off & 0x10) <<
  5170. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5171. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5172. }
  5173. } else {
  5174. iph = ip_hdr(skb);
  5175. if (tcp_opt_len || (iph->ihl > 5)) {
  5176. vlan_tag_flags |= ((iph->ihl - 5) +
  5177. (tcp_opt_len >> 2)) << 8;
  5178. }
  5179. }
  5180. } else
  5181. mss = 0;
  5182. if (skb_dma_map(&bp->pdev->dev, skb, DMA_TO_DEVICE)) {
  5183. dev_kfree_skb(skb);
  5184. return NETDEV_TX_OK;
  5185. }
  5186. sp = skb_shinfo(skb);
  5187. mapping = sp->dma_head;
  5188. tx_buf = &txr->tx_buf_ring[ring_prod];
  5189. tx_buf->skb = skb;
  5190. txbd = &txr->tx_desc_ring[ring_prod];
  5191. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5192. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5193. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5194. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5195. last_frag = skb_shinfo(skb)->nr_frags;
  5196. tx_buf->nr_frags = last_frag;
  5197. tx_buf->is_gso = skb_is_gso(skb);
  5198. for (i = 0; i < last_frag; i++) {
  5199. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5200. prod = NEXT_TX_BD(prod);
  5201. ring_prod = TX_RING_IDX(prod);
  5202. txbd = &txr->tx_desc_ring[ring_prod];
  5203. len = frag->size;
  5204. mapping = sp->dma_maps[i];
  5205. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5206. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5207. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5208. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5209. }
  5210. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5211. prod = NEXT_TX_BD(prod);
  5212. txr->tx_prod_bseq += skb->len;
  5213. REG_WR16(bp, txr->tx_bidx_addr, prod);
  5214. REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5215. mmiowb();
  5216. txr->tx_prod = prod;
  5217. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5218. netif_tx_stop_queue(txq);
  5219. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5220. netif_tx_wake_queue(txq);
  5221. }
  5222. return NETDEV_TX_OK;
  5223. }
  5224. /* Called with rtnl_lock */
  5225. static int
  5226. bnx2_close(struct net_device *dev)
  5227. {
  5228. struct bnx2 *bp = netdev_priv(dev);
  5229. cancel_work_sync(&bp->reset_task);
  5230. bnx2_disable_int_sync(bp);
  5231. bnx2_napi_disable(bp);
  5232. del_timer_sync(&bp->timer);
  5233. bnx2_shutdown_chip(bp);
  5234. bnx2_free_irq(bp);
  5235. bnx2_free_skbs(bp);
  5236. bnx2_free_mem(bp);
  5237. bp->link_up = 0;
  5238. netif_carrier_off(bp->dev);
  5239. bnx2_set_power_state(bp, PCI_D3hot);
  5240. return 0;
  5241. }
  5242. #define GET_NET_STATS64(ctr) \
  5243. (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
  5244. (unsigned long) (ctr##_lo)
  5245. #define GET_NET_STATS32(ctr) \
  5246. (ctr##_lo)
  5247. #if (BITS_PER_LONG == 64)
  5248. #define GET_NET_STATS GET_NET_STATS64
  5249. #else
  5250. #define GET_NET_STATS GET_NET_STATS32
  5251. #endif
  5252. static struct net_device_stats *
  5253. bnx2_get_stats(struct net_device *dev)
  5254. {
  5255. struct bnx2 *bp = netdev_priv(dev);
  5256. struct statistics_block *stats_blk = bp->stats_blk;
  5257. struct net_device_stats *net_stats = &dev->stats;
  5258. if (bp->stats_blk == NULL) {
  5259. return net_stats;
  5260. }
  5261. net_stats->rx_packets =
  5262. GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
  5263. GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
  5264. GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
  5265. net_stats->tx_packets =
  5266. GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
  5267. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
  5268. GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
  5269. net_stats->rx_bytes =
  5270. GET_NET_STATS(stats_blk->stat_IfHCInOctets);
  5271. net_stats->tx_bytes =
  5272. GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
  5273. net_stats->multicast =
  5274. GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
  5275. net_stats->collisions =
  5276. (unsigned long) stats_blk->stat_EtherStatsCollisions;
  5277. net_stats->rx_length_errors =
  5278. (unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
  5279. stats_blk->stat_EtherStatsOverrsizePkts);
  5280. net_stats->rx_over_errors =
  5281. (unsigned long) (stats_blk->stat_IfInFTQDiscards +
  5282. stats_blk->stat_IfInMBUFDiscards);
  5283. net_stats->rx_frame_errors =
  5284. (unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
  5285. net_stats->rx_crc_errors =
  5286. (unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
  5287. net_stats->rx_errors = net_stats->rx_length_errors +
  5288. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5289. net_stats->rx_crc_errors;
  5290. net_stats->tx_aborted_errors =
  5291. (unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
  5292. stats_blk->stat_Dot3StatsLateCollisions);
  5293. if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
  5294. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5295. net_stats->tx_carrier_errors = 0;
  5296. else {
  5297. net_stats->tx_carrier_errors =
  5298. (unsigned long)
  5299. stats_blk->stat_Dot3StatsCarrierSenseErrors;
  5300. }
  5301. net_stats->tx_errors =
  5302. (unsigned long)
  5303. stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
  5304. +
  5305. net_stats->tx_aborted_errors +
  5306. net_stats->tx_carrier_errors;
  5307. net_stats->rx_missed_errors =
  5308. (unsigned long) (stats_blk->stat_IfInFTQDiscards +
  5309. stats_blk->stat_IfInMBUFDiscards + stats_blk->stat_FwRxDrop);
  5310. return net_stats;
  5311. }
  5312. /* All ethtool functions called with rtnl_lock */
  5313. static int
  5314. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5315. {
  5316. struct bnx2 *bp = netdev_priv(dev);
  5317. int support_serdes = 0, support_copper = 0;
  5318. cmd->supported = SUPPORTED_Autoneg;
  5319. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5320. support_serdes = 1;
  5321. support_copper = 1;
  5322. } else if (bp->phy_port == PORT_FIBRE)
  5323. support_serdes = 1;
  5324. else
  5325. support_copper = 1;
  5326. if (support_serdes) {
  5327. cmd->supported |= SUPPORTED_1000baseT_Full |
  5328. SUPPORTED_FIBRE;
  5329. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5330. cmd->supported |= SUPPORTED_2500baseX_Full;
  5331. }
  5332. if (support_copper) {
  5333. cmd->supported |= SUPPORTED_10baseT_Half |
  5334. SUPPORTED_10baseT_Full |
  5335. SUPPORTED_100baseT_Half |
  5336. SUPPORTED_100baseT_Full |
  5337. SUPPORTED_1000baseT_Full |
  5338. SUPPORTED_TP;
  5339. }
  5340. spin_lock_bh(&bp->phy_lock);
  5341. cmd->port = bp->phy_port;
  5342. cmd->advertising = bp->advertising;
  5343. if (bp->autoneg & AUTONEG_SPEED) {
  5344. cmd->autoneg = AUTONEG_ENABLE;
  5345. }
  5346. else {
  5347. cmd->autoneg = AUTONEG_DISABLE;
  5348. }
  5349. if (netif_carrier_ok(dev)) {
  5350. cmd->speed = bp->line_speed;
  5351. cmd->duplex = bp->duplex;
  5352. }
  5353. else {
  5354. cmd->speed = -1;
  5355. cmd->duplex = -1;
  5356. }
  5357. spin_unlock_bh(&bp->phy_lock);
  5358. cmd->transceiver = XCVR_INTERNAL;
  5359. cmd->phy_address = bp->phy_addr;
  5360. return 0;
  5361. }
  5362. static int
  5363. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5364. {
  5365. struct bnx2 *bp = netdev_priv(dev);
  5366. u8 autoneg = bp->autoneg;
  5367. u8 req_duplex = bp->req_duplex;
  5368. u16 req_line_speed = bp->req_line_speed;
  5369. u32 advertising = bp->advertising;
  5370. int err = -EINVAL;
  5371. spin_lock_bh(&bp->phy_lock);
  5372. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5373. goto err_out_unlock;
  5374. if (cmd->port != bp->phy_port &&
  5375. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5376. goto err_out_unlock;
  5377. /* If device is down, we can store the settings only if the user
  5378. * is setting the currently active port.
