smp.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284
  1. /*
  2. * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
  3. * reserved.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the NetLogic
  9. * license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or without
  12. * modification, are permitted provided that the following conditions
  13. * are met:
  14. *
  15. * 1. Redistributions of source code must retain the above copyright
  16. * notice, this list of conditions and the following disclaimer.
  17. * 2. Redistributions in binary form must reproduce the above copyright
  18. * notice, this list of conditions and the following disclaimer in
  19. * the documentation and/or other materials provided with the
  20. * distribution.
  21. *
  22. * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
  23. * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  24. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  25. * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
  26. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  27. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  28. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  29. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  30. * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
  31. * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
  32. * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  33. */
  34. #include <linux/kernel.h>
  35. #include <linux/delay.h>
  36. #include <linux/init.h>
  37. #include <linux/smp.h>
  38. #include <linux/irq.h>
  39. #include <asm/mmu_context.h>
  40. #include <asm/netlogic/interrupt.h>
  41. #include <asm/netlogic/mips-extns.h>
  42. #include <asm/netlogic/haldefs.h>
  43. #include <asm/netlogic/common.h>
  44. #if defined(CONFIG_CPU_XLP)
  45. #include <asm/netlogic/xlp-hal/iomap.h>
  46. #include <asm/netlogic/xlp-hal/xlp.h>
  47. #include <asm/netlogic/xlp-hal/pic.h>
  48. #elif defined(CONFIG_CPU_XLR)
  49. #include <asm/netlogic/xlr/iomap.h>
  50. #include <asm/netlogic/xlr/pic.h>
  51. #include <asm/netlogic/xlr/xlr.h>
  52. #else
  53. #error "Unknown CPU"
  54. #endif
  55. void nlm_send_ipi_single(int logical_cpu, unsigned int action)
  56. {
  57. int cpu, node;
  58. uint64_t picbase;
  59. cpu = cpu_logical_map(logical_cpu);
  60. node = cpu / NLM_CPUS_PER_NODE;
  61. picbase = nlm_get_node(node)->picbase;
  62. if (action & SMP_CALL_FUNCTION)
  63. nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_FUNCTION, 0);
  64. if (action & SMP_RESCHEDULE_YOURSELF)
  65. nlm_pic_send_ipi(picbase, cpu, IRQ_IPI_SMP_RESCHEDULE, 0);
  66. }
  67. void nlm_send_ipi_mask(const struct cpumask *mask, unsigned int action)
  68. {
  69. int cpu;
  70. for_each_cpu(cpu, mask) {
  71. nlm_send_ipi_single(cpu, action);
  72. }
  73. }
  74. /* IRQ_IPI_SMP_FUNCTION Handler */
  75. void nlm_smp_function_ipi_handler(unsigned int irq, struct irq_desc *desc)
  76. {
  77. clear_c0_eimr(irq);
  78. ack_c0_eirr(irq);
  79. smp_call_function_interrupt();
  80. set_c0_eimr(irq);
  81. }
  82. /* IRQ_IPI_SMP_RESCHEDULE handler */
  83. void nlm_smp_resched_ipi_handler(unsigned int irq, struct irq_desc *desc)
  84. {
  85. clear_c0_eimr(irq);
  86. ack_c0_eirr(irq);
  87. scheduler_ipi();
  88. set_c0_eimr(irq);
  89. }
  90. /*
  91. * Called before going into mips code, early cpu init
  92. */
  93. void nlm_early_init_secondary(int cpu)
  94. {
  95. change_c0_config(CONF_CM_CMASK, 0x3);
  96. #ifdef CONFIG_CPU_XLP
  97. /* mmu init, once per core */
  98. if (cpu % NLM_THREADS_PER_CORE == 0)
  99. xlp_mmu_init();
  100. #endif
  101. write_c0_ebase(nlm_current_node()->ebase);
  102. }
  103. /*
  104. * Code to run on secondary just after probing the CPU
  105. */
  106. static void nlm_init_secondary(void)
  107. {
  108. int hwtid;
  109. hwtid = hard_smp_processor_id();
  110. current_cpu_data.core = hwtid / NLM_THREADS_PER_CORE;
  111. nlm_percpu_init(hwtid);
  112. nlm_smp_irq_init(hwtid);
  113. }
  114. void nlm_prepare_cpus(unsigned int max_cpus)
  115. {
  116. /* declare we are SMT capable */
  117. smp_num_siblings = nlm_threads_per_core;
  118. }
  119. void nlm_smp_finish(void)
  120. {
  121. local_irq_enable();
