rx.c 43 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/skbuff.h>
  13. #include <linux/netdevice.h>
  14. #include <linux/etherdevice.h>
  15. #include <net/mac80211.h>
  16. #include <net/ieee80211_radiotap.h>
  17. #include "ieee80211_i.h"
  18. #include "ieee80211_led.h"
  19. #include "ieee80211_common.h"
  20. #include "wep.h"
  21. #include "wpa.h"
  22. #include "tkip.h"
  23. #include "wme.h"
  24. /* pre-rx handlers
  25. *
  26. * these don't have dev/sdata fields in the rx data
  27. * The sta value should also not be used because it may
  28. * be NULL even though a STA (in IBSS mode) will be added.
  29. */
  30. static ieee80211_txrx_result
  31. ieee80211_rx_h_parse_qos(struct ieee80211_txrx_data *rx)
  32. {
  33. u8 *data = rx->skb->data;
  34. int tid;
  35. /* does the frame have a qos control field? */
  36. if (WLAN_FC_IS_QOS_DATA(rx->fc)) {
  37. u8 *qc = data + ieee80211_get_hdrlen(rx->fc) - QOS_CONTROL_LEN;
  38. /* frame has qos control */
  39. tid = qc[0] & QOS_CONTROL_TID_MASK;
  40. } else {
  41. if (unlikely((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)) {
  42. /* Separate TID for management frames */
  43. tid = NUM_RX_DATA_QUEUES - 1;
  44. } else {
  45. /* no qos control present */
  46. tid = 0; /* 802.1d - Best Effort */
  47. }
  48. }
  49. I802_DEBUG_INC(rx->local->wme_rx_queue[tid]);
  50. /* only a debug counter, sta might not be assigned properly yet */
  51. if (rx->sta)
  52. I802_DEBUG_INC(rx->sta->wme_rx_queue[tid]);
  53. rx->u.rx.queue = tid;
  54. /* Set skb->priority to 1d tag if highest order bit of TID is not set.
  55. * For now, set skb->priority to 0 for other cases. */
  56. rx->skb->priority = (tid > 7) ? 0 : tid;
  57. return TXRX_CONTINUE;
  58. }
  59. static ieee80211_txrx_result
  60. ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx)
  61. {
  62. struct ieee80211_local *local = rx->local;
  63. struct sk_buff *skb = rx->skb;
  64. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  65. u32 load = 0, hdrtime;
  66. struct ieee80211_rate *rate;
  67. struct ieee80211_hw_mode *mode = local->hw.conf.mode;
  68. int i;
  69. /* Estimate total channel use caused by this frame */
  70. if (unlikely(mode->num_rates < 0))
  71. return TXRX_CONTINUE;
  72. rate = &mode->rates[0];
  73. for (i = 0; i < mode->num_rates; i++) {
  74. if (mode->rates[i].val == rx->u.rx.status->rate) {
  75. rate = &mode->rates[i];
  76. break;
  77. }
  78. }
  79. /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
  80. * 1 usec = 1/8 * (1080 / 10) = 13.5 */
  81. if (mode->mode == MODE_IEEE80211A ||
  82. mode->mode == MODE_ATHEROS_TURBO ||
  83. mode->mode == MODE_ATHEROS_TURBOG ||
  84. (mode->mode == MODE_IEEE80211G &&
  85. rate->flags & IEEE80211_RATE_ERP))
  86. hdrtime = CHAN_UTIL_HDR_SHORT;
  87. else
  88. hdrtime = CHAN_UTIL_HDR_LONG;
  89. load = hdrtime;
  90. if (!is_multicast_ether_addr(hdr->addr1))
  91. load += hdrtime;
  92. load += skb->len * rate->rate_inv;
  93. /* Divide channel_use by 8 to avoid wrapping around the counter */
  94. load >>= CHAN_UTIL_SHIFT;
  95. local->channel_use_raw += load;
  96. rx->u.rx.load = load;
  97. return TXRX_CONTINUE;
  98. }
  99. ieee80211_rx_handler ieee80211_rx_pre_handlers[] =
  100. {
  101. ieee80211_rx_h_parse_qos,
  102. ieee80211_rx_h_load_stats,
  103. NULL
  104. };
  105. /* rx handlers */
  106. static ieee80211_txrx_result
  107. ieee80211_rx_h_if_stats(struct ieee80211_txrx_data *rx)
  108. {
  109. if (rx->sta)
  110. rx->sta->channel_use_raw += rx->u.rx.load;
  111. rx->sdata->channel_use_raw += rx->u.rx.load;
  112. return TXRX_CONTINUE;
  113. }
  114. static void
  115. ieee80211_rx_monitor(struct net_device *dev, struct sk_buff *skb,
  116. struct ieee80211_rx_status *status)
  117. {
  118. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  119. struct ieee80211_sub_if_data *sdata;
  120. struct ieee80211_rate *rate;
  121. struct ieee80211_rtap_hdr {
  122. struct ieee80211_radiotap_header hdr;
  123. u8 flags;
  124. u8 rate;
  125. __le16 chan_freq;
  126. __le16 chan_flags;
  127. u8 antsignal;
  128. } __attribute__ ((packed)) *rthdr;
  129. skb->dev = dev;
  130. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  131. if (status->flag & RX_FLAG_RADIOTAP)
  132. goto out;
  133. if (skb_headroom(skb) < sizeof(*rthdr)) {
  134. I802_DEBUG_INC(local->rx_expand_skb_head);
  135. if (pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC)) {
  136. dev_kfree_skb(skb);
  137. return;
  138. }
  139. }
  140. rthdr = (struct ieee80211_rtap_hdr *) skb_push(skb, sizeof(*rthdr));
  141. memset(rthdr, 0, sizeof(*rthdr));
  142. rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
  143. rthdr->hdr.it_present =
  144. cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  145. (1 << IEEE80211_RADIOTAP_RATE) |
  146. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  147. (1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL));
  148. rthdr->flags = local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS ?
  149. IEEE80211_RADIOTAP_F_FCS : 0;
  150. rate = ieee80211_get_rate(local, status->phymode, status->rate);
  151. if (rate)
  152. rthdr->rate = rate->rate / 5;
  153. rthdr->chan_freq = cpu_to_le16(status->freq);
  154. rthdr->chan_flags =
  155. status->phymode == MODE_IEEE80211A ?
