session.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930
  1. #define _FILE_OFFSET_BITS 64
  2. #include <linux/kernel.h>
  3. #include <byteswap.h>
  4. #include <unistd.h>
  5. #include <sys/types.h>
  6. #include <sys/mman.h>
  7. #include "session.h"
  8. #include "sort.h"
  9. #include "util.h"
  10. static int perf_session__open(struct perf_session *self, bool force)
  11. {
  12. struct stat input_stat;
  13. if (!strcmp(self->filename, "-")) {
  14. self->fd_pipe = true;
  15. self->fd = STDIN_FILENO;
  16. if (perf_header__read(self, self->fd) < 0)
  17. pr_err("incompatible file format");
  18. return 0;
  19. }
  20. self->fd = open(self->filename, O_RDONLY);
  21. if (self->fd < 0) {
  22. int err = errno;
  23. pr_err("failed to open %s: %s", self->filename, strerror(err));
  24. if (err == ENOENT && !strcmp(self->filename, "perf.data"))
  25. pr_err(" (try 'perf record' first)");
  26. pr_err("\n");
  27. return -errno;
  28. }
  29. if (fstat(self->fd, &input_stat) < 0)
  30. goto out_close;
  31. if (!force && input_stat.st_uid && (input_stat.st_uid != geteuid())) {
  32. pr_err("file %s not owned by current user or root\n",
  33. self->filename);
  34. goto out_close;
  35. }
  36. if (!input_stat.st_size) {
  37. pr_info("zero-sized file (%s), nothing to do!\n",
  38. self->filename);
  39. goto out_close;
  40. }
  41. if (perf_header__read(self, self->fd) < 0) {
  42. pr_err("incompatible file format");
  43. goto out_close;
  44. }
  45. self->size = input_stat.st_size;
  46. return 0;
  47. out_close:
  48. close(self->fd);
  49. self->fd = -1;
  50. return -1;
  51. }
  52. void perf_session__update_sample_type(struct perf_session *self)
  53. {
  54. self->sample_type = perf_header__sample_type(&self->header);
  55. }
  56. int perf_session__create_kernel_maps(struct perf_session *self)
  57. {
  58. int ret = machine__create_kernel_maps(&self->host_machine);
  59. if (ret >= 0)
  60. ret = machines__create_guest_kernel_maps(&self->machines);
  61. return ret;
  62. }
  63. static void perf_session__destroy_kernel_maps(struct perf_session *self)
  64. {
  65. machine__destroy_kernel_maps(&self->host_machine);
  66. machines__destroy_guest_kernel_maps(&self->machines);
  67. }
  68. struct perf_session *perf_session__new(const char *filename, int mode, bool force, bool repipe)
  69. {
  70. size_t len = filename ? strlen(filename) + 1 : 0;
  71. struct perf_session *self = zalloc(sizeof(*self) + len);
  72. if (self == NULL)
  73. goto out;
  74. if (perf_header__init(&self->header) < 0)
  75. goto out_free;
  76. memcpy(self->filename, filename, len);
  77. self->threads = RB_ROOT;
  78. INIT_LIST_HEAD(&self->dead_threads);
  79. self->hists_tree = RB_ROOT;
  80. self->last_match = NULL;
  81. self->mmap_window = 32;
  82. self->machines = RB_ROOT;
  83. self->repipe = repipe;
  84. INIT_LIST_HEAD(&self->ordered_samples.samples_head);
  85. machine__init(&self->host_machine, "", HOST_KERNEL_ID);
  86. if (mode == O_RDONLY) {
  87. if (perf_session__open(self, force) < 0)
  88. goto out_delete;
  89. } else if (mode == O_WRONLY) {
  90. /*
  91. * In O_RDONLY mode this will be performed when reading the
  92. * kernel MMAP event, in event__process_mmap().
