kvm_main.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include <linux/kvm.h>
  19. #include <linux/module.h>
  20. #include <linux/errno.h>
  21. #include <asm/processor.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <asm/msr.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <asm/uaccess.h>
  29. #include <linux/reboot.h>
  30. #include <asm/io.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/highmem.h>
  33. #include <linux/file.h>
  34. #include <asm/desc.h>
  35. #include "x86_emulate.h"
  36. #include "segment_descriptor.h"
  37. MODULE_AUTHOR("Qumranet");
  38. MODULE_LICENSE("GPL");
  39. struct kvm_arch_ops *kvm_arch_ops;
  40. struct kvm_stat kvm_stat;
  41. EXPORT_SYMBOL_GPL(kvm_stat);
  42. static struct kvm_stats_debugfs_item {
  43. const char *name;
  44. u32 *data;
  45. struct dentry *dentry;
  46. } debugfs_entries[] = {
  47. { "pf_fixed", &kvm_stat.pf_fixed },
  48. { "pf_guest", &kvm_stat.pf_guest },
  49. { "tlb_flush", &kvm_stat.tlb_flush },
  50. { "invlpg", &kvm_stat.invlpg },
  51. { "exits", &kvm_stat.exits },
  52. { "io_exits", &kvm_stat.io_exits },
  53. { "mmio_exits", &kvm_stat.mmio_exits },
  54. { "signal_exits", &kvm_stat.signal_exits },
  55. { "irq_exits", &kvm_stat.irq_exits },
  56. { 0, 0 }
  57. };
  58. static struct dentry *debugfs_dir;
  59. #define MAX_IO_MSRS 256
  60. #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
  61. #define LMSW_GUEST_MASK 0x0eULL
  62. #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
  63. #define CR8_RESEVED_BITS (~0x0fULL)
  64. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  65. #ifdef CONFIG_X86_64
  66. // LDT or TSS descriptor in the GDT. 16 bytes.
  67. struct segment_descriptor_64 {
  68. struct segment_descriptor s;
  69. u32 base_higher;
  70. u32 pad_zero;
  71. };
  72. #endif
  73. unsigned long segment_base(u16 selector)
  74. {
  75. struct descriptor_table gdt;
  76. struct segment_descriptor *d;
  77. unsigned long table_base;
  78. typedef unsigned long ul;
  79. unsigned long v;
  80. if (selector == 0)
  81. return 0;
  82. asm ("sgdt %0" : "=m"(gdt));
  83. table_base = gdt.base;
  84. if (selector & 4) { /* from ldt */
  85. u16 ldt_selector;
  86. asm ("sldt %0" : "=g"(ldt_selector));
  87. table_base = segment_base(ldt_selector);
  88. }
  89. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  90. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  91. #ifdef CONFIG_X86_64
  92. if (d->system == 0
  93. && (d->type == 2 || d->type == 9 || d->type == 11))
  94. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  95. #endif
  96. return v;
  97. }
  98. EXPORT_SYMBOL_GPL(segment_base);
  99. int kvm_read_guest(struct kvm_vcpu *vcpu,
  100. gva_t addr,
  101. unsigned long size,
  102. void *dest)
  103. {
  104. unsigned char *host_buf = dest;
  105. unsigned long req_size = size;
  106. while (size) {
  107. hpa_t paddr;
  108. unsigned now;
  109. unsigned offset;
  110. hva_t guest_buf;
  111. paddr = gva_to_hpa(vcpu, addr);
  112. if (is_error_hpa(paddr))
  113. break;
  114. guest_buf = (hva_t)kmap_atomic(
  115. pfn_to_page(paddr >> PAGE_SHIFT),
  116. KM_USER0);
  117. offset = addr & ~PAGE_MASK;
  118. guest_buf |= offset;
  119. now = min(size, PAGE_SIZE - offset);
  120. memcpy(host_buf, (void*)guest_buf, now);
  121. host_buf += now;
  122. addr += now;
  123. size -= now;
  124. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  125. }
  126. return req_size - size;
  127. }
  128. EXPORT_SYMBOL_GPL(kvm_read_guest);
  129. int kvm_write_guest(struct kvm_vcpu *vcpu,
  130. gva_t addr,
  131. unsigned long size,
  132. void *data)
  133. {
  134. unsigned char *host_buf = data;
  135. unsigned long req_size = size;
  136. while (size) {
  137. hpa_t paddr;
  138. unsigned now;
  139. unsigned offset;
  140. hva_t guest_buf;
  141. paddr = gva_to_hpa(vcpu, addr);
  142. if (is_error_hpa(paddr))
  143. break;
  144. guest_buf = (hva_t)kmap_atomic(
  145. pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
  146. offset = addr & ~PAGE_MASK;
  147. guest_buf |= offset;
  148. now = min(size, PAGE_SIZE - offset);
  149. memcpy((void*)guest_buf, host_buf, now);
  150. host_buf += now;
  151. addr += now;
  152. size -= now;
  153. kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
  154. }
  155. return req_size - size;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_write_guest);
  158. static int vcpu_slot(struct kvm_vcpu *vcpu)
  159. {
  160. return vcpu - vcpu->kvm->vcpus;
  161. }
  162. /*
  163. * Switches to specified vcpu, until a matching vcpu_put()
  164. */
  165. static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
  166. {
  167. struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
  168. mutex_lock(&vcpu->mutex);
  169. if (unlikely(!vcpu->vmcs)) {
  170. mutex_unlock(&vcpu->mutex);
  171. return 0;
  172. }
  173. return kvm_arch_ops->vcpu_load(vcpu);
  174. }
  175. static void vcpu_put(struct kvm_vcpu *vcpu)
  176. {
  177. kvm_arch_ops->vcpu_put(vcpu);
  178. mutex_unlock(&vcpu->mutex);
  179. }
  180. static int kvm_dev_open(struct inode *inode, struct file *filp)
  181. {
  182. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  183. int i;
  184. if (!kvm)
  185. return -ENOMEM;
  186. spin_lock_init(&kvm->lock);
  187. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  188. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  189. struct kvm_vcpu *vcpu = &kvm->vcpus[i];
  190. mutex_init(&vcpu->mutex);
  191. vcpu->mmu.root_hpa = INVALID_PAGE;
  192. INIT_LIST_HEAD(&vcpu->free_pages);
  193. }
  194. filp->private_data = kvm;
  195. return 0;
  196. }
  197. /*
  198. * Free any memory in @free but not in @dont.