  156. cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ) :
  157. cpu_to_le16(IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ);
  158. rthdr->antsignal = status->ssi;
  159. out:
  160. sdata->stats.rx_packets++;
  161. sdata->stats.rx_bytes += skb->len;
  162. skb_set_mac_header(skb, 0);
  163. skb->ip_summed = CHECKSUM_UNNECESSARY;
  164. skb->pkt_type = PACKET_OTHERHOST;
  165. skb->protocol = htons(ETH_P_802_2);
  166. memset(skb->cb, 0, sizeof(skb->cb));
  167. netif_rx(skb);
  168. }
  169. static ieee80211_txrx_result
  170. ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx)
  171. {
  172. if (rx->sdata->type == IEEE80211_IF_TYPE_MNTR) {
  173. ieee80211_rx_monitor(rx->dev, rx->skb, rx->u.rx.status);
  174. return TXRX_QUEUED;
  175. }
  176. if (rx->u.rx.status->flag & RX_FLAG_RADIOTAP)
  177. skb_pull(rx->skb, ieee80211_get_radiotap_len(rx->skb->data));
  178. return TXRX_CONTINUE;
  179. }
  180. static ieee80211_txrx_result
  181. ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
  182. {
  183. struct ieee80211_local *local = rx->local;
  184. struct sk_buff *skb = rx->skb;
  185. if (unlikely(local->sta_scanning != 0)) {
  186. ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
  187. return TXRX_QUEUED;
  188. }
  189. if (unlikely(rx->flags & IEEE80211_TXRXD_RXIN_SCAN)) {
  190. /* scanning finished during invoking of handlers */
  191. I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
  192. return TXRX_DROP;
  193. }
  194. return TXRX_CONTINUE;
  195. }
  196. static ieee80211_txrx_result
  197. ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
  198. {
  199. struct ieee80211_hdr *hdr;
  200. hdr = (struct ieee80211_hdr *) rx->skb->data;
  201. /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
  202. if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
  203. if (unlikely(rx->fc & IEEE80211_FCTL_RETRY &&
  204. rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
  205. hdr->seq_ctrl)) {
  206. if (rx->flags & IEEE80211_TXRXD_RXRA_MATCH) {
  207. rx->local->dot11FrameDuplicateCount++;
  208. rx->sta->num_duplicates++;
  209. }
  210. return TXRX_DROP;
  211. } else
  212. rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
  213. }
  214. if ((rx->local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) &&
  215. rx->skb->len > FCS_LEN)
  216. skb_trim(rx->skb, rx->skb->len - FCS_LEN);
  217. if (unlikely(rx->skb->len < 16)) {
  218. I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
  219. return TXRX_DROP;
  220. }
  221. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  222. rx->skb->pkt_type = PACKET_OTHERHOST;
  223. else if (compare_ether_addr(rx->dev->dev_addr, hdr->addr1) == 0)
  224. rx->skb->pkt_type = PACKET_HOST;
  225. else if (is_multicast_ether_addr(hdr->addr1)) {
  226. if (is_broadcast_ether_addr(hdr->addr1))
  227. rx->skb->pkt_type = PACKET_BROADCAST;
  228. else
  229. rx->skb->pkt_type = PACKET_MULTICAST;
  230. } else
  231. rx->skb->pkt_type = PACKET_OTHERHOST;
  232. /* Drop disallowed frame classes based on STA auth/assoc state;
  233. * IEEE 802.11, Chap 5.5.
  234. *
  235. * 80211.o does filtering only based on association state, i.e., it
  236. * drops Class 3 frames from not associated stations. hostapd sends
  237. * deauth/disassoc frames when needed. In addition, hostapd is
  238. * responsible for filtering on both auth and assoc states.
  239. */
  240. if (unlikely(((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA ||
  241. ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL &&
  242. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PSPOLL)) &&
  243. rx->sdata->type != IEEE80211_IF_TYPE_IBSS &&
  244. (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
  245. if ((!(rx->fc & IEEE80211_FCTL_FROMDS) &&
  246. !(rx->fc & IEEE80211_FCTL_TODS) &&
  247. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
  248. || !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  249. /* Drop IBSS frames and frames for other hosts
  250. * silently. */
  251. return TXRX_DROP;
  252. }
  253. if (!rx->local->apdev)
  254. return TXRX_DROP;
  255. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  256. ieee80211_msg_sta_not_assoc);
  257. return TXRX_QUEUED;
  258. }
  259. return TXRX_CONTINUE;
  260. }
  261. static ieee80211_txrx_result
  262. ieee80211_rx_h_load_key(struct ieee80211_txrx_data *rx)
  263. {
  264. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  265. int keyidx;
  266. int hdrlen;
  267. /*
  268. * Key selection 101
  269. *
  270. * There are three types of keys:
  271. * - GTK (group keys)
  272. * - PTK (pairwise keys)
  273. * - STK (station-to-station pairwise keys)
  274. *
  275. * When selecting a key, we have to distinguish between multicast
  276. * (including broadcast) and unicast frames, the latter can only
  277. * use PTKs and STKs while the former always use GTKs. Unless, of
  278. * course, actual WEP keys ("pre-RSNA") are used, then unicast
  279. * frames can also use key indizes like GTKs. Hence, if we don't
  280. * have a PTK/STK we check the key index for a WEP key.
  281. *
  282. * Note that in a regular BSS, multicast frames are sent by the
  283. * AP only, associated stations unicast the frame to the AP first
  284. * which then multicasts it on their behalf.
  285. *
  286. * There is also a slight problem in IBSS mode: GTKs are negotiated
  287. * with each station, that is something we don't currently handle.
  288. * The spec seems to expect that one negotiates the same key with
  289. * every station but there's no such requirement; VLANs could be
  290. * possible.
  291. */
  292. if (!(rx->fc & IEEE80211_FCTL_PROTECTED))
  293. return TXRX_CONTINUE;
  294. /*
  295. * No point in finding a key if the frame is neither
  296. * addressed to us nor a multicast frame.
  297. */
  298. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  299. return TXRX_CONTINUE;
  300. if (!is_multicast_ether_addr(hdr->addr1) && rx->sta && rx->sta->key) {
  301. rx->key = rx->sta->key;
  302. } else {
  303. /*
  304. * The device doesn't give us the IV so we won't be
  305. * able to look up the key. That's ok though, we
  306. * don't need to decrypt the frame, we just won't
  307. * be able to keep statistics accurate.
  308. * Except for key threshold notifications, should
  309. * we somehow allow the driver to tell us which key
  310. * the hardware used if this flag is set?
  311. */
  312. if (!(rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV))
  313. return TXRX_CONTINUE;
  314. hdrlen = ieee80211_get_hdrlen(rx->fc);
  315. if (rx->skb->len < 8 + hdrlen)
  316. return TXRX_DROP; /* TODO: count this? */
  317. /*
  318. * no need to call ieee80211_wep_get_keyidx,
  319. * it verifies a bunch of things we've done already
  320. */
  321. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  322. rx->key = rx->sdata->keys[keyidx];
  323. /*
  324. * RSNA-protected unicast frames should always be sent with
  325. * pairwise or station-to-station keys, but for WEP we allow
  326. * using a key index as well.