  93. */
  94. if (perf_session__create_kernel_maps(self) < 0)
  95. goto out_delete;
  96. }
  97. perf_session__update_sample_type(self);
  98. out:
  99. return self;
  100. out_free:
  101. free(self);
  102. return NULL;
  103. out_delete:
  104. perf_session__delete(self);
  105. return NULL;
  106. }
  107. static void perf_session__delete_dead_threads(struct perf_session *self)
  108. {
  109. struct thread *n, *t;
  110. list_for_each_entry_safe(t, n, &self->dead_threads, node) {
  111. list_del(&t->node);
  112. thread__delete(t);
  113. }
  114. }
  115. static void perf_session__delete_threads(struct perf_session *self)
  116. {
  117. struct rb_node *nd = rb_first(&self->threads);
  118. while (nd) {
  119. struct thread *t = rb_entry(nd, struct thread, rb_node);
  120. rb_erase(&t->rb_node, &self->threads);
  121. nd = rb_next(nd);
  122. thread__delete(t);
  123. }
  124. }
  125. void perf_session__delete(struct perf_session *self)
  126. {
  127. perf_header__exit(&self->header);
  128. perf_session__destroy_kernel_maps(self);
  129. perf_session__delete_dead_threads(self);
  130. perf_session__delete_threads(self);
  131. machine__exit(&self->host_machine);
  132. close(self->fd);
  133. free(self);
  134. }
  135. void perf_session__remove_thread(struct perf_session *self, struct thread *th)
  136. {
  137. rb_erase(&th->rb_node, &self->threads);
  138. /*
  139. * We may have references to this thread, for instance in some hist_entry
  140. * instances, so just move them to a separate list.
  141. */
  142. list_add_tail(&th->node, &self->dead_threads);
  143. }
  144. static bool symbol__match_parent_regex(struct symbol *sym)
  145. {
  146. if (sym->name && !regexec(&parent_regex, sym->name, 0, NULL, 0))
  147. return 1;
  148. return 0;
  149. }
  150. struct map_symbol *perf_session__resolve_callchain(struct perf_session *self,
  151. struct thread *thread,
  152. struct ip_callchain *chain,
  153. struct symbol **parent)
  154. {
  155. u8 cpumode = PERF_RECORD_MISC_USER;
  156. unsigned int i;
  157. struct map_symbol *syms = calloc(chain->nr, sizeof(*syms));
  158. if (!syms)
  159. return NULL;
  160. for (i = 0; i < chain->nr; i++) {
  161. u64 ip = chain->ips[i];
  162. struct addr_location al;
  163. if (ip >= PERF_CONTEXT_MAX) {
  164. switch (ip) {
  165. case PERF_CONTEXT_HV:
  166. cpumode = PERF_RECORD_MISC_HYPERVISOR; break;
  167. case PERF_CONTEXT_KERNEL:
  168. cpumode = PERF_RECORD_MISC_KERNEL; break;
  169. case PERF_CONTEXT_USER:
  170. cpumode = PERF_RECORD_MISC_USER; break;
  171. default:
  172. break;
  173. }
  174. continue;
  175. }
  176. al.filtered = false;
  177. thread__find_addr_location(thread, self, cpumode,
  178. MAP__FUNCTION, thread->pid, ip, &al, NULL);
  179. if (al.sym != NULL) {
  180. if (sort__has_parent && !*parent &&
  181. symbol__match_parent_regex(al.sym))
  182. *parent = al.sym;
  183. if (!symbol_conf.use_callchain)
  184. break;
  185. syms[i].map = al.map;
  186. syms[i].sym = al.sym;
  187. }
  188. }
  189. return syms;
  190. }
  191. static int process_event_stub(event_t *event __used,
  192. struct perf_session *session __used)
  193. {
  194. dump_printf(": unhandled!\n");
  195. return 0;
  196. }
  197. static int process_finished_round_stub(event_t *event __used,