  5379. */
  5380. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5381. goto err_out_unlock;
  5382. if (cmd->autoneg == AUTONEG_ENABLE) {
  5383. autoneg |= AUTONEG_SPEED;
  5384. cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5385. /* allow advertising 1 speed */
  5386. if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
  5387. (cmd->advertising == ADVERTISED_10baseT_Full) ||
  5388. (cmd->advertising == ADVERTISED_100baseT_Half) ||
  5389. (cmd->advertising == ADVERTISED_100baseT_Full)) {
  5390. if (cmd->port == PORT_FIBRE)
  5391. goto err_out_unlock;
  5392. advertising = cmd->advertising;
  5393. } else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
  5394. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
  5395. (cmd->port == PORT_TP))
  5396. goto err_out_unlock;
  5397. } else if (cmd->advertising == ADVERTISED_1000baseT_Full)
  5398. advertising = cmd->advertising;
  5399. else if (cmd->advertising == ADVERTISED_1000baseT_Half)
  5400. goto err_out_unlock;
  5401. else {
  5402. if (cmd->port == PORT_FIBRE)
  5403. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5404. else
  5405. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5406. }
  5407. advertising |= ADVERTISED_Autoneg;
  5408. }
  5409. else {
  5410. if (cmd->port == PORT_FIBRE) {
  5411. if ((cmd->speed != SPEED_1000 &&
  5412. cmd->speed != SPEED_2500) ||
  5413. (cmd->duplex != DUPLEX_FULL))
  5414. goto err_out_unlock;
  5415. if (cmd->speed == SPEED_2500 &&
  5416. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5417. goto err_out_unlock;
  5418. }
  5419. else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
  5420. goto err_out_unlock;
  5421. autoneg &= ~AUTONEG_SPEED;
  5422. req_line_speed = cmd->speed;
  5423. req_duplex = cmd->duplex;
  5424. advertising = 0;
  5425. }
  5426. bp->autoneg = autoneg;
  5427. bp->advertising = advertising;
  5428. bp->req_line_speed = req_line_speed;
  5429. bp->req_duplex = req_duplex;
  5430. err = 0;
  5431. /* If device is down, the new settings will be picked up when it is
  5432. * brought up.
  5433. */
  5434. if (netif_running(dev))
  5435. err = bnx2_setup_phy(bp, cmd->port);
  5436. err_out_unlock:
  5437. spin_unlock_bh(&bp->phy_lock);
  5438. return err;
  5439. }
  5440. static void
  5441. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5442. {
  5443. struct bnx2 *bp = netdev_priv(dev);
  5444. strcpy(info->driver, DRV_MODULE_NAME);
  5445. strcpy(info->version, DRV_MODULE_VERSION);
  5446. strcpy(info->bus_info, pci_name(bp->pdev));
  5447. strcpy(info->fw_version, bp->fw_version);
  5448. }
  5449. #define BNX2_REGDUMP_LEN (32 * 1024)
  5450. static int
  5451. bnx2_get_regs_len(struct net_device *dev)
  5452. {
  5453. return BNX2_REGDUMP_LEN;
  5454. }
  5455. static void
  5456. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5457. {
  5458. u32 *p = _p, i, offset;
  5459. u8 *orig_p = _p;
  5460. struct bnx2 *bp = netdev_priv(dev);
  5461. u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
  5462. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5463. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5464. 0x1040, 0x1048, 0x1080, 0x10a4,
  5465. 0x1400, 0x1490, 0x1498, 0x14f0,
  5466. 0x1500, 0x155c, 0x1580, 0x15dc,
  5467. 0x1600, 0x1658, 0x1680, 0x16d8,
  5468. 0x1800, 0x1820, 0x1840, 0x1854,
  5469. 0x1880, 0x1894, 0x1900, 0x1984,
  5470. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5471. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5472. 0x2000, 0x2030, 0x23c0, 0x2400,
  5473. 0x2800, 0x2820, 0x2830, 0x2850,
  5474. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5475. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5476. 0x4080, 0x4090, 0x43c0, 0x4458,
  5477. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5478. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5479. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5480. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5481. 0x6800, 0x6848, 0x684c, 0x6860,
  5482. 0x6888, 0x6910, 0x8000 };
  5483. regs->version = 0;
  5484. memset(p, 0, BNX2_REGDUMP_LEN);
  5485. if (!netif_running(bp->dev))
  5486. return;
  5487. i = 0;
  5488. offset = reg_boundaries[0];
  5489. p += offset;
  5490. while (offset < BNX2_REGDUMP_LEN) {
  5491. *p++ = REG_RD(bp, offset);
  5492. offset += 4;
  5493. if (offset == reg_boundaries[i + 1]) {
  5494. offset = reg_boundaries[i + 2];
  5495. p = (u32 *) (orig_p + offset);
  5496. i += 2;
  5497. }
  5498. }
  5499. }
  5500. static void
  5501. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5502. {
  5503. struct bnx2 *bp = netdev_priv(dev);
  5504. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5505. wol->supported = 0;
  5506. wol->wolopts = 0;
  5507. }
  5508. else {
  5509. wol->supported = WAKE_MAGIC;
  5510. if (bp->wol)
  5511. wol->wolopts = WAKE_MAGIC;
  5512. else
  5513. wol->wolopts = 0;
  5514. }
  5515. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5516. }
  5517. static int
  5518. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5519. {
  5520. struct bnx2 *bp = netdev_priv(dev);
  5521. if (wol->wolopts & ~WAKE_MAGIC)
  5522. return -EINVAL;
  5523. if (wol->wolopts & WAKE_MAGIC) {
  5524. if (bp->flags & BNX2_FLAG_NO_WOL)
  5525. return -EINVAL;
  5526. bp->wol = 1;
  5527. }
  5528. else {
  5529. bp->wol = 0;
  5530. }
  5531. return 0;
  5532. }
  5533. static int
  5534. bnx2_nway_reset(struct net_device *dev)
  5535. {
  5536. struct bnx2 *bp = netdev_priv(dev);
  5537. u32 bmcr;
  5538. if (!netif_running(dev))
  5539. return -EAGAIN;
  5540. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5541. return -EINVAL;
  5542. }
  5543. spin_lock_bh(&bp->phy_lock);
  5544. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5545. int rc;
  5546. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5547. spin_unlock_bh(&bp->phy_lock);
  5548. return rc;
  5549. }
  5550. /* Force a link down visible on the other side */
  5551. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5552. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5553. spin_unlock_bh(&bp->phy_lock);
  5554. msleep(20);
  5555. spin_lock_bh(&bp->phy_lock);
  5556. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5557. bp->serdes_an_pending = 1;
  5558. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5559. }
  5560. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5561. bmcr &= ~BMCR_LOOPBACK;
  5562. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5563. spin_unlock_bh(&bp->phy_lock);
  5564. return 0;
  5565. }
  5566. static u32
  5567. bnx2_get_link(struct net_device *dev)
  5568. {
  5569. struct bnx2 *bp = netdev_priv(dev);
  5570. return bp->link_up;
  5571. }
  5572. static int
  5573. bnx2_get_eeprom_len(struct net_device *dev)
  5574. {
  5575. struct bnx2 *bp = netdev_priv(dev);
  5576. if (bp->flash_info == NULL)
  5577. return 0;
  5578. return (int) bp->flash_size;
  5579. }
  5580. static int
  5581. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5582. u8 *eebuf)
  5583. {
  5584. struct bnx2 *bp = netdev_priv(dev);
  5585. int rc;
  5586. if (!netif_running(dev))
  5587. return -EAGAIN;
  5588. /* parameters already validated in ethtool_get_eeprom */
  5589. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5590. return rc;
  5591. }
  5592. static int
  5593. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5594. u8 *eebuf)
  5595. {
  5596. struct bnx2 *bp = netdev_priv(dev);
  5597. int rc;
  5598. if (!netif_running(dev))
  5599. return -EAGAIN;
  5600. /* parameters already validated in ethtool_set_eeprom */
  5601. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5602. return rc;
  5603. }
  5604. static int