  122. }
  123. void nlm_cpus_done(void)
  124. {
  125. }
  126. /*
  127. * Boot all other cpus in the system, initialize them, and bring them into
  128. * the boot function
  129. */
  130. unsigned long nlm_next_gp;
  131. unsigned long nlm_next_sp;
  132. static cpumask_t phys_cpu_present_mask;
  133. void nlm_boot_secondary(int logical_cpu, struct task_struct *idle)
  134. {
  135. int cpu, node;
  136. cpu = cpu_logical_map(logical_cpu);
  137. node = cpu / NLM_CPUS_PER_NODE;
  138. nlm_next_sp = (unsigned long)__KSTK_TOS(idle);
  139. nlm_next_gp = (unsigned long)task_thread_info(idle);
  140. /* barrier for sp/gp store above */
  141. __sync();
  142. nlm_pic_send_ipi(nlm_get_node(node)->picbase, cpu, 1, 1); /* NMI */
  143. }
  144. void __init nlm_smp_setup(void)
  145. {
  146. unsigned int boot_cpu;
  147. int num_cpus, i, ncore;
  148. volatile u32 *cpu_ready = nlm_get_boot_data(BOOT_CPU_READY);
  149. char buf[64];
  150. boot_cpu = hard_smp_processor_id();
  151. cpumask_clear(&phys_cpu_present_mask);
  152. cpumask_set_cpu(boot_cpu, &phys_cpu_present_mask);
  153. __cpu_number_map[boot_cpu] = 0;
  154. __cpu_logical_map[0] = boot_cpu;
  155. set_cpu_possible(0, true);
  156. num_cpus = 1;
  157. for (i = 0; i < NR_CPUS; i++) {
  158. /*
  159. * cpu_ready array is not set for the boot_cpu,
  160. * it is only set for ASPs (see smpboot.S)
  161. */
  162. if (cpu_ready[i]) {
  163. cpumask_set_cpu(i, &phys_cpu_present_mask);
  164. __cpu_number_map[i] = num_cpus;
  165. __cpu_logical_map[num_cpus] = i;
  166. set_cpu_possible(num_cpus, true);
  167. ++num_cpus;
  168. }
  169. }
  170. cpumask_scnprintf(buf, ARRAY_SIZE(buf), &phys_cpu_present_mask);
  171. pr_info("Physical CPU mask: %s\n", buf);
  172. cpumask_scnprintf(buf, ARRAY_SIZE(buf), cpu_possible_mask);
  173. pr_info("Possible CPU mask: %s\n", buf);
  174. /* check with the cores we have worken up */
  175. for (ncore = 0, i = 0; i < NLM_NR_NODES; i++)
  176. ncore += hweight32(nlm_get_node(i)->coremask);
  177. pr_info("Detected (%dc%dt) %d Slave CPU(s)\n", ncore,
  178. nlm_threads_per_core, num_cpus);
  179. /* switch NMI handler to boot CPUs */
  180. nlm_set_nmi_handler(nlm_boot_secondary_cpus);
  181. }
  182. static int nlm_parse_cpumask(cpumask_t *wakeup_mask)
  183. {
  184. uint32_t core0_thr_mask, core_thr_mask;
  185. int threadmode, i, j;
  186. core0_thr_mask = 0;
  187. for (i = 0; i < NLM_THREADS_PER_CORE; i++)
  188. if (cpumask_test_cpu(i, wakeup_mask))
  189. core0_thr_mask |= (1 << i);
  190. switch (core0_thr_mask) {
  191. case 1:
  192. nlm_threads_per_core = 1;
  193. threadmode = 0;
  194. break;
  195. case 3:
  196. nlm_threads_per_core = 2;
  197. threadmode = 2;
  198. break;
  199. case 0xf:
  200. nlm_threads_per_core = 4;
  201. threadmode = 3;
  202. break;
  203. default:
  204. goto unsupp;
  205. }
  206. /* Verify other cores CPU masks */
  207. for (i = 0; i < NR_CPUS; i += NLM_THREADS_PER_CORE) {
  208. core_thr_mask = 0;
  209. for (j = 0; j < NLM_THREADS_PER_CORE; j++)
  210. if (cpumask_test_cpu(i + j, wakeup_mask))
  211. core_thr_mask |= (1 << j);
  212. if (core_thr_mask != 0 && core_thr_mask != core0_thr_mask)
  213. goto unsupp;
  214. }
  215. return threadmode;
  216. unsupp:
  217. panic("Unsupported CPU mask %lx\n",
  218. (unsigned long)cpumask_bits(wakeup_mask)[0]);
  219. return 0;
  220. }
  221. int nlm_wakeup_secondary_cpus(void)
  222. {
  223. u32 *reset_data;
  224. int threadmode;
  225. /* verify the mask and setup core config variables */
  226. threadmode = nlm_parse_cpumask(&nlm_cpumask);
  227. /* Setup CPU init parameters */
  228. reset_data = nlm_get_boot_data(BOOT_THREAD_MODE);
  229. *reset_data = threadmode;
  230. #ifdef CONFIG_CPU_XLP
  231. xlp_wakeup_secondary_cpus();
  232. #else
  233. xlr_wakeup_secondary_cpus();
  234. #endif
  235. return 0;
  236. }
  237. struct plat_smp_ops nlm_smp_ops = {
  238. .send_ipi_single = nlm_send_ipi_single,
  239. .send_ipi_mask = nlm_send_ipi_mask,
  240. .init_secondary = nlm_init_secondary,
  241. .smp_finish = nlm_smp_finish,
  242. .cpus_done = nlm_cpus_done,
  243. .boot_secondary = nlm_boot_secondary,
  244. .smp_setup = nlm_smp_setup,
  245. .prepare_cpus = nlm_prepare_cpus,
  246. };