  327. */
  328. if (rx->key && rx->key->conf.alg != ALG_WEP &&
  329. !is_multicast_ether_addr(hdr->addr1))
  330. rx->key = NULL;
  331. }
  332. if (rx->key) {
  333. rx->key->tx_rx_count++;
  334. if (unlikely(rx->local->key_tx_rx_threshold &&
  335. rx->key->tx_rx_count >
  336. rx->local->key_tx_rx_threshold)) {
  337. ieee80211_key_threshold_notify(rx->dev, rx->key,
  338. rx->sta);
  339. }
  340. }
  341. return TXRX_CONTINUE;
  342. }
  343. static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
  344. {
  345. struct ieee80211_sub_if_data *sdata;
  346. sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
  347. if (sdata->bss)
  348. atomic_inc(&sdata->bss->num_sta_ps);
  349. sta->flags |= WLAN_STA_PS;
  350. sta->pspoll = 0;
  351. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  352. printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d enters power "
  353. "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid);
  354. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  355. }
  356. static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
  357. {
  358. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  359. struct sk_buff *skb;
  360. int sent = 0;
  361. struct ieee80211_sub_if_data *sdata;
  362. struct ieee80211_tx_packet_data *pkt_data;
  363. sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
  364. if (sdata->bss)
  365. atomic_dec(&sdata->bss->num_sta_ps);
  366. sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
  367. sta->pspoll = 0;
  368. if (!skb_queue_empty(&sta->ps_tx_buf)) {
  369. if (local->ops->set_tim)
  370. local->ops->set_tim(local_to_hw(local), sta->aid, 0);
  371. if (sdata->bss)
  372. bss_tim_clear(local, sdata->bss, sta->aid);
  373. }
  374. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  375. printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d exits power "
  376. "save mode\n", dev->name, MAC_ARG(sta->addr), sta->aid);
  377. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  378. /* Send all buffered frames to the station */
  379. while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
  380. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  381. sent++;
  382. pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
  383. dev_queue_xmit(skb);
  384. }
  385. while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
  386. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  387. local->total_ps_buffered--;
  388. sent++;
  389. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  390. printk(KERN_DEBUG "%s: STA " MAC_FMT " aid %d send PS frame "
  391. "since STA not sleeping anymore\n", dev->name,
  392. MAC_ARG(sta->addr), sta->aid);
  393. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  394. pkt_data->flags |= IEEE80211_TXPD_REQUEUE;
  395. dev_queue_xmit(skb);
  396. }
  397. return sent;
  398. }
  399. static ieee80211_txrx_result
  400. ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
  401. {
  402. struct sta_info *sta = rx->sta;
  403. struct net_device *dev = rx->dev;
  404. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  405. if (!sta)
  406. return TXRX_CONTINUE;
  407. /* Update last_rx only for IBSS packets which are for the current
  408. * BSSID to avoid keeping the current IBSS network alive in cases where
  409. * other STAs are using different BSSID. */
  410. if (rx->sdata->type == IEEE80211_IF_TYPE_IBSS) {
  411. u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len);
  412. if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
  413. sta->last_rx = jiffies;
  414. } else
  415. if (!is_multicast_ether_addr(hdr->addr1) ||
  416. rx->sdata->type == IEEE80211_IF_TYPE_STA) {
  417. /* Update last_rx only for unicast frames in order to prevent
  418. * the Probe Request frames (the only broadcast frames from a
  419. * STA in infrastructure mode) from keeping a connection alive.
  420. */
  421. sta->last_rx = jiffies;
  422. }
  423. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  424. return TXRX_CONTINUE;
  425. sta->rx_fragments++;
  426. sta->rx_bytes += rx->skb->len;
  427. sta->last_rssi = rx->u.rx.status->ssi;
  428. sta->last_signal = rx->u.rx.status->signal;
  429. sta->last_noise = rx->u.rx.status->noise;
  430. if (!(rx->fc & IEEE80211_FCTL_MOREFRAGS)) {
  431. /* Change STA power saving mode only in the end of a frame
  432. * exchange sequence */
  433. if ((sta->flags & WLAN_STA_PS) && !(rx->fc & IEEE80211_FCTL_PM))
  434. rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
  435. else if (!(sta->flags & WLAN_STA_PS) &&
  436. (rx->fc & IEEE80211_FCTL_PM))
  437. ap_sta_ps_start(dev, sta);
  438. }
  439. /* Drop data::nullfunc frames silently, since they are used only to
  440. * control station power saving mode. */
  441. if ((rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  442. (rx->fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_NULLFUNC) {
  443. I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
  444. /* Update counter and free packet here to avoid counting this
  445. * as a dropped packed. */
  446. sta->rx_packets++;
  447. dev_kfree_skb(rx->skb);
  448. return TXRX_QUEUED;
  449. }
  450. return TXRX_CONTINUE;
  451. } /* ieee80211_rx_h_sta_process */
  452. static ieee80211_txrx_result
  453. ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx)
  454. {
  455. if (!rx->sta || !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
  456. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA ||
  457. !rx->key || rx->key->conf.alg != ALG_WEP ||
  458. !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  459. return TXRX_CONTINUE;
  460. /* Check for weak IVs, if hwaccel did not remove IV from the frame */
  461. if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) ||
  462. !(rx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
  463. if (ieee80211_wep_is_weak_iv(rx->skb, rx->key))
  464. rx->sta->wep_weak_iv_count++;
  465. return TXRX_CONTINUE;
  466. }
  467. static ieee80211_txrx_result
  468. ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx)