  5605. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5606. {
  5607. struct bnx2 *bp = netdev_priv(dev);
  5608. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5609. coal->rx_coalesce_usecs = bp->rx_ticks;
  5610. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5611. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5612. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5613. coal->tx_coalesce_usecs = bp->tx_ticks;
  5614. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5615. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5616. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5617. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5618. return 0;
  5619. }
  5620. static int
  5621. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5622. {
  5623. struct bnx2 *bp = netdev_priv(dev);
  5624. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5625. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5626. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5627. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5628. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5629. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5630. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5631. if (bp->rx_quick_cons_trip_int > 0xff)
  5632. bp->rx_quick_cons_trip_int = 0xff;
  5633. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5634. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5635. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5636. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5637. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5638. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5639. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5640. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5641. 0xff;
  5642. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5643. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5644. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5645. bp->stats_ticks = USEC_PER_SEC;
  5646. }
  5647. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5648. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5649. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5650. if (netif_running(bp->dev)) {
  5651. bnx2_netif_stop(bp);
  5652. bnx2_init_nic(bp, 0);
  5653. bnx2_netif_start(bp);
  5654. }
  5655. return 0;
  5656. }
  5657. static void
  5658. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5659. {
  5660. struct bnx2 *bp = netdev_priv(dev);
  5661. ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
  5662. ering->rx_mini_max_pending = 0;
  5663. ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
  5664. ering->rx_pending = bp->rx_ring_size;
  5665. ering->rx_mini_pending = 0;
  5666. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5667. ering->tx_max_pending = MAX_TX_DESC_CNT;
  5668. ering->tx_pending = bp->tx_ring_size;
  5669. }
  5670. static int
  5671. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
  5672. {
  5673. if (netif_running(bp->dev)) {
  5674. bnx2_netif_stop(bp);
  5675. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5676. bnx2_free_skbs(bp);
  5677. bnx2_free_mem(bp);
  5678. }
  5679. bnx2_set_rx_ring_size(bp, rx);
  5680. bp->tx_ring_size = tx;
  5681. if (netif_running(bp->dev)) {
  5682. int rc;
  5683. rc = bnx2_alloc_mem(bp);
  5684. if (!rc)
  5685. rc = bnx2_init_nic(bp, 0);
  5686. if (rc) {
  5687. bnx2_napi_enable(bp);
  5688. dev_close(bp->dev);
  5689. return rc;
  5690. }
  5691. bnx2_netif_start(bp);
  5692. }
  5693. return 0;
  5694. }
  5695. static int
  5696. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5697. {
  5698. struct bnx2 *bp = netdev_priv(dev);
  5699. int rc;
  5700. if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
  5701. (ering->tx_pending > MAX_TX_DESC_CNT) ||
  5702. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  5703. return -EINVAL;
  5704. }
  5705. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
  5706. return rc;
  5707. }
  5708. static void
  5709. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5710. {
  5711. struct bnx2 *bp = netdev_priv(dev);
  5712. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  5713. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  5714. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  5715. }
  5716. static int
  5717. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  5718. {
  5719. struct bnx2 *bp = netdev_priv(dev);
  5720. bp->req_flow_ctrl = 0;
  5721. if (epause->rx_pause)
  5722. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  5723. if (epause->tx_pause)
  5724. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  5725. if (epause->autoneg) {
  5726. bp->autoneg |= AUTONEG_FLOW_CTRL;
  5727. }
  5728. else {
  5729. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  5730. }
  5731. if (netif_running(dev)) {
  5732. spin_lock_bh(&bp->phy_lock);
  5733. bnx2_setup_phy(bp, bp->phy_port);
  5734. spin_unlock_bh(&bp->phy_lock);
  5735. }
  5736. return 0;
  5737. }
  5738. static u32
  5739. bnx2_get_rx_csum(struct net_device *dev)
  5740. {
  5741. struct bnx2 *bp = netdev_priv(dev);
  5742. return bp->rx_csum;
  5743. }
  5744. static int
  5745. bnx2_set_rx_csum(struct net_device *dev, u32 data)
  5746. {
  5747. struct bnx2 *bp = netdev_priv(dev);
  5748. bp->rx_csum = data;
  5749. return 0;
  5750. }
  5751. static int
  5752. bnx2_set_tso(struct net_device *dev, u32 data)
  5753. {
  5754. struct bnx2 *bp = netdev_priv(dev);
  5755. if (data) {
  5756. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  5757. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  5758. dev->features |= NETIF_F_TSO6;
  5759. } else
  5760. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
  5761. NETIF_F_TSO_ECN);
  5762. return 0;
  5763. }
  5764. static struct {
  5765. char string[ETH_GSTRING_LEN];
  5766. } bnx2_stats_str_arr[] = {
  5767. { "rx_bytes" },
  5768. { "rx_error_bytes" },
  5769. { "tx_bytes" },
  5770. { "tx_error_bytes" },
  5771. { "rx_ucast_packets" },
  5772. { "rx_mcast_packets" },
  5773. { "rx_bcast_packets" },
  5774. { "tx_ucast_packets" },
  5775. { "tx_mcast_packets" },
  5776. { "tx_bcast_packets" },
  5777. { "tx_mac_errors" },
  5778. { "tx_carrier_errors" },
  5779. { "rx_crc_errors" },
  5780. { "rx_align_errors" },
  5781. { "tx_single_collisions" },
  5782. { "tx_multi_collisions" },
  5783. { "tx_deferred" },
  5784. { "tx_excess_collisions" },
  5785. { "tx_late_collisions" },
  5786. { "tx_total_collisions" },
  5787. { "rx_fragments" },
  5788. { "rx_jabbers" },
  5789. { "rx_undersize_packets" },
  5790. { "rx_oversize_packets" },
  5791. { "rx_64_byte_packets" },
  5792. { "rx_65_to_127_byte_packets" },
  5793. { "rx_128_to_255_byte_packets" },
  5794. { "rx_256_to_511_byte_packets" },
  5795. { "rx_512_to_1023_byte_packets" },
  5796. { "rx_1024_to_1522_byte_packets" },
  5797. { "rx_1523_to_9022_byte_packets" },
  5798. { "tx_64_byte_packets" },
  5799. { "tx_65_to_127_byte_packets" },
  5800. { "tx_128_to_255_byte_packets" },
  5801. { "tx_256_to_511_byte_packets" },
  5802. { "tx_512_to_1023_byte_packets" },
  5803. { "tx_1024_to_1522_byte_packets" },
  5804. { "tx_1523_to_9022_byte_packets" },
  5805. { "rx_xon_frames" },
  5806. { "rx_xoff_frames" },
  5807. { "tx_xon_frames" },
  5808. { "tx_xoff_frames" },
  5809. { "rx_mac_ctrl_frames" },
  5810. { "rx_filtered_packets" },
  5811. { "rx_ftq_discards" },
  5812. { "rx_discards" },
  5813. { "rx_fw_discards" },
  5814. };
  5815. #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
  5816. sizeof(bnx2_stats_str_arr[0]))
  5817. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  5818. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  5819. STATS_OFFSET32(stat_IfHCInOctets_hi),