  199. */
  200. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  201. struct kvm_memory_slot *dont)
  202. {
  203. int i;
  204. if (!dont || free->phys_mem != dont->phys_mem)
  205. if (free->phys_mem) {
  206. for (i = 0; i < free->npages; ++i)
  207. __free_page(free->phys_mem[i]);
  208. vfree(free->phys_mem);
  209. }
  210. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  211. vfree(free->dirty_bitmap);
  212. free->phys_mem = 0;
  213. free->npages = 0;
  214. free->dirty_bitmap = 0;
  215. }
  216. static void kvm_free_physmem(struct kvm *kvm)
  217. {
  218. int i;
  219. for (i = 0; i < kvm->nmemslots; ++i)
  220. kvm_free_physmem_slot(&kvm->memslots[i], 0);
  221. }
  222. static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
  223. {
  224. kvm_arch_ops->vcpu_free(vcpu);
  225. kvm_mmu_destroy(vcpu);
  226. }
  227. static void kvm_free_vcpus(struct kvm *kvm)
  228. {
  229. unsigned int i;
  230. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  231. kvm_free_vcpu(&kvm->vcpus[i]);
  232. }
  233. static int kvm_dev_release(struct inode *inode, struct file *filp)
  234. {
  235. struct kvm *kvm = filp->private_data;
  236. kvm_free_vcpus(kvm);
  237. kvm_free_physmem(kvm);
  238. kfree(kvm);
  239. return 0;
  240. }
  241. static void inject_gp(struct kvm_vcpu *vcpu)
  242. {
  243. kvm_arch_ops->inject_gp(vcpu, 0);
  244. }
  245. static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
  246. unsigned long cr3)
  247. {
  248. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  249. unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
  250. int i;
  251. u64 pdpte;
  252. u64 *pdpt;
  253. struct kvm_memory_slot *memslot;
  254. spin_lock(&vcpu->kvm->lock);
  255. memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
  256. /* FIXME: !memslot - emulate? 0xff? */
  257. pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
  258. for (i = 0; i < 4; ++i) {
  259. pdpte = pdpt[offset + i];
  260. if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
  261. break;
  262. }
  263. kunmap_atomic(pdpt, KM_USER0);
  264. spin_unlock(&vcpu->kvm->lock);
  265. return i != 4;
  266. }
  267. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  268. {
  269. if (cr0 & CR0_RESEVED_BITS) {
  270. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  271. cr0, vcpu->cr0);
  272. inject_gp(vcpu);
  273. return;
  274. }
  275. if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
  276. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  277. inject_gp(vcpu);
  278. return;
  279. }
  280. if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
  281. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  282. "and a clear PE flag\n");
  283. inject_gp(vcpu);
  284. return;
  285. }
  286. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
  287. #ifdef CONFIG_X86_64
  288. if ((vcpu->shadow_efer & EFER_LME)) {
  289. int cs_db, cs_l;
  290. if (!is_pae(vcpu)) {
  291. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  292. "in long mode while PAE is disabled\n");
  293. inject_gp(vcpu);
  294. return;
  295. }
  296. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  297. if (cs_l) {
  298. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  299. "in long mode while CS.L == 1\n");
  300. inject_gp(vcpu);
  301. return;
  302. }
  303. } else
  304. #endif
  305. if (is_pae(vcpu) &&
  306. pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  307. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  308. "reserved bits\n");
  309. inject_gp(vcpu);
  310. return;
  311. }
  312. }
  313. kvm_arch_ops->set_cr0(vcpu, cr0);
  314. vcpu->cr0 = cr0;
  315. spin_lock(&vcpu->kvm->lock);
  316. kvm_mmu_reset_context(vcpu);
  317. spin_unlock(&vcpu->kvm->lock);
  318. return;
  319. }
  320. EXPORT_SYMBOL_GPL(set_cr0);
  321. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  322. {
  323. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  324. }
  325. EXPORT_SYMBOL_GPL(lmsw);
  326. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  327. {
  328. if (cr4 & CR4_RESEVED_BITS) {
  329. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  330. inject_gp(vcpu);
  331. return;
  332. }
  333. if (kvm_arch_ops->is_long_mode(vcpu)) {
  334. if (!(cr4 & CR4_PAE_MASK)) {
  335. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  336. "in long mode\n");
  337. inject_gp(vcpu);
  338. return;
  339. }
  340. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
  341. && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
  342. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  343. inject_gp(vcpu);
  344. }
  345. if (cr4 & CR4_VMXE_MASK) {
  346. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  347. inject_gp(vcpu);
  348. return;
  349. }
  350. kvm_arch_ops->set_cr4(vcpu, cr4);
  351. spin_lock(&vcpu->kvm->lock);
  352. kvm_mmu_reset_context(vcpu);
  353. spin_unlock(&vcpu->kvm->lock);
  354. }
  355. EXPORT_SYMBOL_GPL(set_cr4);
  356. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  357. {
  358. if (kvm_arch_ops->is_long_mode(vcpu)) {
  359. if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
  360. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  361. inject_gp(vcpu);
  362. return;
  363. }
  364. } else {
  365. if (cr3 & CR3_RESEVED_BITS) {
  366. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  367. inject_gp(vcpu);
  368. return;
  369. }
  370. if (is_paging(vcpu) && is_pae(vcpu) &&
  371. pdptrs_have_reserved_bits_set(vcpu, cr3)) {
  372. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  373. "reserved bits\n");
  374. inject_gp(vcpu);
  375. return;
  376. }
  377. }
  378. vcpu->cr3 = cr3;
  379. spin_lock(&vcpu->kvm->lock);
  380. vcpu->mmu.new_cr3(vcpu);
  381. spin_unlock(&vcpu->kvm->lock);
  382. }
  383. EXPORT_SYMBOL_GPL(set_cr3);
  384. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  385. {
  386. if ( cr8 & CR8_RESEVED_BITS) {
  387. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  388. inject_gp(vcpu);
  389. return;
  390. }
  391. vcpu->cr8 = cr8;
  392. }
  393. EXPORT_SYMBOL_GPL(set_cr8);
  394. void fx_init(struct kvm_vcpu *vcpu)
  395. {
  396. struct __attribute__ ((__packed__)) fx_image_s {
  397. u16 control; //fcw
  398. u16 status; //fsw
  399. u16 tag; // ftw
  400. u16 opcode; //fop
  401. u64 ip; // fpu ip
  402. u64 operand;// fpu dp
  403. u32 mxcsr;
  404. u32 mxcsr_mask;
  405. } *fx_image;
  406. fx_save(vcpu->host_fx_image);
  407. fpu_init();
  408. fx_save(vcpu->guest_fx_image);
  409. fx_restore(vcpu->host_fx_image);
  410. fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
  411. fx_image->mxcsr = 0x1f80;
  412. memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
  413. 0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
  414. }
  415. EXPORT_SYMBOL_GPL(fx_init);
  416. /*
  417. * Creates some virtual cpus. Good luck creating more than one.