  198. struct perf_session *session __used,
  199. struct perf_event_ops *ops __used)
  200. {
  201. dump_printf(": unhandled!\n");
  202. return 0;
  203. }
  204. static int process_finished_round(event_t *event,
  205. struct perf_session *session,
  206. struct perf_event_ops *ops);
  207. static void perf_event_ops__fill_defaults(struct perf_event_ops *handler)
  208. {
  209. if (handler->sample == NULL)
  210. handler->sample = process_event_stub;
  211. if (handler->mmap == NULL)
  212. handler->mmap = process_event_stub;
  213. if (handler->comm == NULL)
  214. handler->comm = process_event_stub;
  215. if (handler->fork == NULL)
  216. handler->fork = process_event_stub;
  217. if (handler->exit == NULL)
  218. handler->exit = process_event_stub;
  219. if (handler->lost == NULL)
  220. handler->lost = process_event_stub;
  221. if (handler->read == NULL)
  222. handler->read = process_event_stub;
  223. if (handler->throttle == NULL)
  224. handler->throttle = process_event_stub;
  225. if (handler->unthrottle == NULL)
  226. handler->unthrottle = process_event_stub;
  227. if (handler->attr == NULL)
  228. handler->attr = process_event_stub;
  229. if (handler->event_type == NULL)
  230. handler->event_type = process_event_stub;
  231. if (handler->tracing_data == NULL)
  232. handler->tracing_data = process_event_stub;
  233. if (handler->build_id == NULL)
  234. handler->build_id = process_event_stub;
  235. if (handler->finished_round == NULL) {
  236. if (handler->ordered_samples)
  237. handler->finished_round = process_finished_round;
  238. else
  239. handler->finished_round = process_finished_round_stub;
  240. }
  241. }
  242. void mem_bswap_64(void *src, int byte_size)
  243. {
  244. u64 *m = src;
  245. while (byte_size > 0) {
  246. *m = bswap_64(*m);
  247. byte_size -= sizeof(u64);
  248. ++m;
  249. }
  250. }
  251. static void event__all64_swap(event_t *self)
  252. {
  253. struct perf_event_header *hdr = &self->header;
  254. mem_bswap_64(hdr + 1, self->header.size - sizeof(*hdr));
  255. }
  256. static void event__comm_swap(event_t *self)
  257. {
  258. self->comm.pid = bswap_32(self->comm.pid);
  259. self->comm.tid = bswap_32(self->comm.tid);
  260. }
  261. static void event__mmap_swap(event_t *self)
  262. {
  263. self->mmap.pid = bswap_32(self->mmap.pid);
  264. self->mmap.tid = bswap_32(self->mmap.tid);
  265. self->mmap.start = bswap_64(self->mmap.start);
  266. self->mmap.len = bswap_64(self->mmap.len);
  267. self->mmap.pgoff = bswap_64(self->mmap.pgoff);
  268. }
  269. static void event__task_swap(event_t *self)
  270. {
  271. self->fork.pid = bswap_32(self->fork.pid);
  272. self->fork.tid = bswap_32(self->fork.tid);
  273. self->fork.ppid = bswap_32(self->fork.ppid);
  274. self->fork.ptid = bswap_32(self->fork.ptid);
  275. self->fork.time = bswap_64(self->fork.time);
  276. }
  277. static void event__read_swap(event_t *self)
  278. {
  279. self->read.pid = bswap_32(self->read.pid);
  280. self->read.tid = bswap_32(self->read.tid);
  281. self->read.value = bswap_64(self->read.value);
  282. self->read.time_enabled = bswap_64(self->read.time_enabled);
  283. self->read.time_running = bswap_64(self->read.time_running);
  284. self->read.id = bswap_64(self->read.id);
  285. }