  5820. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  5821. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  5822. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  5823. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  5824. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  5825. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  5826. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  5827. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  5828. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  5829. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  5830. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  5831. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  5832. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  5833. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  5834. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  5835. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  5836. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  5837. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  5838. STATS_OFFSET32(stat_EtherStatsCollisions),
  5839. STATS_OFFSET32(stat_EtherStatsFragments),
  5840. STATS_OFFSET32(stat_EtherStatsJabbers),
  5841. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  5842. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  5843. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  5844. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  5845. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  5846. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  5847. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  5848. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  5849. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  5850. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  5851. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  5852. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  5853. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  5854. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  5855. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  5856. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  5857. STATS_OFFSET32(stat_XonPauseFramesReceived),
  5858. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  5859. STATS_OFFSET32(stat_OutXonSent),
  5860. STATS_OFFSET32(stat_OutXoffSent),
  5861. STATS_OFFSET32(stat_MacControlFramesReceived),
  5862. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  5863. STATS_OFFSET32(stat_IfInFTQDiscards),
  5864. STATS_OFFSET32(stat_IfInMBUFDiscards),
  5865. STATS_OFFSET32(stat_FwRxDrop),
  5866. };
  5867. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  5868. * skipped because of errata.
  5869. */
  5870. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  5871. 8,0,8,8,8,8,8,8,8,8,
  5872. 4,0,4,4,4,4,4,4,4,4,
  5873. 4,4,4,4,4,4,4,4,4,4,
  5874. 4,4,4,4,4,4,4,4,4,4,
  5875. 4,4,4,4,4,4,4,
  5876. };
  5877. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  5878. 8,0,8,8,8,8,8,8,8,8,
  5879. 4,4,4,4,4,4,4,4,4,4,
  5880. 4,4,4,4,4,4,4,4,4,4,
  5881. 4,4,4,4,4,4,4,4,4,4,
  5882. 4,4,4,4,4,4,4,
  5883. };
  5884. #define BNX2_NUM_TESTS 6
  5885. static struct {
  5886. char string[ETH_GSTRING_LEN];
  5887. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  5888. { "register_test (offline)" },
  5889. { "memory_test (offline)" },
  5890. { "loopback_test (offline)" },
  5891. { "nvram_test (online)" },
  5892. { "interrupt_test (online)" },
  5893. { "link_test (online)" },
  5894. };
  5895. static int
  5896. bnx2_get_sset_count(struct net_device *dev, int sset)
  5897. {
  5898. switch (sset) {
  5899. case ETH_SS_TEST:
  5900. return BNX2_NUM_TESTS;
  5901. case ETH_SS_STATS:
  5902. return BNX2_NUM_STATS;
  5903. default:
  5904. return -EOPNOTSUPP;
  5905. }
  5906. }
  5907. static void
  5908. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  5909. {
  5910. struct bnx2 *bp = netdev_priv(dev);
  5911. bnx2_set_power_state(bp, PCI_D0);
  5912. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  5913. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  5914. int i;
  5915. bnx2_netif_stop(bp);
  5916. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  5917. bnx2_free_skbs(bp);
  5918. if (bnx2_test_registers(bp) != 0) {
  5919. buf[0] = 1;
  5920. etest->flags |= ETH_TEST_FL_FAILED;
  5921. }
  5922. if (bnx2_test_memory(bp) != 0) {
  5923. buf[1] = 1;
  5924. etest->flags |= ETH_TEST_FL_FAILED;
  5925. }
  5926. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  5927. etest->flags |= ETH_TEST_FL_FAILED;
  5928. if (!netif_running(bp->dev))
  5929. bnx2_shutdown_chip(bp);
  5930. else {
  5931. bnx2_init_nic(bp, 1);
  5932. bnx2_netif_start(bp);
  5933. }
  5934. /* wait for link up */
  5935. for (i = 0; i < 7; i++) {
  5936. if (bp->link_up)
  5937. break;
  5938. msleep_interruptible(1000);
  5939. }
  5940. }
  5941. if (bnx2_test_nvram(bp) != 0) {
  5942. buf[3] = 1;
  5943. etest->flags |= ETH_TEST_FL_FAILED;
  5944. }
  5945. if (bnx2_test_intr(bp) != 0) {
  5946. buf[4] = 1;
  5947. etest->flags |= ETH_TEST_FL_FAILED;
  5948. }
  5949. if (bnx2_test_link(bp) != 0) {
  5950. buf[5] = 1;
  5951. etest->flags |= ETH_TEST_FL_FAILED;
  5952. }
  5953. if (!netif_running(bp->dev))
  5954. bnx2_set_power_state(bp, PCI_D3hot);
  5955. }
  5956. static void
  5957. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  5958. {
  5959. switch (stringset) {
  5960. case ETH_SS_STATS:
  5961. memcpy(buf, bnx2_stats_str_arr,
  5962. sizeof(bnx2_stats_str_arr));
  5963. break;
  5964. case ETH_SS_TEST:
  5965. memcpy(buf, bnx2_tests_str_arr,
  5966. sizeof(bnx2_tests_str_arr));
  5967. break;
  5968. }
  5969. }
  5970. static void
  5971. bnx2_get_ethtool_stats(struct net_device *dev,
  5972. struct ethtool_stats *stats, u64 *buf)
  5973. {
  5974. struct bnx2 *bp = netdev_priv(dev);
  5975. int i;
  5976. u32 *hw_stats = (u32 *) bp->stats_blk;
  5977. u8 *stats_len_arr = NULL;
  5978. if (hw_stats == NULL) {
  5979. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  5980. return;
  5981. }
  5982. if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
  5983. (CHIP_ID(bp) == CHIP_ID_5706_A1) ||
  5984. (CHIP_ID(bp) == CHIP_ID_5706_A2) ||
  5985. (CHIP_ID(bp) == CHIP_ID_5708_A0))
  5986. stats_len_arr = bnx2_5706_stats_len_arr;
  5987. else
  5988. stats_len_arr = bnx2_5708_stats_len_arr;
  5989. for (i = 0; i < BNX2_NUM_STATS; i++) {
  5990. if (stats_len_arr[i] == 0) {
  5991. /* skip this counter */
  5992. buf[i] = 0;
  5993. continue;
  5994. }
  5995. if (stats_len_arr[i] == 4) {
  5996. /* 4-byte counter */
  5997. buf[i] = (u64)
  5998. *(hw_stats + bnx2_stats_offset_arr[i]);
  5999. continue;
  6000. }
  6001. /* 8-byte counter */
  6002. buf[i] = (((u64) *(hw_stats +
  6003. bnx2_stats_offset_arr[i])) << 32) +
  6004. *(hw_stats + bnx2_stats_offset_arr[i] + 1);
  6005. }
  6006. }
  6007. static int
  6008. bnx2_phys_id(struct net_device *dev, u32 data)
  6009. {
  6010. struct bnx2 *bp = netdev_priv(dev);
  6011. int i;
  6012. u32 save;
  6013. bnx2_set_power_state(bp, PCI_D0);
  6014. if (data == 0)
  6015. data = 2;
  6016. save = REG_RD(bp, BNX2_MISC_CFG);
  6017. REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6018. for (i = 0; i < (data * 2); i++) {
  6019. if ((i % 2) == 0) {
  6020. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6021. }
  6022. else {
  6023. REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6024. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6025. BNX2_EMAC_LED_100MB_OVERRIDE |
  6026. BNX2_EMAC_LED_10MB_OVERRIDE |
  6027. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6028. BNX2_EMAC_LED_TRAFFIC);