  418. */
  419. static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
  420. {
  421. int r;
  422. struct kvm_vcpu *vcpu;
  423. r = -EINVAL;
  424. if (n < 0 || n >= KVM_MAX_VCPUS)
  425. goto out;
  426. vcpu = &kvm->vcpus[n];
  427. mutex_lock(&vcpu->mutex);
  428. if (vcpu->vmcs) {
  429. mutex_unlock(&vcpu->mutex);
  430. return -EEXIST;
  431. }
  432. vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
  433. FX_IMAGE_ALIGN);
  434. vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
  435. vcpu->cpu = -1; /* First load will set up TR */
  436. vcpu->kvm = kvm;
  437. r = kvm_arch_ops->vcpu_create(vcpu);
  438. if (r < 0)
  439. goto out_free_vcpus;
  440. kvm_arch_ops->vcpu_load(vcpu);
  441. r = kvm_arch_ops->vcpu_setup(vcpu);
  442. if (r >= 0)
  443. r = kvm_mmu_init(vcpu);
  444. vcpu_put(vcpu);
  445. if (r < 0)
  446. goto out_free_vcpus;
  447. return 0;
  448. out_free_vcpus:
  449. kvm_free_vcpu(vcpu);
  450. mutex_unlock(&vcpu->mutex);
  451. out:
  452. return r;
  453. }
  454. /*
  455. * Allocate some memory and give it an address in the guest physical address
  456. * space.
  457. *
  458. * Discontiguous memory is allowed, mostly for framebuffers.
  459. */
  460. static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
  461. struct kvm_memory_region *mem)
  462. {
  463. int r;
  464. gfn_t base_gfn;
  465. unsigned long npages;
  466. unsigned long i;
  467. struct kvm_memory_slot *memslot;
  468. struct kvm_memory_slot old, new;
  469. int memory_config_version;
  470. r = -EINVAL;
  471. /* General sanity checks */
  472. if (mem->memory_size & (PAGE_SIZE - 1))
  473. goto out;
  474. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  475. goto out;
  476. if (mem->slot >= KVM_MEMORY_SLOTS)
  477. goto out;
  478. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  479. goto out;
  480. memslot = &kvm->memslots[mem->slot];
  481. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  482. npages = mem->memory_size >> PAGE_SHIFT;
  483. if (!npages)
  484. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  485. raced:
  486. spin_lock(&kvm->lock);
  487. memory_config_version = kvm->memory_config_version;
  488. new = old = *memslot;
  489. new.base_gfn = base_gfn;
  490. new.npages = npages;
  491. new.flags = mem->flags;
  492. /* Disallow changing a memory slot's size. */
  493. r = -EINVAL;
  494. if (npages && old.npages && npages != old.npages)
  495. goto out_unlock;
  496. /* Check for overlaps */
  497. r = -EEXIST;
  498. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  499. struct kvm_memory_slot *s = &kvm->memslots[i];
  500. if (s == memslot)
  501. continue;
  502. if (!((base_gfn + npages <= s->base_gfn) ||
  503. (base_gfn >= s->base_gfn + s->npages)))
  504. goto out_unlock;
  505. }
  506. /*
  507. * Do memory allocations outside lock. memory_config_version will
  508. * detect any races.
  509. */
  510. spin_unlock(&kvm->lock);
  511. /* Deallocate if slot is being removed */
  512. if (!npages)
  513. new.phys_mem = 0;
  514. /* Free page dirty bitmap if unneeded */
  515. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  516. new.dirty_bitmap = 0;
  517. r = -ENOMEM;
  518. /* Allocate if a slot is being created */
  519. if (npages && !new.phys_mem) {
  520. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  521. if (!new.phys_mem)
  522. goto out_free;
  523. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  524. for (i = 0; i < npages; ++i) {
  525. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  526. | __GFP_ZERO);
  527. if (!new.phys_mem[i])
  528. goto out_free;
  529. }
  530. }
  531. /* Allocate page dirty bitmap if needed */
  532. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  533. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  534. new.dirty_bitmap = vmalloc(dirty_bytes);
  535. if (!new.dirty_bitmap)
  536. goto out_free;
  537. memset(new.dirty_bitmap, 0, dirty_bytes);
  538. }
  539. spin_lock(&kvm->lock);
  540. if (memory_config_version != kvm->memory_config_version) {
  541. spin_unlock(&kvm->lock);
  542. kvm_free_physmem_slot(&new, &old);
  543. goto raced;
  544. }
  545. r = -EAGAIN;
  546. if (kvm->busy)
  547. goto out_unlock;
  548. if (mem->slot >= kvm->nmemslots)
  549. kvm->nmemslots = mem->slot + 1;
  550. *memslot = new;
  551. ++kvm->memory_config_version;
  552. spin_unlock(&kvm->lock);
  553. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  554. struct kvm_vcpu *vcpu;
  555. vcpu = vcpu_load(kvm, i);
  556. if (!vcpu)
  557. continue;
  558. kvm_mmu_reset_context(vcpu);
  559. vcpu_put(vcpu);
  560. }
  561. kvm_free_physmem_slot(&old, &new);
  562. return 0;
  563. out_unlock:
  564. spin_unlock(&kvm->lock);
  565. out_free:
  566. kvm_free_physmem_slot(&new, &old);
  567. out:
  568. return r;
  569. }
  570. /*
  571. * Get (and clear) the dirty memory log for a memory slot.
  572. */
  573. static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
  574. struct kvm_dirty_log *log)
  575. {
  576. struct kvm_memory_slot *memslot;
  577. int r, i;
  578. int n;
  579. unsigned long any = 0;
  580. spin_lock(&kvm->lock);
  581. /*
  582. * Prevent changes to guest memory configuration even while the lock
  583. * is not taken.