  469. {
  470. if ((rx->key && rx->key->conf.alg != ALG_WEP) ||
  471. !(rx->fc & IEEE80211_FCTL_PROTECTED) ||
  472. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
  473. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
  474. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)))
  475. return TXRX_CONTINUE;
  476. if (!rx->key) {
  477. if (net_ratelimit())
  478. printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n",
  479. rx->dev->name);
  480. return TXRX_DROP;
  481. }
  482. if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED) ||
  483. !(rx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) {
  484. if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) {
  485. if (net_ratelimit())
  486. printk(KERN_DEBUG "%s: RX WEP frame, decrypt "
  487. "failed\n", rx->dev->name);
  488. return TXRX_DROP;
  489. }
  490. } else if (rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) {
  491. ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
  492. /* remove ICV */
  493. skb_trim(rx->skb, rx->skb->len - 4);
  494. }
  495. return TXRX_CONTINUE;
  496. }
  497. static inline struct ieee80211_fragment_entry *
  498. ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
  499. unsigned int frag, unsigned int seq, int rx_queue,
  500. struct sk_buff **skb)
  501. {
  502. struct ieee80211_fragment_entry *entry;
  503. int idx;
  504. idx = sdata->fragment_next;
  505. entry = &sdata->fragments[sdata->fragment_next++];
  506. if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
  507. sdata->fragment_next = 0;
  508. if (!skb_queue_empty(&entry->skb_list)) {
  509. #ifdef CONFIG_MAC80211_DEBUG
  510. struct ieee80211_hdr *hdr =
  511. (struct ieee80211_hdr *) entry->skb_list.next->data;
  512. printk(KERN_DEBUG "%s: RX reassembly removed oldest "
  513. "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
  514. "addr1=" MAC_FMT " addr2=" MAC_FMT "\n",
  515. sdata->dev->name, idx,
  516. jiffies - entry->first_frag_time, entry->seq,
  517. entry->last_frag, MAC_ARG(hdr->addr1),
  518. MAC_ARG(hdr->addr2));
  519. #endif /* CONFIG_MAC80211_DEBUG */
  520. __skb_queue_purge(&entry->skb_list);
  521. }
  522. __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
  523. *skb = NULL;
  524. entry->first_frag_time = jiffies;
  525. entry->seq = seq;
  526. entry->rx_queue = rx_queue;
  527. entry->last_frag = frag;
  528. entry->ccmp = 0;
  529. entry->extra_len = 0;
  530. return entry;
  531. }
  532. static inline struct ieee80211_fragment_entry *
  533. ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
  534. u16 fc, unsigned int frag, unsigned int seq,
  535. int rx_queue, struct ieee80211_hdr *hdr)
  536. {
  537. struct ieee80211_fragment_entry *entry;
  538. int i, idx;
  539. idx = sdata->fragment_next;
  540. for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
  541. struct ieee80211_hdr *f_hdr;
  542. u16 f_fc;
  543. idx--;
  544. if (idx < 0)
  545. idx = IEEE80211_FRAGMENT_MAX - 1;
  546. entry = &sdata->fragments[idx];
  547. if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
  548. entry->rx_queue != rx_queue ||
  549. entry->last_frag + 1 != frag)
  550. continue;
  551. f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
  552. f_fc = le16_to_cpu(f_hdr->frame_control);
  553. if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
  554. compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
  555. compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
  556. continue;
  557. if (entry->first_frag_time + 2 * HZ < jiffies) {
  558. __skb_queue_purge(&entry->skb_list);
  559. continue;
  560. }
  561. return entry;
  562. }
  563. return NULL;
  564. }
  565. static ieee80211_txrx_result
  566. ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
  567. {
  568. struct ieee80211_hdr *hdr;
  569. u16 sc;
  570. unsigned int frag, seq;
  571. struct ieee80211_fragment_entry *entry;
  572. struct sk_buff *skb;
  573. hdr = (struct ieee80211_hdr *) rx->skb->data;
  574. sc = le16_to_cpu(hdr->seq_ctrl);
  575. frag = sc & IEEE80211_SCTL_FRAG;
  576. if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
  577. (rx->skb)->len < 24 ||
  578. is_multicast_ether_addr(hdr->addr1))) {
  579. /* not fragmented */
  580. goto out;
  581. }
  582. I802_DEBUG_INC(rx->local->rx_handlers_fragments);
  583. seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
  584. if (frag == 0) {
  585. /* This is the first fragment of a new frame. */
  586. entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
  587. rx->u.rx.queue, &(rx->skb));
  588. if (rx->key && rx->key->conf.alg == ALG_CCMP &&
  589. (rx->fc & IEEE80211_FCTL_PROTECTED)) {
  590. /* Store CCMP PN so that we can verify that the next
  591. * fragment has a sequential PN value. */
  592. entry->ccmp = 1;
  593. memcpy(entry->last_pn,
  594. rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
  595. CCMP_PN_LEN);
  596. }
  597. return TXRX_QUEUED;
  598. }
  599. /* This is a fragment for a frame that should already be pending in
  600. * fragment cache. Add this fragment to the end of the pending entry.
  601. */
  602. entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
  603. rx->u.rx.queue, hdr);
  604. if (!entry) {
  605. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  606. return TXRX_DROP;
  607. }
  608. /* Verify that MPDUs within one MSDU have sequential PN values.
  609. * (IEEE 802.11i, 8.3.3.4.5) */
  610. if (entry->ccmp) {
  611. int i;
  612. u8 pn[CCMP_PN_LEN], *rpn;
  613. if (!rx->key || rx->key->conf.alg != ALG_CCMP)
  614. return TXRX_DROP;
  615. memcpy(pn, entry->last_pn, CCMP_PN_LEN);
  616. for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
  617. pn[i]++;
  618. if (pn[i])
  619. break;
  620. }
  621. rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
  622. if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
  623. if (net_ratelimit())
  624. printk(KERN_DEBUG "%s: defrag: CCMP PN not "
  625. "sequential A2=" MAC_FMT
  626. " PN=%02x%02x%02x%02x%02x%02x "
  627. "(expected %02x%02x%02x%02x%02x%02x)\n",