  286. static void event__attr_swap(event_t *self)
  287. {
  288. size_t size;
  289. self->attr.attr.type = bswap_32(self->attr.attr.type);
  290. self->attr.attr.size = bswap_32(self->attr.attr.size);
  291. self->attr.attr.config = bswap_64(self->attr.attr.config);
  292. self->attr.attr.sample_period = bswap_64(self->attr.attr.sample_period);
  293. self->attr.attr.sample_type = bswap_64(self->attr.attr.sample_type);
  294. self->attr.attr.read_format = bswap_64(self->attr.attr.read_format);
  295. self->attr.attr.wakeup_events = bswap_32(self->attr.attr.wakeup_events);
  296. self->attr.attr.bp_type = bswap_32(self->attr.attr.bp_type);
  297. self->attr.attr.bp_addr = bswap_64(self->attr.attr.bp_addr);
  298. self->attr.attr.bp_len = bswap_64(self->attr.attr.bp_len);
  299. size = self->header.size;
  300. size -= (void *)&self->attr.id - (void *)self;
  301. mem_bswap_64(self->attr.id, size);
  302. }
  303. static void event__event_type_swap(event_t *self)
  304. {
  305. self->event_type.event_type.event_id =
  306. bswap_64(self->event_type.event_type.event_id);
  307. }
  308. static void event__tracing_data_swap(event_t *self)
  309. {
  310. self->tracing_data.size = bswap_32(self->tracing_data.size);
  311. }
  312. typedef void (*event__swap_op)(event_t *self);
  313. static event__swap_op event__swap_ops[] = {
  314. [PERF_RECORD_MMAP] = event__mmap_swap,
  315. [PERF_RECORD_COMM] = event__comm_swap,
  316. [PERF_RECORD_FORK] = event__task_swap,
  317. [PERF_RECORD_EXIT] = event__task_swap,
  318. [PERF_RECORD_LOST] = event__all64_swap,
  319. [PERF_RECORD_READ] = event__read_swap,
  320. [PERF_RECORD_SAMPLE] = event__all64_swap,
  321. [PERF_RECORD_HEADER_ATTR] = event__attr_swap,
  322. [PERF_RECORD_HEADER_EVENT_TYPE] = event__event_type_swap,
  323. [PERF_RECORD_HEADER_TRACING_DATA] = event__tracing_data_swap,
  324. [PERF_RECORD_HEADER_BUILD_ID] = NULL,
  325. [PERF_RECORD_HEADER_MAX] = NULL,
  326. };
  327. struct sample_queue {
  328. u64 timestamp;
  329. struct sample_event *event;
  330. struct list_head list;
  331. };
  332. static void flush_sample_queue(struct perf_session *s,
  333. struct perf_event_ops *ops)
  334. {
  335. struct list_head *head = &s->ordered_samples.samples_head;
  336. u64 limit = s->ordered_samples.next_flush;
  337. struct sample_queue *tmp, *iter;
  338. if (!ops->ordered_samples || !limit)
  339. return;
  340. list_for_each_entry_safe(iter, tmp, head, list) {
  341. if (iter->timestamp > limit)
  342. return;
  343. if (iter == s->ordered_samples.last_inserted)
  344. s->ordered_samples.last_inserted = NULL;
  345. ops->sample((event_t *)iter->event, s);
  346. s->ordered_samples.last_flush = iter->timestamp;
  347. list_del(&iter->list);
  348. free(iter->event);
  349. free(iter);
  350. }
  351. }
  352. /*
  353. * When perf record finishes a pass on every buffers, it records this pseudo
  354. * event.
  355. * We record the max timestamp t found in the pass n.
  356. * Assuming these timestamps are monotonic across cpus, we know that if
  357. * a buffer still has events with timestamps below t, they will be all
  358. * available and then read in the pass n + 1.
  359. * Hence when we start to read the pass n + 2, we can safely flush every
  360. * events with timestamps below t.