  6029. }
  6030. msleep_interruptible(500);
  6031. if (signal_pending(current))
  6032. break;
  6033. }
  6034. REG_WR(bp, BNX2_EMAC_LED, 0);
  6035. REG_WR(bp, BNX2_MISC_CFG, save);
  6036. if (!netif_running(dev))
  6037. bnx2_set_power_state(bp, PCI_D3hot);
  6038. return 0;
  6039. }
  6040. static int
  6041. bnx2_set_tx_csum(struct net_device *dev, u32 data)
  6042. {
  6043. struct bnx2 *bp = netdev_priv(dev);
  6044. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6045. return (ethtool_op_set_tx_ipv6_csum(dev, data));
  6046. else
  6047. return (ethtool_op_set_tx_csum(dev, data));
  6048. }
  6049. static const struct ethtool_ops bnx2_ethtool_ops = {
  6050. .get_settings = bnx2_get_settings,
  6051. .set_settings = bnx2_set_settings,
  6052. .get_drvinfo = bnx2_get_drvinfo,
  6053. .get_regs_len = bnx2_get_regs_len,
  6054. .get_regs = bnx2_get_regs,
  6055. .get_wol = bnx2_get_wol,
  6056. .set_wol = bnx2_set_wol,
  6057. .nway_reset = bnx2_nway_reset,
  6058. .get_link = bnx2_get_link,
  6059. .get_eeprom_len = bnx2_get_eeprom_len,
  6060. .get_eeprom = bnx2_get_eeprom,
  6061. .set_eeprom = bnx2_set_eeprom,
  6062. .get_coalesce = bnx2_get_coalesce,
  6063. .set_coalesce = bnx2_set_coalesce,
  6064. .get_ringparam = bnx2_get_ringparam,
  6065. .set_ringparam = bnx2_set_ringparam,
  6066. .get_pauseparam = bnx2_get_pauseparam,
  6067. .set_pauseparam = bnx2_set_pauseparam,
  6068. .get_rx_csum = bnx2_get_rx_csum,
  6069. .set_rx_csum = bnx2_set_rx_csum,
  6070. .set_tx_csum = bnx2_set_tx_csum,
  6071. .set_sg = ethtool_op_set_sg,
  6072. .set_tso = bnx2_set_tso,
  6073. .self_test = bnx2_self_test,
  6074. .get_strings = bnx2_get_strings,
  6075. .phys_id = bnx2_phys_id,
  6076. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6077. .get_sset_count = bnx2_get_sset_count,
  6078. };
  6079. /* Called with rtnl_lock */
  6080. static int
  6081. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6082. {
  6083. struct mii_ioctl_data *data = if_mii(ifr);
  6084. struct bnx2 *bp = netdev_priv(dev);
  6085. int err;
  6086. switch(cmd) {
  6087. case SIOCGMIIPHY:
  6088. data->phy_id = bp->phy_addr;
  6089. /* fallthru */
  6090. case SIOCGMIIREG: {
  6091. u32 mii_regval;
  6092. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6093. return -EOPNOTSUPP;
  6094. if (!netif_running(dev))
  6095. return -EAGAIN;
  6096. spin_lock_bh(&bp->phy_lock);
  6097. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6098. spin_unlock_bh(&bp->phy_lock);
  6099. data->val_out = mii_regval;
  6100. return err;
  6101. }
  6102. case SIOCSMIIREG:
  6103. if (!capable(CAP_NET_ADMIN))
  6104. return -EPERM;
  6105. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6106. return -EOPNOTSUPP;
  6107. if (!netif_running(dev))
  6108. return -EAGAIN;
  6109. spin_lock_bh(&bp->phy_lock);
  6110. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6111. spin_unlock_bh(&bp->phy_lock);
  6112. return err;
  6113. default:
  6114. /* do nothing */
  6115. break;
  6116. }
  6117. return -EOPNOTSUPP;
  6118. }
  6119. /* Called with rtnl_lock */
  6120. static int
  6121. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6122. {
  6123. struct sockaddr *addr = p;
  6124. struct bnx2 *bp = netdev_priv(dev);
  6125. if (!is_valid_ether_addr(addr->sa_data))
  6126. return -EINVAL;
  6127. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6128. if (netif_running(dev))
  6129. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6130. return 0;
  6131. }
  6132. /* Called with rtnl_lock */
  6133. static int
  6134. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6135. {
  6136. struct bnx2 *bp = netdev_priv(dev);
  6137. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6138. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6139. return -EINVAL;
  6140. dev->mtu = new_mtu;
  6141. return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
  6142. }
  6143. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6144. static void
  6145. poll_bnx2(struct net_device *dev)
  6146. {
  6147. struct bnx2 *bp = netdev_priv(dev);
  6148. int i;
  6149. for (i = 0; i < bp->irq_nvecs; i++) {
  6150. disable_irq(bp->irq_tbl[i].vector);
  6151. bnx2_interrupt(bp->irq_tbl[i].vector, &bp->bnx2_napi[i]);
  6152. enable_irq(bp->irq_tbl[i].vector);
  6153. }
  6154. }
  6155. #endif
  6156. static void __devinit
  6157. bnx2_get_5709_media(struct bnx2 *bp)
  6158. {
  6159. u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6160. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6161. u32 strap;
  6162. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6163. return;
  6164. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6165. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6166. return;
  6167. }
  6168. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6169. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6170. else
  6171. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6172. if (PCI_FUNC(bp->pdev->devfn) == 0) {
  6173. switch (strap) {
  6174. case 0x4:
  6175. case 0x5:
  6176. case 0x6:
  6177. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6178. return;
  6179. }
  6180. } else {
  6181. switch (strap) {
  6182. case 0x1:
  6183. case 0x2:
  6184. case 0x4:
  6185. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6186. return;
  6187. }
  6188. }
  6189. }
  6190. static void __devinit
  6191. bnx2_get_pci_speed(struct bnx2 *bp)
  6192. {
  6193. u32 reg;
  6194. reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6195. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6196. u32 clkreg;
  6197. bp->flags |= BNX2_FLAG_PCIX;
  6198. clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6199. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6200. switch (clkreg) {
  6201. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6202. bp->bus_speed_mhz = 133;
  6203. break;
  6204. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6205. bp->bus_speed_mhz = 100;
  6206. break;
  6207. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6208. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6209. bp->bus_speed_mhz = 66;
  6210. break;
  6211. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6212. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6213. bp->bus_speed_mhz = 50;
  6214. break;
  6215. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6216. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6217. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6218. bp->bus_speed_mhz = 33;
  6219. break;
  6220. }
  6221. }
  6222. else {
  6223. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6224. bp->bus_speed_mhz = 66;
  6225. else
  6226. bp->bus_speed_mhz = 33;
  6227. }
  6228. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6229. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6230. }
  6231. static int __devinit
  6232. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6233. {
  6234. struct bnx2 *bp;
  6235. unsigned long mem_len;
  6236. int rc, i, j;
  6237. u32 reg;
  6238. u64 dma_mask, persist_dma_mask;
  6239. SET_NETDEV_DEV(dev, &pdev->dev);
  6240. bp = netdev_priv(dev);
  6241. bp->flags = 0;
  6242. bp->phy_flags = 0;
  6243. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6244. rc = pci_enable_device(pdev);
  6245. if (rc) {
  6246. dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
  6247. goto err_out;
  6248. }
  6249. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6250. dev_err(&pdev->dev,
  6251. "Cannot find PCI device base address, aborting.\n");
  6252. rc = -ENODEV;
  6253. goto err_out_disable;
  6254. }
  6255. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6256. if (rc) {
  6257. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