  584. */
  585. ++kvm->busy;
  586. spin_unlock(&kvm->lock);
  587. r = -EINVAL;
  588. if (log->slot >= KVM_MEMORY_SLOTS)
  589. goto out;
  590. memslot = &kvm->memslots[log->slot];
  591. r = -ENOENT;
  592. if (!memslot->dirty_bitmap)
  593. goto out;
  594. n = ALIGN(memslot->npages, 8) / 8;
  595. for (i = 0; !any && i < n; ++i)
  596. any = memslot->dirty_bitmap[i];
  597. r = -EFAULT;
  598. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  599. goto out;
  600. if (any) {
  601. spin_lock(&kvm->lock);
  602. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  603. spin_unlock(&kvm->lock);
  604. memset(memslot->dirty_bitmap, 0, n);
  605. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  606. struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
  607. if (!vcpu)
  608. continue;
  609. kvm_arch_ops->tlb_flush(vcpu);
  610. vcpu_put(vcpu);
  611. }
  612. }
  613. r = 0;
  614. out:
  615. spin_lock(&kvm->lock);
  616. --kvm->busy;
  617. spin_unlock(&kvm->lock);
  618. return r;
  619. }
  620. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  621. {
  622. int i;
  623. for (i = 0; i < kvm->nmemslots; ++i) {
  624. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  625. if (gfn >= memslot->base_gfn
  626. && gfn < memslot->base_gfn + memslot->npages)
  627. return memslot;
  628. }
  629. return 0;
  630. }
  631. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  632. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  633. {
  634. int i;
  635. struct kvm_memory_slot *memslot = 0;
  636. unsigned long rel_gfn;
  637. for (i = 0; i < kvm->nmemslots; ++i) {
  638. memslot = &kvm->memslots[i];
  639. if (gfn >= memslot->base_gfn
  640. && gfn < memslot->base_gfn + memslot->npages) {
  641. if (!memslot || !memslot->dirty_bitmap)
  642. return;
  643. rel_gfn = gfn - memslot->base_gfn;
  644. /* avoid RMW */
  645. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  646. set_bit(rel_gfn, memslot->dirty_bitmap);
  647. return;
  648. }
  649. }
  650. }
  651. static int emulator_read_std(unsigned long addr,
  652. unsigned long *val,
  653. unsigned int bytes,
  654. struct x86_emulate_ctxt *ctxt)
  655. {
  656. struct kvm_vcpu *vcpu = ctxt->vcpu;
  657. void *data = val;
  658. while (bytes) {
  659. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  660. unsigned offset = addr & (PAGE_SIZE-1);
  661. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  662. unsigned long pfn;
  663. struct kvm_memory_slot *memslot;
  664. void *page;
  665. if (gpa == UNMAPPED_GVA)
  666. return X86EMUL_PROPAGATE_FAULT;
  667. pfn = gpa >> PAGE_SHIFT;
  668. memslot = gfn_to_memslot(vcpu->kvm, pfn);
  669. if (!memslot)
  670. return X86EMUL_UNHANDLEABLE;
  671. page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
  672. memcpy(data, page + offset, tocopy);
  673. kunmap_atomic(page, KM_USER0);
  674. bytes -= tocopy;
  675. data += tocopy;
  676. addr += tocopy;
  677. }
  678. return X86EMUL_CONTINUE;
  679. }
  680. static int emulator_write_std(unsigned long addr,
  681. unsigned long val,
  682. unsigned int bytes,
  683. struct x86_emulate_ctxt *ctxt)
  684. {
  685. printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
  686. addr, bytes);
  687. return X86EMUL_UNHANDLEABLE;
  688. }
  689. static int emulator_read_emulated(unsigned long addr,
  690. unsigned long *val,
  691. unsigned int bytes,
  692. struct x86_emulate_ctxt *ctxt)
  693. {
  694. struct kvm_vcpu *vcpu = ctxt->vcpu;
  695. if (vcpu->mmio_read_completed) {
  696. memcpy(val, vcpu->mmio_data, bytes);
  697. vcpu->mmio_read_completed = 0;
  698. return X86EMUL_CONTINUE;
  699. } else if (emulator_read_std(addr, val, bytes, ctxt)
  700. == X86EMUL_CONTINUE)
  701. return X86EMUL_CONTINUE;
  702. else {
  703. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  704. if (gpa == UNMAPPED_GVA)
  705. return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
  706. vcpu->mmio_needed = 1;
  707. vcpu->mmio_phys_addr = gpa;
  708. vcpu->mmio_size = bytes;
  709. vcpu->mmio_is_write = 0;
  710. return X86EMUL_UNHANDLEABLE;
  711. }
  712. }
  713. static int emulator_write_emulated(unsigned long addr,
  714. unsigned long val,
  715. unsigned int bytes,
  716. struct x86_emulate_ctxt *ctxt)
  717. {
  718. struct kvm_vcpu *vcpu = ctxt->vcpu;
  719. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  720. if (gpa == UNMAPPED_GVA)
  721. return X86EMUL_PROPAGATE_FAULT;
  722. vcpu->mmio_needed = 1;
  723. vcpu->mmio_phys_addr = gpa;
  724. vcpu->mmio_size = bytes;
  725. vcpu->mmio_is_write = 1;
  726. memcpy(vcpu->mmio_data, &val, bytes);
  727. return X86EMUL_CONTINUE;
  728. }
  729. static int emulator_cmpxchg_emulated(unsigned long addr,
  730. unsigned long old,
  731. unsigned long new,
  732. unsigned int bytes,
  733. struct x86_emulate_ctxt *ctxt)
  734. {
  735. static int reported;
  736. if (!reported) {
  737. reported = 1;
  738. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  739. }
  740. return emulator_write_emulated(addr, new, bytes, ctxt);
  741. }
  742. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  743. {
  744. return kvm_arch_ops->get_segment_base(vcpu, seg);
  745. }
  746. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  747. {
  748. spin_lock(&vcpu->kvm->lock);
  749. vcpu->mmu.inval_page(vcpu, address);
  750. spin_unlock(&vcpu->kvm->lock);
  751. kvm_arch_ops->invlpg(vcpu, address);
  752. return X86EMUL_CONTINUE;
  753. }
  754. int emulate_clts(struct kvm_vcpu *vcpu)
  755. {
  756. unsigned long cr0 = vcpu->cr0;
  757. cr0 &= ~CR0_TS_MASK;
  758. kvm_arch_ops->set_cr0(vcpu, cr0);
  759. return X86EMUL_CONTINUE;
  760. }
  761. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  762. {
  763. struct kvm_vcpu *vcpu = ctxt->vcpu;
  764. switch (dr) {
  765. case 0 ... 3:
  766. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  767. return X86EMUL_CONTINUE;
  768. default:
  769. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  770. __FUNCTION__, dr);
  771. return X86EMUL_UNHANDLEABLE;
  772. }
  773. }
  774. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  775. {
  776. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  777. int exception;
  778. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  779. if (exception) {
  780. /* FIXME: better handling */
  781. return X86EMUL_UNHANDLEABLE;
  782. }
  783. return X86EMUL_CONTINUE;
  784. }
  785. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  786. {
  787. static int reported;
  788. u8 opcodes[4];
  789. unsigned long rip = ctxt->vcpu->rip;
  790. unsigned long rip_linear;
  791. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  792. if (reported)
  793. return;
  794. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
  795. printk(KERN_ERR "emulation failed but !mmio_needed?"