  361. *
  362. * ============ PASS n =================
  363. * CPU 0 | CPU 1
  364. * |
  365. * cnt1 timestamps | cnt2 timestamps
  366. * 1 | 2
  367. * 2 | 3
  368. * - | 4 <--- max recorded
  369. *
  370. * ============ PASS n + 1 ==============
  371. * CPU 0 | CPU 1
  372. * |
  373. * cnt1 timestamps | cnt2 timestamps
  374. * 3 | 5
  375. * 4 | 6
  376. * 5 | 7 <---- max recorded
  377. *
  378. * Flush every events below timestamp 4
  379. *
  380. * ============ PASS n + 2 ==============
  381. * CPU 0 | CPU 1
  382. * |
  383. * cnt1 timestamps | cnt2 timestamps
  384. * 6 | 8
  385. * 7 | 9
  386. * - | 10
  387. *
  388. * Flush every events below timestamp 7
  389. * etc...
  390. */
  391. static int process_finished_round(event_t *event __used,
  392. struct perf_session *session,
  393. struct perf_event_ops *ops)
  394. {
  395. flush_sample_queue(session, ops);
  396. session->ordered_samples.next_flush = session->ordered_samples.max_timestamp;
  397. return 0;
  398. }
  399. static void __queue_sample_end(struct sample_queue *new, struct list_head *head)
  400. {
  401. struct sample_queue *iter;
  402. list_for_each_entry_reverse(iter, head, list) {
  403. if (iter->timestamp < new->timestamp) {
  404. list_add(&new->list, &iter->list);
  405. return;
  406. }
  407. }
  408. list_add(&new->list, head);
  409. }
  410. static void __queue_sample_before(struct sample_queue *new,
  411. struct sample_queue *iter,
  412. struct list_head *head)
  413. {
  414. list_for_each_entry_continue_reverse(iter, head, list) {
  415. if (iter->timestamp < new->timestamp) {
  416. list_add(&new->list, &iter->list);
  417. return;
  418. }
  419. }
  420. list_add(&new->list, head);
  421. }
  422. static void __queue_sample_after(struct sample_queue *new,
  423. struct sample_queue *iter,
  424. struct list_head *head)
  425. {
  426. list_for_each_entry_continue(iter, head, list) {
  427. if (iter->timestamp > new->timestamp) {
  428. list_add_tail(&new->list, &iter->list);
  429. return;
  430. }
  431. }
  432. list_add_tail(&new->list, head);
  433. }
  434. /* The queue is ordered by time */
  435. static void __queue_sample_event(struct sample_queue *new,
  436. struct perf_session *s)
  437. {
  438. struct sample_queue *last_inserted = s->ordered_samples.last_inserted;
  439. struct list_head *head = &s->ordered_samples.samples_head;
  440. if (!last_inserted) {
  441. __queue_sample_end(new, head);
  442. return;
  443. }
  444. /*
  445. * Most of the time the current event has a timestamp
  446. * very close to the last event inserted, unless we just switched
  447. * to another event buffer. Having a sorting based on a list and
  448. * on the last inserted event that is close to the current one is
  449. * probably more efficient than an rbtree based sorting.