  628. rx->dev->name, MAC_ARG(hdr->addr2),
  629. rpn[0], rpn[1], rpn[2], rpn[3], rpn[4],
  630. rpn[5], pn[0], pn[1], pn[2], pn[3],
  631. pn[4], pn[5]);
  632. return TXRX_DROP;
  633. }
  634. memcpy(entry->last_pn, pn, CCMP_PN_LEN);
  635. }
  636. skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
  637. __skb_queue_tail(&entry->skb_list, rx->skb);
  638. entry->last_frag = frag;
  639. entry->extra_len += rx->skb->len;
  640. if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
  641. rx->skb = NULL;
  642. return TXRX_QUEUED;
  643. }
  644. rx->skb = __skb_dequeue(&entry->skb_list);
  645. if (skb_tailroom(rx->skb) < entry->extra_len) {
  646. I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
  647. if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
  648. GFP_ATOMIC))) {
  649. I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
  650. __skb_queue_purge(&entry->skb_list);
  651. return TXRX_DROP;
  652. }
  653. }
  654. while ((skb = __skb_dequeue(&entry->skb_list))) {
  655. memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
  656. dev_kfree_skb(skb);
  657. }
  658. /* Complete frame has been reassembled - process it now */
  659. rx->flags |= IEEE80211_TXRXD_FRAGMENTED;
  660. out:
  661. if (rx->sta)
  662. rx->sta->rx_packets++;
  663. if (is_multicast_ether_addr(hdr->addr1))
  664. rx->local->dot11MulticastReceivedFrameCount++;
  665. else
  666. ieee80211_led_rx(rx->local);
  667. return TXRX_CONTINUE;
  668. }
  669. static ieee80211_txrx_result
  670. ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
  671. {
  672. struct sk_buff *skb;
  673. int no_pending_pkts;
  674. if (likely(!rx->sta ||
  675. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
  676. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
  677. !(rx->flags & IEEE80211_TXRXD_RXRA_MATCH)))
  678. return TXRX_CONTINUE;
  679. skb = skb_dequeue(&rx->sta->tx_filtered);
  680. if (!skb) {
  681. skb = skb_dequeue(&rx->sta->ps_tx_buf);
  682. if (skb)
  683. rx->local->total_ps_buffered--;
  684. }
  685. no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
  686. skb_queue_empty(&rx->sta->ps_tx_buf);
  687. if (skb) {
  688. struct ieee80211_hdr *hdr =
  689. (struct ieee80211_hdr *) skb->data;
  690. /* tell TX path to send one frame even though the STA may
  691. * still remain is PS mode after this frame exchange */
  692. rx->sta->pspoll = 1;
  693. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  694. printk(KERN_DEBUG "STA " MAC_FMT " aid %d: PS Poll (entries "
  695. "after %d)\n",
  696. MAC_ARG(rx->sta->addr), rx->sta->aid,
  697. skb_queue_len(&rx->sta->ps_tx_buf));
  698. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  699. /* Use MoreData flag to indicate whether there are more
  700. * buffered frames for this STA */
  701. if (no_pending_pkts) {
  702. hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
  703. rx->sta->flags &= ~WLAN_STA_TIM;
  704. } else
  705. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
  706. dev_queue_xmit(skb);
  707. if (no_pending_pkts) {
  708. if (rx->local->ops->set_tim)
  709. rx->local->ops->set_tim(local_to_hw(rx->local),
  710. rx->sta->aid, 0);
  711. if (rx->sdata->bss)
  712. bss_tim_clear(rx->local, rx->sdata->bss, rx->sta->aid);
  713. }
  714. #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
  715. } else if (!rx->u.rx.sent_ps_buffered) {
  716. printk(KERN_DEBUG "%s: STA " MAC_FMT " sent PS Poll even "
  717. "though there is no buffered frames for it\n",
  718. rx->dev->name, MAC_ARG(rx->sta->addr));
  719. #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
  720. }
  721. /* Free PS Poll skb here instead of returning TXRX_DROP that would
  722. * count as an dropped frame. */
  723. dev_kfree_skb(rx->skb);
  724. return TXRX_QUEUED;
  725. }
  726. static ieee80211_txrx_result
  727. ieee80211_rx_h_remove_qos_control(struct ieee80211_txrx_data *rx)
  728. {
  729. u16 fc = rx->fc;
  730. u8 *data = rx->skb->data;
  731. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) data;
  732. if (!WLAN_FC_IS_QOS_DATA(fc))
  733. return TXRX_CONTINUE;
  734. /* remove the qos control field, update frame type and meta-data */
  735. memmove(data + 2, data, ieee80211_get_hdrlen(fc) - 2);
  736. hdr = (struct ieee80211_hdr *) skb_pull(rx->skb, 2);
  737. /* change frame type to non QOS */
  738. rx->fc = fc &= ~IEEE80211_STYPE_QOS_DATA;
  739. hdr->frame_control = cpu_to_le16(fc);
  740. return TXRX_CONTINUE;
  741. }
  742. static ieee80211_txrx_result
  743. ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx)
  744. {
  745. if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) &&
  746. rx->sdata->type != IEEE80211_IF_TYPE_STA &&
  747. (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  748. /* Pass both encrypted and unencrypted EAPOL frames to user
  749. * space for processing. */
  750. if (!rx->local->apdev)
  751. return TXRX_DROP;
  752. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  753. ieee80211_msg_normal);
  754. return TXRX_QUEUED;
  755. }
  756. if (unlikely(rx->sdata->ieee802_1x &&
  757. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  758. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
  759. (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) &&
  760. !ieee80211_is_eapol(rx->skb))) {
  761. #ifdef CONFIG_MAC80211_DEBUG
  762. struct ieee80211_hdr *hdr =
  763. (struct ieee80211_hdr *) rx->skb->data;
  764. printk(KERN_DEBUG "%s: dropped frame from " MAC_FMT
  765. " (unauthorized port)\n", rx->dev->name,
  766. MAC_ARG(hdr->addr2));
  767. #endif /* CONFIG_MAC80211_DEBUG */
  768. return TXRX_DROP;
  769. }
  770. return TXRX_CONTINUE;
  771. }
  772. static ieee80211_txrx_result
  773. ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx)
  774. {
  775. /*
  776. * Pass through unencrypted frames if the hardware might have
  777. * decrypted them already without telling us, but that can only
  778. * be true if we either didn't find a key or the found key is
  779. * uploaded to the hardware.