  796. " rip %lx %02x %02x %02x %02x\n",
  797. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  798. reported = 1;
  799. }
  800. struct x86_emulate_ops emulate_ops = {
  801. .read_std = emulator_read_std,
  802. .write_std = emulator_write_std,
  803. .read_emulated = emulator_read_emulated,
  804. .write_emulated = emulator_write_emulated,
  805. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  806. };
  807. int emulate_instruction(struct kvm_vcpu *vcpu,
  808. struct kvm_run *run,
  809. unsigned long cr2,
  810. u16 error_code)
  811. {
  812. struct x86_emulate_ctxt emulate_ctxt;
  813. int r;
  814. int cs_db, cs_l;
  815. kvm_arch_ops->cache_regs(vcpu);
  816. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  817. emulate_ctxt.vcpu = vcpu;
  818. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  819. emulate_ctxt.cr2 = cr2;
  820. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  821. ? X86EMUL_MODE_REAL : cs_l
  822. ? X86EMUL_MODE_PROT64 : cs_db
  823. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  824. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  825. emulate_ctxt.cs_base = 0;
  826. emulate_ctxt.ds_base = 0;
  827. emulate_ctxt.es_base = 0;
  828. emulate_ctxt.ss_base = 0;
  829. } else {
  830. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  831. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  832. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  833. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  834. }
  835. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  836. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  837. vcpu->mmio_is_write = 0;
  838. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  839. if ((r || vcpu->mmio_is_write) && run) {
  840. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  841. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  842. run->mmio.len = vcpu->mmio_size;
  843. run->mmio.is_write = vcpu->mmio_is_write;
  844. }
  845. if (r) {
  846. if (!vcpu->mmio_needed) {
  847. report_emulation_failure(&emulate_ctxt);
  848. return EMULATE_FAIL;
  849. }
  850. return EMULATE_DO_MMIO;
  851. }
  852. kvm_arch_ops->decache_regs(vcpu);
  853. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  854. if (vcpu->mmio_is_write)
  855. return EMULATE_DO_MMIO;
  856. return EMULATE_DONE;
  857. }
  858. EXPORT_SYMBOL_GPL(emulate_instruction);
  859. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  860. {
  861. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  862. }
  863. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  864. {
  865. struct descriptor_table dt = { limit, base };
  866. kvm_arch_ops->set_gdt(vcpu, &dt);
  867. }
  868. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  869. {
  870. struct descriptor_table dt = { limit, base };
  871. kvm_arch_ops->set_idt(vcpu, &dt);
  872. }
  873. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  874. unsigned long *rflags)
  875. {
  876. lmsw(vcpu, msw);
  877. *rflags = kvm_arch_ops->get_rflags(vcpu);
  878. }
  879. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  880. {
  881. switch (cr) {
  882. case 0:
  883. return vcpu->cr0;
  884. case 2:
  885. return vcpu->cr2;
  886. case 3:
  887. return vcpu->cr3;
  888. case 4:
  889. return vcpu->cr4;
  890. default:
  891. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  892. return 0;
  893. }
  894. }
  895. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  896. unsigned long *rflags)
  897. {
  898. switch (cr) {
  899. case 0:
  900. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  901. *rflags = kvm_arch_ops->get_rflags(vcpu);
  902. break;
  903. case 2:
  904. vcpu->cr2 = val;
  905. break;
  906. case 3:
  907. set_cr3(vcpu, val);
  908. break;
  909. case 4:
  910. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  911. break;
  912. default:
  913. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  914. }
  915. }
  916. /*
  917. * Reads an msr value (of 'msr_index') into 'pdata'.
  918. * Returns 0 on success, non-0 otherwise.
  919. * Assumes vcpu_load() was already called.
  920. */
  921. static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  922. {
  923. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  924. }
  925. #ifdef CONFIG_X86_64
  926. void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  927. {
  928. if (efer & EFER_RESERVED_BITS) {
  929. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  930. efer);
  931. inject_gp(vcpu);
  932. return;
  933. }
  934. if (is_paging(vcpu)
  935. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  936. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  937. inject_gp(vcpu);
  938. return;
  939. }
  940. kvm_arch_ops->set_efer(vcpu, efer);
  941. efer &= ~EFER_LMA;
  942. efer |= vcpu->shadow_efer & EFER_LMA;
  943. vcpu->shadow_efer = efer;
  944. }
  945. EXPORT_SYMBOL_GPL(set_efer);
  946. #endif
  947. /*
  948. * Writes msr value into into the appropriate "register".
  949. * Returns 0 on success, non-0 otherwise.
  950. * Assumes vcpu_load() was already called.