  6258. goto err_out_disable;
  6259. }
  6260. pci_set_master(pdev);
  6261. pci_save_state(pdev);
  6262. bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
  6263. if (bp->pm_cap == 0) {
  6264. dev_err(&pdev->dev,
  6265. "Cannot find power management capability, aborting.\n");
  6266. rc = -EIO;
  6267. goto err_out_release;
  6268. }
  6269. bp->dev = dev;
  6270. bp->pdev = pdev;
  6271. spin_lock_init(&bp->phy_lock);
  6272. spin_lock_init(&bp->indirect_lock);
  6273. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6274. dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
  6275. mem_len = MB_GET_CID_ADDR(TX_TSS_CID + TX_MAX_TSS_RINGS + 1);
  6276. dev->mem_end = dev->mem_start + mem_len;
  6277. dev->irq = pdev->irq;
  6278. bp->regview = ioremap_nocache(dev->base_addr, mem_len);
  6279. if (!bp->regview) {
  6280. dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
  6281. rc = -ENOMEM;
  6282. goto err_out_release;
  6283. }
  6284. /* Configure byte swap and enable write to the reg_window registers.
  6285. * Rely on CPU to do target byte swapping on big endian systems
  6286. * The chip's target access swapping will not swap all accesses
  6287. */
  6288. pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
  6289. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6290. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6291. bnx2_set_power_state(bp, PCI_D0);
  6292. bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
  6293. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6294. if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
  6295. dev_err(&pdev->dev,
  6296. "Cannot find PCIE capability, aborting.\n");
  6297. rc = -EIO;
  6298. goto err_out_unmap;
  6299. }
  6300. bp->flags |= BNX2_FLAG_PCIE;
  6301. if (CHIP_REV(bp) == CHIP_REV_Ax)
  6302. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6303. } else {
  6304. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6305. if (bp->pcix_cap == 0) {
  6306. dev_err(&pdev->dev,
  6307. "Cannot find PCIX capability, aborting.\n");
  6308. rc = -EIO;
  6309. goto err_out_unmap;
  6310. }
  6311. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6312. }
  6313. if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
  6314. if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
  6315. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6316. }
  6317. if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
  6318. if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
  6319. bp->flags |= BNX2_FLAG_MSI_CAP;
  6320. }
  6321. /* 5708 cannot support DMA addresses > 40-bit. */
  6322. if (CHIP_NUM(bp) == CHIP_NUM_5708)
  6323. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6324. else
  6325. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6326. /* Configure DMA attributes. */
  6327. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6328. dev->features |= NETIF_F_HIGHDMA;
  6329. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6330. if (rc) {
  6331. dev_err(&pdev->dev,
  6332. "pci_set_consistent_dma_mask failed, aborting.\n");
  6333. goto err_out_unmap;
  6334. }
  6335. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6336. dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
  6337. goto err_out_unmap;
  6338. }
  6339. if (!(bp->flags & BNX2_FLAG_PCIE))
  6340. bnx2_get_pci_speed(bp);
  6341. /* 5706A0 may falsely detect SERR and PERR. */
  6342. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6343. reg = REG_RD(bp, PCI_COMMAND);
  6344. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6345. REG_WR(bp, PCI_COMMAND, reg);
  6346. }
  6347. else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
  6348. !(bp->flags & BNX2_FLAG_PCIX)) {
  6349. dev_err(&pdev->dev,
  6350. "5706 A1 can only be used in a PCIX bus, aborting.\n");
  6351. goto err_out_unmap;
  6352. }
  6353. bnx2_init_nvram(bp);
  6354. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6355. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6356. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6357. u32 off = PCI_FUNC(pdev->devfn) << 2;
  6358. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6359. } else
  6360. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6361. /* Get the permanent MAC address. First we need to make sure the
  6362. * firmware is actually running.
  6363. */
  6364. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6365. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6366. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6367. dev_err(&pdev->dev, "Firmware not running, aborting.\n");
  6368. rc = -ENODEV;
  6369. goto err_out_unmap;
  6370. }
  6371. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6372. for (i = 0, j = 0; i < 3; i++) {
  6373. u8 num, k, skip0;
  6374. num = (u8) (reg >> (24 - (i * 8)));
  6375. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6376. if (num >= k || !skip0 || k == 1) {
  6377. bp->fw_version[j++] = (num / k) + '0';
  6378. skip0 = 0;
  6379. }
  6380. }
  6381. if (i != 2)
  6382. bp->fw_version[j++] = '.';
  6383. }
  6384. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6385. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6386. bp->wol = 1;
  6387. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6388. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6389. for (i = 0; i < 30; i++) {
  6390. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6391. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6392. break;
  6393. msleep(10);
  6394. }
  6395. }
  6396. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6397. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6398. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6399. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6400. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6401. bp->fw_version[j++] = ' ';
  6402. for (i = 0; i < 3; i++) {
  6403. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6404. reg = swab32(reg);
  6405. memcpy(&bp->fw_version[j], &reg, 4);
  6406. j += 4;
  6407. }
  6408. }
  6409. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6410. bp->mac_addr[0] = (u8) (reg >> 8);
  6411. bp->mac_addr[1] = (u8) reg;
  6412. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6413. bp->mac_addr[2] = (u8) (reg >> 24);
  6414. bp->mac_addr[3] = (u8) (reg >> 16);
  6415. bp->mac_addr[4] = (u8) (reg >> 8);
  6416. bp->mac_addr[5] = (u8) reg;
  6417. bp->tx_ring_size = MAX_TX_DESC_CNT;
  6418. bnx2_set_rx_ring_size(bp, 255);
  6419. bp->rx_csum = 1;
  6420. bp->tx_quick_cons_trip_int = 2;
  6421. bp->tx_quick_cons_trip = 20;
  6422. bp->tx_ticks_int = 18;
  6423. bp->tx_ticks = 80;
  6424. bp->rx_quick_cons_trip_int = 2;
  6425. bp->rx_quick_cons_trip = 12;
  6426. bp->rx_ticks_int = 18;
  6427. bp->rx_ticks = 18;
  6428. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6429. bp->current_interval = BNX2_TIMER_INTERVAL;
  6430. bp->phy_addr = 1;
  6431. /* Disable WOL support if we are running on a SERDES chip. */
  6432. if (CHIP_NUM(bp) == CHIP_NUM_5709)
  6433. bnx2_get_5709_media(bp);
  6434. else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
  6435. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6436. bp->phy_port = PORT_TP;
  6437. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6438. bp->phy_port = PORT_FIBRE;
  6439. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6440. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6441. bp->flags |= BNX2_FLAG_NO_WOL;
  6442. bp->wol = 0;
  6443. }
  6444. if (CHIP_NUM(bp) == CHIP_NUM_5706) {
  6445. /* Don't do parallel detect on this board because of
  6446. * some board problems. The link will not go down
  6447. * if we do parallel detect.