  450. */
  451. if (last_inserted->timestamp >= new->timestamp)
  452. __queue_sample_before(new, last_inserted, head);
  453. else
  454. __queue_sample_after(new, last_inserted, head);
  455. }
  456. static int queue_sample_event(event_t *event, struct sample_data *data,
  457. struct perf_session *s)
  458. {
  459. u64 timestamp = data->time;
  460. struct sample_queue *new;
  461. if (timestamp < s->ordered_samples.last_flush) {
  462. printf("Warning: Timestamp below last timeslice flush\n");
  463. return -EINVAL;
  464. }
  465. new = malloc(sizeof(*new));
  466. if (!new)
  467. return -ENOMEM;
  468. new->timestamp = timestamp;
  469. new->event = malloc(event->header.size);
  470. if (!new->event) {
  471. free(new);
  472. return -ENOMEM;
  473. }
  474. memcpy(new->event, event, event->header.size);
  475. __queue_sample_event(new, s);
  476. s->ordered_samples.last_inserted = new;
  477. if (new->timestamp > s->ordered_samples.max_timestamp)
  478. s->ordered_samples.max_timestamp = new->timestamp;
  479. return 0;
  480. }
  481. static int perf_session__process_sample(event_t *event, struct perf_session *s,
  482. struct perf_event_ops *ops)
  483. {
  484. struct sample_data data;
  485. if (!ops->ordered_samples)
  486. return ops->sample(event, s);
  487. bzero(&data, sizeof(struct sample_data));
  488. event__parse_sample(event, s->sample_type, &data);
  489. queue_sample_event(event, &data, s);
  490. return 0;
  491. }
  492. static int perf_session__process_event(struct perf_session *self,
  493. event_t *event,
  494. struct perf_event_ops *ops,
  495. u64 offset, u64 head)
  496. {
  497. trace_event(event);
  498. if (event->header.type < PERF_RECORD_HEADER_MAX) {
  499. dump_printf("%#Lx [%#x]: PERF_RECORD_%s",
  500. offset + head, event->header.size,
  501. event__name[event->header.type]);
  502. hists__inc_nr_events(&self->hists, event->header.type);
  503. }
  504. if (self->header.needs_swap && event__swap_ops[event->header.type])
  505. event__swap_ops[event->header.type](event);
  506. switch (event->header.type) {
  507. case PERF_RECORD_SAMPLE:
  508. return perf_session__process_sample(event, self, ops);
  509. case PERF_RECORD_MMAP:
  510. return ops->mmap(event, self);
  511. case PERF_RECORD_COMM:
  512. return ops->comm(event, self);
  513. case PERF_RECORD_FORK:
  514. return ops->fork(event, self);
  515. case PERF_RECORD_EXIT:
  516. return ops->exit(event, self);
  517. case PERF_RECORD_LOST:
  518. return ops->lost(event, self);
  519. case PERF_RECORD_READ:
  520. return ops->read(event, self);
  521. case PERF_RECORD_THROTTLE:
  522. return ops->throttle(event, self);
  523. case PERF_RECORD_UNTHROTTLE:
  524. return ops->unthrottle(event, self);
  525. case PERF_RECORD_HEADER_ATTR:
  526. return ops->attr(event, self);
  527. case PERF_RECORD_HEADER_EVENT_TYPE:
  528. return ops->event_type(event, self);
  529. case PERF_RECORD_HEADER_TRACING_DATA:
  530. /* setup for reading amidst mmap */
  531. lseek(self->fd, offset + head, SEEK_SET);
  532. return ops->tracing_data(event, self);
  533. case PERF_RECORD_HEADER_BUILD_ID:
  534. return ops->build_id(event, self);
  535. case PERF_RECORD_FINISHED_ROUND:
  536. return ops->finished_round(event, self, ops);
  537. default:
  538. ++self->hists.stats.nr_unknown_events;
  539. return -1;
  540. }
  541. }
  542. void perf_event_header__bswap(struct perf_event_header *self)
  543. {
  544. self->type = bswap_32(self->type);
  545. self->misc = bswap_16(self->misc);
  546. self->size = bswap_16(self->size);
  547. }
  548. static struct thread *perf_session__register_idle_thread(struct perf_session *self)
  549. {
  550. struct thread *thread = perf_session__findnew(self, 0);
  551. if (thread == NULL || thread__set_comm(thread, "swapper")) {
  552. pr_err("problem inserting idle task.\n");
  553. thread = NULL;
  554. }
  555. return thread;
  556. }
  557. int do_read(int fd, void *buf, size_t size)
  558. {
  559. void *buf_start = buf;
  560. while (size) {
  561. int ret = read(fd, buf, size);
  562. if (ret <= 0)
  563. return ret;
  564. size -= ret;
  565. buf += ret;
  566. }