  951. */
  952. static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  953. {
  954. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  955. }
  956. void kvm_resched(struct kvm_vcpu *vcpu)
  957. {
  958. vcpu_put(vcpu);
  959. cond_resched();
  960. /* Cannot fail - no vcpu unplug yet. */
  961. vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
  962. }
  963. EXPORT_SYMBOL_GPL(kvm_resched);
  964. void load_msrs(struct vmx_msr_entry *e, int n)
  965. {
  966. int i;
  967. for (i = 0; i < n; ++i)
  968. wrmsrl(e[i].index, e[i].data);
  969. }
  970. EXPORT_SYMBOL_GPL(load_msrs);
  971. void save_msrs(struct vmx_msr_entry *e, int n)
  972. {
  973. int i;
  974. for (i = 0; i < n; ++i)
  975. rdmsrl(e[i].index, e[i].data);
  976. }
  977. EXPORT_SYMBOL_GPL(save_msrs);
  978. static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
  979. {
  980. struct kvm_vcpu *vcpu;
  981. int r;
  982. if (kvm_run->vcpu < 0 || kvm_run->vcpu >= KVM_MAX_VCPUS)
  983. return -EINVAL;
  984. vcpu = vcpu_load(kvm, kvm_run->vcpu);
  985. if (!vcpu)
  986. return -ENOENT;
  987. if (kvm_run->emulated) {
  988. kvm_arch_ops->skip_emulated_instruction(vcpu);
  989. kvm_run->emulated = 0;
  990. }
  991. if (kvm_run->mmio_completed) {
  992. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  993. vcpu->mmio_read_completed = 1;
  994. }
  995. vcpu->mmio_needed = 0;
  996. r = kvm_arch_ops->run(vcpu, kvm_run);
  997. vcpu_put(vcpu);
  998. return r;
  999. }
  1000. static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
  1001. {
  1002. struct kvm_vcpu *vcpu;
  1003. if (regs->vcpu < 0 || regs->vcpu >= KVM_MAX_VCPUS)
  1004. return -EINVAL;
  1005. vcpu = vcpu_load(kvm, regs->vcpu);
  1006. if (!vcpu)
  1007. return -ENOENT;
  1008. kvm_arch_ops->cache_regs(vcpu);
  1009. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1010. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1011. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1012. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1013. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1014. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1015. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1016. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1017. #ifdef CONFIG_X86_64
  1018. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1019. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1020. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1021. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1022. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1023. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1024. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1025. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1026. #endif
  1027. regs->rip = vcpu->rip;
  1028. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1029. /*
  1030. * Don't leak debug flags in case they were set for guest debugging
  1031. */
  1032. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1033. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1034. vcpu_put(vcpu);
  1035. return 0;
  1036. }
  1037. static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
  1038. {
  1039. struct kvm_vcpu *vcpu;
  1040. if (regs->vcpu < 0 || regs->vcpu >= KVM_MAX_VCPUS)
  1041. return -EINVAL;
  1042. vcpu = vcpu_load(kvm, regs->vcpu);
  1043. if (!vcpu)
  1044. return -ENOENT;
  1045. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1046. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1047. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1048. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1049. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1050. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1051. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1052. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1053. #ifdef CONFIG_X86_64
  1054. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1055. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1056. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1057. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1058. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1059. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1060. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1061. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1062. #endif
  1063. vcpu->rip = regs->rip;
  1064. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1065. kvm_arch_ops->decache_regs(vcpu);
  1066. vcpu_put(vcpu);
  1067. return 0;
  1068. }
  1069. static void get_segment(struct kvm_vcpu *vcpu,
  1070. struct kvm_segment *var, int seg)
  1071. {
  1072. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1073. }
  1074. static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1075. {
  1076. struct kvm_vcpu *vcpu;
  1077. struct descriptor_table dt;
  1078. if (sregs->vcpu < 0 || sregs->vcpu >= KVM_MAX_VCPUS)
  1079. return -EINVAL;
  1080. vcpu = vcpu_load(kvm, sregs->vcpu);
  1081. if (!vcpu)
  1082. return -ENOENT;
  1083. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1084. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1085. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1086. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1087. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1088. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1089. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1090. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1091. kvm_arch_ops->get_idt(vcpu, &dt);
  1092. sregs->idt.limit = dt.limit;
  1093. sregs->idt.base = dt.base;
  1094. kvm_arch_ops->get_gdt(vcpu, &dt);
  1095. sregs->gdt.limit = dt.limit;
  1096. sregs->gdt.base = dt.base;
  1097. sregs->cr0 = vcpu->cr0;
  1098. sregs->cr2 = vcpu->cr2;
  1099. sregs->cr3 = vcpu->cr3;
  1100. sregs->cr4 = vcpu->cr4;
  1101. sregs->cr8 = vcpu->cr8;
  1102. sregs->efer = vcpu->shadow_efer;
  1103. sregs->apic_base = vcpu->apic_base;
  1104. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1105. sizeof sregs->interrupt_bitmap);
  1106. vcpu_put(vcpu);
  1107. return 0;
  1108. }
  1109. static void set_segment(struct kvm_vcpu *vcpu,
  1110. struct kvm_segment *var, int seg)
  1111. {
  1112. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1113. }
  1114. static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
  1115. {
  1116. struct kvm_vcpu *vcpu;
  1117. int mmu_reset_needed = 0;
  1118. int i;
  1119. struct descriptor_table dt;
  1120. if (sregs->vcpu < 0 || sregs->vcpu >= KVM_MAX_VCPUS)
  1121. return -EINVAL;
  1122. vcpu = vcpu_load(kvm, sregs->vcpu);
  1123. if (!vcpu)
  1124. return -ENOENT;
  1125. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1126. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1127. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1128. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1129. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1130. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1131. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1132. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1133. dt.limit = sregs->idt.limit;
  1134. dt.base = sregs->idt.base;
  1135. kvm_arch_ops->set_idt(vcpu, &dt);
  1136. dt.limit = sregs->gdt.limit;
  1137. dt.base = sregs->gdt.base;
  1138. kvm_arch_ops->set_gdt(vcpu, &dt);
  1139. vcpu->cr2 = sregs->cr2;
  1140. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1141. vcpu->cr3 = sregs->cr3;
  1142. vcpu->cr8 = sregs->cr8;
  1143. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1144. #ifdef CONFIG_X86_64
  1145. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1146. #endif
  1147. vcpu->apic_base = sregs->apic_base;
  1148. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1149. kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
  1150. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1151. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1152. if (mmu_reset_needed)
  1153. kvm_mmu_reset_context(vcpu);
  1154. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1155. sizeof vcpu->irq_pending);
  1156. vcpu->irq_summary = 0;
  1157. for (i = 0; i < NR_IRQ_WORDS; ++i)
  1158. if (vcpu->irq_pending[i])
  1159. __set_bit(i, &vcpu->irq_summary);
  1160. vcpu_put(vcpu);
  1161. return 0;
  1162. }
  1163. /*
  1164. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1165. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1166. */
  1167. static u32 msrs_to_save[] = {
  1168. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1169. MSR_K6_STAR,
  1170. #ifdef CONFIG_X86_64
  1171. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1172. #endif
  1173. MSR_IA32_TIME_STAMP_COUNTER,
  1174. };
  1175. /*
  1176. * Adapt set_msr() to msr_io()'s calling convention
  1177. */
  1178. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1179. {
  1180. return set_msr(vcpu, index, *data);
  1181. }
  1182. /*
  1183. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1184. *
  1185. * @return number of msrs set successfully.
  1186. */
  1187. static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
  1188. struct kvm_msr_entry *entries,
  1189. int (*do_msr)(struct kvm_vcpu *vcpu,
  1190. unsigned index, u64 *data))
  1191. {
  1192. struct kvm_vcpu *vcpu;
  1193. int i;
  1194. if (msrs->vcpu < 0 || msrs->vcpu >= KVM_MAX_VCPUS)
  1195. return -EINVAL;
  1196. vcpu = vcpu_load(kvm, msrs->vcpu);
  1197. if (!vcpu)
  1198. return -ENOENT;
  1199. for (i = 0; i < msrs->nmsrs; ++i)
  1200. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1201. break;
  1202. vcpu_put(vcpu);
  1203. return i;
  1204. }
  1205. /*
  1206. * Read or write a bunch of msrs. Parameters are user addresses.