  6448. */
  6449. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6450. pdev->subsystem_device == 0x310c)
  6451. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6452. } else {
  6453. bp->phy_addr = 2;
  6454. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6455. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6456. }
  6457. } else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
  6458. CHIP_NUM(bp) == CHIP_NUM_5708)
  6459. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6460. else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
  6461. (CHIP_REV(bp) == CHIP_REV_Ax ||
  6462. CHIP_REV(bp) == CHIP_REV_Bx))
  6463. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6464. bnx2_init_fw_cap(bp);
  6465. if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
  6466. (CHIP_ID(bp) == CHIP_ID_5708_B0) ||
  6467. (CHIP_ID(bp) == CHIP_ID_5708_B1) ||
  6468. !(REG_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6469. bp->flags |= BNX2_FLAG_NO_WOL;
  6470. bp->wol = 0;
  6471. }
  6472. if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
  6473. bp->tx_quick_cons_trip_int =
  6474. bp->tx_quick_cons_trip;
  6475. bp->tx_ticks_int = bp->tx_ticks;
  6476. bp->rx_quick_cons_trip_int =
  6477. bp->rx_quick_cons_trip;
  6478. bp->rx_ticks_int = bp->rx_ticks;
  6479. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6480. bp->com_ticks_int = bp->com_ticks;
  6481. bp->cmd_ticks_int = bp->cmd_ticks;
  6482. }
  6483. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6484. *
  6485. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6486. * with byte enables disabled on the unused 32-bit word. This is legal
  6487. * but causes problems on the AMD 8132 which will eventually stop
  6488. * responding after a while.
  6489. *
  6490. * AMD believes this incompatibility is unique to the 5706, and
  6491. * prefers to locally disable MSI rather than globally disabling it.
  6492. */
  6493. if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
  6494. struct pci_dev *amd_8132 = NULL;
  6495. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6496. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6497. amd_8132))) {
  6498. if (amd_8132->revision >= 0x10 &&
  6499. amd_8132->revision <= 0x13) {
  6500. disable_msi = 1;
  6501. pci_dev_put(amd_8132);
  6502. break;
  6503. }
  6504. }
  6505. }
  6506. bnx2_set_default_link(bp);
  6507. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6508. init_timer(&bp->timer);
  6509. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6510. bp->timer.data = (unsigned long) bp;
  6511. bp->timer.function = bnx2_timer;
  6512. return 0;
  6513. err_out_unmap:
  6514. if (bp->regview) {
  6515. iounmap(bp->regview);
  6516. bp->regview = NULL;
  6517. }
  6518. err_out_release:
  6519. pci_release_regions(pdev);
  6520. err_out_disable:
  6521. pci_disable_device(pdev);
  6522. pci_set_drvdata(pdev, NULL);
  6523. err_out:
  6524. return rc;
  6525. }
  6526. static char * __devinit
  6527. bnx2_bus_string(struct bnx2 *bp, char *str)
  6528. {
  6529. char *s = str;
  6530. if (bp->flags & BNX2_FLAG_PCIE) {
  6531. s += sprintf(s, "PCI Express");
  6532. } else {
  6533. s += sprintf(s, "PCI");
  6534. if (bp->flags & BNX2_FLAG_PCIX)
  6535. s += sprintf(s, "-X");
  6536. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6537. s += sprintf(s, " 32-bit");
  6538. else
  6539. s += sprintf(s, " 64-bit");
  6540. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6541. }
  6542. return str;
  6543. }
  6544. static void __devinit
  6545. bnx2_init_napi(struct bnx2 *bp)
  6546. {
  6547. int i;
  6548. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  6549. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6550. int (*poll)(struct napi_struct *, int);
  6551. if (i == 0)
  6552. poll = bnx2_poll;
  6553. else
  6554. poll = bnx2_poll_msix;
  6555. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6556. bnapi->bp = bp;
  6557. }
  6558. }
  6559. static const struct net_device_ops bnx2_netdev_ops = {
  6560. .ndo_open = bnx2_open,
  6561. .ndo_start_xmit = bnx2_start_xmit,
  6562. .ndo_stop = bnx2_close,
  6563. .ndo_get_stats = bnx2_get_stats,
  6564. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6565. .ndo_do_ioctl = bnx2_ioctl,
  6566. .ndo_validate_addr = eth_validate_addr,
  6567. .ndo_set_mac_address = bnx2_change_mac_addr,
  6568. .ndo_change_mtu = bnx2_change_mtu,
  6569. .ndo_tx_timeout = bnx2_tx_timeout,
  6570. #ifdef BCM_VLAN
  6571. .ndo_vlan_rx_register = bnx2_vlan_rx_register,
  6572. #endif
  6573. #if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
  6574. .ndo_poll_controller = poll_bnx2,
  6575. #endif
  6576. };
  6577. static void inline vlan_features_add(struct net_device *dev, unsigned long flags)
  6578. {
  6579. #ifdef BCM_VLAN
  6580. dev->vlan_features |= flags;
  6581. #endif
  6582. }
  6583. static int __devinit
  6584. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  6585. {
  6586. static int version_printed = 0;
  6587. struct net_device *dev = NULL;
  6588. struct bnx2 *bp;
  6589. int rc;
  6590. char str[40];
  6591. if (version_printed++ == 0)
  6592. printk(KERN_INFO "%s", version);
  6593. /* dev zeroed in init_etherdev */
  6594. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  6595. if (!dev)
  6596. return -ENOMEM;
  6597. rc = bnx2_init_board(pdev, dev);
  6598. if (rc < 0) {
  6599. free_netdev(dev);
  6600. return rc;
  6601. }
  6602. dev->netdev_ops = &bnx2_netdev_ops;
  6603. dev->watchdog_timeo = TX_TIMEOUT;
  6604. dev->ethtool_ops = &bnx2_ethtool_ops;
  6605. bp = netdev_priv(dev);
  6606. bnx2_init_napi(bp);
  6607. pci_set_drvdata(pdev, dev);
  6608. rc = bnx2_request_firmware(bp);
  6609. if (rc)
  6610. goto error;
  6611. memcpy(dev->dev_addr, bp->mac_addr, 6);
  6612. memcpy(dev->perm_addr, bp->mac_addr, 6);
  6613. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  6614. vlan_features_add(dev, NETIF_F_IP_CSUM | NETIF_F_SG);
  6615. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6616. dev->features |= NETIF_F_IPV6_CSUM;
  6617. vlan_features_add(dev, NETIF_F_IPV6_CSUM);
  6618. }
  6619. #ifdef BCM_VLAN