  567. return buf - buf_start;
  568. }
  569. #define session_done() (*(volatile int *)(&session_done))
  570. volatile int session_done;
  571. static int __perf_session__process_pipe_events(struct perf_session *self,
  572. struct perf_event_ops *ops)
  573. {
  574. event_t event;
  575. uint32_t size;
  576. int skip = 0;
  577. u64 head;
  578. int err;
  579. void *p;
  580. perf_event_ops__fill_defaults(ops);
  581. head = 0;
  582. more:
  583. err = do_read(self->fd, &event, sizeof(struct perf_event_header));
  584. if (err <= 0) {
  585. if (err == 0)
  586. goto done;
  587. pr_err("failed to read event header\n");
  588. goto out_err;
  589. }
  590. if (self->header.needs_swap)
  591. perf_event_header__bswap(&event.header);
  592. size = event.header.size;
  593. if (size == 0)
  594. size = 8;
  595. p = &event;
  596. p += sizeof(struct perf_event_header);
  597. if (size - sizeof(struct perf_event_header)) {
  598. err = do_read(self->fd, p,
  599. size - sizeof(struct perf_event_header));
  600. if (err <= 0) {
  601. if (err == 0) {
  602. pr_err("unexpected end of event stream\n");
  603. goto done;
  604. }
  605. pr_err("failed to read event data\n");
  606. goto out_err;
  607. }
  608. }
  609. if (size == 0 ||
  610. (skip = perf_session__process_event(self, &event, ops,
  611. 0, head)) < 0) {
  612. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  613. head, event.header.size, event.header.type);
  614. /*
  615. * assume we lost track of the stream, check alignment, and
  616. * increment a single u64 in the hope to catch on again 'soon'.
  617. */
  618. if (unlikely(head & 7))
  619. head &= ~7ULL;
  620. size = 8;
  621. }
  622. head += size;
  623. dump_printf("\n%#Lx [%#x]: event: %d\n",
  624. head, event.header.size, event.header.type);
  625. if (skip > 0)
  626. head += skip;
  627. if (!session_done())
  628. goto more;
  629. done:
  630. err = 0;
  631. out_err:
  632. return err;
  633. }
  634. int __perf_session__process_events(struct perf_session *self,
  635. u64 data_offset, u64 data_size,
  636. u64 file_size, struct perf_event_ops *ops)
  637. {
  638. int err, mmap_prot, mmap_flags;
  639. u64 head, shift;
  640. u64 offset = 0;
  641. size_t page_size;
  642. event_t *event;
  643. uint32_t size;
  644. char *buf;
  645. struct ui_progress *progress = ui_progress__new("Processing events...",
  646. self->size);
  647. if (progress == NULL)
  648. return -1;
  649. perf_event_ops__fill_defaults(ops);
  650. page_size = sysconf(_SC_PAGESIZE);
  651. head = data_offset;
  652. shift = page_size * (head / page_size);
  653. offset += shift;
  654. head -= shift;
  655. mmap_prot = PROT_READ;
  656. mmap_flags = MAP_SHARED;
  657. if (self->header.needs_swap) {
  658. mmap_prot |= PROT_WRITE;
  659. mmap_flags = MAP_PRIVATE;
  660. }
  661. remap:
  662. buf = mmap(NULL, page_size * self->mmap_window, mmap_prot,
  663. mmap_flags, self->fd, offset);
  664. if (buf == MAP_FAILED) {
  665. pr_err("failed to mmap file\n");
  666. err = -errno;
  667. goto out_err;
  668. }
  669. more:
  670. event = (event_t *)(buf + head);
  671. ui_progress__update(progress, offset);
  672. if (self->header.needs_swap)
  673. perf_event_header__bswap(&event->header);
  674. size = event->header.size;
  675. if (size == 0)
  676. size = 8;
  677. if (head + event->header.size >= page_size * self->mmap_window) {
  678. int munmap_ret;
  679. shift = page_size * (head / page_size);
  680. munmap_ret = munmap(buf, page_size * self->mmap_window);
  681. assert(munmap_ret == 0);
  682. offset += shift;
  683. head -= shift;
  684. goto remap;
  685. }
  686. size = event->header.size;
  687. dump_printf("\n%#Lx [%#x]: event: %d\n",
  688. offset + head, event->header.size, event->header.type);
  689. if (size == 0 ||
  690. perf_session__process_event(self, event, ops, offset, head) < 0) {
  691. dump_printf("%#Lx [%#x]: skipping unknown header type: %d\n",
  692. offset + head, event->header.size,
  693. event->header.type);
  694. /*
  695. * assume we lost track of the stream, check alignment, and
  696. * increment a single u64 in the hope to catch on again 'soon'.