  1207. *
  1208. * @return number of msrs set successfully.
  1209. */
  1210. static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
  1211. int (*do_msr)(struct kvm_vcpu *vcpu,
  1212. unsigned index, u64 *data),
  1213. int writeback)
  1214. {
  1215. struct kvm_msrs msrs;
  1216. struct kvm_msr_entry *entries;
  1217. int r, n;
  1218. unsigned size;
  1219. r = -EFAULT;
  1220. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1221. goto out;
  1222. r = -E2BIG;
  1223. if (msrs.nmsrs >= MAX_IO_MSRS)
  1224. goto out;
  1225. r = -ENOMEM;
  1226. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1227. entries = vmalloc(size);
  1228. if (!entries)
  1229. goto out;
  1230. r = -EFAULT;
  1231. if (copy_from_user(entries, user_msrs->entries, size))
  1232. goto out_free;
  1233. r = n = __msr_io(kvm, &msrs, entries, do_msr);
  1234. if (r < 0)
  1235. goto out_free;
  1236. r = -EFAULT;
  1237. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1238. goto out_free;
  1239. r = n;
  1240. out_free:
  1241. vfree(entries);
  1242. out:
  1243. return r;
  1244. }
  1245. /*
  1246. * Translate a guest virtual address to a guest physical address.
  1247. */
  1248. static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
  1249. {
  1250. unsigned long vaddr = tr->linear_address;
  1251. struct kvm_vcpu *vcpu;
  1252. gpa_t gpa;
  1253. vcpu = vcpu_load(kvm, tr->vcpu);
  1254. if (!vcpu)
  1255. return -ENOENT;
  1256. spin_lock(&kvm->lock);
  1257. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1258. tr->physical_address = gpa;
  1259. tr->valid = gpa != UNMAPPED_GVA;
  1260. tr->writeable = 1;
  1261. tr->usermode = 0;
  1262. spin_unlock(&kvm->lock);
  1263. vcpu_put(vcpu);
  1264. return 0;
  1265. }
  1266. static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
  1267. {
  1268. struct kvm_vcpu *vcpu;
  1269. if (irq->vcpu < 0 || irq->vcpu >= KVM_MAX_VCPUS)
  1270. return -EINVAL;
  1271. if (irq->irq < 0 || irq->irq >= 256)
  1272. return -EINVAL;
  1273. vcpu = vcpu_load(kvm, irq->vcpu);
  1274. if (!vcpu)
  1275. return -ENOENT;
  1276. set_bit(irq->irq, vcpu->irq_pending);
  1277. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1278. vcpu_put(vcpu);
  1279. return 0;
  1280. }
  1281. static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
  1282. struct kvm_debug_guest *dbg)
  1283. {
  1284. struct kvm_vcpu *vcpu;
  1285. int r;
  1286. if (dbg->vcpu < 0 || dbg->vcpu >= KVM_MAX_VCPUS)
  1287. return -EINVAL;
  1288. vcpu = vcpu_load(kvm, dbg->vcpu);
  1289. if (!vcpu)
  1290. return -ENOENT;
  1291. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1292. vcpu_put(vcpu);
  1293. return r;
  1294. }
  1295. static long kvm_dev_ioctl(struct file *filp,
  1296. unsigned int ioctl, unsigned long arg)
  1297. {
  1298. struct kvm *kvm = filp->private_data;
  1299. int r = -EINVAL;
  1300. switch (ioctl) {
  1301. case KVM_CREATE_VCPU: {
  1302. r = kvm_dev_ioctl_create_vcpu(kvm, arg);
  1303. if (r)
  1304. goto out;
  1305. break;
  1306. }
  1307. case KVM_RUN: {
  1308. struct kvm_run kvm_run;
  1309. r = -EFAULT;
  1310. if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
  1311. goto out;
  1312. r = kvm_dev_ioctl_run(kvm, &kvm_run);
  1313. if (r < 0)
  1314. goto out;
  1315. r = -EFAULT;
  1316. if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run))
  1317. goto out;
  1318. r = 0;
  1319. break;
  1320. }
  1321. case KVM_GET_REGS: {
  1322. struct kvm_regs kvm_regs;
  1323. r = -EFAULT;
  1324. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1325. goto out;
  1326. r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
  1327. if (r)
  1328. goto out;
  1329. r = -EFAULT;
  1330. if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
  1331. goto out;
  1332. r = 0;
  1333. break;
  1334. }
  1335. case KVM_SET_REGS: {
  1336. struct kvm_regs kvm_regs;
  1337. r = -EFAULT;
  1338. if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
  1339. goto out;
  1340. r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
  1341. if (r)
  1342. goto out;
  1343. r = 0;
  1344. break;
  1345. }
  1346. case KVM_GET_SREGS: {
  1347. struct kvm_sregs kvm_sregs;
  1348. r = -EFAULT;
  1349. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1350. goto out;
  1351. r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
  1352. if (r)
  1353. goto out;
  1354. r = -EFAULT;
  1355. if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
  1356. goto out;
  1357. r = 0;
  1358. break;
  1359. }
  1360. case KVM_SET_SREGS: {
  1361. struct kvm_sregs kvm_sregs;
  1362. r = -EFAULT;
  1363. if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
  1364. goto out;
  1365. r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
  1366. if (r)
  1367. goto out;
  1368. r = 0;
  1369. break;
  1370. }
  1371. case KVM_TRANSLATE: {
  1372. struct kvm_translation tr;
  1373. r = -EFAULT;
  1374. if (copy_from_user(&tr, (void *)arg, sizeof tr))
  1375. goto out;
  1376. r = kvm_dev_ioctl_translate(kvm, &tr);
  1377. if (r)
  1378. goto out;
  1379. r = -EFAULT;
  1380. if (copy_to_user((void *)arg, &tr, sizeof tr))
  1381. goto out;
  1382. r = 0;
  1383. break;
  1384. }
  1385. case KVM_INTERRUPT: {
  1386. struct kvm_interrupt irq;
  1387. r = -EFAULT;
  1388. if (copy_from_user(&irq, (void *)arg, sizeof irq))
  1389. goto out;
  1390. r = kvm_dev_ioctl_interrupt(kvm, &irq);
  1391. if (r)
  1392. goto out;
  1393. r = 0;
  1394. break;
  1395. }
  1396. case KVM_DEBUG_GUEST: {
  1397. struct kvm_debug_guest dbg;
  1398. r = -EFAULT;
  1399. if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
  1400. goto out;
  1401. r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
  1402. if (r)
  1403. goto out;
  1404. r = 0;
  1405. break;
  1406. }