  6620. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6621. #endif
  6622. dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
  6623. vlan_features_add(dev, NETIF_F_TSO | NETIF_F_TSO_ECN);
  6624. if (CHIP_NUM(bp) == CHIP_NUM_5709) {
  6625. dev->features |= NETIF_F_TSO6;
  6626. vlan_features_add(dev, NETIF_F_TSO6);
  6627. }
  6628. if ((rc = register_netdev(dev))) {
  6629. dev_err(&pdev->dev, "Cannot register net device\n");
  6630. goto error;
  6631. }
  6632. printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
  6633. "IRQ %d, node addr %pM\n",
  6634. dev->name,
  6635. board_info[ent->driver_data].name,
  6636. ((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  6637. ((CHIP_ID(bp) & 0x0ff0) >> 4),
  6638. bnx2_bus_string(bp, str),
  6639. dev->base_addr,
  6640. bp->pdev->irq, dev->dev_addr);
  6641. return 0;
  6642. error:
  6643. if (bp->mips_firmware)
  6644. release_firmware(bp->mips_firmware);
  6645. if (bp->rv2p_firmware)
  6646. release_firmware(bp->rv2p_firmware);
  6647. if (bp->regview)
  6648. iounmap(bp->regview);
  6649. pci_release_regions(pdev);
  6650. pci_disable_device(pdev);
  6651. pci_set_drvdata(pdev, NULL);
  6652. free_netdev(dev);
  6653. return rc;
  6654. }
  6655. static void __devexit
  6656. bnx2_remove_one(struct pci_dev *pdev)
  6657. {
  6658. struct net_device *dev = pci_get_drvdata(pdev);
  6659. struct bnx2 *bp = netdev_priv(dev);
  6660. flush_scheduled_work();
  6661. unregister_netdev(dev);
  6662. if (bp->mips_firmware)
  6663. release_firmware(bp->mips_firmware);
  6664. if (bp->rv2p_firmware)
  6665. release_firmware(bp->rv2p_firmware);
  6666. if (bp->regview)
  6667. iounmap(bp->regview);
  6668. free_netdev(dev);
  6669. pci_release_regions(pdev);
  6670. pci_disable_device(pdev);
  6671. pci_set_drvdata(pdev, NULL);
  6672. }
  6673. static int
  6674. bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
  6675. {
  6676. struct net_device *dev = pci_get_drvdata(pdev);
  6677. struct bnx2 *bp = netdev_priv(dev);
  6678. /* PCI register 4 needs to be saved whether netif_running() or not.
  6679. * MSI address and data need to be saved if using MSI and
  6680. * netif_running().
  6681. */
  6682. pci_save_state(pdev);
  6683. if (!netif_running(dev))
  6684. return 0;
  6685. flush_scheduled_work();
  6686. bnx2_netif_stop(bp);
  6687. netif_device_detach(dev);
  6688. del_timer_sync(&bp->timer);
  6689. bnx2_shutdown_chip(bp);
  6690. bnx2_free_skbs(bp);
  6691. bnx2_set_power_state(bp, pci_choose_state(pdev, state));
  6692. return 0;
  6693. }
  6694. static int
  6695. bnx2_resume(struct pci_dev *pdev)
  6696. {
  6697. struct net_device *dev = pci_get_drvdata(pdev);
  6698. struct bnx2 *bp = netdev_priv(dev);
  6699. pci_restore_state(pdev);
  6700. if (!netif_running(dev))
  6701. return 0;
  6702. bnx2_set_power_state(bp, PCI_D0);
  6703. netif_device_attach(dev);
  6704. bnx2_init_nic(bp, 1);
  6705. bnx2_netif_start(bp);
  6706. return 0;
  6707. }
  6708. /**
  6709. * bnx2_io_error_detected - called when PCI error is detected
  6710. * @pdev: Pointer to PCI device
  6711. * @state: The current pci connection state
  6712. *
  6713. * This function is called after a PCI bus error affecting
  6714. * this device has been detected.
  6715. */
  6716. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  6717. pci_channel_state_t state)
  6718. {
  6719. struct net_device *dev = pci_get_drvdata(pdev);
  6720. struct bnx2 *bp = netdev_priv(dev);
  6721. rtnl_lock();
  6722. netif_device_detach(dev);
  6723. if (state == pci_channel_io_perm_failure) {
  6724. rtnl_unlock();
  6725. return PCI_ERS_RESULT_DISCONNECT;
  6726. }
  6727. if (netif_running(dev)) {
  6728. bnx2_netif_stop(bp);
  6729. del_timer_sync(&bp->timer);
  6730. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  6731. }
  6732. pci_disable_device(pdev);
  6733. rtnl_unlock();
  6734. /* Request a slot slot reset. */
  6735. return PCI_ERS_RESULT_NEED_RESET;
  6736. }
  6737. /**
  6738. * bnx2_io_slot_reset - called after the pci bus has been reset.
  6739. * @pdev: Pointer to PCI device
  6740. *
  6741. * Restart the card from scratch, as if from a cold-boot.
  6742. */
  6743. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  6744. {
  6745. struct net_device *dev = pci_get_drvdata(pdev);
  6746. struct bnx2 *bp = netdev_priv(dev);
  6747. rtnl_lock();
  6748. if (pci_enable_device(pdev)) {
  6749. dev_err(&pdev->dev,
  6750. "Cannot re-enable PCI device after reset.\n");
  6751. rtnl_unlock();
  6752. return PCI_ERS_RESULT_DISCONNECT;
  6753. }
  6754. pci_set_master(pdev);
  6755. pci_restore_state(pdev);
  6756. if (netif_running(dev)) {
  6757. bnx2_set_power_state(bp, PCI_D0);
  6758. bnx2_init_nic(bp, 1);
  6759. }
  6760. rtnl_unlock();
  6761. return PCI_ERS_RESULT_RECOVERED;
  6762. }
  6763. /**
  6764. * bnx2_io_resume - called when traffic can start flowing again.
  6765. * @pdev: Pointer to PCI device
  6766. *
  6767. * This callback is called when the error recovery driver tells us that
  6768. * its OK to resume normal operation.
  6769. */
  6770. static void bnx2_io_resume(struct pci_dev *pdev)
  6771. {
  6772. struct net_device *dev = pci_get_drvdata(pdev);
  6773. struct bnx2 *bp = netdev_priv(dev);
  6774. rtnl_lock();
  6775. if (netif_running(dev))
  6776. bnx2_netif_start(bp);
  6777. netif_device_attach(dev);
  6778. rtnl_unlock();
  6779. }
  6780. static struct pci_error_handlers bnx2_err_handler = {
  6781. .error_detected = bnx2_io_error_detected,
  6782. .slot_reset = bnx2_io_slot_reset,
  6783. .resume = bnx2_io_resume,
  6784. };
  6785. static struct pci_driver bnx2_pci_driver = {
  6786. .name = DRV_MODULE_NAME,
  6787. .id_table = bnx2_pci_tbl,
  6788. .probe = bnx2_init_one,
  6789. .remove = __devexit_p(bnx2_remove_one),
  6790. .suspend = bnx2_suspend,
  6791. .resume = bnx2_resume,
  6792. .err_handler = &bnx2_err_handler,
  6793. };
  6794. static int __init bnx2_init(void)
  6795. {
  6796. return pci_register_driver(&bnx2_pci_driver);
  6797. }
  6798. static void __exit bnx2_cleanup(void)
  6799. {
  6800. pci_unregister_driver(&bnx2_pci_driver);
  6801. }
  6802. module_init(bnx2_init);
  6803. module_exit(bnx2_cleanup);