  780. */
  781. if ((rx->local->hw.flags & IEEE80211_HW_DEVICE_HIDES_WEP) &&
  782. (!rx->key || (rx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)))
  783. return TXRX_CONTINUE;
  784. /* Drop unencrypted frames if key is set. */
  785. if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
  786. (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
  787. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
  788. (rx->key || rx->sdata->drop_unencrypted) &&
  789. (rx->sdata->eapol == 0 ||
  790. !ieee80211_is_eapol(rx->skb)))) {
  791. if (net_ratelimit())
  792. printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
  793. "encryption\n", rx->dev->name);
  794. return TXRX_DROP;
  795. }
  796. return TXRX_CONTINUE;
  797. }
  798. static ieee80211_txrx_result
  799. ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
  800. {
  801. struct net_device *dev = rx->dev;
  802. struct ieee80211_local *local = rx->local;
  803. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
  804. u16 fc, hdrlen, ethertype;
  805. u8 *payload;
  806. u8 dst[ETH_ALEN];
  807. u8 src[ETH_ALEN];
  808. struct sk_buff *skb = rx->skb, *skb2;
  809. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  810. fc = rx->fc;
  811. if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
  812. return TXRX_CONTINUE;
  813. if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
  814. return TXRX_DROP;
  815. hdrlen = ieee80211_get_hdrlen(fc);
  816. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  817. * header
  818. * IEEE 802.11 address fields:
  819. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  820. * 0 0 DA SA BSSID n/a
  821. * 0 1 DA BSSID SA n/a
  822. * 1 0 BSSID SA DA n/a
  823. * 1 1 RA TA DA SA
  824. */
  825. switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  826. case IEEE80211_FCTL_TODS:
  827. /* BSSID SA DA */
  828. memcpy(dst, hdr->addr3, ETH_ALEN);
  829. memcpy(src, hdr->addr2, ETH_ALEN);
  830. if (unlikely(sdata->type != IEEE80211_IF_TYPE_AP &&
  831. sdata->type != IEEE80211_IF_TYPE_VLAN)) {
  832. if (net_ratelimit())
  833. printk(KERN_DEBUG "%s: dropped ToDS frame "
  834. "(BSSID=" MAC_FMT
  835. " SA=" MAC_FMT
  836. " DA=" MAC_FMT ")\n",
  837. dev->name,
  838. MAC_ARG(hdr->addr1),
  839. MAC_ARG(hdr->addr2),
  840. MAC_ARG(hdr->addr3));
  841. return TXRX_DROP;
  842. }
  843. break;
  844. case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  845. /* RA TA DA SA */
  846. memcpy(dst, hdr->addr3, ETH_ALEN);
  847. memcpy(src, hdr->addr4, ETH_ALEN);
  848. if (unlikely(sdata->type != IEEE80211_IF_TYPE_WDS)) {
  849. if (net_ratelimit())
  850. printk(KERN_DEBUG "%s: dropped FromDS&ToDS "
  851. "frame (RA=" MAC_FMT
  852. " TA=" MAC_FMT " DA=" MAC_FMT
  853. " SA=" MAC_FMT ")\n",
  854. rx->dev->name,
  855. MAC_ARG(hdr->addr1),
  856. MAC_ARG(hdr->addr2),
  857. MAC_ARG(hdr->addr3),
  858. MAC_ARG(hdr->addr4));
  859. return TXRX_DROP;
  860. }
  861. break;
  862. case IEEE80211_FCTL_FROMDS:
  863. /* DA BSSID SA */
  864. memcpy(dst, hdr->addr1, ETH_ALEN);
  865. memcpy(src, hdr->addr3, ETH_ALEN);
  866. if (sdata->type != IEEE80211_IF_TYPE_STA ||
  867. (is_multicast_ether_addr(dst) &&
  868. !compare_ether_addr(src, dev->dev_addr)))
  869. return TXRX_DROP;
  870. break;
  871. case 0:
  872. /* DA SA BSSID */
  873. memcpy(dst, hdr->addr1, ETH_ALEN);
  874. memcpy(src, hdr->addr2, ETH_ALEN);
  875. if (sdata->type != IEEE80211_IF_TYPE_IBSS) {
  876. if (net_ratelimit()) {
  877. printk(KERN_DEBUG "%s: dropped IBSS frame (DA="
  878. MAC_FMT " SA=" MAC_FMT " BSSID=" MAC_FMT
  879. ")\n",
  880. dev->name, MAC_ARG(hdr->addr1),
  881. MAC_ARG(hdr->addr2),
  882. MAC_ARG(hdr->addr3));
  883. }
  884. return TXRX_DROP;
  885. }
  886. break;
  887. }
  888. payload = skb->data + hdrlen;
  889. if (unlikely(skb->len - hdrlen < 8)) {
  890. if (net_ratelimit()) {
  891. printk(KERN_DEBUG "%s: RX too short data frame "
  892. "payload\n", dev->name);
  893. }
  894. return TXRX_DROP;
  895. }
  896. ethertype = (payload[6] << 8) | payload[7];
  897. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  898. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  899. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  900. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  901. * replace EtherType */
  902. skb_pull(skb, hdrlen + 6);
  903. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  904. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  905. } else {
  906. struct ethhdr *ehdr;
  907. __be16 len;
  908. skb_pull(skb, hdrlen);
  909. len = htons(skb->len);
  910. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  911. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  912. memcpy(ehdr->h_source, src, ETH_ALEN);
  913. ehdr->h_proto = len;
  914. }
  915. skb->dev = dev;
  916. skb2 = NULL;
  917. sdata->stats.rx_packets++;
  918. sdata->stats.rx_bytes += skb->len;
  919. if (local->bridge_packets && (sdata->type == IEEE80211_IF_TYPE_AP
  920. || sdata->type == IEEE80211_IF_TYPE_VLAN) &&
  921. (rx->flags & IEEE80211_TXRXD_RXRA_MATCH)) {
  922. if (is_multicast_ether_addr(skb->data)) {
  923. /* send multicast frames both to higher layers in
  924. * local net stack and back to the wireless media */
  925. skb2 = skb_copy(skb, GFP_ATOMIC);
  926. if (!skb2 && net_ratelimit())
  927. printk(KERN_DEBUG "%s: failed to clone "
  928. "multicast frame\n", dev->name);
  929. } else {
  930. struct sta_info *dsta;
  931. dsta = sta_info_get(local, skb->data);
  932. if (dsta && !dsta->dev) {
  933. if (net_ratelimit())
  934. printk(KERN_DEBUG "Station with null "
  935. "dev structure!\n");
  936. } else if (dsta && dsta->dev == dev) {
  937. /* Destination station is associated to this
  938. * AP, so send the frame directly to it and
  939. * do not pass the frame to local net stack.