  1407. case KVM_SET_MEMORY_REGION: {
  1408. struct kvm_memory_region kvm_mem;
  1409. r = -EFAULT;
  1410. if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
  1411. goto out;
  1412. r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
  1413. if (r)
  1414. goto out;
  1415. break;
  1416. }
  1417. case KVM_GET_DIRTY_LOG: {
  1418. struct kvm_dirty_log log;
  1419. r = -EFAULT;
  1420. if (copy_from_user(&log, (void *)arg, sizeof log))
  1421. goto out;
  1422. r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
  1423. if (r)
  1424. goto out;
  1425. break;
  1426. }
  1427. case KVM_GET_MSRS:
  1428. r = msr_io(kvm, (void __user *)arg, get_msr, 1);
  1429. break;
  1430. case KVM_SET_MSRS:
  1431. r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
  1432. break;
  1433. case KVM_GET_MSR_INDEX_LIST: {
  1434. struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
  1435. struct kvm_msr_list msr_list;
  1436. unsigned n;
  1437. r = -EFAULT;
  1438. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1439. goto out;
  1440. n = msr_list.nmsrs;
  1441. msr_list.nmsrs = ARRAY_SIZE(msrs_to_save);
  1442. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1443. goto out;
  1444. r = -E2BIG;
  1445. if (n < ARRAY_SIZE(msrs_to_save))
  1446. goto out;
  1447. r = -EFAULT;
  1448. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1449. sizeof msrs_to_save))
  1450. goto out;
  1451. r = 0;
  1452. }
  1453. default:
  1454. ;
  1455. }
  1456. out:
  1457. return r;
  1458. }
  1459. static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
  1460. unsigned long address,
  1461. int *type)
  1462. {
  1463. struct kvm *kvm = vma->vm_file->private_data;
  1464. unsigned long pgoff;
  1465. struct kvm_memory_slot *slot;
  1466. struct page *page;
  1467. *type = VM_FAULT_MINOR;
  1468. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1469. slot = gfn_to_memslot(kvm, pgoff);
  1470. if (!slot)
  1471. return NOPAGE_SIGBUS;
  1472. page = gfn_to_page(slot, pgoff);
  1473. if (!page)
  1474. return NOPAGE_SIGBUS;
  1475. get_page(page);
  1476. return page;
  1477. }
  1478. static struct vm_operations_struct kvm_dev_vm_ops = {
  1479. .nopage = kvm_dev_nopage,
  1480. };
  1481. static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
  1482. {
  1483. vma->vm_ops = &kvm_dev_vm_ops;
  1484. return 0;
  1485. }
  1486. static struct file_operations kvm_chardev_ops = {
  1487. .open = kvm_dev_open,
  1488. .release = kvm_dev_release,
  1489. .unlocked_ioctl = kvm_dev_ioctl,
  1490. .compat_ioctl = kvm_dev_ioctl,
  1491. .mmap = kvm_dev_mmap,
  1492. };
  1493. static struct miscdevice kvm_dev = {
  1494. MISC_DYNAMIC_MINOR,
  1495. "kvm",
  1496. &kvm_chardev_ops,
  1497. };
  1498. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1499. void *v)
  1500. {
  1501. if (val == SYS_RESTART) {
  1502. /*
  1503. * Some (well, at least mine) BIOSes hang on reboot if
  1504. * in vmx root mode.
  1505. */
  1506. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1507. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1508. }
  1509. return NOTIFY_OK;
  1510. }
  1511. static struct notifier_block kvm_reboot_notifier = {
  1512. .notifier_call = kvm_reboot,
  1513. .priority = 0,
  1514. };
  1515. static __init void kvm_init_debug(void)
  1516. {
  1517. struct kvm_stats_debugfs_item *p;
  1518. debugfs_dir = debugfs_create_dir("kvm", 0);
  1519. for (p = debugfs_entries; p->name; ++p)
  1520. p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
  1521. p->data);
  1522. }
  1523. static void kvm_exit_debug(void)
  1524. {
  1525. struct kvm_stats_debugfs_item *p;
  1526. for (p = debugfs_entries; p->name; ++p)
  1527. debugfs_remove(p->dentry);
  1528. debugfs_remove(debugfs_dir);
  1529. }
  1530. hpa_t bad_page_address;
  1531. int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
  1532. {
  1533. int r;
  1534. kvm_arch_ops = ops;
  1535. if (!kvm_arch_ops->cpu_has_kvm_support()) {
  1536. printk(KERN_ERR "kvm: no hardware support\n");
  1537. return -EOPNOTSUPP;
  1538. }
  1539. if (kvm_arch_ops->disabled_by_bios()) {
  1540. printk(KERN_ERR "kvm: disabled by bios\n");
  1541. return -EOPNOTSUPP;
  1542. }
  1543. r = kvm_arch_ops->hardware_setup();
  1544. if (r < 0)
  1545. return r;
  1546. on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
  1547. register_reboot_notifier(&kvm_reboot_notifier);
  1548. kvm_chardev_ops.owner = module;
  1549. r = misc_register(&kvm_dev);
  1550. if (r) {
  1551. printk (KERN_ERR "kvm: misc device register failed\n");
  1552. goto out_free;
  1553. }
  1554. return r;
  1555. out_free:
  1556. unregister_reboot_notifier(&kvm_reboot_notifier);
  1557. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1558. kvm_arch_ops->hardware_unsetup();
  1559. return r;
  1560. }
  1561. void kvm_exit_arch(void)
  1562. {
  1563. misc_deregister(&kvm_dev);
  1564. unregister_reboot_notifier(&kvm_reboot_notifier);
  1565. on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
  1566. kvm_arch_ops->hardware_unsetup();
  1567. }
  1568. static __init int kvm_init(void)
  1569. {
  1570. static struct page *bad_page;
  1571. int r = 0;
  1572. kvm_init_debug();
  1573. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  1574. r = -ENOMEM;
  1575. goto out;
  1576. }
  1577. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  1578. memset(__va(bad_page_address), 0, PAGE_SIZE);
  1579. return r;
  1580. out:
  1581. kvm_exit_debug();
  1582. return r;
  1583. }
  1584. static __exit void kvm_exit(void)
  1585. {
  1586. kvm_exit_debug();
  1587. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  1588. }
  1589. module_init(kvm_init)
  1590. module_exit(kvm_exit)
  1591. EXPORT_SYMBOL_GPL(kvm_init_arch);
  1592. EXPORT_SYMBOL_GPL(kvm_exit_arch);