  697. */
  698. if (unlikely(head & 7))
  699. head &= ~7ULL;
  700. size = 8;
  701. }
  702. head += size;
  703. if (offset + head >= data_offset + data_size)
  704. goto done;
  705. if (offset + head < file_size)
  706. goto more;
  707. done:
  708. err = 0;
  709. /* do the final flush for ordered samples */
  710. self->ordered_samples.next_flush = ULLONG_MAX;
  711. flush_sample_queue(self, ops);
  712. out_err:
  713. ui_progress__delete(progress);
  714. return err;
  715. }
  716. int perf_session__process_events(struct perf_session *self,
  717. struct perf_event_ops *ops)
  718. {
  719. int err;
  720. if (perf_session__register_idle_thread(self) == NULL)
  721. return -ENOMEM;
  722. if (!self->fd_pipe)
  723. err = __perf_session__process_events(self,
  724. self->header.data_offset,
  725. self->header.data_size,
  726. self->size, ops);
  727. else
  728. err = __perf_session__process_pipe_events(self, ops);
  729. return err;
  730. }
  731. bool perf_session__has_traces(struct perf_session *self, const char *msg)
  732. {
  733. if (!(self->sample_type & PERF_SAMPLE_RAW)) {
  734. pr_err("No trace sample to read. Did you call 'perf %s'?\n", msg);
  735. return false;
  736. }
  737. return true;
  738. }
  739. int perf_session__set_kallsyms_ref_reloc_sym(struct map **maps,
  740. const char *symbol_name,
  741. u64 addr)
  742. {
  743. char *bracket;
  744. enum map_type i;
  745. struct ref_reloc_sym *ref;
  746. ref = zalloc(sizeof(struct ref_reloc_sym));
  747. if (ref == NULL)
  748. return -ENOMEM;
  749. ref->name = strdup(symbol_name);
  750. if (ref->name == NULL) {
  751. free(ref);
  752. return -ENOMEM;
  753. }
  754. bracket = strchr(ref->name, ']');
  755. if (bracket)
  756. *bracket = '\0';
  757. ref->addr = addr;
  758. for (i = 0; i < MAP__NR_TYPES; ++i) {
  759. struct kmap *kmap = map__kmap(maps[i]);
  760. kmap->ref_reloc_sym = ref;
  761. }
  762. return 0;
  763. }
  764. size_t perf_session__fprintf_dsos(struct perf_session *self, FILE *fp)
  765. {
  766. return __dsos__fprintf(&self->host_machine.kernel_dsos, fp) +
  767. __dsos__fprintf(&self->host_machine.user_dsos, fp) +
  768. machines__fprintf_dsos(&self->machines, fp);
  769. }
  770. size_t perf_session__fprintf_dsos_buildid(struct perf_session *self, FILE *fp,
  771. bool with_hits)
  772. {
  773. size_t ret = machine__fprintf_dsos_buildid(&self->host_machine, fp, with_hits);
  774. return ret + machines__fprintf_dsos_buildid(&self->machines, fp, with_hits);
  775. }