  940. */
  941. skb2 = skb;
  942. skb = NULL;
  943. }
  944. if (dsta)
  945. sta_info_put(dsta);
  946. }
  947. }
  948. if (skb) {
  949. /* deliver to local stack */
  950. skb->protocol = eth_type_trans(skb, dev);
  951. memset(skb->cb, 0, sizeof(skb->cb));
  952. netif_rx(skb);
  953. }
  954. if (skb2) {
  955. /* send to wireless media */
  956. skb2->protocol = __constant_htons(ETH_P_802_3);
  957. skb_set_network_header(skb2, 0);
  958. skb_set_mac_header(skb2, 0);
  959. dev_queue_xmit(skb2);
  960. }
  961. return TXRX_QUEUED;
  962. }
  963. static ieee80211_txrx_result
  964. ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
  965. {
  966. struct ieee80211_sub_if_data *sdata;
  967. if (!(rx->flags & IEEE80211_TXRXD_RXRA_MATCH))
  968. return TXRX_DROP;
  969. sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
  970. if ((sdata->type == IEEE80211_IF_TYPE_STA ||
  971. sdata->type == IEEE80211_IF_TYPE_IBSS) &&
  972. !rx->local->user_space_mlme) {
  973. ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
  974. } else {
  975. /* Management frames are sent to hostapd for processing */
  976. if (!rx->local->apdev)
  977. return TXRX_DROP;
  978. ieee80211_rx_mgmt(rx->local, rx->skb, rx->u.rx.status,
  979. ieee80211_msg_normal);
  980. }
  981. return TXRX_QUEUED;
  982. }
  983. static inline ieee80211_txrx_result __ieee80211_invoke_rx_handlers(
  984. struct ieee80211_local *local,
  985. ieee80211_rx_handler *handlers,
  986. struct ieee80211_txrx_data *rx,
  987. struct sta_info *sta)
  988. {
  989. ieee80211_rx_handler *handler;
  990. ieee80211_txrx_result res = TXRX_DROP;
  991. for (handler = handlers; *handler != NULL; handler++) {
  992. res = (*handler)(rx);
  993. switch (res) {
  994. case TXRX_CONTINUE:
  995. continue;
  996. case TXRX_DROP:
  997. I802_DEBUG_INC(local->rx_handlers_drop);
  998. if (sta)
  999. sta->rx_dropped++;
  1000. break;
  1001. case TXRX_QUEUED:
  1002. I802_DEBUG_INC(local->rx_handlers_queued);
  1003. break;
  1004. }
  1005. break;
  1006. }
  1007. if (res == TXRX_DROP)
  1008. dev_kfree_skb(rx->skb);
  1009. return res;
  1010. }
  1011. static inline void ieee80211_invoke_rx_handlers(struct ieee80211_local *local,
  1012. ieee80211_rx_handler *handlers,
  1013. struct ieee80211_txrx_data *rx,
  1014. struct sta_info *sta)
  1015. {
  1016. if (__ieee80211_invoke_rx_handlers(local, handlers, rx, sta) ==
  1017. TXRX_CONTINUE)
  1018. dev_kfree_skb(rx->skb);
  1019. }
  1020. static void ieee80211_rx_michael_mic_report(struct net_device *dev,
  1021. struct ieee80211_hdr *hdr,
  1022. struct sta_info *sta,
  1023. struct ieee80211_txrx_data *rx)
  1024. {
  1025. int keyidx, hdrlen;
  1026. hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
  1027. if (rx->skb->len >= hdrlen + 4)
  1028. keyidx = rx->skb->data[hdrlen + 3] >> 6;
  1029. else
  1030. keyidx = -1;
  1031. /* TODO: verify that this is not triggered by fragmented
  1032. * frames (hw does not verify MIC for them). */
  1033. if (net_ratelimit())
  1034. printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
  1035. "failure from " MAC_FMT " to " MAC_FMT " keyidx=%d\n",
  1036. dev->name, MAC_ARG(hdr->addr2), MAC_ARG(hdr->addr1),
  1037. keyidx);
  1038. if (!sta) {
  1039. /* Some hardware versions seem to generate incorrect
  1040. * Michael MIC reports; ignore them to avoid triggering
  1041. * countermeasures. */
  1042. if (net_ratelimit())
  1043. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1044. "error for unknown address " MAC_FMT "\n",
  1045. dev->name, MAC_ARG(hdr->addr2));
  1046. goto ignore;
  1047. }
  1048. if (!(rx->fc & IEEE80211_FCTL_PROTECTED)) {
  1049. if (net_ratelimit())
  1050. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1051. "error for a frame with no ISWEP flag (src "
  1052. MAC_FMT ")\n", dev->name, MAC_ARG(hdr->addr2));
  1053. goto ignore;
  1054. }
  1055. if ((rx->local->hw.flags & IEEE80211_HW_WEP_INCLUDE_IV) &&
  1056. rx->sdata->type == IEEE80211_IF_TYPE_AP && keyidx) {
  1057. /* AP with Pairwise keys support should never receive Michael
  1058. * MIC errors for non-zero keyidx because these are reserved
  1059. * for group keys and only the AP is sending real multicast
  1060. * frames in BSS. */
  1061. if (net_ratelimit())
  1062. printk(KERN_DEBUG "%s: ignored Michael MIC error for "
  1063. "a frame with non-zero keyidx (%d)"
  1064. " (src " MAC_FMT ")\n", dev->name, keyidx,
  1065. MAC_ARG(hdr->addr2));
  1066. goto ignore;
  1067. }
  1068. if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
  1069. ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
  1070. (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH)) {
  1071. if (net_ratelimit())
  1072. printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
  1073. "error for a frame that cannot be encrypted "
  1074. "(fc=0x%04x) (src " MAC_FMT ")\n",
  1075. dev->name, rx->fc, MAC_ARG(hdr->addr2));
  1076. goto ignore;
  1077. }
  1078. /* TODO: consider verifying the MIC error report with software
  1079. * implementation if we get too many spurious reports from the
  1080. * hardware. */
  1081. mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
  1082. ignore:
  1083. dev_kfree_skb(rx->skb);
  1084. rx->skb = NULL;
  1085. }
  1086. ieee80211_rx_handler ieee80211_rx_handlers[] =
  1087. {
  1088. ieee80211_rx_h_if_stats,
  1089. ieee80211_rx_h_monitor,
  1090. ieee80211_rx_h_passive_scan,
  1091. ieee80211_rx_h_check,
  1092. ieee80211_rx_h_load_key,
  1093. ieee80211_rx_h_sta_process,
  1094. ieee80211_rx_h_ccmp_decrypt,
  1095. ieee80211_rx_h_tkip_decrypt,
  1096. ieee80211_rx_h_wep_weak_iv_detection,
  1097. ieee80211_rx_h_wep_decrypt,
  1098. ieee80211_rx_h_defragment,
  1099. ieee80211_rx_h_ps_poll,
  1100. ieee80211_rx_h_michael_mic_verify,
  1101. /* this must be after decryption - so header is counted in MPDU mic
  1102. * must be before pae and data, so QOS_DATA format frames
  1103. * are not passed to user space by these functions
  1104. */
  1105. ieee80211_rx_h_remove_qos_control,
  1106. ieee80211_rx_h_802_1x_pae,
  1107. ieee80211_rx_h_drop_unencrypted,
  1108. ieee80211_rx_h_data,
  1109. ieee80211_rx_h_mgmt,
  1110. NULL
  1111. };
  1112. /* main receive path */
  1113. static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
  1114. u8 *bssid, struct ieee80211_txrx_data *rx,
  1115. struct ieee80211_hdr *hdr)
  1116. {
  1117. int multicast = is_multicast_ether_addr(hdr->addr1);
  1118. switch (sdata->type) {
  1119. case IEEE80211_IF_TYPE_STA:
  1120. if (!bssid)
  1121. return 0;
  1122. if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
  1123. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1124. return 0;
  1125. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1126. } else if (!multicast &&
  1127. compare_ether_addr(sdata->dev->dev_addr,
  1128. hdr->addr1) != 0) {
  1129. if (!(sdata->flags & IEEE80211_SDATA_PROMISC))
  1130. return 0;
  1131. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1132. }
  1133. break;
  1134. case IEEE80211_IF_TYPE_IBSS:
  1135. if (!bssid)
  1136. return 0;
  1137. if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
  1138. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1139. return 0;
  1140. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1141. } else if (!multicast &&
  1142. compare_ether_addr(sdata->dev->dev_addr,
  1143. hdr->addr1) != 0) {
  1144. if (!(sdata->flags & IEEE80211_SDATA_PROMISC))
  1145. return 0;
  1146. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1147. } else if (!rx->sta)
  1148. rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
  1149. bssid, hdr->addr2);
  1150. break;
  1151. case IEEE80211_IF_TYPE_AP:
  1152. if (!bssid) {
  1153. if (compare_ether_addr(sdata->dev->dev_addr,
  1154. hdr->addr1))
  1155. return 0;
  1156. } else if (!ieee80211_bssid_match(bssid,
  1157. sdata->dev->dev_addr)) {
  1158. if (!(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1159. return 0;
  1160. rx->flags &= ~IEEE80211_TXRXD_RXRA_MATCH;
  1161. }
  1162. if (sdata->dev == sdata->local->mdev &&
  1163. !(rx->flags & IEEE80211_TXRXD_RXIN_SCAN))
  1164. /* do not receive anything via
  1165. * master device when not scanning */
  1166. return 0;
  1167. break;
  1168. case IEEE80211_IF_TYPE_WDS:
  1169. if (bssid ||
  1170. (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA)
  1171. return 0;
  1172. if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
  1173. return 0;
  1174. break;
  1175. }
  1176. return 1;
  1177. }
  1178. /*
  1179. * This is the receive path handler. It is called by a low level driver when an
  1180. * 802.11 MPDU is received from the hardware.
  1181. */
  1182. void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
  1183. struct ieee80211_rx_status *status)
  1184. {
  1185. struct ieee80211_local *local = hw_to_local(hw);
  1186. struct ieee80211_sub_if_data *sdata;
  1187. struct sta_info *sta;
  1188. struct ieee80211_hdr *hdr;
  1189. struct ieee80211_txrx_data rx;
  1190. u16 type;
  1191. int radiotap_len = 0, prepres;
  1192. struct ieee80211_sub_if_data *prev = NULL;
  1193. struct sk_buff *skb_new;
  1194. u8 *bssid;
  1195. if (status->flag & RX_FLAG_RADIOTAP) {
  1196. radiotap_len = ieee80211_get_radiotap_len(skb->data);
  1197. skb_pull(skb, radiotap_len);
  1198. }
  1199. hdr = (struct ieee80211_hdr *) skb->data;
  1200. memset(&rx, 0, sizeof(rx));
  1201. rx.skb = skb;
  1202. rx.local = local;
  1203. rx.u.rx.status = status;
  1204. rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0;
  1205. type = rx.fc & IEEE80211_FCTL_FTYPE;
  1206. if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
  1207. local->dot11ReceivedFragmentCount++;
  1208. if (skb->len >= 16) {
  1209. sta = rx.sta = sta_info_get(local, hdr->addr2);
  1210. if (sta) {
  1211. rx.dev = rx.sta->dev;
  1212. rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
  1213. }
  1214. } else
  1215. sta = rx.sta = NULL;
  1216. if ((status->flag & RX_FLAG_MMIC_ERROR)) {
  1217. ieee80211_rx_michael_mic_report(local->mdev, hdr, sta, &rx);
  1218. goto end;
  1219. }
  1220. if (unlikely(local->sta_scanning))
  1221. rx.flags |= IEEE80211_TXRXD_RXIN_SCAN;
  1222. if (__ieee80211_invoke_rx_handlers(local, local->rx_pre_handlers, &rx,
  1223. sta) != TXRX_CONTINUE)
  1224. goto end;
  1225. skb = rx.skb;
  1226. skb_push(skb, radiotap_len);
  1227. if (sta && !(sta->flags & (WLAN_STA_WDS | WLAN_STA_ASSOC_AP)) &&
  1228. !local->iff_promiscs && !is_multicast_ether_addr(hdr->addr1)) {
  1229. rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
  1230. ieee80211_invoke_rx_handlers(local, local->rx_handlers, &rx,
  1231. rx.sta);
  1232. sta_info_put(sta);
  1233. return;
  1234. }
  1235. bssid = ieee80211_get_bssid(hdr, skb->len - radiotap_len);
  1236. read_lock(&local->sub_if_lock);
  1237. list_for_each_entry(sdata, &local->sub_if_list, list) {
  1238. rx.flags |= IEEE80211_TXRXD_RXRA_MATCH;
  1239. if (!netif_running(sdata->dev))
  1240. continue;
  1241. prepres = prepare_for_handlers(sdata, bssid, &rx, hdr);
  1242. /* prepare_for_handlers can change sta */
  1243. sta = rx.sta;
  1244. if (!prepres)
  1245. continue;
  1246. /*
  1247. * frame is destined for this interface, but if it's not
  1248. * also for the previous one we handle that after the
  1249. * loop to avoid copying the SKB once too much
  1250. */
  1251. if (!prev) {
  1252. prev = sdata;
  1253. continue;
  1254. }
  1255. /*
  1256. * frame was destined for the previous interface
  1257. * so invoke RX handlers for it
  1258. */
  1259. skb_new = skb_copy(skb, GFP_ATOMIC);
  1260. if (!skb_new) {
  1261. if (net_ratelimit())
  1262. printk(KERN_DEBUG "%s: failed to copy "
  1263. "multicast frame for %s",
  1264. local->mdev->name, prev->dev->name);
  1265. continue;
  1266. }
  1267. rx.skb = skb_new;
  1268. rx.dev = prev->dev;
  1269. rx.sdata = prev;
  1270. ieee80211_invoke_rx_handlers(local, local->rx_handlers,
  1271. &rx, sta);
  1272. prev = sdata;
  1273. }
  1274. if (prev) {
  1275. rx.skb = skb;
  1276. rx.dev = prev->dev;
  1277. rx.sdata = prev;
  1278. ieee80211_invoke_rx_handlers(local, local->rx_handlers,
  1279. &rx, sta);
  1280. } else
  1281. dev_kfree_skb(skb);
  1282. read_unlock(&local->sub_if_lock);
  1283. end:
  1284. if (sta)
  1285. sta_info_put(sta);
  1286. }
  1287. EXPORT_SYMBOL(__ieee80211_rx);
  1288. /* This is a version of the rx handler that can be called from hard irq
  1289. * context. Post the skb on the queue and schedule the tasklet */
  1290. void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
  1291. struct ieee80211_rx_status *status)
  1292. {
  1293. struct ieee80211_local *local = hw_to_local(hw);
  1294. BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
  1295. skb->dev = local->mdev;
  1296. /* copy status into skb->cb for use by tasklet */
  1297. memcpy(skb->cb, status, sizeof(*status));
  1298. skb->pkt_type = IEEE80211_RX_MSG;
  1299. skb_queue_tail(&local->skb_queue, skb);
  1300. tasklet_schedule(&local->tasklet);
  1301. }
  1302. EXPORT_SYMBOL(ieee80211_rx_irqsafe);